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Résumé
Les réseaux neuronaux récurrents (RNN) ont été dominants dans le domaine de

la parole au cours des dernières décennies, étant donné leurs propriétés attrayantes
de modélisation de séquences. Les réseaux neuronaux convolutionnels (CNN) ont
été présentés comme une alternative pour la modélisation de séquences en raison
de leur capacité à réduire les variations spectrales et à modéliser les corrélations
spectrales dans les caractéristiques acoustiques pour la reconnaissance automatique
de la parole (ASR). Des travaux récents suggèrent que les nombres complexes pour-
raient être utilisés comme une représentation de caractéristique plus riche que le
spectre et qui pouvaient donc être bénéfique pour les tâches liées à la parole.

Dans la thèse, nous abordons d’abord les concepts de base de l’apprentissage
automatique, les blocs de construction de l’apprentissage profond et discutons des
méthodes populaires capables de faire des modélisations séquentielles, en particu-
lier des réseaux de neurones convolutionnels, célèbres en tant que réseaux feed-
foward. Nous présentons ensuite deux travaux de recherche liés à la modélisation
séquence-séquence sur la parole. Premierement, nous introduisons une nouvelle ap-
proche pour adresser la reconnaissance de la parole avec des réseaux de neurones
convolutionnels qui montre des performances comparables avec leur homologue des
réseaux neuronaux récurrents. Deuxièmement, nous présentons un nouveau mo-
dèle, tirant parti de la représentation dans le domaine complexe, et définissons des
circonvolutions complexes, des stratégies complexes de normalisation par lots et
d’initialisation de poids complexes. Le modèle a atteint l’état de l’art de la tâche
de prédiction du spectre de la parole dans un cadre récurrent convolutionnel.

Mots clés: réseaux de neurones, apprentissage automatique, apprentissage
profond, réseaux de neurones convolutionnels, modélisation de séquences, recon-
naissance de la parole, représentation complexe
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Summary
Recurrent Neural Networks (RNNs), which has the attractive properties of mod-

elling sequences, has been dominant in speech field in the recent decades. Convo-
lutional Neural Networks (CNNs) has been shown as an alternative to model se-
quences because of its capacity of reducing spectral variations and modeling spectral
correlations in acoustic features for automatic speech recognition (ASR). Recent
work suggests that complex numbers could be used as a richer feature representa-
tion than spectrum which may benefit the speech related tasks.

In the thesis, we first cover the basic concepts in machine learning, building
blocks of deep learning and discuss the popular methods that are capable of doing
sequence-to-sequence modelling, specially convolutional neural networks, which is
famous as a class of feed-forward nets. We then present two research work re-
lated to sequence-to-sequence modelling on speech. We introduce a new approach
to address speech recognition with convolutional neural networks which shows the
comparable results with their recurrent neural networks counterpart. In addition,
we present a new model taking advantage of the representation in the complex
domain and define complex convolutions, complex batch-normalization, complex
weight initialization strategies. The new model results in state-of-the-art of speech
spectrum prediction in a convolutional recurrent setting.

Keywords: neural networks, machine learning, deep learning, convolutional
neural networks, sequence modelling, speech recognition, complex representation
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1 Introduction to Deep
Learning

In this chapter we cover the basic concepts of machine learning and several

fundamental components in deep learning family.

1.1 Machine Learning Basics

1.1.1 Definition

Machine Learning algorithms are described as a set of algorithms equipped with

the ability to learn from data. Di↵erent from the traditional algorithms with hand-

crafted features, such algorithms could learn to make data-driven predictions or

decisions without being explicitly designed. Machine learning has been widely used

in computer vision, speech recognition and natural language processing (NLP). Re-

lated applications include object detection (Ren et al., 2015; He et al., 2017, 2016a;

Redmon et al., 2016), speech recognition (Graves et al., 2013; Graves and Jaitly,

2014; Sak et al., 2014), language modelling (Mikolov et al., 2010; Sundermeyer

et al., 2012), etc.

1.1.2 Tasks Categorization

Machine learning tasks mainly fall into supervised learning, semi-supervised

learning, unsupervised learning, active learning and reinforcement learning, which

depend on the kind of data provided to the learning algorithm.

Supervised Learning: Provided with a set of inputs x 2 X and targets

y 2 Y , the algorithm is to learn some parameterized functions F : X ! Y that

map inputs to outputs:

y = F (x; ✓), (1.1)

where ✓ is a set of learnable parameters.
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Semi-Supervised Learning: Given a set of inputs x 2 X with partial targets

y 2 Y . The task is to learn some parameterized functions F : X ! Y that map

inputs to outputs.

Active Learning: a special case of semi-supervised learning. The algorithm

is capable of interactively querying the users (or some other information source) to

label the outputs with new inputs.

Reinforcement Learning: The algorithm is to learn the optimal policy for

the agent in a dynamic environment by taking actions and optimizing its future

reward.

Unsupervised Learning: Provided a set of inputs x 2 X with no targets,

the algorithm is to learn the underlying data structure from the unlabeled inputs:

h = F (x; ✓), (1.2)

where F is parameterized function, ✓ is a set of learnable parameters and h is the

underlying representation.

1.1.3 Empirical Risk

To learn the supervised tasks, cost function needs be provided to measure how

close the predictions are to their corresponding targets and optimize the algorithm

based on its cost. More formally, we assume a cost function in the form of L(ŷ,y),

where ŷ is the prediction and y is the target. The risk is then defined as:

R(F ) = E[L(F (x, ✓),y)] =

Z
L(F (x, ✓),y) dP (x,y) (1.3)

where P (x,y) is joint probability distribution over space X and space Y and E is

the expectation.

The goal could be formed as finding the optimal function F (x, ✓) among a family

of parameterized functions for which risk is minimal. In most cases, we are unable

to access the complete data space and the joint probability distribution P (x,y)

is unknown to us. Alternatively, we use empirical risk to approximate the true

risk:

R̃(F ) =
1

n

nX

i=1

L(F (xi, ✓),yi) (1.4)
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where n is the total number of training data we can access.

The learning goal is then transformed into finding the optimal function F (x, ✓)

for which empirical risk is minimal, which is also known as empirical risk min-

imization.

1.1.4 Generalization

Generalization denotes how well a algorithm with learned parameters perform

on unseen and independent and identically distributed (i.i.d) data compared to the

training set, which is a crucial ability of the algorithm learning. The generalization

error is defined as the expected loss on any new input.

To evaluate how good a model is, two factors are considered:

1. if the training error is small;

2. if the gap between training error and generalization error is small.

These two factors result in two important concepts in machine learning: un-

derfitting and overfitting, which are highly related to the model capacity. As

shown in Figure 1.1, underfitting occurs when the model does not have enough

capacity to obtain a small training error while overfitting occurs when the model

has enough capacity but the gap between training error and generalization error is

large.

Figure 1.1 – The curve between training / generalization error and model capacity. X-axis

denotes model capacity and Y-axis denotes the error.
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1.2 Artificial Neural Networks

1.2.1 Perceptron

Inspired by the biological neural networks that build animal brains, Artificial

Neural Networks (ANNs) are based on a collection of connected units called ar-

tificial neurons, where each connection between neurons can transmit a signal to

another neuron. One famous algorithm among ANNs dating back to early 60’s is

Perceptron (Rosenblatt, 1958), which was created by Rosenblatt.

Perceptron is designed to tackle binary classification problem in supervise learn-

ing. The algorithm is to learn to decide if an input belongs to a negative class or

a positive class based on the dot product over a set of parameters and the input

values. Formally, consider a set of inputs x = {x1, x2, ..., xd} containing d input

scalars, a set of d scalar weights w = {w1, w2, ..., wd} and a single scalar bias term

b, the perceptron algorithm is defined as follows:

f(x) =

8
<

:
1 if w|x+ b > 0

0 otherwise
(1.5)

The bias term shifts the boundary from the origin and is independent of inputs.

Figure 1.2 shows a schematic diagram of the algorithm.

Figure 1.2 – A graphical illustration of perceptron algorithm

The perceptron algorithm is also termed as single-layer perceptron, which is

distinguished from multi-layer perceptron.
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1.2.2 Multi-Layer Perceptrons

Multi-layer perceptron (MLP) is the extension of a single-layer perception,

which consists of at least three layers (including an input layer and an output

layer). Di↵erent from the unit step function used in perception algorithm, a non-

linear activation function (which will be discussed in details in the following section)

is applied to the dot product value.

Figure 1.3 – A graphical illustration of multi-layer perceptron

As shown in Figure 1.3, MLPs are fully connected. Each node in one layer is

connected with a set of weights wij to every node in the following layer. Cybenko’s

theorem (Cybenko, 1989) shows that MLPs are universal function approximators,

which proves that a 3-layer perceptron can approximate continuous functions on

compact subsets of Rn under certain assumptions. The property suggests that such

artificial neural networks could model various functions with appropriate weights

and activation function. MLPs has been widely used in image classification (LeCun

et al., 1998; Cireşan et al., 2012) and speech recognition (Lopes and Perdigao, 2011;

Bourlard and Morgan, 1990) since 1980’s.

1.2.3 Activation Function

The activation function is a crucial component in neural networks. It takes as

input the dot product value with a bias term and output a value decides whether

the node should be ”fired” or not. Here, we introduce several popular activation

functions. In all the following functions, x, w, b represent an input random variable,

a scalar weight and a scalar bias term, respectively.

5



• Unit step function is a discontinuous function that is used in perception

algorithm. It it defined as:

f(x) =

8
<

:
1 if x > 0

0 otherwise
(1.6)

• Sigmoid function is inspired from probability theory and its output ranges

from 0 to 1 in an ”S” shape, which is commonly used in multi-layer perceptron. It

is defined as:

f(x) =
1

1 + e�x
(1.7)

•Hyperbolic tangent function (Tanh) is a rescaling of the sigmoid function

in which output ranges from �1 to 1:

tanh x =
sinh x

cosh x
=

ex � e�x

ex + e�x
(1.8)

• Rectifier Linear Unit (ReLU) is inspired from biological motivations.

The advantages of ReLU include e�cient computation, sparse activation, etc. It is

favored for deep neural networks:

f(x) = max(0, x) (1.9)

• Parametric Rectifier Linear Unit (PReLU) is an extension of the ReLU

in which the output of the function in the regions that input is a linear function of

the input with a slope of ↵:

f(x) =

8
<

:
f(x), if f(x) > 0

↵f(x), otherwise
(1.10)

the extra parameter ↵ is usually initialized to 0.1 and can be trained.

• Maxout takes the maximum output from n piece-wise linear functions:

f(x) = max(f 0(x), f 00(x)) (1.11)
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where for f’(x) and f”(x) we have:

f 0(x) = w0 ⇥ x+ b0, ... fn(x) = wn ⇥ x+ b00, (1.12)

• Softmax function is also named normalized exponential function. It nor-

malizes K-dimensional vector x to a vector ranging from 0 to 1 that adds up to 1.

It commonly used for represent a probability distribution for K possible outputs.

Thus, softmax function has been highly used in classification tasks. It is defined

as:

�(x)i =
exi

PK
k=1 e

xk

(1.13)

1.2.4 Cost Functions

Following what we discussed about empirical risk in 1.1.3, it is necessary to

define the concrete formulation of the cost function (also known as the objective

function) L(ŷ,y), where ŷ is the prediction and y is the target. Typically, the

output of the cost function is a measurement of how far the predictions are from

the targets. Various cost functions could be chosen for specific tasks. Here, we

introduce 3 popular cost functions:

Cross-Entropy: Cross-Entropy defines a loss between the categorical output

and the target in a supervised classification model. The categorical output is usually

interpreted as a probability value for its category from the softmax output:

L(ŷ,y) = �
X

c

1y=c log ŷc (1.14)

where c denotes the target. The loss increases when the prediction diverges from

the target and goes to zero when the prediction assigns 100% probability to the

target class.

Mean Squared Error (MSE): Mean squared error has been widely use in

regression tasks. Di↵erent from classification, regression models output continuous

values:

L(ŷ,y) =
1

n

nX

i=1

(ŷi � yi)
2 (1.15)

where n denotes n training examples we could access.

L1 loss: L1 loss measures the absolute distance between the prediction and the
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target:

L(ŷ,y) =
1

n

nX

i=1

|ŷi � yi| (1.16)

L1 loss function is robust and less vulnerable by outliers while MSE is very sensitive

to outliers.

1.2.5 Optimization

In the deep learning context, optimization is defined as finding the optimal

weights of a model that could minimize a given cost function. Optimization of

ANNs is crucial and di�cult. A set of approaches have been developed to solve the

task and all popular optimizers methods are gradient-based.

One popular technique in gradient-based optimization family is gradient de-

scent, which finds a local minimum of the given cost function based on the deriva-

tives in a iterative way.

Suppose we have a model to learn a mapping function from x 2 X to y 2 Y ,

y = F (x; ✓), (1.17)

where ✓ is a set of learnable parameters. The derivative of the function in terms

of parameters is defined as F
0
✓(x; ✓), which in 1-D, is the slope of F (x; ✓) with ✓

at the point x. It tells us how to scale ✓ to make an improvement over y. More

specifically, we could reduce the value of loss function by changing the parameters

as follows:

✓t+1 = ✓t � ✏F
0

✓(x; ✓t) (1.18)

where t indicates the t-th iteration and ✏ denotes a positive scalar determining the

size of the step. The iteration would stop when y is lower than all the neighboring

points.

To train the ANN parameters, we need to use gradient descent for backward

propagation of errors (backpropagation) through di↵erent layers. The method com-

putes the gradient of the cost function with respect to the parameters. In order

to complete backpropagation, we need to use the chain rule. Suppose we have two
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simple functions,

f(q, z) = q ⇥ z (1.19)

q(x, y) = x+ y (1.20)

we have known how to compute the gradient of f with respect to q and the

gradient of q with respect to x from the aforementioned method. To compute the

gradient of f with respect to x, we preform,

f 0
x(q, z) = f 0

q(q, z)⇥ q0x(x, y) (1.21)

In this case, the gradient is simply obtained by multiplication of two gradient in

each function.

Typically, a training dataset would be provided when we train ANNs. There are

two trends to apply gradient descent: batch gradient descent (BGD) and stochastic

gradient descent (SGD). Batch gradient descent calculates the gradient using the

whole training dataset. This method could be expensive and ine�cient when the

dataset is in the large-scale. Stochastic gradient descent computes the gradient

using a single example in the dataset, many applications of SGD actually use a

mini-batch including several examples. The gradient computed in this case is noiser

but it turns out working well. A graphical depiction of the di↵erence between BGD

and SGD is shown in Figure 1.4.

Figure 1.4 – A graphical depiction of the di↵erence between BGD and SGD. SGD o↵ers noiser

gradient in each iteration.

One could image that standard SGD may oscillate across the ravine instead of

going down to the optimum if the loss surface has the form of a long shallow ravine

leading to the optimum and steep walls on the sides. In this case, standard SGD
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may lead to slower convergence. Momentum (Sutskever et al., 2013) was proposed

to alleviate this problem. The momentum update follows:

vt+1 = ↵vt + ✏F
0

✓(x; ✓t) (1.22)

✓t+1 = ✓t � vt+1 (1.23)

where vt+1 denotes the velocity at t + 1-th iteration, ↵ determines for how many

iterations from the previous gradients are involved into the current update.

SGD or SGD with momentum could be categorized as the first-order itera-

tive optimization algorithm. Another popular first-order optimization algorithm

is Adaptive Moment Estimation (Adam) proposed by Kingma and Ba in 2014

(Kingma and Ba, 2014) which computes the adaptive learning rates for each pa-

rameter. It takes advantage of per-parameter learning rates that helps to improve

the performance of the problems with sparse gradients and that are adapted based

on the average of recent magnitudes of the gradients for the parameters. In addi-

tion, Adam also benefit from the average of the second moments of the gradients.

Basically, the algorithm computes an exponential moving average of the gradient

and the squared gradient. There are two scalar hyper-parameters that control the

decay rates of these moving averages. The detailed algorithm is described in Figure

1.5.

Figure 1.5 – The detailed Adam algorithm showed in Kingma and Ba (2014)
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In addition to first-order optimization algorithms, second-order optimization

has been explored as well. One simple instantiation is Newton’s method. Newton’s

method is based on a second-order Taylor series expansion to approximate f(x)

near some point x. Newton’s method could be helpful when the nearby point is a

local minimum. In this case, it performs faster than gradient descent since it uses

information about the second derivative which makes the convergence in fewer steps

than gradient descent.

As we mentioned, optimization of ANNs can be di�cult. One scenario is when

the parameters get stuck at points that are neither maximum or minimum, we call

these points as saddle points. A saddle point is the point where the derivatives

become zero but not a local extremum on both axes. Research on how to escape

saddle points when training ANNs has been developed in recent years (Dauphin

et al., 2014; Jin et al., 2017).
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2 Sequence to Sequence
Learning

In this chapter we will introduce several building blocks of sequence to sequence

learning in deep learning scenarios – recurrent neural networks (RNNs), convolu-

tional neural networks (CNNs) based sequence modelling and their variants.

2.1 Concept

Sequence to sequence learning typically denotes the methods to map the in-

put sequence to a variable length output sequence. More specifically, sequence to

sequence learning includes synced sequence input to sequence output (labels are

assigned to each unit of sequence input) and unsynced sequence input to sequence

output (labels are not aligned with input). They has been successfully used in the

domain of speech recognition (Graves et al., 2013; Graves and Jaitly, 2014; Sak

et al., 2014), machine translation (Luong et al., 2015; Bahdanau et al., 2014) and

optical character recognition (OCR) (Lee and Osindero, 2016; He et al., 2016d).

The length of input for sequence to sequence learning is usually unknown as a pri-

ori which would make MLPs fail easily. MLPs are powerful for the tasks whose

inputs and outputs are of a fixed size, however, many problems have sequential

properties. In the next section, we will present recurrent neural networks (RNNs),

a class of ANNs whose connections between units are cyclic. The nature of RNNs

allows them to model the temporal relations inside the sequential input.

2.2 Recurrent Neural Networks

Reccurent Neural Networks (RNNs) are sequential extension of feedforward

neural networks. Given an input sequence of vectors (x1, . . . , xT ), the model
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produces a sequence of hidden states (s1, . . . , sT ) and a sequence of outputs (y1,

. . . , yT ), which are computed at time step t as follows

st = '(Wst�1 +Uxt) (2.1)

ot = Vst (2.2)

where W is the recurrent weight matrix, U is the input-to-hidden weight matrix,

V is the hidden-to-output weight matrix and ' is an arbitrary activation function

(usually a logistic sigmoid function or tanh function). The parameters are shared

by all time steps in the network.

The RNNs could map sequences to sequences with known alignment between

the inputs and outputs. We show an unrolled recurrent neural network in Figure

2.1.

Figure 2.1 – A recurrent neural network unrolled in time (Figure adapted from Yoshua Bengio’s

slides)

Training a recurrent neural network is similar to training MLPs. However, the

gradient at each output depends not only on the current time step, but also the

previous time steps, we call it backpropagation through time (BPTT). Training

such networks via BPTT is known to be particularly di�cult due to what is called

the vanishing and exploding gradient problem, which hinders the models from

learning long-term dependencies. The gradient @st
@st�n

can be computed as follows,

@st
@st�n

=
tY

k=t�n+1

UTdiag('
0

k), (2.3)

where diag('
0
k) = '

0
(Wst�1 +Uxt). The equation above shows that the gradient
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flow through time heavily depends on the hidden-to-hidden matrix U, but W and

xt appear to play a limited role: they only come in the derivative of '
0
mixed with

U. An improved architecture that e�ciently utilize the information from di↵erent

resources is proposed by Wu, et al in (Wu et al., 2016).

2.3 Long Short Term Memory

Long Short Term Memory (LSTM) is a special kind of recurrent structure which

was proposed by Sepp Hochreiter and Jürgen Schmidhuber in 1997 (Hochreiter and

Schmidhuber, 1997). It addresses the vanishing gradient problem commonly found

in RNNs by incorporating gating functions into its state dynamics. The main

components include a memory cell to store the state for the time step up to now,

an input gate to modulate the extent to which a new input at time step t flows into

the memory cell, an output gate to control the extent to which the information in

the cell flows out, a forget gate to determine how much history would be preserved

in the cell. More specifically, we define the computation at time step t as follows:

it = '(Wsist�1 +Uxixt) (2.4)

ft = '(Wsfst�1 +Uxfxt) (2.5)

ot = '(Wsost�1 +Uxoxt) (2.6)

ct = ft � ct�1 + it � (Wsst�1 +Uxcxt) (2.7)

st = ot � '(ct) (2.8)

where it, ft, ot, ct, st denotes input gate, forget gate, output gate, memory cell

state and output of the LSTM unit, respectively. Ws. and Ux. are weight matrices

and � denotes Hadamard product (element-wise product).

Variants to LSTM includes peephole LSTM whose gates are computed based

on the memory cell state ct�1 and the input xt, convolutional LSTM which incor-

porates convolution operator that we will introduce in the following section. Gated

recurrent unit (GRU) (Cho et al., 2014) is another gating mechanism which is sim-

ilar to LSTM while there is only single gating unit determines the forgetting factor
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and the extent to update the state. Empirical comparisons between LSTM and

GRU can be found in (Chung et al., 2014).

2.4 Bidirectional Structure

Bidirectional RNNs were proposed by Schuster and Paliwal in 1997 (Schuster

and Paliwal, 1997). They use information not only from the past states but also

from the future states, which can access long-range context in both directions.

Bidirectional structures has been shown to be superior over unidirectional structure

in Graves and Schmidhuber (2005). A diagram depicting the di↵erence between

two structures is shown in Figure 2.2.

Figure 2.2 – The di↵erence between a bidirectional RNN and an unidirectional RNN. (Figure

adapted from wikipedia)

2.5 Convolutional Neural Networks

Convolutional neural networks (CNNs) is known as a class of feed-forward ANNs

which were inspired by biological processes. They are widely used in the vision

community for image classification, video recognition and other applications. CNNs
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Figure 2.3 – The convolution layer and max-pooling layer applied upon input features.

have been popular for sequence modelling in recent years (Venugopalan et al.,

2015; Gehring et al., 2017) because of their computation e�ciency and capacity to

model long-range dependencies by stacking layers. A complete CNN is typically

composed of stacked convolutional layers and pooling layers and at the top of which

are multiple fully-connected layers. We introduce the building blocks of CNNs by

taking acoustic features as input.

2.5.1 Convolution

As shown in Figure 2.3, given a sequence of input feature values X 2 Rc⇥b⇥f

with number of channels c, frequency bandwidth b, and time length f , the con-

volutional layer convolves X with k filters {Wi}k where each Wi 2 Rc⇥m⇥n is a

3D tensor with its width along the frequency axis equal to m and its length along

frame axis equal to n. The resulting k pre-activation feature maps consist of a 3D

tensor H 2 Rk⇥bH⇥fH , in which each feature map Hi is computed as follows:

Hi = Wi ⇤X+ bi, i = 1, · · · , k. (2.9)

The symbol ⇤ denotes the convolution operation and bi is a bias parameter.

Convolution helps to extract features from input feature without losing spatial

relations between units of the input. The size of the resulting feature maps is

determined by the number of filters, the number of units by which the filters are

slid (also known as stride) and the amount of padding around the border of the

input (usually zero-padding). Each unit in the feature map is related to a local

region of the input is known as receptive field. Another critical concept in CNNs
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Figure 2.4 – Diliated convolution on 2D data. Figure is adapted from Yu and Koltun (2015)

is parameter sharing, which is used to control the number of parameters and to

capture local features that could lie anywhere in the input.

Convolution has evolved into di↵erent variations in recent years. One popular

variation is dilated convolution (Yu and Koltun, 2015), which is a convolution with

a dilated filter (Digram is shown in Figure 2.4). Dilation factor could be customized

depending on the task. Dilated convolution has been widely applied to semantic

segmentation and audio generation (Yu and Koltun, 2015; Oord et al., 2016).

2.5.2 Pooling

After the element-wise non-linearities are applied to the pre-activation feature

maps, the features will pass through a pooling layer which outputs the value from

p adjacent units. The pooling operation reduces the dimensionality of the input

while retaining the important local features. Pooling operations fall into various

categories, such as mean pooling (mean value is computed over a region), max

pooling (max value is computed over a region) and etc. In the case of max pooling,

suppose that the i th feature map before and after pooling are H̃i and Ĥi, then

[Ĥi]r,t at position (r, t) is computed by:

[Ĥi]r,t = max
p
j=1{[H̃i]r⇥s+j,t}, (2.10)

17



where s is the step size and p is the pooling size, and all the [H̃i]r⇥s+j,t values

inside the max have the same time index t. Pooling operation results in translation

invariant features, which means the same (pooled) feature will be active even when

the image undergoes (small) translations. This property is desirable when the tasks

are position independent, for example, object recognition.

2.5.3 Fully Connected Layer

A fully connected layer (FCL) is typically a set of MLP layers with a softmax

function at the top. The purpose of FCL is to combine the local features from

convolutional layers and pooling layers in a non-linear fashion. FCL is important

when the global feature is needed for the task, for example, image classification. In

sequence-to-sequence learning tasks, FCL is usually replaced by 1x1 convolution

to keep the sequential nature. We refer readers to (Gehring et al., 2017) for more

details.

2.6 Sequence Loss Function

Loss function design in unsynced sequence to sequence learning (labels are not

aligned with input) is nontrivial due to its many-to-one, one-to-many or many-

to-many mapping possibilities. We introduce a novel loss function, Connectionist

Temporal Classification (CTC), which is proposed by Graves, et al (Graves et al.,

2006) that solves the many-to-one mapping problem in unsegmented sequence data.

2.6.1 Connectionist Temporal Classification

Consider any sequence to sequence mapping task in which X = {X1, ..., XT}
is the input sequence and Z = {Z1, · · · , ZL} is the target sequence. In the case

of speech recognition, X is the acoustic signal and Z is a sequence of symbols. In

order to train the neural acoustic model, Pr(Z|X) must be maximized for each

input-output pair.

One way to provide a distribution over variable length output sequences given

some much longer input sequence, is to introduce a many-to-one mapping of latent
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variable sequences O = {O1, · · · , OT} to shorter sequences that serve as the final

predictions. The probability of some sequence Z can then be defined to be the sum

of the probabilities of all the latent sequences that map to that sequence. Connec-

tionist Temporal Classification (CTC) (Graves et al., 2006) specifies a distribution

over latent sequences by applying a softmax function to the output of the network

for every time step, which provides a probability for emitting each label from the

alphabet of output symbols at that time step Pr(Ot|X). An extra blank output

class ‘-’ is introduced to the alphabet for the latent sequences to represent the prob-

ability of not outputting a symbol at a particular time step. Each latent sequence

sampled from this distribution can now be transformed into an output sequence

using the many-to-one mapping function �(·) which first merges the repetitions of

consecutive non-blank labels to a single label and subsequently removes the blank

labels as shown in Equation 2.11:

�(a, b, c,�,�)

�(a, b,�, c, c)

�(a, a, b, b, c)

�(�, a,�, b, c)
...

�(�,�, a, b, c)

9
>>>>>>>>>=

>>>>>>>>>;

= (a, b, c). (2.11)

Therefore, the final output sequence probability is a summation over all possible

sequences ⇡ that yield to Z after applying the function �:

Pr(Z|X) = ⌃o2��1(Z)Pr(O|X). (2.12)

A dynamic programming algorithm similar to the forward algorithm for HMMs

Graves (2012b) is used to compute the sum in Equation 2.12 in an e�cient way.

The intermediate values of this dynamic programming can also be used to compute

the gradient of lnPr(Z|X) with respect to the neural network outputs e�ciently.

To generate predictions from a trained model using CTC, we use the best path

decoding algorithm. Since the model assumes that the latent symbols are indepen-

dent given the network outputs in the framewise case, the latent sequence with the

highest probability is simply obtained by emitting the most probable label at each

time-step. The predicted sequence is then given by applying �(·) to that latent
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sequence prediction:

L ⇡ �(⇡⇤), (2.13)

in which ⇡⇤ is the concatenation of the most probable output and is formalized

by ⇡⇤ = Argmax⇡Pr(⇡|X). Note that this is not necessarily the output sequence

with the highest probability. Finding this sequence is generally not tractable and

requires some approximate search procedure like a beam-search.

In the following chapters, we present two new approaches of sequence-to-sequence

modelling on speech. The first one is based on CNNs and the other is built on

RNNs.
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4

Towards End-to-End Speech
Recognition with Deep
Convolutional Neural
Networks

4.1 Introduction

Recently, Convolutional Neural Networks (CNNs) (LeCun et al., 1998) have

achieved great success in acoustic modeling (Abdel-Hamid et al., 2012; Sainath

et al., 2013b,a). In the context of Automatic Speech Recognition, CNNs are usu-

ally combined with HMMs/GMMs (Mohamed et al., 2012; Hinton et al., 2012), like

regular Deep Neural Networks (DNNs), which results in a hybrid system (Abdel-

Hamid et al., 2012; Sainath et al., 2013b,a). In the typical hybrid system, the

neural net is trained to predict frame-level targets obtained from a forced align-

ment generated by an HMM/GMM system. The temporal modeling and decoding

operations are still handled by an HMM but the posterior state predictions are

generated using the neural network.

This hybrid approach is problematic in that training the di↵erent modules sep-

arately with di↵erent criteria may not be optimal for solving the final task. As

a consequence, it often requires additional hyperparameter tuning for each train-

ing stage which can be laborious and time consuming. Furthermore, these issues

have motivated a recent surge of interests in training ‘end-to-end’ systems (Hannun

et al., 2014; Bahdanau et al., 2016; Miao et al., 2015). End-to-end neural systems

for speech recognition typically replace the HMM with a neural network that pro-

vides a distribution over sequences directly. Two popular neural network sequence

models are Connectionist Temporal Classification (CTC) (Graves et al., 2006) and

recurrent models for sequence generation (Bahdanau et al., 2016; Chorowski et al.,

2015).

To the best of our knowledge, all end-to-end neural speech recognition systems

employ recurrent neural networks in at least some part of the processing pipeline.

The most successful recurrent neural network architecture used in this context is the

Long Short-Term Memory (LSTM) (Graves et al., 2013; Graves, 2012a; Hochreiter
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and Schmidhuber, 1997; Vinyals et al., 2012). For example, a model with multiple

layers of bi-directional LSTMs and CTC on top which is pre-trained with the

transducer networks (Graves et al., 2013; Graves, 2012a) obtained the state-of-the-

art on the TIMIT dataset. After these successes on phoneme recognition, similar

systems have been proposed in which multiple layers of RNNs were combined with

CTC to perform large vocabulary continuous speech recognition (Hannun et al.,

2014; Miao et al., 2013). It seems that RNNs have become somewhat of a default

method for end-to-end models while hybrid systems still tend to rely on feed-

forward architectures.

While the results of these RNN-based end-to-end systems are impressive, there

are two important downsides to using RNNs/LSTMs: (1) The training speed can

be very slow due to the iterative multiplications over time when the input sequence

is very long; (2) The training process is sometimes tricky due to the well-known

problem of gradient vanishing/exploding (Hochreiter, 1991; Bengio et al., 1994).

Although various approaches have been proposed to address these issues, such as

data/model parallelization across multiple GPUs (Hannun et al., 2014; Sutskever

et al., 2014) and careful initializations for recurrent connections (Le et al., 2015),

those models still su↵er from computationally intensive and otherwise demanding

training procedures.

Inspired by the strengths of both CNNs and CTC, we propose an end-to-end

speech framework in which we combine CNNs with CTC without intermediate

recurrent layers. We present experiments on the TIMIT dataset and show that

such a system is able to obtain results that are comparable to those obtained with

multiple layers of LSTMs. The only previous attempt to combine CNNs with CTC

that we know about (Song and Cai), led to results that were far from the state-of-

the-art. It is not straightforward to incorporate CNN into an end-to-end manner

since the task may require the model to incorporate long-term dependencies. While

RNNs can learn these kind of dependencies and have been combined with CTC for

this very reason, it was not known whether CNNs were able to learn the required

temporal relationships.

In this paper, we argue that in a CNN of su�cient depth, the higher-layer

features are capable of capturing temporal dependencies with suitable context in-

formation. Using small filter sizes along the spectrogram frequency axis, the model

is able to learn fine-grained localized features, while multiple stacked convolutional
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Figure 4.1 – Network structure for phoneme recognition on the TIMIT dataset. The model
consists of 10 convolutional layers followed by 3 fully-connected layers on the top. All convolutional
layers have the filter size of 3 ⇥ 5 and we use max-pooling with size of 3 ⇥ 1 only after the first
convolutional layer. First and second numbers correspond to frequency and time axes respectively.

layers help to learn diverse features on di↵erent time/frequency scales and provide

the required non-linear modeling capabilities.

Unlike the time windows applied in DNN systems (Abdel-Hamid et al., 2012;

Sainath et al., 2013b,a), the temporal modeling is deployed within convolutional

layers, where we perform a 2D convolution similar to vision tasks, and multiple

convolutional layers are stacked to provide a relatively large context window for

each output prediction of the highest layer. The convolutional layers are followed

by multiple fully connected layers and, finally, CTC is added on the top of the

model. Following the suggestion from (Sainath et al., 2013a), we only perform

pooling along the frequency band on the first convolutional layer. Specifically, we

evaluate our model on phoneme recognition for the TIMIT dataset.
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4.2 Experiments

In this section, we evaluate the proposed model on phoneme recognition for the

TIMIT dataset. The model architecture is shown in Figure 4.1.

4.2.1 Data

We evaluate our models on the TIMIT (Garofolo et al., 1993) corpus where

we use the standard 462-speaker training set with all SA records removed. The

50-speaker development set is used for early stopping. The evaluation is performed

on the core test set (including 192 sentences). The raw audio is transformed into

40-dimensional log mel-filter-bank (plus energy term) coe�cients with deltas and

delta-deltas, which results in 123 dimensional features. Each dimension is normal-

ized to have zero mean and unit variance over the training set. We use 61 phone

labels plus a blank label for training and then the output is mapped to 39 phonemes

for scoring.

4.2.2 Models

Our best model consists of 10 convolutional layers and 3 fully-connected hidden

layers. Unlike the other layers, the first convolutional layer is followed by a pooling

layer, which is described in section 2. The pooling size is 3 ⇥ 1, which means we

only pool over the frequency axis. The filter size is 3 ⇥ 5 across the layers. The

model has 128 feature maps in the first four convolutional layers and 256 feature

maps in the remaining six convolutional layers. Each fully-connected layer has 1024

units. Maxout with 2 piece-wise linear functions is used as the activation function.

Some other architectures are also evaluated for comparison, see section 4.4 for more

details.

4.2.3 Training and Evaluation

To optimize the model, we use Adam (Kingma and Ba, 2014) with learning

rate 10�4. Stochastic gradient descent with learning rate 10�5 is then used for

fine-tuning. Batch size 20 is used during training. The initial weight values were

drawn uniformly from the interval [�0.05, 0.05]. Dropout (Srivastava et al., 2014)

with a probability of 0.3 is added across the layers except for the input and output

25



layers . L2 norm with coe�cient 1e�5 is applied at fine-tuning stage. At test time,

simple best path decoding (at the CTC frame level) is used to get the predicted

sequences.

4.2.4 Results

Our model achieves 18.2% phoneme error rate on the core test set, which is

slightly better than the LSTM baseline model and the transducer model with an

explicit RNN language model. The details are presented in Table 4.1. Notice

that the CNN model could take much less time to train in comparison with the

LSTM model when keeping roughly the same number of parameters. In our setup

on TIMIT, we get 2.5⇥ faster training speed by using the CNN model without

deliberately optimizing the implementation. We suppose that the gain of the com-

putation e�ciency might be more dramatic with a larger dataset.

To further investigate the di↵erent structural aspects of our model, we disentan-

gle the analysis into three sub-experiments considering the number of convolutional

layers, the filter sizes and the activation functions, as shown in table 4.1. It turns

out that the model may benefit from (1) more layers, which results in more nonlin-

earities and larger input receptive fields for units in the top layers; (2) reasonably

large context windows, which help the model to capture the spatial/temporal rela-

tions of input sequences in reasonable time-scales; (3) the Maxout unit, which has

more functional freedoms comparing to ReLU and parametric ReLU.

4.3 Discussion

Our results showed that convolutional architectures with CTC cost can achieve

results comparable to the state-of-the-art by adopting the following methodology:

(1) Using a significantly deeper architecture that results in a more non-linear func-

tion and also wider receptive fields along both frequency and temporal axes; (2)

Using maxout non-linearities in order to make the optimization easier; and (3)

Careful model regularization that yields better generalization in test time, espe-

cially for small datasets such as TIMIT, where over-fitting happens easily.
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Table 4.1 – Phoneme Error Rate (PER) on TIMIT. ’NP’ is the number of parameters. ’BiLSTM-

3L-250H’ denotes the model has 3 bidirectional LSTM layers with 250 units in each direction. In

the CNN model, (3, 5) is the filter size. Results suggest that deeper architecture and larger filter

sizes leads to better performance. The best performing model on Development set, has a test

PER of 18.2 %

Model NP Dev PER Test PER
BiLSTM-3L-250H Graves et al. (2013) 3.8M - 18.6%
BiLSTM-5L-250H Graves et al. (2013) 6.8M - 18.4%
TRANS-3L-250H Graves et al. (2013) 4.3M - 18.3%
CNN-(3,5)-10L-ReLU 4.3M 17.4% 19.3%
CNN-(3,5)-10L-PReLU 4.3M 17.2% 18.9%
CNN-(3,5)-6L-maxout 4.3M 18.7% 21.2%
CNN-(3,5)-8L-maxout 4.3M 17.7% 19.8%
CNN-(3,3)-10L-maxout 4.3M 18.4% 19.9%
CNN-(3,5)-10L-maxout 4.3M 16.7% 18.2%

We conjecture that the convolutional CTC model might be easier to train on

phoneme-level sequences rather than the character-level. Our intuition is that the

local structures within the phonemes are more robust and can easily be captured

by the model. Additionally, phoneme-level training might not require the modeling

of many long-term dependencies in comparison with character-level training. As

a result, for a convolutional model, learning the phonemes structure seems to be

easier, but empirical research needs to be done to investigate if this is indeed the

case.

Finally, an important point that favors convolutional over recurrent architec-

tures is the training speed. In a CNN, the training time can be rendered virtually

independent of the length of the input sequence due to the parallel nature of con-

volutional models and the highly optimized CNN libraries available (Abadi et al.,

2016). Computations in a recurrent model are sequential and cannot be easily par-

allelized. The training time for RNNs increases at least linearly with the length of

the input sequence.
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6 Deep Complex Networks

6.1 Introduction

Recent research advances have made significant progress in addressing the dif-

ficulties involved in learning deep neural network architectures. Key innovations

include normalization techniques (Io↵e and Szegedy, 2015; Salimans and Kingma,

2016) and the emergence of gating-based feed-forward neural networks like High-

way Networks (Srivastava et al., 2015). Residual networks (He et al., 2016b,c) have

emerged as one of the most popular and e↵ective strategies for training very deep

convolutional neural networks (CNNs). Both highway networks and residual net-

works facilitate the training of deep networks by providing shortcut paths for easy

gradient flow to lower network layers thereby diminishing the e↵ects of vanishing

gradients (Hochreiter, 1991). He et al. (2016c) show that learning explicit residuals

of layers helps in avoiding the vanishing gradient problem and provides the network

with an easier optimization problem. Batch normalization (Io↵e and Szegedy, 2015)

demonstrates that standardizing the activations of intermediate layers in a network

across a minibatch acts as a powerful regularizer as well as providing faster training

and better convergence properties. Further, such techniques that standardize layer

outputs become critical in deep architectures due to the vanishing and exploding

gradient problems.

The role of representations based on complex numbers has started to receive in-

creased attention, due to their potential to enable easier optimization (Nitta, 2002),

better generalization characteristics (Hirose and Yoshida, 2012), faster learning

(Arjovsky et al., 2016; Danihelka et al., 2016; Wisdom et al., 2016) and to al-

low for noise-robust memory mechanisms (Danihelka et al., 2016). Wisdom et al.

(2016) and Arjovsky et al. (2016) show that using complex numbers in recurrent

neural networks (RNNs) allows the network to have a richer representational ca-

pacity. Danihelka et al. (2016) present an LSTM (Hochreiter and Schmidhuber,
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1997) architecture augmented with associative memory with complex-valued inter-

nal representations. Their work highlights the advantages of using complex-valued

representations with respect to retrieval and insertion into an associative memory.

In residual networks, the output of each block is added to the output history ac-

cumulated by summation until that point. An e�cient retrieval mechanism could

help to extract useful information and process it within the block.

In order to exploit the advantages o↵ered by complex representations, we present

a general formulation for the building components of complex-valued deep neural

networks and apply it to the context of feed-forward convolutional networks and

convolutional LSTMs. Our contributions in this paper are as follows:

1. A formulation of complex batch normalization, which is described in

Section 6.2.5;

2. Complex weight initialization, which is presented in Section 6.2.6;

3. A comparison of di↵erent complex-valued ReLU-based activation functions

presented in Section 6.3.1;

4. A state of the art result on the MusicNet multi-instrument music

transcription dataset, presented in Section 6.3.2;

5. A state of the art result in the Speech Spectrum Prediction task on the

TIMIT dataset, presented in Section 6.3.3.

We perform a sanity check of our deep complex network and demonstrate its

e↵ectiveness on standard image classification benchmarks, specifically, CIFAR-10,

CIFAR-100. We also use a reduced-training set of SVHN that we call SVHN*. For

audio-related tasks, we perform a music transcription task on the MusicNet dataset

and a Speech Spectrum prediction task on TIMIT. The results obtained for vision

classification tasks show that learning complex-valued representations results in

performance that is competitive with the respective real-valued architectures. Our

promising results in music transcription and speech spectrum prediction underscore

the potential of deep complex-valued neural networks applied to acoustic related

tasks 1 – We continue this paper with discussion of motivation for using complex

operations and related work.

1. The source code is located at http://github.com/ChihebTrabelsi/deep_complex_
networks
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6.2 Complex Building Blocks

In this section, we present the core of our work, laying down the mathemati-

cal framework for implementing complex-valued building blocks of a deep neural

network.

6.2.1 Representation of Complex Numbers

We start by outlining the way in which complex numbers are represented in

our framework. A complex number z = a + ib has a real component a and an

imaginary component b. We represent the real part a and the imaginary part b of

a complex number as logically distinct real valued entities and simulate complex

arithmetic using real-valued arithmetic internally. Consider a typical real-valued

2D convolution layer that has N feature maps such that N is divisible by 2; to

represent these as complex numbers, we allocate the first N/2 feature maps to

represent the real components and the remaining N/2 to represent the imaginary

ones. Thus, for a four dimensional weight tensor W that links Nin input feature

maps to Nout output feature maps and whose kernel size is m⇥m we would have

a weight tensor of size (Nout ⇥Nin ⇥m⇥m) /2 complex weights.

6.2.2 Complex Convolution

In order to perform the equivalent of a traditional real-valued 2D convolution

in the complex domain, we convolve a complex filter matrix W = A + iB by a

complex vector h = x + iy where A and B are real matrices and x and y are real

vectors since we are simulating complex arithmetic using real-valued entities. As

the convolution operator is distributive, convolving the vector h by the filter W we

obtain:

W ⇤ h = (A ⇤ x� B ⇤ y) + i (B ⇤ x + A ⇤ y). (6.1)

As illustrated in Figure 6.1a, if we use matrix notation to represent real and imag-

inary parts of the convolution operation we have:

"
<(W ⇤ h)
=(W ⇤ h)

#
=

"
A �B

B A

#
⇤
"
x

y

#
. (6.2)
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(a) An illustration of the complex convolu-

tion operator.

(b) A complex convolutional residual net-

work (left) and an equivalent real-valued

residual network (right).

Figure 6.1 – Complex convolution and residual network implementation details.

6.2.3 Complex Di↵erentiability

In order to perform backpropagation in a complex-valued neural network, a

su�cient condition is to have a cost function and activations that are di↵erentiable

with respect to the real and imaginary parts of each complex parameter in the

network.

By constraining activation functions to be complex di↵erentiable or holomor-

phic, we restrict the use of possible activation functions for a complex valued neural

networks. Hirose and Yoshida (2012) shows that it is unnecessarily restrictive to

limit oneself only to holomorphic activation functions; Those functions that are

di↵erentiable with respect to the real part and the imaginary part of each pa-

rameter are also compatible with backpropagation. (Arjovsky et al., 2016; Wisdom

et al., 2016; Danihelka et al., 2016) have used non-holomorphic activation functions

and optimized the network using regular, real-valued backpropagation to compute

partial derivatives of the cost with respect to the real and imaginary parts.
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Even though their use greatly restricts the set of potential activations, it is

worth mentioning that holomorphic functions can be leveraged for computational

e�ciency purposes. As pointed out in Sarro↵ et al. (2015), using holomorphic

functions allows one to share gradient values. So, instead of computing and back-

propagating 4 di↵erent gradients, only 2 are required.

6.2.4 Complex-Valued Activations

ModReLU

Numerous activation functions have been proposed in the literature in order to

deal with complex-valued representations. (Arjovsky et al., 2016) have proposed

modReLU, which is defined as follows:

modReLU(z) = ReLU(|z|+ b) ei✓z =

8
<

:
(|z|+ b) z

|z| if |z|+ b � 0,

0 otherwise,
(6.3)

where z 2 C, ✓z is the phase of z, and b 2 R is a learnable parameter. As |z| is
always positive, a bias b is introduced in order to create a “dead zone” of radius b

around the origin 0 where the neuron is inactive, and outside of which it is active.

The authors have used modReLU in the context of unitary RNNs. Their design of

modReLU is motivated by the fact that applying separate ReLUs on both real and

imaginary parts of a neuron performs poorly on toy tasks. The intuition behind the

design of modReLU is to preserve the pre-activated phase ✓z, as altering it with an

activation function severely impacts the complex-valued representation. modReLU

does not satisfy the Cauchy-Riemann equations, and thus is not holomorphic. We

have tested modReLU in deep feed-forward complex networks and the results are

given in Table 6.1.

CReLU and zReLU

We call Complex ReLU (or CReLU) the complex activation that applies sepa-

rate ReLUs on both of the real and the imaginary part of a neuron, i.e:

CReLU(z) = ReLU(<(z)) + iReLU(=(z)). (6.4)
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CReLU satisfies the Cauchy-Riemann equations when both the real and imaginary

parts are at the same time either strictly positive or strictly negative. This means

that CReLU satisfies the Cauchy-Riemann equations when ✓z 2 ]0, ⇡/2[ or ✓z 2
]⇡, 3⇡/2[. We have tested CReLU in deep feed-forward neural networks and the

results are given in Table 6.1.

It is also worthwhile to mention the work done by Guberman (2016) where

a ReLU-based complex activation which satisfies the Cauchy-Riemann equations

everywhere except for the set of points {<(z) > 0,=(z) = 0}[{<(z) = 0,=(z) > 0}
ias used. The activation function has similarities to CReLU. We call Guberman

(2016) activation as zReLU and is defined as follows:

zReLU(z) =

8
<

:
z if ✓z 2 [0, ⇡/2],

0 otherwise,
(6.5)

We have tested zReLU in deep feed-forward complex networks and the results are

given in Table 6.1.

6.2.5 Complex Batch Normalization

Deep networks generally rely upon Batch Normalization (Io↵e and Szegedy,

2015) to accelerate learning. In some cases batch normalization is essential to

optimize the model. The standard formulation of Batch Normalization applies

only to real values. In this section, we propose a batch normalization formulation

that can be applied for complex values.

To standardize an array of complex numbers to the standard normal complex

distribution, it is not su�cient to translate and scale them such that their mean is

0 and their variance 1. This type of normalization does not ensure equal variance

in both the real and imaginary components, and the resulting distribution is not

guaranteed to be circular; It will be elliptical, potentially with high eccentricity.

We instead choose to treat this problem as one of whitening 2D vectors, which

implies scaling the data by the square root of their variances along each of the

two principal components. This can be done by multiplying the 0-centered data

(x� E[x]) by the inverse square root of the 2⇥ 2 covariance matrix V :

x̃ = (V )�
1
2 (x� E[x]) ,
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where the covariance matrix V is

V =

 
Vrr Vri

Vir Vii

!
=

 
Cov(<{x},<{x}) Cov(<{x},={x})
Cov(={x},<{x}) Cov(={x},={x})

!
.

The square root and inverse of 2⇥2 matrices has an inexpensive, analytical solution,

and its existence is guaranteed by the positive (semi-)definiteness of V . Positive

definiteness of V is ensured by the addition of ✏I to V (Tikhonov regularization).

The mean subtraction and multiplication by the inverse square root of the variance

ensures that x̃ has standard complex distribution with mean µ = 0, covariance

� = 1 and pseudo-covariance (also called relation) C = 0. The mean, the covariance

and the pseudo-covariance are given by:

µ = E [x̃]

� = E [(x̃� µ) (x̃� µ)⇤] = Vrr + Vii + i (Vir � Vri)

C = E [(x̃� µ) (x̃� µ)] = Vrr � Vii + i (Vir + Vri).

(6.6)

The normalization procedure allows one to decorrelate the imaginary and real parts

of a unit. This has the advantage of avoiding co-adaptation between the two

components which reduces the risk of overfitting (Cogswell et al., 2015; Srivastava

et al., 2014).

Analogously to the real-valued batch normalization algorithm, we use two pa-

rameters, � and �. The shift parameter � is a complex parameter with two learn-

able components (the real and imaginary means). The scaling parameter � is a

2 ⇥ 2 positive semi-definite matrix with only three degrees of freedom, and thus

only three learnable components. In much the same way that the matrix (V )�
1
2

normalized the variance of the input to 1 along both of its original principal compo-

nents, so does � scale the input along desired new principal components to achieve

a desired variance. The scaling parameter � is given by:

� =

 
�rr �ri

�ri �ii

!
.

As the normalized input x̃ has real and imaginary variance 1, we initialize both

�rr and �ii to 1/
p
2 in order to obtain a modulus of 1 for the variance of the

normalized value. �ri, <{�} and ={�} are initialized to 0. The complex batch
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normalization is defined as:

BN (x̃) = � x̃+ �. (6.7)

We use running averages with momentum to maintain an estimate of the complex

batch normalization statistics during training and testing. The moving averages of

Vri and � are initialized to 0. The moving averages of Vrr and Vii are initialized to

1/
p
2. The momentum for the moving averages is set to 0.9.

6.2.6 Complex Weight Initialization

In a general case, particularly when batch normalization is not performed,

proper initialization is critical in reducing the risks of vanishing or exploding gra-

dients. To do this, we follow the same steps as in Glorot and Bengio (2010) and

He et al. (2015) to derive the variance of the complex weight parameters.

A complex weight has a polar form as well as a rectangular form

W = |W |ei✓ = <{W}+ i ={W}, (6.8)

where ✓ and |W | are respectively the argument (phase) and magnitude of W .

Variance is the di↵erence between the expectation of the squared magnitude and

the square of the expectation:

Var(W ) = E [WW ⇤]� (E [W ])2 = E
⇥
|W |2

⇤
� (E [W ])2,

which reduces, in the case of W symmetrically distributed around 0, to E [|W |2].
We do not know yet the value of Var(W ) = E [|W |2]. However, we do know a related

quantity, Var(|W |), because the magnitude of complex normal values, |W |, follows
the Rayleigh distribution (Chi-distributed with two degrees of freedom (DOFs)).

This quantity is

Var(|W |) = E [|W ||W |⇤]� (E [|W |])2 = E
⇥
|W |2

⇤
� (E [|W |])2. (6.9)

Putting them together:

Var(|W |) = Var(W )� (E [|W |])2, and Var(W ) = Var(|W |) + (E [|W |])2.
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We now have a formulation for the variance of W in terms of the variance and

expectation of its magnitude, both properties analytically computable from the

Rayleigh distribution’s single parameter, �, indicating the mode. These are:

E [|W |] = �

r
⇡

2
, Var(|W |) = 4� ⇡

2
�2.

The variance of W can thus be expressed in terms of its generating Rayleigh dis-

tribution’s single parameter, �, thus:

Var(W ) =
4� ⇡

2
�2 +

✓
�

r
⇡

2

◆2

= 2�2. (6.10)

If we want to respect the Glorot and Bengio (2010) criterion which ensures that

the variances of the input, the output and their gradients are the same, then we

would have Var(W ) = 2/(nin + nout), where nin and nout are the number of input

and output units respectively. In such case, � = 1/
p
nin + nout. If we want to

respect the He et al. (2015) initialization that presents an initialization criterion

that is specific to ReLUs, then Var(W ) = 2/nin which � = 1/
p
nin.

The magnitude of the complex parameterW is then initialized using the Rayleigh

distribution with the appropriate mode �. We can see from equation 6.10, that the

variance of W depends on on its magnitude and not on its phase. We then initialize

the phase using the uniform distribution between �⇡ and ⇡. By performing the

multiplication of the magnitude by the phasor as is detailed in equation 6.8, we

perform the complete initialization of the complex parameter.

In all the experiments that we report, we use variant of this initialization which

leverages the independence property of unitary matrices. As it is stated in Cogswell

et al. (2015), Srivastava et al. (2014), and Tompson et al. (2015), learning decorre-

lated features is beneficial for learning as it allows to perform better generalization

and faster learning. This motivates us to achieve initialization by considering a

(semi-)unitary matrix which is reshaped to the size of the weight tensor. Once this

is done, the weight tensor is mutiplied by
p

Hevar/Var(W ) or
p

Glorotvar/Var(W )

where Glorotvar and Hevar are respectively equal to 2/(nin + nout) and 2/nin. In

such a way we allow kernels to be independent from each other as much as pos-

sible while respecting the desired criterion. Note that we perform the analogous

initialization for real-valued models by leveraging the independence property of

orthogonal matrices in order to build kernels that are as much independent from

each other as possible while respecting a given criterion.
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Table 6.1 – Classification error on CIFAR-10, CIFAR-100 and SVHN
⇤
using di↵erent complex

activations functions (zReLU, modReLU and CReLU). WS, DN and IB stand for the wide and

shallow, deep and narrow and in-between models respectively. The prefixes R & C refer to the

real and complex valued networks respectively. Performance di↵erences between the real network

and the complex network using CReLU are reported between their respective best models. All

models are constructed to have roughly 1.7M parameters except the modReLU models which have

roughly 2.5M parameters. modReLU and zReLU were largely outperformed by CReLU in the

reported experiments. Due to limited resources, we haven’t performed all possible experiments as

the conducted ones are already conclusive. A ”-” is filled in front of an unperformed experiment.

Arch CIFAR-10 CIFAR-100 SVHN
⇤

zReLUmodReLUCReLU zReLUmodReLUCReLU zReLUmodReLUCReLU

CWS 11.71 23.42 6.17 - 50.38 26.36 80.41 7.43 3.70

CDN 9.50 22.49 6.73 - 50.64 28.22 80.41 - 3.72

CIB 11.36 23.63 5.59 - 48.10 28.64 4.98 - 3.62

ReLU ReLU ReLU

RWS 5.42 27.22 3.42
RDN 6.29 27.84 3.52

RIB 6.07 27.71 4.30

DIFF -0.17 +0.86 -0.20

6.2.7 Complex Convolutional Residual Network

A deep convolutional residual network of the nature presented in He et al.

(2016b,c) consists of 3 stages within which feature maps maintain the same shape.

At the end of a stage, the feature maps are downsampled by a factor of 2 and the

number of convolution filters are doubled. The sizes of the convolution kernels are

always set to 3 x 3. Within a stage, there are several residual blocks which comprise

2 convolution layers each.

In the complex valued setting, the majority of the architecture remains identical

to the one presented in He et al. (2016c) with a few subtle di↵erences. Since all

datasets that we work with have real-valued inputs, we present a way to learn

their imaginary components to let the rest of the network operate in the complex

plane. We learn the initial imaginary component of our input by performing the

operations present within a single real-valued residual block

BN ! ReLU ! Conv ! BN ! ReLU ! Conv
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Table 6.2 – Classification error on CIFAR-10, CIFAR-100 and SVHN
⇤
using di↵erent nor-

malization strategies. NCBN, CBN and BN stand for a Naive variant of the complex batch-

normalization, complex batch-normalization and regular batch normalization respectively. (R)

& (C) refer to the use of the real- and complex-valued convolution respectively. The complex

models use CReLU as activation. All models are constructed to have roughly 1.7M parameters.

5 out of 6 experiments using the naive variant of the complex batch normalization failed with

the apparition of NaNs during training. As these experiments are already conclusive and due to

limited resources, we haven’t conducted other experiments for the NCBN model. A ”-” is filled in

front of an unperformed experiment.

Arch CIFAR-10 CIFAR-100 SVHN
⇤

NCBN(C)CBN(R)BN(C) NCBN(C)CBN(R)BN(C) NCBN(C)CBN(R)BN(C)

WS - 5.47 6.32 27.29 26.63 27.89 NAN 3.80 3.52
DN - 5.89 6.71 NAN 27.13 28.83 NAN 3.54 3.58

IB - 5.66 6.83 NAN 26.99 29.89 NAN 3.74 3.56

Using this learning block yielded better emprical results than assuming that the

input image has a null imaginary part. The parameters of this real-valued residual

block are trained by backpropagating errors from the task specific loss function.

Secondly, we perform a Conv ! BN ! Activation operation on the obtained

complex input before feeding it to the first residual block. We also perform the

same operation on the real-valued network input instead of Conv ! Maxpooling

as in He et al. (2016c). Inside, residual blocks, we subtly alter the way in which

we perform a projection at the end of a stage in our network. We concatenate the

output of the last residual block with the output of a 1x1 convolution applied on

it with the same number of filters used throughout the stage and subsample by a

factor of 2. In contrast, He et al. (2016c) perform a similar 1x1 convolution with

twice the number of feature filters in the current stage to both downsample the

feature maps spatially and double them in number.

In this section, we present empirical results from using our model to perform

image, music classification and spectrum prediction. First, we present our model’s

architecture followed by the results we obtained on CIFAR-10, CIFAR-100, and

SVHN⇤ as well as the results on automatic music transcription on the MusicNet

benchmark and speech spectrum prediction on TIMIT.
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6.3 Experiments

We conduct the experiments on di↵erent tasks with feed-forward complex net-

works and recurrent complex networks as follows.

6.3.1 Image Recognition

We adopt an architecture inspired by He et al. (2016c). The latter will also serve

as a baseline to compare against. We train comparable real-valued Neural Networks

using the standard ReLU activation function. We have tested our complex models

with the CReLU, zReLU and modRelu activation functions. We use a cross entropy

loss for both real and complex models. A global average pooling layer followed by

a single fully connected layer with a softmax function is used to classify the input

as belonging to one of 10 classes in the CIFAR-10 and SVHN datasets and 100

classes for CIFAR-100.

We consider architectures that trade-o↵ model depth (number of residual blocks

per stage) and width (number of convolutional filters in each layer) given a fixed

parameter budget. Specifically, we build three di↵erent models - wide and shallow

(WS), deep and narrow (DN) and in-between (IB). In a model that has roughly

1.7 million parameters, our WS architecture for a complex network starts with

12 complex filters (24 real filters) per convolution layer in the initial stage and

16 residual blocks per stage. The DN architecture starts with 10 complex filters

and 23 blocks per stage while the IB variant starts with 11 complex filters and 19

blocks per stage. The real-valued counterpart has also 1.7 million parameters. Its

WS architecture starts with 18 real filters per convolutional layer and 14 blocks per

stage. The DN architecture starts with 14 real filters and 23 blocks per stage and

the IB architecture starts with 16 real filters and 18 blocks per stage.

All models (real and complex) were trained using the backpropagation algorithm

with Stochastic Gradient Descent with Nesterov momentum (Nesterov, 1983) set

at 0.9. We also clip the norm of our gradients to 1. We tweaked the learning rate

schedule used in He et al. (2016c) in both the real and complex residual networks

to extract small performance improvements in both. We start our learning rate at

0.01 for the first 10 epochs to warm up the training and then set it at 0.1 from

epoch 10-100 and then anneal the learning rates by a factor of 10 at epochs 120

and 150. We end the training at epoch 200.
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Table 6.1 presents our results on performing image classification on CIFAR-10,

CIFAR-100. In addition, we also consider a truncated version of the Street View

House Numbers (SVHN) dataset which we call SVHN*. For computational rea-

sons, we use the required 73,257 training images of Street View House Numbers

(SVHN). We still test on all 26,032 images. For all the tasks and for both the

real- and complex-valued models, The WS architecture has yielded the best per-

formances. This is in concordance with Zagoruyko and Komodakis (2016) who ob-

served that wider and shallower residual networks perform better than their deeper

and narrower counterpart. On CIFAR-10 and SVHN⇤, the real-valued represen-

tation performs slightly better than its complex counterpart. On CIFAR-100, the

complex representation outperforms the real one. In general, the obtained results

for both representation are quite comparable. To understand the e↵ect of using

either real or complex representation for a given task, we designed hybrid models

that combine both. Table 6.2 contains the results for hybrid models. We can ob-

serve in the Table 6.2 that in cases where complex representation outperformed the

real one (wide and shallow on CIFAR-100), combining a real-valued convolutional

filter with a complex batch normalization improves the accuracy of the real-valued

convolutional model. However, the complex-valued one is still outperforming it. In

cases, where real-valued representation outperformed the complex one (wide and

shallow on CIFAR-10 and SVHN⇤), replacing a complex batch normalization by a

regular one increased the accuracy of the complex convolutional model. Despite

that replacement, the real-valued model performs better in terms of accuracy for

such tasks. In general, these experiments show that the di↵erence in e�ciency

between the real and complex models varies according to the dataset, to the task

and to the architecture.

Ablation studies were performed in order to investigate the importance of the

2D whitening operation that occurs in the complex batch normalization. We re-

placed the complex batch normalization layers with a naive variant (NCBN) which,

instead of left multiplying the centred unit by the inverse square root of its covari-

ance matrix, just divides it by its complex variance. Here, this naive variant of

CBN is Mimicking the regular BN by not taking into account correlation between

the elements in the complex unit. The Naive variant of the Complex Batch Nor-

malization performed very poorly; In 5 out of 6 experiments, training failed with

the appearance of NaNs . By way of contrast, all 6 complex-valued Batch Normal-
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ization experiments converged. Results are given in Table 6.2.

Another ablation study was undertaken to compare CReLU, modReLU and

zRELU. Again the di↵erences were stark: All CReLU experiments converged and

outperformed both modReLU and zReLU, both which variously failed to converge

or fared substantially worse. We think that modRelu didn’t perform as well as

CReLU due to the fact that consecutive layers in a feed-forward net do not represent

time-sequential patterns, and so, they might need to drop some phase information.

Results are reported in Table 6.1.

6.3.2 Automatic Music Transcription

In this section we present results for the automatic music transcription (AMT)

task. The nature of an audio signal allows one to exploit complex operations as

presented earlier in the paper. The experiments were performed on the Music-

Net dataset (Thickstun et al., 2016). For computational e�ciency we resampled

the original input from 44.1kHz to 11kHz using the algorithm described in Smith

(2002). This sampling rate is su�cient to recognize frequencies presented in the

dataset while reducing computational cost dramatically. We modeled each of the

84 notes that are present in the dataset with independent sigmoids (due to the fact

that notes can fire simultaneously). We initialized the bias of the last layer to the

value of -5 to reflect the distribution of silent/non-silent notes. As in the baseline,

we performed experiments on the raw signal and the frequency spectrum. For com-

plex experiments with the raw signal, we considered its imaginary part equal to

zero. When using the spectrum input we used its complex representation (instead

of only the magnitudes, as usual for AMT) for both real and complex models. For

the real model, we considered the real and imaginary components of the spectrum

as separate channels. The model we used for raw signals is a shallow convolutional

network similar to the model used in the baseline, with the size reduced by a factor

of 4 (corresponding to the reduction of the sampling rate). The filter size was 512

samples (about 12ms) with a stride of 16. The model for the spectral input is sim-

ilar to the VGG model (Simonyan and Zisserman, 2015). The first layer has filter

with size of 7 and is followed by 5 convolutional layers with filters of size 3. The

final convolution block is followed by a fully connected layer with 2048 units. The

latter is followed, in its turn, by another fully connected layer with 84 sigmoidal
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Table 6.3 – MusicNet experiments. FS is the sampling rate. Params is the total number of

parameters. We report the average precision (AP) metric that is the area under the precision-

recall curve.

Architecture FS Params AP, %

Shallow, Real 11kHz 66.1

Shallow, Complex 11kHz 66.0

Shallow, Thickstun et al. (2016) 44.1kHz - 67.8

Deep, Real 11kHz 10.0M 69.6

Deep, Complex 11kHz 8.8M 72.9

units. In all of our experiments we use an input window of 4096 samples or its

corresponding FFT (which corresponds to the 16,384 window used in the baseline)

and predicted notes in the center of the window. All networks were optimized with

Adam. We start our learning rate at 10�3 for the first 10 epochs and then anneal

it by a factor of 10 at each of the epochs 100, 120 and 150. We end the training at

epoch 200. For the real-valued models, we have used ReLU as activation. CReLU
has been used as activation for the complex-valued models.

The complex network was initialized using the unitary initialization scheme re-

specting the He criterion as described in Section 6.2.6. For the real-valued network,

we have used the analogue initialization of the weight tensor. It consists of perform-

ing an orthogonal initialization with a gain of
p
2. The complex batch normalization

was applied according to Section 6.2.5. Following Thickstun et al. (2016) we used

recordings with ids ’2303’, ’2382’, ’1819’ as the test subset and additionally we

created a validation subset using recording ids ’2131’, ’2384’, ’1792’, ’2514’, ’2567’,

’1876’ (randomly chosen from the training set). The validation subset was used for

model selection and early stopping. The remaining 321 files were used for training.

The results are summarized on Table 6.3. We achieve a performance comparable

to the baseline with the shallow convolutional network. our VGG-based deep real-

valued model reaches 69.6% average precision on the downsampled data. With

significantly fewer parameters than its real counterpart, the VGG-based deep com-

plex model, achieves 72.9% average precision which is the state of the art to the

best of our knowledge.
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Table 6.4 – Speech Spectrum Prediction on TIMIT test set. CConv-LSTM denotes the Complex

Convolutional LSTM.

Model MSE(validation) MSE(test)

LSTM Wisdom et al. (2016) 16.59 16.98

Full-capacity uRNN Wisdom et al. (2016) 14.56 14.66

Conv-LSTM (our baseline) 11.10 12.18

CConv-LSTM (ours) 10.78 11.90

6.3.3 Speech Spectrum Prediction

We apply both a real Convolutional LSTM Xingjian et al. (2015) and a complex

Convolutional LSTM on speech spectrum prediction task. In this task, the model

predicts the magnitude spectrum. It implicitly infers the real and imaginary com-

ponents of the spectrum at time t+ 1, given all the spectrum (imaginary part and

real components) up to time t. This is slightly di↵erent from (Wisdom et al., 2016).

The real and imaginary components are considered as separate channels in both

model. We evaluate the model with mean-square-error (MSE) on log-magnitude

to compare with the others Wisdom et al. (2016). The experiments are conducted

on a downsampled (8kHz) version of the TIMIT dataset. By following the steps in

Wisdom et al. (2016), raw audio waves are transformed into frequency domain via

short-time Fourier transform (STFT) with a Hann analysis window of 256 samples

and a window hop of 128 samples (50% overlap). We use a training set with 3690

utterances, a validation set with 400 utterances and a standard test set with 192

utterance.

To match the number of parameters for both model, the Convolutional LSTM

has 84 feature maps while the complex model has 60 complex feature maps (120

feature maps in total). Adam Kingma and Ba (2014) with a fixed learning rate of

1e-4 is used in both experiments. We initialize the complex model with the unitary

initialization scheme and the real model with orthogonal initialization respecting

the Glorot criterion. The result is shown in Table 6.4 and the learning curve is

shown in Figure 6.2. Our baseline model has achieved the state of the art and the

complex convolutional LSTM model performs better over the baseline in terms of

MSE and convergence.
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Figure 6.2 – Learning curve for speech spectrum prediction from dev set.
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7 Conclusion
This thesis presented two research paper related to sequence-to-sequence mod-

elling on speech. The first paper introduced a new approach to address speech

recognition with convolutional neural networks and the second one presented a

new model taking advantage of the representation in the complex domain, which

could benefit the speech tasks where the phase is critical. We summarize the work

in the following:

— In the first paper, we present a CNN-based end-to-end speech recogni-

tion framework without recurrent neural networks which are widely used in

speech recognition tasks. We show promising results on the TIMIT dataset

and conclude that the model has the capacity to learn the temporal relations

that are required for it to be integrated with CTC. We already observed a

gain in computational e�ciency on the TIMIT dataset and training the

model on large vocabulary datasets and integrate with the language model

would be a part of our further study. Another interesting direction is to

apply Batch Normalization Io↵e and Szegedy (2015) to the current model.

— In the second paper, We present key building blocks required to train com-

plex valued neural networks, such as complex batch normalization and com-

plex weight initialization. We have also explored a wide variety of complex

convolutional network architectures, including some yielding competitive re-

sults for image classification and state of the art results for a music tran-

scription task and speech spectrum prediction. We hope that our work will

stimulate further investigation of complex valued networks for deep learning

models and their application to more challenging tasks such as generative

models for audio and images.

We hope to combine the convolutional sequence modelling and complex repre-

sentation in speech recognition and speech synthesis domain as a future work.

46



Bibliography
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-

mawat, S., Irving, G., Isard, M., et al. (2016). Tensorflow: a system for large-scale

machine learning. In OSDI, volume 16, pages 265–283.

Abdel-Hamid, O., Mohamed, A.-r., Jiang, H., and Penn, G. (2012). Applying con-

volutional neural networks concepts to hybrid nn-hmm model for speech recog-

nition. In Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE Inter-

national Conference on, pages 4277–4280. IEEE.

Arjovsky, M., Shah, A., and Bengio, Y. (2016). Unitary evolution recurrent neural

networks. In International Conference on Machine Learning, pages 1120–1128.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by

jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., and Bengio, Y. (2016). End-

to-end attention-based large vocabulary speech recognition. In Acoustics, Speech

and Signal Processing (ICASSP), 2016 IEEE International Conference on, pages

4945–4949. IEEE.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependen-

cies with gradient descent is di�cult. Neural Networks, IEEE Transactions on,

5(2):157–166.

Bourlard, H. and Morgan, N. (1990). A continuous speech recognition system

embedding mlp into hmm. In Advances in neural information processing systems,

pages 186–193.
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