
Université de Montréal

Difference Target Propagation

par Dong-Hyun Lee

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté à la Faculté des arts et des sciences
en vue de l’obtention du grade de Mâıtre ès sciences (M.Sc.)

en informatique

Juillet, 2018

c© Dong-Hyun Lee, 2018.

Résumé
L’algorithme de rétropropagation a été le cheval de bataille du succès récent

de l’apprentissage profond, mais elle s’appuie sur des effets infinitésimaux (dérivées
partielles) afin d’effectuer l’attribution de crédit. Cela pourrait devenir un problème
sérieux si l’on considère des fonctions plus profondes et plus non linéaires, avec à
l’extrême la non-linéarité où la relation entre les paramètres et le coût est réellement
discrète.

Inspirée par la présumée invraisemblance biologique de la rétropropagation,
cette thèse propose une nouvelle approche, Target Propagation. L’idée principale
est de calculer des cibles plutôt que des gradients à chaque couche, en faisant en
sorte que chaque paire de couches successive forme un auto-encodeur.

Nous montrons qu’une correction linéaire, appelée Difference Target Propaga-
tion, est très efficace, conduisant à des résultats comparables à la rétropropagation
pour les réseaux profonds avec des unités discrètes et continues et des auto- enco-
deurs et atteignant l’état de l’art pour les réseaux stochastiques.

Mots clés: réseaux de neurones, apprentissage automatique, apprentissage
supervisé, optimisation, règle d’apprentissage, règle d’apprentissage biologiquement
plausible, rétropropagation, Target Propagation, Difference Target Propagation

ii

Summary
Backpropagation has been the workhorse of recent successes of deep learning

but it relies on infinitesimal effects (partial derivatives) in order to perform credit
assignment. This could become a serious issue as one considers deeper and more
non-linear functions, e.g., consider the extreme case of non-linearity where the
relation between parameters and cost is actually discrete.

Inspired by the biological implausibility of Backpropagation, this thesis proposes
a novel approach, Target Propagation. The main idea is to compute targets rather
than gradients, at each layer in which feedforward and feedback networks form
Auto-Encoders.

We show that a linear correction for the imperfectness of the Auto-Encoders,
called Difference Target Propagation is very effective to make Target Propagation
actually work, leading to results comparable to Backpropagation for deep networks
with discrete and continuous units, Denoising Auto-Encoders and achieving state
of the art for stochastic networks.

In Chapters 1, we introduce several classical learning rules in Deep Neural Net-
works, including Backpropagation and more biological plausible learning rules.

In Chapters 2 and 3, we introduce a novel approach, Target Propagation, more
biological plausible learning rule than Backpropagation. In addition, we show that
Target Propagation is comparable to Backpropagation in Deep Neural Networks.

Keywords: neural networks, machine learning, deep learning, representation
learning, optimization, biological plausibility, learning rule, backpropagation, target
propagation

iii

Table des matières

Résumé . ii

Summary . iii

Contents . iv

List of Figures . vi

List of Tables . viii

List of Abbreviations . ix

Acknowledgments . x

1 Learning Rules in Deep Neural Networks 1
1.1 Artificial Neural Networks . 1

1.1.1 An artificial neuron . 1
1.1.2 Deep Neural Networks . 2

1.2 Learning Rules for Single-Layer Networks 4
1.2.1 Hebbian Learning Rule . 4
1.2.2 The Delta Rule . 5
1.2.3 Competitive Learning Rule 5

1.3 Learning Rules for Multi-Layer Networks 6
1.3.1 Credit Assignment Problems and Biological Plausibility of

Learning Rule . 6
1.3.2 Backpropagation Algorithm 6
1.3.3 Contrastive Hebbian Learning 7
1.3.4 Generalized Recirculation 8

2 Prologue to the Article . 10

3 Difference Target Propagation . 11
3.1 Introduction . 11
3.2 Target Propagation . 13

3.2.1 Formulating Targets . 13

iv

3.2.2 How to assign a proper target to each layer 15
3.2.3 Difference target propagation 17
3.2.4 Training an auto-encoder with difference target propagation 19

3.3 Experiments . 20
3.3.1 Deterministic feedforward deep networks 21
3.3.2 Networks with discretized transmission between units 23
3.3.3 Stochastic networks . 24
3.3.4 Auto-encoder . 26

4 Conclusion . 28

A Theorems and Proofs . 29
A.1 Proof of Theorem 1 . 29
A.2 Proof of Theorem 2 . 30

Bibliography . 32

v

Table des figures

1.1 A graphical illustration of an artificial neuron. The input is the vector
x = (x1, x2, ..., xd)

T to which a weight vector w = (w1, w2, ..., wd)
T

and a bias term b is assigned. (Figure adapted from Hugo Larochelle’s
slides) . 2

1.2 A Three layer neural network. The matrix Wk connects the (k −
1)th layer to the kth layer and therefore Wk ∈ Rdk×dk−1 and bk ∈
Rdk . After each linear transformation (weight multiplication and bias
addition), an activation function is applied. (Figure adapted from
Hugo Larochelle’s slides) . 3

1.3 (a) The forward path and (b) the backward path in backpropagation
algorithm on a two-layer neural network. Note that in the backward
path, in order to be able to go through each module, it must be
differentiable. (Figure adapted from Hugo Larochelle’s slides.) . . . 8

3.1 (left) How to compute a target in the lower layer via difference target
propagation. fi(ĥi−1) should be closer to ĥi than fi(hi−1). (right)
Diagram of the back-propagation-free auto-encoder via difference
target propagation. 17

3.2 Mean training cost (left) and train/test classification error (right)
with target propagation and back-propagation using continuous deep
networks (tanh) on MNIST. Error bars indicate the standard devia-
tion. 22

3.3 Mean training cost (top left), mean training error (top right) and
mean test error (bottom left) while training discrete networks with
difference target propagation and the two baseline versions of back-
propagation. Error bars indicate standard deviations over the 10
runs. Diagram of the discrete network (bottom right). The output
of h1 is discretized because signals must be communicated from h1

to h2 through a long cable, so binary representations are preferred
in order to conserve energy. With target propagation, training si-
gnals are also discretized through this cable (since feedback paths
are computed by bona-fide neurons). 24

vi

https://www.youtube.com/watch?v=SGZ6BttHMPw&list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH
https://www.youtube.com/watch?v=SGZ6BttHMPw&list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH
https://www.youtube.com/watch?v=SGZ6BttHMPw&list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH
https://www.youtube.com/watch?v=SGZ6BttHMPw&list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH

3.4 Filters learned by the back-propagation-free auto-encoder. Each fil-
ter corresponds to the hidden weights of one of 100 randomly chosen
hidden units. We obtain stroke filters, similar to those usually ob-
tained by regularized auto-encoders. 27

vii

Liste des tableaux

3.1 Mean test Error on MNIST for stochastoc networks. The first row
shows the results of our experiments averaged over 10 trials. The
second row shows the results reported in (Raiko et al., 2014). M
corresponds to the number of samples used for computing output
probabilities. We used M=1 during training and M=100 for the test
set. 26

viii

List of Abbreviations
AE Auto-Encoder
ANN Artificial Neural Network
CHL Contrastive Hebbian Learning
GeneRec Generalized Recirculation
CE Cross Entropy
DAE Denoising Auto-Encoder
GD Gradient Descent
I.I.D Independent and Identically Distributed
MLP Multi-Layer Perceptron
MSE Mean Squired Error
NLL Negative Log-Likelihood
RBM Restricted Boltzmann Machine
ReLU Rectified Linear Unit
SGD Stochastic Gradient Descent

ix

Acknowledgments

First of all, I would like to thank my mother, Min-Ok Lee, who always support

me in studying Machine Learning. And I would like to express my deepest gratitude

to my supervisor Prof. Yoshua Bengio, who spent a lot of time to supervise me in

this ambitious research field. It is only possible with his deep insight and his plenty

of experience to try this kind of ground-breaking research.

I would like to extend my thanks to my co-authors Saizheng Zhang for his

support and rigorous knowledge of mathematics, and Asja Fischer for her encou-

ragement, support, guidance and research attitute.

I must also acknowledge great help and support from my friends and colleagues,

in alphabetical order: Anirudh Goyal, Caglar Gulchehre, Chiheb Trabelsi, David

Scott Krueger, Devansh Arpit, Frédéric Bastien, Jose Sotelo, Jörg Bornschein, Ju-

nyoung Chung, Kyle Kastner, Li Yao, Mohammad Pezeshki, Myriam Côté, Pascal

Lamblin, Samira Shabanian, Sina Honari, Soroush Mehri, Taesup Kim, Tomas Mes-

nard, Ying Zhang and Zhouhan Lin.

Finally, the work reported in this thesis would not have been possible without

the financial support from: Samsung, NSERC, Calcul Quebec, Compute Canada,

the Canada Research Chairs and CIFAR.

x

1 Learning Rules in Deep
Neural Networks

1.1 Artificial Neural Networks

A lot of attempts have been made to build human-level intelligent machines

for half a century. One of the attempts is to mimic a biological neuron and its

networks in the human brain. But the biological details of a real neuron is fairly

complicated (Hodgkin and Huxley, 1952). A simplified computational model called

artificial neuron (also called Perceptron by (Rosenblatt, 1958)) was proposed by

(McCulloch and Pitts, 1943). An Artificial Neural Network (ANN) is composed of

artificial neurons and their weighted connections. Though ANNs are not so similar

to biological Neural Networks in the brain, they have been leading recent successes

of Deep Learning and Artificial Intelligence.

1.1.1 An artificial neuron

An artificial neuron is a simple computational unit to map from several inputs

to an output. Consider an input vector x = (x1, x2, ..., xd)
T (pre-synaptic neuron

activities), a weight vector w = (w1, w2, ..., wd)
T and a scalar bias term b. An

artificial neuron calculates a single output h (post-synaptic neuron activity) as

follows,

h = s

(
d∑
i=1

wixi + b

)
= s

(
wTx + b

)
, (1.1)

where s(.) is an activation function (also called transfer function). We can use

several types of activation functions, Identity s(x) = x, Hyperbolic tangent

1

Figure 1.1 – A graphical illustration of an artificial neuron. The input is the vector x =
(x1, x2, ..., xd)T to which a weight vector w = (w1, w2, ..., wd)T and a bias term b is assigned.
(Figure adapted from Hugo Larochelle’s slides)

s(x) = tanh(x), Sigmoid s(x) = 1/(1 + e−x), Step function

s(x) =

0 x ≤ 0

1 x > 0
(1.2)

and Rectified Linear Unit (ReLU) s(x) = x+ = max(0, x), which is frequently

used nowadays. Softmax is a rather special activation function which can deal

with a categorical value.

s(x)i =
exi∑
j e

xj
. (1.3)

where s(x)i means the probability to belong to ith class.

1.1.2 Deep Neural Networks

A layer of Neural Networks is composed of artificial neurons. Consider an input

vector x ∈ Rd0 (where d0 is the dimension of the input vector), an output vector

h ∈ Rd1 of neurons (where d1 is the number of neurons), a weight matrix W =

(wT
1 ,w

T
2 , ...,w

T
d1

)T ∈ Rd0×d1 and a bias vector b = (b1, b2, ..., bd1)
T . We can express

the layer as follows,

h = s(Wx + b), (1.4)

where s(.) is an element-wise activation function. If we have pair data {(x(m),h(m)).}Nm=1,

we can train the network layer to approximate the true function h(x) that gene-

2

https://www.youtube.com/watch?v=SGZ6BttHMPw&list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH

Figure 1.2 – A Three layer neural network. The matrix Wk connects the (k − 1)th layer to the
kth layer and therefore Wk ∈ Rdk×dk−1 and bk ∈ Rdk . After each linear transformation (weight
multiplication and bias addition), an activation function is applied. (Figure adapted from Hugo
Larochelle’s slides)

rates the data properly. But it usually hasn’t enough capacity to approximate real

data.

Artificial Neural Networks are usually organized in a multi-layer fashion (also

called Multi-Layer Perceptron). As shown in figure 1.2, each layer takes the output

vector of the lower network as an input. From the input in the bottom layer to the

output in the top layer, more complicated computation can be done as follows.

h(k) = s(k)(W(k)h(k−1) + b(k)), k = 1, ..., L (1.5)

where k is a layer index, L is the number of layers, h(k) is a vector of hidden units

when k = 1, ..., L− 1. We don’t have values in the data to match the hidden units.

h(0) = x is the input of the network and h(L) = y is the output of the network. If

networks have more than 2 hidden layers, we call it Deep Neural Networks.

In fact, this simplest kind of neural networks is called Feed-Forward Networks

because connections between the units do not form a cycle, so the information

are carried in only forward direction without any feedback. There are also neural

networks that have cyclic or feedback connections : Recurrent Neural Networks,

Hopfield Networks, Boltzmann Machines and so on. And sometimes neural networks

3

https://www.youtube.com/watch?v=SGZ6BttHMPw&list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH
https://www.youtube.com/watch?v=SGZ6BttHMPw&list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH

may have special layers like Convolution Layer, Pooling Layer and so on.

In spite of its mathematical simplicity, ANNs are known to be able to learn very

complicated functions in real world applications like Image Classification, Speech

Recognition and so on.

1.2 Learning Rules for Single-Layer Networks

Single-Layer Networks are rather easier to train than Multi-Layer Networks

because we don’t need to decide how to update weights in hidden layers. We will

review several learning rules only applicable to Single-Layer Networks.

1.2.1 Hebbian Learning Rule

The neuro-psychologist Donald Hebb postulated a rule for synaptic plasticity,

that is, how neurons learn in the brain in (Hebb, 1949) :

“When an axon of cell A is near enough to excite a cell B and repeatedly

or persistently takes part in firing it, some growth process or metabolic

change takes place on one or both cells such that A’s efficiency as one

of the cells firing B, is increased.”

In short, ”Neurons wire together if they fire together” (Lowel and Singer, 1992).

Basically, it can perform association tasks. If a stimulus and its response are given

to two neurons, they would develop strong connections, and subsequent activation

by the stimulus could generate the associated response.

Consider activations of two neurons xi, xj and a weight of their connection wij.

The Hebb’s rule can be expressed by

∆wij = ηxixj, (1.6)

where η is the learning rate. Hebb’s original suggestion concerned only increases in

synaptic strength, but it has been generalized to include decreases due to stability

of the learning process. So the general forms of Hebbian Rule state that weights

change in proportion to the correlation or covariance of the activities of connected

neurons (Dayan and Abbott, 2001).

4

One of important features in Hebbian Learning is Local Learning, which means

that the update rules should depend only on variables that are available locally,

such as the pre- and post-synaptic neuronal activities (Baldi and Sadowski, 2016).

It is a very recommended one for physical neural systems, for examples, the real

brain or hardware implementation of ANNs.

Moreover, Hebbian Learning can lead to Ocular Dominance and Orientation

Selectivity in the visual cortex of the brain (Dayan and Abbott, 2001).

1.2.2 The Delta Rule

One drawback of Hebbian Learning is that synaptic modification does not de-

pend on the actual performance of the network. More direct method to improve

the performance is gradient-based optimization of the error function (Dayan and

Abbott, 2001). Consider a neuron ai =
∑

j wijxj and hi = s(ai) and an squared

error function E =
∑

i 0.5(yi − hi)2 where yi is a target.

∆wij = −η ∂E
∂wij

= η(yi − hi)s′(ai)xj (1.7)

If we use a linear neuron with squared error or a sigmoid neuron with cross entropy

error, the delta rule is simplified as follows,

∆wij = η(yi − hi)xj (1.8)

It is similar to Perceptron Learning Rule (Dayan and Abbott, 2001), but the

derivation is different in that the Perceptron uses non-differentiable step activation

function, so cannot adopt gradient-based learning.

1.2.3 Competitive Learning Rule

Competitive Learning is a kind of Unsupervised Learning, in which the output

units compete for the right to respond to a given subset of inputs (Rumelhart,

1986). Only single or a group of neurons is active at a time, that is usually maxi-

mally activated one or has minimal (Euclidean) distance to a prototype. If only one

neuron is permitted to be activated, it is also called Winner-Take-All Mechanism.

To determine which neuron is the winner, we need lateral connections between

5

neurons within a layer in the brain.

As long as the winner neuron (index i) is taken, the simplest synaptic update

rule is following.

∆wij = ηi(xj − wij) (1.9)

Basically, this kind of rules can perform Clustering. Models and algorithms based

on competitive learning include Vector Quantization (Burton et al., 1983) and

Self-Organizing Maps (Kohonen, 1982) .

1.3 Learning Rules for Multi-Layer Networks

Multi-Layer Networks are difficult to train because it is highly non-linear and we

don’t know how to update the weights in a layer without knowing the information

of other layers.

1.3.1 Credit Assignment Problems and Biological Plausi-

bility of Learning Rule

The credit assignment problem concerns determining how the success of a sys-

tem’s overall performance is due to the various contributions of the system’s com-

ponents (Minsky, 1963).

In Multi-Layer Neural Networks, we have to determine how to update the

weights in each layer to minimize the global cost. It is easy for the top layer related

with the cost directly, but not possible for the lower layers without the information

of the upper layers.

So we need to know how a weight in a layer relates with the global cost using

the information of upper layers. But it is not easy with Biological Plausible Local

Learning Rules in that it only depends on pre- and post-synaptic activities.

1.3.2 Backpropagation Algorithm

Backpropagation Algorithm (Rumelhart et al., 1986) is purely gradient-based

optimization for weights of a layer in Multi-Layer Networks. It uses the chain rule

6

to compute the gradients iteratively from the top layer to that layer. In this way,

it can solves Credit Assignment Problems via chain rule of gradient calculation.

Therefore, all parts of the networks must be differentiable.

Backpropagation Algorithm consists of two steps. At first, The Forward Step,

we compute neuron activations from the bottom layer to the top layer and the

prediction error given the inputs. Then, The Backward Step, we calculate the gra-

dients of the loss function w.r.t the weights from the top layer to the bottom layer

through error propagation.

Consider the loss function L and hidden activations hk−1, ak = Wkhk−1 + bk,

hk = s(ak) in kth and (k − 1)th layer. From the chain rule of differentiation,

∂L

∂hk−1
=

∂L

∂hk
∂hk

∂hk−1
=

∂L

∂hk
� s′(ak)(Wk)T (1.10)

Consider ∂L
∂hk as propagated error ek in kth layer. we re-formulate 1.10 as follows.

ek−1 = ek � s′(ak)(Wk)T (1.11)

And then, the update rule for weights is following.

∆Wk ∝ − ∂L

∂hk
∂hk

∂Wk
= −ek � s′(ak)(hk−1)T (1.12)

Backpropagation has been questioned not to be biologically plausible (Crick,

1989). Though there are feedback system in the brain, It is not certain they carry

the error signal. Moreover, it is not plausible that the brain can calculate the exact

analytic gradients including the derivative of activation function. The most serious

problem is the Weight Transport Problem (Lillicrap et al., 2016). When the error

is propagated across a layer, we need the transpose of the weight matrix in the

Forward Step. But it is not plausible that the separate feedback networks can get

the exact information of weights in feedforward networks at the same time.

1.3.3 Contrastive Hebbian Learning

Contrastive Hebbian Learning (CHL) is supervised learning for multi-layer net-

works. It was originally formulated for the Boltzmann Machine and was extended

later to deterministic networks (Movellan, 1991; Xie and Seung, 2003).

7

Figure 1.3 – (a) The forward path and (b) the backward path in backpropagation algorithm on
a two-layer neural network. Note that in the backward path, in order to be able to go through
each module, it must be differentiable. (Figure adapted from Hugo Larochelle’s slides.)

It is quite different from Backpropagation in that it is a Hebbian-type algo-

rithm based on the correlation of pre- and postsynaptic activities, not using error

propagation. In addition, CHL is implemented in networks with feedback.

CHL updates the synaptic weights based on steady states of bidirectional net-

works in two different phases : positive phase with the output clamped to the

desired values, negative phase with the output not clamped. Consider the neuron

activities in the kth and (k − 1)th layer, hk+, hk−1+ in positive phase, hk−, hk−1− in

negative phase. The weights update rule in CHL is

∆Wk ∝ hk+(hk−1+)T − hk−(hk−1−)T (1.13)

It also requires symmetric weights in feedback networks, so also suffers from

Weight Transport Problem.

1.3.4 Generalized Recirculation

Recirculation provided more biological plausible learning rule than Backpropa-

gation (Hinton and McClelland, 1988), but they applied it to train Auto-Encoder,

not general networks, so O’Reilly (1996) proposed Generalized Recirculation (Ge-

8

https://www.youtube.com/watch?v=SGZ6BttHMPw&list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH

neRec). It is similar to CHL in that it is also based on steady states of neurons in

the positive and the negative phase. But the update rule is slightly different.

∆Wk ∝ (hk+ − hk−)(hk−1−)T (1.14)

Two important ideas allow us to implement learning in a more biological plau-

sible manner. First, bidirectional connections convey the information of neuron

activities itself, not infinitesimal error to be propagated. Second, by using the dif-

ference of steady states of neural activities, we implicitly compute the derivative of

activation function without the exact analytic formula (O’Reilly and Munakata,

2000; O’Reilly, 1996; Hinton and McClelland, 1988). In addition, it is the example

of Local Learning Rules in that this rule only depends on locally available activity

signals.

9

2 Prologue to the Article

Difference Target Propagation. Dong-Hyun Lee, Saizheng Zhang, Asja Fi-

scher, and Yoshua Bengio, in Machine Learning and Knowledge Discovery in Da-

tabases, pages 498-515, Springer International Publishing (ECML/PKDD), 2015

Personal Contribution. The main idea of the working formula was proposed by

Dong-Hyun Lee (me), based on biological implausibility of Backpropagation and the

idea of target propagation proposed by Yoshua Bengio. Saizheng Zhang contributed

to rigorous mathematical analyses (Theorems and Proofs) of Target Propagation.

Asja Fischer contributed to mathematics, consistency of concepts and re-writing

some parts of my first writing. I did all experiments in this work, made the main

formula, wrote at the first item and reasoning behind the framework, supervised

by Yoshua Bengio.

10

3 Difference Target
Propagation

3.1 Introduction

Recently, deep neural networks have achieved great success in hard AI tasks

(Bengio, 2009; Hinton et al., 2012; Krizhevsky et al., 2012; Sutskever et al., 2014),

mostly relying on back-propagation as the main way of performing credit assign-

ment over the different sets of parameters associated with each layer of a deep net.

Back-propagation exploits the chain rule of derivatives in order to convert a loss

gradient on the activations over layer l (or time t, for recurrent nets) into a loss

gradient on the activations over layer l − 1 (respectively, time t − 1). However, as

we consider deeper networks– e.g., consider the recent best ImageNet competition

entrants (Szegedy et al., 2015) with 19 or 22 layers – longer-term dependencies,

or stronger non-linearities, the composition of many non-linear operations becomes

more strongly non-linear. To make this concrete, consider the composition of many

hyperbolic tangent units. In general, this means that derivatives obtained by back-

propagation are becoming either very small (most of the time) or very large (in a

few places). In the extreme (very deep computations), one would get discrete func-

tions, whose derivatives are 0 almost everywhere, and infinite where the function

changes discretely. Clearly, back-propagation would fail in that regime. In addition,

from the point of view of low-energy hardware implementation, the ability to train

deep networks whose units only communicate via bits would also be interesting.

This limitation of back-propagation to working with precise derivatives and

smooth networks is the main machine learning motivation for this paper’s explora-

tion into an alternative principle for credit assignment in deep networks. Another

motivation arises from the lack of biological plausibility of back-propagation, for the

following reasons: (1) the back-propagation computation is purely linear, whereas

biological neurons interleave linear and non-linear operations, (2) if the feedback

paths were used to propagate credit assignment by back-propagation, they would

11

need precise knowledge of the derivatives of the non-linearities at the operating

point used in the corresponding feedforward computation, (3) similarly, these feed-

back paths would have to use exact symmetric weights (with the same connecti-

vity, transposed) of the feedforward connections, (4) real neurons communicate by

(possibly stochastic) binary values (spikes), (5) the computation would have to be

precisely clocked to alternate between feedforward and back-propagation phases,

and (6) it is not clear where the output targets would come from.

The main idea of target propagation is to associate with each feedforward unit’s

activation value a target value rather than a loss gradient. The target value is meant

to be close to the activation value while being likely to have provided a smaller loss

(if that value had been obtained in the feedforward phase). In the limit where the

target is very close to the feedforward value, target propagation should behave

like back-propagation. This link was nicely made in (LeCun, 1986, 1987), which

introduced the idea of target propagation and connected it to back-propagation via

a Lagrange multipliers formulation (where the constraints require the output of one

layer to equal the input of the next layer). A similar idea was recently proposed

where the constraints are relaxed into penalties, yielding a different (iterative) way

to optimize deep networks (Carreira-Perpinan and Wang, 2014). Once a good

target is computed, a layer-local training criterion can be defined to update each

layer separately, e.g., via the delta-rule (gradient descent update with respect to

the cross-entropy loss).

By its nature, target propagation can in principle handle stronger (and even

discrete) non-linearities, and it deals with biological plausibility issues (1), (2), (3)

and (4) described above. Extensions of the precise scheme proposed here could

handle (5) and (6) as well, but this is left for future work.

In this paper, we describe how the general idea of target propagation by using

auto-encoders to assign targets to each layer (as introduced in an earlier techni-

cal report (Bengio, 2014)) can be employed for supervised training of deep neural

networks (section 3.2.1 and 3.2.2). We continue by introducing a linear correc-

tion for the imperfectness of the auto-encoders (3.2.3) leading to robust training

in practice. Furthermore, we show how the same principles can be applied to re-

place back-propagation in the training of auto-encoders (section 3.2.4). In section

3.3 we provide several experimental results on rather deep neural networks as well

as discrete and stochastic networks and auto-encoders. The results show that the

12

proposed form of target propagation is comparable to back-propagation with RM-

Sprop (Tieleman and Hinton, 2012) - a very popular setting to train deep net-

works nowadays- and achieves state of the art for training stochastic neural nets

on MNIST.

3.2 Target Propagation

Although many variants of the general principle of target propagation can be

devised, this paper focuses on a specific approach, which is based on the ideas

presented in an earlier technical report (Bengio, 2014) and is described in the

following.

3.2.1 Formulating Targets

Let us consider an ordinary (supervised) deep network learning process, where

the training data is drawn from an unknown data distribution p(x,y). The network

structure is defined by

hi = fi(hi−1) = si(Wihi−1), i = 1, . . . ,M (3.1)

where hi is the state of the i-th hidden layer (where hM corresponds to the output

of the network and h0 = x) and fi is the i-th layer feed-forward mapping, defined

by a non-linear activation function si (e.g. the hyperbolic tangents or the sigmoid

function) and the weights Wi of the i-th layer. Here, for simplicity of notation, the

bias term of the i-th layer is included in Wi. We refer to the subset of network

parameters defining the mapping between the i-th and the j-th layer (0 ≤ i < j ≤
M) as θi,jW = {Wk, k = i+1, . . . , j}. Using this notion, we can write hj as a function

of hi depending on parameters θi,jW , that is we can write hj = hj(hi; θ
i,j
W).

Given a sample (x,y), let L(hM(x; θ0,MW),y) be an arbitrary global loss function

measuring the appropriateness of the network output hM(x; θ0,MW) for the target y,

e.g. the MSE or cross-entropy for binomial random variables. Then, the training

objective corresponds to adapting the network parameters θ0,MW so as to minimize

13

the expected global loss Ep{L(hM(x; θ0,MW)y)} under the data distribution p(x,y).

For i = 1, . . . ,M − 1 we can write

L(hM(x; θ0,MW),y) = L(hM(hi(x; θ0,iW); θi,MW),y) (3.2)

to emphasize the dependency of the loss on the state of the i-th layer.

Training a network with back-propagation corresponds to propagating error si-

gnals through the network to calculate the derivatives of the global loss with respect

to the parameters of each layer. Thus, the error signals indicate how the parameters

of the network should be updated to decrease the expected loss. However, in very

deep networks with strong non-linearities, error propagation could become useless

in lower layers due to exploding or vanishing gradients, as explained above.

To avoid this problems, the basic idea of target propagation is to assign to each

hi(x; θ0,iW) a nearby value ĥi which (hopefully) leads to a lower global loss, that is

which has the objective to fulfill

L(hM(ĥi; θ
i,M
W),y) < L(hM(hi(x; θ0,iW); θi,MW),y) . (3.3)

Such a ĥi is called a target for the i-th layer.

Given a target ĥi we now would like to change the network parameters to make

hi move a small step towards ĥi, since – if the path leading from hi to ĥi is smooth

enough – we would expect to yield a decrease of the global loss. To obtain an update

direction for Wi based on ĥi we can define a layer-local target loss Li, for example

by using the MSE

Li(ĥi,hi) = ||ĥi − hi(x; θ0,iW)||22 . (3.4)

Then, Wi can be updated locally within its layer via stochastic gradient descent,

where ĥi is considered as a constant with respect to Wi. That is

W
(t+1)
i = W

(t)
i − ηfi

∂Li(ĥi,hi)

∂Wi

= W
(t)
i − ηfi

∂Li(ĥi,hi)

∂hi

∂hi(x; θ0,iW)

∂Wi

, (3.5)

where ηfi is a layer-specific learning rate.

Note, that in this context, derivatives can be used without difficulty, because

they correspond to computations performed inside a single layer. Whereas, the

problems with the severe non-linearities observed for back-propagation arise when

14

the chain rule is applied through many layers. This motivates target propagation

methods to serve as alternative credit assignment in the context of a composition

of many non-linearities.

However, it is not directly clear how to compute a target that guarantees a

decrease of the global loss (that is how to compute a ĥi for which equation (3.3)

holds) or that at least leads to a decrease of the local loss Li+1 of the next layer,

that is

Li(ĥi+1, fi(ĥi)) < Li(ĥi+1, fi(hi)) . (3.6)

Proposing and validating answers to this question is the subject of the rest of this

paper.

3.2.2 How to assign a proper target to each layer

Clearly, in a supervised learning setting, the top layer target should be directly

driven from the gradient of the global loss

ĥM = hM − η̂
∂L(hM ,y)

∂hM
, (3.7)

where η̂ is usually a small step size. Note, that if we use the MSE as global loss

and η̂ = 0.5 we get ĥM = y.

But how can we define targets for the intermediate layers ? In the previous tech-

nical report (Bengio, 2014), it was suggested to take advantage of an “approximate

inverse”. To formalize this idea, suppose that for each fi we have a function gi such

that

fi(gi(hi)) ≈ hi or gi(fi(hi−1)) ≈ hi−1 . (3.8)

Then, choosing

ĥi−1 = gi(ĥi) (3.9)

would have the consequence that (under some smoothness assumptions on f and

g) minimizing the distance between hi−1 and ĥi−1 should also minimize the loss Li

of the i-th layer. This idea is illustrated in the left of Figure 3.1. Indeed, if the feed-

back mappings were the perfect inverses of the feed-forward mappings (gi = f−1i),

one gets

Li(ĥi, fi(ĥi−1)) = Li(ĥi, fi(gi(ĥi))) = Li(ĥi, ĥi) = 0 . (3.10)

15

But choosing g to be the perfect inverse of f may need heavy computation and

instability, since there is no guarantee that f−1i applied to a target would yield a

value that is in the domain of fi−1. An alternative approach is to learn an approxi-

mate inverse gi, making the fi / gi pair look like an auto-encoder. This suggests

parametrizing gi as follows:

gi(hi) = s̄i(Vihi), i = 1, ...,M (3.11)

where s̄i is a non-linearity associated with the decoder and Vi the matrix of feed-

back weights of the i-th layer. With such a parametrization, it is unlikely that the

auto-encoder will achieve zero reconstruction error. The decoder could be trained

via an additional auto-encoder-like loss at each layer

Linvi = ||gi(fi(hi−1))− hi−1||22 . (3.12)

Changing Vi based on this loss, makes g closer to f−1i . By doing so, it also makes

fi(ĥi−1) = fi(gi(ĥi)) closer to ĥi, and is thus also contributing to the decrease

of Li(ĥi, fi(ĥi−1)). But we do not want to estimate an inverse mapping only for

the concrete values we see in training but for a region around the these values to

facilitate the computation of gi(ĥi) for ĥi which have never been seen before. For

this reason, the loss is modified by noise injection

Linvi = ||gi(fi(hi−1 + ε))− (hi−1 + ε)||22, ε ∼ N(0, σ) , (3.13)

which makes fi and gi approximate inverses not just at hi−1 but also in its neigh-

borhood.

As mentioned above, a required property of target propagation is, that the

layer-wise parameter updates, each improving a layer-wise loss, also lead to an

improvement of the global loss. The following theorem shows that, for the case that

gi is a perfect inverse of fi and fi having a certain structure, the update direction

of target propagation does not deviate more then 90 degrees from the gradient

direction (estimated by back-propagation), which always leads to a decrease of the

global loss.

Theorem 1. 1 Assume that gi = f−1i , i = 1, ...,M , and fi satisfies hi = fi(hi−1) =

1. See the proof in the Appendix.

16

Figure 3.1 – (left) How to compute a target in the lower layer via difference target propagation.

fi(ĥi−1) should be closer to ĥi than fi(hi−1). (right) Diagram of the back-propagation-free auto-
encoder via difference target propagation.

Wisi(hi−1)
2 where si can be any differentiable monotonically increasing element-

wise function. Let δW tp
i and δW bp

i be the target propagation update and the back-

propagation update in i-th layer, respectively. If η̂ in Equation (3.7) is sufficiently

small, then the angle α between δW tp
i and δW bp

i is bounded by

0 <
1 + ∆1(η̂)

λmax

λmin
+ ∆2(η̂)

≤ cos(α) ≤ 1 (3.14)

Here λmax and λmin are the largest and smallest singular values of (JfM . . . Jfi+1
)T ,

where Jfk is the Jacobian matrix of fk and ∆1(η̂) and ∆2(η̂) are close to 0 if η̂ is

sufficiently small.

3.2.3 Difference target propagation

From our experience, the imperfection of the inverse function leads to severe

optimization problems when assigning targets based on equation (3.9). This brought

us to propose the following linearly corrected formula for target propagation which

we refer to as “difference target propagation”

ĥi−1 = hi−1 + gi(ĥi)− gi(hi) . (3.15)

2. This is another way to obtain a non-linear deep network structure.

17

Algorithm 1 Training deep neural networks via difference target propagation

Compute unit values for all layers:
for i = 1 to M do

hi ← fi(hi−1)
end for
Making the first target: ĥM−1 ← hM−1 − η̂ ∂L

∂hM−1
, (L is the global loss)

Compute targets for lower layers:
for i = M − 1 to 2 do

ĥi−1 ← hi−1 − gi(hi) + gi(ĥi)
end for
Training feedback (inverse) mapping:
for i = M − 1 to 2 do

Update parameters for gi using SGD with following a layer-local loss Linvi
Linvi = ||gi(fi(hi−1 + ε))− (hi−1 + ε)||22, ε ∼ N(0, σ)

end for
Training feedforward mapping:
for i = 1 to M do

Update parameters for fi using SGD with following a layer-local loss Li
Li = ||fi(hi−1)− ĥi||22 if i < M , Li = L (the global loss) if i = M .

end for

Note, that if gi is the inverse of fi, difference target propagation becomes equivalent

to vanilla target propagation as defined in equation (3.9). The resulting complete

training procedure for optimization by difference target propagation is given in

Algorithm 1.

In the following, we explain why this linear corrected formula stabilizes the

optimization process. In order to achieve stable optimization by target propagation,

hi−1 should approach ĥi−1 as hi approaches ĥi. Otherwise, the parameters in lower

layers continue to be updated even when an optimum of the global loss is reached

already by the upper layers, which then could lead the global loss to increase again.

Thus, the condition

hi = ĥi ⇒ hi−1 = ĥi−1 (3.16)

greatly improves the stability of the optimization. This holds for vanilla target

propagation if gi = f−1i , because

hi−1 = f−1i (hi) = gi(ĥi) = ĥi−1 . (3.17)

18

Although the condition is not guaranteed to hold for vanilla target propagation if

gi 6= f−1i , for difference target propagation it holds by construction, since

ĥi−1 − hi−1 = gi(ĥi)− gi(hi) . (3.18)

Furthermore, under weak conditions on f and g and if the difference between

hi and ĥi is small, we can show for difference target propagation that if the input

of the i-th layer becomes ĥi−1 (i.e. the i− 1-th layer reaches its target) the output

of the i-th layer also gets closer to ĥi. This means that the requirement on targets

specified by equation (3.6) is met for difference target propagation, as shown in the

following theorem

Theorem 2. 3 Let the target for layer i−1 be given by Equation (3.15), i.e. ĥi−1 =

hi−1+gi(ĥi)−gi(hi). If ĥi−hi is sufficiently small, fi and gi are differentiable, and

the corresponding Jacobian matrices Jfi and Jgi satisfy that the largest eigenvalue

of (I − JfiJgi)T (I − JfiJgi) is less than 1, then we have

||ĥi − fi(ĥi−1)||22 < ||ĥi − hi||22 . (3.19)

The third condition in the above theorem is easily satisfied in practice, because

gi is learned to be the inverse of fi and makes gi ◦ fi close to the identity mapping,

so that (I − JfiJgi) becomes close to the zero matrix which means that the largest

eigenvalue of (I − JfiJgi)T (I − JfiJgi) is also close to 0.

3.2.4 Training an auto-encoder with difference target pro-

pagation

Auto-encoders are interesting for learning representations and serve as building

blocks for deep neural networks (Erhan et al., 2010). In addition, as we have seen,

training auto-encoders is part of the target propagation approach presented here,

where they model the feedback paths used to propagate the targets.

In the following, we show how a regularized auto-encoder can be trained using

difference target propagation instead of back-propagation. Like in the work on de-

noising auto-encoders (Vincent et al., 2010) and generative stochastic networks (Ben-

3. See the proof in Appendix.

19

gio et al., 2014), we consider the denoising auto-encoder like a stochastic network

with noise injected in input and hidden units, trained to minimize a reconstruction

loss. This is, the hidden units are given by the encoder as

h = f(x) = sig(Wx + b) , (3.20)

where sig is the element-wise sigmoid function, W the weight matrix and b the

bias vector of the input units. The reconstruction is given by the decoder

z = g(h) = sig(W T (h + ε) + c), ε ∼ N(0, σ) , (3.21)

with c being the bias vector of the hidden units. And the reconstruction loss is

L = ||z− x||22 + ||f(x + ε)− h||22, ε ∼ N(0, σ) , (3.22)

where a regularization term can be added to obtain a contractive mapping. In order

to train this network without back-propagation (that is, without using the chain

rule), we can use difference target propagation as follows (see Figure 3.1 (right) for

an illustration): at first, the target of z is just x, so we can train the reconstruction

mapping g based on the loss Lg = ||g(h) − x||22 in which h is considered as a

constant. Then, we compute the target ĥ of the hidden units following difference

target propagation where we make use of the fact that f is an approximate inverse

of g. That is,

ĥ = h + f(ẑ)− f(z) = 2h− f(z) , (3.23)

where the last equality follows from f(ẑ) = f(x) = h. As a target loss for the

hidden layer, we can use Lf = ||f(x+ ε)− ĥ||22, where ĥ is considered as a constant

and which can be also augmented by a regularization term to yield a contractive

mapping.

3.3 Experiments

In a set of experiments we investigated target propagation for training deep

feedforward deterministic neural networks, networks with discrete transmissions

20

between units, stochastic neural networks, and auto-encoders.

For training supervised neural networks, we chose the target of the top hidden

layer (number M − 1) such that it also depends directly on the global loss instead

of an inverse mapping. That is, we set ĥM−1 = hM−1 − η̃ ∂L(hM ,y)
∂hM−1

, where L is

the global loss (here the multiclass cross entropy). This may be helpful when the

number of units in the output layer is much smaller than the number of units in

the top hidden layer, which would make the inverse mapping difficult to learn, but

future work should validate that.

For discrete stochastic networks in which some form of noise (here Gaussian)

is injected, we used a decaying noise level for learning the inverse mapping, in

order to stabilize learning, i.e. the standard deviation of the Gaussian is set to

σ(e) = σ0/(1 + e/e0) where σ0 is the initial value, e is the epoch number and e0 is

the half-life of this decay. This seems to help to fine-tune the feedback weights at

the end of training.

In all experiments, the weights were initialized with orthogonal random matrices

and the bias parameters were initially set to zero. All experiments were repeated 10

times with different random initializations. We put the code of these experiments

online (https://github.com/donghyunlee/dtp).

3.3.1 Deterministic feedforward deep networks

As a primary objective, we investigated training of ordinary deep supervised

networks with continuous and deterministic units on the MNIST dataset. We used

a held-out validation set of 10000 samples for choosing hyper-parameters. We trai-

ned networks with 7 hidden layers each consisting of 240 units (using the hyper-

bolic tangent as activation function) with difference target propagation and back-

propagation.

Training was based on RMSprop (Tieleman and Hinton, 2012) where hyper-

parameters for the best validation error were found using random search (Bergstra

and Bengio, 2012). RMSprop is an adaptive learning rate algorithm known to lead

to good results for back-propagation. Furthermore, it is suitable for updating the

parameters of each layer based on the layer-wise targets obtained by target propa-

gation. Our experiments suggested that when using a hand-selected learning rate

per layer rather than the automatically set one (by RMSprop), the selected lear-

21

https://github.com/donghyunlee/dtp

ning rates were different for each layer, which is why we decided to use an adaptive

method like RMSprop.

Figure 3.2 – Mean training cost (left) and train/test classification error (right) with target
propagation and back-propagation using continuous deep networks (tanh) on MNIST. Error bars
indicate the standard deviation.

The results are shown in Figure 3.2. We obtained a test error of 1.94% with tar-

get propagation and 1.86% with back propagation. The final negative log-likelihood

on the training set was 4.584×10−5 with target propagation and 1.797×10−5 with

back propagation. We also trained the same network with rectifier linear units and

got a test error of 3.15% whereas 1.62% was obtained with back-propagation. It

is well known that this nonlinearity is advantageous for back-propagation, while it

seemed to be less appropriate for target propagation.

In a second experiment we investigated training on CIFAR-10. The experimental

setting was the same as for MNIST (using the hyperbolic tangent as activation

function) except that the network architecture was 3072-1000-1000-1000-10. We

did not use any preprocessing, except for scaling the input values to lay in [0,1],

and we tuned the hyper-parameters of RMSprop using a held-out validation set of

1000 samples. We obtained mean test accuracies of 50.71% and 53.72% for target

propagation and back-propagation, respectively. It was reported in Krizhevsky and

Hinton (2009), that a network with 1 hidden layer of 1000 units achieved 49.78%

accuracy with back-propagation, and increasing the number of units to 10000 led

to 51.53% accuracy.

As the current state-of-the-art performance on the permutation invariant CIFAR-

10 recognition task, Konda et al. (2014) reported 64.1% but when using PCA wi-

thout whitening as preprocessing and zero-biased auto-encoders for unsupervised

pre-training.

22

3.3.2 Networks with discretized transmission between units

To explore target propagation for an extremely non-linear neural network, we

investigated training of discrete networks on the MNIST dataset. The network ar-

chitecture was 784-500-500-10, where only the 1st hidden layer was discretized.

Inspired by biological considerations and the objective of reducing the communi-

cation cost between neurons, instead of just using the step activation function, we

used ordinary neural net layers but with signals being discretized when transported

between the first and second layer. The network structure is depicted in the right

plot of Figure 3.3 and the activations of the hidden layers are given by

h1 = f1(x) = tanh(W1x) and h2 = f2(h1) = tanh(W2sign(h1)) (3.24)

where sign(x) = 1 if x > 0, and sign(x) = 0 if x ≤ 0. The network output is

given by

p(y|x) = f3(h2) = softmax(W3h2) . (3.25)

The inverse mapping of the second layer and the associated loss are given by

g2(h2) = tanh(V2sign(h2)) , (3.26)

Linv2 = ||g2(f2(h1 + ε))− (h1 + ε)||22, ε ∼ N(0, σ) . (3.27)

If feed-forward mapping is discrete, back-propagated gradients become 0 and useless

when they cross the discretization step. So we compare target propagation to two

baselines. As a first baseline, we train the network with back-propagation and the

straight-through estimator (Bengio et al., 2013), which is biased but was found to

work well, and simply ignores the derivative of the step function (which is 0 or

infinite) in the back-propagation phase. As a second baseline, we train only the

upper layers by back-propagation, while not changing the weight W1 which are

affected by the discretization, i.e., the lower layers do not learn.

The results on the training and test sets are shown in Figure 3.3. The training

error for the first baseline (straight-through estimator) does not converge to zero

(which can be explained by the biased gradient) but generalization performance

is fairly good. The second baseline (fixed lower layer) surprisingly reached zero

training error, but did not perform well on the test set. This can be explained

23

by the fact that it cannot learn any meaningful representation at the first layer.

Target propagation however did not suffer from this drawback and can be used

to train discrete networks directly (training signals can pass the discrete region

successfully). Though the training convergence was slower, the training error did

approach zero. In addition, difference target propagation also achieved good results

on the test set.

Figure 3.3 – Mean training cost (top left), mean training error (top right) and mean test error
(bottom left) while training discrete networks with difference target propagation and the two
baseline versions of back-propagation. Error bars indicate standard deviations over the 10 runs.
Diagram of the discrete network (bottom right). The output of h1 is discretized because signals
must be communicated from h1 to h2 through a long cable, so binary representations are preferred
in order to conserve energy. With target propagation, training signals are also discretized through
this cable (since feedback paths are computed by bona-fide neurons).

3.3.3 Stochastic networks

Another interesting model class which vanilla back-propagation cannot deal

with are stochastic networks with discrete units. Recently, stochastic networks

have attracted attention (Bengio, 2013; Tang and Salakhutdinov, 2013; Bengio

24

et al., 2013) because they are able to learn a multi-modal conditional distribution

P (Y |X), which is important for structured output predictions. Training networks

of stochastic binary units is also biologically motivated, since they resemble net-

works of spiking neurons. Here, we investigate whether one can train networks of

stochastic binary units on MNIST for classification using target propagation. Fol-

lowing Raiko et al. (2014), the network architecture was 784-200-200-10 and the

hidden units were stochastic binary units with the probability of turning on given

by a sigmoid activation:

hpi = P (Hi = 1|hi−1) = σ(Wihi−1), hi ∼ P (Hi|hi−1) , (3.28)

that is, hi is one with probability hpi .

As a baseline, we considered training based on the straight-through biased gra-

dient estimator (Bengio et al., 2013) in which the derivative through the discrete

sampling step is ignored (this method showed the best performance in Raiko et al.

(2014).) That is

δhpi−1 = δhpi
∂hpi
∂hpi−1

≈ σ′(Wihi−1)W
T
i δh

p
i . (3.29)

With difference target propagation the stochastic network can be trained directly,

setting the targets to

ĥp2 = hp2 − η
∂L

∂h2

and ĥp1 = hp1 + g2(ĥ
p
2)− g2(h

p
2) (3.30)

where gi(h
p
i) = tanh(Vih

p
i) is trained by the loss

Linvi = ||gi(fi(hi−1 + ε))− (hi−1 + ε)||22, ε ∼ N(0, σ) , (3.31)

and layer-local target losses are defined as Li = ||ĥpi − hpi ||22.
For evaluation, we averaged the output probabilities for a given input over

100 samples, and classified the example accordingly, following Raiko et al. (2014).

Results are given in Table 3.1. We obtained a test error of 1.71% using the baseline

method and 1.54% using target propagation. This suggests that target propagation

is highly promising for training networks of binary stochastic units.

25

Method Test Error(%)

Difference Target-Propagation, M=1 1.54%

Straight-through gradient estimator (Bengio et al., 2013) + backprop, M=1
as reported in Raiko et al. (2014) 1.71%

as reported in Tang and Salakhutdinov (2013), M=20 3.99%

as reported in Raiko et al. (2014), M=20 1.63%

Table 3.1 – Mean test Error on MNIST for stochastoc networks. The first row shows the results
of our experiments averaged over 10 trials. The second row shows the results reported in (Raiko
et al., 2014). M corresponds to the number of samples used for computing output probabilities.
We used M=1 during training and M=100 for the test set.

3.3.4 Auto-encoder

We trained a denoising auto-encoder with 1000 hidden units with difference

target propagation as described in Section 3.2.4 on MNIST. As shown in Figure

3.4 stroke-like filters can be obtained by target propagation. After supervised fine-

tuning (using back-propagation), we got a test error of 1.35%. Thus, by training an

auto-encoder with target propagation one can learn a good initial representation,

which is as good as the one obtained by regularized auto-encoders trained by back-

propagation on the reconstruction error.

26

Figure 3.4 – Filters learned by the back-propagation-free auto-encoder. Each filter corresponds
to the hidden weights of one of 100 randomly chosen hidden units. We obtain stroke filters, similar
to those usually obtained by regularized auto-encoders.

27

4 Conclusion

We introduced a novel optimization method for neural networks, called target

propagation, which was designed to overcome drawbacks of back-propagation and

is biologically more plausible. Target propagation replaces training signals based on

partial derivatives by targets which are propagated based on an auto-encoding feed-

back loop. Difference target propagation is a linear correction for this imperfect in-

verse mapping which is effective to make target propagation actually work. Our ex-

periments show that target propagation performs comparable to back-propagation

on ordinary deep networks and denoising auto-encoders. Moreover, target propaga-

tion can be directly used on networks with discretized transmission between units

and reaches state of the art performance for stochastic neural networks on MNIST.

Future works should be aimed at the following directions. First, we will inves-

tigate whether target propagation can be realized in the biological brain or not.

Second, we will try to implement target propagation in hardware. And finally, we

will apply this method to recurrent network or reinforcement learning in which

backpropagation cannot do well.

28

A Theorems and Proofs

A.1 Proof of Theorem 1

Démonstration. Given a training example (x,y) the back-propagation update is

given by

δW bp
i = −∂L(x,y; θ0,MW)

∂Wi

= −JTfi+1
. . . JTfM

∂L

∂hM
(si(hi−1))

T ,

where Jfk = ∂hk

∂hk−1
= Wi · S ′i(hk−1), k = i + 1, . . . ,M . Here S ′i(hk−1) is a diagonal

matrix with each diagonal element being element-wise derivatives and Jfk is the

Jacobian of fk(hk−1). In target propagation the target for hM is given by ĥM =

hM − η̂ ∂L
∂hM

. If all hk’s are allocated in smooth areas and η̂ is sufficiently small, we

can apply a Taylor expansion to get

ĥi = gi+1(. . . gM(ĥM) . . .) = gi+1(. . . gM(hM) . . .)− η̂Jgi+1
. . . JgM

∂L

∂hM
+ o(η̂) ,

where o(η̂) is the remainder satisfying limη̂→0 o(η̂)/η̂ = 0. Now, for δW tp
i we have

δW tp
i = −∂||hi(hi−1;Wi)− ĥi||22

∂Wi

= −(hi − (hi − η̂J−1fi+1
. . . J−1fM

∂L

∂hM
+ o(η̂)))(si(hi−1))

T

= −η̂J−1fi+1
. . . J−1fM

∂L

∂hM
(si(hi−1))

T + o(η̂)(si(hi−1))
T .

We write ∂L
∂hM

as l , si(hi−1) as v and JfM . . . Jfi+1
as J for short. Then the inner

production of vector forms of δW bp
i and δW tp

i is

〈vec(δW bp
i), vec(δW tp

i)〉 = tr((JT lvT)T (η̂J−1lvT + o(η̂)vT))

= η̂tr(vlTJJ−1lvT)− tr(vlTJo(η̂)vT) = η̂||v||22||l||22 − 〈JT l,o(η̂)〉||v||22 .

29

For ||vec(δW bp
i)||2 and ||vec(δW tp

i)||2 we have

||vec(δW bp
i)||2 =

√
tr((−JT lvT)T (−JT lvT)) = ||v||2||JT l||2 ≤ ||v||2||JT ||2||l||2

and similarly

||vec(δW tp
i)||2 ≤ η̂||v||2||J−1||2||l||2 + ||o(η̂)||2||v||2 ,

where ||JT ||2 and ||J−1||2 are matrix Euclidean norms, i.e. the largest singular

value of (JfM . . . Jfi+1
)T , λmax, and the largest singular value of (JfM . . . Jfi+1

)−1,
1

λmin
(λmin is the smallest singular value of (JfM . . . Jfi+1

)T , because fk is invertable,

so all the smallest singular values of Jacobians are larger than 0). Finally, if η̂ is

sufficiently small, the angle α between vec(δW bp
i) and vec(δW tp

i) satisfies:

cos(α) =
〈vec(δW bp

i), vec(δW tp
i)〉

||vec(δW bp
i)||2 · ||vec(δW tp

i)||2

≥ η̂||v||22||l||22 − 〈JT l,o(η̂)〉||v||22
(||v||2λmax||l||2)(η̂||v||2(1

λmin
)||l||2 + ||o(η̂)||2||v||2)

=
1 + −〈JT l,o(η̂)〉

η̂||l||22
λmax

λmin
+ λmax||o(η̂)||2

η̂||l||2

=
1 + ∆1(η̂)

λmax

λmin
+ ∆2(η̂)

where the last expression is positive if η̂ is sufficiently small and cos(α) ≤ 1 is

trivial.

A.2 Proof of Theorem 2

Démonstration. Let e = ĥi − hi. Applying Taylor’s theorem twice, we get

ĥi − fi(ĥi−1) = ĥi − fi(hi−1 + gi(ĥi)− gi(hi)) = ĥi − fi(hi−1 + Jgie + o(||e||2))

= ĥi − fi(hi−1)− Jfi(Jgie + o(||e||2))− o(||Jgie + o(||e||2)||2)

= ĥi − hi − JfiJgie− o(||e||2) = (I − JfiJgi)e− o(||e||2)

30

where the vector o(||e||2) represents the remainder satisfying lime→0 o(||e||2)/||e||2 =

0. Then for ||ĥi − fi(ĥi−1)||22 we have

||ĥi − fi(ĥi−1)||22 = ((I − JfiJgi)e− o(||e||2))T ((I − JfiJgi)e− o(||e||2))

= eT (I − JfiJgi)T (I − JfiJgi)e− o(||e||2)T (I − JfiJgi)e

−eT (I − JfiJgi)To(||e||2) + o(||e||2)To(||e||2))

= eT (I − JfiJgi)T (I − JfiJgi)e + o(||e||22)

≤ λ||e||22 + |o(||e||22)| (A-1)

where o(||e||22) is the scalar value resulting from all terms depending on o(||e||2)
and λ is the largest eigenvalue of (I − JfiJgi)T (I − JfiJgi). If e is sufficiently small

to guarantee |o(||e||22)| < (1 − λ)||e||22, then the left of Equation (A-1) is less than

||e||22 which is just ||ĥi − hi||22.

31

Bibliographie

Baldi, P. and P. Sadowski (2016). A theory of local learning, the learning channel,

and the optimality of backpropagation. Neural Networks 83, 51–74.

Bengio, Y. (2009). Learning deep architectures for AI. Now Publishers.

Bengio, Y. (2013). Estimating or propagating gradients through stochastic neurons.

Technical Report arXiv:1305.2982, Universite de Montreal.

Bengio, Y. (2014). How auto-encoders could provide credit assignment in deep

networks via target propagation. arXiv preprint arXiv:1407.7906 .

Bengio, Y., N. Léonard, and A. Courville (2013). Estimating or propagating gra-

dients through stochastic neurons for conditional computation. arXiv preprint

arXiv:1308.3432 .

Bengio, Y., E. Thibodeau-Laufer, and J. Yosinski (2014). Deep generative stochas-

tic networks trainable by backprop. In ICML’2014.

Bergstra, J. and Y. Bengio (2012). Random search for hyper-parameter optimiza-

tion. J. Machine Learning Res. 13, 281–305.

Burton, D., J. Shore, and J. Buck (1983). A generalization of isolated word re-

cognition using vector quantization. In Acoustics, Speech, and Signal Processing,

IEEE International Conference on ICASSP’83., Volume 8, pp. 1021–1024. IEEE.

Carreira-Perpinan, M. and W. Wang (2014). Distributed optimization of deeply

nested systems. In AISTATS’2014, JMLR W&CP, Volume 33, pp. 10–19.

Crick, F. (1989). The recent excitement about neural networks. Nature 337 (6203),

129–132.

Dayan, P. and L. F. Abbott (2001). Theoretical neuroscience, Volume 806. Cam-

bridge, MA: MIT Press.

32

Erhan, D., A. Courville, Y. Bengio, and P. Vincent (2010). Why does unsupervi-

sed pre-training help deep learning ? In JMLR W&CP: Proc. AISTATS’2010,

Volume 9, pp. 201–208.

Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory.

Psychology Press.

Hinton, G., L. Deng, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Van-

houcke, P. Nguyen, T. Sainath, and B. Kingsbury (2012, Nov.). Deep neural

networks for acoustic modeling in speech recognition. IEEE Signal Processing

Magazine 29 (6), 82–97.

Hinton, G. E. and J. L. McClelland (1988). Learning representations by recircula-

tion. In Neural information processing systems, pp. 358–366.

Hodgkin, A. L. and A. F. Huxley (1952). Currents carried by sodium and potas-

sium ions through the membrane of the giant axon of loligo. The Journal of

physiology 116 (4), 449–472.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.

Biological cybernetics 43 (1), 59–69.

Konda, K., R. Memisevic, and D. Krueger (2014). Zero-bias autoencoders and the

benefits of co-adapting features. arXiv preprint arXiv:1402.3337 .

Krizhevsky, A. and G. Hinton (2009). Learning multiple layers of features from

tiny images. Technical report, University of Toronto.

Krizhevsky, A., I. Sutskever, and G. Hinton (2012). ImageNet classification with

deep convolutional neural networks. In NIPS’2012.

LeCun, Y. (1986). Learning processes in an asymmetric threshold network. In

F. Fogelman-Soulié, E. Bienenstock, and G. Weisbuch (Eds.), Disordered Systems

and Biological Organization, pp. 233–240. Les Houches, France: Springer-Verlag.

LeCun, Y. (1987). Modèles connexionistes de l’apprentissage. Ph. D. thesis, Uni-

versité de Paris VI.

33

Lillicrap, T. P., D. Cownden, D. B. Tweed, and C. J. Akerman (2016). Random sy-

naptic feedback weights support error backpropagation for deep learning. Nature

communications 7, 13276.

Lowel, S. and W. Singer (1992). Selection of intrinsic horizontal connections in the

visual cortex by correlated neuronal activity. Science 255 (5041), 209–212.

McCulloch, W. S. and W. Pitts (1943). A logical calculus of the ideas immanent

in nervous activity. The bulletin of mathematical biophysics 5 (4), 115–133.

Minsky, M. L. (1963). Steps toward artificial intelligence. Computers and thought ,

406–450.

Movellan, J. R. (1991). Contrastive hebbian learning in the continuous hopfield

model. In Connectionist Models, pp. 10–17. Elsevier.

O’Reilly, R. C. (1996). Biologically plausible error-driven learning using local ac-

tivation differences: The generalized recirculation algorithm. Neural computa-

tion 8 (5), 895–938.

O’Reilly, R. C. and Y. Munakata (2000). Computational explorations in cognitive

neuroscience: Understanding the mind by simulating the brain. MIT press.

Raiko, T., M. Berglund, G. Alain, and L. Dinh (2014). Techniques for learning

binary stochastic feedforward neural networks. arXiv preprint arXiv:1406.2989 .

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review 65 (6), 386.

Rumelhart, D. E. (1986). Parallel distributed processing. Bradford Books , 1–2.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). Learning representa-

tions by back-propagating errors. nature 323 (6088), 533.

Sutskever, I., O. Vinyals, and Q. V. Le (2014). Sequence to sequence learning

with neural networks. In Advances in neural information processing systems, pp.

3104–3112.

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, A. Rabinovich, et al. (2015). Going deeper with convolutions. Cvpr.

34

Tang, Y. and R. Salakhutdinov (2013). A new learning algorithm for stochastic

feedforward neural nets. ICML’2013 Workshop on Challenges in Representation

Learning.

Tieleman, T. and G. Hinton (2012). Divide the gradient by a running average of

its recent magnitude. COURSERA: Neural Networks for Machine Learning 4 .

Vincent, P., H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol (2010). Stacked

denoising autoencoders: Learning useful representations in a deep network with

a local denoising criterion. J. Machine Learning Res. 11.

Xie, X. and H. S. Seung (2003). Equivalence of backpropagation and contrastive

hebbian learning in a layered network. Neural computation 15 (2), 441–454.

35

	 Résumé
	 Summary
	 Contents
	 List of Figures
	 List of Tables
	 List of Abbreviations
	 Acknowledgments
	1 Learning Rules in Deep Neural Networks
	1.1 Artificial Neural Networks
	1.1.1 An artificial neuron
	1.1.2 Deep Neural Networks

	1.2 Learning Rules for Single-Layer Networks
	1.2.1 Hebbian Learning Rule
	1.2.2 The Delta Rule
	1.2.3 Competitive Learning Rule

	1.3 Learning Rules for Multi-Layer Networks
	1.3.1 Credit Assignment Problems and Biological Plausibility of Learning Rule
	1.3.2 Backpropagation Algorithm
	1.3.3 Contrastive Hebbian Learning
	1.3.4 Generalized Recirculation

	2 Prologue to the Article
	3 Difference Target Propagation
	3.1 Introduction
	3.2 Target Propagation
	3.2.1 Formulating Targets
	3.2.2 How to assign a proper target to each layer
	3.2.3 Difference target propagation
	3.2.4 Training an auto-encoder with difference target propagation

	3.3 Experiments
	3.3.1 Deterministic feedforward deep networks
	3.3.2 Networks with discretized transmission between units
	3.3.3 Stochastic networks
	3.3.4 Auto-encoder

	4 Conclusion
	A Theorems and Proofs
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2

	 Bibliography

