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Résumé
Dans cette thèse, nous introduisons et motivons la modélisation générative

comme une tâche centrale pour l’apprentissage automatique et fournissons une
vue critique des algorithmes qui ont été proposés pour résoudre cette tâche. Nous
montrons comment la modélisation générative peut être définie mathématiquement
en essayant de faire une distribution d’estimation identique à une distribution de
vérité de terrain inconnue. Ceci peut ensuite être quantifié en termes de valeur d’une
divergence statistique entre les deux distributions. Nous décrivons l’approche du
maximum de vraisemblance et comment elle peut être interprétée comme minimisant
la divergence KL. Nous explorons un certain nombre d’approches dans la famille du
maximum de vraisemblance, tout en discutant de leurs limites. Enfin, nous explorons
l’approche antagoniste alternative qui consiste à étudier les différences entre une
distribution d’estimation et une distribution de données réelles. Nous discutons
de la façon dont cette approche peut donner lieu à de nouvelles divergences et
méthodes qui sont nécessaires pour réussir l’apprentissage par l’adversité. Nous
discutons également des nouveaux paramètres d’évaluation requis par l’approche
contradictoire.

Le chapitre ref chap: fortnet montre qu’en apprenant des modèles génératifs des
couches cachées d’un réseau profond, on peut identifier quand le réseau fonctionne
sur des données différentes des données observées pendant la formation. Cela nous
permet d’étudier les différences entre les modes de fonctionnement libre et de forçage
des enseignants dans les réseaux récurrents. Cela conduit également à une meilleure
robustesse face aux attaques adverses.

Le chapitre ref chap: gibbsnet a exploré une procédure itérative pour la
génération et l’inférence dans les réseaux profonds, qui est inspirée par la procé-
dure MCMC de gibbs bloquées pour l’échantillonnage à partir de modèles basés
sur l’énergie. Cela permet d’améliorer l’inpainting, la génération et l’inférence en
supprimant l’exigence que les variables a priori sur les variables latentes aient une
distribution connue.

Le chapitre ref chap: discreg a étudié si les modèles génératifs pouvaient être
améliorés en exploitant les connaissances acquises par des modèles de classification
discriminants. Nous avons étudié cela en augmentant les autoencoders avec des
pertes supplémentaires définies dans les états cachés d’un classificateur fixe. Dans la
pratique, nous avons montré que cela conduisait à des modèles générateurs mettant
davantage l’accent sur les aspects saillants des données, et discutait également des
limites de cette approche.
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structurée

iii



Summary
In this thesis we introduce and motivate generative modeling as a central task

for machine learning and provide a critical view of the algorithms which have been
proposed for solving this task. We overview how generative modeling can be defined
mathematically as trying to make an estimating distribution the same as an unknown
ground truth distribution. This can then be quantified in terms of the value of
a statistical divergence between the two distributions. We outline the maximum
likelihood approach and how it can be interpreted as minimizing KL-divergence. We
explore a number of approaches in the maximum likelihood family, while discussing
their limitations. Finally, we explore the alternative adversarial approach which
involves studying the differences between an estimating distribution and a real data
distribution. We discuss how this approach can give rise to new divergences and
methods that are necessary to make adversarial learning successful. We also discuss
new evaluation metrics which are required by the adversarial approach.

Chapter 2 shows that by learning generative models of the hidden layers of a
deep network can identify when the network is being run on data differing from
the data seen during training. This allows us to study differences between free-
running and teacher forcing modes in recurrent networks. It also leads to improved
robustness to adversarial attacks.

Chapter 3 explored an iterative procedure for generation and inference in deep
networks, which is inspired by the blocked gibbs MCMC procedure for sampling
from energy-based models. This achieves improved inpainting, generation, and
inference by removing the requirement that the prior over the latent variables have
a known distribution.

Chapter 4 studied whether generative models could be improved by exploiting
the knowledge learned by discriminative classification models. We studied this by
augmenting autoencoders with additional losses defined in the hidden states of a
fixed classifier. In practice we showed that this led to generative models with better
focus on salient aspects of the data, and also discussed limitations in this approach.

Keywords: neural networks, machine learning, deep learning, supervised learn-
ing, generative modeling, structured prediction
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1 Introduction

1.1 What are Generative Models?

One of the most distinctive and powerful aspects of human cognition is the

ability to imagine: to synthesize mental objects which are not bound by what is

immediately present in reality. There are many potential reasons why humans

evolved this capability. One is that it allows humans to do planning by imagining

how their actions could effect the future. Another is that by imagining how the future

will unfold, humans can test hypotheses about the dynamics of the world, and learn

about its properties without explicit supervision. The subfield of Machine Learning

which aims to endow machines with this same essential capacity to imagine and

synthesize new entities is referred to as generative modeling. Along with these lofty

ambitions, there are many practical motivations for generative models. One common

argument is that humans may use generative models as a way of doing supervised

and reinforcement learning while using less labeled data. Consider the task of

children learning a new language. While children do receive occasional explicit

supervised feedback, i.e. from their parents telling them that they misspelled a

word or that they’ve overgeneralized a word, this feedback is relatively rare. Reward

signals are perhaps just as rare. Because of this, cognitive scientists are curious

about how humans are able to learn with relatively little overfitting. They refer

to this as the “poverty of the stimulus” problem. An appealing hypothesis is that

humans use unsupervised generative models to build robust representations of the

world and then use those same representations to do supervised and reinforcement

learning from small amounts of explicitly labeled data. Since humans are constantly

absorbing perceptual data (sound, vision, touch), humans should have enormous

amounts of unlabeled data which can be used to train generative models without

overfitting. We could also imagine that many of these generative models require

learning features which are also useful for supervised learning. For example, one

1



potential generative model would learn to construct the sequence of future visual

stimuli conditioned on a window of past visual stimuli p(Xt:T |X1:t). A model capable

of performing this task well would need to have a strong model for how the world

works (i.e. what things form objects, what things are near and far away, what

things are large and small, whether something is alive or not, etc.).

Another practical motivation for generative models is that they could provide

better evaluations of the effectiveness of Machine Learning models. Because classi-

fiers produce the same output for a wide class of inputs, it can be hard to evaluate

what a classifier has really learned about a type of data. Suppose we have a dataset

where a model generates text captions from an image. Consider an image of a

giraffe, which the model describes as “A giraffe walking next to tall green grass”.

It’s possible that the model has learned enough to be able to recognize that there

is a giraffe, and that the giraffe is walking (and not running or sitting), and that

there is tall green grass. However, another possibility is that the model recognizes

the giraffe, but simply says that the giraffe is walking because giraffes are usually

walking, and says that the giraffe is near tall grass because giraffes are usually near

tall grass, and says that the grass is green because grass is usually green. Thus it’s

difficult to know if the model really understands the image, or if it’s merely making

reasonable guesses based on what types of images are common. However, consider

what could be done if we had a generative model which produced sample images

conditioned on the caption P (X|C). Since humans can generate arbitrary text by

hand, we could easily supply the model with counterfactuals like “A running giraffe

next to short red grass” or “A giraffe lying down next to tall blue grass”. Since

humans easily generate detailed counterfactuals in text, it would be easy to verify

how well the model understands the world.

1.1.1 Formalizing the Generative Modeling Problem

So far, we have discussed generative modeling in qualitative terms. We want

models which can simulate from the dynamics of the world. We want models that

can synthesize realistic looking data. However, before going further it is useful

to understand the probabilistic interpretation of generative model, which gives a

formal framework for studying generative models. The essential idea is that we

treat observations from the world as samples from a distribution x ∼ p(x). For
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example, we could consider the distribution over all human faces which can occur

in reality to be p(x) and consider each face as a sample. If we have access to a

recorded dataset (for example a set of faces), we may also choose to treat these

points as a finite collection of samples from this distribution.

At the same time, we can interpret our generative model as an estimating

distribution qθ(x), which is described by a set of parameters θ. Then we can frame

generative modeling as trying to ensure that p(x) and qθ(x) become as similar as

possible. Statistical divergences give a natural mathematical framework for this. A

divergence is a function D(p||q) : S × S → R taking two distributions p and q over

a space of distributions S as inputs, with the properties:

D(p||q) ≥ 0.0 (1.1)

D(p||q) = 0.0 ⇐⇒ p = q (1.2)

Notably, there is no symmetry assumption, so in general D(p||q) 6= D(q||p). The

probabilistic approach to generative modeling frames learning as an optimization

problem where the loss corresponds to a given divergence.

L(θ) = argmin
θ

D(p||qθ(x)) (1.3)

Alternatives to the Probabilistic Generative Models Formalization

At this point, it is worth noting that not all generative models use the prob-

abilistic generative model framework. Deep style transfer and texture synthesis

(Gatys et al., 2015a,b) search for an image with “style features”, defined using a

fixed neural network, matching a real image. Deep Image Prior searches for network

parameters which produce a single real image (or part of a real image, in the case

of inpainting). Many of these approaches have the distinctive property that they

define a rule for modifying a single real image (Gatys et al., 2015a; Ulyanov et al.,

2017), which limits their ability to generalize. There is also a line of work which

has competing objectives: one which encourages the generations to have novel

traits and another which encourages the generations to look realistic. One such

example is the Creative Adversarial Network (Elgammal et al., 2017) which has
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one objective encouraging the generated images to differ from styles that occur in

the data and another objective encouraging the generated images to follow the data

distribution. These approaches radically differ from the probabilistic framework in

that they encourage the production of data points which do not have density under

any observed distribution p(x).

1.2 Algorithms

We briefly overview the two major approaches which are used for probabilistic

generative modeling with deep learning. The first, and considerably older approach,

defines a density for generative model and directly maximizes the value of this

density on observed data points. A newer and quite distinctive approach involves

modeling the difference between a given generative model and the real data, and

then encouraging the generative model to minimize that distance.

1.2.1 The Likelihood Maximization Approach

What is the right algorithm for finding a distribution qθ(x) which minimizes

a divergence between itself and p(x). Before selecting the type of divergence to

minimize, a natural question is to consider what types of expressions we are capable

of optimizing, and work backwards to find a suitable divergence. In general, we

only have access to samples from the distribution p(x) and not any additional

information about the distribution. At the same time, qθ(x) is a model that we

control, so it’s reasonable to believe that we’ll be able to design it so that it has a

density that we can compute as well as the ability to draw samples.

The KL-divergence can be rewritten as an expression in which the only term

that depends on the parameters is an expectation on qθ(x) over samples from p(x).

Beginning with two distributions p(x) (the empirical distribution) and q(x) (the

model distribution), we write the KL-divergence (Nowak, 2009).
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DKL(p(x)||q(x)) =

∫
p(x) log p(x)dx−

∫
p(x) log q(x)dx (1.4)

=

∫
p(x) log

p(x)

q(x)
dx (1.5)

= Ex∼p[log
p(x)

q(x)
] (1.6)

= Ex∼p[log p(x)− log q(x)] (1.7)

Then we can show the maximum likelihood estimation for a set of N data points.

θ∗ = arg max
θ

N∏
i=1

q(xi) (1.8)

= arg max
θ

N∑
i=1

log q(xi) (1.9)

= arg min
θ

1

N

N∑
i=1

− log q(xi) (1.10)

∼= arg min
θ

El→∞,x∼p[− log q(x)] (1.11)

The objective for maximum likelihood is maximizing the log-density log(qθ(x))

over real data points sampled from the distribution p(x).

DKL(p(x)||q(x)) =

∫
p(x) log p(x)dx−

∫
p(x) log q(x)dx (1.12)

= −H(p(x)) + CE(p(x), q(x)) (1.13)

Thus we can see that the KL-divergence decomposes into two terms 1.12: a cross-

entropy term (likelihood) and a term for the entropy of the true data distribution.

Because the entropy of the true data distribution doesn’t depend on the estimator,

the KL-divergence can be minimized by maximizing likelihood. Another useful

consequence of this is that the entropy of the true data distribution can be estimated

by such a generative model if it maximizes likelihood.
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Estimation with Tractable Densities

Now that we have established a statistical divergence that we can minimize by

optimizing over the parameters of a distribution Qθ, we turn to the question of

deciding what to use as Q, which will occupy our attention for the remainder of the

section on the maximum likelihood approach.

The maximum likelihood approach only requires that we be able to sample uni-

formly from the real data and evaluate the log-density of our estimating distribution

qθ(x) at these points. What is the simplest choice for q, if we want to frame our

problem in terms of optimizing over functions? Indeed, q cannot simply be an

arbitrary function, because it could simply assign a high value to every point in the

space. For q to correspond to the density of an actual probability distribution, it

only needs to satisfy two simple properties 1.14: that it be non-negative everywhere

and integrate to 1.0 over the region where its value is defined (called the support of

the distribution). To simplify, we’ll write the definition using the real numbers R as

the support.

q(x) ≥ 0 (1.14)∫
x∈R

q(x) = 1 (1.15)

One of the most straightforward ways to satisfy 1.14 and 1.15 is to analytically

prove that functions with specific parameters satisfy these properties. While this

approach is very limited many such useful functions have been derived and are in

widespread use. One of the most prominent is the normal distribution, which has a

density parameterized by µ and σ.

q(x) =
1√
2πσ

exp
−(x− µ)2

2σ2
(1.16)

The gaussian integral has a simple value, allowing for a straightforward proof

for 1.15 for a variety of distributions involving an exponential over the variable x,

which includes the exponential family.
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Mixture Models

A major limitation of most closed-form densities, is that they are unimodal,

which makes them ill-suited to problems where very distinct points can have high

density with regions of low density separating them. For example, nearly all natural

distributions such as image and audio datasets are multimodal. Moreover, most of

these tractable closed-form densities either assume independence between dimensions

or only pairwise dependence (for example, the multivariate gaussian). This further

limits the applicability to real data, where density is generally concentrated along

specific low-dimensional manifolds (Bengio et al., 2012a).

One straightforward way to get around these limitations is to replace any density

with a mixture over densities with distinct parameters. This can greatly increase

the capacity of the model and has been used in deep generative models (Graves,

2012; Salimans et al., 2017). It has a simple closed-form, where each component in

the mixture has a weighting πk and a distribution qθk .

qθ(x) =
C∑
k=1

πkqθk(x) (1.17)

This form is guaranteed to be normalized with the only condition that the πk

sum to 1.0. This approach has the clear advantage that it allows for a much higher

capacity model, yet it has the issue that the only way to achieve more modes is

to add more mixture components. This turns out to be a significant limitation

that restricts the utility of mixture models to relatively simple, low-dimensional

distributions when the mixture components are unimodal distributions.

1.2.2 Energy-Based Models

Considering the properties of a distribution in 1.14 and 1.15, one potential

path forward is to recognize that the non-negativity is quite easy to enforce by

construction, while the constraint on the integral often requires a non-trivial proof.

Based on this, we can define a function called an energy, which is non-negative by

construction, but does not necessarily sum to 1.0 over its support. One way to

define this energy is by using an exponential.
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Eθ(x) = e−fθ(x) (1.18)

We can then compute the sum over the space which x occupies, which we refer

to as Zθ.

Zθ =

∫
x∈R

e−fθ(x) (1.19)

qθ(x) =
e−fθ(x)

Zθ
(1.20)

When Zθ = 1, our energy function already defines a probability distribution.

Otherwise, we can divide the energy by Zθ to have a probability distribution

which satisfies 1.15. For energy functions defined by neural networks, there are no

general methods of determining this integral over the entire space. Typically neural

networks are evaluated at specific points from some distribution (for example, a

data distribution), which is insufficient for computing the integral over the entire

space.

However, computing the gradient of the log-likelihood for energy-based models

reveals an interesting form.
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qθ(x) =
e−fθ(x)

Zθ
(1.21)

log(qθ(x)) = −fθ(x)− log(Zθ) (1.22)

−dlog(qθ(x))

dθ
=
dfθ(x)

dθ
+
dlog(Zθ)

dθ
(1.23)

dlog(Zθ)

dθ
=

d

dθ

[
log
∑
x̃

e−fθ(x)
]

(1.24)

dlog(Zθ)

dθ
=

1

Zθ

∑
x̃

d

dθ

[
e−fθ(x̃)

]
(1.25)

dlog(Zθ)

dθ
=
∑
x̃

−q(x̃)
dfθ(x̃)

dθ
(1.26)

−dlog(Zθ)

dθ
= E

x̃∈qθ(x)

[
dfθ(x̃)

dθ

]
(1.27)

When we consider the expected value of the gradient over multiple data samples,

the resulting gradient then has a particularly elegant form consisting of a positive

phase, in which the function is maximized over samples from the real data, and a

negative phase in which the function’s value is pushed down at samples from the

model distribution.

E
x∈p(x)

[
− dlog(qθ(x))

dθ

]
= E

x∈p(x)

[
dfθ(x)

dθ

]
− E

x̃∈qθ(x)

[
dfθ(x̃)

dθ

]
(1.28)

Although this gives a simple form for the gradient, it assumes that we have the

ability to sample from our model distribution as well as calculate its energy. In

practice this has been a major obstacle to the use of energy-based probabilistic

generative models. Some research has explored the use of boltzmann machine and an

approximation called contrastive divergence which replaces the model distribution

qθ(x) in 1.28 with short gibbs sampling chains which start from the real data

distribution. The discovery of a general way of defining energy functions with deep

networks which also allow for fast and exact sampling would make energy-based

models significantly more appealing.

Another challenge with energy-based models is that this straightforward form
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only applies to the gradient of the likelihood with respect to the parameters.

Computing the likelihood itself still turns out to be quite difficult, due to the

partition function being an integral over the entire space, while neural networks

are typically only evaluated at specific points. Two solutions have been proposed

for estimating the partition function, Annealed Importance Sampling (Neal, 1998)

and Reverse Annealed Importance Sampling (Burda et al., 2014), however both are

only approximations and require an iterative procedure.

Autoregressive Models

The previous approaches that we’ve explored for likelihood maximization have

tried to increase the expressiveness of qθ(x), but this has proved to be difficult

for complicated multivariate distributions. An alternative way to achieve the goal

of increased expressiveness for multivariate distributions is to factorize the joint

distribution into a chain of conditionals. Often this can be done with an RNN in

the context of sequence modeling. The density is represented via a fully-observed

directed graphical model: it decomposes the distribution over the discrete time

sequence x1, x2, . . . xT into an ordered product of conditional distributions over

tokens

qθ(x1, x2, . . . xT ) = qθ(x1)
T∏
t=1

qθ(xt | x1, . . . xt−1).

When using this autoregressive approach to train RNNs in practice, it is known

as teacher forcing (Williams and Zipser, 1989), due to the use of the ground-truth

samples yt being fed back into the model to be conditioned on for the prediction of

later outputs (analogous to a teacher directly replacing a student’s attempted steps

in a solution with correctly completed steps so that they may continue learning).

These fed back samples force the RNN to stay close to the ground-truth sequence

during training.

When sampling from an autoregressive model, the ground-truth sequence is not

available for conditioning and we sample from the joint distribution over the sequence

by sampling each yt from its conditional distribution given the previously generated

samples. Unfortunately, this procedure can result in problems in generation as

small prediction error compound in the conditioning context. This can lead to

poor prediction performance as the conditioning context (the sequence of previously

generated samples) diverges from the distribution seen during training.
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(Bengio et al., 2015) proposed to address this exposure bias issue by sometimes

feeding the model’s predicted values back into the network as inputs during training

(as is done during sampling from autoregressive models). However, when the model

generates several consecutive yt’s, it is not clear anymore that the correct target

(in terms of its distribution) remains the one in the ground truth sequence. In

general these sampled values could be completely inconsistent with the ground

truth sequence providing targets for the outputs. This is mitigated in various ways,

by making the self-generated subsequences short and annealing the probability of

using self-generated vs ground truth samples. However, as remarked by Huszár

(2015), scheduled sampling yields a biased estimator, in that even as the number of

examples and the capacity go to infinity, this procedure may not converge to the

correct model. Nonetheless, in some experiments scheduled sampling still had value

as a regularizer. A consistent way of improving autoregressive models by using

adversarial training 1.2.3 was proposed by (Lamb et al., 2016).

In general, the strength of autoregressive models is that they have a straightfor-

ward and general statistical formulation in terms of defining a density and directly

maximizing likelihood. Additionally, if each step in the sequence is a scalar, it only

requires us to define univariate conditional distributions, and the set of univariate

distributions with with closed-form densities is quite general. For example, a uni-

variate multinomial distribution can be multimodal, can closely approximate a wide

range of distributions, and is quite tractable.

The major weakness of autoregressive models are that the one-step-ahead loss

is often not a good fit for long-term measures of error (due to the compounding

error effects not observed during training) and that representing uncertainty directly

in the space of single steps could be very unnatural. This may be related to the

phenomenon in humans of “writer’s block”, where it’s difficult to begin a writing

task from scratch. In the context of autoregressive models, the first few steps often

contain a great deal of entropy as they practically constrain the content of all of the

text to follow, yet figuring out how the beginning of the text will need to lead to

the desired topic or distribution of topics in a long-document can be a challenging

task. Perhaps for this reason, writing often proceeds by an iterative or hierarchical

process, instead of as a purely sequential process.
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Variational Autoencoders

Another approach for increasing the expressive of learned density functions is

to introduce probabilistic latent variables z which capture much of the learned

uncertainty, and then represent the distribution p(x, z) = p(x|z)p(z). Samples from

p(x) can then be achieved by marginalizing out over z.

The key appeal of such an approach is that the statistical structure of a learned

latent space can often be much simpler than the statistical structure in the visible

space. A density with latent variables has a straightforward form, and from a

conceptual perspective, leads to straightforward maximum likelihood estimation.

p(x) =
∏

x∈pdata(x)

∑
z

p(x, z) (1.29)

log(p(x)) =
∑

x ∈ pdata(x) log(
∑
z

p(x, z)) (1.30)

If the z variable is discrete and has a relatively small number of values, then

computing this density is quite straightforward and reasonable. However, if z is

continuous or has many potential values, then computing this sum/integral on each

update is either slow or impossible. It might be tempting to sample a few values

of z for each update, and treat the expression as an expectation over both x and

z. However this is both biased and quite misguided, as it ignores the interaction

between the log and the sum in the expression. If only a few values of z give rise

to a large p(x, z), it’s sufficient to give log(
∑

z p(x, z)) a large value. However, if

we simply sampled a single z or small number of z on each update, then we would

essentially require each z to lead to a p(x, z) with a large value. Intuitively, it is

fine if a few or even a single value of the latent variable explains our observed data,

and it is not necessary for all of the z values to explain all of the data points.

The variational bound provides a mathematical tool for decomposing this likeli-

hood term involving a log-sum structure into a tractable expectation over both x

and z.

Introducing the approximate posterior qφ(z | x) allows us to decompose the

marginal log-likelihood of the data under the generative model in terms of the

variational free energy and the Kullback-Leibler divergence between the approximate
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and true posteriors:

log pθ(x) = L(θ, φ;x) +DKL (qφ(z | x)‖pθ(z | x)) (1.31)

where the Kullback-Leibler divergence is given by

DKL (qφ(z | x)‖pθ(z | x)) = Eqφ(z|x)
[
log

qφ(z | x)

pθ(z | x)

]
and the variational free energy is given by

L(θ, φ;x) = Eqφ(z|x)
[
log

pθ(x, z)

qφ(z | x)

]
.

Since DKL (qφ(z | x)‖pθ(z | x)) measures the divergence between qφ(z | x) and

pθ(z | x), it is guaranteed to be non-negative. As a consequence, the variational

free energy L(θ, φ;x) is always a lower bound on the likelihood, which is sometimes

referred to as the variational lower bound.

In the VAE framework, L(θ, φ;x) is often rearranged into two terms:

L(θ, φ;x) = Lz(θ, φ;x) + Lx(θ, φ;x) (1.32)

where

Lz(θ, φ;x) = −DKL (qφ(z | x)‖pθ(z))

Lx(θ, φ;x) = Eqφ(z|x) [log pθ(x | z)]

Lx can be interpreted as the (negative) expected reconstruction error of x under

the conditional likelihood with respect to qφ(z | x). Maximizing this lower bound

pushes the model towards minimizing reconstruction error and minimizing the KL

divergence between the approximate posterior qφ(z | x) and the prior pθ(z).

With real-valued z, the reparametrization trick Kingma and Welling (2013);

Bengio et al. (2013) can be used to propagate the gradient from the decoder network

to the encoder network. The mean of z is computed as a deterministic function of

x along with the noise term ε ∼ N(0, I) such that z has the desired distribution.
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Typically teh gaussian distribution is used for the posterior.

qφ(z | x) = N(z | µφ(x), diag(σ2
φ(x))), (1.33)

and the reparametrization trick allows the value of a sample to be written in terms

of the parameters of the distributed estimated by the network and a noise variable

ε.

z = µφ(x) + σφ(x)� ε, ε ∼ N(0, I)

which produces values with the desired distribution while permitting gradients to

propagate into the encoder network through both µφ(x) and σ2
φ(x).

Evaluation Criteria

Under the maximum likelihood approach, a straightforward way of quantifying

the success of the model is to compute the model’s average likelihood qθ(x) on

datapoints from a held-out distribution (often referred to as a test dataset). This

criteria has some desirable qualities: it is able to detect overfitting and it has

a consistency guarantee. On the other hand, it has significant limitations. One

discussed by (Arjovsky et al., 2017) is that qθ(x) has a value approaching 0 at

any points where p(x) has a value greater than zero, the log-likelihood approaches

negative infinity (intuitively this can be seen by observing that log(x) approaches

negative infinity as x approaches 0). This property is unlikely to be suitable for

most applications.

1.2.3 The Adversarial Approach

An alternative to the likelihood maximization approach involves studying a

candidate generative model and the differences between the samples from this model

and the original data. In practice this usually takes the form of estimating the

density ratio between the generating distribution qθ(x) and the real data distribution

p(x).

Dθ(x) =
p(x)

qθ(x) + p(x)
(1.34)

A key motivation behind this approach is that the learning procedure for
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Dθ(x) is equivalent to learning a classifier between the real data and the model’s

distribution. Classifiers have been extremely successful in deep learning and methods

for successfully training classifiers have been widely studied, and inductive biases

that are known to be good for classification could also be good for determining the

quality of generations. Another motivation for modeling the difference between a

model and the data is that it allows the model to become sensitive to any clear

difference between real samples and generated samples, which may be a much easier

task than simply determining the density of a distribution at a given point.

Noise Contrastive Estimation

(Gutmann and Hyvärinen, 2010) proposed to use a fixed generative model

qθ(x) and learn a classifier to distinguish between these samples and the real data

distribution. Once this density ratio Dθ(x) is learned, the estimator can be sampled

from by using importance sampling. A markov chain monte carlo method could

also be used for sampling.

Dθ(x) =
p(x)

qθ(x) + p(x)
(1.35)

p̂(x) =
D(x)

1−D(x)
qθ(x) (1.36)

A significant limitation in this approach is that a qθ(x) must be selected which

is very similar to p(x). For example, the expression isn’t even well defined if qθ(x)

doesn’t have support everywhere that p(x) has support. And if qθ(x) has very

small values where p(x) has large values, this pushes Dθ(x) to 1.0, which leads

to very large importance weights and high variance sampling. Intuitively, in a

high-dimensional space like an image, a random prior such as a gaussian distribution

for qθ(x) has no realistic chance of ever producing a realistic image, even though it

can happen in theory.

Generative Adversarial Networks

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), aimed to

leverage the strengths of using a classifier for generation, while avoiding the major

weaknesses of noise contrastive estimation. The GAN framework approachs the
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generative modeling problem from a perspective inspired by game theory. The

model involves training two networks in an adversarial fashion. Rather than using

a fixed qθ(x), a generator network is trained to produce samples which are similar

to the training examples and a discriminator network Dθ(x) is trained to classify

between examples from the training set and examples produced by the generator.

The generator is optimized to maximize the probability that the discriminator will

classify the generated example as “real”. This setup is described as adversarial

because the loss for the generator’s loss is the opposite of a term in the discriminator’s

loss.

min
θ

[
`(Qθ;F) := sup

F∈F
F (P,Qθ)

]
. (1.37)

For the usual cross-entropy classification objective, this can be rewritten more

directly.

V (G,D) := Ex∼pdata(x)[logD(x)] + Ez∼q(z)[log(1−D(G(z)))], (1.38)

A practical observation from (Goodfellow et al., 2014) is that optimizing the

generator network to maximize the value of V (G,D) performs poorly in practice,

especially when the support of p and q don’t overlap. Instead a non-saturing

objective is often used.

max
θ

Ez∼q(z)[log(D(Gθ(z)))] (1.39)

Principled Methods for Training GANs

(Arjovsky and Bottou, 2017) showed that the gradient for a GAN generator is

not well behaved when the support of qθ(x) and p(x) don’t overlap. More concretely,

they showed that ?? leads to saturation and vanishing gradients for the generator

and ?? leads to instability and a lack of useful gradient signal in this situation.

They proposed injecting noise into both p(x) and qθ(x) as a way of overcoming

this issue in theory, while still learning an estimator of the data distribution.
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Fγ(P,Q;φ) := F (P ∗ Λ,Q ∗ Λ;φ), Λ = N(0, γI) . (1.40)

In this model, the generator is also trained on gradient from samples with the

noise injected. So long as sufficient noise is injected, this provides the generator

with a density ratio which is well-defined even when the support of the real data and

generator distribution don’t overlap. It was also shown that the divergence between

the distributions with noise injected gives an upper bound on the wasserstein distance

between the real distribution and estimating distribution where the tightness of the

bound depends on the variance of the noise, which could be controlled by annealing

the noise over the course of training.

Wasserstein GAN

A serious problem with GAN training, noted even in its original formulation

(Goodfellow et al., 2014) is that on difficult problems, especially early in training, it

is difficult to select a generator which has overlapping support with the real data

distribution without adding noise (which tends to degrade sample quality). When

the generator and the real data distribution do not have overlapping support, the

KL-divergence is undefined and the Jensen-Shannon divergence can be discontinuous

around these points. While (Roth et al., 2017) proposed an analytical approximation

to noise injection, the Wasserstein GAN proposes an alternative approach in which

a statistical divergence is used which is continuous and differentiable even when the

generating distribution and the real data distribution do not overlap.

A major contribution of (Arjovsky et al., 2017) is a formulation of a GAN

objective which corresponds to optimizing the Earth Mover’s distance, or wasserstein

metric. This is based on the Kantorovich-Rubenstein duality which gives a definition

of the wasserstein metric in terms of a supremum over all 1-Lipschitz continuous

functions f .

W (p, qθ) = sup
‖f‖L≤1

x∼p[f(x)]−x∼qθ [f(x)] (1.41)

In practice, this is achieved by using a neural network discriminator as the

function f . The lipschitz constraint on f was enforced in (Arjovsky et al., 2017)
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by clipping all of the weights to be within a specified range after each update.

(Gulrajani et al., 2017) proposed to use a penalty on the norm of the gradient

of the discriminator’s output with respect to its inputs. This achieved significant

improvements over the clipping approach used in the original WGAN. (Roth et al.,

2017) showed that applying the gradient penalty on the original GAN formulation

can also achieve good results in practice and can be justified as an analytical

approximation to injecting noise into the samples as was theoretically discussed in

(Arjovsky and Bottou, 2017).

Spectral Normalization

(Miyato et al., 2018) provided a further refinement over gradient penalty based

on two primary critiques: (1) that the gradient penalty only guarantees lipschitz

continuity at the data points or wherever it is applied, and not everywhere in the

input space and (2) that the gradient penalty has the effect of pushing down the

rank of the weight matrices and lowering the expressiveness of the discriminator.

(Miyato et al., 2018) showed that the lipschitz constant of the discriminator function

is an upper-bound on the lipschitz constant of the function.

‖f‖Lip ≤‖(hL 7→ WL+1hL)‖Lip · ‖aL‖Lip · ‖(hL−1 7→ WLhL−1)‖Lip

· · · ‖a1‖Lip · ‖(h0 7→ W 1h0)‖Lip =
L+1∏
l=1

‖(hl−1 7→ W lhl−1)‖Lip =
L+1∏
l=1

σ(W l).

(1.42)

The lipschitz constant ‖g‖Lip for a single linear layer g : hin 7→ hout is equal to

the spectral norm of the weight matrix A, which is equivalent to its largest singular

value (the largest eigenvalue of A∗A).

σ(A) := max
h:h6=0

‖Ah‖2
‖h‖2

= max
‖h‖2≤1

‖Ah‖2, (1.43)

Therefore, for a linear layer g(h) = Wh, the norm is given by ‖g‖Lip =

suph σ(∇g(h)) = suph σ(W ) = σ(W ).

Spectral normalization directly normalizes the spectral norm of the weight matrix
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W so that it satisfies the Lipschitz constraint σ(W ) = 1:

W SN(W ) := W/σ(W ). (1.44)

By normalizing all linear layers in this way, the inequality (1.42) and the fact that

σ
(
W SN(W )

)
= 1 to see that ‖f‖Lip is bounded from above by 1.

In practice, the eigenvalue of the largest singular value for each weight matrix is

maintained by using the power method with a persistent estimate of the eigenvector

corresponding to the largest eigenvalue. The power method consists of an iterative

process of multiplying by matrix and re-normalizing. That the power method

results in the eigenvector with the largest eigenvalue may be seen by considering its

application on the Jordan-Normal form of the matrix, where the diagonal matrix

containing the eigenvalues has the relative value of all but the largest eigenvalue

decay with successive iterations.

As the eigenvector is only a single value and the weights change relatively slowly,

the spectral normalization method has almost no computational cost, unlike the

gradient penalty.

Aside from its computational advantages, there are two major advantages

to spectral normalization over the gradient penalty. The first is that spectral

normalization only penalizes based on the size of the largest eigenvalue, so there is

no pressure to reduce the rank of the weight matrices. Moreover, dividing a matrix

by a non-zero constant does not change its rank. On the other hand, (Miyato

et al., 2018) showed that weight normalization and gradient penalty both have

the effect of pushing down the rank of the weight matrices. This could make it

more difficult for the network to learn expressive functions. A second advantage

of spectral normalization is that it enforces the lipschitz constraint at all points in

the space, whereas gradient penalty only enforces the lipschitz constraint at points

where it is applied, usually around data points or on linear interpolations between

data points.

Jacobian Clamping

So far we have looked at approaches for improving GAN training which consider

modifications to the discriminator and its training objective. An alternative and

potentially complementary approach was explored in (Odena et al., 2018) which
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consists of an additional objective which encourages the generator’s output to not

change too much or too little as the latent value z is changed by a small amount.

The eigenvalues λ1, λ2, ... and corresponding eigenvectors v1, v2, ... of the metric

tensor associated with G(z) and its jacobian can be written as follows (Odena et al.,

2018).

lim
||ε||→0

||G(z)−G(z + εvk)||
||εvk||

=
√
λk (1.45)

The condition number is given by the ratio λk
λ1

. The metric tensor is considered to

be poorly conditioned if the condition number has a high value. (Odena et al., 2018)

proposed to eschew the issue of computing the complete spectrum, which could

be quite challenging, in favor of sampling random directions (essentially sampling

small random values for εvk and empirically computing 1.45, and then adding a

penalty to encourage these values to fall within a specific range. In practice they

achieved good results by setting λmin to 1.0 and λmax to 20.0. Making λmax too

small could have the effect of making it too hard for the model to be responsive to

the latent variables and setting λmin to be too large could have the effect of making

it impossible for the model to learn to give large regions in the space relatively

constant density. In practice these hyperparameters would likely need to be tuned

depending on the dataset in accordance with these concerns.

Evaluation Criteria

The maximum likelihood approach provided a straightforward, if not completely

well motivated, way to quantitatively evaluate generative models within its family.

For adversarial approaches, no such criteria is readily apparent. Why is this? The

discriminator’s score provides an estimate of how much the model’s density differs

from the true data density at a given point. If the discriminator is able to correctly

classify between real data points and generated data points reliably and in a way

that generalizes, then it is a clear indicator that the generator is of poor quality.

However, if the opposite is true, that the discriminator cannot classify between real

and fake, then it could either be because the generator is of high quality, or it could

be because the discriminator is somehow limited (in architecture, training procedure,

or another characteristic). This means that the discriminator’s score cannot reliably

used as a way of discerning the quality of a generative model (although in the case
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of the Wasserstein GAN, it is at least informative enough to gauge the progress of

training) (Arjovsky et al., 2017; Gulrajani et al., 2017).

This basic limitation has motivated the exploration of novel quantitative eval-

uation criteria for generative models in the adversarial family. Despite having

this motivation for their development, both of the criteria that we will discuss are

agnostic to the actual form of the generative model, and could equally be applied

to models trained using maximum likelihood.

Two different but very closely related methods have seen widespread adoption

as methods for quantitatively evaluating adversarially trained generative models.

In both cases a fixed pre-trained classifier is used as the basis for the scoring metric.

The first is the Inception Score (Salimans et al., 2016), which is defined by:

exp (Ex∈qθ [KL(p(y|x)‖p(y)]) (1.46)

where x is a GAN sample, p(y|x) is the probability for labels y given by a

pre-trained classifier on x, and p(y) is the marginal distribution of the labels in the

generated samples according to the classifier. Higher scores are considered better.

The intuition behind this metric is that a generator should produce samples from

many different classes while at the same time ensuring that each sample is clearly

identifiable as belonging from a single class. For example, a generator which only

produces samples of a single class will have a poor inception score because p(y)

and p(y|x) will be very similar, as it will only reflect that single class. Likewise

producing samples which do not give the classifier clear information about the class

will tend to make p(y|x) uncertain and more similar to p(y), leading to a poor

inception score.

While inception score has been shown to be highly correlated to visual sample

quality (real data samples achieve better inception scores than any current models)

and tends to give bad scores to clearly deficient GAN models (as well as models

early in training), three limitations in Inception Score are readily apparent. One is

that the inception score could be pushed beyond the values achievable with real

data by a model which produces only a single and clearly identifiable example of

each class that the classifier is aware of. This would make p(y|x) very different from

p(y) while having high entropy in p(y), and yet the model would clearly lack the

diversity of real data, and would be a poor generative model from the statistical

divergence perspective. Another limitation is that if the classifier is vulnerable to
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adversarial examples, this could hypothetically be exploited to achieve unnaturally

high inception scores. This was demonstrated directly in experiments by (Barratt

and Sharma, 2018). While this is potentially an issue if researchers are unscrupulous

and in a competitive setting, it is unclear if this will occur if a researcher does

not intentionally set out to produce adversarial examples for the inception score

classifier. Finally, a straightforward problem with inception score is that a very high

score can be achieved just by returning the samples from the training set. Thus a

generative model which merely memorizes the training data would achieve a high

inception score, without doing any learning. The inception score will give low scores

to model which underfits and fails to achieve clear samples, but it does not penalize

a model at all for memorizing the training data or failing to generalize.

The Frechet Inception Distance (Heusel et al., 2017) was proposed to address

some of the limitations inherent in the inception score. It shares the idea of using a

fixed pre-trained classifier as its foundation, but instead of assessing the quality of

p(y|x) for samples, it instead takes hidden activations from the end of the classifier.

The key idea is that the score is high when the distribution of these activations

for generated samples is close to the distribution of these activations for real data

points. How can we determine if these distributions are indeed close to each other,

without simply reproducing the problem of having to train a generative model?

While this remains an open question, the proposal in FID is to assume that these

hidden states follow a multivariate gaussian distribution (but not necessarily with

an isotropic variance). Because these hidden states are from the end of a deep

classifier, this multivariate gaussian assumption is much more justified than it would

be in the visible space.

To compute the FID score, one fits a multivariate gaussian N(m,C) to the

activations for the real test samples and fits a separate multivariate gaussian

N(mw, Cw) to the activations for the generated samples. From this, the Frechet

Distance between the distributions has a surprisingly tractable form which does not

require inverting the covariance matrices C or Cw.

‖m−mw‖22 + Tr
(
C + Cw − 2

(
CCw

)1/2)
(1.47)

(Heusel et al., 2017) studied several artificial deformations of the data and

showed that FID scores gradually became worse with increasing corruption. More

specifically: they studied artifically injecting independent noise into the images,
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removing random regions of the images, swirling the images, salt and pepper noise,

and injecting examples from another dataset. On all of these increasing corruption

led to worse FID scores, whereas only injecting unrelated samples led to worse

inception scores.

Perhaps most important, FID can be evaluated on the test data, so it can

directly test against overfitting, unlike inception scores. Moreover, generating a

single high quality example for each class (at the expense of overall diversity) could

still hurt FID by giving the hidden states of the generated samples an unnatural

distribution. While these metrics are now widely used in measuring the quality of

generative models (Odena et al., 2018; Miyato et al., 2018; Karras et al., 2017),

they are still highly dependent on the choice of the classifier for evaluation and lack

statistical consistency guarantees.
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2 Fortified Networks

2.1 Prologue to the Article

Fortified Networks: Improving the Robustness of Deep Networks

by Modeling the Manifold of Hidden Representations. Alex Lamb, Jonathan

Binas, Anirudh Goyal, Dmitriy Serdyuk, Sandeep Subramanian, Ioannis Mitliagkas,

Yoshua Bengio.

Under Review, International Conference on Machine Learning (ICML)

2018
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Lamb were working through the idea of whether the distribution of hidden states

differed between adversarial examples and non-adversarial examples. We later

refined this prototype to work on the cleverhands code base, with Jonathan Binas

figuring out how to get strong results as well as blackbox attacks. Dima Serdyuk

helped to get resnets working on the cifar dataset. Sandeep Subramanian was able

to get fortified networks working with autoencoders on multiple hidden layers, sig-

nificantly improving our results. Ioannis Mitliagkas and Yoshua Bengio contributed
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24
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Yoshua Bengio: MILA, Département d’Informatique et de Recherche Opéra-
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2.2 Abstract

Deep networks have achieved impressive results across a variety of important

tasks. However a known weakness is a failure to perform well when evaluated on

data which differ from the training distribution, even if these differences are very

small, as is the case with adversarial examples. We propose Fortified Networks, a

simple transformation of existing networks, which “fortifies” the hidden layers in a

deep network by identifying when the hidden states are off of the data manifold,

and maps these hidden states back to parts of the data manifold where the network

performs well. Our principal contribution is to show that fortifying these hidden

states improves the robustness of deep networks and our experiments (i) demonstrate

improved robustness to standard adversarial attacks in both black-box and white-

box threat models; (ii) suggest that our improvements are not primarily due to the

gradient masking problem and (iii) show the advantage of doing this fortification in

the hidden layers instead of the input space.
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2.3 Introduction

Deep neural networks have been very successful across a variety of tasks. This

success has also driven applications in domains where reliability and security

are critical, including self-driving cars (Bojarski et al., 2016), health care, face

recognition (Sharif et al., 2017), and the detection of malware (LeCun et al., 2015).

Security concerns emerge when an agent using the system could benefit from the

system performing poorly. Reliability concerns come about when the distribution of

input data seen during training can differ from the distribution on which the model

is evaluated.

Adversarial examples (Goodfellow et al., 2014) is a method to attack neural

network models. This attack applies a small perturbation to the input that changes

the predicted class. It is notable that it is possible to produce a perturbation small

enough that it is not noticeable with a naked eye. It has been shown that simple

gradient methods allow one to find a modification of the input that often changes

the output class (Szegedy et al., 2013; Goodfellow et al., 2014). More recent work

demonstrated that it is possible to create a patch such that even when presented on

the camera, it changes the output class with high confidence (Brown et al., 2017).

Defences against adversarial examples have been developed as a response. Some

of the most prominent classes of defences include feature squeezing (Xu et al., 2017),

adapted encoding of the input (Jacob Buckman, 2018), and distillation-related

approaches (Papernot et al., 2015). Existing defenses provide some robustness but

most are not easy to deploy. In addition, many have been shown to be vulnerable

to gradient masking. Still others require training a generative model directly in the

visible space, which is still difficult today even on relatively simple datasets.

Our goal is to provide a method which (i) can be generically added into an

existing network; (ii) robustifies the network against adversarial attacks and (iii)

provides a reliable signal of the existence of input data that do not lie on the

manifold on which it the network trained. The ability of generative models, used

directly on the input data, to improve robustness is not new. Our main contribution

is that we employ this robustification on the distribution on the learned hidden

representations instead making the identification of off-manifold examples easier

Figure 3.1.

We propose Fortified Networks R. Fortification consists of using denoising

26



10 5 0 5 10

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

10.0 5.0 0.0 5.0 10.0
10.0

5.0

0.0

5.0

10.0

10 5 0 5 10

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

10 5 0 5 10

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

10 5 0 5 10

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

10.0 5.0 0.0 5.0 10.0
10.0

5.0

0.0

5.0

10.0

A B C

D E F

x

h

Figure 2.1 – Illustration of the autoencoder dynamics in the input space (top) and in abstract
hidden space (bottom). The leftmost panels show data points from three different classes, the
middle panels show vector fields describing the autoencoder dynamics, and the rightmost panels
show a number of resulting trajectories and basins of attraction. The key motivation behind
Fortified Networks is that directions which point off the data manifold are easier to identify in an
abstract space with simpler statistical structure, making it easier to map adversarial examples
back to the projected data manifold.

autoencoders to “decorate” the hidden layers of the original network. Fortification

meets all three goals stated above. We discuss the intuition behind the fortification

of hidden layers and lay out some of the method’s salient properties. We evaluate

our proposed approach on MNIST, Fashion-MNIST, CIFAR10 datasets against

whitebox and blackbox attacks.

The rest of the paper is structured in the following way. Section 2.4 gives

a detailed overview of the background on the adversarial attacks and denoising

autoencoders used in this work. Section 2.5 presents our proposed methods for

the defence against adversarial examples, Section 2.6 describes the experimental

procedure and Section 2.7 provides the experimental results and a comparison to

previous approaches. Finally, Section 2.8 puts this work into the context of previous
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publications and Section 2.9 concludes.

2.4 Background

2.4.1 The Empirical Risk Minimization Framework

Let us consider a standard classification task with an underlying data distribution

D over pairs of examples x ∈ Rd and corresponding labels y ∈ [k]. We also assume

that we are given a suitable loss function L(θ, x, y), for instance the cross-entropy

loss for a neural network. As usual, θ ∈ Rp is the set of model parameters. Our goal

then is to find model parameters θ that minimize the risk E(x,y)∼D[L(x, y, θ)]. This

expectation cannot be computed, therefore a common approach is to to minimize

the empirical risk 1/N
∑

D L(x, y, θ) taking into account only the examples in a

given dataset D.

2.4.2 Adversarial Attacks and Robustness

While the empirical risk minimization framework has been very successful and

often leads to excellent generalization, it has the significant limitation that it

doesn’t guarantee robustness, and more specifically performance on examples off the

data manifold. Madry et al. (2017) proposed an optimization view of adversarial

robustness, in which the adversarial robustness of a model is defined as a min-max

problem

min
θ
ρ(θ), where (2.1)

ρ(θ) = E(x,y)∼D

[
max
δ∈S

L(θ, x+ δ, y)

]
. (2.2)

2.4.3 Denoising Autoencoders

Denoising autoencoders (DAEs) are neural networks which take a noisy version

of an input (for example, an image) and are trained to predict the noiseless version of

that input. This approach has been widely used for feature learning and generative
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modeling in deep learning (Bengio et al., 2013). More formally, denoising autoen-

coders are trained to minimize a reconstruction error or negative log-likelihood of

generating the clean input. For example, with Gaussian log-likelihood of the clean

input given the corrected input, r the learned denoising function, C a corruption

function with Gaussian noise of variance σ2, the reconstruction loss is

L̂ =
1

N

N∑
n=1

(∥∥r(Cσ(x(n)))− x(n)
∥∥2
2

)
. (2.3)

Alain et al. (2012) demonstrated that with this loss function, an optimally

trained denoising autoencoder’s reconstruction vector is proportional to the gradient

of the log-density:
rσ(x)− x

σ2
→ ∂ log p(x)

∂x
as σ → 0. (2.4)

This theory establishes that the reconstruction vectors from a well-trained

denoising autoencoder form a vector field which points in the direction of the data

manifold. However, Alain et al. (2012) showed that this may not hold for points

which are distant from the manifold, as these points are rarely sampled during

training. In practice, denoising autoencoders are not just trained with tiny noise

but also with large noises, which blurs the data distribution as seen by the learner

but makes the network learn a useful vector field even far from the data.

2.5 Fortified Networks

We propose the use of DAEs inserted at crucial points between layers of the

original neural network in order to clean up the transformed data points which

may lie away from the original data manifold. Intuitively, the method aims to

regularize the hidden representations by keeping the activations on the surface of the

corresponding projected data manifold through the application of a DAE trained on

the hidden representations (on the original clean data). We argue that applying the

DAEs on the hidden layers—as opposed to the raw input signal—facilitates learning,

while providing a stronger protection from adversarial attacks. As illustrated in

Figure 3.1, we hypothesize that more abstract representations associated with deeper

networks are easier to clean up because the transformed data manifolds are flatter.
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Figure 2.2 – An illustration of the process of mapping back to the manifold in the visible space
(left) and the hidden space (right). The shaded regions represent the areas in the space which are
occupied by data points from a given class (they do not represent decision boundaries).

The flattening of data manifolds in the deeper layers of a neural network was first

noted experimentally by Bengio et al. (2013). We provide experimental support for

these claims in Section 2.6.

R Layer fortification R Our method works by substituting a hidden layer hk

with a denoised version. We feed the signal hk through the encoder network, Ek,

and decoder network, Dk, of a DAE for layer k, which yields the denoised version,

hdecodedk :

hdecodedk = Dk(Ek(hk + nk)), (2.5)

where nk is white Gaussian noise of variance σ2 and appropriate shape. We call

the resulting layer, a fortified layer and the resulting network the fortified network

corresponding to the original network.

For training purposes, we treat the DAEs as part of the fortified network,

backpropagate through and train all weights jointly. Aside from the original

classification loss, Lc, we also include the classification loss from the adversarial

objective, Lc(ỹ) and we introduce a dual objective for the DAEs.

— Reconstruction loss. For a mini-batch of N clean examples, x(1), . . . , x(N),

each hidden layer h
(1)
k , . . . , h

(N)
k is fed into a DAE loss, similar to (2.3):

Lrec,k =
1

N

N∑
n=1

∥∥∥Dk

(
Ek

(
h
(n)
k + nk

))
− h(n)k

∥∥∥2
2
.

— Adversarial loss. We use some adversarial training method to produce

the perturbed version of the mini-batch, x̃(1), . . . , x̃(N), where x̃(i) is a small
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Figure 2.3 – Diagram illustrating a one-layer fortified network. A network is evaluated with a

data sample x and its corresponding adversarial example x̃. Hidden units hk and h̃k are corrupted
with noise, encoded with the encoder Enc, and decoded with the decoder Dec. The autoencoder
(denoted by the red color) is trained to reconstruct the hidden unit hk that corresponds to the clean
input. Dotted lines are two reconstruction costs: for a benign (Lrec) and adversarial examples
(Ladv). Note that a layer can be fortified at any position in the network.

perturbation of x(i) which is designed to make the network produce the wrong

answer. The corresponding hidden layer h̃
(1)
k , . . . , h̃

(N)
k (using the perturbed

rather than original input) is fed into a similar DAE loss:

Ladv,k =
1

N

N∑
n=1

∥∥∥Dk

(
Ek

(
h̃
(n)
k + nk

))
− h(n)k

∥∥∥2
2

where we note that the target reconstruction for denoising is the clean version

of the hidden layer, without noise and without adversarial perturbation.

To build a fortified network, we can apply this fortification process to some or

all the layers. The final objective used for training the fortified network includes
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the classification loss and all reconstruction and adversarial losses:

L = Lc(y) + Lc(ỹ) + λrec
∑
k

Lrec,k + λadv
∑
k

Ladv,k,

where λrec > 0 and λadv > 0 tune the strength of the DAE terms. This kind of

training process allows for the production of hidden representations robust to small

perturbations, and in particular, to adversarial attacks.

Off-manifold signaling The reconstruction losses act as a reliable signal for

detecting off-manifold examples (cf. Section 2.6). This is a particularly useful

property in practice: not only can we provide more robust classification results, we

can also sense and suggest to the analyst or system when the original example is

either adversarial or from a significantly different distribution.

Motivation for when and where to use fortified layers We have discussed

advantages to placing fortified layers in the hidden states instead of the input space

(with further discussion in section 2.8.1), but the question of where exactly fortified

layers need to be placed remains unanswered. Is it just the final hidden layer? Is it

every hidden layer? We outline two important considerations regarding this issue:

1. In the higher-level hidden layers, it is much easier for the network to identify

points which are off of the manifold or close to the margin. The former is

directly experimentally demonstrated in 2.4.

2. At the same time, the higher level hidden layers may already look like points

that are not adversarial due to the effect of the adversarial perturbations

in the earlier layers. While we are not aware of any formal study of this

phenomenon, it is clearly possible (imagine for example a fortified layer on the

output from the softmax, which could only identify unnatural combinations

of class probabilities).

3. Given these opposing objectives, we argue for the inclusion of multiple

fortified layers across the network.

In the next section we describe a number of experiments to evaluate the practical

merit of Fortified Networks.
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2.6 Experiments

2.6.1 Attacks

We evaluated the performance of our model as a defense against adversarial

attacks. We focused on two of the most popular and well-studied attacks, the Fast

Gradient Sign Method (FGSM, Goodfellow et al., 2014) which is popular as it only

requires a single step and can still be effective against many networks. Secondly,

we consider the projected gradient descent attack (Kurakin et al., 2016) which is

slower than FGSM as it requires many iterations, but has been shown to be a much

stronger attack (Madry et al., 2017).

Additionally, we consider both white-box attacks (where the attackers knows

the model) and black-box attacks (where they don’t, but they have access to the

training set).

Fast Gradient Sign Method

The Fast Gradient Sign Method (FGSM) Goodfellow et al. (2014) is a simple

one-step attack that produces `∞-bounded adversaries via the following gradient

based perturbation.

x̃ = x+ ε sgn(∇xL(θ, x, y)). (2.6)

Projected Gradient Descent

The projected gradient descent attack (Madry et al., 2017), sometimes referred

to as FGSMk, is a multi-step extension of the FGSM attack characterized as follows:

xt+1 = Πx+S

(
xt + α sgn(∇xL(θ, x, y))

)
(2.7)

initialized with x0 as the clean input x and with the corrupted input x̃ as the last

step in the sequence.
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2.6.2 The Gradient Masking and Gradient Obfuscation Prob-

lem

A significant challenge with evaluating defenses against adversarial attacks is

that many attacks rely upon a network’s gradient. Methods which reduce the

quality of this gradient, either by making it flatter or noisier can lead to methods

which lower the effectiveness of gradient-based attacks, but which are not actually

robust to adversarial examples (Athalye et al., 2017; Papernot et al., 2016). This

process, which has been referred to as gradient masking or gradient obfuscation,

must be analyzed when studying the strength of an adversarial defense.

One method for studying the extent to which an adversarial defense gives

deceptively good results as a result of gradient masking relies on the observation

that black-box attacks are a strict subset of white-box attacks, so white-box attacks

should always be at least as strong as black-box attacks. If a method reports much

better defense against white-box attacks, it suggests that the selected white-box

attack is underpowered as a result of gradient masking. Another test for gradient

masking is to run an iterative search, such as projected gradient descent (PGD)

with an unlimited range for a large number of iterations. If such an attack is not

completely successful, it indicates that the model’s gradients are not an effective

method for searching for adversarial images, and that gradient masking is occurring.

Still another test is to confirm that iterative attacks with small step sizes always

outperform single-step attacks with larger step sizes (such as FGSM). If this is not

the case, it may suggest that the iterative attack becomes stuck in regions where

optimization using gradients is poor due to gradient masking.

2.6.3 Reconstruction Error as a Heuristic for Deviation

from the Manifold

The theory in Alain et al. (2012) established that a well-trained denoising

autoencoder’s reconstruction vector r(x)− x points in the direction of the gradient

of the log-density. Thus, critical points in the model’s log-density will have a

reconstruction error of zero. While it is not guaranteed to hold for arbitrary

densities, we investigated whether reconstruction error can serve as a practical

heuristic for how much a point deviates from the data manifold. If each data point

were a local maximum in the log-density and the log-density has no other critical
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points, then points on the data manifold are guaranteed to have lower reconstruction

error.

2.7 Results

For details about the specifics of our model architectures and hyperparameters

we refer readers to sections 1.1 and 1.2 of our supplementary material. With all

experiments, we use the same attacks (with identical parameters) at training and

test time to generate adversarial examples. An important point to note here is that

all of the autoencoders in our fortified layers used a single hidden layer with tied

weights. In the case of convolutional autoencoders we always used a stride of 1 and

(5,5) kernels.

Table 2.1 – Accuracies against white-box MNIST attacks with FGSM, where the model is a
convolutional net. We used the standard FGSM attack parameters with an ε of 0.3 and compare
against published adversarial training defenses. We also performed ablations where we considered
removing the reconstruction error on adversarial examples Ladv as well as switching the activation
function in the fortified layers from leaky relu to tanh, which we found to slightly help in this
case. While our baseline and pre-fortified networks used relu activations, we found that by using a
leaky relu in all layers the accuracy on FGSM ε = 0.3 could be improved to 99.2% with standard
adversarial training, suggesting that both our own baselines and those reported in the past have
been too weak.

Model FGSM

Adv. Train (Madry et al., 2017) 95.60

Adv. Train Jacob Buckman (2018) 96.17

Adv. Train (ours) 96.36

Adv. Train No-Rec (ours) 96.47

Quantized (Jacob Buckman, 2018) 96.29

One-Hot (Jacob Buckman, 2018) 96.22

Thermometer (Jacob Buckman, 2018) 95.84

Our Approaches

Fortified Network - Conv, w/o Ladv 96.46

Fortified Network - Conv 97.97
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We also ran the above experiment with FGSM and an ε of 0.1 to compare

directly with (Erraqabi et al., 2018) and obtain 98.34% accuracy on adversarial

examples compared to their 96.10%.

Table 2.2 – Accuracies against white-box MNIST attacks with PGD with an ε of 0.1, where our
model is a convnet.

Model PGD

Baseline Adv. Train 96.98
Fortified Network - Conv (ours) 98.09

Table 2.3 – Accuracies against white-box CIFAR attacks with FGSM using (ε = 0.3), where
each model is a convnet. Our baseline adversarial training is the resnet model provided in
(Nicolas Papernot, 2017)

Model FGSM

Baseline Adv. Train 79.57

Fortified Networks - Conv (ours) 80.47

2.7.1 Recurrent Networks

RNNs are often trained using teacher forcing, which refers to the use of the

ground-truth samples yt being fed back into the model and conditioning the predic-

tion of later outputs. These fed back samples force the RNN to stay close to the

ground-truth sequence. However, when generating at test time, during the ground

truth sequence is not available. We investigated if Fortified Networks could be used

to detect when sampling from a teacher-forcing model moves off the manifold. To

this end we train a language model on the standard Text8 dataset, which is derived

from Wikipedia articles. We trained a single-layer LSTM with 1000 units at the

character-level, and included fortified layers between the hidden states and the

output on each time step. As seen in table 2.7, the ratios of these reconstruction

errors increases steadily as we increase the number of sampling steps and diverge

away from the distribution of training sequences, providing empirical support for

the notion that fortified layers effectively measure when the data moves off of the

training manifold.
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Table 2.4 – Accuracies against white-box CIFAR attacks with FGSM using the standard
(ε = 0.03), where each model is a convnet. Our baseline adversarial training is the resnet model
provided in (Nicolas Papernot, 2017)

Model FGSM

Baseline Adv. Train (ours) 79.34

Quantized (Buckman) 53.53

One-Hot (Buckman) 68.76

Thermometer (Buckman) 80.97

Fortified Networks (autoencoder on

input space with loss in hidden states) 79.77

Fortified Networks - Conv (ours) 81.80

2.8 Related Work

2.8.1 Using Generative Models as a Defense

The observation that adversarial examples often consist of points off of the data

manifold and that deep networks may not generalize well to these points motivated

(Gu and Rigazio, 2014; Ilyas et al., 2017; Pouya Samangouei, 2018; Liao et al., 2017)

to consider the use of the generative models as a defense against adversarial attacks.

Ilyas et al. (2017); Gilmer et al. (2018) also showed the existence of adversarial

examples which lie on the data manifold, and (Ilyas et al., 2017) showed that

training against adversarial examples forced to lie on the manifold is an effective

defense. Our method shares a closely related motivation to these prior works, with a

key difference being that we propose to consider the manifold in the space of learned

representations, instead of considering the manifold directly in the visible space.

One motivation for this is that the learned representations have a simpler statistical

structure (Bengio et al., 2012a), which makes the task of modeling this manifold

and detecting unnatural points much simpler. Learning the distribution directly

in the visible space is still very difficult (even state of the art models fall short

of real data on metrics like Inception Score) and requires a high capacity model.

Additionally working in the space of learned representations allows for the use of a

relatively simple generative model, in our case a small denoising autoencoder.
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Table 2.5 – Accuracies against white-box attacks on Fashion MNIST. For PGD we used
ε = 0.1 and for FGSM we experimented with ε = 0.1 and ε = 0.3. Compared with De-
fenseGAN (Pouya Samangouei, 2018).

Model
FGSM

(ε = 0.1)
FGSM

(ε = 0.3)
PGD

(ε = 0.1)

DefenseGAN n/a 89.60 n/a

n/a

Our Approaches

Baseline Adv. Train

- Conv,ReLU 86.14 90.66 77.49

Baseline Adv. Train

- Conv,LReLU 89.10 88.8 77.90

Fortified Nets - Conv

(ours) 89.86 91.31 79.54

Ilyas et al. (2017) proposed to work around these challenges from working in

the visible space by using the Deep Image Prior instead of an actual generative

model. While this has the advantage of being a model that doesn’t require a special

training procedure (as deep image prior is a separate optimization process for each

example) it may be limited in the types of adversarial attacks that it’s resistant to,

and it would provide no defense against adversarial attacks which are in the range

of a convolutional network, which have been shown to exist (Chaowei Xiao, 2018).

Another key difference between our work and (Ilyas et al., 2017; Pouya Saman-

gouei, 2018) is that both DefenseGAN and the Invert-and-Classify approach use

an iterative search procedure at inference time to map observed data points onto

nearby points on the range of the generator. On the other hand, our approach uses

small denoising autoencoders that are used in the same way (i.e. a simple forward

application) during both training and testing. The use of such an iterative procedure

presents challenges for evaluation, as it is possible for gradients to vanish while doing

backpropagation through such a procedure, which may lead to an overestimate in the

strength of the defense due to the gradient masking problem (Papernot et al., 2016;

Athalye et al., 2018). One indicator of the gradient masking problem is black-box

attacks outperforming white-box attacks, which is an indicator of under-powered
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Table 2.6 – Accuracies against blackbox MNIST attacks with adversarial training. Reporting
50/50 results compared to previous works (Jacob Buckman, 2018, JB) and (Pouya Samangouei,
2018, PS). The test error on clean examples is in parenthesis.

Model FGSM

OneHot (JB) 95.96 (98.83)

ThermoEnc (JB) 96.97 (98.08)

DefenseGAN fc→conv (PS) 92.21 (n/a)

DefenseGAN conv→conv (PS) 93.12 (n/a)

Adv. Train fc→conv (PS) 96.68 (n/a)

Adv. Train conv→conv (PS) 96.54 (n/a)

Our Approaches

Baseline Adv. Train 93.83 (98.95)

Fortified Network w/o Ladv, Lrec 96.98 (99.17)

Fortified Network 97.82 (98.93)

attacks as black-box attacks are a strict subset of white-box attacks. This indicator

of gradient obfuscation was present in the work of Pouya Samangouei (2018) where

black-box attacks were generally stronger against their defense, but with our method

we observe very similar defense quality against black-box and white-box attacks.

(Gu and Rigazio, 2014; Liao et al., 2017) both considered using an autoencoder

as a pre-processing step in the input space. Interestingly (Liao et al., 2017) used a

loss function defined in the space of the hidden states, but still used autoencoders

directly in the input space.

2.8.2 Adversarial Hidden State Matching

Erraqabi et al. (2018) demonstrate that adversarially matching the hidden layer

activations of regular and adversarial examples improves robustness. This work

shared the same motivation of using the hidden states to improve robustness, but

differed in that they used an adversarial objective and worked in the original hidden

states instead of using a generative model (in our case, the DAE in the fortified

layers). We present direct experimental comparisons with their work in section 2.7.
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Figure 2.4 – We added fortified layers with different capacities to MLPs trained on MNIST, and
display the value of the total reconstruction errors for adversarial examples divided by the total
reconstruction errors for clean examples. A high value indicates that adversarial examples have
high reconstruction error. We considered fortified layers with autoencoders of different capacities.
Our results support the central motivation for fortified networks: that off-manifold points can
much more easily be detected in the hidden space (as seen by the relatively constant ratio for the
autoencoder in h space) and are much harder to detect in the input space (as seen by this ratio
rapidly falling to zero as the autoencoder’s capacity is reduced).

2.8.3 Denoising Feature Matching

Warde-Farley and Bengio (2016) proposed to train a denoising autoencoder in

the hidden states of the discriminator in a generative adversarial network. The

generator’s parameters are then trained to make the reconstruction error of this

autoencoder small. This has the effect of encouraging the generator to produce

points which are easy for the model to reconstruct, which will include true data

points. Both this and Fortified Networks use a learned denoising autoencoder in

the hidden states of a network. A major difference is that the denoising feature

matching work focused on generative adversarial networks and tried to minimize

40



Table 2.7 – We trained Fortified Networks on a single-layer LSTM on the Text-8 dataset, with
fortified layers added between each step. We recorded the ratio between reconstruction error
on the testing set during both teacher forcing mode and sampling mode (where the model is
supplied with its own outputs as inputs for the next step). The motivation is that the outputs
should gradually move off of the manifold with more sampling steps, which is indicated by a high
reconstruction error ratio, which makes it an interesting tool for monitoring or potentially fixing
this problem.

Sampling Steps Error Ratio

50 1.03

180 1.12

300 1.34

reconstruction error through a learned generator network, whereas our approach

targets the adversarial examples problem. Additionally, our objective encourages

the output of the DAE to denoise adversarial examples so as to point back to the

hidden state of the original example, which is different from the objective in the

denoising feature matching work, which encouraged reconstruction error to be low

on states from samples from the generator network.

2.8.4 Adversarial Spheres

Gilmer et al. (2018) studied the existence of adversarial examples in the task

of classifying between two hollow concentric shells. Intriguingly, they prove and

construct adversarial examples which lie on the data manifold (although Ilyas et al.

(2017) also looked for such examples experimentally using GANs). The existence

of such on-manifold adversarial examples demonstrates that a simplified version of

our model trained with only Lrec could not protect against all adversarial examples.

However, training with Ladv encourages the fortified layers to map back from points

which are not only off of the manifold, but also to map back from points which are

hard to classify, allowing Fortified Networks to also potentially help with on-manifold

adversarial examples as well.
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Figure 2.5 – We ran a fortified network on Fashion-MNIST using adversarial training with PGD
for a variety of ε values, each for 5 epochs. The motivation behind this experiment, suggested by
Athalye et al. (2018) is confirming if unbounded (ε = 1) adversarial attacks are able to succeed.
A defense which succeeds primarily by masking or obfuscating the gradients would fail to bring
the accuracy to zero even with an unbounded attack. As can be seen, unbounded attacks against
Fortified Networks succeed when given a sufficiently large ε, which is evidence against gradient
masking.

2.9 Conclusion

Protecting against adversarial examples could be of paramount importance

in mission-critical applications. We have presented Fortified Networks, a simple

method for the robustification of existing deep neural networks. Our method is

— Practical: fortifying an existing network entails introducing DAEs between

the hidden layers of the network and can be automated. We are preparing

a PyTorch module that does exactly that and will release it for the deep

learning community to use shortly. Furthermore, the DAE reconstruction

error at test time is a reliable signal of distribution shift, that is examples

unlike those encountered during training. High error can signify either

adversarial attacks or significant domain shift; both are important cases for
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the analyst or system to be aware of.

— Effective: We showed results that improve upon the state of the art on

defenses for adversarial attacks on MNIST and provides improvement on

CIFAR and Fashion-MNIST.

Limitations The cost of the proposed method is the extended training time due

to the search for an adversarial example and training the autoencoder. The added

cost of the fortified layers over adversarial training by itself is relatively small, and

is also much easier and simpler than training a full generative model (such as a

GAN) in the input space. Layer fortification typically involves smaller DAEs that

require less computation. Additionally, we have shown improvements on ResNets

where only two fortified layers are added, and thus the change to the computational

cost is very slightly. At the same time, fortified networks have only been shown to

improve robustness when used alongside adversarial training, which is expensive for

iterative attacks.

43



3 GibbsNet

3.1 Prologue to the Article

GibbsNet: Iterative Adversarial Inference for Deep Graphical Models.

Alex Lamb, R Devon Hjelm, Yaroslav Ganin, Joseph Paul Cohen, Aaron Courville,

Yoshua Bengio.

Neural Information Processing Systems (NIPS) 2017

Personal Contribution. The main idea came from Yoshua Bengio suggesting

that hierarchical GANs with multiple discriminators and local generators could

benefit from an undirected sampling procedure.

Alex Lamb did the initial prototyping and found that this model had interesting

properties, even in the absence of a hierarchy. Yaroslav Ganin and Devon Hjelm

worked to produce the main experiments and wrote much of the paper. Joseph

Paul Cohen did the T-SNE experiments and helped with semi-supervised learning.
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the paper.
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3.2 Abstract

Directed latent variable models that formulate the joint distribution as p(x, z) =

p(z)p(x | z) have the advantage of fast and exact sampling. However, these models

have the weakness of needing to specify p(z), often with a simple fixed prior that

limits the expressiveness of the model. Undirected latent variable models discard the

requirement that p(z) be specified with a prior, yet sampling from them generally

requires an iterative procedure such as blocked Gibbs-sampling that may require

many steps to draw samples from the joint distribution p(x, z). We propose a

novel approach to learning the joint distribution between the data and a latent

code which uses an adversarially learned iterative procedure to gradually refine

the joint distribution, p(x, z), to better match with the data distribution on each

step. GibbsNet is the best of both worlds both in theory and in practice. Achieving

the speed and simplicity of a directed latent variable model, it is guaranteed

(assuming the adversarial game reaches the virtual training criteria global minimum)

to produce samples from p(x, z) with only a few sampling iterations. Achieving

the expressiveness and flexibility of an undirected latent variable model, GibbsNet

does away with the need for an explicit p(z) and has the ability to do attribute

prediction, class-conditional generation, and joint image-attribute modeling in a

single model which is not trained for any of these specific tasks. We show empirically

that GibbsNet is able to learn a more complex p(z) and show that this leads to

improved inpainting and iterative refinement of p(x, z) for dozens of steps and stable

generation without collapse for thousands of steps, despite being trained on only a

few steps.
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3.3 Introduction

Generative models are powerful tools for learning an underlying representation of

complex data. While early undirected models, such as Deep Boltzmann Machines or

DBMs (Salakhutdinov and Hinton, 2009), showed great promise, practically they did

not scale well to complicated high-dimensional settings (beyond MNIST), possibly

because of optimization and mixing difficulties (Bengio et al., 2012b). More recent

work on Helmholtz machines (Bornschein et al., 2015) and on variational autoen-

coders (Kingma and Welling, 2013) borrow from deep learning tools and can achieve

impressive results, having now been adopted in a large array of domains (Larsen

et al., 2015a).

z0 ∼ N(0, I) xi ∼ p(x | zi) zN ∼ q(z |xN−1) xN ∼ p(x | zN)

zi+1 ∼ q(z |xi) ẑ ∼ q(z |xdata) xdata ∼ q(x)

D(z,x)

Figure 3.1 – Diagram illustrating the training procedure for GibbsNet. The unclamped chain
(dashed box) starts with a sample from an isotropic Gaussian distribution N(0, I) and runs for N
steps. The last step (iteration N) shown as a solid pink box is then compared with a single step
from the clamped chain (solid blue box) using joint discriminator D.

Many of the important generative models available to us rely on a formulation of

some sort of stochastic latent or hidden variables along with a generative relationship

to the observed data. Arguably the simplest is the directed graphical models (such

as the VAE) with a factorized decomposition p(z, x) = p(z)p(x | z). In this, it is

typical to assume that p(z) follows some factorized prior with simple statistics (such

as Gaussian). While sampling with directed models is simple, inference and learning

tends to be difficult and often requires advanced techniques such as approximate

inference using a proposal distribution for the true posterior.

The other dominant family of graphical models are undirected graphical models,

such that the joint is represented by a product of clique potentials and a normalizing

factor. It is common to assume that the clique potentials are positive, so that

the un-normalized density can be represented by an energy function, E and the
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joint is represented by p(x, z) = e−E(z,x)/Z, where Z is the normalizing constant or

partition function. These so-called energy-based models (of which the Boltzmann

Machine is an example) are potentially very flexible and powerful, but are difficult

to train in practice and do not seem to scale well. Note also how in such models,

the marginal p(z) can have a very rich form (as rich as that of p(x)).

The methods above rely on a fully parameterized joint distribution (and ap-

proximate posterior in the case of directed models), to train with approximate

maximum likelihood estimation (MLE, Dempster et al., 1977). Recently, generative

adversarial networks (GANs, Goodfellow et al., 2014) have provided a likelihood-free

solution to generative modeling that provides an implicit distribution unconstrained

by density assumptions on the data. In comparison to MLE-based latent variable

methods, generated samples can be of very high quality (Radford et al., 2015), and

do not suffer from well-known problems associated with parameterizing noise in

the observation space (Goodfellow, 2016). Recently, there have been advances in

incorporating latent variables in generative adversarial networks in a way remi-

niscent of Helmholtz machines (Dayan et al., 1995), such as adversarially learned

inference (Dumoulin et al., 2017; Donahue et al., 2017) and implicit variational

inference (Huszár, 2017).

These models, as being essentially complex directed graphical models, rely on

approximate inference to train. While potentially powerful, there is good evidence

that using an approximate posterior necessarily limits the generator in practice

(Hjelm et al., 2016; Rezende and Mohamed, 2015). In contrast, it would perhaps

be more appropriate to start with inference (encoder) and generative (decoder)

processes and derive the prior directly from these processes. This approach, which

we call GibbsNet, uses these two processes to define a transition operator of a

Markov chain similar to Gibbs sampling, alternating between sampling observations

and sampling latent variables. This is similar to the previously proposed generative

stochastic networks (GSNs, Bengio et al., 2013) but with a GAN training framework

rather than minimizing reconstruction error. By training a discriminator to place a

decision boundary between the data-driven distribution (with x clamped) and the

free-running model (which alternates between sampling x and z), we are able to

train the model so that the two joint distributions (x, z) match. This approach is

similar to Gibbs sampling in undirected models, yet, like traditional GANs, it lacks

the strong parametric constraints, i.e., there is no explicit energy function. While
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losing some the theoretical simplicity of undirected models, we gain great flexibility

and ease of training. In summary, our method offers the following contributions:

— We introduce the theoretical foundation for a novel approach to learning

and performing inference in deep graphical models. The resulting model of

our algorithm is similar to undirected graphical models, but avoids the need

for MLE-based training and also lacks an explicitly defined energy, instead

being trained with a GAN-like discriminator.

— We present a stable way of performing inference in the adversarial framework,

meaning that useful inference is performed under a wide range of architectures

for the encoder and decoder networks. This stability comes from the fact

that the encoder q(z | x) appears in both the clamped and the unclamped

chain, so gets its training signal from both the discriminator in the clamped

chain and from the gradient in the unclamped chain.

— We show improvements in the quality of the latent space over models which

use a simple prior for p(z). This manifests itself in improved conditional

generation. The expressiveness of the latent space is also demonstrated in

cleaner inpainting, smoother mixing when running blocked Gibbs sampling,

and better separation between classes in the inferred latent space.

— Our model has the flexibility of undirected graphical models, including the

ability to do label prediction, class-conditional generation, and joint image-

label generation in a single model which is not explicitly trained for any of

these specific tasks. To our knowledge our model is the first model which

combines this flexibility with the ability to produce high quality samples on

natural images.

3.4 Proposed Approach: GibbsNet

The goal of GibbsNet is to train a graphical model with transition operators that

are defined and learned directly by matching the joint distributions of the model

expectation with that with the observations clamped to data. This is analogous to

and inspired by undirected graphical models, except that the transition operators,

which correspond to blocked Gibbs sampling, are defined to move along a defined

energy manifold, so we will make this connection throughout our formulation.
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We first explain GibbsNet in the simplest case where the graphical model consists

of a single layer of observed units and a single layer of latent variable with stochastic

mappings from one to the other as parameterized by arbitrary neural network. Like

Professor Forcing (Lamb et al., 2016), GibbsNet uses a GAN-like discriminator to

make two distributions match, one corresponding to the model iteratively sampling

both observation, x, and latent variables, z (free-running), and one corresponding to

the same generative model but with the observations, x, clamped. The free-running

generator is analogous to Gibbs sampling in Restricted Boltzmann Machines (RBM,

Hinton et al., 2006) or Deep Boltzmann Machines (DBM, Salakhutdinov and Hinton,

2009). In the simplest case, the free-running generator is defined by conditional

distributions q(z|x) and p(x|z) which stochastically map back and forth between

data space x and latent space z.

To begin our free-running process, we start the chain with a latent variable

sampled from a normal distribution: z ∼ N(0, I), and follow this by N steps of

alternating between sampling from p(x|z) and q(z|x). For the clamped version,

we do simple ancestral sampling from q(z|x), given xdata is drawn from the data

distribution q(x) (a training example). When the model has more layers (e.g., a

hierarchy of layers with stochastic latent variables, à la DBM), the data-driven model

also needs to iterate to correctly sample from the joint. While this situation highly

resembles that of undirected graphical models, GibbsNet is trained adversarially so

that its free-running generative states become indistinguishable from its data-driven

states. In addition, while in principle undirected graphical models need to either

start their chains from data or sample a very large number of steps, we find in

practice GibbsNet only requires a very small number of steps (on the order of 3 to

5 with very complex datasets) from noise.

An example of the free-running (unclamped) chain can be seen in Figure 3.2.

An interesting aspect of GibbsNet is that we found that it was enough and in fact

best experimentally to back-propagate discriminator gradients through a single step

of the iterative procedure, yielding more stable training. An intuition for why this

helps is that each step of the procedure is supposed to generate increasingly realistic

samples. However, if we passed gradients through the iterative procedure, then this

gradient could encourage the earlier steps to store features which have downstream

value instead of immediate realistic x-values.
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Figure 3.2 – Evolution of samples for 20 iterations from the unclamped chain, trained on the
SVHN dataset starting on the left and ending on the right.

3.4.1 Theoretical Analysis

We consider a simple case of an undirected graph with single layers of visible

and latent units trained with alternating 2-step (p then q) unclamped chains and

the asymptotic scenario where the GAN objective is properly optimized. We then

ask the following questions: in spite of training for a bounded number of Markov

chain steps, are we learning a transition operator? Are the encoder and decoder

estimating compatible conditionals associated with the stationary distribution of

that transition operator? We find positive answers to both questions.

A high level explanation of our argument is that if the discriminator is fooled,

then the consecutive (z, x) pairs from the chain match the data-driven (z, x) pair.

Because the two marginals on x from these two distributions match, we can show

that the next z in the chain will form again the same joint distribution. Similarly, we

can show that the next x in the chain also forms the same joint with the previous z.

Because the state only depends on the previous value of the chain (as it’s Markov),

then all following steps of the chain will also match the clamped distribution. This

explains the result, validated experimentally, that even though we train for just a

few steps, we can generate high quality samples for thousands or more steps.

Proposition 1. If (a) the stochastic encoder q(z|x) and stochastic decoder p(x|z)

inject noise such that the transition operator defined by their composition (p followed

by q or vice-versa) allows for all possible x-to-x or z-to-z transitions (x→ z → x or

z → x→ z), and if (b) those GAN objectives are properly trained in the sense that

the discriminator is fooled in spite of having sufficient capacity and training time,

then (1) the Markov chain which alternates the stochastic encoder followed by the

stochastic decoder as its transition operator T (or vice-versa) has the data-driven
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distribution πD as its stationary distribution πT , (2) the two conditionals q(z|x)

and p(x|z) converge to compatible conditionals associated with the joint πD = πT .

Proof. When the stochastic decoder and encoder inject noise so that their com-

position forms a transition operator T with paths with non-zero probability from

any state to any other state, then T is ergodic. So condition (a) implies that T

has a stationary distribution πT . The properly trained GAN discriminators for

each of these two steps (condition (b)) forces the matching of the distributions

of the pairs (zt, xt) (from the generative trajectory) and (x, z) with x ∼ q(x), the

data distribution and z ∼ q(z | x), both pairs converging to the same data-driven

distribution πD. Because (zt, xt) has the same joint distribution as (z, x), it means

that xt has the same distribution as x. Since z ∼ q(z | x), when we apply q to xt,

we get zt+1 which must form a joint (zt+1, xt) which has the same distribution as

(z, x). Similarly, since we just showed that zt+1 has the same distribution as z and

thus the same as zt, if we apply p to zt+1, we get xt+1 and the joint (zt+1, xt+1) must

have the same distribution as (z, x). Because the two pairs (zt, xt) and (zt+1, xt+1)

have the same joint distribution πD, it means that the transition operator T , that

maps samples (zt, xt) to samples (zt+1, xt+1), maps πD to itself, i.e., πD = πT is

both the data distribution and the stationary distribution of T and result (1) is

obtained. Now consider the ”odd” pairs (zt+1, xt) and (zt+2, xt+1) in the generated

sequences. Because of (1), xt and xt+1 have the same marginal distribution πD(x).

Thus when we apply the same q(z|x) to these x’s we obtain that (zt+1, xt) and

(zt+2, xt+1) also have the same distribution. Following the same reasoning as for

proving (1), we conclude that the associated transition operator Todd has also πD as

stationary distribution. So starting from z ∼ πD(z) and applying p(x | z) gives an

x so that the pair (z, x) has πD as joint distribution, i.e., πD(z, x) = πD(z)p(x | z).

This means that p(x | z) = πD(x,z)
πD(z)

is the x | z conditional of πD. Since (zt, xt) also

converges to joint distribution πD, we can apply the same argument when starting

from an x ∼ πD(x) followed by q and obtain that πD(z, x) = πD(x)q(z | x) and so

q(z|x) = πD(z,x)
πD(x)

is the z | x conditional of πD. This proves result (2).

3.4.2 Architecture

GibbsNet always involves three networks: the inference network q(z|x), the

generation network p(x|z), and the joint discriminator. In general, our architecture
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for these networks closely follow Dumoulin et al. (2017), except that we use

the boundary-seeking GAN (BGAN, Hjelm et al., 2017) as it explicitly optimizes

on matching the opposing distributions (in this case, the model expectation and

the data-driven joint distributions), allows us to use discrete variables where we

consider learning graphs with labels or discrete attributes, and worked well across

our experiments.

3.5 Related Work

Energy Models and Deep Boltzmann Machines The training and sampling

procedure for generating from GibbsNet is very similar to that of a deep Boltzmann

machine (DBM, Salakhutdinov and Hinton, 2009): both involve blocked Gibbs

sampling between observation- and latent-variable layers. A major difference is that

in a deep Boltzmann machine, the “decoder” p(x|z) and “encoder” p(z|x) exactly

correspond to conditionals of a joint distribution p(x, z), which is parameterized

by an energy function. This, in turn, puts strong constraints on the forms of the

encoder and decoder.

In a restricted Boltzmann machine (RBM, Hinton, 2010), the visible units are

conditionally independent given the hidden units on the adjacent layer, and likewise

the hidden units are conditionally independent given the visible units. This may

force the layers close to the data to need to be nearly deterministic, which could

cause poor mixing and thus make learning difficult. These conditional independence

assumptions in RBMs and DBMs have been discussed before in the literature as a

potential weakness in these models (Bengio et al., 2012b).

In our model, p(x|z) and q(z|x) are modeled by separate deep neural net-

works with no shared parameters. The disadvantage is that the networks are

over-parameterized, but this has the added flexibility that these conditionals can be

much deeper, can take advantage of all the recent advances in deep architectures,

and have fewer conditional independence assumptions than DBMs and RBMs.

Generative Stochastic Networks Like GibbsNet, generative stochastic net-

works (GSNs, Bengio et al., 2013) also directly parameterizes a transition operator

of a Markov chain using deep neural networks. However, GSNs and GibbsNet have
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completely different training procedures. In GSNs, the training procedure is based

on an objective that is similar to de-noising autoencoders (Vincent et al., 2008).

GSNs begin by drawing a sampling from the data, iteratively corrupting it, then

learning a transition operator which de-noises it (i.e., reverses that corruption), so

that the reconstruction after k steps is brought closer to the original un-corrupted

input.

In GibbsNet, there is no corruption in the visible space, and the learning

procedure never involves “walk-back” (de-noising) towards a real data-point. Instead,

the processes from and to data are modeled by different networks, with the constraint

of the marginal, p(x), matches the real distribution imposed through the GAN loss

on the joint distributions from the clamped and unclamped phases.

Non-Equilibrium Thermodynamics The Non-Equilibrium Thermodynamics

method (Sohl-Dickstein et al., 2015) learns a reverse diffusion process against a

forward diffusion process which starts from real data points and gradually injects

noise until the data distribution matches a analytically tractible / simple distribution.

This is similar to GibbsNet in that generation involves a stochastic process which

is initialized from noise, but differs in that Non-Equilibrium Thermodynamics is

trained using MLE and relies on noising + reversal for training, similar to GSNs

above.

Generative Adversarial Learning of Markov Chains The Adversarial Markov

Chain algorithm (AMC, Song et al., 2017) learns a markov chain over the data

distribution in the visible space. GibbsNet and AMC are related in that they both

involve adversarial training and an iterative procedure for generation. However

there are major differences. GibbsNet learns deep graphical models with latent

variables, whereas the AMC method learns a transition operator directly in the

visible space. The AMC approach involves running chains which start from real

data points and repeatedly apply the transition operator, which is different from the

clamped chain used in GibbsNet. The experiments shown in Figure 3.3 demonstrate

that giving the latent variables to the discriminator in our method has a significant

impact on inference.
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Adversarially Learned Inference (ALI) Adversarially learned inference (ALI,

Dumoulin et al., 2017) learns to match distributions generative and inference

distributions, p(x, z) and q(x, z) (can be thought of forward and backward models)

with a discriminator, so that p(z)p(x | z) = q(x)q(z | x). In the single latent layer

case, GibbsNet also has forward and reverse models, p(x | z) and q(z | x). The

un-clamped chain is sampled as p(z), p(x | z), q(z | x), p(x | z), . . . and the clamped

chain is sampled as q(x), q(z | x). We then adversarially encourage the clamped

chain to match the equilibrium distribution of the unclamped chain. When the

number of iterations is set to N = 1, GibbsNet reduces to ALI. However, in the

general setting of N > 1, Gibbsnet should learn a richer representation than ALI,

as the prior, p(z), is no longer forced to be the simple one at the beginning of the

unclamped phase.

3.6 Experiments and Results

The goal of our experiments is to explore and give insight into the joint distri-

bution p(x, z) learned by GibbsNet and to understand how this joint distribution

evolves over the course of the iterative inference procedure. Since ALI is identical

to GibbsNet when the number of iterative inference steps is N = 1, results obtained

with ALI serve as an informative baseline.

From our experiments, the clearest result (covered in detail below) is that the

p(z) obtained with GibbsNet can be more complex than in ALI (or other directed

graphical models). This is demonstrated directly in experiments with 2-D latent

spaces and indirectly by improvements in classification when directly using the

variables q(z | x). We achieve strong improvements over ALI using GibbsNet even

when q(z | x) has exactly the same architecture in both models.

We also show that GibbsNet allows for gradual refinement of the joint, (x, z), in

the sampling chain q(z | x), p(x | z). This is a result of the sampling chain making

small steps towards the equilibrium distribution. This allows GibbsNet to gradually

improve sampling quality when running for many iterations. Additionally it allows

for inpainting and conditional generation where the conditioning information is not

fixed during training, and indeed where the model is not trained specifically for

these tasks.
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3.6.1 Expressiveness of GibbsNet’s Learned Latent Vari-

ables

Latent structure of GibbsNet The latent variables from q(z | x) learned from

GibbsNet are more expressive than those learned with ALI. We show this in two

ways. First, we train a model on the MNIST digits 0, 1, and 9 with a 2-D latent

space which allows us to easily visualize inference. As seen in Figure 3.3, we show

that GibbsNet is able to learn a latent space which is not Gaussian and has a

structure that makes the different classes well separated.

Semi-supervised learning Following from this, we show that the latent variables

learned by GibbsNet are better for classification. The goal here is not to show state

of the art results on classification, but instead to show that the requirement that

p(z) be something simple (like a Gaussian, as in ALI) is undesirable as it forces

the latent space to be filled. This means that different classes need to be packed

closely together in that latent space, which makes it hard for such a latent space to

maintain the class during inference and reconstruction.

We evaluate this property on two datasets: Street View House Number (SVHN,

Netzer et al., 2011) and permutation invariant MNIST. In both cases we use the

latent features q(z | x) directly from a trained model, and train a 2-layer MLP on

top of the latent variables, without passing gradient from the classifier through to

q(z | x). ALI and GibbsNet were trained for the same amount of time and with

exactly the same architecture for the discriminator, the generative network, p(x | z),

and the inference network, q(z | x).

On permutation invariant MNIST, ALI achieves 91% test accuracy and GibbsNet

achieves 97.7% test accuracy. On SVHN, ALI achieves 66.7% test accuracy and

GibbsNet achieves 79.6% test accuracy. This does not demonstrate a competitive

classifier in either case, but rather demonstrates that the latent space inferred by

GibbsNet keeps more information about its input image than the encoder learned

by ALI. This is consistent with the reported ALI reconstructions (Dumoulin et al.,

2017) on SVHN where the reconstructed image and the input image show the same

digit roughly half of the time.

We found that ALI’s inferred latent variables not being effective for classification

is a fairly robust result that holds across a variety of architectures for the inference
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network. For example, with 1024 units, we varied the number of fully-connected

layers in ALI’s inference network between 2 and 8 and found that the classification

accuracies on the MNIST validation set ranged from 89.4% to 91.0%. Using 6

layers with 2048 units on each layer and a 256 dimensional latent prior achieved

91.2% accuracy. This suggests that the weak performance of the latent variables for

classification is due to ALI’s prior, and is probably not due to a lack of capacity in

the inference network.

Figure 3.3 – Illustration of the distribution over inferred latent variables for real data points from
the MNIST digits (0, 1, 9) learned with different models trained for roughly the same amount of
time: GibbsNet with a determinstic decoder and the latent variables not given to the discriminator
(a), GibbsNet with a stochastic decoder and the latent variables not given to the discriminator
(b), ALI (c), GibbsNet with a deterministic decoder (f), GibbsNet with a stochastic decoder with
two different runs (g and h), GibbsNet with a stochastic decoder’s inferred latent states in an
unclamped chain at 1, 2 , 3, and 15 steps (d, e, i, and j, respectively) into the P-chain (d, e, i, and
j, respectively). Note that we continue to see refinement in the marginal distribution of z when
running for far more steps (15 steps) than we used during training (3 steps).

3.6.2 Inception Scores

The GAN literature is limited in terms of quantitative evaluation, with none

of the existing techniques being satisfactory Theis et al. (2015a). Inception scores

Salimans et al. (2016) have become widely used and are correlated with human

assessments of quality, but lack a statistical consistency guarantee. Nonetheless,

we computed inception scores on CIFAR-10 using the standard method and code

released from Salimans et al. (2016). In our experiments, we compared the inception

scores from samples from GibbsNet and ALI on two tasks, generation and inpainting.

Our conclusion from the inception scores (Table 3.1) is that GibbsNet slightly

improves sample quality but greatly improves the expressiveness of the latent space

z, which leads to more detail being preserved in the inpainting chain and a much
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larger improvement in inception scores in this setting. The supplementary materials

includes examples of sampling and inpainting chains for both ALI and GibbsNet

which shows differences between sampling and inpainting quality that are consistent

with the inception scores.

Table 3.1 – Inception Scores from different models. Inpainting results were achieved by fixing
the left half of the image while running the chain for four steps. Sampling refers to unconditional
sampling.

Source Samples Inpainting

Real Images 11.24 11.24

ALI (ours) 5.41 5.59

ALI (Dumoulin) 5.34 N/A

GibbsNet 5.69 6.15

3.6.3 Generation, Inpainting, and Learning the Image-Attribute

Joint Distribution

Generation Here, we compare generation on the CIFAR dataset against Non-

Equilibrium Thermodynamics method (Sohl-Dickstein et al., 2015), which also

begins its sampling procedure from noise. We show in Figure 3.4 that, even

with a relatively small number of steps (20) in its sampling procedure, GibbsNet

outperforms the Non-Equilibrium Thermodynamics approach in sample quality,

even after many more steps (1000).

Inpainting The inpainting that can be done with the transition operator in

GibbsNet is stronger than what can be done with an explicit conditional generative

model, such as Conditional GANs, which are only suited to inpainting when the

conditioning information is known about during training or there is a strong prior

over what types of conditioning will be performed at test time. We show here that

GibbsNet performs more consistent and higher quality inpainting than ALI, even

when the two networks share exactly the same architecture for p(x | z) and q(z | x)

(Figure 3.5), which is consistent with our results on latent structure above.

Joint generation Finally, we show that GibbsNet is able to learn the joint

distribution between face images and their attributes (CelebA, Liu et al., 2015a)
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Figure 3.4 – CIFAR samples on methods which learn transition operators. Non-Equilibrium
Thermodynamics (Sohl-Dickstein et al., 2015) after 1000 steps (left) and GibbsNet after 20 steps
(right).

(Figure 3.6). In this case, q(z | x, y) (y is the attribute) is a network that takes both

the image and attribute, separately processing the two modalities before joining them

into one network. p(x, y | z) is one network that splits into two networks to predict

the modalities separately. Training was done with continuous boundary-seeking

GAN (BGAN, Hjelm et al., 2017) on the image side (same as our other experiments)

and discrete BGAN on the attribute side, which is an importance-sampling-based

technique for training GANs with discrete data.
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(a) SVHN inpainting after 20
steps (ALI).

(b) SVHN inpainting after 20 steps
(GibbsNet).

Figure 3.5 – Inpainting results on SVHN, where the right side is given and the left side is
inpainted. In both cases our model’s trained procedure did not consider the inpainting or
conditional generation task at all, and inpainting is done by repeatedly applying the transition
operators and clamping the right side of the image to its observed value. GibbsNet’s richer latent
space allows the transition operator to keep more of the structure of the input image, allowing for
tighter inpainting.

Figure 3.6 – Demonstration of learning the joint distribution between images and a list of 40
binary attributes. Attributes (right) are generated from a multinomial distribution as part of the
joint with the image (left).
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3.7 Conclusion

We have introduced GibbsNet, a powerful new model for performing iterative

inference and generation in deep graphical models. Although models like the

RBM and the GSN have become less investigated in recent years, their theoretical

properties worth pursuing, and we follow the theoretical motivations here using

a GAN-like objective. With a training and sampling procedure that is closely

related to undirected graphical models, GibbsNet is able to learn a joint distribution

which converges in a very small number of steps of its Markov chain, and with

no requirement that the marginal p(z) match a simple prior. We prove that at

convergence of training, in spite of unrolling only a few steps of the chain during

training, we obtain a transition operator whose stationary distribution also matches

the data and makes the conditionals p(x | z) and q(z | x) consistent with that

unique joint stationary distribution. We show that this allows the prior, p(z), to be

shaped into a complicated distribution (not a simple one, e.g., a spherical Gaussian)

where different classes have representations that are easily separable in the latent

space. This leads to improved classification when the inferred latent variables q(z|x)

are used directly. Finally, we show that GibbsNet’s flexible prior produces a flexible

model which can simultaneously perform inpainting, conditional image generation,

and prediction with a single model not explicitly trained for any of these specific

tasks, outperforming a competitive ALI baseline with the same setup.
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4.2 Abstract

We explore the question of whether the representations learned by classifiers can

be used to enhance the quality of generative models. Our conjecture is that labels

correspond to characteristics of natural data which are most salient to humans:

identity in faces, objects in images, and utterances in speech. We propose to take

advantage of this by using the representations from discriminative classifiers to

augment the objective function corresponding to a generative model. In particular we

enhance the objective function of the variational autoencoder, a popular generative

61



model, with a discriminative regularization term. We show that enhancing the

objective function in this way leads to samples that are clearer and have higher

visual quality than the samples from the standard variational autoencoders.

4.3 Introduction

Discriminative neural network models have had a tremendous impact in many

traditional application areas of machine learning such as object recognition and

detection in images Krizhevsky et al. (2012); Simonyan and Zisserman (2014), speech

recognition Hinton et al. (2012) and a host of other application domains Schmidhuber

(2014). While progress in the longstanding problem of learning generative models

capable of producing novel and compelling examples of natural data has not quite

kept pace with the advances in discriminative modeling, there have been a number

of important developments.

Within the context of generative models that support tractable approximate

inference, the variational autoencoder (VAE) Kingma and Welling (2013) has

emerged as a popular framework. The VAE leverages deep neural networks both

for the generative model (mapping from a set of latent random variables to a

conditional distribution over the observed data) and for an approximate inference

model (mapping from the observed data to a conditional distribution over the latent

random variables).

Images generated from the VAE (and most other generative frameworks) diverge

from natural images in two distinct ways:

1. Missing high frequency information. Compared to natural data, generated

samples often lack detail and appear blurry. Generative models of natural

data such as images are largely limited to the maximum likelihood setting

where the data was modeled as Gaussian distributed (with diagonal covari-

ance), given some setting of the latent variables. Under a Gaussian, the

quality of reconstruction is essentially evaluated on the basis of a generalized

L2 distance. As a measure of similarity between images, L2 distance does not

closely match human perception. For instance, the same image translated
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by a few pixels could have relatively high L2 distance, yet humans may not

even perceive the difference.

2. Missing semantic information. Human perception is goal driven: we perceive

our environment so that we can interact with it in meaningful ways. This

implies that semantic information is going to be particularly salient to the

human perceptual system. The current state-of-the-art in generative models,

even when they capture high frequency information, produce samples which

often lack semantically-relevant details. Generative models of natural images

often lack a clear sense of “objectness”. It is not enough to capture the

correct local statistics over the data. For example, generative models trained

on faces often produce inconsistencies in gender and identity, which may

be subtle in pixel space but immediately apparent to humans viewing the

samples.

In this work we explore an alternative VAE training objective by augmenting the

standard VAE lower bound on the likelihood objective with additional discriminative

terms that encourage the model’s reconstructions to be close to the data example in

a representation space defined by the hidden layers of highly-discriminative, neural

network-based classifiers. We refer to this strategy as discriminative regularization

of generative models.

In this effort we are heavily inspired by recently introduced texture synthesis

method of Gatys et al. (2015b) as well as the DeepStyle model of Gatys et al.

(2015a). These works showed that surprisingly detailed and semantically-rich

information regarding natural images is preserved in the hidden-layer representations

of ImageNet-trained object recognition networks such as VGG Simonyan and

Zisserman (2014). Our goal is to incorporate this insight into the VAE framework

and to render the synthetic data perceptually closer to the real data.

4.4 VAEs as Generative models of images

In this section we lay out the variational autoencoder (VAE) framework Kingma

and Welling (2013); Rezende et al. (2014) on which we build. The VAE is a neural

63



f1

f2
f3

f4 f5
µφ

Lz

σφ

z g1
g2

g3
g4

µθ

Lx Ld1Ld2Ld3

Ld4 Lŷ
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Figure 4.1 – The discriminative regularization model. Layers f1, f2, f3, d1, d2 and d3 represent
convolutional layers, whereas layers g3, g4 and µθ represent fractionally strided convolutional
layers.

network-based approach to latent variable modeling where the natural, richly-

structured dependencies found in the data are disentangled into the relatively simple

dependencies between a set of latent variables. Formally, let x be a random real-

valued vector representing the observed data and let z be a random real-valued vector

representing the latent variables that reflect the principle directions of variation in

the input data.

4.4.1 The generative model

We specify the generative model over the pair (x, z) as pθ(x, z) = pθ(x | z)pθ(z),

where pθ(z) is the prior distribution over the latent variables and pθ(x | z) is the

conditional likelihood of the data given the latents. θ represents the generative

model parameters. As is typical in the VAE framework, we assume a standard

Normal (Gaussian) prior distribution over z: pθ(z) = N(z | 0, I).

For real-valued data such as natural images, by far the most common conditional

likelihood is the Gaussian distribution: p(x | z) = N(x | µθ(z), diag(σ2
θ)), where

the mean µx(z) is a nonlinear function of the latent variables specified by a neural

network, which following autoencoder terminology, we refer to as the decoder network,
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f(x). In the natural image setting, µθ(z) is parameterized by a CNN (see Figure 4.1)

and σ2
θ is a vector of independent variance parameters over the pixels.

4.4.2 The approximate inference model

Given the generative model described above, inference is intractable, as is

standard parameter learning paradigms such as maximizing the likelihood of the

data. The VAE resolves these issues by introducing a learned approximate posterior

distribution qφ(z | x), specified by another neural network known as the encoder

network, g(z) and parametrized by φ.

Introducing the approximate posterior qφ(z | x) allows us to decompose the

marginal log-likelihood of the data under the generative model in terms of the

variational free energy and the Kullback-Leibler divergence between the approximate

and true posteriors:

log pθ(x) = L(θ, φ;x) +DKL (qφ(z | x)‖pθ(z | x)) (4.1)

where the Kullback-Leibler divergence is given by

DKL (qφ(z | x)‖pθ(z | x)) = Eqφ(z|x)
[
log

qφ(z | x)

pθ(z | x)

]
and the variational free energy is given by

L(θ, φ;x) = Eqφ(z|x)
[
log

pθ(x, z)

qφ(z | x)

]
.

Since DKL (qφ(z | x)‖pθ(z | x)) measures the divergence between qφ(z | x) and

pθ(z | x), it is guaranteed to be non-negative. As a consequence, the variational free

energy L(θ, φ;x) is always a lower bound on the likelihood. As such it is sometimes

called the variational lower bound or the evidence lower bound (ELBO).

In the VAE framework, L(θ, φ;x) is often rearranged into two terms:

L(θ, φ;x) = Lz(θ, φ;x) + Lx(θ, φ;x) (4.2)
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where

Lz(θ, φ;x) = −DKL (qφ(z | x)‖pθ(z))

Lx(θ, φ;x) = Eqφ(z|x) [log pθ(x | z)]

Lx can be interpreted as the (negative) expected reconstruction error of x under

the conditional likelihood with respect to qφ(z | x). Maximizing this lower bound

strikes a balance between minimizing reconstruction error and minimizing the KL

divergence between the approximate posterior qφ(z | x) and the prior pθ(z).

4.4.3 Reparametrization Trick

The power of the VAE approach can be credited to how the model is trained.

With real-valued z, we can exploit a reparametrization trick Kingma and Welling

(2013); Bengio et al. (2013) to propagate the gradient from the decoder network to

the encoder network. Instead of sampling directly from qφ(z | x), z is computed as

a deterministic function of x and some noise term ε ∼ N(0, I) such that z has the

desired distribution. For instance, if

qφ(z | x) = N(z | µφ(x), diag(σ2
φ(x))), (4.3)

then we would express z as

z = µφ(x) + σφ(x)� ε, ε ∼ N(0, I)

to produce values with the desired distribution while permitting gradients to

propagate through both µφ(x) and σ2
φ(x).

4.4.4 The problem with the Independent Gaussian Assump-

tion

The derivation of the variational autoencoder allows for different choices for the

reconstruction model pθ(x | z). However, as previously mentioned the majority of

applications on real-valued data use a multivariate Gaussian with diagonal covariance

matrix as the conditional likelihood of the data given the latent variables Gregor

et al. (2015); Mansimov et al. (2015). Maximizing the conditional likelihood of this
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distribution corresponds to minimizing an elementwise L2 reconstruction penalty.

One major weakness with this approach is that elementwise distance metrics are a

poor fit for human notions of similarity. For example, shifting an image by only a

few pixels will cause it to look very different under elementwise distance metrics

but will not change its semantic properties or how it is perceived by humans Theis

et al. (2015b).

In addition to the issues surrounding elementwise independence, there is nothing

in a Gaussian conditional likelihood that will cause the model to render semantically-

salient perceptual features of the data to be captured by the model.

4.5 Discriminative Regularization

In this section we describe our modification to the VAE lower bound training

objective. Our goal is to modify the VAE training objective to render generated

images perceptually closer to natural images. As previously discussed, generated

images from the VAE (or other generative frameworks) often diverge from natural

images in two distinct directions: (1) by being excessively blurry and (2) by

lacking semantically meaningful cues such as depictions of well-defined objects. We

conjecture that both of these issues can be ameliorated by encouraging the generator

to render reconstructions that match the original data example in a representation

space defined by the hidden layers of a classifier trained on a discrimination task

relevant to the input data.

Let d1(x), d2(x), . . . , dL(x) represent the L hidden layer representations of a

pre-trained classifier. The classifier could be trained on a task specifically relevant

to the data we wish to model. For example, in learning to generate images of faces

we may wish to leverage a classifier trained to either identify individuals Huang

et al. (2007) or trained to recognize certain facial characteristics Liu et al. (2015a).

On the other hand, we could also follow the example of Gatys et al. (2015b) and

use one of the high performing ImageNet trained models such as VGG Simonyan

and Zisserman (2014) as a general purpose classifier for natural images.

In the standard VAE variational lower bound objective, we include a term that

aims to minimize the reconstruction error in the space of the observed data. To
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this we add additional terms aimed at minimizing the reconstruction error in the

space defined by the hidden layer representations, d1, . . . , dL, of the classifier.

Ldisc(θ, φ;x) =− Lz(θ, φ;x) + Lx(θ, φ;x)

+
L∑
l=1

Ldl(θ, φ;x), (4.4)

where

Ldl(θ, φ;x) = Eqφ(z|x) log pθ(dl(x) | z). (4.5)

We take the conditional likelihood of each dl(x) | z to be Gaussian with its mean

µdl(z) defined by forward propagating the conditional mean µx(z) through the layers

of the classifier from d1 to dl:

d1(x) | z ∼ N((d1 ◦ µθ)(z), diag(σ2
d,1)),

d2(x) | z ∼ N((d2 ◦ d1 ◦ µθ)(z), diag(σ2
d,2)),

. . .

dL(x) | z ∼ N((dL ◦ · · · ◦ d2 ◦ d1 ◦ µθ)(z), diag(σ2
d,L)).

The discriminative regularization approach can be considered a kind of multitask

regularization of the standard VAE, where in addition to the standard VAE objective,

we include the additional tasks of predicting each of the hidden layer representations

of a classifier.

We can understand the impact that these additional terms would have on the

VAE parameters by considering matching in the different layers of the classifier.

Since the classifiers we will consider will all be convolutional neural networks, the

different layers will tend to have different characteristics, especially with respect to

spatial translations. Matching the lower layer representations is going to encourage

visual features such as edges to be well-defined and in the right location. The upper

layers of a convolutional neural network classifier have been shown to be both highly

invariant to spatial transformations (particularly translation), while simultaneously

showing high specificity to semantically-relevant stimuli. Matching in the upper

layers will likely de-emphasize exact spatial alignment, but will pressure semantic

elements apparent in the example, such as the identity of objects, to be well matched

between the data example x and the mean of the conditional likelihood µx.
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It is important to assess the impact that the addition of our discriminative

regularization terms have on the VAE. By adding the discriminative regularization

terms we are no longer directly optimizing the variational lower bound.

Furthermore, since we are backpropagating the gradient of the combined objective

Ldisc through the decoder network and into the encoder network (the network

responsible for approximating the posterior distribution), we are no longer directly

optimizing the encoder network to minimize KL (q(z | x), p(z | x)). Doing so implies

that we risk deteriorating our approximate posterior in favor of improving the

example reconstructions (w.r.t the combined objective). One consequence could

be an overall deterioration of the generated sample quality as the marginal q(z) =∫
q(z | x)q(x) dx diverges from the prior p(z).

In our experiments, we did not observe any negative impact in sample quality,

however if such an issue did arise, we could simply have elected not to propagate

the the gradient contribution due to our discriminative regularization through the

encoder network and thus preserve direct minimization of KL (q(z | x), p(z | x))

w.r.t. the parameters of the encoder network.

4.6 Related Work

Recent work has used the structural similarity metric Wang et al. (2004) as an

auxiliary loss function for training variational autoencoders Ridgeway et al. (2015).

They showed that using this metric instead of pixel-wise square loss dramatically

improved human ratings of the generated images. Our approach differs from theirs

in a few ways. First, we use the representations from a discriminatively trained

classifier to augment our objective function, whereas they use a hand-crafted measure

for image similarity. Second, discriminative regularization describes both local and

global properties of the image (the local properties coming from lower layers and the

global properties coming from higher layers), whereas their method only compares

the true image and the reconstructed image around local 11x11 patches centered at

each pixel. An interesting area for future work would be to study which method

does a better job at improving the generation of local data, or if results can be

improved by using both methods simultaneously.
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Recently there has been a focus on alternative measures to be used during

the training of generative models. Probably the most established of these is the

generative adversarial networks (GANs) that leverage discriminative machinery and

apply it to a two player game scenario between a generator and a discriminator

Goodfellow et al. (2014). While the discriminator is trained to distinguish between

true training samples and those generated from the generator, the generator is

trained to try to fool the discriminator. While this joint optimization of the generator

and discriminator is prone to instabilities, the end result are often generated images

that capture realistic local texture. Recent applications of the GAN formalism have

show very impressive results Denton et al. (2015); Radford et al. (2015).

Of all the proposed GAN-based methods, the one that most closely resembles

the approach we propose here is the discriminative VAE Larsen et al. (2015b). In

this work, the authors integrate the VAE within a GAN framework, in part, by

maximizing a lower bound on a representation of the image defined by a given

hidden layer of the GAN discriminator network. The authors show that their

integration of the GAN and the VAE leads to impressive samples.

While generative adversarial networks have been a driving force in the relatively

rapid improvement in the quality of image generation models, there are ways in

which VAEs are preferable. GAN models do not optimize likelihood and are not

trained directly for coverage of the training set, i.e. they use their capacity to

convincingly mimic natural images. On the other hand the VAE more explicitly

encourages coverage by maximizing a lower bound on the log likelihood. Another

disadvantage of GANs is that in their original formulation there is no clear way to

perform inference in the model, i.e. to recover the posterior distribution p(z | x).

However, there has been a few very recent efforts that are working to address this

shortcoming of the GAN framework Makhzani et al. (2015); Larsen et al. (2015b).

4.7 Experiments

We evaluated the impact of the discriminative regularization on CelebA Liu

et al. (2015b). The aligned and cropped version of the CelebA dataset was scaled

from 218× 178 pixels to 78× 64 pixels and center cropped at 64× 64 pixels. We

trained our own classifier to predict all of the labels.
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Figure 4.2 – Face samples generated with and without discriminative regularization. On balance,
details of the face are better captured and more varied in the samples generated with discriminative
regularization.

All VAE models, regularized or not, as well as the CelebA classifier were trained

using Adam and batch normalization. Our architecture closely follows Radford et al.

(2015), with convolutional layers in the encoder and fractionally-strided convolutions

in the decoder. In each convolutional layer in the encoder we double the number

of filters present in the previous layer and use a convolutional stride of 2. In each

convolutional layer in the decoder we use a fractional stride of 2 and halve the

number of filters on each layer.

Evaluating generative models quantitatively is a challenging task Theis et al.

(2015c). One common evaluation metric is the likelihood of held-out samples.

However, the usefulness of this metric is limited. If we compare the log-likelihood

using the independent Gaussian in the pixel space, then we suffer from the limitations

of pixel-wise distance metrics for comparing images. On the other hand, if we

compare using the log-likelihood over the hidden states of the discriminative classifier,

then we bias our evaluation criteria towards the criteria that we trained on.

4.7.1 Samples

Trained models were sampled from by sampling z ∼ pθ(z) and computing

Eqφ(z|x)[p(x | z)] (in our case µθ(z)), which is standard practice in generative
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Figure 4.3 – Face reconstructions with (top row) and without (bottom row) discriminative
regularization. The face images used for the reconstructions (middle row) are from the held-
out validation set and were not seen by the model during training. The architecture and the
hyperparameters (except those directly related to discriminative regularization) are the same
for both models. Discriminative regularization greatly enhances the model’s ability to preserve
identity, ethnicity, gender, and expressions. Note that the model does not improve the visual
quality of the image background, which likely reflects the fact that the classifier’s labels all describe
facial attributes. Additional reconstructions can be seen in the appendix.

modeling work.

Faces in CelebA samples (Figure 4.2) look more “in focus” when discriminative

regularization is used during training.

4.7.2 Reconstructions

Reconstructions were obtained by sampling z ∼ qφ(z | x) and computing

Eqφ(z|x) [p(x | z)] (in our case µθ(z)), which is also standard practice in generative

modeling work.

Using discriminative regularization during training leads to improved recon-

structions (Figure 4.3). In addition to producing sharper reconstructions, this

approach helps maintaining the identity better. This is especially noticeable in the

eyes region: VAE reconstructions tend to produce stereotypical eyes, whereas our

approach better captures the overall eye shape.

4.7.3 Interpolations in the Latent Space

To evaluate the quality of the learned latent representation, we visualize the

result of linearly interpolating between latent configurations. We choose pairs

of images whose latent representation we obtain by computing µφ(x). We then

compute intermediary latent representations z by linearly interpolating between the

latent representation pairs, and we display the corresponding µθ(z).
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5 Shadow Arch. Eyebrows Attractive
Bags under eyes Bald Blurry
Bangs Big Lips Brown Hair
Big Nose Black Hair Bushy Eyebrows
Blond Hair Goatee Gray Hair
Eyeglasses Double Chin Heavy Makeup
Heavy Cheekbones Gender Mouth Open
Mustache Narrow Eyes No Beard
Oval Face Pale Skin Pointy Nose
Recced. Hairline Rosey Cheeks Sideburns
Smiling Straight Hair Wavy Hair
Earrings Wearing Hat Lipstick
Necklace Necktie Young

Table 4.1 – A list of the binary targets that we predict with our celebA classifier.

The resulting trajectory in pixel space (Figure 4.4) exhibits smooth and realistic

transitions between face pose and orientation, hair color and gender.

4.7.4 Explaining Visual Artifacts

In the samples generated from a model trained with discriminative regularization,

we sometimes see unnatural patterns or texturing. In the faces samples, we mostly

observe these patterns in the background. They occur to some extent in nearly

all samples. These patterns are not seen in samples from the standard variational

autoencoders.

One explanation for the visual artifacts is that the variational autoencoder

with discriminative regularization produces unnaturally blurred activations in the

classifier’s convolutional layers in the same way that the standard variational

autoencoder outputs unnaturally blurred images.

To support this hypothesis, we visualize what happens when a convolutional

autoencoder explicitly tries to generate a reconstruction which produces a blurred

representation in the classifier. To do so, we train a convolutional autoencoder on a

batch of 100 examples. The examples are reconstructed as usual, but we propagate

both the input and the reconstruction through the first two layers of the classifier.

The propagated input is then blurred by adding gaussian blur (applied separately to

each filter), and the cost is computed as the squared error between the propagated

reconstruction and the blurred propagated input.
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Figure 4.4 – Latent space interpolations with discriminative regularization. On each row, the
first and last image correspond to reconstructions of randomly selected examples.

Figure 4.5 provides a visual summary of the experiment. We see that when no

blurring is applied to the hidden representation, the autoencoder does a perfect job

of matching the hidden representations (middle left column), which is indicated

by an excellent reconstruction at the input level. When blurring is applied, we see

that the resulting reconstructions (right column) exhibit visual patterns resembling

those of our model’s reconstructions (middle right column).
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Figure 4.5 – From left to right: input examples, convolutional (non-variational) autoencoder re-
constructions (no blurring applied to the classifier’s hidden representations), model reconstructions
(trained with discriminative regularization), convolutional autoencoder reconstructions (blurring
applied to the classifier’s hidden representations).
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4.8 Conclusion

A common view in cognitive science is that generative modeling will play a

central role in the development of artificial intelligence by enabling feature learning

where labeled data and reward signals are sparse. In this view generative models

serve to assist other models by learning representations and discovering causal

factors from the nearly unlimited supply of unlabeled data. Our paper shows

that this interaction ought to be a two-way street, in which supervised learning

contributes to generative modeling by determining which attributes of the data are

worth learning to represent. We have demonstrated that discriminative information

can be used to regularize generative models to improve the perceptual quality of

their samples.
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5 Conclusion

This thesis opens with a high level overview of what generative models are

and how the task can be formalized. We then overview the two most prominent

approaches in generative modeling: likelihood maximization approaches and ad-

versarial approaches. We then motivate the problem by discussing applications of

generative models. After introducing some core concepts necessary for the later

chapters, we give an overview of three recently published papers which focus on new

algorithms for generative modeling and a new application for generative models.

Summarizing a few of the key points from this thesis:

— Generative models have both a qualitative definition and a formal definition

based on minimizing statistical divergence between a real distribution and

an estimating distribution.

— Maximizing likelihood is perhaps the most widely studied method in genera-

tive modeling, yet its limitations and attempts to get around those limitations

are discussed. Autoregressive models and variational autoencoders are dis-

cussed in detail.

— The adversarial approach to generative modeling is discussed, as well as the

progression of methods leading to successful training of GANs in practice. In

particular, the method of injecting noise provides a better theoretical ground-

ing for training GANs, and the gradient penalty and spectral normalization

techniques are better ways of achieving the same effect as noise injection.

— Fortified Networks are introduced as a way of adding simple generative models

(denoising autoencoders) to the hidden layers of a deep neural network, which

makes it possible for the network to map off-manifold points back onto the

manifold. This improves robustness to adversarial examples and allows for

measurement of differences between teacher forcing and sampling modes

when training RNNs.

— GibbsNet is introduced as a new framework for doing inference iterative

generation in an adversarial framework which is inspired by the blocked-gibbs
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sampling procedure for sampling from energy-based models. This framework

allows for iterative improvement in the quality of samples as well as improved

quality inference as the gaussian prior on the latent variables is removed and

replaced with a constraint on the dimensionality of the latent space.

— Discriminative Regularization is proposed as a way of making generative

models correspond to divergences which correspond to categories salient to

human perception, as opposed to solely being divergences which are easy to

define and quantify.

The ability to imagine and conceptualize in the mind things which are not

immediately present in reality has long been seen as a defining feature of human

existence. The field of generative models has made great progress in creating

machines which are also endowed with the ability to imagine. At the same time,

a considerable gap remains between human abilities and the abilities of our best

generative models.
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