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Résumé 
 

L’importance des modifications épigénétiques sur le contrôle de l’expression génique est 

clairement établie dans la littérature. Il demeure cependant incertain si les marques 

épigénétiques modulent l’activité transcriptionnelle ou si ce sont plutôt des conséquences 

découlant de facteurs régulateurs qui modulent préalablement cette activité. Pour ma thèse, j’ai 

investigué le rôle de la méthylation de l’ADN dans le contexte de l’activation du système 

immunitaire inné. Plus précisément, j’ai conduit une analyse intégrant des données de 

méthylation à l’échelle génomique, de modifications d’histones, d’accessibilité à la chromatine 

et d’expression génique sur des cellules dendritiques avant et après une infection provoquée par 

Mycobacterium tuberculosis (MTB). Dans le cadre du projet, je montre que la réponse 

immunitaire à l’infection est associée à la perte de méthylation sur des milliers de sites CpG, 

indépendamment de la prolifération cellulaire. Les déméthylations actives se trouvent 

principalement sur des éléments amplificateurs éloignés des sites d’initiation de la transcription 

et sont fortement associées à l’induction de gènes situés dans leur voisinage. Cependant, une 

analyse longitudinale indique que la plupart des changements d’expression se produisent avant 

les changements perceptibles de méthylation. Une analyse de footprint de l’ADN a révélé que 

le recrutement de facteurs de transcriptions impliqués dans la réponse immunitaire, tel que NF-

κB/Rel, précède les pertes de méthylation observées. Il est intéressant de noter que les niveaux 

de méthylation dans les régions déméthylées ne sont pas rétablis durant l'infection, même pour 

des gènes dont l’expression retourne à l’état basal. Ces résultats suggèrent que la déméthylation 

de l’ADN n’est probablement pas cruciale à la mise en place du programme de régulation central 

enclenché par les cellules du système immunitaire en réponse aux pathogènes. Celle-ci pourrait 

cependant jouer un rôle dans la mémoire épigénétique et pourrait permettre une réponse plus 

rapide à une seconde infection. De manière générale, les résultats ouvrent la porte à l’utilisation 

des régions de méthylation de l’ADN comme bio-marqueur prédictifs d’infections passées et 

présentes. 

Mots-clés: Epigénétique, méthylation de l'ADN, infection, régulation génique 
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Abstract 
 

The importance of epigenetic modifications in the control of gene expression is widely accepted. 

Yet, it often remains unclear whether altered epigenetic patterns themselves invoke 

transcriptional modulation or are instead downstream consequences of regulatory factors. 

During my thesis, I investigated the role of DNA methylation in the regulation of innate immune 

responses. Specifically, I performed an integrated analysis of data on genome-wide DNA 

methylation, histone modifications, chromatin accessibility, and gene expression, in dendritic 

cells (DCs), before and after infection with Mycobacterium tuberculosis (MTB). I demonstrate 

that the immune response to infection is associated with loss of methylation at thousands of CpG 

sites, independent of cell proliferation. Active demethylation was specifically targeted to distal 

enhancer elements and was strongly associated with induction of nearby genes. However, time 

course analysis further indicates that most changes in gene expression in response to infection 

occur prior to detectable changes in DNA methylation. Footprinting analysis revealed that the 

recruitment of immune-related transcription factors, such as NF-κB/Rel, to these regions 

preceded the observed loss in methylation. Interestingly, levels of methylation at differentially 

methylated CpG sites never reverted back to higher levels during the course of infection, even 

among genes for which expression levels return to basal state. Collectively, these results show 

that DNA demethylation is likely not crucial for the establishment of the core regulatory 

program engaged by innate immune cells in response to a pathogen. Instead, it might play a role 

in the establishment of epigenetic memory, which allows for a faster response to a secondary 

infection. More generally, the results from this thesis opens the door for using DNA methylation 

marks as a predictive biomarker of past or present infection. 

Keywords: Epigenetics, DNA methylation, infection, gene regulation  
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1 Introduction 
 

1.1 Epigenetics and chromatin 

The term ‘epigenetics’ was coined by Waddington in 1942 to refer to ‘heritable changes in 

genome function that occur without changes in the DNA sequence’ (Waddington 2012). Despite 

the fact that every cell in a given multicellular organism contains the same genetic information, 

each cell exhibits different functions and morphologies. Knowing the nucleotide sequence alone 

is only a small part of the puzzle and the answer lies in the epigenetic regulation of genes. To 

understand epigenetics requires an understanding of chromatin structure. In eukaryotes, 

chromatin comprises of DNA wrapped ~147 bp around histone octamers (H2A, H2B, H3 and 

H4), which constitutes the nucleosome. Chromatin structure can either be loosely packed into 

euchromatin (open chromatin) or more densely packed into heterochromatin (closed chromatin) 

(Bell et al. 2011). Epigenetic mechanisms, such as DNA methylation and post-translational 

modifications of core histone tails, cooperatively determine chromatin configuration and the 

accessibility of the DNA to the transcription machinery and thus, govern the transcriptional 

regulation of the expression of genes (Berger 2007; Bernstein et al. 2007) (Figure 1). 

 

 

Figure 1. Epigenetic mechanisms of gene regulation. DNA is wrapped around histones and 

the combined loop of DNA and histone proteins is called a nucleosome. Epigenetic 

modifications can occur at the histone tails (including acetylation ‘Ac’ and methylation ‘Me’) 

or directly at the DNA (methylation).  Image taken from (Hoeksema and de Winther 2016). 
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1.2 Histone modifications 

There is a wide range of different modifications in the carboxy- and amino-terminal tails of 

histone proteins that can alter the structure and function of chromatin, including acetylation, 

methylation, phosphorylation, ubiquitylation, and SUMOylation (Berger 2007; Kouzarides 

2007). The recent development of the chromatin immunoprecipitation technique (ChIP) using 

modification-specific antibodies and its adaptation sequencing (ChIP-seq) has revolutionized 

mapping of DNA-protein interactions (Furey 2012). It has provided new insights into the 

genome-wide distribution of histone modifications in many normal and disease-related 

processes (Barski et al. 2007; Consortium 2012; Roadmap Epigenomics et al. 2015). Although 

an in-depth review of histone modifications is outside the scope of this thesis, a few relevant 

modifications (i.e., H3K4me1, H3K4me3, H3K27me3, H3K36me3, H3K9me3, and H3K27ac) 

are described in more details below. 

Histone methylation is associated with either transcriptional activation or inactivation 

(Kouzarides 2007). The effect of histone methylation on chromatin state is dependent not only 

on the specific lysine residue modified, but also on its degree of methylation, with the potential 

addition of one (me1), two (me2), or three methyl groups (me3). For example, histone H3 lysine 

4 trimethylation (H3K4me3) shows increased signals in promoters of genes whereas H3K4me1 

are associated with enhancer elements located far away from their target genes.  It is also well-

documented that H3K9me3 and H3K27me3 are associated with transcriptional repression or 

heterochromatin formation. In some cases, H3K4me3 and H3K27me3 co-exist as "bivalent 

domains" in genes that regulate development of stem cells, keeping these key genes in poised 

states for later activation (Bernstein et al. 2006). In the majority of cases, methylation at the 

aminoterminal domains of H3 and H4 is catalyzed by members of the SET-domain protein 

methyltransferase family (Dillon et al. 2005), and its removal is carried out by JmjC-containing 

lysine demethylases (Shi et al. 2004; Klose et al. 2006; Xiang et al. 2007). 

Lysine residues at the N-terminal of histone tails are also subjected to either acetylation by 

histone acetyltransferase enzymes (HATs), or deacetylation by histone deacetylases (HDACs) 

(Jenuwein and Allis 2001; Kouzarides 2007). Histone acetylation, including histone 3 lysine 27 
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acetylation (H3K27ac), is positively correlated with activation in general. Acetylation removes 

positive charges and reduces the affinity between histones and DNA leading to an open 

chromatin structure, which is accessible to transcription factors. Co-occurrence H3K27ac and 

H3K4me1 marks has been widely used to classify active from inactive/primed (H3K4me1 only) 

enhancers (Creyghton et al. 2010; Calo and Wysocka 2013). 

 

1.3 DNA methylation 

In mammals, DNA methylation occurs primarily at the fifth carbon of cytosine residues that are 

followed by a guanine (CpG dinucleotides). Overall, mammalian genomes are very rich in DNA 

methylation with the exception of regions called CpG islands – CpG-rich regions found at 

promoters or near transcription start sites (TSS) of genes (Meissner et al. 2008; Lister et al. 

2009). More recently, genome-wide DNA methylation analysis have identified lowly-

methylated regions beyond CpG islands, that correspond to distal regulatory elements 

(enhancers, silencers and insulators) (Stadler et al. 2011). DNA methylation is often associated 

with transcriptional repression – for example during differentiation, X chromosome 

inactivation, and imprinting (Suzuki and Bird 2008). Aberrant patterns of DNA methylation can 

also have striking effects on individual health, including well-known links to cancer 

susceptibility and autoimmune disorders (Robertson 2005). Thanks to decades of research, 

many of the proteins and mechanisms involved in DNA methylation have already been 

identified. Processes that regulate DNA methylation are essentially broken down into three 

classes: “writers” are the enzymes that catalyze the addition of methyl groups onto cytosine 

residues, “erasers” modify and remove methyl groups, and “readers” recognize and bind to 

methyl groups to ultimately mediate changes in gene expression.  

 

1.3.1 Writers 

DNA methylation occurs by the addition of a methyl group from S-adenosylmethionine to 

cytosine with the help of DNA methyltransferases (DNMTs) (Goll and Bestor 2005; 
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Schermelleh et al. 2005). There are two types of DNA methyltransferase activities in mammals: 

de novo and maintenance methylation, which are achieved by DNMT3 and DNMT1 

respectively (Figure 2). DNMT1 was the first eukaryotic DNA methyltransferase to be 

discovered (Bestor et al. 1988). DNMT1 seemed to be responsible only for maintaining 

methylation after each round DNA replication, which led to the assignment of DNMT1 as a 

maintenance DNA methyltransferase (Bestor 2000; Goyal et al. 2006). This is supported by 

findings showing that that DNMT1 co-localizes with the replication machinery (Leonhardt et 

al. 1992; Schermelleh et al. 2007). At replication sites, hemimethylated DNA is formed when 

the newly synthesized unmethylated strand pairs with the methylated template strand. 

Strikingly, while virtually all of methylated CpG sites are methylated in both strands, 98% of 

methylated cytosines in non-CpG context are highly asymmetrical with only one of strands 

being methylated (Lister et al. 2009). This suggests that DNMT1 recognizes its substrate 

cytosine residue only if a guanine residue is beside it. 

DNMT3A and DNMT3B are de novo methyltransferases that are responsible for establishing 

cytosine methylation patterns at unmethylated DNA (Okano et al. 1999). Although DNMT3A 

and DNMT3B show considerable functional redundancy in early developmental stages, they 

have different expression profiles in distinct cell types.  Moreover, DNMT3B appears to be 

specialized in particular parts of the chromosome as it engages methylation only at the 

centromeric region (Xu et al. 1999). It has also been proposed that there is a possible cooperation 

between the de novo and the maintenance DNMTs (Siedlecki and Zielenkiewicz 2006). 

DNMT3A and DNMT3B may also participate in the maintenance of methylation by restoring 

methylation at cytosine residues which have been overlooked by DNMT1 during replication. 

There is a third homolog in the DNMT3 family found only in germ cells, called DNMT3L (DNA 

methyltransferase 3-like). Although this protein has been shown to not possess 

methyltransferase activity, it is essential as a regulatory cofactor of DNMT3A and DNMT3B 

(Goll and Bestor 2005).  

The family DNMT2 cytosine methyltransferases is the most strongly conserved among all 

known cytosine methyltransferases and it is ubiquitously expressed in most human and mouse 

tissues. What makes DNMT2 of enigmatic nature is that it lacks methyltransferase activity and 
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does not seem to act as a regulatory factor like DNMT3L – mice, flies and plants deficient of 

DNMT2 do not display any overt phenotype (Goll et al. 2006; Jeltsch et al. 2006). Interestingly, 

DNMT2 acts as a transfer RNA (tRNA) methyltransferase that specifically catalyzes the 

methylation of position 38 in tRNAAsp, tRNAGly and tRNAVal (Goll et al. 2006; Tuorto et al. 

2012). Several reports have further demonstrated that DNMT2-mediated methylation 

contributes to the secondary structure of tRNAs and differential codon usage (Goll et al. 2006; 

Tuorto et al. 2012; Tuorto et al. 2015; Jeltsch et al. 2017; Zhang et al. 2018), suggesting its role 

as a modulator of protein translation. 

 

 
 
Figure 2. Establishment of DNA methylation patterns in mammals. De novo 

methyltransferases DNMT3A and DNMT3B introduce methyl groups (red circles) to the 

cytosine of previously unmethylated CpG dinucleotides on both strands. Replication of 

methylated DNA results in hemimethylated DNA in which the parent strand is methylated while 

the daughter strand is unmethylated. DNMT1 functions as maintenance methyltransferase by 

methylating the hemimethylated form of CpG sites. Image adapted from (Yu et al. 2011). 
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1.3.2 Erasers 

DNA methylation is relatively stable compared with other epigenetic marks such as histone 

modifications. Nevertheless, loss of DNA methylation, or DNA demethylation, has been 

observed in different biological contexts. DNA demethylation is the process of removal of a 

methyl group from nucleotides in DNA and it may take place in a passive or active fashion. 

Passive DNA demethylation takes place in dividing cells. As DNMT1 maintains DNA 

methylation during cell replication, its absence allows newly synthesized DNA strands to be 

devoid of methylation. Active DNA demethylation occurs via direct removal of a methyl group 

independently of DNA replication and therefore can take place in both dividing and non-

dividing cells. So far, there is no known mechanism in mammalian cells that can cleave the 

strong covalent carbon-to-carbon bond that connects cytosine to a methyl group. Instead, active 

demethylation occurs through a series of chemical reactions that revert 5mC back to C. A series 

of recent discoveries has brought clarity on our understanding of active DNA demethylation. 

Until recently, the only known covalent epigenetic modification on DNA was methylation at 

position 5’ of cytosine. A landmark discovery by Tahiliani et al. was made showing that 5mC 

is oxidized to 5-hydroxymethylcytosine (5hmC) by the enzyme ten-eleven translocation (TET) 

family proteins (Tahiliani et al. 2009). More importantly, work from the same group have shown 

that TET proteins and 5hmC may be involved in DNA demethylation – overexpression of TET1 

leads to a decrease in 5mC levels. Since the discovery of TET, 5hmC has taken on a new central 

role in DNA demethylation. Given our current understanding, active demethylation involving 

TET fall into two groups, which both initially involve active modification (AM) of 5mC to 

generate 5hmC (Kohli and Zhang 2013) (Figure 3). In the process of passive dilution (PD), 

unmodified C is regenerated through DNA replication since DNMT1 does not recognize 5hmC 

and therefore cannot maintain it (Inoue et al. 2011; Inoue and Zhang 2011). Alternatively, active 

restoration (AR) requires further enzymatic modification of 5hmC to regenerate unmodified C. 

Specifically, TET can further oxidize 5hmC, yielding 5-formylcytosine (5fC) and 5-

carboxylcytosine (5caC) (He et al. 2011; Ito et al. 2011). 5fC or 5caC is subsequently excised 

by thymine DNA glycosylase (TDG) generating an abasic site as part of the base excision repair 

(BER) process (Fromme and Verdine 2004). Ideally, AM-AR has the advantage of achieving 
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rapid conversion of 5mC to unmodified C and therefore seems particularly well suited to locus-

specific demethylation processes that require a rapid response to environmental stimuli. 
 

 
 

Figure 3. A complete pathway for dynamic cytosine modifications. 5mC bases are 

introduced by DNA methyltransferase (DNMT) enzymes. 5mC is further oxidized to 5-

hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) during 

active DNA demethylation by TET family proteins. In the pathway of active modification 

followed by passive dilution (AM-PD), 5hmC is diluted in a replication-dependent manner to 

regenerate unmodified C. In the pathway of AM followed by active restoration (AM-AR), 5hmC 

is further oxidized by TET proteins to 5fC and then 5caC, which is then excised by TDG and 

repaired by the BER pathway into an unmodified cytosine, generating an abasic site. Image 

taken from (Kohli and Zhang 2013). 
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1.3.3 Readers 

There are potentially multiple ways in which DNA methylation can decrease transcription levels 

or completely turn off genes. One simple way this is accomplished is by directly preventing the 

binding of the transcriptional machinery or transcription factors to their respective regions by 

the methyl groups themselves (Hark et al. 2000; Jaenisch and Bird 2003). Alternatively, 

repression can be achieved via proteins that specifically recognize and bind 5mC. The 

identification of proteins that can read the methylation signal has shed light on how DNA 

methylation play a repressive role in gene expression. The first characterized methyl-binding 

proteins are the methyl-CpG binding domain (MBD) family which consists of five members, 

namely MBD1, MBD2, MBD3, MBD4 and MeCP2 (methyl-CpG-binding protein 2). These 

proteins each contain a conserved MBD domain that confers a high affinity for methylated CpG 

sites (Zhang et al. 1990; Nan et al. 1993; Hendrich and Bird 1998; Wade 2001; Hendrich and 

Tweedie 2003; Jaenisch and Bird 2003). Three of these proteins (MeCP2, MBD1 and MBD2) 

also contain a transcriptional repression domain (TRD) that allows these proteins to interact 

with a variety of repressor complexes and participate in methylation-dependent repression of 

transcription (Meehan et al. 1989; Nan et al. 1993) (Figure 4). The second family of methyl-

binding proteins binds to methylated DNA via a zinc-finger domain and is composed of Kaiso, 

ZBTB4, and ZBTB38 (Prokhortchouk et al. 2001; Filion et al. 2006). Finally, there is the family 

of UHRF (ubiquitin-like, containing PHD and RING finger domain) proteins that includes, 

UHRF1 and UHRF2. These are multidomain proteins that bind methylated cytosines via a SET- 

and RING-associated DNA-binding domain (Hashimoto et al. 2008; Hashimoto et al. 2009). 
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Figure 4. Readers of methylation signal and their potential mechanism in gene repression. 
(A) (Left to right) Transcription factor (TF) is able to bind to unmethylated DNA sequence 

(white circles); methylated CpG sites (black circles) or methyl-CpG-binding domain (MBD) 

proteins interfere with binding of TF. Image adapted from (Trzyna et al. 2012). (B) Graphical 

representation of the domains in the proteins that recognize and bind specifically 

methylcytosines. Image taken from (Bogdanovic and Veenstra 2009). 
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1.4 Mapping the epigenome 

 

1.4.1 ChIP-seq 

The increasing interest in the role of epigenetic processes in development and disease has 

coincided with the advancement of new methods to conduct large-scale and high-resolution 

epigenomic profiling. The most commonly used experimental approach to profile histone 

posttranslational modifications is chromatin immunoprecipitation sequencing (ChIP-seq) 

(Furey 2012). This method uses an antibody against a specific histone modification to 

immunoprecipitate chromatin regions bearing the corresponding modification. The key 

bioinformatics challenge in the analysis of ChIP-seq data is to accurately map thousands to 

millions of reads, corresponding to these regions, to the reference genome (Park 2009). Many 

sequence aligners for solving the problems of mapping sequence reads have been developed, 

such as Bowtie (Langmead et al. 2009) and BWA (Li and Durbin 2009). ChIP-seq is also a 

widely used approach to selectively enrich for DNA sequences bound by specific transcription 

factors, allowing for the generation of genome-wide binding site maps. 

 

1.4.2 BS-seq 

Although there are many DNA methylation analysis methods, bisulfite sequencing (BS-seq) is 

considered to be the gold standard method in DNA methylation studies (Harris et al. 2010; Laird 

2010; Bock 2012). The direct examination of DNA methylation is hindered by the fact, that 

DNA methylation cannot be analyzed by standard DNA sequencing methods, since they are 

unable to distinguish 5-methylcytosine from unmodified cytosine. To overcome this, genomic 

DNA are first treated with sodium bisulfite prior to sequencing (Clark et al. 1994; Clark et al. 

2006). Under appropriate conditions, sodium bisulfite causes the specific deamination of 

cytosine through a sulfonated intermediate, and its conversion to uracil. While unmethylated 

cytosine residues are converted to uracil, methylated cytosine residues are protected from this 

conversion and therefore remains intact. PCR amplification of converted DNA replaces the 
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uracil with thymine (Figure 5). Initially, bisulfite sequencing was used to assay individual loci 

with locus-specific PCR followed by Sanger sequencing. Recently, reduced representation 

bisulfite sequencing has extended the genomic coverage of bisulfite sequencing by using high-

throughput sequencing technology. Reduced representation bisulfite sequencing (RRBS) 

combines restriction digestion with BS for analysis of high CpG density regions. Finally, whole-

genome bisulfite sequencing (WGBS or MethylC-seq) provides single-base resolution and 

quantitative rates of methylation for all of the ~29 million CpG sites in the human genome. 

Mapping of BS-seq reads is performed using as a specific alignment algorithm that implements 

a bisulfite converted reference genome (C-to-T and a G-to-A) (Krueger and Andrews 2011). 

Bisulfite treatment in combination with specially designed genotyping microarrays makes it 

possible to measure DNA methylation levels at a preselected fraction of CpG sites throughout 

the genome. The Illumina 450k Infinium methylation microarray, which contains over 450,000 

CpG sites covering the majority of CpG islands, gene promoters and some enhancer regions, is 

the most commonly used array in human methylation research (Bibikova et al. 2011; Sandoval 

et al. 2011). Moreover, the recently developed MethylationEPIC 850k Infinium methylation 

microarray includes an additional 413,745 CpG positions that are enriched in human enhancer 

regions (Moran et al. 2016) provided by the ENCODE (Consortium 2012) and FANTOM5 

(Lizio et al. 2015) consortia. 

A potential issue with current bisulfite conversion-based methodologies is that they depend on 

the complete conversion of unmethylated cytosines (Wreczycka et al. 2017). Another limitation 

is that bisulfite conversion does not distinguish between 5-methylcytosine (5mC) and 5-

hydroxymethylcytosine (5hmC), the first derivative in the active DNA demethylation pathway 

(Huang et al. 2010; Jin et al. 2010) (Figure 5). Tet-assisted bisulfite sequencing (TAB-seq) 

overcomes this limitation and allows single-CpG resolution mapping of 5hmC (Yu et al. 2012). 
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Figure 5. Detection of methylated DNA by bisulfite conversion. The methyl group covalently 

attached to the 5’position of cytosine protects against bisulfite conversion. Unmethylated 

cystosine (C) is converted to uracil (U; read as thymine (T) when sequenced), but not 5-

methylcytosine (5mC). Bisulfite treatment converts 5-hydroxymethylcytosine (5hmC) to 

cytosine-5-methylenesulfonate (CMS), leaving both 5mC and 5hmC to be detected as C. Image 

adapted from (Yu et al. 2012). 

 

1.4.3 ATAC-seq 

The chromatin accessibility of genomic regions can be profiled with methodologies such as 

DNase I hypersensitive site sequencing (DNase-seq) (Song and Crawford 2010), formaldehyde-

assisted isolation of regulatory elements followed by sequencing (FAIRE-seq) (Giresi et al. 

2007), and assay for transposase-accessible chromatin sequencing (ATAC-seq) (Buenrostro et 

al. 2013). ATAC-seq is now becoming increasingly popular owing to its simple workflow 

involving substantially fewer cells as starting material. The procedure relies on a hyperactive 

Tn5 transposase to simultaneously fragment and insert sequencing adapters into nucleosome-

free regions in the genome. In addition to its ability to capture open chromatin regions, ATAC-

seq also allows the prediction of binding sites for hundreds of transcription factors  

simultaneously, by footprinting (Neph et al. 2012; Buenrostro et al. 2013). Ultimately, 

integration of multiple epigenome profiles (along with DNA sequence variation and gene 

expression data) will maximize the potential of these data to infer function.  
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1.5 Epigenetic regulation and innate immunity 

 

1.5.1 Innate immunity 

Classically, innate immunity is characterized by a rapid, nonspecific  response to an invading 

pathogen (Medzhitov and Janeway 1997). Conversely, an adaptive immune response requires 

more time to mount, is highly specific to the invading pathogen, and forms memory cells that 

will respond faster and more robustly to a secondary challenge against an identical immune 

assault  (Medzhitov and Janeway 1998). Understanding innate immune responses is 

fundamental as it provides the first line of defense against immune challenges (Medzhitov and 

Janeway 2000) and plays an important role in the activation of the adaptive system (Iwasaki and 

Medzhitov 2015). Innate immune cells, such as neutrophils, monocytes, macrophages and 

dendritic cells (DCs), are equipped with various pattern recognition receptors (PRRs), which 

recognize a wide array of conserved pathogen-associated molecular patterns (PAMPs) and 

discriminate between self and non-self molecules. Recognition of immune stimuli activates 

downstream molecular signaling pathways that culminate in the induction of sophisticated 

transcriptional programs involving the regulation of thousands of genes, which are coordinated 

with  the  help  of  signal-dependent  transcription  factors  including  NF-κB/Rel,  AP-1,  

and interferon regulatory factors (IRFs) (Medzhitov 2001; Medzhitov and Horng 2009; Smale 

2010; Smale 2011).  Upon activation, these transcription factors bind to gene regulatory regions 

– promoters, enhancers, or silencers – where they function to initiate recruitment of various 

co-factors required for the activation of inflammatory and/or antiviral response signals. This 

cascade starts the process of pathogen clearance and the subsequent initiation of appropriate 

adaptive immune responses.  

 

1.5.2 Dendritic cells: Linking innate and adaptive immunity 

Dendritic cells (DCs) are professional antigen-presenting cells that have a central role in T cell 

activation and in initiation of adaptive immune responses. DCs express a number of pattern 
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recognition receptors, including Toll-like receptors (TLRs), Nod-like receptors (NLR) and RIG-

I-like receptors (RLR), which recognize a wide array of pathogen-associated molecular patterns 

(Kapsenberg 2003). As immature cells specialized in antigen uptake and processing, DCs reside 

in and traffic through non-lymphoid peripheral tissues, continuously surveying the environment 

for invading microorganisms. As immature DCs capture antigens by endocytosis/phagocytosis, 

they undergo major changes in gene expression programs, evolving from immature, antigen-

capturing cells to mature, antigen-presenting, T cell-priming cells. This process of DC 

maturation, in general, involves down-regulation of antigen internalization, a redistribution of 

major histocompatibility complex (MHC) molecules from intracellular endocytic compartments 

to the DC surface, an increase in the surface expression of costimulatory molecules, secretion 

of chemokines and cytokines, and surface expression of adhesion molecules and chemokine 

receptors (Tan and O'Neill 2005) (Figure 6). 

To present foreign antigens to naïve T cells, DCs must migrate from inflamed or injured 

peripheral tissues to the closest draining lymph nodes through afferent lymphatic vessels. 

Migration of maturing DCs from the periphery into lymphoid tissues are coordinated by 

chemokines that interact with corresponding receptors on DCs (Alvarez et al. 2008). For 

example, immature DCs express CC-chemokine receptor 1 (CCR1), CCR2, CCR5 and CXC-

chemokine receptor 1 (CXCR1) and are attracted to non-lymphoid tissues by their respective 

ligands, which are expressed constitutively or at inflammatory sites. DC maturation results in 

the downregulation of expression of these chemokine receptors and the upregulation of CCR7 

expression. Expression of CCR7 switches DC responsiveness to its ligands, CC-chemokine 

ligand 19 (CCL19) and CCL21, that guide migration to secondary lymphoid organs. Maturation 

of DCs also induces the production of CCL22, CCL17 (i.e., chemokines that attract CCR4-

expressing T cells), and CCL18. DC production of the chemokine CXCL16, in T cell-rich areas 

of lymphoid organs, may also function in promoting interaction between DCs and cytotoxic T 

cells. 

DCs are capable of processing antigens and present peptide in the context of either MHC class 

I or II molecules, which interact with and stimulate cytotoxic T lymphocytes and T helper cells, 

respectively. As DCs mature, they acquire the properties necessary to form and transport 
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peptide-loaded MHC complexes to the cell surface. Antigen transport to the cell surface 

coincides with increased expression of costimulatory molecules, such as CD40, CD80 and 

CD86 (Tan and O'Neill 2005). These molecules amplify T cell receptor signaling and promote 

T cell activation. Moreover, the soluble cytokine profile secreted by DCs varies with the 

different stages of DC development and maturation thus influencing the different effector 

functions characteristic of immature vs. mature DCs (de Saint-Vis et al. 1998). A wide variety 

of cytokines may be expressed by mature DCs and the exact cytokine repertoire expressed will 

depend on the nature of the stimulus, maturation stage of the DC and the existing cytokine 

microenvironment. The distinct cytokine patterns released by mature DCs contribute to the 

commitment of naïve T cells into more specialized T cell subsets. For example, antigens that 

prime DCs to secrete IL-12 will typically induce Th1 differentiation (Heufler et al. 1996; 

Kalinski et al. 1999). Another example is the production of IL-10 and TGF-β, which leads to 

the generation of regulatory T (Treg) cells (Kushwah and Hu 2011). 

 

 

Figure 6. Dendritic cell maturation upon antigen encounter. Maturation of dendritic cells, 

in response to antigen, leads to the redistribution of MHC class II molecules and MHC-peptide 
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complexes from within the endocytic system to the cell surface, the production of several 

cytokines and membrane associated T cell stimulatory molecules, and the remodeling of 

expressed chemokine receptors. These changes allow dendritic cells to migrate to draining 

lymph nodes and induce antigen-specific immune response by activating T cells. Image adapted 

from (Hackstein and Thomson 2004). 

 

1.5.3 Epigenetic control of the innate immune response 

To elaborate an appropriate response to the threat, innate immune cells also undergo important 

epigenetic regulation. In response to immune stimuli, the most labile epigenetic changes 

involve the post-translational modifications of histone tails at promoter and enhancer regions 

(Hazzalin and Mahadevan 2005; Monticelli and Natoli 2013). At promoter regions, histone 

acetylation has been shown to be essential for the activation of many pro-inflammatory genes 

(Schmeck et al. 2005; Qiao et al. 2013). Genome-wide analysis, using ChIP-seq, have revealed 

that enhancer elements (marked by H3K4me1), also contribute to modulation of immune 

responses (Heintzman et al. 2007; Heintzman et al. 2009; Barish et al. 2010; Ghisletti et al. 

2010; Garber et al. 2012; Calo and Wysocka 2013; Kaikkonen et al. 2013; Ostuni et al. 2013; 

Rogatsky and Adelman 2014). The canonical model is that binding of signal-dependent 

transcription factors (TFs) in response to stimuli occurs within cell type-specific repertoires of 

enhancers, that were already established by lineage-determining or “pioneer” TFs during cell 

differentiation (Barish et al. 2010; Ghisletti et al. 2010; Heinz et al. 2010; John et al. 2011; 

Mullen et al. 2011; Natoli et al. 2011; Trompouki et al. 2011; Garber et al. 2012; Kaikkonen et 

al. 2013; Ostuni et al. 2013; Rogatsky and Adelman 2014) (Figure 7). Interestingly, Ostuni et 

al. have reported a new class of distal regulatory elements, coined “latent enhancers” that appear 

after stimulation of mouse macrophages with different stimuli (Ostuni et al. 2013). These 

enhancers are inactive and unmarked at basal state but gain de novo H3K4me1 and H3K27ac 

marks during first encounter with a stimulus.  Interestingly, H3K4me1 persists for a longer 

period of time even when stimulus has ceased and contributes to a faster and stronger 

transcriptional response of nearby genes to a secondary stimulus. 
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In contrast to histone modifications, little is known about the regulatory implications of DNA 

methylation in innate immune responses. DNA methylation has historically been considered to 

be a relatively stable epigenetic mark (Bernstein et al. 2007), and thus unlikely to respond to 

environmental perturbations on a short time scale. Despite its thermodynamic stability, there is 

increasing evidence that DNA methylation can rapidly respond to environmental perturbations, 

as exemplified in post-mitotic cells in the brain during neuronal activation (Weaver et al. 2004; 

Guo et al. 2011); or during monocyte differentiation into macrophages or dendritic cells (Klug 

et al. 2010). Likewise, studies on dividing cells or cell lines also argue for the involvement of 

an active enzymatic mechanism, as the kinetics of the demethylation procedure are too fast to 

be dependent on cell proliferation (Bruniquel and Schwartz 2003; Murayama et al. 2006; Niehrs 

and Schafer 2012). Indeed, the recent description of transitions from 5-methylcytosine (5mC) 

into more labile oxidized intermediates – such as 5-hydroxymethylcytosine (5hmC), 5-

formylcytosine (5fC) and 5-carboxylcytosine (5caC) – by TET enzymes (Tahiliani et al. 2009) 

could provide a suitable mechanism to support rapid response genes.  

Recent studies have reported altered DNA methylation patterns associated with activation of 

innate immune cells.(Marr et al. 2014; Zhang et al. 2014; Cizmeci et al. 2016; Wiencke et al. 

2016). For instance, Marr et al. assessed epigenetic changes in macrophage DNA methylation 

in response to infection with an intracellular protozoa Leishmania donovani (Marr et al. 2014). 

Using 450K methylation array, they identified a set of 443 CpG sites with changes in 

methylation following live L. donovani infection. These epigenetic changes are linked to genes 

that play a critical role in host defense such as the JAK/STAT and Notch signaling pathway. 

Similarly, Sinclair et al. investigated DNA methylation dynamics in Anaplasma 

phagocytophilum-infected human neutrophils using methylated DNA binding domain (MBD) 

enrichment and next generation sequencing approach (MBD-seq) (Sinclair et al. 2015). Within 

24 hours post-infection, marked increases in DNA methylation were observed genome-wide as 

compared with mock-infected controls.  These studies, however, have focused exclusively on 

DNA methylation changes in promoter regions or at relatively few CpG sites in the genome at 

low-resolution, and that such changes are poorly predictive of changes in gene expression levels. 
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Figure 7. Pioneer transcription factors (TFs) organize the enhancer landscape required 
for stimulus-induced transcription in innate immune cells. During differentiation of 

hematopoietic stem cells to macrophages or DCs, lineage-determining or pioneer TFs, such as 

PU.1, open condensed chromatin and promote the deposition of H3K4me1 at enhancers. 

Immune stimuli (e.g., infection) trigger the recruitment of signal-dependent TFs, such as NF-

κB within the cell type-specific enhancer repertoires already established by PU.1 prior to 

immune stimulation (i.e., primed enhancers). NF-κB binding leads to the deposition of the 

H3K27ac activating mark and the subsequent upregulation of stimulus-responsive genes. Image 

taken from (Pacis et al. 2014). 
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1.6 Research objectives 

The main goal of this thesis was to elucidate the role of DNA methylation in the regulation of 

innate immune responses to infection. This work is divided into two chapters addressing 

different questions pertaining to the overarching goal. 

Article I. Bacterial infection remodels the DNA methylation landscape of human dendritic 
cells 

The first aim was to characterize changes in DNA methylation in innate immune cells during 

infection. Using high-throughput sequencing methods, I performed comprehensive 

transcriptional and epigenetic profiling of human dendritic cells, before and after infection with 

a pathogenic strain of Mycobacterium tuberculosis (MTB). A Carboxyfluorescein Diacetate 

Succinimidyl Ester (CFSE) proliferation assay was also performed to determine whether 

changes in methylation were independent of cell division. 

Article II. DNA demethylation plays a limited role in the regulation of innate immune 
responses to infection 

I next sought to assess the causal relationship between changes in DNA methylation and gene 

expression in response to infection. I generated paired data on DNA methylation, gene 

expression, and chromatin accessibility in non-infected and MTB-infected DCs at multiple time-

points. These time-series datasets allowed the dissection of the relative order of regulatory 

events during infection. 
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2 Article I 
 

 
 

Bacterial infection remodels the DNA methylation landscape of human 

dendritic cells 

Pacis A, Tailleux L, Morin AM, Lambourne J, MacIsaac JL, Yotova V, Dumaine A, Danckaert 

A, Luca F, Grenier JC, Hansen KD, Gicquel B, Yu M, Pai A, He C, Tung J, Pastinen T, Kobor 

MS, Pique-Regi R, Gilad Y, Barreiro LB. 

Genome Research 2015 Dec;25(12):1801-11. Epub 2015 Sep 21. 

PMID: 26392366 

 

 

 

 

 

 

 

N.B. Please note that due to space limitations, this section does not include supplementary 

tables 1 to 8. Complete tables are available online within the supplementary information of the 

corresponding publication (https://genome.cshlp.org/content/25/12/1801/suppl/DC1). 
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Abstract 

DNA methylation is an epigenetic mark thought to be robust to environmental perturbations on 

a short time scale. Here, we challenge that view by demonstrating that the infection of human 

dendritic cells (DCs) with live pathogenic bacteria is associated with rapid and active 

demethylation at thousands of loci, independent of cell division. We performed an integrated 

analysis of data on genome-wide DNA methylation, histone mark patterns, chromatin 

accessibility, and gene expression, before and after infection. We found that infection-induced 

demethylation rarely occurs at promoter regions and instead localizes to distal enhancer 

elements, including those that regulate the activation of key immune transcription factors. 

Active demethylation is associated with extensive epigenetic remodeling, including the gain of 

histone activation marks and increased chromatin accessibility, and is strongly predictive of 

changes in the expression levels of nearby genes. Collectively, our observations show that 

active, rapid changes in DNA methylation in enhancers play a previously unappreciated role in 

regulating the transcriptional response to infection, even in non-proliferating cells. 
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Introduction 

The first immune mechanisms recruited to defend against invading pathogens are those 

associated with innate immune cells, such as dendritic cells (DCs) or macrophages. Once they 

sense an intruder, these cells induce sophisticated transcriptional programs involving the 

regulation of thousands of genes, which are coordinated with the help of signal-dependent 

transcription factors, including NF-κB/Rel, AP-1, and interferon regulatory factors (IRFs) 

(Medzhitov 2001; Smale 2010). The regulation of this program is achieved through a series of 

epigenetic changes, which are thought to modulate the access of transcription factors to specific 

DNA regulatory elements (Bierne et al. 2012). 

The most well-studied epigenetic responses to immune stimuli involve the post-translational 

modification of histone tails at promoter and enhancer regions (Bierne et al. 2012; Monticelli 

and Natoli 2013). Histone acetylation has been shown to be essential for the activation of many 

pro-inflammatory genes (Ghisletti et al. 2010; Qiao et al. 2013), whereas increased activity of 

histone deacetylases is often associated with gene repression in the context of inflammation 

(Villagra et al. 2009). Moreover, recent studies suggest that the response of innate cells to 

different immune challenges can result in the appearance of histone marks associated with de 

novo enhancer elements (or latent enhancers) (Kaikkonen et al. 2013; Ostuni et al. 2013). These 

de novo enhancers have been postulated to contribute to a faster and stronger transcriptional 

response to a secondary stimulus (Ostuni et al. 2013). 

In contrast, we still know remarkably little about the role of other epigenetic changes in 

controlling responses to infection. DNA methylation has been particularly understudied, as a 

consequence of the belief that methylation marks are highly stable, and unlikely to respond to 

environmental perturbations on a short time scale (Bierne et al. 2012; Monticelli and Natoli 

2013). Recent work, however, suggests that DNA methylation patterns can rapidly change in 

response to certain environmental cues (Klug et al. 2010; Guo et al. 2011; Dowen et al. 2012; 

Marr et al. 2014), raising the possibility that rapid changes in DNA methylation might play a 

role in innate immune responses. To date, no studies have comprehensively investigated the 

contribution of rapid, active changes in methylation (in contrast to passive changes during cell 
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replication) to the regulatory programs induced by innate immune cells in response to an 

infectious agent. More broadly, the few studies in mammalian cells that demonstrate cell 

division-independent changes in DNA methylation have only focused on a small number of 

CpG sites and, surprisingly, have suggested that such changes are poorly predictive of changes 

in gene expression levels (Bruniquel and Schwartz 2003; Klug et al. 2010; Guo et al. 2011; Marr 

et al. 2014). Here, we report the first comprehensive epigenome and transcriptome analysis of 

monocyte-derived DCs – professional antigen presenting cells that play a central role in bridging 

innate and adaptive immunity – before and after in vitro infection with live pathogenic bacteria. 

All the data generated in this study are freely accessible via a custom web-based browser that 

enables easy querying and visualization of epigenetic profiles at any genomic region of interest 

(http://luis-barreirolab.org/EpigenomeBrowser).  
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Results 

MTB infection induces active changes in DNA methylation in human DCs 

We infected monocyte-derived DCs from six healthy donors with a live virulent strain of 

Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB) in humans. 

Monocyte-derived DCs are ideally suited to study active changes in methylation because they 

are post-mitotic and not expected to proliferate in response to infection (Pickl et al. 1996; 

Ardeshna et al. 2000). To experimentally confirm this assumption, we performed a 

Carboxyfluorescein Diacetate Succinimidyl Ester (CFSE) proliferation assay. This method 

relies on the ability of the highly fluorescent dye carboxyfluorescein to incorporate within cells. 

Following each cell division, the equal distribution of these fluorescent molecules to progeny 

cells results in a halving of per-cell fluorescence levels. We did not detect any decrease in per-

cell fluorescence at 18 hours post-infection, which confirms that DCs do not proliferate after 

MTB infection (Figure 1A). In contrast, we observed high rates of proliferation in our positive 

control, human monocytic THP-1 cells (Figure 1A). 

At 18 hours after infection, we obtained paired data on single base-pair resolution DNA 

methylation levels (using whole genome shotgun bisulfite sequencing: i.e., MethylC-seq) and 

genome-wide gene expression data (using mRNA sequencing: i.e., mRNA-seq) in non-infected 

and MTB-infected DCs. For MethylC-seq data, we generated 8.6 billion single-end reads (mean 

of 648 ± 110 SD million reads per sample; Supplementary Table 1) resulting in an average 

coverage per CpG site of ~9X for each sample. We detected an average of 24 million CpG sites 

in each sample, corresponding to over 80% of CpG sites in the human genome. Genome-wide 

methylation data between biological replicates were strongly correlated, attesting to the high 

quality of the data (Supplementary Figure 1; mean r across all samples = 0.86). 

As expected for mammalian cells, most CpG sites were highly methylated throughout the 

genome except near transcription start sites (TSSs), CpG islands, and putative enhancer 

elements (Supplementary Figure 2A,B). We found a significant negative correlation between 

gene expression levels and methylation levels around TSSs (r = -0.39; P < 1 × 10-16; 

Supplementary Figure 2C,D), highlighting the well-established role of proximal methylation 
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in the stable silencing of gene expression. Principal component analysis of our data along with 

MethylC-seq data from 21 other purified cell types and tissues revealed that the DC methylome 

is closely related to that of other blood-derived cells, particularly cells that share a common 

myeloid progenitor with DCs, such as neutrophils (Supplementary Figure 2E). 

We next assessed the occurrence and the extent to which the response of DCs to a bacterial 

infection is accompanied by active changes in DNA methylation, using the BSmooth algorithm 

(Hansen et al. 2012). We defined MTB-induced differentially methylated regions (MTB-DMRs) 

as regions of 3 or more consecutive CpG sites exhibiting a significant difference in methylation 

between the two groups (P < 0.01) and an absolute mean methylation difference above 0.1 

(Hansen et al. 2014). Using these criteria, we identified 3,271 MTB-DMRs, corresponding to 

both hypermethylated regions (48%) and hypomethylated regions (52%) (Figure 1B; 

Supplementary Table 2).  To independently validate these changes, we generated methylation-

sensitive pyrosequencing data on control versus MTB-infected DCs from 5 completely new 

individuals. We targeted 21 CpG sites that were differentially methylated in the MethylC-seq 

analysis, distributed across 4 hypermethylated (11 CpG sites) and 6 hypomethylated MTB-

DMRs (10 CpG sites; Supplementary Table 3). We were able to validate 100% of the 

hypomethylated CpG sites, with effect sizes similar to or greater than those identified in the 

original bisulfite sequencing analysis (Figure 1B,C; Supplementary Figure 3A). In contrast, 

we were not able to validate any of the hypermethylated CpG sites (Supplementary Figure 
3B), which indicates that most (if not all) active changes in methylation observed in response to 

infection are losses rather than gains in methylation, in accordance with previous findings (Klug 

et al. 2010). 

We found that only 6% of hypomethylated regions overlapped with a promoter (Figure 1D) and 

that the vast majority of hypomethylated regions were located distal to TSSs (median distance 

of ~35 kb from the nearest TSS; Figure 1E; Supplementary Table 2). Hypomethylated regions 

occured in genomic regions that show increased levels of evolutionary conservation 

(Supplementary Figure 4), a finding that supports their functional importance. Moreover, gene 

ontology analysis revealed that these regions are significantly enriched (false discovery rate 

(FDR) < 0.05) near genes known to play a key role in the regulation of immune processes, 
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including the regulation of transcription, signal transduction, and cell apoptosis (Figure 1F; 

Supplementary Table 4). The set of genes near hypo-DMRs included virtually all of the 

“master-regulators” of innate immune responses, including CREB5, REL, NFKB1, IRF2, and 

IRF4. It also included key genes involved in DC-mediated activation of B and T cells (e.g., 

CD83) and the regulation of cell death (e.g., BCL2). 

 

 

Figure 1. MTB-induced changes in methylation in post-mitotic human DCs. (A) CFSE-

labeled THP-1 (left) and CFSE-labeled DCs (right). Proliferation was assayed in either non-

infected cells or cells infected for 18 hours with MTB. Similar results were observed 48 hours 

post-infection (Supplementary Figure 16). (B) Example of a region showing active loss of DNA 

methylation in response to MTB infection (gray shading). The plot shows smoothed methylation 

values (y-axis) for six non-infected (blue) and six MTB-infected samples (red). Thick blue and 

red lines show average methylation levels for non-infected and infected cells, respectively. The 

inset on the right shows methylation levels at two individual CpG sites within the 
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hypomethylated region using bisulfite pyrosequencing as a validation method. (C) Scatter plot 

showing the correlation between MethylC-seq (x-axis; smoothed data) and pyrosequencing data 

(y-axis) for mean differences in methylation between infected and non-infected cells, at 10 CpG 

sites within hypomethylated DMRs. Data are represented as mean ± s.e.m., n = 6 for MethylC-

seq and n = 5 for Pyro-seq. (D) Pie charts showing the distribution of hypomethylated regions 

in different genomic regions. Each MTB-DMR is counted only once: the overlap of a genomic 

region excludes all previously overlapped MTB-DMRs, starting clockwise from promoters 

(TSS ± 500 bp; red). (E) Distribution of distances of MTB-DMRs to the nearest TSS. (F) 

Representative gene ontology (GO) terms enriched among genes associated with 

hypomethylated regions. To demonstrate that the enriched biological processes are largely 

robust to the cutoff used to define MTB-DMRs, we show how these results differ depending on 

the number of differentially methylated CpG sites (P < 0.01) required to call an MTB-DMR 

(from at least three to at least 5 consecutive sites).  
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Active changes in methylation occur in regions enriched for 5-
hydroxymethylcytosine 

The TET family proteins catalyze the conversion of methylated cytosine (5mC) to 5-hydroxy-

methylcytosine (5hmC), and are thus key players in the process of active demethylation. To 

evaluate if 5hmC levels dynamically change in response to MTB infection (as expected if 5mC 

sites must pass through the 5hmC state before demethylation), we generated single base-pair 

resolution maps of 5hmC across the genome using TET-assisted bisulfite sequencing (TAB-

seq) (Yu et al. 2012) in one of the 5 original donor. As previously described for other cell 

populations (Song et al. 2011; Lister et al. 2013), we found markedly higher levels of 5hmC in 

gene bodies of highly expressed genes, consistent with a role for 5hmC in maintaining and/or 

promoting gene expression (Figure 2A) (Hahn et al. 2013; Hon et al. 2014). 

Next, we evaluated if 5hmC marks were enriched within hypomethylated MTB-DMRs. We 

found that regions that became hypomethylated post-infection were already associated with 

significantly higher levels of 5hmC prior to infection (3.6-fold enrichment; Wilcoxon test; P < 

1 × 10-16). Upon infection, 5hmC levels increased even further (Wilcoxon test; P = 1.57 × 10-11; 

Figure 2B,C), suggesting that 5hmC plays an important role in the cascade of events leading to 

active demethylation. The increase in 5hmC appears to be specific to hypomethylated regions 

since no enrichment was observed genome-wide, a result supported by quantitative 

immunocytochemistry data (Figure 2D,E). The striking enrichment of 5hmC within MTB-

DMRs prior to infection strongly suggests that, in addition to its role as a transitory 

demethylation intermediate, 5hmC might also contribute to coordinating the gene expression 

program induced in response to a microbial stimulus.  
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Figure 2. 5hmC is enriched in MTB-DMRs prior to infection. (A) Metagene profiles of 

5hmC levels relative to Ensembl transcripts expressed at different levels in human DCs. We 

grouped genes in four quantiles based on their expression levels on non-infected DCs.  (B) Bar 

plots showing mean 5hmC/C ratios within hypomethylated regions, before (blue) and after 

infection (red). (C) Composite plots of patterns of 5hmC before and after MTB infection ±3 kb 

around the midpoint of hypomethylated regions. (D) 5hmC staining in non-infected (top panel) 

and MTB-infected DCs (bottom panel). 5hmC levels are given by the levels of Alexa 488 (green: 

middle panel). Cells counterstained with DAPI to localize the nucleus are shown in the first 

panel.  (E) Boxplots showing the distribution of 5hmC staining intensity. No significant 

differences were observed between the two groups.  
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MTB-DMRs overlap with enhancer elements that gain activation marks upon 
infection 

Given that MTB-DMRs are primarily found distal to TSSs, we predicted that MTB-DMRs 

would overlap with enhancer regions. To test this hypothesis and evaluate how the chromatin 

states associated with MTB-DMRs dynamically change in response to infection, we collected 

ChIP-seq data for six histone marks (H3K4me1, H3K4me3, H3K27ac, H3K27me3, H3K36me3 

and H3K9me3) in non-infected and infected DCs (Supplementary Table 1) from two additional 

donors. Using these data, we generated genome-wide, gene regulatory annotation maps for non-

infected and MTB-infected DCs using the ChromHMM chromatin segmentation program 

(Figure 3A; Supplementary Figure 5) (Ernst and Kellis 2012). We found that 41% of 

hypomethylated regions overlapped with a ChromHMM-annotated enhancer region (defined by 

the presence of H3K4me1) already present in non-infected DCs, a 7.4-fold enrichment 

compared to genome-wide expectations (χ2-test; P < 1 × 10-16; Figure 3B,C; Supplementary 
Table 2). Slightly higher enrichments (8.1-fold; P < 1 × 10-16) were observed when defining 

chromatin states in MTB-infected DCs. Given the high-resolution of our histone maps, we could 

further distinguish between active and inactive/poised enhancer elements based on the presence 

or absence of the H3K27ac mark, respectively, in addition to H3K4me1 (Heintzman et al. 2007; 

Creyghton et al. 2010; Rada-Iglesias et al. 2011). Overall, we found that MTB infection leads 

to a significant increase of active enhancer elements (and decrease of inactive/poised enhancers) 

colocalizing with MTB-DMRs (Figure 3B,C). 

We next extended our analysis by examining chromatin transition states at hypomethylated 

regions in response to MTB-infection. We found that 42% of hypomethylated regions occurred 

in regions that exhibited infection-dependent changes in chromatin state, a significantly higher 

proportion than expected compared to the rest of the genome (Presampling < 0.001; Figure 3E). The 

chromatin state transitions observed within hypomethylated regions were primarily explained 

by the acquisition of histone activating marks (e.g., H3K27ac) in MTB-infected cells. For 

example, among hypomethylated regions that overlapped with predefined enhancers (i.e., 

enhancers observable in non-infected cells), 85% of those that exhibit a change in chromatin 

state gained an activation mark (H3K27ac or H3K27ac+H3K4me3; Figure 3F,G; 
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Supplementary Figure 6A). This proportion was markedly larger than that observed genome-

wide (37%) (χ2-test; P = 1.1 × 10-59; Figure 3F).  Notably, we also found a large number of 

hypomethylated regions (n = 218; 12.7% of all hypomethylated regions) that overlapped with 

heterochromatin/repressed regions before infection but gained de novo enhancer marks upon 

MTB infection (H3K4me1 (+ H3K27ac + H3K4me3)). The number of de novo enhancers we 

observed among hypomethylated regions was significantly higher than expected by chance 

(Presampling < 0.001; Figure 3D,E,G; Supplementary Figure 6A). The identification of 

enhancers only present in infected DCs resembles recent findings showing that, in response to 

different immune stimuli, mouse macrophages can gain de novo putative enhancer regions that 

were absent in naive cells (Kaikkonen et al. 2013; Ostuni et al. 2013). Interestingly, we observed 

that 5hmC was significantly enriched among de novo hypo-DMRs prior to infection (Wilcoxon 

test; P = 5.27 × 10-149), suggesting that 5hmC might be an early “pre-marking” mechanism of 

enhancer activation, even before the deposition of H3K4me1 marks (Supplementary Figure 
6A,B). 

Finally, we found that MTB-induced activation or de novo gain of enhancer elements at 

hypomethylated regions was associated with the induction of putative enhancer RNAs (eRNAs) 

(Wang et al. 2011) in these intergenic regions (as measured by whole-transcriptome RNA-seq) 

as well as with increased levels of histone marks associated with transcriptional activity 

(Supplementary Figure 7). Moreover, changes in eRNA levels in response to MTB infection 

show a striking positive correlation with changes in gene expression levels of nearby genes (r = 

0.49, P = 7.6 × 10-13; Supplementary Figure 7), in support of a mechanistic link between 

demethylation, eRNA production and the regulation of proximal protein-coding genes (Lam et 

al. 2014).  
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Figure 3. MTB-DMRs overlap with enhancer elements that become active upon infection 
in hypomethylated regions. (A) Combination of histone patterns used to define the 7 chromatin 

states. The precise relative contribution of each chromatin mark to each of the chromHMM-

defined states can be found in Supplementary Figure 3. Note that state 7 was defined by either 

no signal or the presence of either H3K27me3/H3K9me3. (B) Pie charts showing the 

distribution of chromatin state annotations genome-wide (on non-infected cells) and within all 

MTB-DMRs in either non-infected (blue) or MTB-infected cells. The chromatin state codes are 

as defined in (A). (C) Fold enrichments of the different chromatin states within hypomethylated 

regions as compared to genome-wide expectations in non-infected (blue) and MTB-infected 

cells (red). (D) Heatmap of the proportion of hypomethylated regions by chromatin transition 

state. The x-axis represents the chromatin states defined in non-infected DCs and the y-axis the 

chromatin state of the same region in MTB-infected DCs. The two inner boxes indicate two 
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subgroups of hypomethylated regions, predefined enhancer (detectable enhancer in non-infected 

DCs) and de novo enhancers (detectable enhancer only in MTB-infected DCs). The numbers 

inside the cells refer to the proportion of hypomethylated regions that undergo each of the 

highlighted transitions. (E) Top panel: Histogram showing the observed proportion of regions 

that change chromatin state after infection (any transition) when sampling 1000 random sets of 

regions matched to the chromatin states found in non-infected samples within hypomethylated 

regions. Each random set contains the same number of hypomethylated regions as those 

identified in the true data (n = 1,714). The blue triangle represents the observed proportion of 

hypomethylated regions that changed chromatin state in response to MTB infection. Bottom 

panel: Same as above but focusing on regions of the genome labeled as 

heterochromatin/repressed before infection (state 7; n= 790) that gain de novo enhancer marks 

upon MTB infection (states 3, 4, or 5). The blue triangle represents the proportion observed 

within the true set of hypomethylated regions. (F) Bar plots showing the proportion of 

hypomethylated regions that overlap with enhancers and show dynamic changes in chromatin 

state, as defined by the gain or loss of H3K27ac mark. (G) Composite plots of patterns of 

H3K4me1 and H3K27ac ChIP-seq signals ±3 kb around the midpoints of hypomethylated 

regions (x-axis) overlapping with predefined (right) and de novo (left) enhancers. 
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MTB-DMRs are bound by signal-dependent transcription factors 

We next asked if MTB-infection was associated with changes in the levels of chromatin 

accessibility in MTB-DMRs. We mapped regions of open chromatin in non-infected and 

infected DCs based on genome-wide sequencing of regions showing high transposase (Tn5) 

sensitivity (using ATAC-seq in one additional donor) (Buenrostro et al. 2013). Overall, we 

observed that MTB-DMRs colocalize with regions of open chromatin, which further reinforces 

the regulatory potential of these regions (Figure 4A). Interestingly, we found that the response 

to MTB-infection was accompanied by a striking increase in Tn5 sensitivity levels in 

hypomethylated regions, which indicates that the chromatin in these regions became more 

accessible after infection (Figure 4A). This observation is commensurate with our data showing 

the acquisition of active histone marks in these regions, and further supports the idea that 

hypomethylated regions frequently reflect the presence of regulatory elements that become more 

active in response to infection. 

An attractive feature of ATAC-seq data is the ability to identify motif instances occupied by 

transcription factors (TF) within regions of open chromatin (Neph et al. 2012; Buenrostro et al. 

2013). We did so by using a modified version of the Centipede algorithm (Pique-Regi et al. 

2011) specifically devised to test for aggregate differential binding of TFs between two 

experimental conditions. This method, which we call CentiDual, compares the intensity of the 

Tn5 sensitivity-based footprint across all matches to a given motif in the genome, between non-

infected and infected samples (see Methods for details on the statistical model). We found 

compelling evidence for measurable, genome-wide transcription factor activity (i.e., binding to 

the genome; Bonferroni-corrected P < 0.05) in either non-infected or infected DCs for 264 TF 

binding motifs, representing over 200 unique transcription factors (some TFs can bind different 

motifs; Supplementary Table 5). Of these TF binding motifs, we found 55 that were 

differentially bound between non-infected and infected DCs (Bonferroni-corrected P < 0.05; 27 

show increased binding and 28 show decreased binding; Figure 4B). Among TF binding motifs 

showing increased genome-wide binding after infection, we found several that are associated 

with NF-κB/Rel (e.g., NFKB1, REL) and IRFs (e.g., IRF1, IRF2) family members (Figure 4B; 

Supplementary Table 5), both of which play a primary role in the regulation of inflammatory 
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signals in response to infection (Smale 2010). Interestingly, several CTCF motifs showed 

significantly decreased binding in infected DCs (Bonferroni-corrected P < 1.85 × 10-14, 

Supplementary Table 5). CTCF is a well-established transcriptional insulator (Ong and Corces 

2014), raising the possibility that the release of CTCF in response to infection might be an 

important mechanism for the regulation of efficient immune responses. 

We next used CentiDual to test for differential binding within MTB-DMRs. Within 

hypomethylated regions we found increased binding (FDR < 0.1) at 8 TF binding motifs after 

infection. Strikingly, all of these motifs were associated with immune-induced TFs from the 

NF-κB/Rel (e.g., REL; FDR = 1.57 × 10-6), AP-1 (FDR = 4.9 × 10-3), or IRF (FDR = 3.97 × 10-

3) families (Figure 4C; Supplementary Table 5). This result demonstrates that hypomethyated 

regions correspond to places where immune-activated TFs are recruited after infection. In 

accordance with this argument, we found that, in infected DCs, TF binding motifs associated 

with NF-κB/Rel, AP-1, and IRF families were all significantly enriched within hypomethylated 

regions (up to 16-fold; Supplementary Figure 8A). Indeed, in MTB infected DCs, over 50% 

of the hypomethylated regions were bound by at least one of these signal-dependent TFs, which 

corresponds to an 3.8-fold increase relative to chance expectations (based on sampling random 

regions of the genome matched for length and GC content; χ2-test; P = 3.94 × 10-63; 

Supplementary Figure 8B).  
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Figure 4. MTB-DMRs are bound by signal-dependent transcription factors. (A) Tn5-

accessibility profiles before and after MTB infection, ±3 kb around the midpoints of 

hypomethylated regions. (B) Scatterplot comparing transcription factor occupancy score 

predictions between non-infected (y-axis) and MTB infected DCs (y-axis). The size of the dots 

is proportional to the level of statistical significance supporting differential binding in response 
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to MTB infection. Red dots represent TFs that show evidence for increased binding after MTB 

infection and blue dots represent TFs that show evidence for decreased binding after infection. 

The inset on the top right corner shows the genome-wide footprint on NF-kappaB (p50) motif 

(motif ID: M00051) in non-infected (blue) and MTB-infected DCs (red). In this example, the 

footprint in MTB-infected DCs is clearly stronger, which supports increased TF binding of at 

NF-kappaB (p50) motif genome-wide upon MTB infection. (C) TF motifs (motif IDs in 

parenthesis) that show significantly increased binding in hypomethylated regions after MTB 

infection.  
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MTB-DMRs are associated with genes differentially expressed in response to 
MTB infection 

Finally, we asked if genes associated with hypomethylated regions were more likely to change 

expression levels in response to infection. We classified 2,051 and 1,947 genes as significantly 

up- or down-regulated post-infection, respectively (FDR < 1 × 10-4 & |log2 fold change| > 1; 

Supplementary Table 6). We next tested whether genes located near hypomethylated regions 

were more likely to be differentially expressed upon MTB infection relative to all genes in the 

genome. To do so, we first associated each hypomethylated region with a unique gene using the 

following criteria: if a hypomethylated region was located within a gene body, the region was 

assigned to that gene; otherwise, we assigned each hypomethylated region to the gene with the 

TSS closest to the midpoint of the MTB-DMR. Then, we tested for an enrichment of 

differentially expressed (DE) genes among three classes of genes: (i) “hypo-DMR-genes” 

corresponding to the set of genes associated with hypomethylated regions (n = 1,291); (ii) 

“predefined-DMR-genes” corresponding to the set of genes in hypomethylated regions that 

overlapped with predefined enhancer elements (n = 508, a subset of class i), and (iii) “de novo-

DMR-genes” corresponding to the set of genes in hypomethylated regions that overlapped with 

de novo enhancer elements (n = 180, also a subset of class i). 

We found that hypo-DMR-genes (class i) were significantly enriched among DE genes (1.6-

fold, χ2-test; P = 1.07 × 10-17; Figure 5A,B) compared to all genes in the genome, consistent 

with the observation that changes in DNA methylation were globally correlated to changes in 

expression after infection (Supplementary Figure 9). This enrichment was noticeably stronger 

for predefined-DMR-genes (class ii; 1.9-fold, P = 3.37 × 10-14) and even more so for de novo-

DMR-genes (class iii; 2.5-fold, P = 6.52 × 10-14). Indeed, among de novo-DMR-genes, 54% 

were DE, even at the very stringent cutoffs we used to define DE genes (Figure 5A,B). Among 

DE genes associated with hypomethylated regions, 74% were up-regulated after MTB infection 

– substantially more than the 51% of up-regulated genes observed genome-wide (χ2-test; P = 

4.4 × 10-79, Figure 5C,D). This observation was even more pronounced when focusing 

specifically on predefined-DMR-genes (class ii) and de novo-DMR-genes (class iii), for which 
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78% (P = 8.68 × 10-36) and 94% (P = 6.9 × 10-23), respectively, were associated with increased 

expression levels in response to infection (Figure 5C). 

Finally, we performed a paired time course analysis of gene expression and DNA methylation 

levels for 6 hypo-DMRs (associated with 6 immune-related genes: IRF4, REL, TRAFD1, CD83, 

BCL2, NFKB1) aimed at defining the relative order of changes in DNA methylation versus 

changes in gene expression. We found that differential methylation was undetectable at 2 hours 

post-infection, even though half of the genes associated with these sites (3 out of the 6 genes 

tested) were already significantly up-regulated (Figure 5E). Thus, we speculate that 

demethylation is not required for TF binding at enhancer elements or for the subsequent up-

regulation of the associated gene. However, for all CpG sites tested, the magnitude of DNA 

hypomethylation (relative to non-infected cells) increased at later time points until methyl marks 

were almost completely erased in infected cells, even if for most genes the largest fold changes 

in gene expression were observed at earlier time-points (Figure 5E).   
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Figure 5. Differential methylation is coupled to differential gene expression. (A) Proportion 

of differentially expressed genes (y-axis) observed among all tested genes and among genes 

associated with different subgroups of hypo-DMRs. (B) QQ-plot showing that genes in the 

vicinity of hypo-DMRs show stronger statistical evidence for being differentially expressed in 

response to MTB infection (P-values on y-axis) compared to all genes tested (P-values on x-

axis). (C) Proportion of up- and down-regulated genes among DE genes associated with the 

different subgroups of hypo-DMRs. (D) Examples of genes encoding for two key transcription 

factors, NFKB1 (left panel) and IRF4 (right panel) that are strongly upregulated in response to 

MTB infection and for which we identified one or more hypomethylated regions (gray shading) 

that overlap with putative enhancer elements. Normalized read signals for the indicated features 

are shown for non-infected (blue tracks) and infected conditions (red tracks). (K4me1) 

H3K4me1; (K27ac) H3K27ac; (Tn5) transposase-accessible chromatin; (mRNA) mRNA 

expression levels; (E) Changes in DNA methylation levels (y-axis) measured by 

pyrosequencing across four time points after MTB-infection (2, 18, 48, and 72 hours (h)) along 

with the corresponding fold changes in log2 scale (log2FC) in normalized gene expression of 

the associated gene. Blue and red lines represent average methylation levels in non-infected and 

MTB-infected DCs, respectively. All data are represented as mean ± s.e.m., with a minimum of 

three biological replicates per group. PyroMark and real-time PCR data are reported in 

Supplementary Tables 7 and 8, respectively.  
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Discussion 

The possibility that active changes in methylation, particularly demethylation, can occur in 

mammals has been a matter of debate for decades (Ooi and Bestor 2008; Pastor et al. 2013). 

Here, we provide compelling evidence that the response of human DCs to MTB infection is 

accompanied by widespread, rapid loss in DNA methylation. Although many possible 

mechanisms can account for this loss (Kohli and Zhang 2013), the observation that 

hypomethylated regions show increased levels of 5hmC in response to MTB infection strongly 

suggests that the family of TET proteins (TET1, TET 2, and TET3) are involved in this process. 

This possibility is further supported by recent studies showing that TET2 is required for active 

DNA demethylation in human monocytes (Klug et al. 2013) and during brain development 

(Lister et al. 2013). TET2 is also highly expressed in DCs at both the mRNA and protein levels 

(Supplementary Figure 10).  

By integrating our methylation maps with ChIP-seq data on six histone marks we show that 

active demethylation occurs almost exclusively at distal regulatory elements, particularly 

enhancers. This observation, which is robust to the cutoffs used to call MTB-DMRs 

(Supplementary Figure 11), parallels what has been previously described in differentiating 

cells and during developmental processes (Ji et al. 2010; Stadler et al. 2011; Ziller et al. 2013) 

despite the fact that the mechanisms controlling active and passive changes in methylation are 

markedly different (Kohli and Zhang 2013). In contrast to previous studies that also reported 

active changes in methylation (e.g., in response to neuronal activation (Guo et al. 2011); or 

during monocyte differentiation into macrophages or dendritic cells (Klug et al. 2010)), we 

found a strong association between DMRs and changes in gene expression of nearby genes. The 

apparent discrepancy between our results and those previously reported is probably explained 

by the fact that past studies have only investigated active methylation changes in promoter 

regions, which our data suggest are infrequent, or only on a small subset of all CpG sites in the 

(mouse) genome (~1%). Moreover, we decided to focus on differentially methylated regions (3 

or more consecutive differentially methylated CpGs) instead of methylation changes at 

individual CpG sites (Klug et al. 2010; Guo et al. 2011), a decision that likely enriched our 

analysis for DMRs involved in changes in gene expression. In support of this hypothesis, we 
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found that the enrichment for DE genes become stronger as we focus on MTB-DMRs with a 

larger number of differently methylated CpG sites (Supplementary Figure 11). More broadly, 

our results highlight the key importance of using single base-pair resolution maps of the DNA 

methylome in order to fully capture the relationship between changes in methylation and 

changes in gene expression. 

We show that demethylation is often associated with the gain of histone activation marks and 

the recruitment of immune-activated TFs in response to infection. The recruitment of NF-κB 

and other master regulators to hypomethylated regions is likely associated with the opening of 

the chromatin in these regions, although it remains unclear whether the chromatin opens to allow 

the binding of these TFs (i.e., prior to binding) or if the observed increase in chromatin 

accessibility is a consequence of the binding itself. Our results shed some light on this problem. 

Specifically, we observed that changes in gene expression sometimes tend to occur prior to 

detectable changes in DNA methylation, at least in the hypo-DMRs we investigated in our time 

course experiment. These results support a model in which TF binding to enhancers leads to 

gene up-regulation followed by active demethylation, rather than vice-versa, consistent with the 

sequence of events proposed for other cellular contexts (Stadler et al. 2011; Schubeler 2015). 

We note, however, that our pyrosequencing data does not allow us to distinguish between 5-mC 

and 5hmC. Thus, it is possible that 5hmC levels were increased 2 hours post-infection and that 

these changes preceded the activation of certain enhancers, as recently suggested in T cells 

(Ichiyama et al. 2015). More generally, we cannot completely exclude the possibility that 

demethylation occurred prior to changes in gene regulation, but only in a small proportion of 

the cells (1 – 2%, based on the sensitivity threshold of pyrosequencing assays: (Tost and Gut 

2007), making it difficult to detect at the 2 hour time point. Under this scenario, demethylation 

in only a few cells could account for the observed changes in gene expression. However, we 

have previously shown that >30% of DCs uptake MTB bacteria after only 1 hour post-infection 

using the same protocol (Barreiro et al. 2012), and in single-cell RNA-seq data from dendritic 

cells, >50% are transcriptionally responsive to immune challenge (Shalek et al. 2014). Thus, it 

seems unlikely that our results reflect a response driven by only a small minority of cells. 

Importantly, even if TF binding instigates changes in methylation, binding alone is not 
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sufficient: the vast majority (>99%) of binding events induced by infection occur at regions that 

do not change methylation (Supplementary Figure 12). 

Finally, there is increasing evidence that, after a first encounter with a pathogen or other immune 

stimulus, innate immune cells keep such attacks “in memory.” As a result, they are able to mount 

faster and stronger gene transcriptional responses upon restimulation and exhibit increased 

resistance to secondary infection. This process, termed trained immunity (Monticelli and Natoli 

2013; Quintin et al. 2014; Saeed et al. 2014), has been attributed to epigenetic reprograming at 

the level of histone H3 methylation based on the observation that distal regulatory elements that 

gain de novo H3K4me1 (i.e., de novo enhancer marks) in response to immune activation 

generally do not lose this mark after the stimulation has ceased (Ostuni et al. 2013). Although 

epigenetic programming through histone modifications might be an important factor in trained 

immunity, our results raise the possibility that changes in DNA methylation might also 

contribute to short-term memory in innate immune cells. Indeed, changes in DNA methylation 

might be ideally suited as a mechanism of epigenetic memory since these changes are expected 

to be thermodynamically more stable and longer lasting than changes in histone marks. In 

support of this idea, we observed that the magnitude of DNA hypomethylation gradually 

increased with time since infection, and never reverted back to higher levels during our 72-hour 

time course experiment. Moreover, we show that the gain of de novo enhancers – assumed to 

account for trained immunity – often occurs concomitantly with the loss of DNA methylation 

in the same regions. Our results thus raise the possibility that trained immunity might not only 

be due to post-transcriptional changes in histone marks but also, and possibly primarily, due to 

changes in DNA methylation.  
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Methods 

Biological material and sequencing libraries 

Details of the experimental and statistical procedures can be found in the Supplementary 

Methods section. Blood samples from healthy donors were obtained from Indiana Blood Center. 

A signed written consent was obtained from all of the participants and the project was approved 

by the ethics committee at the CHU Sainte-Justine (protocol #4023). Blood mononuclear cells 

from each donor were isolated by Ficoll-Paque centrifugation and blood monocytes were 

purified from peripheral blood mononuclear cells (PBMCs) by positive selection with magnetic 

CD14 MicroBeads (Miltenyi Biotec). Monocytes were then derived into DCs as previously 

described (Barreiro et al. 2012) and subsequently infected with MTB for 18 h at a multiplicity 

of infection of 1-to-1. For the ChIP-seq and ATAC-seq experiments, we used heat-killed 

bacteria (5-to-1 ratio), which we show to lead to virtually the same transcriptional response at 

18 hours to that observed with live MTB (r = 0.91; Supplementary Figure 13). RNA-seq libraries 

were prepared using the TruSeq RNA Sample Prep Kit v2 or the Illumina Total Stranded RNA 

Library kit, as per the manufacturer’s instructions. MethylC-seq libraries were generated by 

ligation of methylated sequencing adapters to fragmented genomic DNA followed by gel 

purification, sodium bisulfite conversion and six cycles of PCR amplification. TAB-seq libraries 
were generated as previously described (Yu et al. 2012) and ChIP-seq libraries for the six histone 

marks were prepared following the Illumina protocols, with minor modifications (see 

Supplementary Methods). ChIP-seq signals from the two biological replicates were highly 

concordant (mean r = 0.94 and range = 0.87-0.99; Supplementary Figure 14) and were combined 

for all analysis. Finally, ATAC-seq libraries were generated from 100,000 cells, as previously 

described (Buenrostro et al. 2013). Sequencing was performed using the Illumina HiSeq 2000 

or 2500, as per the manufacturer’s instructions 

CFSE proliferation assay 

DCs and THP-1 cells were covalently labeled with Carboxyfluorescein Diacetate Succinimidyl 

Ester (CFSE) (Life Technologies) as described in detail elsewhere (Quah and Parish 2010). 

Briefly cells were washed with PBS and resuspended with 5 mM CFSE. After a 5 min incubation 
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at room temperature, cells were thoroughly washed with PBS containing 5% FCS before plating 

in complete culture medium. 

5hmC staining 

The protocol was adapted from Santos et al. (Santos et al. 2003). DCs were cultured on poly-L-

lysine-coated coverslips and fixed for 30 min in 4% paraformaldehyde in PBS and 

permeabilized with 0.2% Triton X-100 in PBS for 30 min at room temperature (RT). Cells were 

then washed with 0.05% Tween 20 in PBS and were treated with 1 M HCl plus 0.1% Triton X-

100. After 30 min at 37°C, cells were incubated with 100 mM Tris/HCl (pH 8.5) for 30 min and 

blocked for 2 h in PBS with 1% BSA, 0.05% Tween-20 and 2% goat serum. Cells were 

incubated with 5-Hydroxymethylcytosine antibody (ActiveMotif), followed by Alexa 488 goat 

anti-rabbit antibody (Life Technologies) for 1 h at RT. The slides were mounted with 

Fluoromount G (SouthernBiotech), and cells counterstained with DAPI to localize the nucleus. 

A laser-scanning microscope (Zeiss LSM 700) in the tile scan mode was used to capture a 

mosaic of images. Fluorescence was quantified using the Fiji software. Average fluorescence 

estimates were calculated from 1,769 non-infected cells and 1,532 MTB-infected cells.  

Read processing and alignment 

Sequencing data was processed using the Illumina analysis pipeline and FASTQ format reads 

were aligned to the human reference genome (GRCh37/hg19) using Bowtie 2 (Langmead and 

Salzberg 2012). Methylation levels for each CpG site were estimated by counting the number 

of sequenced C (‘methylated’ reads) divided by the total number of reported C and T 

(‘unmethylated’ reads) at the same position of the reference genome using the bismark package 

(Krueger and Andrews 2011). The summarized methylation estimates of strand-merged CpG 

sites were used to identify differences in methylation between non-infected and infected samples 

using the R package BSmooth (Hansen et al. 2012). RNA-seq based gene expression levels were 

estimated using HTSeq and differently expressed genes following MTB infection of DCs using 

the R package DESeq2 (Anders et al. 2013).  ChromHMM (Ernst and Kellis 2012)  was used to 

segment the genome into different chromatin states based on six histone modifications and the 

ChIP input. The ChromHMM model was learned separately for both infected and non-infected 
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DCs (main text) or using a unified model that learns and defines chromatin states in both infected 

and non-infected DCs at the same time (Supplementary Figure 15).  

ATAC-seq data processing and footprinting analysis 

Footprinting analyses were performed using a modified version of the Centipede algorithm 

(Pique-Regi et al. 2011) specifically devised to test for differential binding between two 

experimental conditions.  To determine which TFs were active in the first step, we calculate a 

Z-score corresponding to the PWM effect in the prior probability in Centipede’s logistic model 

and we determined as active those that had a Bonferroni-corrected P < 0.05. The Z-score 

corresponds to the  parameter in: 

 

 where  represent the prior probability of binding in Centipede’s model in motif location . 

In the second step, we first trained Centipede assuming that the footprint was bound in the two 

conditions. Then, we fixed the model parameters and generated a likelihood ratio and posterior 

probability  for each condition  separately and for each site . To detect if the footprint was 

more active in one of the two conditions, we fit a logistic model that included an intercept for 

each condition (  and ), the PWM effect , and PWM times the treatment effect : 

 

where  is an indicator variable that takes the value 1 if t = “treatment” and 0 if t = “control’’. 

We then calculated a Z-score for the interaction effect , corresponding to the evidence for 

condition specific binding. 

Data visualization in the Immune Epigenome Browser 

The browser, implemented using the WashU Epigenome Browser web interface (Zhou and 

Wang 2012), can be accessed at http://luis-barreirolab.org/EpigenomeBrowser. Along with 

RefSeq gene annotations, it includes 25 data tracks showing (i) the genomic location of MTB-
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DMRs; (ii) smoothed site-specific 5mC values; (iii) 5hmC values; (iv) all histone mark ChIP-

seq read signals (H3K4me3, H3K4me1, H3K27ac, H3K27me3, H3K36me3, and H3K9me3); 

(v) Tn5-transposase (i.e., chromatin accessibility) read signals; (vi) mRNA read signals; and 

(vii) predicted binding sites for the 55 transcription factors that significantly change genome-

wide binding levels in response to MTB infection. All data sets are shown for both non-infected 

(NI) and MTB-infected (MTB) conditions with respect to the GRCh37/hg19 reference 

sequence. Note that for ease of visualization, several tracks are not shown under default 

parameters. These can be added by going to: Tracks  Custom tracks  List of all. 

Data access 

Data generated in this study have been submitted to the NCBI Gene Expression Omnibus (GEO; 

http://www.ncbi.nlm.nih.gov/geo/) under accession numbers GSE64173 (ATAC-seq), 

GSE64175 (ChIP-seq), GSE64181 (TAB-seq), GSE64182 (wtRNA-seq), GSE64179 (mRNA-

seq), and GSE64177 (MethylC-seq). PyroMark and real-time PCR data are reported in 

Supplementary Tables 7 and 8, respectively.  
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Supplementary Methods 

In this section we repeat some of the text from the Methods section of the main paper in order 

to have a comprehensive and uninterrupted description of the study design and statistical 

analysis. 

Sample collection 

Blood samples were obtained from the Indiana Blood Center. A signed written consent was 

obtained from all of the participants and the project was approved by the ethics committee at 

the CHU Sainte-Justine (protocol #4023). All individuals recruited in this study were healthy 

males of European descent between the ages of 21 and 55 years old. We decided to only focus 

on males to limit variation in DNA methylation levels due to sex-specific differences.  

Mycobacterium tuberculosis preparation and infection of DCs 

Peripheral blood mononuclear cells (PBMCs) were isolated from buffy coats by Ficoll-Paque 

centrifugation. Blood monocytes were then purified from PBMCs by positive selection with 

magnetic CD14 MicroBeads (Miltenyi Biotech). Pure monocytes were cultured for 5 days in 

RPMI 1640 (Invitrogen) supplemented with 10% heat-inactivated FCS (Dutscher), L-glutamine 

(Invitrogen), GM-CSF (20 ng/mL; Immunotools), and IL-4 (20 ng/mL; Immunotools). Cell 

cultures were fed every 2 days with complete medium supplemented with the cytokines 

previously mentioned. Before infection, we systematically checked the 

differentiation/activation status of the monocyte-derived DCs by flow cytometry, using 

antibodies against CD1a, CD14, CD83, and HLA-DR. Only samples presenting the expected 

phenotype for non-activated DCs – CD1a+, CD14-, CD83-, and HLA-DRlow – were used in 

downstream experiments. The resulting monocyte-derived DCs were then infected with MTB 

for 18 h at a multiplicity of infection of 1-to-1, as previously described (Barreiro et al. 2012). 

For biosecurity reasons the ChIP-seq and ATAC-seq experiments were performed using heat-

killed bacteria instead of live MTB. In order to evaluate the extent to which using heat-killed 

bacteria could result in a different transcriptional response to that induced by live MTB, we used 

the Illumina HumanHT-12 v4 Expression BeadChip array to compare the genome-wide 

transcriptional responses observed in DCs in response to live MTB to those observed when DCs 
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from the same donors were exposed to different amounts of heat-killed MTB bacteria. Low-

level microarray processing including normalization of the data and variance stabilizing 

transformation were performed as previously described (Barreiro et al. 2012). We found that 

using the equivalent of 5 heat-killed bacteria to 1 DC leads to virtually the same transcriptional 

response at 18 hours to that observed with live MTB (r = 0.91; Supplementary Figure 13). 

CFSE proliferation assay 

DCs and THP-1 cells were covalently labeled with Carboxyfluorescein Diacetate Succinimidyl 

Ester (CFSE) (Life Technologies) as described in detail elsewhere (Quah and Parish 2010). 

Briefly cells were washed with PBS and resuspended with 5 mM CFSE. After a 5 min incubation 

at room temperature, cells were thoroughly washed with PBS containing 5% FCS before plating 

in complete culture medium. 

DNA and RNA Extractions 

DNA from infected and non-infected DCs was extracted using the PureGene DNA extraction 

kit (Gentra Systems). Total RNA was extracted from the same samples using the miRNeasy kit 

(Qiagen). RNA quantity was evaluated spectrophotometrically, and the quality was assessed 

with the Agilent 2100 Bioanalyzer (Agilent Technologies). Only samples with no evidence for 

RNA degradation (RNA integrity number > 8) were kept for further experiments. 

MethylC-seq library preparation and sequencing 

DNA from infected and non-infected DCs (6 ug) was spiked with 30 ng of unmethylated cl857 

Sam7 Lambda DNA (Promega, Madison, WI) and sonicated to an average length of ~100bp 

using a Covaris ultrasonicator under the following settings for 16 cycles: Duty cycle: 10%; 

Intensity: 5; Cycles/burst: 100. The sonicated product was then subjected to repair of 3’ and 5’ 

ends followed by the addition of a non-templated dA-tail before ligation to cytosine-methylated 

adapters provided by Illumina (Illumina, San Diego, CA), as per manufacturerʼs instructions for 

genomic DNA library construction.  Adapter-ligated DNA of 100-200 bp was isolated by 2% 

agarose gel electrophoresis, and sodium bisulfite conversion was performed on the resulting 

sample using the MethylCode™ Bisulfite Conversion Kit (Invitrogen) as per manufacturer’s 

instructions. Half of the bisulfite-converted, adapter-ligated DNA molecules was enriched by 
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six cycles of PCR with the following reaction composition: 2.5 U of uracil-insensitive 

PfuTurboCx Hotstart DNA polymerase (Agilent), 5 μl 10X PfuTurbo reaction buffer, 25 μM 

dNTPs, 1 μl PE Primer 1.0 (Illumina), 1 μl PE Primer 2.0 (Illumina) (50 μl final volume). The 

thermocycling parameters were: 95ºC 2 min, 98ºC 30 sec, then 6 cycles of 98ºC 15 sec, 60ºC 

30 sec and 72ºC 4 min, ending with one 72ºC 10 min step. The reaction products were purified 

using the QIAquick PCR spin column (Qiagen). Two separate PCR reactions were performed 

on subsets of the adapter-ligated, bisulfite-converted DNA, yielding two independent libraries 

from the same biological sample.  The quality of the libraries was checked on a Bioanalyzer 

followed by quantification of the libraries by qPCR using the KAPA Library Quantification Kit 

prior to sequencing.  Samples were sequenced on an Illumina HiSeq 2000 using 50- and 59-bp 

single-end reads. The sodium bisulfite non-conversion rate was calculated as the percentage of 

cytosines sequenced at cytosine reference positions in the Lambda genome.  

TAB-seq library preparation and sequencing 

TAB-seq libraries were performed as previously described (Yu et al. 2012). Genomic DNA was 

spiked with 0. 5% of M. SssI methylated lambda DNA and 0.25% of 5hmC spike-in control 

(where all cytosines were 5hmC) and then sonicated to 200-500bp with a Covaris ultrasonicator. 

The M. SssI methylated lambda DNA and the 5hmC spike-in control were used to evaluate the 

conversion rate of C/5mC and protection rate of 5hmC, respectively (see TAB-seq data 

processing section). The mixed genomic DNA was glucosylated in 50 mM HEPES (pH 8.0), 25 

mM MgCl2, 2 μM βGT and 200 μM UDP-Glc at 37 oC for 1.5 h. The glucosylated DNA was 

then purified with QIAquick PCR purification Kit (Qiagen) and eluted in Milli-Q water. The 

oxidation reactions were performed in multiple 50-μl solution containing 50 mM HEPES (pH 

8.0), 100 μM ammonium iron (II) sulfate, 1 mM α-ketoglutarate, 2 mM ascorbic acid, 2.5 mM 

DTT, 100 mM NaCl, 1.2 mM ATP, 10 ng/μl sheared genomic DNA and 3 μM recombinant 

mTET1. After incubating the reaction at 37 oC for 1.5 h, 1 μl proteinase K (20 mg/ml) was 

added, which was followed by another 1 h incubation at 50 oC. The oxidized genomic DNA was 

cleaned up with Micro Bio-Spin 30 Columns (Bio-Rad) first, then applied to QIAquick PCR 

purification kit (Qiagen). The purified DNA is eluted in EB buffer. After the treatment, we 

performed bisulfite conversion and library preparation following a protocol identical to that for 
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the MethylC-seq libraries (described above). Samples were sequenced on an Illumina HiSeq 

2000 using 100-bp paired-end reads.  

5hmC staining 

The protocol was adapted from Santos et al. (Santos et al. 2003). DCs were cultured on poly-L-

lysine-coated coverslips and fixed for 30 min in 4% paraformaldehyde in PBS and 

permeabilized with 0.2% Triton X-100 in PBS for 30 min at room temperature (RT). Cells were 

then washed with 0.05% Tween 20 in PBS and were treated with 1 M HCl plus 0.1% Triton X-

100. After 30 min at 37°C, cells were incubated with 100 mM Tris/HCl (pH 8.5) for 30 min and 

blocked for 2 h in PBS with 1% BSA, 0.05% Tween-20 and 2% goat serum. Cells were 

incubated with 5-Hydroxymethylcytosine antibody (ActiveMotif), followed by Alexa 488 goat 

anti-rabbit antibody (Life Technologies) for 1 h at RT. The slides were mounted with 

Fluoromount G (SouthernBiotech), and cells counterstained with DAPI to localize the nucleus. 

A laser-scanning microscope (Zeiss LSM 700) in the tile scan mode was used to capture a 

mosaic of images. Fluorescence was quantified using the Fiji software. Average fluorescence 

estimates were calculated from 1,769 non-infected cells and 1,532 MTB-infected cells.  

Western blotting 
Cells were lysed in RIPA buffer (Life Technologies) containing complete protease inhibitor 

cocktail (Roche) and protein concentration was determined by the BCA protein assay. Equal 

amounts of protein (250 ng protein/lane) were separated using SDS-PAGE and subsequently 

transferred to Immobilon-P membrane (Millipore). Membranes were blocked in TTBS /5% non-

fat dry milk powder and incubated with rabbit anti-TET2 antibody (GeneTex) and HRP-

conjugated goat anti-rabbit immunoglobulins (Amersham). 

Quantitative real-time PCR 

First-strand cDNAs were generated from 500 ng of total RNA using qScript™ cDNA SuperMix 

(Quanta Biosciences) in a final reaction volume of 10 µl. Expression levels were determined 

using TaqMan® gene expression assays (Life technologies), with probes specifically 

hybridising TRAFD1 (Hs00198630_m1), IRF4 (Hs01056533_m1), REL (Hs00968440_m1), 

CD83 (Hs00188486_m1), NFKB1 (Hs00765730_m1) and BCL2 (Hs00608023_m1). 

Normalization was performed using an endogenous housekeeping gene encoding GAPDH 
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(Hs02758991_g1). PCR reactions were performed in a final volume of 10 μl, containing 10 ng 

of cDNA, 1X of probe and 1X of TaqMan® Fast advanced Master Mix (Life technologies). 

PCR cycle parameters were 50°C for 2 min, 95°C for 20 s, 40 cycles of 95°C for 1 s and 60°C 

for 20 s. Common threshold fluorescence for all the samples was set into the exponential phase 

of the amplification and determined the CT, corresponding to the number of amplification cycles 

needed to reach this threshold. Relative gene expression quantification was performed using the 

2−ΔCT method.  

Bisulfite pyrosequencing 

PyroMark Assay Design 2.0 (Qiagen, Inc.) software was used to design the bisulfite 

pyrosequencing assay covering the targets regions. DNA was subjected to bisulfite conversion 

using the EZ DNA Methylation Kit (Zymo Research). HotstarTaq DNA polymerase kit (Qiagen, 

Inc.) was used to amplify the target regions using the biotinylated primer set with the following 

PCR conditions: 15 minutes at 95°C, 45 cycles of 95°C for 30s, 58°C for 30s, and 72°C for 30s, 

and a 5 minute 72°C extension step. Streptavidin-coated sepharose beads were bound to the 

biotinylated-strand of the PCR product and then washed and denatured to yield single-stranded 

DNA. Sequencing primers were introduced to allow for pyrosequencing (Pyromark™ Q96 MD 

pyrosequencer, Qiagen, Inc.). 

RNA-seq library preparation and sequencing 

RNA-seq libraries for the six samples for which we collected MethylC-seq were generated via 

polyA+ selection of mRNA from total RNA using the TruSeq RNA Sample Prep Kit v2 

(Illumina). In addition, for the two individuals from whom we collected histone mark ChIP-seq 

data, we also performed RNA-seq on the whole transcriptome following ribosomal depletion 

using the Ribo-Zero Gold depletion and the Illumina Total Stranded RNA Library kits 

(Illumina). We did so in order to be able to capture enhancer RNAs, which are usually non-

polyadenylated (Kim et al. 2010). RNA-seq libraries were sequenced as 50-bp single-end 

(polyA+ fraction) and 100-bp paired-end reads (ribo-minus) on an Illumina HiSeq 2500. 
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ChIP-seq library preparation and sequencing 

Samples from infected and non-infected DCs from two individuals were crosslinked with 1% 

w/v formaldehyde for 10 min at RT and immediately quenched for 5 min with 125 mM Glycine 

at RT. The formaldehyde fixed samples were then sonicated to 100-400 bp using a Bioruptor 

(Diagenode) and then ChIP-DNA prepared using the IP-Star Compact (Diagenode) Indirect 

method with an Antibody-Antigen incubation of 10 hr, Bead incubation of 2 hr, and 4x 20 min 

wash steps. Approximately 1 million cells were used for each ChIP and ~50,000 cells for the 

input. The following antibodies were used: H3K4me1 (Company: CST, Cat. No.: 5326P, Lot 

No.: 1), H3K4me3 (CST, 9751BC, 7), H3K9me3 (MABI, 0318, 13001), H3K27me3 (MABI, 

0323, 13001), H3K27ac (Abcam, Ab4729, GR119051), and H3K36me3 (MABI, 0333, 12003). 

ChIP and Input libraries were prepared using the Illumina TruSeq Nano DNA kit, with 

alterations including: PCR enrichment (14 cycles) prior to size selection and use of the 

PippinPrep method (SAGE Science) instead of the SPRI method for size selection (200-400 bp). 

Libraries were sequenced on an Illumina HiSeq 2000. We pooled 8 libraries per lane and 

sequenced the lane twice to reduce the possibility of lane effects. Each library was sequenced 

using 50-bp single-end reads.   

ATAC-seq library preparation and sequencing 

ATAC-seq libraries were generated from 100,000 cells, as previously described (Buenrostro et 

al. 2013) and sequenced on an Illumina HiSeq 2500 using 100-bp paired-end reads. 

MethylC-seq data processing 

We used Trim Galore (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to 

trim off adapter sequences incorporated in the read and remove bases with a Phred base quality 

score below 20. PCR duplicates were removed using a Perl script that is part of the Bismark 

package (deduplicate_bismark_alignment_output.pl). The resulting reads were mapped to the 

human reference genome (GRCh37/hg19) and lambda phage genome using Bismark (Krueger 

and Andrews 2011) (with the options -p 12 -N 1), which uses Bowtie 2 (Langmead and Salzberg 

2012) and a bisulfite converted reference genome (C-to-T and a G-to-A) for read mapping. Only 

reads that had a unique alignment and a maximum of one mismatch were retained. The context 

of each C was determined, which allowed us to classify each C of the genome as CpG, CHH, or 
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CHG, where H is either an A, T, or C nucleotide. Methylation levels for each CpG site were 

estimated by counting the number of reported C (‘methylated’ reads) divided by the total number 

of reported C and T (‘methylated’ plus ‘unmethylated’ reads) at the same position of the 

reference genome using Bismark’s methylation extractor tool. The same strategy was also 

applied for non-CpG methylation (CHG context, where H is either an A, T, or C nucleotide). 

We performed a strand-independent analysis of CpG methylation where counts from the two Cs 

in a CpG and its reverse complement (position i on the plus strand and position i+1 on the minus 

strand) were combined and assigned to the position of the C in the plus strand. 

To assess MethylC-seq bisulfite conversion rate, the frequency of unconverted cytosines (C 

basecalls) at lambda phage CpG reference positions was calculated from reads uniquely mapped 

to the lambda phage reference genome. Overall, bisulfite conversion rate was >99% in all of the 

samples (Supplementary Table 1). 

TAB-seq data processing 

We used Trim Galore in paired-end mode to remove adapter sequences and low-quality score 

bases (Phred score < 20). The resulting reads were mapped in bisulfite mode to the human 

reference genome (GRCh37/hg19) (and lambda phage + control II sequence) using Bismark 

with the following parameters: --bowtie2 -p 12 -N 1. PCR duplicates were removed using the 

deduplicate_bismark_alignment_output.pl script. In total, we obtained ~430 million paired-end 

reads, of which 87% were unambiguously mapped to the reference genome with a mean 

sequencing coverage of 10.1X and 9.3X in non-infected and infected DCs, respectively (Table 

S1). Similar to MethylC-seq data, hydroxymethylation levels for each CpG site were estimated 

by counting the number of reported C (‘hydroxymethylated’ reads) divided by the total number 

of reported C and T (‘hydroxymethylated’ plus ‘non-hydroxymethylated’ reads) at the same 

position of the reference genome using Bismark methylation extractor with parameters --

ignore_r2 2 --no_overlap. Cytosine non-conversion rate (i.e., failed 5mC conversion by TET1 

and failure of bisulfite conversion) was assessed by calculating the frequency of C base calls at 

lambda CpG reference positions from reads uniquely mapped to the lambda reference. 5hmC 

protection rate was calculated likewise using CpG reference positions in control II sequence. 
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ChIP-seq data processing 

We started by trimming adapter sequences and low-quality score bases using Trim Galore. The 

resulting reads were mapped to the human reference genome (GRCh37/hg19) and PCR 

duplicates were removed using Picard tools (http://broadinstitute.github.io/picard/). The 

alignment software Bowtie 2 was then used with the following options: -p 12 -N 1. Only reads 

that had a unique alignment and no more than one mismatch were retained. For each of the 

histone marks in each of the conditions, we obtained an average of 58.5 ± 9.5 SD million reads 

(Table S1) when combining data from the two biological replicates. Pearson correlation revealed 

a high concordance between the histone ChIP-seq signals for the two biological replicates 

sequenced for each of the histone marks (mean r = 0.94 and range = 0.87-0.99; Supplementary 
Figure 14), which allowed us to merge them for downstream analyses. 

RNA-seq data processing and identification of differentially expressed genes upon MTB 
infection 

Adaptor sequences and low-quality score bases were first trimmed using Trim Galore. The 

resulting reads were aligned to the human genome reference sequence (GRCh37/hg19) using 

the TopHat2 software package (Kim et al. 2013) with a TopHat transcript index from RefSeq. 

The number of read fragments overlapping with annotated exons of genes was tabulated using 

HTSeq (Anders et al. 2014) using the following parameters: -q -m intersection-nonempty -s no.  

Using normalized gene counts for 6 infected and 6 non-infected samples, we identified genes 

whose expression levels were significantly altered following MTB infection of DCs using the 

R package DESeq2 (Anders et al. 2013). Using a  paired design, we considered a gene as 

differentially expressed if statistically supported at a Benjamini and Hochberg (Hochberg 1995) 

false discovery rate (FDR) < 1 × 10-4 with a |log2 fold change| > 1. Lowly expressed or non-

expressed genes with a mean normalized read count of 0 across all samples were discarded. 

Genomic annotation and mRNA TSS collection 

Gene locations used in Figure 1 were defined based on the GRCh37/hg19 assembly. Annotation 

of known Ensembl transcripts was obtained from UCSC 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/ensGene.txt.gz). Since genes can 

have multiple transcripts, we selected the 5’-most transcription start site (TSS) on the positive 
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strand as the single TSS associated with each gene. The reverse (3’ most TSS) was done for 

genes on the negative strand. We limited downstream analysis to protein-coding genes, resulting 

in 20,745 TSSs in total. Similarly, annotations for retro-elements (i.e., LINEs and SINEs), CpG 

islands, exons and introns were downloaded from the UCSC. 

Integrated analysis of gene expression and 5mC 

FPKM (fragments per kilobase of exon per million fragments) values of expression were 

calculated using Cufflinks (Trapnell et al. 2010). Genes were then classified into quartiles based 

on their gene expression levels at baseline (untreated) state: 1st quartile is lowest and 4th is 

highest. Gene bodies and 20-kb regions upstream and downstream were each divided into 50 

intervals. We gathered methylation data from windows within each of these intervals and plotted 

the mean methylation level (mean_me) for all windows overlapping each position. For each bin 

containing n sites (i): 

 

where C = read supporting methylated cytosine, T = read supporting unmethylated cytosine, i = 

position of cytosine and n = total number of cytosine positions.  

Principal component analysis based on methylomes 

Principal component analysis (PCA) of DC methylomes and those of other cell types for which 

MethylC-seq data was publicly available was performed on a set of 2,724,731 CpG sites that 

were sequenced at coverage ≥5 across all cell types or tissues using MethylKit tools (Akalin et 

al. 2012). The following cell types or tissues were used: neuroectoderm, neuroepithelial, glia, 

fetal (fheart, fthymus, fmuscle, fadrenal, fbrain), adipocyte, colon mucosa (cmucosa), substantia 

nigra (snigra), B-cell, T-cells (cd4, cd8, cd34), dendritic cells (dc81, dc82, dc83, dc87, dc89, 

dc91, hippocampus, hspc, liver, neutrophil, peripheral blood mononuclear cell (pbmc), and 

sperm. 
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Identification of MTB-DMRs 

The summarized methylation estimates of strand-merged CpG sites from the 6 infected and 6 

non-infected samples were used to identify MTB-induced differences in methylation, using the 

R package BSmooth/BSseq (Hansen et al. 2012) with the following parameters: ns = 25 and h 

= 200. BSmooth implements a smoothing method that uses a local likelihood approach to 

estimate the smoothed probability of methylation at each site, taking into account the spatial 

correlation between nearby sites and placing greater weight on sites with higher coverage. To 

minimize noise in methylation estimates due to low-coverage data, we restricted the differential 

methylation analysis to CpG sites with coverage of ≥4 sequence reads in at least half of the DC 

samples in each condition, which still allowed us to interrogate changes in methylation levels at 

~20 million CpG sites. Moreover, to eliminate effects caused by polymorphisms, C nucleotides 

that overlapped with known SNPs (dbSNP132; http://www.ncbi.nlm.nih.gov/SNP/) were 

removed. We identified MTB-induced differentially methylated regions (MTB-DMRs) as 

regions containing at least 3 consecutive CpG sites that were significantly differentially 

methylated using a paired t-test (|t-statistic| > 4.032 at P = 0.01) and that exhibited at least a 

10% difference in mean methylation levels between treated and untreated samples. 

Assigning MTB-DMRs to genes 

To assign each MTB-DMR to a gene, we use the following rationale: if an MTB-DMR was 

located within a gene body the MTB-DMR was assigned to that gene; otherwise, we assigned 

each MTB-DMR to the closest TSS from the center position of the MTB-DMR. If the closest 

TSS was further away than 250 kb the gene assigned to that MTB-DMR was not included in 

any of the downstream analysis.  These criteria meant that almost all of the MTB-DMRs (93%) 

were associated with genes. Notably, extending our distance cutoff even further, so that all 

MTB-DMRs were assigned to genes, produced qualitatively identical GO analysis results: 

97.6% of all enriched GO terms (FDR of 20%) identified using the 250 kb cutoff are also 

identified when all MTB-DMRs were assigned to genes using the same statistical cutoff.  
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5hmC analysis 

Metagene profiles of 5hmC were plotted as described above for the 5mC data. To plot 5hmC 

profiles around MTB-DMRs, the weighted mean methylation was calculated for each 

contiguous 100-bp bin from 3 kb upstream to 3 kb downstream of the central position of the 

MTB-DMR. Only CpG sites with sequencing coverage ≥4 were included in the analyses.  

Chromatin state annotation and dynamics 

We used ChromHMM (Ernst and Kellis 2012) with default parameters to segment the genome 

into different chromatin states based on six histone modifications and ChIP input. A model was 

learned separately for both conditions (i.e., infected and non-infected samples), producing 

segmentations based on the most likely state assignment of the model. We selected a 12-state 

model in order to allow sufficient resolution to resolve biologically meaningful chromatin 

patterns. We further combined segments that had comparable histone patterns, resulting in 7 

biologically meaningful chromatin states (Supplementary Figure 5). To evaluate the enrichment 

of each chromatin state at MTB-DMRs, we first assigned each MTB-DMR to a particular 

chromatin state based on the chromHMM segment overlapping with its midpoint. We then 

calculated the frequency of MTB-DMRs that were assigned to a particular chromatin state, and 

normalized this value against the expected frequency based on the amount of genome covered 

by that state. We note that we have also performed similar analyses using a unified model that 

learns and defines chromatin states in both infected and non-infected DCs at the same time (in 

contrast to doing it separately in each condition) and all our results and conclusions remain 

virtually the same (Supplementary Figure 15). 

To test the hypothesis that regions that changed DNA methylation are also more likely to change 

chromatin state (compared to other regions of the genome), we randomly sampled an equal 

number of genomic regions (n = 1,714) matched for the same chromatin states observed within 

hypomethylated regions in non-infected DCs. We then counted the proportion of these random 

regions that changed chromatin state after infection. The expected distribution of chromHMM 

state transitions was generated using 1000 simulations and was compared to the proportion of 

chromatin changes observed among hypomethylated regions. A similar resampling strategy was 
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used to test for an enrichment of hypomethylated regions marked as heterochromatin/repressed 

before infection (n = 790) and that gained de novo enhancer marks upon MTB infection. 

Enhancer classification of hypomethylated regions based on chromatin state 

In order to define different categories of enhancers, we centered our analysis on H3K4me1 

signals. If H3K4me1 was present in the baseline (untreated) state, such region was defined as a 

predefined enhancer. Therefore, predefined enhancers were simply defined as regions that 

overlapped with a chromHMM segment of either state 3, 4, or 5 (active or inactive enhancers) 

prior to MTB infection. If H3K4me1 was not found to be enriched against input in the baseline 

state but H3K4me1 and/or H3K27ac were induced by MTB infection, the region was defined 

as a de novo enhancer. Therefore, de novo enhancers were defined as regions that overlapped 

with a chromHMM segment of state 7 (heterochromatin/repressed) that transitioned to either 

state 3, 4, or 5 (active or inactive enhancers) after MTB infection. 

ChIP-seq profiles around MTB-DMRs 

Global visualization for chromatin modifications, genome accessibility and RNA patterns 

around MTB-DMRs was accomplished with ngs.plot package (Shen et al. 2014) using default 

parameters. For each MTB-DMR, data was analyzed from 3 kb upstream to 3 kb downstream 

of the central position of the MTB-DMR unless otherwise indicated. To compensate for 

differences in total sequencing read depth among samples, all ChIP-seq read counts were first 

normalized against the total read count for the same sample. Next, the normalized number of 

reads was subtracted from the normalized number of reads in the input within a 100-bp scanning 

window, and the subtracted value was used for further analysis and plotting. For visualization 

purposes, pseudo counts were added if the resulting values were negative.  

ATAC-seq data processing and footprinting analysis 

ATAC-seq reads were mapped to the human reference genome (GRCh37/hg19) using BWA-

MEM (Li and Durbin 2009), using default parameters. Only reads that had a unique alignment 

and mapping quality of ≥10 were retained. Similarly, ngs.plot was used to plot ATAC-seq 

profiles around MTB-DMRs. To detect TF binding footprints in the ATAC-seq data we used 

the program Centipede (Pique-Regi et al. 2011) in two steps. In the first step, we determined 
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which transcription factors were active (i.e., had motif instances with footprints) before and after 

infection using a reduced set of motif instances (5K-15K) for each TF as defined in 

Moyerbrailean et al. (Moyerbrailean et al. 2014). In the second step, we scanned the entire 

genome for motif instances matching the original PWM, and we ran Centipede in parallel for 

the two conditions in order to make the posterior probabilities comparable. For both steps, to 

run Centipede the aligned paired-end reads were separated into four bins depending on the 

fragment length ([40, 99], [100, 139], [140, 179] and [180, 250] in bp). As Tn5 transposase 

contacts and duplicates 9 bp of DNA (Buenrostro et al. 2013) we take as the cleavage site the 

middle nucleotide. To do so, we shifted 4 bp from the 5'-end positions towards the center of the 

fragment. Then for each motif we built a matrix that counted Tn5 cleavage events, where each 

row represented a motif instance (i.e., a candidate binding site), and each column represented a 

spatial location with respect to the TF binding site in bp (i.e., relative cleavage site). This matrix 

was constructed separately for each fragment length bin and each strand orientation (with 

respect to the motif match, or to the reference strand if the motif was palindromic). We used a 

window size of 300 bp on either side of the motif match. We then concatenated all 8 matrices 

and fed them as input data to Centipede, together with the PWM score. 

To determine which TFs were active in the first step, we calculate a Z-score corresponding to 

the PWM effect in the prior probability in Centipede’s logistic model and we determined as 

active those that had a Bonferroni-corrected P < 0.05. The Z-score corresponds to the  

parameter in: 

 

where  represent the prior probability of binding in Centipede’s model in motif location . In 

the second step, we first trained Centipede assuming that the footprint was bound in the two 

conditions. Then, we fixed the model parameters and generated a likelihood ratio and posterior 

probability  for each condition  separately and for each site . To detect if the footprint was 

more active in one of the two conditions, we fit a logistic model that included an intercept for 

each condition (  and ), the PWM effect , and PWM times the treatment effect : 

β

log π l

1− π l



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where  is an indicator variable that takes the value 1 if t = “treatment” and 0 if t = “control’’. 

We then calculated a Z-score for the interaction effect , corresponding to the evidence for 

condition specific binding. 

Peak detection 

Peaks on ChIP-seq (using input IP as a control) and ATAC-seq data were called using the 

MACS2 software suite (Zhang et al. 2008) with default parameters. 

Gene Set Enrichment Analysis 

We used Genetrail (Backes et al. 2007) to test for enrichment of functionally annotated gene 

sets among genes associated with MTB-DMRs (using 250 kb as distance cutoff), using the set 

of all Ensembl genes as a background. Analysis was done with default parameters and results 

were corrected for multiple testing by the method of Benjamini and Hochberg (Hochberg 1995) 

to control the False Discovery Rate (FDR).  

log π lt

1− π lt





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= α × 1− It( ) + β ×  PWMscorel + δ × It + γ × It × PWMscorel( )
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Supplementary Figures 

 

 

Supplementary Figure 1. Correlation between DNA methylation levels among replicates. 
Boxplots show pairwise comparisons of genome-wide methylation data (CpG sites with ≥5 

coverage in all samples) between different individuals within either non-infected (NI) and MTB-

infected (MTB) groups. Also shown are pairwise comparisons of methylation data between NI 

and MTB groups from different individuals (unpaired), and between infected and non-infected 

samples from the same individual (paired). Most of the variance in methylation levels is 

explained by differences between individuals (mean r = 0.87) rather than by differences between 

conditions (mean r = 0.9). This result is consistent with the fact that, despite our observation 

that over 1,600 regions are demethylated in response to MTB infection, these regions span a 

proportionally small subset of all CpG sites in the genome (n = 7,331; 0.035% of all CpG sites 

that were included in the differential methylation analysis). 
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Supplementary Figure 2. Global patterns of DNA methylation in human DCs. (A) 

Distribution of genome-wide cytosine methylation in CpG, CHG and CHH (chromosome 1 

only) contexts. (B) Violin plots showing the distribution of DNA methylation levels at CpG 

sites located in different genomic regions. The white circles indicate the median DNA 

methylation levels for each region. Putative enhancers (pEnhancer) represent regions of open 

chromatin associated with H3K4me1 signal. (C) Correlation between mean DNA methylation 
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levels (y-axis) at putative promoter regions (TSS ± 500 bp) and baseline expression levels of 

the associated genes (x-axis). (D) Metagene profiles of DNA methylation levels relative to 

Ensembl transcripts expressed at different levels in human DCs. We grouped genes into 

quartiles based on their expression levels in non-infected DCs. (E) Principal component analysis 

based on methylation levels across 21 diverse human cell and tissue samples. Color indicates 

classification of samples into subgroups of functionally related cells. Blue: brain-associated cell 

types; Red: hematopoietic cells; Green: other fully differentiated tissues. Detailed sample 

annotations are listed in the supplementary methods section Principal component analysis based 

on methylomes. The 6 dendritic cell (DC) samples profiled in our study are highlighted by a 

circle. For visual purposes we do not show sperm methylation on the plot because it is a clear 

outlier on PC2 (PC2 loading = 1369) with respect to all other cell types. 
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Supplementary Figure 3. Validation of differential methylation results by bisulfite 
pyrosequencing. (A) Bar plots of the average methylation levels in 10 CpG sites located within 

6 hypo-DMRs and (B) 11 CpG sites within 4 hyper-DMRs (see Supplementary Table 3 for 

details). Blue and red boxes represent the DNA methylation levels in non-infected and infected 

samples, respectively. Data are represented as mean ± s.e.m., n = 5 (except for CpG #2 of 

TRAFD1 at MTB condition, where n = 4). The results show high validation rate for hypo-DMRs 

but not for hyper-DMRs. 
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Supplementary Figure 4. Sequence conservation scores at MTB-DMRs. Average phastCons 

conservation score (Siepel et al. 2005) within 50-bp sliding windows, around the center of hypo-

DMRs not associated with promoter regions (i.e., >3kb away from any known TSS). 
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Supplementary Figure 5. Chromatin state annotation of infected and non-infected DC 
genomes.  Six histone marks were used to learn a 12-state chromatin model separately for 

infected and non-infected DCs. Enrichment for emission probabilities for each mark (left panel) 

and different gene elements (right panel; scaled by column) within each state are shown, ranging 

from low/none (blue) to high (red). Chromatin states that had comparable histone patterns and 

genomic features were combined, resulting in 7 biologically meaningful chromatin states for 

downstream analyses. Despite the high levels of H3K4me3 we classified state 3 as an active 

enhancer (in contrast to an active promoter) because of the high levels of H3K4me1 and 

H3K27ac. Moreover, these regions tend to be located far away from either transcription start 

sites, CpG islands or unmethylated regions (UMR) and are near lowly methylated regions 

(LMRs), which represent putative enhancer elements (Stadler et al. 2011). 
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Supplementary Figure 6. Representative examples of a predefined and de novo enhancer 
at regions exhibiting loss in methylation (gray area). (A) Left panel: a predefined H3K4me1-

marked enhancer region that subsequently gains activation marks (H3K27ac) after MTB 

infection. Right panel: a region that gains de novo enhancer marks in response to MTB infection. 

ChromHMM tracks (cHMM) show the dynamic chromatin state of the locus using 

combinatorial patterns of 6 histone marks before and after infection. The color code annotation 

of the chromatin state map is provided on the right. (B) Bar plots of the hydroxymethylation 

levels in non-infected DCs showing that both predefined and de novo enhancers are enriched in 

5hmC prior to MTB-infection. 
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Supplementary Figure 7. Relationship between eRNA expression at hypomethylated 
regions and deposition of histone marks. (A) Fold changes (log2) in enhancer-associated 

RNA expression levels after MTB infection as a function of eRNA location relative to the center 

of the hypomethylated regions. (F) and (R) denote transcripts originating from the forward and 

reverse strands, respectively. (B) Composite plots of patterns of H3K4me3 before (blue) and 

after (red) MTB infection ±5 kb around midpoints of hypomethylated regions. (C) Gray shading 

shows an example of a hypomethylated region that displays increased levels of eRNA 

transcription accompanied by dynamic changes in histone patterns after MTB infection. (D) 

Scatterplots depicting the relationship between the fold change in eRNA expression levels and 

the fold changes in H3K4me1 (blue), H3K27ac (green) and mRNA expression levels of the 

associated genes (red). Only regions overlapping with enhancers and showing evidence of 

eRNA expression in either non-infected or infected DCs (n = 221) were included in the analysis. 
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Supplementary Figure 8. MTB-DMRs are enriched for signal-dependent TF footprints. 
(A) TF binding motifs for which the number of well-supported footprints (posterior Pr > 0.95) 

within hypomethylated regions were enriched relative to the genomic background, in MTB 

infected DCs. The enrichment factors are shown in the x-axis in a log2 scale. The bars around 

the estimated enrichments reflect the 95% confidence intervals around the estimates. For 

visualization purposes we only show the top 10 most significantly enriched TF binding motifs. 

Motif IDs are shown in parentheses below motif names. A complete list of all TF binding motifs 

for which footprints are enriched within hypomethylated regions can be found in Supplementary 

Table 5. (B) Proportion of hypomethylated regions (y-axis) that have a binding event at motifs 

associated with TFs in the families of master-regulators NF-κB, AP-1, or IRFs. To test for 

enrichment of binding of these TFs within these regions, we generated a randomly sampled 

control set of sequences matched for length and GC content to the observed hypomethylated 

regions. 
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Supplementary Figure 9. Correlation between changes in DNA methylation and gene 
expression, and other epigenetic marks. Smooth scatterplots depicting the relationship 

between the magnitude of loss in DNA methylation level after infection and changes (in log2 

scale) in H3K27ac, H3K4me3 and H3K4me1 histone marks, chromatin accessibility, and 

mRNA expression levels of nearby genes.  
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Supplementary Figure 10. Expression profiles of TET family of enzymes.  (A) Bar plots 

showing the transcript levels (in FPKM) of TET1, TET2 and TET3 before (NI) and 18 hours 

post-infection (MTB) using RNA-seq. Data are represented as mean ± s.e.m., n = 6. (B) 

Distribution of mean baseline gene expression values (FPKM at log10 scale) from 6 untreated 

DC samples. Arrows denote the relative expression of TET1, TET2 (2) and TET3 (3). (C) 

Western blot showing protein levels of TET2 before (NI) and after MTB-infection (MTB), at 

18 and 48 hours (h).  
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Supplementary Figure 11. The enrichment for overlap with enhancer elements and DE 
genes is robust to the cutoffs used to define hypomethylated regions. The tables show the 

observed fold enrichments of overlap with enhancer elements (left panel) and differentially 

expressed genes (right panel) when classifying hypomethylated regions using a different 

combination of cutoffs for the number of consecutive CpG sites exhibiting a significant 

difference in methylation (n, row labels) at a given t-statistic value (t-stat, column labels). The 

minimum difference in methylation levels was fixed at |0.1| as with the cutoff used on the 

manuscript. The cells in yellow indicate the enrichments observed with the cutoffs used to define 

hypomethylated regions in the main text.  
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Supplementary Figure 12. TF binding alone is not sufficient to induce loss in methylation 
levels. (A) Changes in methylation ±300 bp around sites (25-bp sliding window), inside (blue) 

and outside (gray) hypomethylated regions, where NF-κB binding events occurred after 

infection (i.e., posterior probability of <0.05 in non-infected cells and posterior probability of 

>0.95 in MTB-infected cells) for motifs. Note that the overwhelming majority of MTB-induced 

NF-κB binding events occur outside hypomethylated regions (n = 51 events inside). To test for 

changes in methylation within these regions, we generated five control sets of 51 regions by 

randomly sampling NF-κB binding sites, found outside of hypomethylated regions, with (B) 
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matching number of CpG sites and baseline methylation within ±100 bp as those sites found 

inside. The error bars derived from each of the five sets represent the standard error. (C) Results 

from a logistic regression used to evaluate which genomic features best predict TF binding 

changes that are associated with changes in DNA methylation. For changes in methylation to 

occur, TF binding event must occur inside an enhancer element (as defined by ChromHMM) 

and/or in a region of open chromatin (Tn5 peaks). Thus, in addition to TF binding, other 

regulatory factors specifically recruited at enhancer elements are required for changes in 

methylation to occur. LMR stands for lowly methylated region.  
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Supplementary Figure 13. Transcriptional responses using live MTB and heat-killed 
bacteria at different ratios. Scatterplots depicting the correlation between the log2 fold 

changes (log2FC) in gene expression levels using live MTB and heat-killed bacteria at different 

ratios.  
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Supplementary Figure 14. Correlation of ChIP-seq signals for each histone mark between 
biological replicates. Smoothed scatterplots showing the correlation of ChIP-seq signals within 

10000-bp sliding windows for each histone mark between 2 biological replicates. 
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Supplementary Figure 15. Chromatin state emission probabilities and characterization of 
dynamic changes in histone marks in MTB-DMRs, based on a unified ChromHMM model. 
(A) ChromHMM emission probabilities for each chromatin state using a unified ChromHMM 

model that was learned from both infected and non-infected DCs at the same time. (B) Pie charts 

showing the distribution of chromatin state annotations genome-wide and within MTB-DMRs 
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as defined by chromHMM based on ChIP-seq data for six histone marks. (C) Heatmap of the 

proportion of hypomethylated regions by chromatin transition state. The x-axis represents the 

chromatin states defined in non-infected DCs and the y-axis the chromatin state of the same 

region in MTB-infected DCs. (D) Histogram showing the observed proportion of 

hypomethylated regions that change chromatin state after infection (any transition) when 

sampling 1000 random sets of regions of the genome matched for the chromatin states found in 

non-infected samples. Each random set contains the same number of hypomethylated regions 

that we identified in the true data. The blue triangle represents the observed proportion of 

hypomethylated regions that changed chromatin state in response to MTB infection. 
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Supplementary Figure 16. Proliferation assays in non-infected cells or cells infected for 48 
hours with MTB. CFSE-labeled THP-1 (left) and CFSE-labeled DCs (right).  
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immune responses to infection 
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N.B. Please note that due to space limitations, this section does not include supplementary 

tables 1 to 5. Complete tables can be found under the following link:  

https://www.dropbox.com/home/Public/Article2_SuppTables. 
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Abstract 

DNA methylation is considered to be a relatively stable epigenetic mark. Yet, a growing body 

of evidence indicates that DNA methylation levels can rapidly change, for example, in innate 

immune cells facing an infectious agent. Nevertheless, the causal relationship between changes 

in DNA methylation and gene expression during infection remains to be elucidated. Here, we 

generated time course data on DNA methylation, gene expression, and chromatin accessibility 

patterns during infection of human post-mitotic dendritic cells (DCs) with Mycobacterium 

tuberculosis. We found that the immune response to infection is accompanied by active 

demethylation of thousands of CpG sites overlapping distal enhancer elements. However, 

virtually all changes in gene expression in response to infection occur prior to detectable changes 

in DNA methylation, indicating that the observed loss in methylation is a downstream 

consequence of transcriptional activation. Footprinting analysis revealed that immune-related 

transcription factors (TF), such as NF-κB/Rel, are recruited to enhancer elements prior to the 

observed loss in methylation, suggesting that DNA demethylation is mediated by TF binding to 

cis-acting elements. Collectively, our results show that DNA demethylation is likely not 

required for the establishment of the core regulatory program engaged upon infection. 
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Introduction 

Innate immune cells, such as dendritic cells (DCs) and macrophages, are the first mediators 

recruited in response to an invading pathogen. Upon stimulation, these cells undergo pervasive 

changes in their transcriptional program, activating hundreds of genes involved in immune-

related processes in a rapid and highly choreographed fashion. This is achieved through the 

binding of signal-dependent transcription factors (TFs), including NF-κB/Rel, AP-1, and 

interferon regulatory factors (IRFs), to gene regulatory regions of the genome where recruitment 

of various co-activators is initiated (Medzhitov and Horng 2009; Smale 2010). Alterations to 

the epigenome, such as histone modifications and DNA methylation, are recognized as 

important permissive or suppressive factors that play an integral role in modulating access of 

TFs to cis-acting DNA regulatory elements via the regulation of chromatin dynamics. 

Consequently, changes to the epigenetic landscape are expected to have a significant impact on 

gene expression.  

Many studies have highlighted the paramount importance of histone modifications concerning 

the regulation of complex gene expression programs underlying immune responses (Bierne et 

al. 2012; Smale et al. 2014). However, the exact role that DNA methylation plays in innate 

immune response regulation remains ambiguous. We have previously shown that infection of 

post-mitotic DCs is associated with an active loss of methylation at enhancers and that such 

demethylation is strongly predictive of changes in expression levels of nearby genes (Pacis et 

al. 2015). To date, many other studies correlate these two processes (Bruniquel and Schwartz 

2003; Murayama et al. 2006; Marr et al. 2014; Zhang et al. 2014; Ichiyama et al. 2015; Sinclair 

et al. 2015; Cizmeci et al. 2016; Wiencke et al. 2016), but it remains unclear whether altered 

methylation patterns directly invoke transcriptional modulation or whether such patterns are the 

downstream consequence of TF binding to regulatory regions. Thus, the causal relationship 

between changes in DNA methylation and gene expression during infection remains unresolved. 

To address this question, we characterized in parallel genome-wide patterns of DNA 

methylation, gene expression, and chromatin accessibility in non-infected and MTB-infected 

DCs at multiple time points. Our results show that the loss of DNA methylation observed in 

response to infection is not functionally required for the activation of most enhancer elements 
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but that, instead, the demethylation seen is a downstream consequence of TF binding followed 

by transcriptional induction.  
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Results 

Bacterial infection induces stable loss of DNA methylation at enhancers of 
dendritic cells 

To investigate the relationship between changes in DNA methylation and gene expression and 

in response to infection, we infected monocyte-derived DCs from 4 healthy individuals with a 

live virulent strain of Mycobacterium tuberculosis (MTB) for 2-, 18-, 48-, and 72-hours. At each 

time-point, we obtained single base-pair resolution DNA methylation levels for over 130,000 

CpG sites using a customized capture-based bisulfite sequencing panel (SeqCap Epi, see 

Methods), in matched non-infected and MTB-infected DCs. Our customized SeqCap Epi panel 

interrogates 33,059 regions highly enriched among putative enhancer elements (58% are 

associated with the H3K4me1 enhancer mark (Heintzman et al. 2009); Supplementary Figure 
1A), which are the main targets of methylation changes in response to infection (Pacis et al. 

2015). In total, we generated ~717 million single-end reads (mean = 17.5 million reads per 

sample; Supplementary Table 1), resulting in an average coverage of ~70X per CpG site 

(Supplementary Figure 1B). Methylation values between samples were strongly correlated, 

attesting to the high quality of the data (Supplementary Figure 1C; median r across all samples 

= 0.94).  

We next assessed temporal changes in methylation levels in response to infection using the DSS 

software (Feng et al. 2014). We defined differentially methylated (DM) CpG sites as those 

showing a significant difference of methylation between infected and non-infected samples at a 

False Discovery Rate (FDR) < 0.01 and an absolute mean methylation difference above 10%. 

Using these criteria, we identified 6,174 DM CpG sites across the time course of infection. 

Consistent with previous findings (Pacis et al. 2015), the vast majority of changes in methylation 

(87%) were associated with the loss of DNA methylation in infected cells (Figure 1A,B).  

To test if live bacteria were required to induce the observed changes in DNA methylation, we 

collected similar data on DCs exposed to heat-killed MTB in addition to the live MTB 

experiments. Changes in methylation in response to live and heat-killed MTB were strikingly 

correlated, particularly at the later time-points post-infection (r ≥ 0.84 at 18h and above; 
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Supplementary Figure 2). These results show that DCs do not require exposure to a live 

pathogen to elicit the overall loss in methylation detected in response to infection. Simply, the 

engagement of innate immune receptors and activation of pathways involved in pathogen 

sensing and elimination is sufficient to induce shifts in methylation. Hierarchical clustering 

analysis of the DM sites observed when considering samples exposed to either live or heat-

killed bacteria shows that >80% of the sites exhibited gradual loss of methylation over the time 

course of infection until methylation marks were almost completely erased, and that very few 

changes are detectable at 2 hours post-infection (DM Cluster 3; Figure 1C,D; Supplementary 
Table 2).  

Monocyte-derived DCs do not proliferate in response to infection (Pacis et al. 2015) and, 

therefore, any observed loss in methylation must occur through an active mechanism involving 

the ten-eleven translocation (Tet) enzymes, a family of enzymes that converts 5-methylcytosine 

(5mC) to 5-hydroxymethylcytosine (5hmC) (Wu and Zhang 2017). Thus, we used Tet-assisted 

bisulfite sequencing (TAB-seq) data collected from non-infected DCs (Pacis et al. 2015) to 

assess if DM sites had significantly different levels of 5hmC as compared to non-DM sites. We 

found that DM sites (Cluster 3) show strikingly high levels of 5hmC even prior to infection 

(Figure 1E; 3.2-fold enrichment compared to non-DM sites; Wilcoxon test; P < 1 × 10-16), 

suggesting that DM sites are likely pre-bound by TET enzymes (likely TET2 (Klug et al. 2013; 

Alvarez-Errico et al. 2015), the most expressed Tet enzyme in DCs (Supplementary Figure 
3)), and that 5hmC may serve as stable mark that allows priming of these enhancers (Yu et al. 

2012; Calo and Wysocka 2013; Mahe et al. 2017).  
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Figure 1. DNA methylation dynamics in DCs during MTB infection. (A) Bar plots showing 

the number of differentially methylated (DM) CpG sites identified at a |methylation difference| 

> 10% and FDR < 0.01 (y-axis) at each time point after MTB infection (2, 18, 48 and 72 hours 

(h)) (x-axis). (B) Distribution of differences in methylation between infected and non-infected 

cells at DM sites, at each time point. (C) Heatmap of differences in methylation constructed 

using unsupervised hierarchical clustering of the 4,578 DM sites (identified at any time point 

using live and heat-inactivated MTB-infected samples combined; y-axis) across four time points 

after infection, shows three distinct patterns of changes in methylation. (D) Mean differences in 

methylation of CpG sites in each cluster across all time points; shading denotes ±1 standard 

deviation. For visualization purposes, we also show the ‘0h’ time point, where we expect no 

changes in methylation. (E) Boxplots comparing the distribution of 5hmC levels in non-infected 

DCs between non-DM and DM sites (Cluster 3).  
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Up-regulation of inflammatory genes precedes DNA demethylation 

We collected RNA-seq data from matched non-infected and infected samples at each time point, 

for a total of 34 RNA-seq profiles across time-treatment combinations (mean = 42.2 million 

reads per sample; Supplementary Table 1). The first principal component of the resulting gene 

expression data accounted for 63% of the variance in our dataset and separated infected and 

non-infected DCs (Supplementary Figure 4A). We found extensive differences in gene 

expression levels between infected and non-infected DCs: of the 13,956 genes analyzed, 1,987 

(14%), 4,371 (31%), 4,591 (33%), and 5,189 (37%) were differentially expressed (DE) at 2, 18, 

48 and 72 hours post-infection, respectively (FDR < 0.01 and absolute log2(fold change) > 1; 

Supplementary Table 3). We also collected RNA-seq data in samples stimulated with heat-

inactivated MTB and found that, similar to changes in methylation, changes in gene expression 

in response to live and heat-inactivated MTB were strongly correlated (r ≥ 0.94; Supplementary 
Figure 4B). We next grouped the set of DE genes across the time course (7,457 in total) into 6 

distinct temporal expression clusters (Figure 2A,B; Supplementary Table 3). These clusters 

cover a variety of differential expression patterns, including genes which show increasing up-

regulation over time (DE Cluster 5: Persistent induced; n = 2,091) to genes in which the highest 

levels of expression occur at 2 or 18 hours followed by a decrease towards basal levels (DE 

Cluster 4: Early induced (n = 765), and DE Cluster 6: Intermediate induced (n = 839), 

respectively) (Figure 2B). Gene ontology (GO) enrichment analysis revealed that induced genes 

were strongly enriched among GO terms directly related to immune function, including defense 

response (FDR = 1.2 × 10-11) and response to cytokine (FDR = 8.2 × 10-12), whereas repressed 

genes were primarily enriched for gene sets associated with metabolic processes (Figure 2C; 

Supplementary Table 4). 

We next tested whether genes located near DM sites – particularly focusing on those sites 

exhibiting stable loss of methylation (i.e., Cluster 3 in Figure 1C,D) – were more likely to be 

differentially expressed upon MTB infection relative to all genes in the genome. We found that 

genes associated with one or more DM sites were strongly enriched among genes that were up-

regulated in response to infection, regardless of the time point at which expression levels started 



 

93 

to change: early (2.5-fold, P = 3.23 × 10-11), intermediate (3.5-fold, P = 3.59 × 10-25) and 

persistent (3.1-fold, P = 3.80 × 10-33) (Figure 2D,E).  

If demethylation is required for the activation of enhancer elements and the subsequent up-

regulation of their target genes, we would expect demethylation to occur prior to changes in 

gene expression; instead, we found the opposite pattern. Among up-regulated genes associated 

with DM sites (n = 593), 37% exhibited at least a two-fold increase in gene expression levels at 

2-hours post-infection, although differential methylation did not begin to be detectable until 18-

hours post-infection (Figure 2E). For only 17 genes (less than 3% of all up-regulated genes 

associated with DM sites), DNA demethylation occurred prior to gene induction 

(Supplementary Figure 5). Thus, DNA demethylation doesn’t appear to be necessary for gene 

activation.  

To confirm that our findings were generalizable to other innate immune cell types and 

pathogenic infections, we performed a separate time course analysis of differential methylation 

in Salmonella-infected macrophages from one additional donor over six time-points 

(Supplementary Table 1). We discovered hundreds of CpG sites that exhibited a progressive 

loss of methylation over the time course of infection, corroborating our findings in MTB-

infected DCs (Figure 3A). To assess whether loss of methylation arises after the activation of 

associated enhancers, we collected ChIP-seq data for acetylation of histone 3 lysine 27 

(H3K27ac) at 2-hours post-infection, as changes in DNA methylation have yet to occur at this 

point. We found that the deposition of activating H3K27ac marks preceded demethylation at 

these CpG sites (Figure 3B). Moreover, using previously published RNA-seq expression data 

from Salmonella-infected macrophages (Nedelec et al. 2016), we found that most genes 

associated with these sites were up-regulated at 2-hours post-infection (Figure 3C) prior to any 

changes in methylation. Collectively, these findings indicate that DNA demethylation is not 

required for the activation of most enhancer elements and that the vast majority of methylation 

changes induced by infection are a downstream consequence of transcriptional activation. 
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Figure 2. Time course analysis of changes in DNA methylation and gene expression in DCs 
in response MTB infection. (A) Heatmap of differences in expression (standardized log2 fold 

changes) constructed using unsupervised hierarchical clustering of the 7,457 differentially 

expressed genes (identified at any time point using cutoffs of |log2FC| > 1 and FDR < 0.01; y-

axis) across four time points after MTB infection results in six distinct patterns of changes in 

expression. (B) Mean log2 fold expression changes of genes in each cluster across all time 

points; shading denotes ±1 standard deviation. For visualization purposes, we also show the ‘0h’ 

time point, where we expect no changes in expression. (C) Gene ontology enrichment analyses 

among genes that are repressed or induced in response to MTB infection. (D) Enrichment (in 

log2; x-axis) of differentially expressed genes associated with Cluster 3 DM CpG sites. Error 

bars show 95% confidence intervals for the enrichment estimates. (E) Boxplots showing the 

distribution of standardized differences in methylation of Cluster 3 DM sites (blue) along with 
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the corresponding standardized differences in expression of the associated genes (orange), 

across all time points. 

 

 

Figure 3. Relationship between changes in DNA methylation and gene expression in 
macrophages in response to Salmonella infection. (A) Mean differences in methylation (y-

axis) in CpG sites that show stable loss of methylation (similar to Cluster 3 DM sites in Figure 

1C,D; n = 453) in Salmonella-infected macrophages, across six time points after infection (2, 4, 

8, 12, 24 and 48 hours (h); x-axis). Shading denotes ±1 standard deviation. For visualization 

purposes, we also show the ‘0h’ time point, where we expect no changes in methylation. (B) 

Composite plots of patterns of H3K27ac ChIP-seq signals ±5 kb around the midpoints of 

hypomethylated sites (x-axis) in macrophages at 2 hours post-infection with Salmonella. (C) 

Distribution of log2 fold expression changes (between non-infected and Salmonella-infected 

macrophages at 2 hours (Nedelec et al. 2016)) for genes associated with DM sites in Figure 3A 

(n = 269).  
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The binding of most infection-induced TFs does not require active 
demethylation 

We next asked whether MTB-induced changes in gene expression were associated with changes 

in chromatin accessibility. To do so, we profiled regions of open chromatin in non-infected and 

infected DCs at the same time-points (plus one additional time-point at 24 hours) using ATAC-

seq (Buenrostro et al. 2013). Overall, we found that the response to MTB infection was 

accompanied by an increase in chromatin accessibility across regulatory regions associated with 

genes up-regulated upon MTB infection, regardless of their expression profiles (Figure 4A). 

Interestingly, most increases in chromatin accessibility were observed at later stages of 

infection, suggesting that the activation of early response genes does not require significant 

changes to the chromatin structure.  

To investigate the relationship between DNA methylation and TF occupancy, we performed TF 

footprinting analysis on our target regions (i.e., the set of putative enhancers tested for dynamic 

DNA methylation). We classified target regions as “hypomethylated regions” (n = 1,877) or 

“non-differentially methylated regions” (non-DMRs) (n = 31,182) according to whether or not 

these regions overlap DM CpG sites (from differential methylation Cluster 3, specifically). We 

found that hypomethylated regions were significantly enriched for the binding of immune-

related TFs relative to regions exhibiting consistent methylation levels. These immune-related 

TFs include several master regulators of the innate immune response such as RelA (NF-κB/Rel 

family member; up to 8.3-fold enrichment across the time course; FDR ≤ 3.14 × 10-20) and Stat5 

(up to 2.2-fold enrichment across the time course; FDR ≤ 0.09) Figure 4B; Supplementary 
Table 5). 

We next used CentiDual (Pacis et al. 2015) to test for differential binding of TFs between non-

infected and infected samples, specifically focusing on the set of TF family members known to 

orchestrate innate immune responses to infection (i.e., NF-κB, AP-1, STATs and IRFs). We 

found increased binding at NF-κB/Rel binding motifs starting at 2-hours post-infection, despite 

the fact that no changes in methylation were observed at such early time points (P = 0.03; Figure 
4C; Supplementary Table 5; see Methods). A similar trend, although non-significant, was 
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observed for AP-1 (Supplementary Figure 6). These data show that, while demethylated 

regions overlap areas bound by immune-induced TFs, the binding of these TFs occurs prior to 

DNA demethylation.  

Although demethylation does not appear to be required for the binding of key TFs involved in 

regulation of innate immune responses, it is plausible that the removal of methylation marks at 

DM sites might enable occupancy of methylation-sensitive factors at later time points (Domcke 

et al. 2015; Zhu et al. 2016; Yin et al. 2017). In support of this hypothesis, we found at later 

time-points (18 hours and above) a stronger enrichment for the binding of TFs that preferentially 

bind to unmethylated motifs (or “methyl-minus” as defined by Yin et al. (Yin et al. 2017)) within 

hypomethylated regions (up to 1.8-fold enrichment; χ2-test; P ≤ 2.90 × 10-22; Figure 4D; see 
Methods). Collectively, these results suggest that, although demethylation is likely not required 

for the establishment of the core regulatory program engaged rapidly upon infection, it might 

play a role in fine-tuning the innate immune response by facilitating the binding of salient 

methyl-sensitive TFs that play a role in later responses to infection.  
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Figure 4. Relationship between changes in DNA methylation and transcription factor 
binding in DCs in response to MTB infection. (A) Boxplots showing the distribution of log2 

fold changes in chromatin accessibility (between non-infected and MTB-infected DCs across 

the five time points of infection (2, 4, 18, 24, 48 and 72 hours) for open chromatin regions 
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associated with the three classes of induced genes described in Figure 2A,B. (B) TF binding 

motifs for which the number of well-supported footprints (posterior probability > 0.99) are 

enriched within hypomethylated regions were enriched (FDR < 0.01) relative to non-DMRs, in 

MTB-infected DCs. The enrichment factors (x-axis) are shown in a log2 scale and error bars 

reflect the 95% confidence intervals. A complete list of all TF binding motifs for which 

footprints are enriched within hypomethylated regions can be found in Supplementary Table 5. 

(C) Bar plots showing significant differences in TF occupancy score predictions for NF-κB/Rel 

motifs between MTB-infected and non-infected DCs (ZMTB - ZNI; y-axis; see Methods), across 

all time points (x-axis). A positive Z-score difference indicates increased TF binding in 

hypomethylated regions after MTB infection. (D) Proportion of regions that overlap a 

methylation-sensitive (“methyl-minus”; reported in Yin et al. (Yin et al. 2017)) TF footprint (y-

axis) observed among non-DMRs and hypomethylated regions (hypo-DMRs; see Methods). 
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Discussion 

In this study, we have generated paired data on DNA methylation, gene expression, and 

chromatin accessibility in non-infected and MTB-infected DCs at multiple time-points. Our 

results show that bacterial infection leads to marked remodeling of the methylome of phagocytic 

cells (both DCs and macrophages), with several thousand CpG sites showing stable loss of 

methylation via active DNA demethylation. Yet, only a small proportion of up-regulated genes 

associated with a DM site (less than 3%) exhibit a dynamic in which DNA demethylation 

precedes gene activation. Despite the limited resolution of our time course experiment, this 

observation strongly suggests that losses in methylation are a downstream consequence of TF 

binding and transcriptional activation, at least for early responsive genes. 

The observed changes in methylation most likely occur via TET2-mediated active 

demethylation, as previously shown (Klug et al. 2013; Pacis et al. 2015; Vento-Tormo et al. 

2016). Consistent with this hypothesis, we found that CpG sites that lose methylation upon 

infection display high levels of 5hmC at baseline, suggesting that these regions are actively 

bound by TET2 even prior to infection.  Moreover, TET2 is strongly upregulated 2 hours after 

infection (∼2.5 fold, Supplementary Figure 7). 5hmC could be a stable intermediate and serve 

as an epigenetic priming mark, ensuring the rapid response of DCs against infection (Creyghton 

et al. 2010; Serandour et al. 2012; Yu et al. 2012; Calo and Wysocka 2013; Hon et al. 2014; 

Vento-Tormo et al. 2016; Mahe et al. 2017). Importantly, our SeqCap Epi data does not allow 

us to distinguish between 5mC and 5hmC. Thus, it is possible that DM sites that gain 5hmC, 

but do not show a loss of 5mC, at 2-hours post-infection may precede the activation of certain 

enhancers, as was recently suggested in T cells  (Ichiyama et al. 2015). Further studies will be 

necessary to investigate the functional relevance of 5hmC in the induction of inflammatory 

genes during infection. 

Using footprint analysis, we show that NF-κB/Rel, a master regulator of inflammation, is recruited 

to hypomethylated regions as soon as 2-hours post-infection. This finding is consistent with 

ChIP-seq data collected from macrophages stimulated with Kdo2-Lipid A (KLA), a highly 

specific TLR4 agonist, which shows that the NF-κB subunit p65 is rapidly recruited to enhancer 
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elements within one hour post-stimulation (Kaikkonen et al. 2013). We hypothesize that the 

rapid binding of NF-κB, and of other immune-induced TFs, likely instigates the opening of the 

chromatin, the recruitment of histone acetyltransferase p300, and the subsequent deposition of 

activating H3K27ac marks in these regions (Bhatt and Ghosh 2014). Interestingly, p300 can 

acetylate TET2, conferring enhanced enzyme activity (Zhang et al. 2017), which might account 

for the loss of DNA methylation in response to infection.  

Our results indicate that most changes in gene expression that occur in response to infection are 

independent from DNA demethylation, further supporting the lack repressive capacity of DNA 

methylation (Ford et al. 2017). Notably, only a small proportion of up-regulated genes 

associated with a DM site exhibit a dynamic in which DNA demethylation precedes gene 

activation. Similar to previous findings (Han et al. 2001; Kress et al. 2006; Sato et al. 2006; 

Stadler et al. 2011; de la Rica et al. 2013; Schubeler 2015; Vento-Tormo et al. 2016), our results 

further reinforce the idea that site-specific regulation of DNA demethylation is mediated by TFs 

that bind to cis-acting sequences. Interestingly, several recent reports have shown that other 

epigenetic modifications, such as the H3K4me1 enhancer mark, have a similar passive 

regulatory function (Dorighi et al. 2017; Rickels et al. 2017; Vandenbon et al. 2017). However, 

our results do not exclude the possibility that demethylation might be necessary for the binding 

of a second wave of TFs that only play a role at later stages of infection (18 hours post-infection 

or later). In agreement with this hypothesis, we observed a significant enrichment for the binding 

of TFs that were shown to be sensitive to CpG methylation (“methyl-minus”) in hypomethylated 

regions. Ultimately, this suggests that, although not a key regulator, DNA demethylation could 

play a role in fine-tuning immune responses by facilitating the binding of methylation-sensitive 

TFs at enhancers.  

After an infection is cleared, TFs are expected to unbind and gene expression as well as DNA 

methylation levels are anticipated to return to basal state. However, our 72-hour time course 

study of DNA methylation showed that levels of methylation at DM sites gradually decreased 

with time post-infection but never reverted back to higher levels. Interestingly, this pattern was 

also observed for genes in which the largest fold changes in gene expression occurred at earlier 

time points. Thus, it is tempting to speculate that demethylation in response to infection could 
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have a specific biological role in trained immunity (or innate immune memory) (Ostuni et al. 

2013; Quintin et al. 2014; Saeed et al. 2014; Kaufmann et al. 2018). Regions that lose 

methylation could act as “super-primed enhancers”, potentially allowing for a faster response to 

a secondary infection. More generally, if DNA demethylation is seen as an epigenetic imprint 

of prior infection, DNA methylation levels in phagocytic cells could be used as a predictive 

biomarker for present or past infectious status.  
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Methods 

Bacterial preparation and infection of phagocytes 

Blood samples were obtained from the Indiana Blood Center. A signed written consent was 

obtained from all of the participants and the project was approved by the ethics committee at 

the CHU Sainte-Justine (protocol #4023). All individuals recruited in this study were healthy 

males of European descent between the ages of 21 and 55 years old. We decided to only focus 

on males to limit sex-specific variation in DNA methylation levels. Only individuals self-

reported as presently healthy, not currently taking medication, and without a history of diseases 

such as malaria, tuberculosis, cancer or hepatitis were included in the study. 

Peripheral blood mononuclear cells (PBMCs) from each donor were isolated by Ficoll-Paque 

centrifugation and monocytes were further purified by positive selection with magnetic CD14 

MicroBeads (Miltenyi Biotec). Monocytes were then derived into DCs as previously described 

(Barreiro et al. 2012) and subsequently infected with MTB for 2, 18, 48, and 72 hours at a 

multiplicity of infection of 1:1. For the infection with heat-inactivated bacteria, we used a 

multiplicity of infection of 5:1, which we show leads to virtually the same transcriptional 

response at all four time points compared to that observed with live MTB (Supplementary 
Figure 2). 

We infected macrophages with Salmonella typhimurium as previously described (Nedelec et al. 

2016). The day prior to infection, aliquots of Salmonella typhimurium were thawed and bacteria 

were grown overnight in Tryptic Soy Broth (TSB) media. Bacterial culture was diluted to mid-

log phase prior to infection and supernatant density was checked at OD600. Monocyte-derived 

macrophages were infected at a multiplicity of infection of 10:1 for 2 hours at 37°C. A control 

group of non-infected macrophages was treated the same way but with medium without bacteria. 

Macrophages were then washed and cultured for another hour in the presence of 50μg/ml 

gentamycin in order to kill all extracellular bacteria present in the medium. The cells were then 

washed a second time and cultured in complete medium with 3μg/ml gentamycin for an 

additional 2 hours, the time point we refer to in the main text. A control group of non-infected 

macrophages was treated the same way but with medium without bacteria. 
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DNA and RNA Extractions 

DNA from infected and non-infected DCs was extracted using the PureGene DNA extraction 

kit (Gentra Systems). Total RNA was extracted from the same samples using the miRNeasy kit 

(Qiagen). RNA quantity was evaluated spectrophotometrically, and the quality was assessed 

with the Agilent 2100 Bioanalyzer (Agilent Technologies). Only samples with no evidence of 

RNA degradation (RNA integrity number > 8) were kept for further experiments. 

SeqCap Epi library preparation and sequencing 

Libraries were generated with KAPA Library Preparation Kit for Illumina Platforms (KAPA 

Biosystems), as per the manufacturer’s instructions. Briefly, genomic DNA was spiked with 30 

ng of unmethylated cl857 Sam7 Lambda DNA (Promega, Madison, WI) and fragmented to 100-

300 bp with an S2 sonicator (Covaris). Fragments were then end-repaired, A-tailed, and ligated 

with methylated sequencing adapters. Between every enzymatic step, libraries were purified 

using AMPure beads (Agencourt). After ligation, in addition to the AMPure bead purification, 

a DUAL-SPRI size selection was performed to further select for fragments with adapters in the 

window of 200-400 bp. Sodium bisulfite conversion was performed with EZ DNA Methylation 

Lightning Kit (Zymo Research) and libraries were amplified using KAPA Hifi HotStart Uracil 

Tolerant Enzyme (KAPA Biosystems). Library quality was assessed by 2100 Bioanalyzer 

(Agilent Technologies). Samples showing the desired profile were pooled together in equal mass 

according to Qubit quantification. We then performed a hybridization using the SeqCap Epi kit 

(Roche NimbleGen). The sample pool, indexes corresponding to the sequences of the adapters 

used for library preparation, and repetitive DNA (C0t) were desiccated and then incubated in 

hybridization buffer with a set of customized probes for 72 hours to select and sequence target 

regions only. Specifically, DNA methylation data was collected for 33,059 target regions 

spanning >130,000 CpG sites (mean length = 300 bp; mean number of CpG sites = 5), which is 

less than 1% of the ~28 million CpGs contained in the human genome. These regions are 

primarily comprised of MTB-induced differentially methylated regions identified at 18 hours 

post-infection using whole-genome bisulfite sequencing, as well as other distal regulatory 

elements in DCs where changes in DNA methylation have been shown to be most likely to occur 

(Pacis et al. 2015) (Supplementary Figure 1A). Moreover, these candidate regions are nearby 

differentially expressed genes in response to MTB at 18 hours. Probes targeting a two kilobase 
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region between coordinates 4500 and 6500 bp of the lambda genome (NC_001416.1) are 

included by default in the SeqCap Epi design, as a control for bisulfite conversion efficiency. 

Sequencing was performed using the Illumina HiSeq 2500, as per the manufacturer’s 

instructions. 

RNA-seq library preparation and sequencing 

RNA-seq libraries were prepared using the TruSeq RNA Sample Prep Kit v2 or the Illumina 

Total Stranded RNA Library kit, as per the manufacturer’s instructions. Sequencing was 

performed using the Illumina HiSeq 2500, as per the manufacturer’s instructions. 

ChIP-seq library preparation and sequencing 

We collected ChIP-seq data for the H3K27ac histone mark in non-infected and Salmonella-

infected macrophages as previously described (Pacis et al. 2015). Samples were crosslinked 

with 1% w/v formaldehyde for 20 minutes at RT and immediately quenched for 5 minutes with 

1.25M Glycine at RT. The formaldehyde fixed samples were then sonicated to 150-500 bp using 

an S2 sonicator (Covaris), and subsequently ChIP-DNA was prepared using a manual chromatin 

immunoprecipitation method with Antibodies-Antigen incubation for 18 hours, followed by 

bead incubation for 135 minutes, and 6 5-minute washing steps. Approximately 1 × 106 cells 

were used for each ChIP and 500,000 cells for the input. The following antibody for H3K27ac 

was used: Abcam, Ab4729, Lot No.: GR200563-1. ChIP and Input libraries were prepared using 

the MicroPlex Library Preparation Kit (C05010010, Diagenode), with alterations including: 

PCR enrichment (13 to 14 cycles) prior to size selection and use of Ampure beads for size 

selection (250-350 bp). Libraries were sequenced on an Illumina HiSeq 2500. 

ATAC-seq library preparation and sequencing 

ATAC-seq libraries were generated from 50,000 cells, as previously described (Buenrostro et 

al. 2013) and sequencing was performed using the Illumina HiSeq 2500. 

SeqCap Epi data processing and differential methylation analysis 

Adaptor sequences and low-quality score bases (Phred score < 20) were first trimmed using 

Trim Galore (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). The resulting 

reads were mapped to the human reference genome (GRCh37/hg19) and lambda phage genome 
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using Bismark (Krueger and Andrews 2011), which uses Bowtie 2 (Langmead and Salzberg 

2012) and a bisulfite converted reference genome for read mapping. Only reads that had a unique 

alignment were retained. Methylation levels for each CpG site were estimated by counting the 

number of sequenced C (‘methylated’ reads) divided by the total number of reported C and T 

(‘unmethylated’ reads) at the same position of the reference genome using Bismark’s 

methylation extractor tool. We performed a strand-independent analysis of CpG methylation 

where counts from the two Cs in a CpG and its reverse complement (position i on the plus strand 

and position i+1 on the minus strand) were combined and assigned to the position of the C in 

the plus strand. To assess MethylC-seq bisulfite conversion rate, the frequency of unconverted 

cytosines (C basecalls) at lambda phage CpG reference positions was calculated from reads 

uniquely mapped to the lambda phage reference genome. Overall, bisulfite conversion rate was 

>99% in all of the samples (Supplementary Table 1).  

In DCs, differentially methylated (DM) CpG sites at each time point following MTB infection 

were identified using the R package DSS (Feng et al. 2014). We used a linear model with the 

following design: DNA methylation ~ Donor + Infection, which allowed us to consider the 

paired nature of the experiment and capture the effects of infection on DNA methylation 

observed within donors. We considered a CpG site as differentially methylated if statistically 

supported at a False Discovery Rate (FDR) < 0.01 and an absolute mean methylation difference 

above 10%. Only CpG sites that had a coverage of at least 5X in each of the samples were 

included in the analysis (103,649 in total).  

To identify DM sites that show stable loss of methylation (as Cluster 3 DM sites in DCs) in 

Salmonella-infected macrophages using one individual, we performed a hierarchical clustering 

analysis on sites that specifically: (i) do not change methylation at 2 hours (|methylation 

difference| < 10%), and (ii) lose methylation at 48 hours (methylation difference < -40%). 

5hmC enrichment at DM sites 

To calculate the enrichment of 5-hydroxymethylcytosine (5hmC) at DM CpG sites (Clusters 1, 

2 and 3), we compared the distribution of 5hmC levels between DM and non-DM sites, using 

previously published TAB-seq data from non-infected DCs (Pacis et al. 2015). Since non-DM 

sites have lower overall levels of baseline methylation than DM sites (Supplementary Figure 
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8A), we performed similar enrichment analysis by using a random set of non-DM sites that 

matches the distribution of methylation found in non-infected samples within each set of DM 

sites (Supplementary Figure 8B). Each random set contains the same number of CpG sites as 

those identified within each DM cluster. 

RNA-seq data processing and identification of differentially expressed genes 

Read count estimates per gene were obtained using the alignment-free method Kallisto (Bray et 

al. 2016). For all downstream analyses, we excluded non-coding and lowly-expressed genes 

with an average read count lower than 10 in all of the samples, resulting in 13,955 genes in total. 

The R package DESeq2 (Anders et al. 2013) was used to identify differences in expression 

levels between non-infected and infected samples, at each time point. Nominal p-values were 

corrected for multiple testing using the Benjamini-Hochberg method (Benjamini and Hochberg 

1995). The complete list of differentially expressed genes can be found in Supplementary Table 

3. 

Gene set enrichment analysis 

We used ClueGO (Bindea et al. 2009) at default parameters to test for enrichment of functionally 

annotated gene sets among differentially expressed genes. The results for these enrichment 

analyses are reported in Supplementary Table 4. Enrichment p-values were based on a 

hypergeometric test using the set of 13,955 genes as background. Benjamini-Hochberg method 

was applied for multiple testing correction. 

ChIP-seq data processing and tag density profiles 

We started by trimming adapter sequences and low-quality score bases using Trim Galore. The 

resulting reads were mapped to the human reference genome using Bowtie 2 with the following 

option: -N 1. Only reads that had a unique alignment were retained and PCR duplicates were 

further removed using Picard tools (http://broadinstitute.github.io/picard/). Tag density profiles 

for chromatin modifications and genome accessibility patterns around regions of interest was 

accomplished with ngs.plot package (Shen et al. 2014) using default parameters. 
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ATAC-seq data processing and TF footprinting analysis 

ATAC-seq reads were trimmed for adapter sequences and low-quality score bases and were 

mapped to the human reference genome. Mapping was performed using BWA-MEM (Li and 

Durbin 2009) in paired-end mode at default parameters. Only reads that had a unique alignment 

(mapping quality > 10) were retained. TF footprinting analyses were performed as previously 

described, using the Centidual algorithm (Pacis et al. 2015) which specifically tests for 

differential binding between two experimental conditions. For each of the actively bound TFs 

in DCs (FDR < 0.2 at 18 hours post-infection; Supplementary Table 5)), we first trained 

Centidual assuming that the footprint was bound in the two conditions. Then, we fixed the model 

parameters and generated a likelihood ratio and posterior probability  for each condition  

separately and for each site . To detect if the footprint was more active in one of the two 

conditions, we fit a logistic model that included an intercept for each condition (  and ), the 

PWM effect , and PWM times the treatment effect : 

 

where  is an indicator variable that takes the value 1 if t = “treatment” and 0 if t = “control”. 

We then calculated a Z-score for the interaction effect , corresponding to the evidence for 

condition specific binding. ATAC-seq samples were down-sampled to obtain similar number of 

reads between NI and HI samples at each time-point.  We used a window size of 250 bp on 

either side of the motif match, and reads with fragment lengths [40, 99] and [100, 139] bp for 

footprinting analyses. Motifs that belong to non-human organisms were excluded in 

downstream analyses. 

To test for differential binding of immune-related TFs (NF-κB, AP-1, STATs and IRFs) between 

non-infected and infected samples, we compared the intensity of the Tn5 sensitivity-based 

footprint across all matches to motifs of TFs that belong to each family, in the hypomethylated 

regions. Specifically, the list of motif IDs (and corresponding names) that were aggregated to 

their respective TF family are shown in Table 1. 
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Table 1.  List of motif IDs aggregated to their respective immune-related transcription 
factor family 

 

To test for enrichment of binding of methylation-sensitive (“methyl-minus”) TFs in 

hypomethylated regions,  we compared the proportion of regions that overlap well-supported 

footprints (posterior probability > 0.99) of “methyl-minus” TFs reported in Yin et al. (Yin et al. 

2017)), among non-DMRs and hypomethylated regions. The list of motif IDs (and 

corresponding names) that were included in the analysis are shown in Table 2.  

MA0101.1 REL MA0490.1 JUNB MA0517.1 STAT1::STAT2 MA0050.2 IRF1
MA0107.1 RELA MA0491.1 JUND MA0519.1 Stat5a::Stat5b MA0051.1 IRF2

MA0462.1 BATF::JUN MA0772.1 IRF7
MA0476.1 FOS MA0652.1 IRF8
MA0477.1 FOSL1 MA0653.1 IRF9
MA0478.1 FOSL2
MA0656.1 JDP2(var.2)
MA0834.1 ATF7
MA0835.1 BATF3

NF-κB AP-1 STATs IRFs
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Table 2. List of motif IDs categorized as methylation-sensitive (“methyl-minus”) 
transcription factors 

 

Relationship between gene expression and chromatin accessibility 

Peaks were first called on ATAC-seq using the MACS2 software suite (Zhang et al. 2008) with 

the added parameters: -g hs -q 0.05 --broad --nomodel --extsize 200 --nolambda. All peaks from 

each sample were then merged to provide one set of combined peaks. To count the number of 

reads overlapping peaks, we used featureCount (from the subread package version 1.4.4) (Liao 

et al., 2014) with the following option: -p -P -d 19 -D 1000. For all downstream analyses, we 

excluded low-count peaks with have an average read count lower than 10 across all samples, 

resulting in 79,282 peaks in total. We then plotted the distribution of changes in Tn5 

MA0018.2 CREB1 MA0605.1 Atf3 MA0761.1 ETV1
MA0028.2 ELK1 MA0609.1 Crem MA0762.1 ETV2
MA0038.1 Gfi1 MA0615.1 Gmeb1 MA0763.1 ETV3
MA0058.3 MAX MA0616.1 Hes2 MA0764.1 ETV4
MA0059.1 MAX::MYC MA0632.1 Tcfl5 MA0765.1 ETV5
MA0062.2 Gabpa MA0635.1 BARHL2 MA0768.1 LEF1
MA0081.1 SPIB MA0636.1 BHLHE41 MA0772.1 IRF7
MA0093.2 USF1 MA0638.1 CREB3 MA0777.1 MYBL2
MA0095.2 YY1 MA0640.1 ELF3 MA0780.1 PAX3
MA0099.2 FOS::JUN MA0641.1 ELF4 MA0794.1 PROX1
MA0104.3 Mycn MA0649.1 HEY2 MA0821.1 HES5
MA0136.2 ELF5 MA0663.1 MLX MA0822.1 HES7
MA0149.1 EWSR1-FLI1 MA0679.1 ONECUT1 MA0823.1 HEY1
MA0156.2 FEV MA0680.1 PAX7 MA0829.1 Srebf1(var.2)
MA0414.1 XBP1 MA0684.1 RUNX3 MA0830.1 TCF4
MA0463.1 Bcl6 MA0686.1 SPDEF MA0831.1 TFE3
MA0464.2 BHLHE40 MA0694.1 ZBTB7B MA0834.1 ATF7
MA0470.1 E2F4 MA0731.1 BCL6B MA0839.1 CREB3L1
MA0473.2 ELF1 MA0735.1 GLIS1 MA0840.1 Creb5
MA0474.2 ERG MA0736.1 GLIS2 MA0844.1 XBP1
MA0475.2 FLI1 MA0749.1 ZBED1 MA0850.1 FOXP3
MA0476.1 FOS MA0750.1 ZBTB7A MA0862.1 GMEB2
MA0495.1 MAFF MA0754.1 CUX1 MA0864.1 E2F2
MA0511.2 RUNX2 MA0756.1 ONECUT2 MA0871.1 TFEC
MA0526.1 USF2 MA0757.1 ONECUT3 MA0876.1 BSX
MA0595.1 SREBF1 MA0758.1 E2F7 MA1099.1 Hes1
MA0603.1 Arntl MA0759.1 ELK3
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accessibility (between non-infected and MTB-infected DCs across the five time points of 

infection (2, 4, 18, 24, 48 and 72 hours)) for the top 25% most variable peaks associated with 

DE genes in each cluster. The DE genes associated with the selected peaks represent ~50% of 

the total genes within each of the DE cluster: (i) Early induced: 418/765 = 55%; (ii) Intermediate 

induced: 418/839 = 49%; and (iii) Persistent induced: 1083/2091 = 52%.  
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Supplementary Figures 

 

 

Supplementary Figure 1. Characteristics of SeqCap target regions. (A) Left: Combination 

of histone patterns used to define the 7 chromatin states (previously defined in (Pacis et al. 

2015)). Right: Pie charts showing the distribution of chromatin state annotations genome-wide 

and within SeqCap target regions in MTB-infected DCs. (B) Bar plots showing mean coverages 

of CpG sites within the target regions for each sample. Dotted line denotes the average coverage 

across all samples. (C) Correlation between DNA methylation levels at target regions among 

replicates (using only CpG sites with ≥5 coverage in all samples).  
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Supplementary Figure 2. DNA methylation dynamics in DCs in response to infection with 
heat-inactivated MTB. (A) Bar plots showing the number of differentially methylated sites 

identified at a |methylation difference| > 10% and FDR < 0.01 (y-axis) at each time point after 

infection with heat-inactivated MTB (2, 18, 48 and 72 hours (h); x-axis). (B) Distribution of 

differences in methylation between infected and non-infected cells at DM sites, at each time 

point. (C) Scatterplots depicting the correlation between differences in methylation in response 

to live (x-axis) or heat-inactivated MTB (y-axis) at each time point after infection (2, 18, 48 and 

72 hours (h)). 
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Supplementary Figure 3. Expression of TET genes in non-infected DCs. Bar plots showing 

the expression levels (in log2-normalized read counts) of TET genes, in non-infected DCs. All 

data are represented as mean ± s.e.m.  
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Supplementary Figure 4. Time course analysis of gene expression in DCs in response to 
infection with heat-inactivated MTB. (A) Principal component analysis of gene expression 

data from all samples. PC1 (x-axis) and PC2 (y-axis) clearly separate non-infected DCs from 

DCs infected with live MTB. (B) Scatterplots depicting the correlation between changes in 

expression (log2 fold changes) in response to live (x-axis) or heat-inactivated MTB (y-axis) at 

each time point after MTB infection (2, 18, 48 and 72 hours (h)).  
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Supplementary Figure 5. Example of genes for which DNA demethylation occurred prior 
to gene activation. (A) Boxplots showing the distribution of standardized differences in 

methylation (blue) of Cluster 3 DM sites along with the corresponding standardized differences 

in expression (orange) of the associated genes, for which DNA demethylation occurred prior to 

gene activation (i.e., not differentially expressed after 2 and 18 hours post-infection using a 

relaxed FDR ≥ 0.1; n = 17 genes). These distributions are shown for each time point after MTB 

infection (2, 18, 48 and 72 hours (h)). (B) Specific example of changes in DNA methylation 

levels (blue; right y-axis) across all time points, along with the corresponding fold changes in 

log2 scale (orange; left y-axis) in expression of the associated gene that is induced after loss of 

methylation (defined in (A)). All data are represented as mean ± s.e.m. Gray dots denote no 

significant change in gene expression or methylation.  
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Supplementary Figure 6. Binding profiles of immune-related transcription factors within 
hypomethylated regions.  Bar plots showing differences in TF occupancy score predictions for 

AP-1, IRF or STAT motifs between MTB-infected and non-infected DCs (ZMTB - ZNI; y-axis; 

see Methods), across four time points after infection (in hours (h); x-axis; see Methods). A 

positive Z-score difference indicates increased TF binding in hypomethylated regions after 

MTB infection.  
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Supplementary Figure 7. TET2 expression profile in MTB-infected DCs. Bar plots showing 

changes in expression levels (in log2) of Tet2, across four time points after MTB infection (in 

hours (h); x-axis).  
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Supplementary Figure 8. 5hmC enrichment in differentially methylated (DM) CpG sites. 
(A) Boxplots of methylation levels (5mC + 5hmC) of non-DM and DM sites (Clusters 1, 2 and 

3), in non-infected DCs. (B) Boxplots of 5hmC levels of all non-DM (gray) and DM sites in 

each cluster. Also shown are distributions of 5hmC levels using a random set of non-DM sites 

that matches the distribution of methylation found in non-infected samples within each set of 

DM sites (shown in (A)). Each random set contains the same number of CpG sites as those 

identified within each DM cluster.  
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4 Discussion and Perspectives 
 

4.1 Infection of human dendritic cells involves active, proliferation-
independent DNA demethylation 

A key feature of innate immune cells is their ability to rapidly respond to intracellular and 

extracellular signals. Epigenetic mechanisms involving histone modifications have been shown 

to contribute to the regulatory programs induced by innate immune cells in response to an 

infectious agent (Bierne et al. 2012; Smale et al. 2014). In contrast, given its presumed stability, 

the contribution of changes in DNA methylation to innate immune responses has been less 

explored. During my thesis, I performed comprehensive DNA methylation profiling of non-

infected and MTB-infected DCs at multiple time points, using the combination of whole-

genome and targeted bisulfite sequencing methods (MethylC-seq and SeqCap Epi, 

respectively). I identified thousands of MTB-induced differentially methylated CpG sites, with 

the vast majority exhibiting gradual loss of methylation at enhancer elements over the time 

course of infection. Interestingly, several studies of DNA methylation dynamics in innate 

immune cells in response to different stimuli have reported similar trends associated with loss 

of methylation (Marr et al. 2014; Zhang et al. 2014; Cizmeci et al. 2016; Wiencke et al. 2016). 

This general trend towards demethylation of host cell DNA upon activation suggests that there 

are some common regulatory regions or genes that are targeted by different pathogens. In 

support of this hypothesis, I found that among the CpG sites that displayed loss of methylation 

in Salmonella-infected macrophages, 45% overlapped with DM sites identified in MTB-infected 

DCs (see Article II). 

I established human DCs as a model to identify and characterize active demethylation events 

during infection. DCs are post-mitotic and do not to proliferate in response to infection, as 

confirmed by Carboxyfluorescein Diacetate Succinimidyl Ester (CFSE) cell proliferation assay 

(Quah and Parish 2010), which implies that passive DNA demethylation is an unlikely 

mechanism for the observed loss of methylation. Recent studies have implicated the family of 

Ten-Eleven-Translocation proteins (TET1, TET2, and TET3) in active demethylation processes 



 

122 

via the generation of 5-hydroxymethylcytosine (5hmC). Consistent with this notion, I found that 

CpG sites that lose methylation upon infection display high levels of 5hmC, suggesting that 

these regions are actively bound by TET enzymes.  This possibility is further supported by 

several reports demonstrating the role of TET2 – the most abundant TET family member in 

myeloid cells – as a key determinant of myeloid cell identity and several myeloid malignancies 

(Klug et al. 2013; Alvarez-Errico et al. 2015). Collectively, these results provide novel evidence 

for widespread, rapid changes in DNA methylation in innate immune cells (both DCs and 

macrophages) during infection, independent of cell division. This thesis also provides a 

framework from which we can learn about pathogen-specific versus generic responses. It will 

be interesting to explore further the molecular mechanisms underlying this targeted 

demethylation process. 

 

4.2 Temporal hierarchy of transcriptional and epigenetic changes in response 
to infection 

Here, I show that DNA demethylation is often associated with induction of inflammatory genes. 

However, it remains unclear whether altered methylation patterns directly invoke transcriptional 

modulation or whether such patterns are the downstream consequence of TF binding to 

regulatory regions. Paired time course analysis of DNA methylation and gene expression levels 

revealed that changes in gene expression tend to occur prior to detectable changes in DNA 

methylation. I further show that DNA demethylation is preceded by the deposition of H3K27ac 

active histone marks, thus arguing against its instructive role (Ford et al. 2017). Consistently, 

several recent reports have shown that other epigenetic modifications, such as the H3K4me1 

enhancer mark, have a similar passive regulatory function (Dorighi et al. 2017; Rickels et al. 

2017; Vandenbon et al. 2017). For instance, Vandenbon et al. assessed the timing of changes in 

several histone modifications in LPS-induced mouse DCs (Vandenbon et al. 2017). Using a 

ChIP-seq time series dataset, they found that only the deposition of H3K27ac at promoters and 

enhancers correlated with transcriptional induction. In striking contrast, the deposition of several 

other histone modifications (namely, H3K9K14ac, H3K4me3, H3K36me3, and H3K4me1) 

occurred within specific time frames after stimulation, independent of the timing of induction 
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of transcription. Integrative analysis with TF binding data further revealed that the dynamics of 

histone modifications reflects the timing of activation of signal-dependent TFs. These studies 

together with findings from this work suggest that changes in DNA methylation (and certain 

histone modification marks) play a secondary role in controlling the gene-specific regulatory 

programs engaged by innate immune cells in response to extrinsic signals. More broadly, it also 

highlights the importance of time series data in order to fully capture the relationship between 

epigenetic modifications and transcriptional responses.  

As previously mentioned, 5-methylcytosine (5mC) is subsequently oxidized by TET enzymes, 

generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine 

(5caC) as intermediates of the active demethylation pathway. Single-base resolution map of 

5hmC in non-infected DCs revealed that DM sites were strikingly enriched for 5hmC even prior 

to infection. It is possible that 5hmC is a stable epigenetic mark in its own right and has a 

function that is distinct from that of 5mC (Yildirim et al. 2011; Mellen et al. 2012; Iurlaro et al. 

2013; Spruijt et al. 2013; Xiong et al. 2016). Specifically, 5hmC may be a part of enhancer 

activation process by counteracting transcriptionally restrictive chromatin states, and thus could 

serve as an epigenetic priming mechanism that ensures a fast and effective response to an 

incoming stimulus (Creyghton et al. 2010; Serandour et al. 2012; Yu et al. 2012; Calo and 

Wysocka 2013; Hon et al. 2014; Vento-Tormo et al. 2016; Mahe et al. 2017). Similarly, ChIP-

seq data on histone modifications show that many of the regions that lose methylation were pre-

marked by H3K4me1 prior to immune stimulation, suggesting that both epigenetic marks 

function together to contribute to the priming of enhancers. However, whether or not the binding 

of signal-dependent TFs and subsequent activation of enhancers is directly dependent on initial 

5hmC deposition remains elusive. Much remains to be done to explain the mechanisms by which 

oxidative 5mC derivatives regulate the innate immune system. The identification of the readers 

specific for 5hmC, 5fC and 5caC will provide critical insights into their functional importance. 

To establish the relative contribution of epigenetic modifications in the regulation of innate 

immune responses, one approach is to perform genetic targeting, namely, the deletion or 

mutation, of chromatin-modifying enzymes. CROP-seq (Datlinger et al. 2017), CRISP-seq 

(Jaitin et al. 2016), and PERTURB-seq (Dixit et al. 2016), which combine single-cell RNA 
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sequencing (scRNA-seq) (Macosko et al. 2015; Zilionis et al. 2017) and clustered regularly 

interspaced short palindromic repeats (CRISPR)-based perturbations (Ran et al. 2013; Sander 

and Joung 2014), enable us to simultaneously investigate the functional relevance of multiple 

epigenetic features individually or in combination (Figure 1). The three methods rely on the use 

of barcodes to identify both the individual genetic perturbation and the cells affected. Briefly, a 

library of uniquely barcoded CRISPR guide RNAs (gRNA) targeting genes of interest is 

introduced into a population of cells. The mRNAs of individual cells are then extracted with 

uniquely barcoded primers via droplet-based microfluidics. 

However, since genetic manipulation of chromatin-modifying enzymes often leads to epigenetic 

perturbations across the entire genome, it will difficult to pinpoint the genomic regions at which 

epigenetic modifications are functionally relevant for transcriptional regulation. Thus, a 

complementary approach will be to change single epigenetic marks at specific loci, using 

chromatin-modifying enzymes (or catalytic domains) fused to an inactive form of Cas9 

(Kungulovski and Jeltsch 2016; Pulecio et al. 2017; Stricker et al. 2017). Similar to the previous 

approach, this would require appropriate libraries of gRNAs, each targeting dCas9-chromatin-

modifying enzymes to thousands of different genomic sites, focusing on relevant regions that 

have been identified from the integrative analysis of epigenomic profiles.  
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Figure 1. Systematic assessment of the effects of epigenetic perturbations on the innate 
immune response. (A) Schematics of the experimental design. Monocyte-derived dendritic 

cells (DCs) are isolated from peripheral blood of male adult donors. A pooled gRNA library 

promotes gene knockouts through lentiviral transfection, resulting in single or multiple gene 

knockouts. Heterogeneous cell populations are profiled (using single-cell RNA-seq; scRNA-

seq), after infection with Mycobacterium tuberculosis (MTB) for 18 hours. Genetic 

perturbations are determined by the gRNA-specific unique molecular identifiers (UMIs), and 

the transcriptional effect of that perturbation are determined by the collection of mRNAs 

associated the cell-specific UMIs. (B) Hypothetical example of a t-distributed stochastic 

neighbor embedding (t-SNE) plot of individual dendritic cells, color-coded by infection status 

(left) or gRNA target genes individually or in combination (right). Image adapted from 

(Adamson et al. 2016; Kang et al. 2018). 
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4.3 Methylation-sensitive transcription factors 

The importance of DNA methylation in the control of gene expression is widely accepted. 

Despite the fast accumulating profiles of DNA methylomes in various biological processes and 

physiological conditions, the interpretation of these data sets have often failed to establish the 

causality between the changes in DNA methylation and physiological outcomes. Despite the 

numerous studies directed at establishing the functional relationship between DNA methylation 

and TF binding, no consensus has emerged. The effect of CpG methylation on TF binding varies 

from one TF to another (Blattler and Farnham 2013; Schubeler 2015; Zhu et al. 2016; Yin et al. 

2017), and this can be broadly classified into three categories: (i) TFs that recognize sites with 

CpG sequences but are not affected by cytosine methylation (little effect or methylation-

insensitive); (ii) TFs that prefer unmethylated CpG (methylation-sensitive: methyl-minus), and 

(iii) TFs that prefer methylated CpG (methylation-sensitive: methyl-plus) (Figure 2A,B,C). 

Moreover, it has been reported that certain methylation-insensitive TFs could behave as 

“pioneer factors” and create a site of reduced methylation that allows the binding of methylation-

sensitive (methyl-minus) TFs (Domcke et al. 2015) (Figure 2D).  

Using TF footprint analysis, I show that the signal-dependent TF NF-κB/Rel, is recruited to 

hypomethylated regions prior to loss of methylation, further supporting the lack repressive 

capacity of DNA methylation (Ford et al. 2017). However, we cannot completely exclude the 

possibility that the observed loss of methylation plays an active role in regulating gene 

expression during infection, but only in a small subset of the differentially methylated CpG sites. 

Under this scenario, DNA demethylation would be crucial for the binding of methylation-

sensitive (methyl-minus) TFs that specifically play a role at later stages of infection. This 

suggests overall that DNA demethylation might fine-tune, rather than tightly control immune 

responses. ATAC-seq footprinting offers a powerful approach to perform global analysis of 

binding of TFs (with known motif) in a single experiment. However, in contrast to chromatin 

immunoprecipitation (ChIP)-based methods, which directly measures TF occupancy, ATAC-

seq footprinting only suggests TF binding by proxy. Moreover, since cell type-specific 

enhancers are formed by the juxtaposition of several binding sites specific for various TFs, 

identifying the involved TF might be challenging. Thus, further validation using ChIP-seq 
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against TFs predicted to be recruited to hypomethylated regions will be required to validate 

these results. 

The identification of methylation-sensitive TFs (methyl-minus and methyl-plus) and the 

elucidation of their characteristics will be a very important step towards a mechanistic 

understanding of the role of DNA methylation in innate immune responses to infection. For 

example, superimposing DNA methylation and TF binding ChIP-seq data sets can be an 

effective approach to validate methylation-dependent DNA-TF interactions. Another possible 

approach is to investigate the effects of TF binding on DNA methylation by inhibiting TFs that 

bind specifically to hypomethylated regions (such as NF-κB/Rel). Alternatively, we can assess 

genome-wide changes in TF binding sites by perturbing DNA methylation by knocking out 

DNMTs or TETs. Moreover, recent developments in targetable epigenome-editing tools (using 

TALEs or CRISPR/Cas9) enable us to assign direct transcriptional and functional consequences 

to locus-specific epigenetic modifications.  

Finally, although only ~25% of known TF binding motifs in humans contain at least one CpG 

site (Blattler and Farnham 2013; Yin et al. 2017), binding of TFs that lack CpGs in their binding 

motifs could possibly still be influenced by DNA methylation, through indirect crosstalk with 

other epigenetic mechanisms such as histone modifications.  
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Figure 2. Emerging scenarios showing the effect of DNA methylation (denoted by level of 

5-methylcytosine or 5mC) on transcription factor (TF) binding. (A) A methylation-

insensitive TF binds and causes reduced methylation. (B) A methylation-sensitive (methyl-

minus) TF is blocked by 5mC. (C) A methylation-sensitive (methyl-plus) TF preferentially 

binds to the methylated state of its binding site. Note that methyl-plus TFs do not include 

methyl-CpG-binding domain (MBD) proteins, which also specifically bind to the methylated 

state (discussed in section 1.3.3). (D) A methylation-insensitive TF acting as a pioneer factor 

binds and creates reduced methylation, which allows the binding of a methylation-sensitive 

(methyl-minus) TF. Image adapted from (Schubeler 2015). 

 

4.4 Trained immunity 

Immunological memory has traditionally been a hallmark trait of the adaptive immune system, 

present only in antigen-specific T and B cells. Recent studies have challenged this dogma by 

demonstrating that innate immune cells can also show memory-like behavior. Studies involving 

organisms that lack adaptive immunity have shed light on the notion of memory within the 
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innate immune system by showing that plants and invertebrates display protective mechanisms 

against reinfection (Kurtz and Franz 2003; Pham et al. 2007; Rodrigues et al. 2010; Luna and 

Ton 2012; Kachroo and Robin 2013). Similarly, mice rendered unable to mount an effective 

adaptive immune response (due non-functional T and B lymphocytes) can mount resistance to 

reinfection (Quintin et al. 2012). Considering the development of innate immune memory in 

humans, it has been shown that Bacillus Calmette-Guerin (BCG) vaccination against 

tuberculosis was associated with a reduction in all-cause mortality, suggesting that specific, 

adaptive immunity may not be the only protective mechanism at work (Niobey et al. 1992; 

Kristensen et al. 2000; Garly et al. 2003). The term “trained immunity” has been proposed to 

describe the phenomenon in which the innate immune system can mount a stronger and more 

effective immune response upon secondary infection with the same or unrelated pathogens 

(Quintin et al. 2014). Recent studies further suggest that histone modifications, including 

acetylation and methylation, play a key role in the induction of trained immunity (Cheng et al. 

2014; Saeed et al. 2014; Kaufmann et al. 2018). 

Here, I show that the infection of innate immune cells (i.e., DCs and macrophages) with 

pathogenic bacteria is associated with pervasive loss of methylation. Interestingly, levels of 

methylation at DM CpG sites gradually decreased over the course of infection but never reverted 

back to higher levels, even among genes for which expression levels return to basal state. This 

observation strongly suggests that targeted loss of DNA methylation is longer lasting (at least 

up to 72 hours), and thus may be ideally suited as a mechanism of epigenetic memory. It will 

be interesting to explore further how trained immunity is epigenetically encoded, focusing 

specifically on DNA demethylation. Notably, assessing the effects of inhibition of TET-

mediated active demethylation process in the development of trained immunity will provide 

critical insights into its functional importance. In addition, it will be interesting to determine and 

compare the durability of changes in DNA methylation and histone modifications, after training. 

Figure 3 summarizes the known and possible mechanisms through which DNA methylation 

regulates innate immune responses to infection. 
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Figure 3. Proposed model for the role of DNA methylation in innate immune responses to 
infection. (i) Infection of phagocytes (such as DCs and macrophages) triggers the recruitment 

of signal-dependent TFs (methylation-insensitive TFs specifically) within the cell type-specific 

enhancer repertoires pre-established (primed; marked by H3K4me1) by pioneer TFs prior to 

immune stimulation. The rapid binding of methylation-insensitive TFs during early stages of 

infection, likely induces local chromatin opening, the recruitment of histone acetyltransferase 

p300, and the subsequent deposition of activating H3K27ac marks in these regions (Bhatt and 
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Ghosh 2014). (ii) The finding that DM CpG sites are highly enriched for 5hmC at baseline 

suggests that these sites are pre-bound by Ten-eleven Translocation (TET) enzymes, possibly 

via the pioneer factor PU.1 (de la Rica et al. 2013). In this scenario, p300 acetylates TET2, 

conferring enhanced enzyme activity (Zhang et al. 2017), which might account for the loss of 

DNA methylation in response to infection. Removal of methylation marks allows the binding 

of methylation-sensitive (methyl-minus) TFs to induce expression of genes that play a role at 

later stages of infection. (iii) Loss of methylation at DM CpG sites persists even after immune 

stimuli has ceased, which might contribute to the faster and stronger transcriptional response 

upon restimulation (i.e., trained immunity). 5mC: 5-methylcytosine, 5hmC: 5-

hydroxymethylcytosine, 5C: (unmethylated) cytosine. 

 

4.5 DNA methylation as a biomarker 

Biomarkers are naturally-occurring characteristics by which a particular pathological process or 

disease can be identified or monitored. Distinct epigenomic profiles are not only useful for 

understanding the molecular mechanisms underlying disease development, but also for the 

discovery of relevant epigenetic biomarkers. Aberrant DNA methylation has emerged as a 

highly promising biomarker for disease status as well as to predict disease outcome or response 

to certain therapeutic treatments. This is particularly true for methylation biomarkers in cancer 

(e.g., hypermethylation of tumor suppressor genes) where the biomarkers are currently being 

used for early detection (Laird 2003).  

On the other hand, the availability of DNA methylation biomarkers in diseases other than cancer 

is still in its very early steps. Here, I show that the infection of DCs with MTB is associated with 

loss of methylation at thousands of CpG loci. Although these DM sites do not necessarily play 

a causal role in the disease, it could serve as candidate biomarkers to identify people with latent 

or active TB. Indeed, Esterhuyse et al. have demonstrated this by effectively distinguishing TB 

disease condition from active or latent TB from healthy individuals using disease-specific DNA 

methylation marks in monocytes and neutrophils (Esterhuyse et al. 2015). The challenge might 

be to develop biomarkers that are specific to TB, since a lot of the methylation changes observed 

are likely shared in response to a multitude of inflammatory signals. Indeed, differential 
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methylation analysis showed a high degree of overlap between DM sites identified in MTB-

infected DCs and Salmonella-infected macrophages, suggesting that common regulatory 

regions or genes are targeted by different pathogens. 

I also note that these results were obtained from in vitro experiments using monocyte-derived 

dendritic cells or macrophages, which do not necessarily reflect in vivo physiology. In particular, 

this system does not take into account important aspects of cell-cell and cell-pathogen 

interactions that occur in the context of complex tissue environment. Cell behavior depends on 

signaling from neighboring cells (e.g., neutrophils, monocytes, T cells and B cells), pathogens, 

and local concentrations of cytokines. For example, the main target organ for MTB infection is 

the lung and therefore, tissue-resident alveolar macrophages would be ideally used as a model 

to further reflect the lung microenvironment. Thus, it will be interesting to see if the findings 

herein reflect the DNA methylation profiles observed in TB patients. Ultimately, the 

identification of epigenetic alterations in immune cells that could be used as biomarkers of 

disease or predictors of treatment success could prove key in this new era of personalized 

medicine. 
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