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RESUME
Piusieurs tests de racine unitaire ont des niveaux exacts détormés quand le processus
d'erreur a une racine prés du cercle unitaire. Cet article analyse les propriétés des tests de
Phillips-Perron et quelques-unes de leurs variantes dans l'espace problématique. On utilise des
analyses asymptotiques locales Pour montrer pourquoi les tests de Phillips-Perron soutirent de

distorsions de niveaux sévéres, peu importe le choix de l'estimateur de la densité spectrale, et
comment les statistiques modifides occasionnent des améliorations dramatiques du niveau,
lorsque utilisées en conjonction avec une formulation particuliére d'un estimateur autorégressit
de densité spectrale. On explique pourquoi les estimateurs de densité spectrale basés sur un
noyau aggravent le probléme de niveau dans les tests de Phitlips-Perron et n'aménent aucune
amélioration pour les statistiques modifiées. Les puissances asymptotiques locales des
statistiques modifiées sont aussi évaluées. Ces statistiques modifiées sont recommandées dans
les travaux empiriques étant donné qu'ils sont exempts du probléme de niveau et qu'ils

permettent aussi une puissance respectable, -

Mots—clés : racine unitaire, asymptotique local, quasi-intégré, doublement imégré, intégration
a fréquence saisonniére, Phillips-Perron.

ABSTRACT

Many unit root tests have distorted sizes when the root of the error process is close to the
unit circle. This Paper analyzes the properties ot the Phillips-Perron tests and some of their
variants in the problematic parameter space. We use local asymptotic analyses 10 explain why
the Phillips-Perron tests suffer from severe size distortions regardless of the choice of the
spectral density estimator but that the modified statistics show dramatic improvements in size
when used in conjunction with a particular formulation of an autoregressive spectral density
estimator. We explain why kernel-based spectral density estimators aggravate the size problem
in the Phillips-Perron tests and yield no size improvement to the modified statistics. The local
asymptotic power of the modified statistics is also evaluated. These modified statistics are
fecommended as being useful in empirical work since they are rid of size problems which have
plagued many unit root tests and retain respectable power.

Key words: unit root, local asymptotic, near integrated, twice integrated, seasonally integrated,
Phillips-Perron.






1. Introduction.

Testing for the presence of unit roots and cointegration is now a common practice in applied
macroeconomics. Often, one is required to use statistics which appropriately account for
serial correlation in the error process. Among statistics in this class, the augmented Dickey
Fuller and the Phillips- Perron tests are perhaps the most popular, as they are implemented
in many statistical software packages. However, it is also by now a well documented fact
that the Phillips-Perron lests, as originally defined, suffer from severe size distortions when
there are negative moving average errors. Although the size of the Dickey Fuller test is more
accurate, the problem is not negligible.

The objectives of our paper are twofold. The first is to provide an understanding for the
sources of size distortions in the Phillips-Perron tests and to explain how these distortions
relate to the choice of the spectral density estimator. We use local asymptotic frameworks to
analyze the properties of the statistics when the autoregressive or the moving average error
process has a root close to the unit, circle. We find that although no spectral density estimator
can eliminate size distortions in these cases, kernel based spectral density estimators tend to
aggravate the size problem.

Our second objective is to compare the properties of the Phillips-Perron tests with se.
lected statistics which can be viewed as modified Phillips-Perron tests. These modified
statistics, based originally on the work of Stock (1990), are found o have exact sizes much
closer to the nominal size when used in conjunction with a particular Jormulation of the
autoregressive spectral density estimator. However, these seemingly attractive properties do
not generalize to kernel based spectral density estimators, Using local asymptotic analyses as
developed in Nabeya and Perron {1994), we provide an explanation for these results, qualify
the conditions when the modifications will alleviate size distortions, and when they will be
vacuous.

This paper is organized as follows. Definitions of the statistics and estimators for the
spectral density at frequency zero are given in Sections 1.1 and 1.2 respectively. The empirical
properties of the statistics are presented in Section 1.3. Section 1.4 sets up the framework
for analyzing data generating processes whose error has a root close to the unit circle. The
next three sections analyze the theoretical properties of the statistics for different choices
of the spectral density estimator. The local asymptotic size and power of the statistics are
analyzed in Section 5. A conclusion completes the analysis. All proofs are contained in
a mathematical appendix. Properties of the autoregressive spectral density estimator are

discussed in more detail in Perron and Ng (1994).



1.1 The Test Statistics.

Consider the data generating process
Yo = @ Yoy + Uy, {1y

where {u¢} is 1.4.d.{0,07%). White (1958) showed that the normalized leasi squares statistic,
T(& — 1), and the t statistic for &, defined as ts = (& — 1)/su(L, y2,)7" 2 with s} =
T ZL, 2, have the following asymptotic distributions:

T(a—~1)= (fo‘ W(r)dW(r)) (fo‘ W(r)’dr)-', (1.2)

~1/2
la = (fo’ "V(r)dW(r)> (f(,’ W(r)?dr) . (1.3)

where W(r) is a standard Brownian motion on C0,1], the space of continuous functions
on the interval ]0,1], and = denotes weak convergence in distribution. When {u,} is seri-
ally correlated, Phillips {1987) showed that, under some regularity conditions, the limiting

distributions of the statistics become

T(4—1) = (fo‘ W(r)dW(r) + )\) (jo‘ W(r)’dr)wl,

to = (a/o.,)(f; W(r)dW(r) + A) (j,,‘ W(r)’dr>—”2,

where A = (07 — 02)/20%, ¢ = limT 0o T, T E[ul], o7 = limr—e E{T~152%), and St =
ELI uj. When {u} is stationary, o? = 27 f,(0), where [,(0) is the non-normalized spectral
density function of {u} evaluated at frequency zero. In the case of martingale difference

2 _ 52, To remove the dependence of the asymptotic distributions on

innovations, we have ¢* = g,
the nuisance parameters o* and a2, Phillips (1987) and Phillips and Perron (1988) proposed

the statistics Zo and Zi, defined in the case of regression (1.1), as

= T(a- 1 - (2~ D) (21" Tl yz.,)’ , (1.4)

-1/2
20 = (8o 8)ta = (1/2)(s* = s2) (.'?T"2 ):;r:‘ yf‘_,) , (1.5)

where s2 and s?'are consistent estimates of o2 and o respectively. We will frequently refer
Lo the term (82 — s2{T? ST v2,)7" as the serial correlation correction factor. The Z,

and Z, statistics, hereafter referred to as the PP tests, are often used in situations where
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considerations of weakly dependent errors become relevant. The asymptotic distributions of
these statistics are given by (1.2) and (1.3) respectively.!.

Stock (1990) proposed a class of statistics which exploits the feature that a series con-
verges with different rates of normalization under the null and the alternative hypotheses.
We consider two such tests, hereafter referred Lo as the M tests. The first statistic is M Z,
defined as:? .

MZy= (g2 ~T s’)(ZT“ T y;’) . (1.6)
The statistic can be rewritten as
MZy = Zy +(T/2)(6 ~ 1)2. (1.7)

For this reason, MZ, can be seen as a modified version of Zs. The termn T{é - 122
will subsequently be referred to as the modification factor. Under standard assumptions,
the result that & converges Lo one al rate T ensures that Z, and MZ, are asymptotically
equivalent. The critical values of MZ, are therefore the same as Z,, namely, those of the
normalized least squares estimator given by (1.2). The second statistic, MSB, is defined as:

172
MSB = (T"Zy,’_,/s’) . (1.8)

Noting that the sum of squares of an /(1) series is Op(T?) but that of an 1{0) series is
O,(T), the MSB statistic effectively tests the null hypothesis that the former condition js
true. Under the alternative hypothesis, the statistic tends to zero. Hence, the unit root
hypothesis is rejected in favor of stationarity when MSB is smaller than some appropriate
critical value. Note that MSH s bounded from below by zero, unlike the other tests. The
statistic is related to Bhargava’s (1986) R, statistic which is built upon the work of Sargan
and Bhargava (1983). Critical values with y; demeaned and detrended are provided by Stock
(1990).
Note that MSB and the PP tests are related as follows:

Z,=MSB. 2, (1.9)

This suggests the relationship MZ, = MSB-MZ, should hold. Hence, we can define a new
modified PP test as:

1/2
M2, =Z¢+(l/2)():y,’__,/.s’) (G- 1y. (1.10)

I there are additional deterministic components (constant and trends) in regression (1.1), the Weiner
process W(r) in {1.2) and (1.3) should be replaced by its detrended counterpart.

*The statistics are more generally imp} ted with y d d or detrended. For the purpose of this
analysis, there is no loss in assuming this simpler specification where no deterministic components are present.
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Thus, each PP test has a modified counterpart.

1.2 Estimating o? and ol.

Construction of the statistics defined in the previous subsection requires estimates of ol
and/or o2 We consider three choices of 52 as an estimator for o?. First, we assume that o” is
known, and the estimator is denoted o}. Second, we let o? be estimated by an autoregressive

spectral density estimator, defined as

shp =85/ - (1)),

s =T ST e 6 b(1) = Z;m b;, with b; and {éu} obtained from a kt order augmented
autoregression in Ayr:
Aye = boyis + Loy biBY1-j + €ux (1.11)

For roots of u; bounded away from the unit circle, consistency of the parameters in the
augmented autoregression (1.11) has been shown by Said and Dickey {1984) to hold under
the null hypothesis that a = 1 if k = o{T*/?). Consistency of 5% based upon (1.11) follows
from Said and Dickey's results. This formulation, used in Stock (1990), differs from the usual

regression model used to construct sip, namely,
. k -
fig = Yoy byl + e (1.12)

as discussed in Priestley (1981). Consistency of s} based on (1.12) was proved in Berk
(1974) for cases where 0 < o? < o0.

The regression model (1.11) replaces @ in (1.12) by Ay, and includes y(.; as a regressor.
Since fig = y: — GYe—1 D OUr context, implicit in the use of (1.12) is the assumption that
& is consistent for @. Estimates of the spectral density implied by (1.11) and (1.12) are
asymptotically equivalent when & is a consistent estimate of & = 1. As we will see, the
advantage of defining s according to (1.11) is that it is does not depend on & (through
i), and therefore decouples the estimation of a from the estimation of o?. This permits
an estimator of o? that is bounded below by 0 under both the null and the alternative
hypotheses.

The third estimator of ? considered is a kernel estimator based on the sample autoco-

variances. This last estimator, which we denote sy 4, is of the form

Sy =T EL, @2 4+ 277 T, wlk/M) Tilan Gk, (1.13)



H
i
i
i

where i, are the least squares residuals from the first order autoregression (1.1), Following

Andrews (1991), w(-) is a real-valued kernel in the set:

R={wl(): R - [~1,1],w(0) = 1, w(z) = w(-z) Ve R, S5 wiz)dr < oo, w(z) is

continuous at 0 and at all but a finite number of other points}.

Estimators of o? in the class of R produce estimates, sty 4, which are consistent for o?
provided M/T — 0 and M — oo as T — 0o, We will restrict our analysis to kernels that
also satisly w(z) = 0 for Jz| > 1. In that case, M acts as a truncation lag parameter, and
we also define

Y= fo] w(zr)dz. (1.14)

Throughout this paper, we make use of the following estimator of ol
2=yl 2 (1.15)

1.3 Finite Sample Properties of the Statistics.

One problem with the PP tests is that they suffer from noticeable size distortions when the
root of the error process is close to the unit circle. The problem of overrejecting the unit root
hypothesis is particularly serious when the moving average errors have large negative serial
correlation, as noted by the authors in their original work. Simulations of Schwert (1989),
Kim and Schmidt (1990), Hyslop (1991), and Dejong, Nankervis, Savin and Whiteman (1992)
among others, confirmed this result. Although less severe, size problems also exist in models
with autoregressive errors that have roots close to -1 or 1. In the former case, the PP tests
reject the unit root hypothesis far too often, and in the latter case, not often enough.

To be precise about the issue at hand, Table I presents results based on 1000 replications
of the DGP y; = y,_; + u,, with (0 —pl)u = (14 6L)e;. The noise function, u, is a pure
moving average process when # =0, and a pure autoregressive process when 6 = 0. The
regression is y, = y + o Yt-1 + vr. The size of the PP tests was evaluated at various sample
sizes and the results for T = 100 and 500 are selected for discussion. In column one, we
report results based on the Bartlett window using an automatic selection of the bandwidth
as discussed in Andrews {1991). In column two, we present results for the autoregressive
spectral density estimator formulated according to (1.11) in terms of Ay,.? Results with o2
assumed known are reported in column three. For the sake of comparison, the size of the t,
statistic proposed by Dickey and Fuller (1979) and extended by Said and Dickey (1984) is

3The truncation lag is set according to the rule k = (T/100)44,
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given in the last columnn of Table 1.4 Critical values are taken as the lelt tail 5 percentage
point of the distribution given in Fuller (1976).

As we can sce from the results, the PP tests are too liberal when 6 is negative. Size
distortions are noticeable cven when 8 is around -0.5, with the unit root hypothesis always
being rejected as § approaches -1. For autoregressive noise functions, the tests are too
conservative when ihe residual autocorrelation is positive and too liberal when the residual
autocorrdatio.n is negative. The augmented Dickey-Fuller t, test also has substantial size
distortions in the negative moving-average case, although the problemis somewhat less severe
than with the PP tesis. As expected, t, has good size properties with an autoregressive noise
component.

Two explanations o these results seem possible. First, the PP tests may require 52 o
be a good estimator of 0% In the simulations, we have used a truncation lag of M and
Bartlett weights of 1~ k/(M+1)to weigh the sample autocovariances at lag k. However,
there is evidence® that the Bartlett window leads Lo estimates of o2 that are inferior to
the Quadratic, the Parzen, and the Bohman windows. The inadequacy of 52, which is not
required in the construction of {,, could be responsible for the behavior of the PP tests.

The choice of the kernel on the size of the PP tests was analyzed in Kim and Schmidt
(1990) via simulations. These authors experimented with the Bohman, the Bartlett, and the
Parzen windows and found the choice of the kernel not to make a significant difference as
far as size distortions are concerned. Our own simulations also found the Quadratic window,
reported to have good properties by Andrews (1991), incapable of resolving the size problem.
The prewhitening procedure recently developed by Andrews and Monahan (1992) also does
not provide improvements. More importantly, Table 1 suggests that replacing the kernel-
based estimator of o by an autoregressive spectral density estimator will not reduce size
distortions in the PP tests. Indeed, size problems persist even when ¢? is assumed known.

The second explanation for the poor size is that the PP tests are based on large sample
considerations. The recorded size distortions could be due to poor approximations provided
by (1.2) and (1.3) for the finite sample properties of the statistics. However, we found the
size problem to persist even with sample sizes as large as 500 or 1000, in accordance with
the results of Schwert (1989).

Stock (1990) evaluated the properties of M Z, and M S B using an autoregressive spectral
density estimator. We extended his analysis and used alternative spectral density estimators

4The truncation lag is selected according to the Akaike Information Criteria.
$The exact error of fourteen kernel based spectral density estimators are analyzed in Perron and Ng
(1993).



to construct the statistics. The results are presented in Table 2. Ap interesting result stands
out. When the autoregressive spectral density estimator as defined in (1.11) is used to
construct the statistics, the size distortions diminish dramatically and the exact sizes are
relatively close to the nominal size of 5 percent. However, size distortions remain significant
when o7 is estimated by sample autocovariances with Bartlett weights. Hyslop (1991) found
the same results using the Parzen window, and we obtained similar results with a Quadratic
window. The method used to estimate g2 evidently has important size implications for the
M 1ests. As we recall, large size distortions are recorded for the PP tests regardless of the
choice of 5. This suggests an intricate interplay between the choice of s? and the properties
of the M tests. These issues will be the subject of our analysis.

1.4 Preliminaries.

Qur interest is in understanding the properties of the PP and the M tests when the root of
the error process is close to the unit circle. A related problem was analyzed by Perron (1992)
and Nabeya and Perron (1994) who studied the local asymptotic behavior of & when 6 is
close to -1 and lol local to 1. The authors found that (1.2) indeed provides a poor guide to
the distribution of T(é - 1) in the mentioned parameter space. Since the PP tests are built
upon T'(& ~ 1), one might also expect (1.2) and (1.3) to provide inadequate approximations
for Z, and Z,. Some results on this issue were provided by Pantula (1991) who used a
different local asymptotic framework to study the behavior of the PP tests when 0 is local
to -1. The author showed for the case when o2 is estimated by the Bartlett window that the
distributions for Za and Z, are unbounded and that the rate of divergence to —co depends
on the rate 8 approaches -1 as well as the rate of increase of the truncation lag. However,
it is unclear whether these results generalize to other estimators of 02, and whether the
distributions of the statistics also have unusual properties when the autoregressive error has
a root close to one.

This paper provides further understanding to the source of size distortions in unit root
tests by extending previous work in two directions. First, we derive the local asymptotic
distributions for the PP and the M tests for both autoregressive and moving average error
processes with a root close to the unit circle. Our local asymptotic analysis is based on the
following framework:

ye=(1+¢/T)yey + uy, (1.16)

where p(L)u, = 8(L)e,, and e~ 1.4.d(0, 02), yo = eg = 0. The series {y:} has an autore-
gressive root local to unity with non-centrality parameter ¢. Under the null hypothesis of a



unit root, ¢ = 0. Our attention will be restricted Lo the simple cases where {u,} is either a
pure AR or a pure MA process with rools local to the boundary of —1 and/for 1.

Second, we analyze the dependence of Lhe statistics on the choice of the spectral density
estimator. The issue is relevant because as we shall see, the properties of s? are affected
by those of & via the estimated residuals. We have seen from Tables 1 and 2 that size
distortions are much larger with a kernel based estimator of 02 than with the autoregression
based alternative.

Qur derivations will be based on a regression without a constant or a trend, but it is
straightforward to gencralize the results to encompass additional deterministic terms. ln
(most cases, one can substitute Wi(r)bya demeaned or a detrended Weiner process without

altering any of the analytics.

2. The Nearly White Noise Nearly Integrated Case.

In this section, we analyze the properties of the tests for the case where a large negative
moving average component is present. Following the framework used by Nabeya and Perron

1994), we specify the data eneraling process as:
peaily |3 g

ye= (14 ¢/Thyer + us (2.1
u = e+ frec, (2.2)
7 = —1 + 6/VT. (2.3)

The process defined by {2.1) to (2.3) is an ARMA(1,1) with an autoregressive root local to
unity and a moving average 1oot local to -1. While the roots cancel and {y.} is a white
noise process in the limit, it is nearly integrated in finite samples. Theorem 1 of Nabeya and
Perron (1994) showed that for yo = eo =0,

(a-1)=~ (1 +8f) J;(r)’dr)"‘, (2.4)

where J(r) = fo, expl(r — 5)c)dW (s). Since the limit of (& — 1) has a negative support, the
normalized least squares statistic T(a—1)is unbounded and converges to —oo. Note that

& is nol a consistent estimate of a in this local asymptotic framework. Furthermore, it is

easy to show that given

2= ol (‘2 ~(1+& fol J,;(r)"dr)“’) , (2:5)



s2 is also not a consistent estimate of 0 = 202, Since sl is based on the estimated resid-
vals, the inconsistency of & directly affects the properties of s2. Using (2.4) and (2.5) it is

straightforward to show that
~1/2
T, o (1 +267 [} J((r)zdr) . (2.6)

Thus, 1, also diverges to —oo, albeit at a slower rate then the normalized least squares
statistic.  The following theorems, proved in the Appendix, characterize the asymptotic
distributions of Z,, Zi, MZ, and MSB for the different estimators of o2, We start with the

case where 02 is assumed known, followed by the autoregressive spectral density estimator.

Theorem 2.1 : Let {y,} be defined by (2.1) to (2.3) with yo = ¢ = 0. and s =gl =
27 f(0) = 028/ T. Let e, = limrecer/o,. Then as T — oo:
-2
2 T2, = ~(1/2) (14 62 [} Jefr)tdr)
1 ~3/2
b T-1Z, = — (1 + 8 Jf(r)er> /(26);
-1
¢ MZo = ((ew + 6J.(1))7 - 87) (2(1 + 8t f) J((r)’dr)) ;
1/2
d MSB = (1 + 62 [ J,,(r)"’dr) /6.

Theorem 2.2 : Let {¥} be defined by (2.1) 10 (2.3) with Yo = €0 = 0 and s%, be based
upon OLS applied to (1.11). Furthermore, assume that E/T 0 and k — 00 as T — oo
The asymptotic distributions of Zo, Zyy, MZ,, and MSB are the same as those given in
Theorem 2.1.

Remark 1

» The spectral density at the zero frequency is zero in the limijt for the present model, a
situation ruled out by assumption in Berk (1974). We cannot appeal o his results or those
of Said and Dickey (1984) to prove consisiency of 8% 5. However, we show in Perron and Ng
(1994) that b(1) based upon (1.11) diverges to infinity, and that 5%, converges to o2. Thus,
skr tends to zero, the asymptotic value of 0%. The equivalence of the results with Theorem
2.1 follows from the consistency of sk for o2,

* The spectral density at frequency zero plays no role in the PP tests in the limit because
it converges to 0 whereas s? is O,(1). However, the use of the rate T-7 1o normalize the
sample moments of yi,istoo strong for this nearly integrated nearly white noise process and
causes the serial correlation correction factor to be O,(T). The correction factor therefore

neither aggravates nor annihilates the explosive nature of T{&— 1) and the PP tests continue
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1o diverge at rate 7. Furiher inspection reveals that the limiting distribution for Z, is that
of (T/2)(& — 1)%.

o Although the normalized least squares estimator, the correction for serial correlation,
and the modification factor in M Z, all explode at rate T, the distribution of M Z, is bounded.
This is because the explosive terms in the PP tests are offset by the modification factor
asymptotically. As this last term is absent from the PP tests, their asymptotic equivalence
with the M tests breaks down under the assumptions of Theorems 2.1 and 2.2.

» Size distortions associated with MZ, are due to the discrepancies between {1.3) and
the distribution implied by (1.6) evaluated at the null hypothesis of ¢ = 0. The dramatically
smaller size distortions reported in Table 1 for M Z, suggest that while the approximation
provided by (1.3) for M Z, is not perfect, it is a substantial improvement compared 10 Z,.
The adequacy of the local asymptotic approximations will be analyzed in more detail in

Section 5.

Theorem 2.3 : Let {y) be defined by (2.1) to (2.3) with yo = €0 = 0, shy, defined by
(1.13) and ¥ by (1.14). Assume that M — oo and M/T — 0 as T' — co. Then:

a (MT)Zo = -8 (f, Jryar) (1463 Jc(r)mr)'a;
b (MTz, = — (p1612) [ Joyar) " (14 8 ) dtrar)
¢ (MT)*M2Z, = —v8? (f3 Jelryiar) (14825 Jc(r)wr)““;
1 3/2 ) ~1/2
d (MT)MSB = (148 [, Je(r)tdr) (298 )y Je(r)dr

Remark 2

 The PP tests in Theorem 2.3 with s}, , based on weighted estimated autocovariances
explode to —co at a rate of MT, faster than the rate T when o? is presumed known or
estimated by s%5. With Bartlett weights of 1 — k/(M +1), % = 1/2. In general, different
choices of the weighting function will only affect the magnitude of ¥ but not the rate at
which the statistics explode. This confirms the result of Kim and Schmidt (1990) that size
distortions cannot be eliminated by suitable choice of the kernel.

An intuitive explanation of these results is as follows. The quantity s}y, is based upon
a weighted sum of sample autocovariances which inherit inconsistency from &. Divergence
arises not from the inconsistency of s34 per se, but from the inappropriate use of the rate T2
to normalize the sample moments of yj_,. Each normalized autocovariance is therefore O(T),
and the explosive terms cumulate as the M lags of sample autocovariances are summed up.

For this reason, the serial correlation correction factor is 0,(MT) and accounts for the

10



reported rate of approach to —oc. As well, the modification factor in MZ, (T/20é6 - 1), is
only Op(T), and is not strong enough to offset the normalized autocovariances which diverge
at a faster rate. Thus, MZ, also diverges to negative infinity and has the same asymptotic
distribution as Z,.

® To the extent that the local asymptotic distributions of the PP tests diverge to —oo
at rate MT, the higher the order of the truncation lag, the faster the rate of divergence.
Thus, although a long truncation lag is preferable when estimating the spectral density at
frequency zero for a stationary series with a large negative moving average component, see
Perron and Ng (1993), a large truncation lag is not optimal when there is a near common
factor.
Remark 3

® Phillips and Quliaris (1990) showed that the PP tests will be inconsistent against
stalionary alternatives under the standard asymptotic framework (i.e. 0 fixed as T increases)
if residuals under the null hypothesis, Ay, = u,, are used to construct s, ,. Theorem 2.3
shows that the use of the estimated residuals, {#}, will lead to increasing size distortions in
the present local asymptotic framework. Thus, estimators of the form (1.13) based on sample
aulocovariances are inadequate whether one uses the estimated residuals or the residuals
under the null.

® In view of the inconsistency of &, the formulation of the autoregressive spectral density
estimator based on Ay, is not asymptotically equivalent to that based on .. Specifically,
(1.11) does not have a first order dependence on & as compared to a regression based on
it;. Simulations show that if s%p is based upon {1.12), the statistics will behave much like
those reported in Table 1 for the Bartlett window. Intuitively, the reason is that the morment
matrix of regressors in (1.12) does not converge to the population morments, and estimates
from (1.12) cannot be used to obtain a consistent estimate of 2. Ap important implication
is that, among those estimators for o? considered, the one that is adequate in both the
standard and the local asymptotic framework is that based on the autoregression of the
form (1.11) using first differences of {v:} instead of the estimated autoregression residuals.

¢ Although our discussion has focused on the properties of MZ,, the intuition applies to
MSB and M2, as well. For example, under Theorems 2.1 and 2.2, we have T2 Z‘T:, v,
tending to co and o2 tending to zero at the same rate. The resulting distribution for MSB
is therefore neither degenerate nor explosive. It can be also seen that MSB tends to zero
in Theorem 2.3 because of the unusually slow rate of convergence of E;’;l y!. Since the test
tejects the null hypothesis of a unit root the closer the statistic is to zero, the probability
that MSB rejects the null hypothesis converges Lo one.
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« The rate of divergence of the PP Lests depends on whether one uses 8%, or sty For
the former, divergence is al rate T as noted under Remark 1. For the latter, the speed of
divergence is MT. For \his reason, size distortions reported in Table 1 are larger for siy 4

2
than for sip.

3. The Nearly Twice Integrated Case.

The aim of this section is Lo study the behavior of the statistics in the presence of autore-

gressive errors with a large positive coeflicient. The data generating process is:
ye = (14 ¢/Thyemr + 1oy (3.1)

up = (14 @/Thu + e {3.2)

where e ~ 1.1.d.(0,02). As T e 00, Yo = 2 Yeu1 — Y12+ €1, & POCESS with two unit roots,

hence the terminology “nearly twice integrated”. Nabeya and Perron (1994) showed that

T(6-1) = chx))?(z I8 Q:(J.x(r))’dr)- , (3.3)

where Q. (Js(7)) = f(; exp{{r — v)e)Jg{v)dy and Jolv) = f: exp({v — s)$)dW(s). Note that
unlike the previous model, & is consistent, in the sense that & — (1 + ¢/T) — 0. 1t can be
verified that

~1/2
T, = (chm’/?) (n5 ch«r»’dr) , (3.4)

where

A= [ Jolr)tdr (Qc(h(l))’ —2c ! QC(J,(T))wr) (4 X Qc(.zé(r))wr)' (3.5)

and T2 =T 3L 4l = Aol (3.6)

Although inconsistency of & is not an issue in this model, the rates of normalization for the
relevant partial sums are still different from those in the usual asymptotic framework. In
particular, s2 is O,(T), and ST y3is Op(T*). The asymptotic properties of the PP tests
in this local framework are direct consequences of these results. The following Theorems

summarize the properties of the statistics for various ways of estimating o2

Theorem 3.1 : Let {y.} be a stochastic process given by (3.1) and (3.2), T-22 = T %0} =
0?/¢?. Then as T — co and if ¢ < 0, we have:

12



a Zy = (Q:(Ml))2 ~ x/¢’) (2]0‘ Q,(J,(r))zdr)";
~172

b 2= 872) (@7 = 178) (f Quatryar) ™

€ MZ, = (QC(J@(])V - 1/¢2) (245 Qutetryar) ™"

. 1/2

d. MSB = (&jo QC(J‘g(r))’dr) .
Theorem 3.2 : Let {y,) be defined by (3.1) t0 (3.2). Let the estimator of 62 be the autore-

gressive spectral density estimator sip defined by (1.11) with the truncation lag, k, chosen
to be such that k3/T — 0 and k — 0o as T — oo, Let T(f)(l) ~ 1)) — u, with 5 defined
in Perron and Ng (1994). We have
-1
a Z, = (ch@m)? ~1(c+ g+ v)’) (20 Qcldetryar) ™"

-1/2

b 2= (1720t 64 m(QUN = e 64 07) (§ Quutrrar) ™,
Mo = (U= i+ 6407 (210 Q)

d MSB = ((c+ S+ ) QC(J¢(r))7dr) "
Remark 4

¢ Said and Dickey’s prool of consistency of the coeflicients b; in (1.11) requires that
1 — (1) be bounded away from zero, a condition which is not satisfied in the limit since the
autoregressive coefficient for {u,} converges to 1. Indeed, 02 — oo for the data generating
process in question. However, in this limiting case, Ay, is an integrated process and the
coefficients on Ay,_; are order T consistent (see Park and Phillips (1988) for the case of a
finite order autoregression). In consequence, s4, also tends to co and s equivalent to o2
asymptotically.

¢ Even though s%; and 0% both tend to co, the limiting distributions of the statistics
are not the same for the two cases. The results of Theorems 3.1 and 3.2 differ in that ¢ is
replaced by ¢+ ¢ + 5. This is because T-%s%r — 02/(c + ¢ + 1)?, whereas the true the
spectral density at frequency zero satisfies T2} = 02/¢4%. Thus, the limiting distributions
of the statistics based on s} r contain the variable 7 even under the null hypothesis that
c=0.

¢ Unlike in the previous model where the serial correlation correction factor is dominated
by s}, it is s? that dominates in this model. This is because sZ diverges to oo at a slower
rate than s? by a factor of T'. When normalized by the sample moments of ¥ ,, the effect

of s vanishes completely.
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« The modification factor in M Z, can be written as 27y 1T {a = D 1n view of (3.3},
this expression has a probability limit of zeso, and is the reason why Z, and M Z, have the
same limiting distribution. This result also confirms that given the consistency of 4, the
asymptotic cquivalence of Za and MZ, holds. Thus, under the assumptions of this model,

the modifications to the PP tests are vacuous.

Theorem 3.3 : Let {y} be delined by (3.1) and (3.2) and let o? be estimated by s}, as
defined by {1.13) with truncation Jag M. Let A be defined by (3.5), Qe(Jolr)) by (3.3) and
W by (1.14). I M — oo and M|T —0asT — o0, we have:

o Zo= Q) (2fo Q((J,,(r))zdr>-| :
, , ~1p2
b (TIM) 22, = (1/2)((3((%(1))7) (200 ), QulJalr))Pdr)

¢ MZy = QI (2] Qo)) s
d (T/M)'PMSB = (fu' QC(J¢(r))7dr)w(‘zdu\)"“«

Remark §

s Given that u, is nearly integrated, its autocovariances die off very slowly. One might
conjecture that a truncation lag chosen according to the rule of o(T"*) as suggested in
Phillips (1987) might not be appropriate in this situation. However, the results given in
Theorem 3.3 hold under very flexible conditions on M, requiring only that M/T — 0 and
M - coas T — oo. Yet, the proof of Theorem 3.3 shows that even when a wider choice
of the truncation lag is allowed, Z, and MZ, will still have the same limiting distribution
given in (3.3) for T(a - 1). Evidently, neither the correction for serial correlation, nor the
modification made to MZ, has any effect on the statistics asymptotically. This is in spite
of the result that (53“ — 52) diverges to infinity al rate MT.

To understand these results, note that T-? }:Ll iy diverges at rate T?. This is faster
than the rate at which (sl 4 — s2) diverges since M increases at a rate slower than T by
assumption. The serial correlation correction factor therefore tends to zero, and Z, has the
same limiting distribution as T(& — 1). Since the modification factor has a limit of zero
as well, the asymptotic distribution of MZ, is also that of the normalized least squares
estimator. Thus, neither the choice of the kernel function nor the truncation lag will change
the asymptotic properties of the statistics under the assumptions of Theorem 3.3.

Remark 6
o Since most of the statistics are bounded under the parameterization of this section,

the discrepancies between the approximate and the exact distributions are not as large as in
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the model considered in Section 2, and the size distortions are accordingly smaller. The size
distortions for Z, observed in Tables 1 and 2 when p is close to | can be traced to the fact
that the local asymptotic distribution of T(éd-1)is non-negative, but the critical values
based on (1.2) are negative. Hence, the T(G ~ 1) statistic will yield a zero rate of rejection of
the null hypothesis against a sequence of stationary local alternatives if critical values from
(1.2) are used. Nabeya and Perron (1994) provide a detailed explanation for why T'(4 — 1)
is undersized when there are close to two unit roots.

When the statistic is adjusted for the presence of serial correlation, Z, and MZ, are
being shifted to the left of T(& ~ 1) by a quantity that depends on the choice of s?. The
left shifting effect is nil in the case of s}, , as the resulls of Theorem 3.3 suggest. Since the
statistics behave in the limit as T(4 - 1), they too are undersized when there are close to
two unit roots in the DGP.

When o? is known or is estimated by 5% 5, the location of Z, and MZ, relativeto T(a~1)
depends on the magnitude of 1/¢and 1/(c+é+7) respectively. The closer is ¢ or ¢ + 6+ 7
to zero, the further will the Jocal asymptotic distributions of Z, and MZ, lie to the left of
that of T'(&~ 1). In those cases, one can expect the critical values provided by (1.2) to reject
the null hypothesis of one unit root too often. For certain parameterizations of the data
generating pfocess, there is a possibility that the statistics will reject the null hypothesis of

one unit root in favour of stationarity even when there are nearly two unit roots.

4. The Nearly Integrated Seasonal Model.

The aim of this section is to study the behavior of the statistics in the presence of au-
loregressive errors with large negative coefficients. Consider the following data generating
process:

y=(1+¢/Thyor + w = ar yoy + u,; (4.1)

U= =1+ ¢/Thurr + € = pr upy + ¢, {4.2)
It is easy to see that the model can be wrilten as ye={(1+¢/T) = (14 ¢/T)y._, + 1+
e+ ) T)y-z+e.. As T — o0, the process becomes a seasonal model of period two with a
root on the unit circle. That iS, ¥4 = ye2 + €,. As shown in Nabeya and Perron (1994),

ad=1- (2 N B(r)’dr) ( fcE? + B(r)’)dr)_l, 4.3)

where A(r) = (¢ ~ ¢)[Qc(Jaa(7)) = Qc(Joa(r))] +2 Jea(r), B(r) = Jou(r) = Jya(r), C(r) =
Alr)=B(r), Jea(s) = J§ exp((s—v)c)aWi(v), Joi(s) = Jo exp((s=v)8)dWi(v), Qc(Jeu(r)) =
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fur exp({r — sic)deds)ds for 1= 1,2, Wy{r) and Wy(r} being independent Weiner processes.
As in the moving average model of Section 2, & is not a consistent estimale of a. The
support of the limiting distribution of (& — 1) is restricted to the interval |—~2,0] since &
is of the form {a = b)/(a + b). Hence, the statisticT(é — 1} is unbounded and diverges to
—oo as T increases, just as in the first model. Since, in the limit, the error process has an
autoregressive rool on the unit circle, it also has a property in common with the model of

Section 3, namely, that the fimiting variance of {u,} is infinite. Specifically, define

Mn=( /2)( i B(rydr f, C(r)’dr) ( heer+ B(r)’dr) -1. (4.4)

Then
T-1s2 = Mol (4.5)

For future reference, it is also convenient to define

2
Ay = ((jo‘ B(r)%dr)/{J; Clr)* + B(r)?dr)) (fo‘ Cr)? - B(r)7dr>. (4.6)
Straightforward calculations show that
713, = ([} B(r)dr/ [y C(r)?dr)'/%. (4.7)

The following two theorems characterize the distributions of the various statistics when

o? is presumed known and when estimated by the autoregressive spectral density estimator.

Theorem 4.1 : Let {y.} be a stochastic process generated by (4.1) and (4.2) with ¢ < 0,
and 0} = 27 f,(0) = o2/(2+ #/T). AsT — oo, we have:
2 -2
a T2 = -2(Js B(r)’dr) (lctr+ B(r)’dr) :
2 -3/2
b T2 = V2 (I B(r)’dr) ety + B(r)dr)
~1

¢ MZo= (4L - 1) ( e+ B(r)’dr) ;

d. MSB = (; Jrewryr+ B(r)wr)* )
Theorem 4.2 : Let {y:) be defined by (4.1) to (4.2) with ¢ < 0. Let the estimator of o* be
the autoregressive density estimator 5% defined by (1.11) with the truncation lag k chosen

to be such that k3|T — 0 and k — oo as T — oo. The statistics Zo, 21, M Zo, and MSB
have the same limiting distributions as given in Theorem 4.1 for the case where o? is known.
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Remark 7

¢ The autoregressive representation of this model also has a unit root, a case ruled out
by Said and Dickey (1984). However, we show in Perron and Ng (1994) that . converges
t0 6?/4, the same limiting value as 0} =al/(2 4 8/T)*. The asymptotic equivalence of the
results in the two theorems follows.

* The asymptotic equivalence between M Z, and Zo breaks down in this model, just as
in the nearly integrated, nearly white noise case. In both models, the 1wo PP tests diverge
but the M tests do not. Furthermore, & is not a consistent estimate of o in either case, and
-1 Z,T:, Yi-1ue = ~1/202 in both cases. Thus, the analysis of Section 2 applies: the PP
tests are driven by (T/2){é - 1)? in the limit, but this explosive term is being offset by the
modification factor in the M (ests. The main difference between the two models is that in
the negative MA case, S vk, and oI, 42 are both Op(T) , but in the negative AR case,
they are both 0,(T?). In each case, the usual rates of normalization of 77 and T for some

of these sample moments are inappropriate.

Theorem 4.3 : Let {y:} be defined by (4.1) and (4.2) and ¢ by (1.14). Let sty 4 be defined
by (1.13) with truncation lag M. If M = oc and M/T — 0, then as T — 00,
-1
a (MT)'Z, = (~4y1y) (jo‘ C(r)? + B(rydr) :

b (AJT)_”zZ( = - (Q‘I)Az)lﬂ (jol C(r)z + B(,_)g)‘l/'l;
© MT)" M2 (~agh) (1) Oy + Blryar) ™
d. (MT)'*MSB = (jo‘ Clr)? + B(r)’)”7 (8vag)™'2,

Remark 8§

® As in the nearly twice integrated model where the autoregressive root of u, lies close to
the unit circle, the autocovariances of u, in the nearly seasonally integrated model also die
off very slowly and a longer truncation lag would seem necessary. The results of Theorem 4.3

4 is not a consistent estimate of o, the sample autocovariances constructed on the basis of
it are also inconsistent estimates of the true autocovariances. However, size distortions are
smaller in this mode! with negative autocorrelation in the residuals than in the earlier model
with negative moving average errors. This is because for a p and a 8 of the same size, the
implied value of ¢ is larger than the implied value of § for a given T. In this sense, a p of
-0.8 is further away from the boundary than a 8 of -0.8. The simulations reflect, the different
rates of normalization on the sequence of local alternatives in the two models.
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5. Size and Power.

The theoretical results derived in the previous sections suggest that the modified statistics
are likely to be more robust to substantial serial correlation in the errors. To assess the
local asymptotic properties of the statistics, we simulate the local asymptotic critical values
for each model assuming o? is estimated by shp. More precisely, for a given set of non-
centrality parameters {8 in the first model, and ¢ in models two and three), integrals of the
Weiner processes that appear in local asymptotic distributions in Theorems 2.2, 3.2, 4.2 are
approximated by partial sums based upon 1000 draws of N{0,1) errors. The distributions
for M Z, as implied by M Z, and MSB are also tabulated. Percentage points are obtained
via 10000 simulations of each local asymptotic distribution. These critical values are then
used to construct size-adjusted power functions evaluated for values of the non-centrality
parameter, ¢, belween -15 and 5. For T=250, this corresponds to values of a between 94
and 1.02.

For the ncarly integrated, nearly white noise model, we present results for values of é
between 1 and 20. This implies, for T = 250, that 6 varies approximately between .94 and
—0.21. The results are presented in Figure 1. The top panel is the asymptotic size of the
statistics when critical values from the standard asymptotic distributions are used.® For small
values of &, the use of standard critical values is associated with an under-rejection of the unit
root hypothesis, but the approximation improves as & increases. The bottom three panels are
the size adjusted local asymptotic power for MZ,, MSB, and M Z, respectively. In general,
Jocal asymptotic power is higher against explosive alternatives {with ¢ > 0) than against
stationary alternatives (¢ < 0). For values of § close to zero, M Z, and M Z, apparently has
no local asymplotic power. This can be traced to the fact that the distributions of these
statistics are independent of ¢ when & approaches zero. However, such is not the case with
MSB since its power function is independent of the value of 4.

For the nearly twice integrated model, values of ¢ are chosen to be between -5 and -100,
corresponding to values of p between .98 and 60 for T=250. We see from the top panel of
Figure 2 that for extremely small values of ¢, the use of standard asymptotic critical values
will imply an over- rejection of the null hypothesis of one unit root. This issue was discussed
earlier under Remark 6, where we note that the distribution of M Z, will be shifted to the
left of T{é — 1) by an amount that depends on ¢. For small ¢, the left shifting effect is large,

SFor M Z, and M Z,, the lower five percentage points are .8.1 and -1.95 as given in Fuller {1976). For
MSB, the case without a constanl was not provided by Stock (1990). Approximating the distribution
by (fo‘ W{r)2dr)}/? gives critical values for the lower and upper five percentage points of .23 and 1.28
respectively.
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and explains why the tests over-reject a unit root when standard critical values are used.
All three statistics have rather similar local asymptotic power; power is low when ¢ is small
but increases monotonically as ¢ increases. This is to be expected since the data contain a
uniit root even under the local alternative that ¢ < 0. Hence, the statistics are more powerful
against explosive alternatives than against stationary ones.

Values of ¢ are also chosen to be between -1 and -50 for the nearly seasonally integrated
model, implying values of p between -.99 and - .50 for T=100. The results are shown in Figure
3. As in the negative moving average case, the use of standard critical values implies tests
that tend to under reject the unit root hypothesis. However, in this negative autoregressive
case, M Z, and MZ, do not suffer from power loss at small values of ¢. All three statistics
have comparable power. As in the nearly twice integrated model, there is a strong dependence
of power on the values of ¢.

Our local asymptotic simulations suggest that except when values of the non-centrality
parameters are extremely small, the local asymptotic power of the tests are good. Power
increases with |¢]. More importantly, the exact size of the tests based on standard critical
values is usually within reasonable range of the nominal size unless the non-centrality param.
eters are very small. This is a useful result since it suggests that critical values appropriate
for error processes with roots bounded away from one can also be used in these special cases.

It remains to evaluate the finite sample power of the statistics using the standard critical
values and when ¢? has to be estimated. To this end, we simulate the power of the tests
using the autoregressive spectral density estimator for T=100 and T=500. We also report
the power of the augmented Dickey-Fuller test, 1,. It is important to point out that the
results reported in Table 3 are unadjusted for size distortions. The seemingly high power
reported for ¢, is inflated in the negative moving average case and should be interpreted
with caution because of severe size distortions (see Table 1). With this in mind, we highlight
several features of the results that are noteworthy.

First, MZ, tends to be more powerful than MZ,. This is consistent with a finding of
Phillips and Ouliaris (1990) that the ¢ statistic is generally less powerful than the normalized
least squares estimator. Second, the power of MZ, and MSB matches, and sometimes
outperforms, that of ¢, in finite samples except in the negative AR case, where the power
discrepancies can be traced to the fact the the M tests are undersized.

Third, comparing the power of MZ, with that of t, after adjusting for size, the former
has more power in models with positive serial correlation. For large negative AR errors,
t, is noticeably more powerful, while for large negative M A errors, the power of MZ, is
significantly higher. Although the limiting distribution of M2Z, and t, are both given by
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(1.3}, the two statistics have rather different finite samples properties.

Fourth, comparing the results in (a) and (b) of Table 3, we see that the rate at which the
power of the M tests increases is model dependent. The M tests have lowest power when
there is a large negative Aff root in the noise function and when the sample size is small,
but power increases rapidly as 7 increases. Although the power of these tests is much higher
in small samples in the negative M A case, it increases only slowly with T These results are
due to the fact that § — —1 at rate VT but that the autoregressive root approaches the
boundary of one at rate 7. The distinction between the null and the alternative hypotheses
sharpens more rapidly in the AR models as T increases.

A result of particular importance concerns the power of the A tests when there are
negative M A crrors. This is the parameter space for which most tests have size problems.
The M tests have much better size, and the power of MZ, and M S is higher than the size
adjusted power of t,. This finding that the much reduced size distortions are associated with
good power suggests that the M tests, in particular, MZ, and MSB, can be very usefulin

empirical work.

6. Conclusions.

When the root of the error process is close to the unit circle, many of the commouly used
unit root tests are known to have distorted sizes. The problem arises because many of the
relevant partial sums have non-standard rates of normalization when the root of the error
process is close to the unit Grcle. However, simple modifications which have negligible effects
in a standard asymptotic framework can lead Lo significantly more accurate exact sizes in the
local asymptotic framework analyzed. The proviso is that the modifications have to be used
in conjunction with a consistent estimate of the spectral density at frequency zero. While
kernel based spectral density estimators do not satisfy this criteria and tend Lo aggravate
the size problem, the autoregressive spectral densily estimator formulated on the basis of
an augmented autoregression serves this purpose. When appropriately implemented, the
modified statistics have rather robust properties and are useful tests for the presence of a
unit rool. The statistics will also be useful in cointegration analysis when serial correlation
in the noise function is often encountered.

It is important to put into perspective the properties of the modified statistics vis-a-vis
the general issue of distinguishing between processes with unit roots and stationary ones.
As discussed in Campbell and Perron (1991) these two types of processes are observationally

equivalent in the sense that for any stalionary process, there will exist a unit root process
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which approximates it arbitrarily well and vice-versa. To be concrete about the implication
of this result, cousider the case of MA(1) errors with a negative coefficient 6. The near-
observational equivalence implies than when using unit root tests with asymptotic critical
values, there will exist values of § in the range {(~1,7} for some —~1 < 7 « 0, say, such
that liberal size distortions will surface. The value of z will depend on the sample size and
the test used, but it will always approach -1 as the sample size increases. In other words,
the range over which size distortions occur will diminish, and this is true of any test. The
problem, as shown in previous simulations including some presented in this paper, is that
the rate at which the range shrinks can be very siow.

From a practical point of view, the problem is that for conventional tests (e.g, the Phillips-
Perron or Dickey-Fuller tests) and sample sizes commonly encountered, this value of ¢ where
size distortions start to be important is too far away from -] (e.g, somewhere around - 4 when
T=100). This has been the cause of some concern in the literature because this range includes
parameter values (e.g, between -.8 and -4) which are of practical relevance” and for which
we would rather not classify unit root processes with such moving average coefhicients as
stationary processes.

The class of modified statistics discussed in this paper can be viewed as tests with a much
smalier range of size distortions (e.g. between -1 and -.9) for any given common sample size.
This can be useful in practice because classifying unit root processes with values of ¢ ip
this range as stationary is likely to be of less concern. It is important to note that this
improvement in size is achieved while retaining reasonable power.

The above justifications for using the modified statistics are valid insofar as the aim
of testing for unit roots is to classify as precisely as possible whether a process is differ-
ence or trend stationary. There are, however, instances when the objective of the analysis
is otherwise and using the modified statistics may nol be appropriate. Suppose the aim
of unit root tests is to decide which restrictions to make in a forecasting exercise. As re.
ported in Campbell and Perron (1991), near-stationary unit processes are better forecast
using stationary models, while near-integrated stationary processes are betier forecast using
integrated models. To the extent that imposing a false restriction may help reduce the mean
squared error in this context, it is desirable Lo misclassify trend stationary processes as dif-
ference stationary and vice-versa, and one would rather use the conventional Dickey-Fuller
or Phillips-Perron statistics to test for unit roots. Of course, in such cases, the “optimal”
value of z is highly dependent on the overall objectives of the analysis of which unit root
tests is just an important first step. On this issue, more work remains to be done.

"See Schwert (1987) for some empirical examples.
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Appendix A: Mathematical Results
As a matter of notation, we shall let C; denote (not necessarily the same) constants through-

out this appendix. For cach model, we start with a series of lemmas that consider the limit
of the relevant sample moments.

2. Proofs of results in Section 2

The following Lemma is taken from Nabeya and Perron (1994):

Lemma 2.1 : Let {y,} be gencrated by (2.1)-(2.3), and define X, = (T +¢/T)Xoo) + e,
ar = (1= §/VT)(1 = ¢/T), by = 1 - (1 — /TY1 = é/VT) withar — 1 and T2y — § as
T — oo. We have

a) v = are, + br X,

b) T7 Xeyver = Op(T);

)T X2 = 02 [ J(r)2dr.

Lemma 2.2 : Let {y.} be generated according to (2.1) to (2.3) and Je(r) be defined as in
{24). Let eq = limy_ o, erfo.. Then as T — 00,

a) 1} Z{yf_x = 03 + 0352jo] Je(r)¥dr;

b)T-! Z,Ty,_,ut = —a?;

) yr = e + b0,.J(1);

d) T T w2 = 2 02,

The procfs of (a) and (b) are given in Nabeya and Perron (1994). Part (d) is obvious since
7! Z;r e} — o? and E?ete,-j is O,(T"/2). Part (c) follows from the definition of y, in
Lemma 2.1.

To prove (2.5), write E;r:li:? = ;r___l(u‘ ~ (& = a)y-y)®. Also note that (6 — o) =
Ly vioiw/ Tiyky. Then T2 516 = 70 T g (poa T L o vl
and the result of (2.5) follows from Lemma 2.2. The following Lemma is a straightforward
generalization of results in Fuller (1976) p. 374-376.

Lemma 2.3: Let X, = (I+¢/T)X s 4oy, e, = Y o Wiliei, Uy ~ 11d(0,0?) and Toalwl <
oo. Then

a) |E(eceri)] € CAM for some 0 < ) < I; b) |E(X,e,)] < Cy;

) 1E(XX,)| S TCs for t,5,< T; d) Var(L1, Xee,) = O(T?);

e) E(T1, Xie,)* = O(T%).

The following Lemma will also be useful.

Lemma 2.4 : Let {y,) begener;ated by (2.1) to (2.3). Then for Li=1,...,k

1 T . aglifi=1
a)T Zc=k+) Yemrlpei = { 0 :)therwisé;

1 2 PO
-1 TT . 73“ + 52_/; Je(r)idr) ifi = s
b)T Z::ku Ye—jYr—i = { 0352_[01 Je(r)dr ifi # I
r 202 ifi=j,
c) T Zr=k+1 Ve ity j = —ol if i—jl= 1,
otherwise,
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Proof. To prove part (a), note that

- T - T
TS ok Yot = Ty crmilaTes + brXi_i e + Oreca)
ot =T 1T
=arT™! ka” eryerni + 0rarT 1Y ik B1-1€emd

ST T2 S Xereq + T b7 Tl X

Since ap — 1 and T Z:T:H, erre; —olifi=1and0 otherwise (provided k/T" — 0),
it remains to show that the last three terms converge Lo z€ro. The result is straightforward
for the second since fr — —1, a7 — 1, and T L,  emr€emicy = O fori=1,... k. Now
for the third term,

E(T™ gy Xemens)'l = T-3Var(3T 4y Xecreei) T-HE(S Loy Xemreeilf

and is O(T" ) i KT — 0 using Lemma 2.3 (b,d). The fourth term converges Lo zero using
similar arguments. To prove part (b), note that by Lemma 2.1,

T Zszk-n Yemilt-y = “?rT—‘ ):T:n:n € j€rmi + ‘177‘”2[’77‘»3/2 Z:rzk-n e X
+ a'l'Tll?bTT~3/2 l‘:’(r:kn e-iXe-j + 7~bng~2 Z :';.:k+IX""X'"J'
For the first term, we have Tt ZT:H! eroitr; — 0 ili = jand 0 otherwise provided
k/T — 0. By Lemma 2.3, T‘:’E{(EL,‘“ oo Xei)t = T72OUT — k)?] = O(T™") provided
k/T — 0. Since ar — 1 and 7Y% — 6, the second and third terms converge to zero. For

the fourth term, define the cadlag process on Dlo,1], with Xr(r) = X4, Hlerc %. Note
that X7(r — -’f) = X,.;. We have

5T, XeiXej = [y T X1l - FITYT-V2Xp(r — i[T)dr = ol o Jelr)ydr

since k/T — 0 (hence jJT,i/T — 0) and T-43Xp(r) = o.Jc(r). Collecting the terms, we
have the results stated. To prove part (c), note that

- T - T - T
T Z::kn Uguilt-j = T Zz:k-n €-i€t-j + 8T ! Zz=k+| € i€lej-1i
- T 2 - T
+ 6T Ty i + 01T D ek Ctmim1€e-j

The first term converges to o?ifi=jand0 otherwise. Since 87 — —1, the second term
converges to —o2ifi=j+1 and 0 otherwise. Similarly, the third term converges to —a?
ili=j~— 1 and 0 otherwise. The last term converges to olifi=j. Part (c) follows upon
collecting terms.

Proof of Theorem 2.1
1t is convenient to write T™'Z, = (& — 1) - (1/2)(s* - s3y Tt ZIT y2_,. Given (2.2) and
(23), ¥ = o2 =0l(1 4 91)? = 026?/T, the correction factor is:

(8= SDNT T k) = (& TY/(T T1 yin) = ST Tyka) (A21)
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It follows that,
T2 =6 =)+ s2/2T £T 42 ) 4 o,(1)
= =11+ & [FJ(r)2dr) + (1 + 262 Jo Jelr)dr)201 + 82 Jo Je(r)2dr)?)

Part (a} follows upon simplification. Part (c) follows from {a) and (b) of Lemma 2.2 and
the definition of s?. To prove part (d), nole that given the definition of o2, MSH =
[r-13°7 v /(8% and the result follows from (a) of Lemma {2.2). Given that 7, =
MSB - Z,, part (b} follows from parts (@) and (d).

Proof of Theorem 2.2

Lemma 2.5 : Let {v:} be generated by (2.1) to (2.3) and sip be obtained by applving OLS
to (1.11). Then s34 — 0 provided KT 0 and k — 00 as T — oo,

The proof of the Lemma is given in Perron and Ng (1994). Given that sy and 0% have the
same asymptotic Jimit, the results for Theorem 2.2 are the same as those for Theorem 2.1,

Proof of Theorem 2.3
We start with a Lemma concerning the limiting distribution of M-t

Lemma 2.6 : Let {y:} be generated by (2.1) t0 (2.3) and stv4 be defined by (1.13), where
i, are OLS residuals obtained from (1.1). Let ¢ be defined by (1.14) and J,(r) by (24).
Then

M7, = (2035?w IN Jt(r)zdr) (1 +62 ! Jc(r)zdr)-z. (A22)

Proof.  We first note that since s2=0,(1), the limit of M= sl u — 52)/2 is the same as
the limit of M~'s2, /2. We have

M7 Shoa= )= MITTM w57,
=M-IT! Z:Z:l Wi ZtT:k-H {usen — (6 ~ )Y rups (A23)
= (&~ a)yropogu + (6~ 0)7y¢__,y,-k-|)
The following Lemma presents the limit for each term:

Lemma 2.7: Let M — oo and M/T — 0 as T — oo, Then
a) M™IT= 7wy Z?:I:H it = 0;

by M- Zgl w; ZL,‘“ Yemrlpox = 0;

)M Sk Ty Veehert — 0;

d) M-iT-1 Z:;l wy Z,T:k“ Ye1Ye-key = 02982 fo) Je(r)idr.
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Proof. a) Note that
TSy Ty vtk = 17 T iy + 77 iy s ST par etk (A24)
Consider the first term in (A2.4). Using the fact that u, = e, — (1 - 6/ﬁ)e,_,,
T ST ugeey = o T D et —wn(l = SIVTT S, ety
— (1 = VTIT N Ty ecerma + wi(l = §/VTRT ' Tl erec-a

Since {e;} is i.i.d., all terms vanish except Lhe second, and the expression converges Lo —uno?
and to zero upon normalization by M=1. To show that the second term in {A2.4) vanishes,
note that

T EkMﬂ Wk ZT.‘.H) Uele-k
=T Z:iz Wk Zzik-n e — T7H1 - 5/\/7) Zﬁz Wi ZLH) €r-1€c-k

- T - §/VT) Z:iz Wk }:Lm eek-r+ T = §/VT) Tata wk ZT:H! Ce-1Ct-k-1-
(A2.5)

Now consider the first element. Define #=T"1 T e 2T M w ST e €k We
have

et M T : T -
T bty Wh Lomkp C€emk = (#-T" L €)/2 = T™'wn ZL: €1€e-1.

This expression vanishes since 52 — o? (provided M/T — 0 as T — 00), T71 }:L, e — o2,
and T7' Y. Loecers — 0 given that {e/} ~ i.i.d.. Similar argumnents apply to show that the
remaining lerms of (A2.5) also converge to zero. To prove part (b}, note that

MAT EH i Toa Yerbeek
= M tagu, T} T ey — M wnar{l = §)VTIT ' L ec1€ema
4w M- TV T, Xemre — (1 - §IVT) S, Xicreea)
4 MOT M w0 T, (et + br X ) (e = (11— §/VT)ecran)-

Since ar — 1 and T7} ST ,el, ol arn T YT, €3, converges to wyo? and the first
term vanishes upon normalization by M~1. The next three terms vanish using TYW2hp — 6,
T'S etz — 0, and Lemmas 2.1 and 2.2. It remains to show that the last term vanishes.
We have

M7 }:ﬁ,; wk ELH,(GTQ.-: + brXioi)eer — (1 — 5/\/7)8:—1:—:)

= M~ arT™ Tas, s ZL&H emrenr = ar{l - §/(VDT™! Tl ws Tk €180k

+ TV TN Ty Xecreis = (1= 8/VT) M w Tiein X))
(A2.6)
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The first two terms of (A2.6) converge to zero using arguments similar to those in part
(a). Consider the third term (the behavior of the fourth is similar). Since T/2by — §, we

consider
M- Z:i; W Z;rzk-u Xeores (A2.7)
1)
= M~iT-3? Zfiz wy ZLH; o* Xewore i+ M- Z:’:? W Z‘Tz“' fuke

where 2,4 = e i 38 a' e, Since Xekorees = (1/2a)( X2, - a®X2, . ~¢l,) and
Xo = 0 by assumption, the first term of {A2.7) simplifies to

(2)M T 0 dwg(XE, ~(a? = )T, X2, - Tk €l

ILis easy to see that the third term vanishes. For the first term, define the process on Dio,1]
as Xp(s) = X=X, (= 1)/T <s< /T and Xr(1) = X7. Now

wMIT Pt} = Ao exp( M)y BT X2 (Tomily 4o 4 (1),

which converges to 0 since T-12Xp(s) = 0eJe(s). Similar arguments using the facts that
T(a*~1) - 2cand 72 Z;’:H, XL, = 0! ful Je(r)?dr show that the second term vanishes,

Thus, the first term of {A2.7) vanishes. It remains to show that the second term of (A2.7)

converge to zero. Since Efzey) = a*1o? | we can write the expression as

M= T e T (s = Elz)) + MAIT-22 54 Clisi(a*102)
= M W T (20 = Elfzeal) + o 1).

It can be shown that Var(Z,T:k“ 24) = 2080 -(T ~ k) 4 (T - k)o}a®™ - 1)/(a? - 1)
Hence using an argument as in Newey and West (1987),

PAUM T T we T 2k - Elzua])] > o)
S T PUMTT2 5T (e = Elzual)] > /OM] since s < C
< Z::_Q[M"T'E(T ~ kY C*M?/?)at {2a%4-1) 4 ‘—;3,5{,—‘}} by Cauchy Schwartz inequality
ot a?M_ ot ‘( { z atM

s ;4(:-.;5) e 4 *r a?-1) ( TTM (ahx; - 1) C?le? — 0
since T(a® — 1) — 2c and (T/M){a™™ — 1) = 2cas M/T — 0. This completes the proof for
part {(b). The proof of part (c) is analogous. To prove part (d), note that

Mo W S Veekes = MIT Ti we T, ale e sy
+ M-l“TTl/szT‘sﬂ(Zy:x Wi Z:T:kﬂ Xeor€ior + Zﬁx Wi E;rzk-i»l €1 Xeoior)
+ MUTHT 2w ST, Xy Xeeses.

The first three terms converge to zero using arguments similar to those in parts (a) and (b).
We therefore concentrate on the fourth term, which we write as:

M™ITHT? }:211 Wi ZI.:&+) a* XL, + M=ITbT-? Ef:x Wi ZZ—.&H X“*“I(Zx‘:nl e iny).
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The second term converges Lo 2€r0 by Lemma 2.1. Consider
M- A S O
= 7% i fvr w( ) ST [ exp()T ! XF(r)drds
=T [} w(wﬁl)f(,'”* exp(cs¥ )T X} (r)dr ds
= 8 [, w(s)a? J delryrdr ds = §2po? [ Jo(r)Hdr,

provided & — 0. Using (A2.3), Lemma 2.7 and the result that (6—a) = —(1+6 fo‘ Jo(r)tdr)?
gives the result stated in Lemma 2.6. Theorem 2.3 follows from Lemmas 2.1, 2.2 and 2.6.

3. Proofs of results in Section 3.

Parts (a) to (d) of the following Lemma is proved in Nabeya and Perron (1994), and part
(e) is given in Perron and Ng (1994).

Lemma 3.1 : Let {y} be a process given by (3.1} and (3.2) with Jy(r) and Q.{Jslr)) as
defined in (3.3). AsT — o0

a) 7"3/7311 = Oe Qc(Jo(l)))

b) T4 5T 42 = a2 fy QelJelr))dr; ,

O T35 yeorue = (02 /D1QeUe(1)? = 26 fo Qe dr:

d)yT? }:T u? = a? fol Jo(r)?dr; :

) T ST Ayres = o2e Jg QelJelr)aW () + o ol AW () i /T = 0 22 T = co.
The expressions (3.4) and (3.6) follow from Lemma 3.1. Theorem 3.1 uses this Lemma and
the definition 7728 = T3 = allét.

Proof of Theorem 3.2:

Lemma 3.2 : Let {y} be a process given by (3.1) and (3.2) with Jy(r) and Q.(Js(r)) as
defined in (3.3). Let shp be obtained by applying OLS to (1.11) withk — oo and k = o(T*?)
and let T(b(1) = b(1}) — 7 with the random variable n defined as in Perron and Ng (1994).
Then T~2sig — 02/(c+ ¢+ 7).

The proof of the Lemma is given in Perron and Ng (1994), and the results of Theorem 3.2
follow arguments analogous 1o those used in Theorem 3.1, with {c+ é + n) replacing ¢.

Proof of Theorem 3.3:
Since T7's? = Xo?, (see (3.6)), the limit of M~1T"'s}, 42 is the same as the limit of
M~1T-(s%, 4 — s3)/2, which we write as

’7 - 2 - - - -
MoAT St = MAT D e D e
=M'T? E:‘a Wk Z‘{:k-n Uglhe—k
_ T(a—- )M T, we T vt TM w T )
ket Wk Qpmkar Ye-tUe-k k=t Wk Qotmkay Y-kttt
+ THa - ")QM_‘T'4 Ef’:; Wi Z{=k+l Yi-1Ye-k-1.

(A3.1)
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We note from {3.3) that T(é—a) = O,(1). The next Lemma characterizes the Limit of each
term in (A3.1).

Lemma 3.3 : Let {y,} be generated by (3.1) to (3.3) and let 2w Oand M = oo as
T— oo Lety = fol w(s)ds, Q(Js{r)) and Jo(v) as defined in (3.2). Then

a) M"T”ZZ, wy Z,T:H, Uy = tho? j:,l Ja(r)?dr;

b) M= T w T vk = Yo (QC(J¢,(1))? -2 f! Qulo(r))?dr ) ;
DM e Ty vk = fo? (Qldet1))? - 2c QelJe(r)y?dr ) ;
ML w0 Dl vervicos = 902 [ Qu(Ja(r))ar.

Proof.  To prove part (a), note that since Ut = pueey + e, where p = (1 + é/T),

e M T - 1. M T I
M- 22&:1 Wh Ziziwl Uy = MIT Zk:l wy Z::kn ptul

. (A3.2)
+ M2 Zﬂ:u Wk ZLM 2kt

where z,, = u,-k(Z:O’ plei). Consider the first term and let Ur(s) = Ty o= u,y,
*’—;—' < s < %, and note that T"“Ur(s) = 0.Jg(s}. Then

MO e T, sl
= Zﬂ—.x Zgg w(hn’;ﬂ) Z(T:k+| g;; eXP(¢S!¥)T"'U7(r)2dr ds
= fo' w(l%u) f:# exp(és%)T"UT(r)zdr ds
= 0l [y w(s) fy Jo(r)tdr ds = yo? Jy Jo(r)2dr,
provided M/T — 0 and using Lemma 3.1. The second term in (A3.2) converges to zero
since }:,T:H, €€ g is O,(\/T) and M/T — 0 by assumption. The proofs to parts (b}, (c),
and (d) follow analogously using the results of Lemma 3.1. Combining (3.3), Lemma 3.3 and

(A3.1), we have:

Lemma 3.4 : Let sk 4 be defined by (1.13) with M — oo and MIT — 0 as T — oco. Let
¥ = [ w(s)ds and A be defined by (3.5). Then

(MT)s},, = 20%pA.

The results of Theorem 3.3 follow directly from Lemmas 3.1 and 3.4.

4. Proofs of Results in Section 4

The following Lemma is proved in Nabeya and Perron (1994).
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Lemma 4.1 : Lel {y:} be generated by (4.1) and (4.2). Using the definitions following
(4.3), we have, as T - oo:

a T25 L, 0, = (03/8) o (C(r)” + B(r))drs

b, T-2 50, yerue = —(02/4) Jo BUYdrs

c. T-'y% = (a2/8)A());

4 T-250, u? = (03/2) [y B(r)dr.

To prove (4.5), we simply apply Lemma 4.1 to the definition of T-1s2. The resuits in

Theorem (4.1) use the fact that st =0k =0l/(24 $/T)? — o?/4. Since 52 is O,{T) and
s7is Oy(1), (s* — s2) is dominated by s2. Part (a) follows from (4.3), (4.5), and Lemma 4.1

u

(a). Parts (c) and (d) follow directly from Lemma 4.1 and the definition of s%. Part (b)isa
direct implication of {1.9) and can be proved directly using the relevant parts of the Lemma.

Proof of Theorem 4.2:

Lemma 4.2 : Let {y} be generated by (4.1) and (4.2). Let s%y be obtained by applying
OLS to (1.11) with k = o{T'3). Then 545 — a?/4.
The proof of the Lemma is given in Perron and Ng (1994), and the results of the Theorem

are obvious in view of Theorem 4.1

Proof of Theorem 4.3:
We begin by considering the Limit of M7VT1{s%,, — 52)/2, which we write as
MAT (s, — s2)/2 = MTT™ 0L, we ST ey Utttk
- (a- Q)M"T'2 Zf’:‘ wi ZLH, Y1tk — (& — ")M"T”2 }::1‘ Wi ET:HI Yiok-1lt

+ (&- 0)21‘/!”7‘*2 Z::n Wk Z‘{zk-ﬂ Ye-1Ye-k-1.
(Ad.1)

The next Lemma characterizes the limit of each term in (A4.1).

Lemma 4.3 : Let {y.} be generated by (4.1) and (4.2) and let 4}’- — 0 and M — o0 as
T — oo with ¢ = fol w(z)dz, we have

a) M7'T™? Z:Ll Wk }:Lkn vtk = 0;

b) M7 T? Eﬁl Wk l\:LHt Yeertieek =

<) M-T? Ei, Wi Ziku Yimk-1U = 0;

4) MAT? S0 0, Ty Yeertior = ¥4 Jo(C(r)? = Br))dr

Proof. To prove part (a}, note that since ug = pur1 + €, where p = —(1+¢/T),

Yl -2 M T A2 M T k. 2
M2 W Dotmhar Wlbt=k = M7IT e v PRHRTRY o -

(A4.2)
+ MOT2 T w0k T 2k
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where 2, , = u,nk{z:‘;o' plecy). Itis straightforward to show that the second termn converges
to zero. Consider the first term. We have,

~1p-2 M 7 L I Y R A RV VRN T 2
MT Z&:) Wy Zc=k+; Aui, = MTT Zk:: prwy Zz:km Upig
— M -lp-2 M/ g, T 2 M/ -1 7 2
= M-IT (Zj:) Pun, Zgzz‘;ﬁ YUpgj Z,‘:] (=p)* Waj Z.::; U2t

- - M2 25 T A2 251 T
=M-T? (Z,:; exp( 4wy, Dtmier Ugy — M exp(z1e),, . | 5 ufﬂg,“) + 0,{1).

i=1 2otmz;

. 2(-1 2 _ ;
Define w}, (r) = W, —L’H—l S < i and let Up(s) = Uirsp = uyoy for 22 <5 < £

£,
rewrite the first term {for sum over even terms) as:

1 Myt gM)2 2 -2~ T 2

5(7) ! Zj:l exP(‘#)wlj (T 22::2;41“:4,’)

_ 1 X~M/2 M (208, T 175 2
= 52;:1 25~ 1)/M cxp(—%—)u,;, ds}:'::,)“ ¢_1/TT Wr(r)?dr

Now

=1 fcx exp(HeM/ze “‘;. “’)w;,,(s) ds fil% T U (r)dr

= 1o wis)ds ¢ [} B(ryar = Sy [ B(ryar.

The second term {for sum over odd terms) can be shown Lo converge to the same functional,
giving the result as stated in (a). Similar arguments can be used to show that the odd and
even terms in parts (b) and (c) cancel. To show part {d),

MIT T, E;r:k“ YemrYeoky = MUITZ2TM o, Z:T:k“ oyl
M e Tl veker (D, @ M),
Using Lemma 4.1 and provided M/T — 0 as T — 00, we have, for the first term of (A4.3):
ML Bk Ty oy = % [1(C1r) + B(r))ar. (A4.4)
The second term of {A4.3) can be written as
M T wet ™ T s + MIT-2 DAEETIS DNNENNG 3o PO
It is straightforward to show that the second term vanishes. For the first term,
M ot T v ke = ~ ¥ [ B(rydr. (A4.5)
The result of (d) follows by combining (A4.4) and (A4.5). Therefore
MITé - ) T8, we S0, v 1emses

2 .
= (Yo?/2) (( Iy B(r)dr)( o Cry 4+ B(r)’dr)") ( Lce)y? - B(r)’)dr) = Yo2h,/2.

Combining {A4.1), Lemma 4.3, (4.5) and {4.3), we have

Lemma 4.4 : Let s%,, be defined by (1.13), A; be defined as in (4.6), let M — oo with
M|T -0 as T - oo. Then

(A4.3)

M7, = ol
The results of Theorem 4.3 follow directly from Lemmas 4.1 and 4.4.
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Figure 1: Nearly Integrated, Nearly White Noise Modei
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Figure 2: Nearly Twice Integrated Model
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Figure 3. Nearly Seasonally Integrated Model
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