
Université de Montréal

Learning-Based Matheuristic Solution Methods for Stochastic Network Design

par
Fatemeh Sarayloo

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée à la Faculté des études supérieures
en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en Informatique option recherche opérationnelle

September 5, 2018

c© Fatemeh Sarayloo, 2018.

RÉSUMÉ

Cette dissertation consiste en trois études, chacune constituant un article de recherche.

Dans tous les trois articles, nous considérons le problème de conception de réseaux

multiproduits, avec coût fixe, capacité et des demandes stochastiques en tant que pro-

grammes stochastiques en deux étapes. Dans un tel contexte, les décisions de concep-

tion sont prises dans la première étape avant que la demande réelle ne soit réalisée, tandis

que les décisions de flux de la deuxième étape ajustent la solution de la première étape

à la réalisation de la demande observée. Nous considérons l’incertitude de la demande

comme un nombre fini de scénarios discrets, ce qui est une approche courante dans la

littérature. En utilisant l’ensemble de scénarios, le problème mixte en nombre entier

(MIP) résultant, appelé formulation étendue (FE), est extrêmement difficile à résoudre,

sauf dans des cas triviaux. Cette thèse vise à faire progresser le corpus de connaissances

en développant des algorithmes efficaces intégrant des mécanismes d’apprentissage en

matheuristique, capables de traiter efficacement des problèmes stochastiques de concep-

tion pour des réseaux de grande taille.

Le premier article, s’intitule "A Learning-Based Matheuristc for Stochastic Multi-

commodity Network Design". Nous introduisons et décrivons formellement un nou-

veau mécanisme d’apprentissage basé sur l’optimisation pour extraire des informations

concernant la structure de la solution du problème stochastique à partir de solutions

obtenues avec des combinaisons particulières de scénarios. Nous proposons ensuite

une matheuristique "Learn&Optimize", qui utilise les méthodes d’apprentissage pour

déduire un ensemble de variables de conception prometteuses, en conjonction avec un

solveur MIP de pointe pour résoudre un problème réduit.

Le deuxième article, s’intitule "A Reduced-Cost-Based Restriction and Refinement

Matheuristic for Stochastic Network Design". Nous étudions comment concevoir effi-

cacement des mécanismes d’apprentissage basés sur l’information duale afin de guider la

détermination des variables dans le contexte de la conception de réseaux stochastiques.

Ce travail examine les coûts réduits associés aux variables hors base dans les solutions

déterministes pour guider la sélection des variables dans la formulation stochastique.

Nous proposons plusieurs stratégies pour extraire des informations sur les coûts réduits

afin de fixer un ensemble approprié de variables dans le modèle restreint. Nous pro-

posons ensuite une approche matheuristique utilisant des techniques itératives de réduc-

tion des problèmes.

Le troisième article, s’intitule "An Integrated Learning and Progressive Hedging

Method to Solve Stochastic Network Design". Ici, notre objectif principal est de con-

cevoir une méthode de résolution capable de gérer un grand nombre de scénarios. Nous

nous appuyons sur l’algorithme Progressive Hedging (PHA), ou les scénarios sont re-

groupés en sous-problèmes. Nous intégrons des methodes d’apprentissage au sein de

PHA pour traiter une grand nombre de scénarios. Dans notre approche, les mécanismes

d’apprentissage developpés dans le premier article de cette thèse sont adaptés pour ré-

soudre les sous-problèmes multi-scénarios. Nous introduisons une nouvelle solution

de référence à chaque étape d’agrégation de notre ILPH en exploitant les informations

collectées à partir des sous problèmes et nous utilisons ces informations pour mettre à

jour les pénalités dans PHA. Par conséquent, PHA est guidé par les informations locales

fournies par la procédure d’apprentissage, résultant en une approche intégrée capable de

traiter des instances complexes et de grande taille.

Dans les trois articles, nous montrons, au moyen de campagnes expérimentales ap-

profondies, l’intérêt des approches proposées en termes de temps de calcul et de qualité

des solutions produites, en particulier pour traiter des cas très difficiles avec un grand

nombre de scénarios.

Mots clés: Conception de réseaux multiproduits avec coût fixe et capacité, deman-

des stochastiques, matheuristique, apprentissage.

iii

ABSTRACT

This dissertation consists of three studies, each of which constitutes a self-contained

research article. In all of the three articles, we consider the multi-commodity capacitated

fixed-charge network design problem with uncertain demands as a two-stage stochastic

program. In such setting, design decisions are made in the first stage before the actual

demand is realized, while second-stage flow-routing decisions adjust the first-stage solu-

tion to the observed demand realization. We consider the demand uncertainty as a finite

number of discrete scenarios, which is a common approach in the literature.

By using the scenario set, the resulting large-scale mixed integer program (MIP)

problem, referred to as the extensive form (EF), is extremely hard to solve exactly in

all but trivial cases. This dissertation is aimed at advancing the body of knowledge

by developing efficient algorithms incorporating learning mechanisms in matheuristics,

which are able to handle large scale instances of stochastic network design problems

efficiently.

In the first article, we propose a novel Learning-Based Matheuristic for Stochastic

Network Design Problems. We introduce and formally describe a new optimization-

based learning mechanism to extract information regarding the solution structure of a

stochastic problem out of the solutions of particular combinations of scenarios. We sub-

sequently propose the Learn&Optimize matheuristic, which makes use of the learning

methods in inferring a set of promising design variables, in conjunction with a state-of-

the-art MIP solver to address a reduced problem.

In the second article, we introduce a Reduced-Cost-Based Restriction and Refinement

Matheuristic. We study on how to efficiently design learning mechanisms based on dual

information as a means of guiding variable fixing in the context of stochastic network

design. The present work investigates how the reduced cost associated with non-basic

variables in deterministic solutions can be leveraged to guide variable selection within

stochastic formulations. We specifically propose several strategies to extract reduced

cost information so as to effectively identify an appropriate set of fixed variables within

a restricted model. We then propose a matheuristic approach using problem reduction

techniques iteratively (i.e., defining and exploring restricted region of global solutions,

as guided by applicable dual information).

Finally, in the third article, our main goal is to design a solution method that is able

to manage a large number of scenarios. We rely on the progressive hedging algorithm

(PHA) where the scenarios are grouped in subproblems. We propose a two phase inte-

grated learning and progressive hedging (ILPH) approach to deal with a large number of

scenarios. Within our proposed approach, the learning mechanisms from the first study

of this dissertation have been adapted as an efficient heuristic method to address the

multi-scenario subproblems within each iteration of PHA. We introduce a new reference

point within each aggregation step of our proposed ILPH by exploiting the information

garnered from subproblems, and using this information to update the penalties. Con-

sequently, the ILPH is governed and guided by the local information provided by the

learning procedure, resulting in an integrated approach capable of handling very large

and complex instances.

In all of the three mentioned articles, we show, by means of extensive experimental

campaigns, the interest of the proposed approaches in terms of computation time and

solution quality, especially in dealing with very difficult instances with a large number

of scenarios.

Keywords: Multicommodity capacitated network design problem, stochastic

demands, matheuristics, learning.

v

CONTENTS

RÉSUMÉ . ii

ABSTRACT . iv

CONTENTS . vi

LIST OF TABLES . ix

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xii

DEDICATION . xiii

ACKNOWLEDGMENTS . xiv

CHAPTER 1: INTRODUCTION . 1

1.1 Contributions . 4

1.2 Outline of the dissertation . 6

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 7

2.1 Deterministic network design . 7

2.1.1 Arc-based formulation . 7

2.1.2 Alternative formulations . 11

2.1.3 Solution methods . 13

2.2 Stochastic network design . 16

2.2.1 Modelling approaches . 16

2.2.2 Related works in stochastic network design problems 22

2.3 Conclusions . 34

CHAPTER 3: ARTICLE 1: A LEARNING-BASED MATHEURISTIC FOR

STOCHASTIC MULTICOMMODITY NETWORK DESIGN 35

3.1 Introduction . 37

3.2 Problem description and literature review 39

3.2.1 Two-stage SMCND formulation 39

3.2.2 Literature review . 40

3.3 The learning mechanism and heuristic 42

3.3.1 Artificial Demand Scenario . 43

3.3.2 Partial learning - the scenario-pair case 45

3.3.3 The learning procedure . 48

3.4 The Matheuristic . 48

3.5 Computational results . 50

3.5.1 Data and experimental settings 50

3.5.2 Sensitivity analysis . 51

3.5.3 Experiments on larger instances 53

3.6 Conclusions . 58

CHAPTER 4: ARTICLE 2: A REDUCED-COST-BASED RESTRICTION

AND REFINEMENT MATHEURISTIC FOR STOCHAS-

TIC NETWORK DESIGN 60

4.1 Introduction . 62

4.2 Problem description . 64

4.3 Literature review . 65

4.4 The proposed matheuristic . 67

4.4.1 Reduced cost-based variable fixing strategies 68

4.4.2 Description of the algorithm 72

4.5 Experimental results . 77

4.5.1 Data and experimental settings 78

4.5.2 Analyzing different strategies when using reduced cost information 78

4.5.3 Numerical results of proposed matheuristic 83

vii

4.6 Conclusions . 87

CHAPTER 5: ARTICLE 3: AN INTEGRATED LEARNING AND PRO-

GRESSIVE HEDGING METHOD TO SOLVE STOCHAS-

TIC NETWORK DESIGN 89

5.1 Introduction . 91

5.2 Problem description . 93

5.3 Literature review . 95

5.4 Solution methodology . 97

5.4.1 Preliminaries and the outline of the proposed PHA 98

5.4.2 Initialization . 101

5.4.3 Solving subproblems heuristically using Learn&Optimize pro-

cedure . 101

5.4.4 Aggregation and Penalty updates in the proposed PHA 105

5.4.5 The algorithm . 109

5.5 Experimental results . 109

5.5.1 Data and experimental setting 111

5.5.2 Performance comparison on the first collection of instances . . 112

5.5.3 Performance comparison on the second collection of instances . 113

5.6 Conclusions . 116

CHAPTER 6: CONCLUSIONS . 118

6.1 Future research directions . 120

BIBLIOGRAPHY . 122

viii

LIST OF TABLES

2.2.1 Applications of SNDP . 26

2.2.2 Uncertainity sources . 27

3.5.1 Characteristics of instances . 51

3.5.2 Comparison of CPU times . 53

3.5.3 CPLEX performance on large R instances 54

3.5.4 Performance comparison on easy instances 55

3.5.5 Comparative performance of L&Opt and CPLEX on difficult in-

stances . 55

3.5.6 Algorithm performance by instance type 57

3.5.7 Performance comparison between L&Opt and CPLEX through

time . 58

4.5.1 Characteristics of instances . 78

4.5.2 Number of infeasible instances (INF) 79

4.5.3 Performance comparisons of Str1(p0,N0) vs. CPLEX when fixing

variables to 0 . 81

4.5.4 Performance comparisons of Strategies 1 to 5 when fixing vari-

ables to 0 . 82

4.5.5 Performance comparisons of Str1(p1,N1) vs. CPLEX for fixing to 1 83

4.5.6 Performance comparisons of Strategies 1 to 5 for fixing to 1 . . . 84

4.5.7 Performance comparison on using the DSSP solution vs MCFND(S)

solutions . 85

4.5.8 Performance comparison of using single solution vs. multiple so-

lutions . 86

4.5.9 Performance comparison between RCHeur and L&Opt on difficult

instances . 87

5.5.1 Characteristics of instances . 112

5.5.2 Performance comparison versus CPLEX on first collection of in-

stances . 113

5.5.3 Performance comparison on second collection of instances versus

CPLEX . 114

5.5.4 Efficiency of the ILPH versus CPLEX in finding good solution

quickly . 115

5.5.5 Performance comparison on second collection of instances versus

PH-S . 116

x

LIST OF FIGURES

2.1 Example of scenario tree . 19

2.2 Sequence of decisions and realizations of random parameters for

each stage of a T-stage stochastic program 19

3.1 Optimality gap of L&Opt through time 55

3.2 Relative improvement over initial solution in time 59

LIST OF ABBREVIATIONS

CCP Chance Constrainted Programming

MCFND Multi-commodity Capacitated Fixed-charge Network Design

MIP Mixed Integer Programming

MP Mathematical Programming

ND Network Design

NDP Network Design Problem

RO Robust Optimization

SNDP Stochastic Network Design Problem

SPR Stochastic Problem with Recourse

To my beloved parents and husband.

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere appreciations to my advisors,

Professors Teodor Gabriel Crainic and Walter Rei for all of their support, expertise and

guidance to make my Ph.D. experience productive and stimulating. It has been an honor

and a privilege to work with you. I’m deeply grateful. I am also so thankful to my

committee members, Professors Jean-Yves Potvin, Bernard Gendron and Walid Klibi,

for their time, feedback, and helpful comments.

I would like to thank all the members of CIRRELT for providing a very pleasant

research environment and the administrative staffs of DIRO for their various forms of

support during my PhD studies. Also, I’m so grateful to all of my friends and PhD

colleagues for their friendship and support during these years.

I gratefully acknowledge the Natural Sciences and Engineering Council of Canada

(NSERC), the Fonds Québécois de la Recherche sur la nature et les technologies (FQRNT)

and Université de Montréal for providing the full financial scholarships during my Ph.D.

studies.

I cannot express enough gratitude toward my beloved parents, Masoomeh and Mah-

mood, for their unconditional and unlimited love, for their patience and wisdom, and for

instilling in me the desire for higher education and the principles that have guided my

path. I also want to thank my beautiful sister, Faezeh, for her loving support.

Last but not least, I want to specially thank my dearest husband, Majid, for the won-

derful time we had together, as well as for all his love, understanding and outstanding

support during the last years.

CHAPTER 1

INTRODUCTION

Network design problems are among the most-often studied problems in the opera-

tions research community for decades, because of their rich combinatorial structure as

well as theoretical significance. The idea is to establish a network of links (roads, optical

fibers, electric lines, etc.) that enables the flow of commodities (people, data packets,

electricity, etc.) in order to satisfy some demand characteristics. We are particularly in-

terested in multicommodity capacitated fixed-charge network design (MCFND), where,

it is required to route, at minimum total cost, a set of given commodities between differ-

ent pairs of origin and destination nodes respecting the link capacities. In order to use

a link, in addition to the variable cost proportional to the amount of flow, one must pay

a fixed cost representing, for example, the cost of constructing a road, or installing an

electric line, etc.

These problems naturally appear in a large number of contexts including transporta-

tion, telecommunications and power systems. Numerous aspects of transportation plan-

ning can be represented by fixed-charge network design models. They appear in a full

hierarchy of planning levels from strategic capital investments to day-to-day operational

scheduling. One significant area is the service network design problem which arises, for

example, in airline and trucking companies [7, 75].The outbreak of new technologies

in telecommunications has also provided a fertile ground for the application of network

design models. These studies include, for example, the design of a local access network

with one or two technologies [96, 97], and the design of terminal layout in a centralized

computer network [48, 55]. In power system applications, fixed-charge network design

is used to plan the transmission system which carries electricity from the the generation

plants to costumer centers [16, 104] and the distribution of energy inside each center

[35, 47]. In the latter case, network models can also be used in an operational context to

obtain the configuration that minimizes daily loss costs [20].

In any of these applications, classical deterministic models do not reflect the true

dynamic behavior of real-world situations because they fail to take into account uncer-

tainty. Unfortunately, critical parameters such as demands, prices, and capacities are

quite uncertain in real-life problems. Stochastic programming (we refer to [17] for an

introduction to stochastic programming) is concerned with the challenging issue of how

to make optimal decisions in uncertain environments. In this dissertation, we address

the stochastic network design problem with uncertain demands as a two-stage stochastic

program [17], in which design decisions are made in the first stage before demands are

observed. Once demands are observed, second-stage (routing) decisions are made to

adapt the solution given in the first stage to the observed demand realization. To take

the demand uncertainty explicitly into account, we consider a finite number of discrete

scenarios for the values of uncertain demands together with the associated probabilities,

which is a common approach in the literature. Our assumption in this dissertation is that

the sets of scenarios are pre-determined and are given as the benchmark instances. The

general goal of stochastic programming in network design problems is to find a single

design solution that performs well at minimum cost, when evaluated in the stochastic

environment.

By using the scenario set, the resulting large-scale mixed integer program (MIP),

referred to as the extensive form (EF) [17], endures a remarkable complexity making the

state-of-the-art solvers incapable to solve real-size problem instances. The complexity

comes from two sources: 1) deterministic network design problems are NP-hard in all

but trivial cases [82] and 2) modeling uncertainty with scenarios can yield very large

instances [29].

One of the simplest traditional ideas to deal with uncertain parameters is to estimate

them and then to apply sensitivity analysis afterwards. However, Higle and Wallace

[63] indicate that solving many deterministic problems for each possible outcome and

applying “what-if-analysis” may lead to arbitrary bad solutions in the case of stochas-

tic problems. More specifically within the context of network design problems, recent

studies have shown that cost-effective design solutions obtained within stochastic set-

tings are structurally different from those obtained within deterministic settings [76].

Nevertheless, given the fact that deterministic formulations are generally considered to

2

be simpler to solve as compared to stochastic formulations, a number of studies have

closely examined solutions to deterministic variants of stochastic formulations so as to

infer information about potential stochastic solutions. Researchers sought to analyze

these solutions with the hope of revealing information which could be applicable in

solving corollary stochastic models, given previous findings that stochastic solutions re-

tain parts of deterministic solutions. Yet, no systematic procedure to identify these parts,

which would provide the basis for efficient algorithmic developments for the MCFND,

may be found in the literature.

From the methodological point of view, exact solution approaches are the most

frequently used methods applied towards solving Stochastic Network Design Problem

(SNDP). These methodologies are effective at finding optimal solutions, but require ex-

tensive computational resources and are extremely time-consuming when applied to real-

world problems. Heuristic and metaheuristic techniques are alternative problem solving

options which are able to produce good solutions in a reasonable time when applied

towards difficult problems.

Due to the increasing complexity and dimensionality of network design problems,

researchers have been driven to develop more sophisticated approaches. In recent years,

matheuristics has emerged as an attractive class of method in deterministic problems.

These methods involve hybrid problem solving methodologies which exploit both heuris-

tic search frameworks and exact solution methods (see, e.g., [92, 94] for a survey and a

taxonomy). These techniques are of particular applicability in solving stochastic prob-

lems due to their associated complexity. However, there are relatively few examples of

matheuristic techniques applied as potential solution methods for stochastic problems

that are reported in the literature. This provides a strong incentive to develop this type

of solution approach to design efficient networks considering uncertainty requirements

in reasonable amount of time.

The present dissertation seeks to address these research gaps by incorporating intelli-

gence in matheuristic approaches, through innovative learning mechanisms enabling the

extraction of solution structure in stochastic problems. Within the context of network

design, this information takes the form of design decisions which are common to high-

3

quality (i.e., optimal or near optimal) solutions. Learning and memorizing mechanisms

in heuristics represent the information extracted and stored during the search for better

solutions. We explore a wide range of learning-based solution approaches designed to

solve these stochastic network design problems, where the content of these mechanisms

varies from one heuristic to the next. We study the design of algorithms that produce

solutions to SNDP by iteratively solving restrictions of the problem via MIP technology.

Our work is aimed at developing efficient algorithms that incorporate learning mech-

anisms in matheuristics, which are able to handle large scale instances of stochastic

network design problems efficiently.

1.1 Contributions

Consisting of three self-contained studies, the present dissertation intersects two

streams of research bridging stochastic network design and learning based matheuris-

tics. Using knowledge derived from solution structures is not a new concept in address-

ing stochastic network design models, yet how this knowledge is obtained and exploited

remains a key factor in ensuring the successful integration of any learned information.

The main contributions of this thesis may be summarized as follows.

In the first study, we introduce and formally describe a new optimization-based learn-

ing mechanism designed to extract solution structure information from stochastic solu-

tions through particular combinations of scenarios. In fact, a global image of the promis-

ing structure of the stochastic solution is built by gradually learning from the partial

knowledge produced by the learning mechanism supporting the collection and use of the

memory. We subsequently propose the Learn&Optimize matheuristic, which makes use

of the learning methods in inferring a set of promising design variables, in conjunction

with a state-of-the-art MIP solver to address a reduced problem.

The second work is an attempt to study how to efficiently design learning mecha-

nisms based on dual information as a means of guiding variable fixing in the context of

stochastic network design. As mentioned previously, deterministic solutions carry useful

information (i.e., structural patterns) which can be leveraged to solve stochastic cases.

4

The present work investigates how the reduced cost associated with non-basic variables

in deterministic solutions can be leveraged to guide variable selection within stochastic

formulations. We specifically propose different strategies to extract reduced cost infor-

mation so as to effectively identify an appropriate set of fixed variables within a restricted

model. The restriction involves fixing two sets of identified arcs to open or close, so as

to subsequently consider only the remaining arcs. We then propose a matheuristic ap-

proach which iteratively defines restricted problems constructed by exploiting reduced

cost information extracted from multiple solutions.

Finally, in the third study, a solution method which is able to manage a large num-

ber of scenarios is proposed. The main contribution in this work is the development of

a method able to produce high-quality solutions to large-scale instances of stochastic

network design problems, for which standard MIP solvers are unable to find feasible

solutions. These MIP solver limitations exist either due to the fact that instances are

too big to load into memory, or the time required to solve even the root node relaxation

is prohibitive. As the progressive hedging algorithm (PHA) of Rockafellar and Wets

[103] is considered as a successful metaheuristic strategy to address the size of prob-

lems in stochastic network design problems, we rely on the PHA where the scenarios

are grouped in subproblems. Within our proposed integrated learning and progressive

hedging (ILPH) approach, the learning mechanism forwarded in the first study of this

dissertation has been adapted as an efficient heuristic method to address the multi sce-

nario subproblems within each iteration. We introduce a new reference point in the

aggregation step of the proposed ILPH by exploiting the information garnered from sub-

problems, and using this information to update the penalties. Consequently, the ILPH

is governed and guided by the local information provided by the learning procedure,

resulting in an integrated approach capable of handling extremely large and complex

instances.

In all of the three mentioned studies, we show, by means of an extensive experimental

campaigns, the interest of the proposed approaches in terms of computation time and

solution quality, especially in dealing with very difficult instances with a large number

of scenarios.

5

1.2 Outline of the dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we start

by providing a background on the deterministic network design problems and related

contributions on heuristic methodologies. We then provide a comprehensive review on

modeling and methodologies applied in the literature of stochastic network design prob-

lems.

Chapters 3 through 5 present the three articles that have been produced over the

course of these doctoral studies. Chapter 3 presents A Learning-Based Matheuristic

for Stochastic Network Design, which has been submitted for publication to INFORMS

Journal on Computing. Chapter 4 presents A Reduced-Cost-Based Restriction and Re-

finement Matheuristic for Stochastic Network Design, which has been submitted for pub-

lication to European Journal of Operation Research. Chapter 5 presents An Integrated

Learning and Progressive Hedging Method to Solve Stochastic Network Design, which

is expected to be submitted to EURO Journal on Computational Optimization. Finally,

Chapter 6 provides the conclusions and potential future research directions.

6

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

This chapter provides a background to the area of our research as well as a review of

related works in the literature. The network design problem (NDP) and its variants, in

both deterministic and stochastic settings, have been the object of numerous studies. This

chapter therefore consists of two main parts. In the first part, we present the deterministic

formulations and related solutions methods (Section 2.1). We present key elements of

a network design problem and focus on a popular setting of the generic formulation,

MCFND. We then summarize a number of solution methods focusing on metaheuristic

approaches proposed in the literature for this problem. In the second part, we review

different existing stochastic modeling approaches as well as the related works in the

literature of stochastic network design (Section 2.2).

2.1 Deterministic network design

In this section, we focus on the MCFND problem which is an important classic prob-

lem appearing in many applications. Our research works in this thesis are also developed

on top of this model. For completeness, detailed reviews on network design problems

can be found in [10, 26, 82, 83]. In the following, we first present the mathematical

formulation.

2.1.1 Arc-based formulation

Generally, a network design problem is defined on a graph G = (N ,A) in which N

and A refer to a set of nodes and arcs (or links), respectively. Arcs (links) correspond

to directed connections between given locations (nodes) to carry the flows to satisfy the

demands. There is a predetermined capacity on each arc ui j that makes the problem

to be known as capacitated network design. Let K be the set of commodities where

each of them is recognized by a unique pair of origin-destination (o(k)− d(k)) with

associated demand dk. It is worth noting that the commodities are distinguishable if

they are different physical products or they have different origin-destination pairs. The

commodities share the common capacity installed on each arc.

There are two types of variables; discrete design variables yi j and continuous flow

variables xk
i j. Design variables yi j are binary variables indicating whether an arc is cho-

sen in the design (yi j = 1) or not (yi j = 0). Flow variables xk
i j represent the amount of

commodity k distributed on arc (i, j). Then a network design model becomes,

minimize
y,x

z(y,x) (2.1)

subject to ∑
j∈N +(i)

xk
i j− ∑

j∈N −(i)
xk

ji = dk
i , ∀i ∈N , ∀k ∈K (2.2)

∑
k∈K

xk
i j ≤ ui jyi j, ∀(i, j) ∈A ,∀k ∈K (2.3)

(y,x) ∈ S (2.4)

yi j ∈ {0,1}, ∀(i, j) ∈A (2.5)

xk
i j ≥ 0, ∀(i, j) ∈A , ∀k ∈K (2.6)

When the objective function z(y,x) in this formulation is linear as follows,

z(y,x) = ∑
(i, j)∈A

fi jyi j + ∑
k∈K

∑
(i, j)∈A

ck
i jx

k
i j (2.7)

the model becomes a MIP. Two types of costs are considered in this problem; a fixed

cost, fi j, and a variable cost, ci j. The former is incurred as soon as a particular arc

(i, j) is chosen to be used in the network while the latter is a utilization cost which is

proportional to the volume of traffic of commodity k on a given arc (i, j). The objective

(2.7) indicates that the goal of the problem is to minimize the total network cost: the sum

of the fixed cost of the included arcs in the final design and the variable cost of routing

8

the commodities.

Generally speaking, the MCFND problem is to determine a set of arcs and multi-

commodity flows of minimal total fixed and variable costs to enable the network to

satisfy the demands while the arc capacities are not violated. As a matter of fact, the

interplay between fixed and variable cost included in the objective function determines

if an arc should be selected or not in the final design. A more complex type of objective

function is nonlinear, which could be used to model congestion effects and concave

functions other than fixed cost.

Equations (2.2), called the flow conservation constraints, ensure that each commod-

ity is routed from its origin node to its destination node. In these relations, the difference

between the sum of incoming flows (N +(i) is the set of nodes having arcs toward node

i) and outgoing flows (N −(i) is the set of nodes having arcs from node i) at each node i

is equal to the demand volume dk
i , where

dk
i =


dk if i = o(k)

−dk if i = d(k)

0 otherwise.

(2.8)

The demand of commodity k ∈K at an origin node, o(k) ∈N , is a negative value

dk
o(k) = −dk, at a destination node, d(k) ∈N , is a positive value dk

d(k) = dk, and at a

transshipment node, t ∈N , dk
t = 0.

The capacity or bundle constraints (2.3) ensure that the total commodities flowing on

each arc (i, j) is less than or equal to ui j provided that the arc (i, j) is chosen in the design

(yi j = 1), and otherwise yi j = 0. These constraints actually couple the commodities

together. However, in the case of uncapacitated network, there is no such constraint and

therefore, the problem can be decomposed in |K | shortest path problems. Relations

(2.5) and (2.6) indicate that design and flow decision variables should be binary and

continuous, respectively.

Other variations and additional restrictions may be included in constraint (2.4) as side

constraints. Restrictions on the total flow on different arcs or relationships among the

9

flow and design variables can be captured in such constraints.

Topological aspects of the network such as precedence constraints pertaining to the

open arcs may be included as a side constraint. Another important additional constraint

is known as the budget constraint, which indicates that available resources to design arcs

are restricted:

∑
(i, j)∈A

fi jyi j ≤ B (Budget Constraints)

This budget constraint illustrates a relatively general class of restrictions imposed upon

resources shared by arcs. There is another particular form of such constraints called

partial capacity, which represents restrictions imposed on the use of some facilities by

individual commodities:

xk
i j ≤ uk

i j ∀(i, j) ∈A , ∀k ∈K (Partial Capacity Constraints)

If uk
i j = min{ui j,dk}, these constraints are redundant because of constraint set (2.3).

Despite its redundancy, these constraints yield a tighter relaxation and improve the lower

bound computation as indicated in [49].

Design-balanced constraints are viewed as side constraints as well. These con-

straints are concerned with full asset-utilization in terminals meaning that the number

of vehicles that leave a given node is equal to the number of vehicles that enter the same

node:

∑
j∈N +(i)

y ji− ∑
j∈N −(i)

yi j = 0 ∀i ∈ N (Design-Balance Constraints)

In the above formulation, we assume every unit flow of each commodity consumes

one unit of capacity and the capacity consumption is not commodity-dependent. In the

commodity-dependent case, the following capacity constraint replaces (2.3) with a given

amount of capacity for each commodity, ρk
i j:

10

∑
k∈K

ρ
k
i jx

k
i j ≤ ui jyi j,∀(i, j) ∈A ,∀k ∈ K; (Commodity-Dependent Capacity)

It is worth mentioning that the flow conservation constraints together with capacity con-

straints form the main body of the problem. This is the base model for many well-known

problems, such as Traveling Salesman Problem, Spanning Tree Problem and Vehicle

Routing Problem which are derived by specific definitions of the networks and side

constraints. See [81] for a summary of these problems and how one can derive these

problems from the generic formulation.

2.1.2 Alternative formulations

In addition to the above arc-based directed network model, other formulations have

been proposed in the literature. In the case of telecommunication applications, an undi-

rected graph has been used to formulate the problem. It should be noted that even if the

network is undirected, flows are generally directed in these models. In the following,

we describe two well known alternative formulations that have been applied to network

design problems.

Path-based multicommodity capacitated network design This is one of the equiv-

alent formulations that may be stated in the following form:

minimize
y,h

∑
(i, j)∈A

fi jyi j + ∑
k∈K

∑
l∈L k

ck
l hk

l

subject to ∑
l∈L k

hk
l = wk, ∀k ∈K (2.9)

∑
k∈K

∑
l∈L k

hk
l δ

kl
i j ≤ ui jyi j, ∀(i, j) ∈A (2.10)

yi j ∈ {0,1}, ∀(i, j) ∈A (2.11)

hk
l ≥ 0, ∀k ∈K , ∀l ∈L k (2.12)

11

where,

L k: the set of paths from the origin o(k) to the destination d(k) for commodity k

hk
l : flow of commodity k on path l;

δ kl
i j =

1 if arc (i, j) belongs to path l ∈L k for commodity k

0 otherwise

ck
l : transportation cost of commodity k on path l, ck

l = ∑(i, j)∈A ck
i jδ

kl
i j

The conservation flow constraints (2.9) and capacity constraints (2.10) are modified to

handle the path specifications. Side constraints are usually addressed when the paths are

built.

Cut-based formulation Peterson [89] formulated the single-commodity fixed charge

capacitated network design problem using cut-flow inequalities as follows:

minimize
y,x

z = ∑
(i, j)∈A

(fi jyi j + ci jxi j)

subject to f (S, S̄)≥ v(S, S̄), ∀(S, S̄) (2.13)

0≤ xi j ≤ qi jyi j, ∀(i, j) ∈A (2.14)

yi j ∈ {0,1}, ∀(i, j) ∈A (2.15)

where,
(S, S̄) is called a cut S⊂ N, S̄⊂ N−S

f (S, S̄) is the sum of flows on all links contained in the cut (S, S̄)

v(S, S̄) is the volume of flow requirements between two sets of nodes S and S̄

The cut (S, S̄) is defined as the set of arcs with origins in S ⊂ N and destinations

in S̄ ⊂ N−S. Then, in the above cut-flow formulation, instead of the conservation flow

constraints, we have cut-flow inequalities (2.13) which require that the flow through each

cut be at least equal to the total flow requirements between the origins and destinations

separated by the cut.

12

2.1.3 Solution methods

The solution methods proposed for network design problems may be classified into

two broad categories: exact methods and heuristic methods. Exact solution methods

such as Branch-and-Bound and Branch-and-Price can find optimal solutions, but they are

often extremely time-consuming when solving real-world problems. A good overview

of exact methods, together with descriptions of some application areas, can be found in

[2]. Since the focus of this dissertation is to develop solution approaches that produce

high-quality solutions quickly, relevant studies on metaheuristics as well matheuristics

within the context of network design problems will be discussed in the following.

Meta-heuristics are strategies to guide the search process which make use of low-

level heuristics to find solutions. These methods do not guarantee to find global optimal

solutions; however, they can often find good solutions with less computational effort than

exact methods. The inherent difficulty of network design, combined with the large size

of instances encountered in practical applications, leaves little hope for exact solution

approaches that run in reasonable time. Therefore, fast heuristics and metaheuristics

appear to be the method of choice. The proposed metaheuristics approaches for network

design problems are mostly based on tabu search [53], path relinking and scatter search

[27, 100] to tackle large size instances.

Crainic et al. [31] proposed an integrated tabu search method by combining simplex-

based moves with column generation. In fact, they used the similarity between the

path-based formulation of multi commodity network flow and master problem in col-

umn generation to view the problem as a Dantzig-Wolfe decomposition approach. This

algorithm considers the impact of changing the flow of just one commodity flow with

each move. The results show that the simplex-based tabu search identifies good solu-

tions within reasonable computing effort and it outperforms relaxation-based heuristics

in terms of solution quality.

Ghamlouche et al. [50] proposed a new type of cycle-based neighbourhood to be inte-

grated within a tabu search framework for the MCFND. The key feature of the proposed

metaheuristic, which has been a drawback in [31], is defining the neighbourhood such

13

that each move can potentially change the flow of several commodities, simultaneously.

The idea in the new neighbourhood structure was redirecting the flow through the cycles

by closing and opening some arcs. They proposed to move from one solution to another

by considering these cycles which examine a broader range of moves because the flow

may deviate between paths linking any two nodes and are not just restricted to the origin

and destination of actual commodities. They integrated the cycle-based neighborhood in

a simple tabu search algorithm to explore the search space more efficiently. The results

show that the proposed method provides best approximate solutions for the MCFND in

terms of solution quality and computing efficiency.

Ghamlouche et al. in [51] developed a path relinking metaheuristic as a follow up

of the earlier work in [50]. After proposing the cycle based neighbourhood structure,

they developed a more refined search method to obtain a more powerful heuristic. Since

the selection of the best move in the neighbourhood requires exhaustive computations,

they proposed an efficient procedure to avoid the complete evaluation of every examined

move. As a path relinking method, they proposed and implemented different strategies

in identifying the reference set and guiding solutions. The computational experiments

show that path-relinking provides better results than tabu search.

Crainic and Gendreau [30] proposed a scatter search algorithm for the MCFND.

Scatter search creates new solutions by using existing solutions in a candidate set. A

new design, which is a set of open links, is obtained by a linear weighted combination

of existing designs in the candidate set. Then, flow information is obtained by solving a

multi-commodity network flow problem defined on open links. Extensive computational

experiments have shown that, on average, the most effective variants of the scatter search

heuristic do not perform better than the best existing method in [51], but they give close

results.

In the above-mentioned works, the focus of the proposed solution methods is on

local search methods within metaheuristics approaches. As for matheuristics, however,

we have so far come across only a couple of papers that propose such hybrid methods in

the context of NDP.

A solution framework that combines mathematical programming algorithms and

14

heuristic search techniques is introduced by Hewitt et al. [61]. Their methodology uses

very large neighborhood search in combination with an IP solver on an arc-based for-

mulation of the MCFNDP, and LP relaxation of the path-based formulation using cuts

discovered during the neighborhood search.

Vu et al. [122] and Chouman and Crainic [23] also proposed new matheuristics for

multi commodity capacitated fixed charge network design considering design-balance

constraints. Vu et al. [122] developed a three-phase matheuristic that combines tabu

search with path relinking and exact methods. While heuristics are used to explore the

solution set, the exact algorithm is used to intensify the search in a specific part of the

solution set.

Chouman and Crainic [23] proposed a matheuristic combining an exact lower bound

computing method and variable fixing heuristic. This study is motivated by previous ef-

fort in [24] in which the authors have proved the efficiency of a cutting plane procedure

in computing tight lower bounds for the MCFND. Generally, the main idea is to compute

a lower bound on the optimal value using the proposed cutting planes in [24] and com-

piling statistics on solution characteristics. The embedded learning mechanism in the

cutting plane method guides the variable fixing heuristic to reduce the size of the prob-

lem and use commercial MIP solvers. The results show that their proposed matheuristic

not only reduces the computational time but also achieves high quality feasible solutions.

The above mentioned heuristic algorithms and other relevant solution methods for

deterministic problems cannot solve stochastic network design problems with satisfac-

tory performance and scalabilities. This can be explained as follows. First, it has been

shown that the solution structures of deterministic and stochastic problems are differ-

ent, and second, the performance of a local search algorithm largely relies on how the

neighborhood of a solution is defined. Therefore, there is a need to design some special

heuristic methods that are able to extract the solution structure of stochastic problems.

This dissertation aims at proposing such specially designed heuristic methods.

15

2.2 Stochastic network design

So far we just studied deterministic network design models considering the demand

and all parameters in the model are known in advance. However, this is not the case

in real life problems. The main parameters of the model including demand, cost and

capacity could be different sources of uncertainty that affect design decisions signifi-

cantly. Hence, considering the uncertainty in network design problems is needed for

more realistic problems.

Such problems fall into the framework of stochastic programming, an area that con-

sists in modeling and methodology approaches for optimizing the performance while

taking the uncertainty explicitly into account. We therefore start this section with a rel-

atively general discussion on various modelling approaches used in the stochastic pro-

gramming in subsection 2.2.1 and then review the related methodologies in stochastic

network design literature in subsection 2.2.2.

2.2.1 Modelling approaches

Regarding modelling approaches in stochastic programming, we may classify the

proposed approaches in three major categories; stochastic programming with recourse

(SPR), robust optimization (RO) and chance constrained programming (CCP). These

methods are the classical optimization frameworks that are used for planning with un-

certainty.

2.2.1.1 Stochastic programming with recourse

Two-stage model. In a standard two-stage stochastic programming model, decision

variables are classified into two groups; namely, first stage and second stage variables.

First stage variables, known as here-and-now decisions, are decided upon before the

actual realization of the random parameters. Once the uncertain events have unfolded,

further design or operational adjustments can be made through values of the second-

stage variables, alternatively called recourse decisions, at a particular cost.

16

A standard formulation of a two-stage stochastic program is as follows:

min
x

cT y+E [Q(y,ξ)]

s.t. Ay = b,

y ∈ Y ,

(2.16)

where ξ is a random vector defined on a probability space (refer to [15] for a rigorous

definition of a probability space) and for a particular realization of ξ , Q(y,ξ) is defined

as:
Q(y,ξ) = min

x
q(ξ)T x

s.t. Wx = h(ξ)−T (ξ)y

x ∈X ,

(2.17)

Here, c ∈ Rn1 , b ∈ Rm1 , q(ξ) ∈ Rn2 , A ∈ Rm1×n1 , T (ξ) ∈ Rm2×n1 , and W ∈ Rm2×n2

comprise the data of the stochastic program. In this formulation, at the first-stage one

needs to make decisions y ∈ Rn1 before uncertainty is revealed and then takes recourse

actions (second-stage decisions) in response to a particular realization of the random

vector ξ . The objective cT y+E [Q(y,ξ)] is to minimize the sum of first-stage cost and

the expectation of the second-stage costs. The first stage decisions must satisfy the

constraint set Ay = b. The second-stage decisions x ∈ Rn2 are subject to a cost q(ξ) and

are restricted by constraint Wx = h(ξ)−T (ξ)y. First-stage decisions impose constraints

on second-stage decisions through the matrix T (ξ). The nature of y and x decision

variables in terms of sign, bounds and integrality restrictions are defined by Y and X ,

respectively.

In the above two-stage stochastic program, if we assume ξ as the stochastic param-

eter vector with finite and discrete support, it can be expressed as a finite number of

realizations, called scenarios. Here, S is the set of all scenarios and |S | is the num-

ber of scenarios. Then, ξ s, ∀s ∈S , is a given realization of stochastic parameters, and

set {ξ 1,ξ 2, . . . ,ξ |S |} is the sample space for stochastic parameters with corresponding

probabilities {p1, p2, . . . , p|S |}. The so-called extensive form of problem (2.16) - (2.17)

can be written as:

17

min cT y+ ∑
s∈S

psq(ξ s)T x(ξ s)

s.t. Ay = b

Wx(ξ s) = h(ξ s)−T (ξ s)y ∀s ∈ S

x ∈X ,y ∈ Y

(Extensive form)

Given that the two-stage modelling approach has been used to formulate the majority

of stochastic network design problems in the literature and our research is also developed

on top of this model, we will particularly focus on the two-stage stochastic network

design model and its related works in Section 2.2.2.

Multi-stage stochastic programming The previous section concerned stochastic

programs with two stages. However, most practical decision problems entail a sequence

of decisions that react to outcomes that move forward over time.

In this section, we will examine multistage stochastic problems. In essence, the

multistage stochastic program with recourse can be treated as a natural extension of the

two-stage stochastic programming model. In a two-stage SP model, a set of decisions is

made and kept until the end. However, in a multistage stochastic program, a sequence

of recourse decisions, which make up a decision process, are made consecutively over

time.

In the general T stages program, one considers a sequence of random parameters

ξ1,ξ2, . . . ,ξT−1 defined on a probability space. A scenario is defined as a realization of

random parameters ξ1,ξ2, . . . ,ξT−1 and a scenario tree is a computationally viable way

of discretizing the underlying stochastic parameter over time. In other words, a scenario

tree is an explicit representation of the branching process for progressive observation

of ξ1,ξ2, . . . ,ξT−1 under the assumption that these stochastic parameters have a dis-

crete support. Figure 2.1 illustrates a scenario tree including 8 scenarios for a four-stage

stochastic program. Each arc represents a realisation of a random vector of parameters

between the two stages. A path from the root to a leaf node represents an individual

scenario.

In a multi-stage stochastic program, the random parameters ξ1,ξ2, . . . ,ξt−1 are ob-

18

stage=1 stage=2 stage=3 stage=4

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

Scenario 7

Scenario 8

Figure 2.1: Example of scenario tree

served just before taking the decision at stage t and the residual uncertainty includes the

random parameters ξt , . . . ,ξT−1. However, the distribution of these residual stochastic

parameters ξt , . . . ,ξT−1 is conditioned upon the realization of random parameters in pre-

vious stages, i.e., ξ1, . . . ,ξt−1 [38]. Considering decision stages numbered from t = 1 to

t = T with the corresponding decision variables x1,x2, . . . ,xT , Figure 2.2 represents the

sequence of decisions and realizations of random parameters for each stage of a T-stage

stochastic program. It is assumed that at each stage t ≥ 1 the decisions at previous stages

x1, . . . ,xt−1 and the realisations of the random vectors x1, . . . ,xt−1 are known.

Stage 1 Stage 2 Stage 3 Stage t Stage T

x1 x2 x3 xt xT

ξ1 ξ1,ξ2 ξ1,ξ2, . . . ,ξt−1 ξ1,ξ2, . . . ,ξT−1

Figure 2.2: Sequence of decisions and realizations of random parameters for each stage
of a T-stage stochastic program

In a multi-stage stochastic program, the decision process has to be nonanticipative

in the sense that decisions taken in any stage of the process are not dependent on ob-

servations relative to subsequent stages or on future decisions. As explained in [40],

19

there are two common approaches to impose nonanticipativity constraints in a multi-

stage stochastic programming formulation. In the first approach, non-anticipativity con-

straints are accounted for implicitly by formulating a multi-stage stochastic program as

a sequence of nested two-stage stochastic programs. In this approach, the total objec-

tive function is calculated through a recursive evaluation. The second approach imposes

non-anticipativity constraints explicitly by introducing a set of decision variables for

each stage and each scenario.

Generally, multi-stage stochastic programs have been rarely applied in the stochastic

network design literature. There are a limited number of studies in this area such as

[3, 54, 85, 90].

2.2.1.2 Robust optimization

Despite the great influence and theoretical impact of stochastic programming, the

traditional models described earlier are powerless to handle risk aversion or the decision-

maker’s preference directly. Moreover, stochastic problems in which the expected total

cost is minimized assume that the decision maker is concerned with the average perfor-

mance of the system. However, there are situations where the decision maker may be

worried about the worst-case.

To overcome these drawbacks, Mulvey et al. in [84] proposed an alternative mod-

elling approach called robust optimization by defining different robustness measures for

the optimization problem. In this approach, a deterministic worst-case formulation of

the original problem is considered in which the worst-case is calculated over all possible

values that the input parameters may take within their uncertainty sets. The primary goal

of robust optimization is to produce optimum and relatively insensitive solutions ([84]).

In robust optimization problems, uncertain parameters may be continuous or speci-

fied via some discrete scenarios. For continuous ones, it is often assumed that these un-

certain parameters could be varied within a predefined interval called interval-uncertainty.

Generally, robust optimization with interval-uncertain parameters has been applied in or-

der to protect optimization problems against infeasibility due to perturbations of uncer-

tain parameters and also to retain computational tractability. We note that there are only

20

a few studies, for example [39, 91], in robust network design problems with interval-

uncertainty.

In the case of discrete scenarios, different robustness measures with or without prob-

ability distributions may be considered. Minimax cost and minimax regret are the two

popular measures for obtaining a robust network in scenario-based robust optimization

programs. The minimax cost measure seeks a solution minimizing the maximum cost

over all scenarios. In the minimax regret, the difference between the cost of a solution

and that of the optimal solution is defined as the absolute or relative regret for a sce-

nario [114]. The minimax cost is used in [95, 99] and minimax regret in [1, 56]. It is

worth mentioning that most studies have used commercial solvers to solve the proposed

mathematical models. Also, using robustness measures usually yields multi-objective

optimization problems in several studies.

2.2.1.3 Chance constrained program

Chance Constrained Programming (CCP), originally developed by Charnes and Cooper

[21], is another approach to model stochasticity in stochastic programs. Sometimes, in

optimization problems, one or multiple constraints are not required to be always satis-

fied. Indeed, these constraints need to hold with some probability or reliability level.

Probabilistic or chance-constrained programming is usually applied in such a situation

and it is often employed when the distribution probabilities of the uncertain parameters

are known by decision makers.

In this approach, the feasibility of a stochastic constraint has to be satisfied with

at least a given probability value α . The chance constraint (CC) can be expressed as

follows:

Pr{a(x,ξ) = a(ξ)x≤ h(ξ)} ≥ α (CC)

where, x ∈ Rn and for all realizations ξ , a(ξ) ∈ Rn and h(ξ) ∈ R.

The most challenging issue in chance-constrained programs is to obtain a determinis-

tic equivalent formulation. In fact, there are many difficulties associated with transform-

ing chance constraints into deterministic constraints (see [17] and [106] for more details

21

about this issue). In stochastic network design problems, these probabilistic constraints

have been developed in a few research studies, such as [125] and [57].

2.2.2 Related works in stochastic network design problems

As already mentioned, due to the two-stage nature of decisions in network design

problems, in the majority of the literature, the two-stage modelling approach has been

used to formulate the problem. Our research in this dissertation is also based on this

model. Hence, we first recall the two-stage formulation of the stochastic network design

problem, then review its main applications and uncertainty sources in Section 2.2.2.2

and provide a general review of solution methods and related works proposed for these

problems in Sections 2.2.2.3 to 2.2.2.6.

2.2.2.1 Two-stage stochastic formulation for SMCFND problem

Traditionally, in the case of stochastic two-stage network design problems with un-

certain demands, the first stage consists of deciding on the network configuration (i.e.,

design decisions). However, the second-stage consists of commodity flow decisions

from origin to destination nodes in an optimal fashion based on the restricted configu-

ration imposed by the first stage and the realized demand variables. The objective of

stochastic network design, in general, is to achieve a configuration that performs well

under every possible realization of uncertain parameters.

Let us describe the two-stage stochastic formulation for the stochastic MCFND prob-

lem [29]. For completeness, we describe all notations although most of them are the

same as in the deterministic model. Let G = (N ,A) be a directed network with N rep-

resenting a finite set of nodes and A a finite set of potential arcs. The set of commodities

is represented by K where each is defined by a unique pair of origin-destination nodes

(o(k),s(k)). For each design arc (i, j) ∈ A , we define the fixed cost fi j incurred if the

arc is included in the final design and the capacity limit ui j of the total commodity flow

that may use the arc (i, j). We also define the unit routing cost ck
i j for each commodity

k ∈K and arc (i, j) ∈ A . Let Ω be the space of random events, where ω ∈ Ω defines

22

a particular realization. Considering that demands are the only stochastic parameters in

the model, we let the random vector ddd define demand distributions. For a given real-

ization ω ∈ Ω, assuming that vk(ω) is the demand volume of commodity k under the

realization ω , the demand of costumer i for commodity k under the realization ω , i.e.,

dk
i (ω), is either set to vk(ω) if node i is the origin of commodity k, −vk(ω) if node i is

the destination of commodity k, or 0 otherwise.

Let the design decision variable yi j ∈ {0,1} indicates if arc (i, j) is included in the

network in the first stage. Thus, the two-stage stochastic program for MCFND may be

stated as follows:

min ∑
(i, j)∈A

fi jyi j +Eddd [Q(y,d(ω))] (2.18)

s.t. yi j ∈ {0,1},∀(i, j) ∈A (2.19)

where Q(y,d(ω)) is the total routing costs, representing the second-stage recourse

function, given the configuration design y and the realized demand vector d(ω). The ob-

jective function (2.18) then minimizes the total cost of the system as the sum of the total

fixed costs incurred to build the network and the expected distribution costs associated

with using it. Constraints (2.19) impose the integrality requirements on design variables.

The second-stage recourse function may then be formulated as follows:

Q(y,d(ω)) = min ∑
k∈K

∑
(i, j)∈A

ci jxk
i j (2.20)

subject to ∑
j∈N +(i)

xk
i j− ∑

j∈N −(i)
xk

ji = dk
i (ω), ∀i ∈N , ∀k ∈K (2.21)

∑
k∈K

xk
i j ≤ ui jyi j, ∀(i, j) ∈A (2.22)

xk
i j ≥ 0, ∀(i, j) ∈A , ∀k ∈K (2.23)

where continuous decision variables xk
i j represent the amount of commodity k’s demand

23

that flows on arc (i, j), while N +(i) and N −(i) are the sets of outward and inward

neighbors of node i, respectively. The objective function (2.20) minimizes the total rout-

ing cost, equations (2.21) enforce the flow conservation constraints, and relations (2.22)

impose the capacity restrictions on the design arcs of the network. Finally, constraints

(2.23) impose non-negativity restrictions on flow variables.

Let S ⊆ Ω define a finite set of possible scenarios for the random event, with

strictly positive corresponding probabilities of realization p1, . . . , p|S|. The problem

(2.18)-(2.19) may be reformulated as its extensive formulation

minimize ∑
(i, j)∈A

fi jyi j + ∑
s∈S

ps
∑

k∈K
∑

(i, j)∈A
ci jxks

i j (2.24)

subject to ∑
j∈N +(i)

xks
i j − ∑

j∈N −(i)
xks

ji = dks
i , ∀i ∈N , ∀k ∈K , ∀s ∈S

(2.25)

∑
k∈K

xks
i j ≤ ui jyi j, ∀(i, j) ∈A , ∀s ∈S (2.26)

yi j ∈ {0,1}, ∀(i, j) ∈A (2.27)

xks
i j ≥ 0, ∀(i, j) ∈A , ∀k ∈K , ∀s ∈S

(2.28)

where the commodity flow variables, xks
i j , and the demands dks

i are scenario specific.

The model (2.24)-(2.28) is a large-scale mixed integer program with a block-diagonal

structure, where each block, defined by constraints (2.25) and (2.26), represents the de-

terministic MCFND for scenario s. By solving problem (2.24)-(2.28), one finds a single

design yi j,∀(i, j) ∈A that minimizes the total system cost, consisting of the sum of the

fixed cost for the included arcs and the expected routing costs over all the realizations of

demand scenarios.

24

2.2.2.2 Applications and uncertainty sources

Several applications of stochastic network design models can be found in the litera-

ture. Most, but not all, of the existing research is focused in the fields of logistics and

telecommunications. As already mentioned, two groups of decisions are involved in

network design models; design decisions, that define the structure and characteristics of

the network, and flow decisions, which relate to how the network is used to perform the

considered operational activities. Considering these two groups of decisions, the two-

stage stochastic programming modeling framework suits network design problems well.

Therefore, this approach has been used by most of the studies in this area. Generally,

in most studies, the first stage decisions belong to the strategic planning level, and the

second stage decisions are tactical planning decisions. In Table 2.2.1, we review these

two different types of decisions made in a number of different applications of two-stage

stochastic network design problems.

In stochastic network design problems, one may face a wide range of possible un-

certainties. Klibi et al. [73] investigated different existing uncertainties in supply chain

network design as well as their sources and impacts. In general, the uncertainty sources

may be classified into the two following groups: (1) the existing uncertainty in param-

eters such as supply, demand, and costs, which are inherently uncertain, and (2) the

uncertainty caused by natural or man-made disruptions. A list of uncertain parameters

that have been assumed in designing networks in the literature is reviewed in Table 2.2.2.

Among the reference papers, a minority of them have addressed disruptions in supply

chain network design problems. The influence of disruptions on the physical structure of

a network may cause uncertainty in various parameters. The most frequent parameters

which have been assumed uncertain in the case of a disruption event in supply chain

network design problems are as follows: capacity of facilities, availability of facilities

and their connections, and the amount of disrupted products in facilities [73].

Most of solution methods developed to address stochastic problems under different

sources of uncertainty (e.g., costs and capacities) solve the extensive form (or determin-

istic equivalent) of the two stage stochastic program . It is worth to mention that these

25

Ta
bl

e
2.

2.
1:

A
pp

lic
at

io
ns

of
SN

D
P

A
pp

lic
at

io
n

D
es

cr
ip

tio
n

Fi
rs

t-
st

ag
e

Se
co

nd
-s

ta
ge

Tr
an

sp
or

ta
tio

n
(S

er
vi

ce
)N

et
w

or
k

D
es

ig
n

[2
9,

76
]

St
ru

ct
ur

e
of

ne
tw

or
k

R
ou

tin
g

de
ci

si
on

s

Tw
o

tie
r

Fi
rs

tt
ie

rs
er

vi
ce

ne
tw

or
k

D
es

ig
n

&
ro

ut
in

g
ci

ty
lo

gi
st

ic
[2

8]

L
og

is
tic

M
ul

ti-
ec

he
lo

n
To

po
lo

gy
of

su
pp

ly
ch

ai
n

Fl
ow

de
ci

si
on

s
+

N
et

w
or

k
us

e
su

pp
ly

ch
ai

n
[1

07
,1

10
,1

19
]

Te
le

co
m

m
un

ic
at

io
n

In
te

rn
et

-b
as

ed
W

ha
te

qu
ip

m
en

tt
o

in
st

al
li

n
th

e
ne

tw
or

k
O

pe
ra

tio
ns

to
pe

rf
or

m
th

e
se

rv
ic

e
in

fo
rm

at
io

n
se

rv
ic

e
[4

6]

C
ap

ac
ity

pl
an

ni
ng

pr
ob

le
m

[1
01

]
C

ap
ac

ity
al

lo
ca

tio
n

Fl
ow

de
ci

si
on

s

R
in

g
de

si
gn

pr
ob

le
m

A
ss

ig
nm

en
to

ft
he

cl
ie

nt
no

de
s

to
ri

ng
s

D
em

an
d

tr
an

si
t

fo
ro

pt
ic

al
ne

tw
or

k
[1

12
]

26

proposed approaches (e.g., the branch-and-fix with coordination method [4] or the in-

tegrated SAA and Benders method proposed in [107]) solve instances where the size

of the resulting deterministic equivalent problem is still limited, compared to the size

of MIP problem obtained by considering the demand uncertainty in the instances con-

sidered in this dissertation. Our goal in this dissertation is to propose efficient solution

methodologies that are able to handle very large problems.

Table 2.2.2: Uncertainity sources
Parameters Refrences
Demand [4, 12, 98, 105, 107, 115]
Parameters of demand distribution
Costs [4, 9, 52, 107]
Costs of activities (e.g., transportation, production)
Capacity [58, 107]
Capacity of network facilities/ transportation links
Required capacity for producing products
Capacity coefficients
Supply [9, 12, 69, 98, 107, 115]
Supply quantity for network facilities
Price [4, 52, 69]
Selling price of finished products
Buying price of raw materials

2.2.2.3 Scenario generation

A crucial step during the implementation of stochastic program models is model-

ing the random parameters to well reflect the available knowledge on the randomness at

hand. Stochastic parameters in SND may be represented by either continuous parameters

or discrete scenarios. In a small portion of the literature, the stochastic parameters are

described using a known continuous probability distribution where numerical integra-

tion is employed over the random continuous probability space. The main disadvantage

of this approach is that the computation is difficult to carry out since multidimensional

integration is required. In these studies, the most popular stochastic parameter is the cus-

tomer’s demand volume, which is modeled through the normal distribution with known

27

mean and variance. The paper presented by Daskin et al [36] is a foundation for many

studies in the area of SND where demands have normal distribution with known mean

and variance (e.g., [57, 88]).

Compared with continuous stochastic parameters, approximation by a discrete set of

outcomes (scenario approach) yields more manageable models. The dependency among

stochastic parameters may be captured by using the scenario approach. In the implemen-

tation of multi-stage or two-stage stochastic programs, the discrete scenarios are usually

organized in the form of a scenario tree or scenario fan, respectively. In such approaches,

not only the parameters can be correlated with each other, but also they can be correlated

across the time units and, therefore, the generation of an appropriate set of scenarios

would be a difficult task.

The literature on scenario generation is rich and various methods have been devel-

oped over the past decades. They range in scope from sampling methods to simulation,

from statistical methods (such as principal component analysis technique, regression

methods, moment matching) to other methods (e.g. clustering approaches, neural net-

works) [13]. The most common approach is to generate a scenario tree from the prob-

ability distribution by sampling. In the case of correlated random variables, it is then

necessary to specify the marginal distributions and the correlation matrix [19]. If the

probability distributions are not available, scenarios could be generated with required

moments e.g., mean, variance, skewness, etc. These studies may be found for example

in [65, 78, 79, 113].

It is easy to perceive that the main problem in all these methods is that the size

of the tree grows exponentially with the dimension of the random vector and leads to

difficulties in solving the model. Subsequently, scenario reduction techniques [42, 60]

can be applied to reduce the size of the tree with the minimum loss of accuracy.

Evaluating the scenario generation methods in terms of quality and stability is the

main concern. In this regard, there are two important requirements for an efficient sce-

nario generation procedure including in-sample and out of sample stabilities. We refer

to [68], for more information about quality and stability measures in scenario generation

methods.

28

We note that, in the context of SND, there are only a few studies that develop an

appropriate scenario generation procedure to obtain a set of scenarios (e.g., [44], [56],

[72] and [110]). Typically most research studies exploited a predetermined small set of

scenarios with associated probabilities for their stochastic programs.

2.2.2.4 Sampling-based method

In contrast to using a static set of scenarios, sampling-based solution methods dy-

namically generate sets of representative scenarios for the problem. These methods are

usually used for the stochastic programs with a prohibitively large number of scenarios.

By applying sampling based approaches, the objective function is approximated through

a random sample of scenarios. Sampling techniques can be typically classified in two

categories: Interior sampling and exterior sampling methods [121].

In interior sampling methods, sampling is performed and modified during the chosen

optimization procedure. These samples may be modified by adding to previously gener-

ated samples, by taking subsets of previously generated samples, or by regenerating new

sample from scratch. This type of interior sampling based approaches may be found in

several studies. For example [62] and [66] developed methods for stochastic linear pro-

gramming that modify samples within the L-shaped algorithm. For discrete stochastic

problems, interior sampling branch-and-bound methods were proposed by Norkin et al

in [86, 87].

In the exterior sampling approach, a sample of scenarios is generated according to

probability distribution, and then a deterministic optimization problem is developed for

the generated samples and solved. The procedure of generating samples and solving

deterministic problems may be repeated several times. One of the well-known example

of exterior sampling method is the Sample Average Approximation (SAA) approach. In

the network design problems, SAA methods have been broadly developed to reduce the

size of stochastic programs through repeatedly solving the problem with a smaller set of

scenarios. These studies include, e.g., [8, 22, 71, 72, 107].

29

2.2.2.5 Decomposition-based methods

Computation in stochastic programs with recourse has focus on two-stage problems

with finite numbers of realizations. Using a finite number of second-stage realizations,

we can always form the full deterministic equivalent program (i.e., the extensive form).

Due to the the large scale of the resulting problem, taking advantage of their struc-

ture through decomposition-based approaches is especially beneficial and is the focus

of much of the algorithmic work in this area. The basic idea behind decomposition

methods is to divide a large-scale stochastic problem into several subproblems. Such

decomposition strategies can be categorized into two types. The first type decomposes

the problem by stages, while the second type decomposes the problem by scenarios. The

former category (referred to the L-shape method introduced in [120]) is a cutting-plane

method which is the application of the Benders decomposition strategy to the solution

of the extensive form of stochastic program. When Benders decomposition is applied to

two-stage stochastic linear problems, the first stage is formulated as the master problem

providing lower bounds, and a subproblem is formed for each scenario. All the subprob-

lems together generate upper bounds and cuts for the master problem. The lower bound

and upper bound eventually converge to the optimal solution.

Following this strategy, the stochastic network design model is first projected onto

the space defined by the first stage variables (i.e., the design variables). By doing so, the

problem decomposes according to the considered scenarios (i.e., a flow model for each

scenario). The problem is then solved by reformulating the scenario subproblems using

an outer linearization approach and then applying a relaxation algorithm on the result-

ing equivalent model. For completeness, detailed review on this type of decomposition

approach for stochastic network design problems may be found in [32] and [93].

In the second category of decomposition strategies, referred to as scenario decompo-

sition, the original problem is decomposed per scenarios by applying Lagrangian relax-

ation to the non-anticipativity constraints (i.e., the constraints ensuring that a single first

stage solution is used under all considered scenarios). Once the problem is decomposed,

then each scenario becomes a deterministic problem to be solved (i.e., a single-scenario

30

subproblem (SSP) defined for each scenario). The resulting scenario subproblems can

then be used to obtain a general lower bound, by solving the Lagrangian dual as in

[110], or as a means to produce more efficient solution approaches, e.g., [4, 43] or the

PHA proposed in [103].

In the context of network design problem, a PHA-based metaheuristic is proposed

by Crainic et al. [29]. In this method, one first need to apply a scenario decomposition

technique to separate the stochastic problem following the possible scenarios. To do so,

they reformulate the model by creating copies of first-stage variables associated with

each scenario and forcing all of them to be the same in all scenarios by introducing a

new constraint. By doing so, the resulting problem is scenario-separable as follows:

minimize
x ∑

s∈S
ps(

∑
(i, j)∈A

fi jys
i j + ∑

k∈K
∑

(i, j)∈A
ck

i jx
ks
i j
)

(2.29)

subject to ∑
j∈N +(i)

xks
i j − ∑

j∈N −(i)
xks

ji = dks
i , ∀i ∈N , ∀k ∈K , ∀s ∈S

(2.30)

∑
k∈K

xks
i j ≤ ui jys

i j, ∀(i, j) ∈A , ∀s ∈S (2.31)

ys
i j ∈ {0,1}, ∀(i, j) ∈A , ∀s ∈S (2.32)

ys
i j = ȳi j, ∀(i, j) ∈A , ∀s ∈S , (2.33)

xks
i j ≥ 0, ∀(i, j) ∈A , ∀k ∈K , ∀s ∈S

(2.34)

Constraints (2.33) are referred to as nonanticipativity constraints. The latter ensure

that design decisions are not tailored for each particular scenario and aim towards a

“single design”. The other constraints were described earlier.

Following the decomposition scheme proposed in [103], constraints (2.33) are re-

laxed using an augmented Lagrangian relaxation strategy which produces a series of

single-scenario subproblem. When applied to network design, each single-scenario sub-

problem solved at each iteration of the progressive hedging procedure represents a deter-

31

ministic network design problem yielding a (potentially different) design [29, 34]. These

designs are aimed to be reconciled to create a single reference point. Then, at the begin-

ning of the next iteration, the fixed cost associated with each arc is altered through an

augmented Lagrangian-type technique to hopefully induce the resulting subproblems to

yield solutions closer to the current reference point [34]. In this way, differences between

the designs are thus reconciled indirectly.

A main limitation of PHA is that the convergence is guaranteed only in the convex

case. However, in the case of mixed-integer stochastic problem, the presence of integer

variables eliminates that guarantee. Therefore, to obtain a unique design, Crainic et al.

[29] proceed in two phases. If the progressive hedging procedure performed in the first

stage does not result in a single design solution over all scenarios, the second phase then

solves the restricted problem obtained by fixing all design arcs for which a consensus

has been achieved.

In order to deal with a larger number of scenarios, Crainic et al. [34] introduced a

new meta-heuristic, named mS-PHA that solves subproblems that may comprise mul-

tiple scenarios produced by the scenario-grouping strategies. This new meta-heuristic

generalizes the method proposed in [29] for the stochastic MCFND problem. It is shown

that by solving multi-scenario sub-problems, the meta-heuristic produces better results

in terms of solution quality and computation efficiency. The results also indicate that

grouping scenarios is always beneficial and doing it the smart way is even more so, as

the manner in which the multi-scenario subproblems are constructed has a definite im-

pact on the performance of the algorithm. The third article of this dissertation in Chapter

5 is developed based on this type of decomposition approach to solve instances with very

a large number of scenarios.

2.2.2.6 Investigation on the solution structures

Due to the inherent difficulty and complexity of stochastic network design problems

and given the fact that deterministic problems are much easier to solve, it is a common

approach to consider the simpler deterministic program in which random parameters are

replaced by their expected values (known as Expected Value Problem (EVP)), with a loss

32

in terms of solution quality.

Although, the solution to the deterministic model behaves badly in stochastic settings

[63, 123], it has been shown that there are situations where the deterministic solution

shares some properties with the corresponding stochastic solution [76, 116–118].

Maggioni and Wallace in [80] point out that, while stochastic programs are appro-

priate, one may only have access to deterministic solutions for difficult instances. So,

they seek a deeper understanding of the expected value solution in order to investigate its

relationship with its stochastic counterpart. For example, they investigate if the stochas-

tic optimal solution inherit properties from the deterministic one, or if they are totally

different. They indicate that a qualitative understanding of the behavior of the determin-

istic solution relative to the stochastic one could be very useful because it could reveal

some general properties of the underlying problem and help predict how the stochastic

model will perform in two important cases. Firstly, when the stochastic model is actually

solvable, but since it is solved repeatedly (daily), we would rather like to solve the de-

terministic one, if we could understand its quality and how to interpret it, and secondly,

when it is not even solvable. They carry out a number of experiments to examine if a

good (if not optimal) solution to the stochastic problem can be obtained by, somehow,

updating the deterministic one.

Related studies in stochastic service network design problems e.g., [76, 116–118]

show that the deterministic solution carries useful information (i.e. some structural pat-

terns) that can be leveraged to solve the stochastic counterpart. The work in [124] was

the first attempt to thoroughly analyze the quality of a deterministic solution in terms

of its structure and upgradeability to a solution to the stochastic service network design

problem. In particular, [25] showed that the reduced-cost associated with the non-basic

variables in deterministic solution can be used to identify a skeleton of variables to ex-

clude from the stochastic formulation. The second article in this dissertation is inspired

by this contribution. We investigate how the reduced cost associated with non-basic

variables in deterministic solutions can be used to identify an appropriate set of fixed

variables, thus producing a restricted model.

33

2.3 Conclusions

This chapter has introduced a brief background on deterministic network design

problems. We provided the standard notation used in mathematical formulation of fixed

charge capacitated multi-commodity network design problem. We reviewed some of

metaheuristics and matheuristic solution methods proposed for the deterministic net-

work design problem. We then provided different modelling approaches in stochas-

tic programming and reviewed the related works and methodologies in the context of

stochastic network design. We noticed that efficient approaches to deal with large in-

stances are scarce in stochastic network design problems. With these observations and

given the fact that realistic problems of this nature are of large scale, this dissertation

aims at filling this gap by proposing specially designed algorithms which explicitly treat

stochasticity.

34

CHAPTER 3

ARTICLE 1: A LEARNING-BASED MATHEURISTIC FOR STOCHASTIC

MULTICOMMODITY NETWORK DESIGN

Chapter notes: The article in this chapter has been submitted to the INFORMS

Journal on Computing. The published technical report is as follows: F. Sarayloo, T.G.

Crainic and W. Rei, A Learning-based Matheuristic for Stochastic Multicommodity Net-

work Design. Technical report, Publication CIRRELT-2018-12, Centre Interuniversitaire

de Recherche sur les Réseaux d’Entreprise, la Logistique et le Transport (CIRRELT),

Montreal, Canada.

Preliminary work was presented at the following conferences:

• INFORMS and CORS joint conferences, Montreal, 2015

• Optimization Days 2016, Montreal, Canada, May, 2016

• INFORMS Annual meeting, Houston, USA, Oct 2017

Abstract

This paper proposes a solution approach for the Multicommodity Capacitated Fixed-

charge Network Design problem with uncertain demand, modeled as a two-stage stochas-

tic program. The proposed learning-based matheuristic combines heuristic-search tech-

niques with mathematical programming. It provides a systematic approach to identify

structures of good-quality solutions by gradually considering scenarios and their influ-

ences on design decisions. Extensive computational experiments illustrate the efficiency

of the proposed matheuristic in obtaining high-quality solutions with limited computa-

tional efforts.

Keywords: Stochastic capacitated network design, uncertain multicommodity demand,

two-stage formulation, matheuristic

36

3.1 Introduction

Network Design (ND) defines an important class of combinatorial optimization prob-

lems that naturally appear in a large number of applications including transportation,

logistics and telecommunications. Given a network where all or a subset of arcs may be

used only if selected (“opened") by paying a so-called fixed cost, the Multicommodity

Capacitated Fixed-charge Network Design (MCND) formulation arises when it is re-

quired to route at minimum total cost a set of given commodities making up the demand

between different pairs of origin and destination nodes of the network. The optimization

aims to determine the arcs to select and the commodity flows within the resulting net-

work, the total cost being computed as the sum of the fixed costs of the selected arcs and

the cost of transporting the commodities. Surveys on network design may be found in

[26, 82, 83].

Critical problem parameters such as demands, costs, and capacities are often un-

certain, and many applications require the uncertainty to be explicitly considered when

modeling, yielding Stochastic MCND (SMCND) formulations. We focus on demand un-

certainty addressed through two-stage stochastic programs [17], where design decisions

are made in the first stage before the actual demand is realized, while second-stage flow-

routing decisions adjust the first-stage solution to the observed demand realization. The

general goal of SND formulations is to find a single optimal design solution for the range

of possible demand realizations. To address such problems, the demand uncertainty is

often represented through scenario decomposition, i.e., through a set of values for the

uncertain demands, the scenarios, together with the associated probabilities. The result-

ing large-scale mixed integer program (MIP), referred to as the extensive form (EF) in

Birge and Louveaux [17], is difficult to solve exactly in most cases as, first, deterministic

network design problems are NP-hard in all but trivial cases [82] and, second, modeling

uncertainty with scenarios generally yields very large instances [29]. Heuristic solu-

tion methods are thus proposed to identify “good”-quality solutions within reasonable

computing efforts.

Solving deterministic formulations is generally easier, compared to stochastic ones.

37

Consequently, a number of studies attempted to analyze the information provided by

solutions to deterministic variants of stochastic formulations to infer information about

the stochastic solutions and simplify addressing the stochastic models. Although solving

deterministic formulations cannot replace addressing the stochastic one and solutions to

the former may be very bad for the latter, it has been observed that stochastic solutions

retain parts of deterministic solutions. Yet, no systematic procedure to identify these

parts, providing the basis for efficient meta-heuristics for the MCND may be found in

the literature.

We aim to contribute addressing these challenges by proposing an innovative sys-

tematic learning mechanism to extract information regarding the solution structure of a

stochastic problem out of the solutions of particular combinations of scenarios. In the

context of network design, this information takes the form of design decisions that are

common to high-quality (i.e., optimal or near optimal) solutions obtained by gradually

considering scenarios and their interactions.

We also propose the Learn&Optimize matheuristic, which jointly makes use of the

learning mechanism to infer a set of promising design variables, and a state-of-the-art

MIP solver to address a reduced problem. To explore the search space more efficiently

and achieve improved results, we gradually enlarge the reduced problems to be solved

by the MIP solver.

Learning, that is, deriving knowledge relative to the solution structure, is not a new

concept in addressing stochastic network design models. Yet, how this knowledge is

obtained and exploited are key success factors. The contribution of this paper, there-

fore, is threefold. First, we introduce and formally describe a new optimization-based

learning mechanism to identify the solution structure of stochastic network design prob-

lems. Although presented in the context of this complex problem setting, the proposed

mechanism can be adapted to many other combinatorial optimization problems. Second,

we propose a new matheuristic framework, integrating the proposed learning mecha-

nism, which efficiently obtains high-quality solutions, outperforming a state-of-the-art

commercial MIP solver in solution quality and computational efforts, particularly as the

instance dimension increases. Third, we present the results of extensive computational

38

experiments to asses the merit and limits of the proposed methodology.

The rest of paper is organized as follows. We recall the two-stage formulation of

the SMCND and briefly review relevant literature in Section 3.2. Section 3.3 intro-

duces the main ideas of the proposed learning mechanism, while Section 3.4 details

the matheuristic. We present and analyze the experimental results in Section 3.5, and

provide concluding remarks in Section 3.6.

3.2 Problem description and literature review

We first recall the two-stage stochastic formulation, also known as the a priori opti-

mization model [17], of the stochastic multi-commodity capacitated fixed-cost network

design problem. We then present a brief review of the relevant literature.

3.2.1 Two-stage SMCND formulation

One distinguishes two sets of decisions in an a priori formulation, according to the

moment in time, the stage, the decision is taken and the type of information available.

The first stage corresponds to decisions that need to be taken here-and-now, based on es-

timations of future demand and prior to the realization of uncertainty. The second stage

and its recourse variables correspond to the decisions made repeatedly, given the restric-

tions imposed by the first stage, once new information is revealed and the uncertainty is

resolved. Traditionally, in the case of stochastic two-stage network design problems with

uncertain demands, the first stage consists of deciding on the configuration of network,

i.e., the design decisions, and the second-stage consists in optimizing the commodity

flow distribution of the observed demand, on the restricted configuration imposed by the

first stage.

We use the two-stage stochastic formulation of the SMCND by [29]. Let G =

(N ,A) be a directed network with N representing a finite set of nodes and A a fi-

nite set of potential arcs. Let K be the set of commodities each characterized by a

unique pair of origin-destination nodes. Let S be the set of scenarios, where ps is the

probability of scenario s ∈S . We introduce binary variable yi j, which indicates if arc

39

(i, j) is included, or not, in the network in the first stage, where fi j is the fixed cost of

doing so. Once the design variables are decided upon, in the second stage, xks
i j represents

the amount of commodity k’s demand that flows on arc (i, j) in the solution for scenario

s. The variable cost per unit of flow on arc (i, j) is denoted by ci j. The mathematical

formulation is:

minimize ∑
(i, j)∈A

fi jyi j + ∑
s∈S

ps
∑

k∈K
∑

(i, j)∈A
ci jxks

i j (3.1)

subject to ∑
j∈N +(i)

xks
i j − ∑

j∈N −(i)
xks

ji = dks
i , ∀i ∈N , ∀k ∈K , ∀s ∈S (3.2)

∑
k∈K

xks
i j ≤ ui jyi j, ∀(i, j) ∈A , ∀s ∈S (3.3)

yi j ∈ {0,1}, ∀(i, j) ∈A (3.4)

xks
i j ≥ 0, ∀(i, j) ∈A , ∀k ∈K , ∀s ∈S

(3.5)

The objective function (3.1) accounts for the total system cost, consisting of the fixed

cost for the included arcs and the expectation of routing costs taken over all the realiza-

tions of demand scenarios. Constraints (3.2) represent the flow conservation equations

in each scenario, requiring that demand of commodity k ∈K be routed from its origin

node to its destination. Therefore, assuming that ωks is the demand volume of commod-

ity k in scenario s, the parameter dks
i is set to ωks if node i is the origin of commodity k,

−ωks if node i is the destination of commodity k, and 0 otherwise. Linking Constraints

(3.3) ensure that the same design is used in each scenario and that arc capacity ui j is

never violated. Constraints (3.4) and (3.5) are integrality and non-negativity constraints,

respectively.

3.2.2 Literature review

The stochastic network design problem belongs to the class of stochastic mixed in-

teger programs, its complexity stemming not only from stochasticity, but also from the

lost convexity of the integrality property.

40

Most of the existing literature on stochastic network design problems models uncer-

tainty through a given set of scenarios, (see Dupačová et al. [41] and King and Wallace

[70] for an overview of scenario generation methods). The deterministic network de-

sign problem is NP-Hard [82] and computationally complex. Scenarios compound the

difficulty by significantly increasing the dimension of the instances. Hence, some meth-

ods, e.g., the Sample Average Approximation (SAA) approach, includes sampling into

the iterative solution procedure (see e.g., [9, 14, 107, 111], for applications to network

design).

Once the set of scenarios is defined, standard MIP solvers can be used for small prob-

lem instances to directly solve the extensive form of the problem in which all scenarios

are considered simultaneously (e.g., [9, 119]). For most network design settings and

cases, this approach is not appropriate however, as formulations are either too large, or

too complex, or both. Decomposition is then often called upon.

The basic idea behind decomposition methods is to divide a large-scale SMIP prob-

lem into several subproblems, along scenarios or stages, and solve the smaller-sized

subproblems separately in a decomposition-coordination manner. Decomposition ap-

proaches generally fall into two groups based on how the two-stage formulation is de-

composed. The first group consists of vertical-directive methods that decompose the

problem according to scenarios. The Progressive Hedging (PH) method, proposed orig-

inally by Rockafellar and Wets [103], belongs to this category and is the foundation

of a number of meta-heuristics for stochastic network design (e.g., [29, 34, 74]). In

the second group, horizontal-directive methods decompose a stochastic network design

problem stage-wise into a master problem for the first-stage variables (i.e., the design

variables) and a number of subproblems for the second stage variables (i.e., a network

flow problem for each scenario). The L-shaped method [120] belongs to this category

and has been used for the stochastic network design (e.g., [14, 32, 102, 107, 112]).

The impact of stochasticity on the solution structure and the role solutions to some

deterministic problem variants may play in identifying this structure is another signifi-

cant research direction that has been explored for stochastic network design. It is well

known that solutions derived from stochastic programs are, in general, structurally differ-

41

ent from those derived from their deterministic counterparts defined by using the mean

of demand distributions, [63, 76, 123]. A number of studies focusing on discerning

similarities and differences between solution structures in deterministic and stochastic

problem variants [e.g., 80, 116–118, 124] have also shown, however, that components

of the deterministic solutions can be found in stochastic ones. Despite these investiga-

tions into using the partial information provided by deterministic solutions in addressing

stochastic models, there is still no methodology to systematically explore it and identify

the elements that would guide a meta-heuristic towards good-quality design solutions to

large stochastic instances. We propose such a methodology in the next sections.

3.3 The learning mechanism and heuristic

Several approaches in the literature could be qualified as integrating “learning".

Knowledge relative to a stochastic solution may thus be derived from a single deter-

ministic solution only (using the expected value in most cases), as in [80] and [124].

One notices, however, that there is little learning in these approaches from the stochas-

tic information present in the scenarios. Scenario-decomposition based methods [e.g.,

29, 34, 103], on the other hand, learn from the multiple solutions provided by solving the

deterministic formulations resulting from decomposing along scenarios. Most of the in-

formation is lost, however, as solutions are aggregated to compute a so-called consensus

solution.

We propose a mechanism to overcome these limitations. We believe that one can

derive a good deal of knowledge out of the scenarios, and that better solutions can be ob-

tained more efficiently with a higher level of learning. We aim to provide such a higher

level of learning by systematically exploiting the design information obtained by con-

sidering not only individual scenarios but also scenario combinations and interactions.

We introduce the concept of Artificial Demand Scenario (ADS) built out of particular

combinations of scenarios. One then learns by iteratively building ADSs, solving the

associated problems, and gradually building an image of design variables potentially

belonging to good solutions to the stochastic formulation. The result of this learning

42

mechanism is then used to guide the search to higher quality solutions.

We define the Artificial Demand Scenario in Section 3.3.1, while Sections 3.3.2 and

3.3.3 describe the algorithmic components making up the proposed learning mechanism.

3.3.1 Artificial Demand Scenario

We define an Artificial Demand Scenario in this paper as a combination of the de-

mands of two scenarios. Let ddd(((sssααα))) and ddd(((sssβββ))) be the demand vectors of size |K | of

scenarios sα ,sβ ∈S :

ddd(((sssααα))) =



d1(sα)

d2(sα)

d3(sα)
...

d|K |(sα)


and ddd(((sssβββ))) =



d1(sβ)

d2(sβ)

d3(sβ)
...

d|K |(sβ)


.

An Artificial Demand Scenario δδδ (((sssααα ,,,sssβββ))) ∈ ∆(sα ,sβ), ∀sα ,sβ ∈S is then defined as

a demand vector of the same size, where the element k = 1,2,3, . . . , |K | contains the

demand value associated with commodity k in scenario sα or scenario sβ , that is,

δδδ (((sssααα ,,,sssβββ))) =



δ1(sα ,sβ)

δ2(sα ,sβ)

δ3(sα ,sβ)
...

δ|K |(sα ,sβ)


, such that δk(sα ,sβ) = dk(sα)∨dk(sβ),∀k ∈K .

To illustrate, consider two demand vectors ddd(((sss111))) and ddd(((sss222))) containing six commodi-

43

ties each. Three possible artificial demand scenarios are:

ddd(((sss111)))=



10

20

60

30

90

70


, δδδ 111(((sss111,,,sss222)))=



45

20

60

30

90

70


, δδδ 222(((sss111,,,sss222)))=



10

25

75

30

90

70


, δδδ 333(((sss111,,,sss222)))=



10

20

75

85

95

70


, ...,



45

25

75

85

95

15


=ddd(((sss222)))

One generates an ADS by selecting a number of demand elements in one of the two

scenarios and the rest in the other one. The generation process is thus determined by how

many elements are selected and how this selection is performed. In all generality, there

are several possible ways to perform the selection and we define R as the set of selection

rules. An ADS δδδ
mr(((sssααα ,,,sssβββ))) ∈ ∆(sα ,sβ) is then generated by applying the selection rule

r ∈ R to select m elements in d(sβ) and |K | −m elements in d(sα). Let ∆mr(sα ,sβ)

be the set of ADSs of type m-combination, m = 1,2,3, . . . ,K − 1, generated by the

selection rule r. Define the operator ⊕ such that

δδδ
′′′
(((sssααα ,,,sssβββ))) = δδδ

′
(((sssααα ,,,sssβββ)))⊕δδδ

′′
(((sssααα ,,,sssβββ))), δδδ

′
(((sssααα ,,,sssβββ))),δδδ

′′
(((sssααα ,,,sssβββ))) ∈ ∆

mr(sα ,sβ)

yields

δ
′′′
k (sα ,sβ) =

dk(sβ) if (δ
′
k(sα ,sβ) = dk(sβ))∨ (δ

′′
k (sα ,sβ) = dk(sβ)),

dk(sα) otherwise,
(3.6)

for all k ∈K .

A set ∆mr(sα ,sβ) = {δδδ
mr
θ (sα ,sβ)}{θ=1,2,...,Nm}, of cardinality Nm, will then ensure

that the demand value of each commodity in d(sβ) appeares in at least one of its ADSs,

i.e.,

ddd(((sssβββ))) = δδδ
mr
1 (sα ,sβ)⊕δδδ

mr
2 (sα ,sβ)⊕ . . .⊕δδδ

mr
Nm
(sα ,sβ). (3.7)

Note that the minimum cardinality of set ∆mr(sα ,sβ) satisfying relation (3.7) is Nm =

44

d |K |m e. To illustrate, in the following case of two scenarios and three ADSs, the set

{δδδ 1,δδδ 2,δδδ 3} satisfies relation (3.7), while the set {δδδ 1,δδδ 2,δδδ 4} does not.

ddd(((sss111)))=



10

20

60

30

90

70


, δδδ 1 =



45

25

60

30

90

70


, δδδ 2 =



10

20

75

85

90

70


, δδδ 3 =



10

20

60

30

95

15


, δδδ 4 =



45

20

60

30

90

15


,



45

25

75

85

95

15


= ddd(((sss222)))

Several methods can be used to construct the set ∆mr(sα ,sβ) but, to avoid introducing

“noise" in evaluating the learning mechanisms, we use a simple procedure in this paper.

Algorithm 1 builds a set ∆mr(sα ,sβ) of minimum cardinality Nm = d |K |m e, through the

random selection of the demand values (i.e., R = {r = random selection}) of two given

scenarios. The procedure first builds Nm−1 ADSs (lines 3 - 5) by iteratively selecting m

commoditiy values to copy from d(sβ). The last ADS (line 6) is built from the remaining

commodity values, if any.

Algorithm 1 Construct(sα ,sβ ,m,r = random selection)

1: Initialization: Nm← d |K |m e, ¯K ←K , θ ← 1;
2: repeat
3: Randomly choose m commodities K m ⊆ ¯K , and create ADS δδδ

mr
θ (sα ,sβ) with

the corresponding demand values from scenario sβ ; θ ← θ +1;
4: Update ¯K : ¯K := ¯K \K m;
5: until θ = Nm
6: Generate δδδ

mr
θ (sα ,sβ) by choosing the remaining commodities in ¯K out of ddd(((sssβββ)));

7: return ∆mr(sα ,sβ)

3.3.2 Partial learning - the scenario-pair case

Given a pair of scenarios sα ,sβ ∈ S and a given design ȳ, the partial-learning

mechanism proceeds by exploring the solution characteristics associated to each ADS

δδδ (sα ,sβ) ∈ ∆(sα ,sβ) to extract information regarding promising design variables. The

45

exploration is performed by solving an Artificial-Recourse Problem, ARP(δδδ , ȳ), for each

artificial demand scenario δδδ ∈ ∆(sα ,sβ).

To define the ARP(δδδ , ȳ), we separate the set of arcs A according to the given design

ȳ. Then, A =A 0∪A 1, where A 0 = {(i, j)|(i, j)∈A , ȳi j = 0} and A 1 = {(i, j)|(i, j)∈
A , ȳi j = 1} are the sets of closed and open arcs in ȳ, respectively. We then define a

modified arc variable cost c̄i j by linearizing the fixed cost of the closed arcs

c̄i j =

ci j +
fi, j
ui j

, ∀(i, j) ∈A 0,

ci j, ∀(i, j) ∈A 1
(3.8)

and solve the ARP(δδδ , ȳ) multi-commodity network flow problem

ARP(δδδ , ȳ) : minimize ∑
k∈K

∑
(i, j)∈A

c̄i jxk
i j (3.9)

subject to ∑
j∈N +(i)

xk
i j− ∑

j∈N −(i)
xk

ji = δ
i
k, ∀i ∈N , ∀k ∈K (3.10)

∑
k∈K

xk
i j ≤ ui j, ∀(i, j) ∈A (3.11)

xk
i j ≥ 0, ∀(i, j) ∈A , ∀k ∈K (3.12)

where

δ
i
k =


δk if i = o(k)

−δk if i = d(k)

0 otherwise.

(3.13)

Solving ARP(δδδ , ȳ) yields the solution xi j(δδδ) = ∑k∈K xk
i j, ∀(i, j) ∈ A , with Aδδδ =

{(i, j) | xi j(δδδ)> 0}. We define a corresponding design solution as yδδδ
i j = 1, when xi j(δδδ)>

0, and 0, otherwise. It is noteworthy that some of the arcs in A 0, closed in ȳ, may

be open in yδδδ
i j to satisfy the demand vector δδδ . This modification to the design vector

following the modification of the recourse problem inspired the procedure and the ARP

name. These modifications capture the interactions occurring in the integration of two

46

scenarios within δδδ , yielding partial information regarding the design arcs required to

address the uncertainty captured by the two scenarios. Repeating this procedure for

different artificial demand scenarios builds the knowledge we seek.

The partial-learning approach is described in Algorithm 2. The set of Artificial De-

mand Scenarios, ∆mr(sα ,sβ), was constructed previously using Algorithm 1. We define

the frequency memory, F ′i j, representing how often arc (i, j) has been used in the solu-

tions of the different ARP(δδδ , ȳ). We also define A ∆, the set of design arcs used in at

least one ARP, and A α_β , the set of promising design variables to be identified by the

procedure.

Algorithm 2 PartialLearning (ȳ,∆mr(sα ,sβ))

1: Initialization: F ′i j← 0,∀(i, j) ∈ A, A α_β ← /0; ∆mr(sα ,sβ);← /0; A ∆← /0
2: repeat
3: Randomly choose an artificial demand scenario δ ∈ ∆mr(sα ,sβ);
4: Solve ARP(δδδ , ȳ) yielding xi j(δδδ),∀(i, j) ∈A ;
5: Identify Aδδδ and compute yδδδ

i j, ∀(i, j) ∈Aδδδ ;
6: Update A ∆ := A ∆

⋃
Aδδδ and F ′i j := F ′i j +1, for all (i, j) ∈Aδδδ ;

7: Remove δδδ from ∆mr(sα ,sβ);
8: until ∆mr(sα ,sβ) = /0;
9: Normalize frequencies F ′i j := F ′i j/max{F ′i j|(i, j) ∈A ∆}, ∀(i, j) ∈A ∆;

10: for all (i, j) ∈A ∆ do
11: if F ′i j ≥ τ ′ then A α_β ←A α_β ∪{(i, j)};
12: end if
13: end for
14: Return the set of promising design variables A α_β .

The main loop (lines 3 to 7) iterates over the artificial demand scenarios in ∆mr(sα ,sβ),

each being discarded, line 7, after it has been examined. The procedure stops when the

set of artificial demand scenarios becomes empty. The ARP(δδδ , ȳ) is solved for each

δδδ ∈ ∆mr(sα ,sβ)), to distribute the demand of δ (line 4). The corresponding design vec-

tor is created (line 5), while the set of used design arcs and the frequency memory are

updated on line 6. Once artificial demand scenarios in δδδ ∈ ∆mr(sα ,sβ) are treated, the

procedure returns the most frequently used arcs for the scenario pair (sα ,sβ), given a

threshold τ ′ (lines 10-13).

47

3.3.3 The learning procedure

The learning mechanism repeatedly applies the partial-learning procedure to various

pairs of scenarios to extract global information on promising design variables. The goal

is to then use the collected information obtained by the learning mechanism to identify

appropriate parts of the solution space where an exact solver may intensify the search

(Section 3.4).

The Learning Procedure, described in Algorithm 3, consists of two phases. The

partial-learning procedure (Algorithm 2) is first used for each pair of scenarios in a

given set Π (all pairs are considered in the mechanism of this paper), identifying the

corresponding promising design variables and frequency vectors. This information is

used to gradually build the global set of promising design variables, A Π, and frequency

vector F . The second phase identifies the set of most promising design arcs, A ?, as the

most frequently selected ones (given a threshold τ).

Algorithm 3 Learning(ȳ,Π,m,r)
1: Initialization: Fi j← 0 ,∀(i, j) ∈A , A Π← /0, A ?← /0;
2: for all pairs (sα ,sβ) ∈Π do
3: ∆mr(sα ,sβ)←Construct(sα ,sβ ,m,r);
4: A α_β ← PartialLearning(ȳ,∆mr(sα ,sβ));
5: Update the frequency memory Fi j := Fi j +1, ∀(i, j) ∈A α_β ;
6: Update A Π := A Π

⋃
A α_β ;

7: end for
8: Normalize frequencies Fi j := Fi j/max{Fi j|(i, j) ∈A Π}, ∀(i, j) ∈A Π;
9: for arc (i, j) ∈A Π do

10: if Fi j ≥ τ then A ? := A ?∪{(i, j)}
11: end if
12: end for
13: Return the set of promising design variables A ?.

3.4 The Matheuristic

The Learn&Optimize matheuristic we propose iteratively executes a learning step,

to identify a promising set of design variables, and a partial-optimization step, where

48

a number of promising variables are fixed and the reduced-size formulation is solved

exactly.

Algorithm 4 details the matheuristic, where ȳ is an initial design solution, Π, the set

of scenario pairs, M = {m1,m2, . . . ,mMMAX}, the set of m-combinations, R = {r1,r2, . . . ,

rRMAX}, the set of selection rules, p, the initial percentage of promising variables to fix,

∆(p), the reduction of the current value of p in the diversification step, and q, the num-

ber of consecutive iterations with no improvement activating a diversification step. A

computational time limit is the stopping criterion in this version of the algorithm.

Algorithm 4 Learn&Optimize (ȳ, Π, M , R, p, ∆(p), q)

1: Initialization: ν ← 1, ybest ← ȳ, l← 1, i← 1;
2: repeat
3: Learn&Memorize: A ?

ν ← Learning(ybest ,Π,mi ∈M ,rl ∈R);
4: Fix&Optimize: ȳν ← SubMIPSolve(A ?

ν , p);
5: if Global update: φ(ȳν)≤ φ(ybest) then ybest ← ȳν ;
6: end if
7: if Diversification: ybest has not been improved in the last q iterations then
8: i← (i+1)mod MMAX ;
9: l← (l +1)mod RMAX ;

10: p← p−∆(p);
11: end if
12: ν ← ν +1 ;
13: until Stopping criterion not satisfied
14: Return the best solution ybest

At each iteration ν , the matheuristic first performs the procedure of Section 3.3.3

with current mi ∈M and rl ∈R parameters (line 3), to learn and build statistics on solu-

tion characteristics, yielding the set of promising design variables, A ?
ν . The subproblem

obtained by fixing p percent of variables in A ?
ν to the value 1 is then solved, yielding the

solution ȳν (line 4). The global solution ybest is updated when an improvement occurs,

i.e., φ(ȳν) ≤ φ(ybest) where φ(.) is the objective function (lines 5-6). A diversification

step is performed when no improvement is achieved after q consecutive iterations (lines

7-10), by changing the m-combination and the selection rule in the learning step, as well

as by decreasing the percentage of variables to fix in the partial optimization step. The

last operations expands the solution space of the partial problem to hopefully identify

49

improved solutions.

3.5 Computational results

This section presents the results of the computational experiments performed to as-

sess the performance of the proposed matheuristic. We first describe the test instances

and experimental settings (Section 3.5.1). Section 3.5.2 is dedicated to a sensitivity anal-

ysis of the algorithm to different initial solutions and ADS types. The performance of

the matheuristic in addressing larger instances is analyzed in Section 3.5.3. Comparative

results to CPLEX and a Local Branching (LBr) matheuristic are presented throughout

the section.

3.5.1 Data and experimental settings

We used 12 problem classes, R4-R15, from the instances of stochastic CMND prob-

lem introduced in Crainic et al. [29]. The attributes of each class, in terms of nodes,

arcs, and commodity set cardinalities, are given in Table 3.5.1. Each class contains five

networks with different “ratio” index values 1, 3, 5, 7, and 9, indicating continuously

increasing ratios of fixed-to-variable-cost and total-demand-to-total-network-capacity.

For each of these networks, we use the demand scenarios generated in Crainic et al.

[29]. The triangular demand probability distributions are assumed, with the mode c of

each commodity set to the demand value in the original instance, while the minimum

and maximum values of the distributions were set to a = 0 and b = 1.35c, respectively.

Demands were assumed to be linearly correlated and three different levels of correla-

tions, 0, 0.2, and 0.8 were considered to create different instances. Finally, scenario

trees were generated using the procedure proposed in [64], and instances with 16, 32,

and 64 scenarios were created.

Notice that, while the small R instances, groups R4-R10, were used in previous stud-

ies of stochastic network design [e.g. 29, 34], the large ones, groups R11-R15, were not.

We thus used a subset of instances from classes R4-R10 to perform the sensitivity anal-

ysis of the algorithm to parameter values, while a more detailed analysis was conducted

50

Table 3.5.1: Characteristics of instances
Problem |N | |A | |K | Problem |N | |A | |K |

R04 10 60 10 R10 20 120 40
R05 10 60 25 R11 20 120 100
R06 10 60 50 R12 20 120 200
R07 10 82 10 R13 20 220 40
R08 10 83 25 R14 20 220 100
R09 10 83 50 R15 20 220 200

on classes R11-R15.

Algorithms were implemented in C++. The numerical experiments were performed

on a Cisco UCS C200 cluster of 26 computers; each has two 3.07 GHz Intel(R) proces-

sors and 96 Gigabytes of RAM, operating under Linux.

We used CPLEX version 12.6.1.0 to solve the deterministic MIP problems, complete

and partial. The Local Branching (LBr) matheuristic [45] is based on defining a neigh-

borhood of the current incumbent solution by allowing only a few binary variables to flip

their value, through the addition of a local branching constraint. We implemented LBr by

turning on the parameter “LBHeur” in CPLEX, which invokes a local branching heuris-

tic when it finds a new incumbent. The Learn&Optimize matheuristic was run with

the random selection rule in creating artificial demand scenarios. Finally, preliminary

experiments helped set the τ , q, and ∆(p) parameters to 0.8, 4, and 0.05, respectively.

3.5.2 Sensitivity analysis

Our main goal with this phase of the experiments is to evaluate the impact of using

different initial solutions and different types of ADSs on the behavior of the algorithm.

We performed this analysis on 22 representative small R instances, R4-R10, which were

solved to optimality by CPLEX within 1000 seconds of CPU time. The instances and the

computational results (CPU time) for four variants of the matheuristic, corresponding

to four combinations of characteristics, are displayed in Table 3.5.2. The CPU time

required by the final Learn&Optimize metaheuristic (L&Opt) and CPLEX and the LBr

matheuristic are also displayed. Notice that the solution values are not displayed in

Table 3.5.2 because all variants of L&Opt and LBr found the optimal solution reported

51

by CPLEX. Hence, we report the time needed to hit these known optimal solutions only.

Two initial solutions were considered by solving the deterministic network design

models with the expected demand, the “Exp” case, and the maximum demand, the

“Max” case. Two types of ADS were also considered varying the value of the m param-

eter, m = 2 and m = bK2 c, used in Algorithm 4 with the random selection rule. Notice

that, m = 2 yields a larger cardinality for the generated set of ADSs, Nm = d |K |2 e), com-

pared to m = b |K |2 c with a cardinality of 2. The four variants of the L&Opt matheuristic

then were:

• Variant1: initial solution “Exp”, m = 2;

• Variant2: initial solution “Exp”, m = b |K |2 c;

• Variant3: initial solution “Max”, m = 2;

• Variant4: initial solution “Max”, m = b |K |2 c.

The results in Columns 2 to 5 of Table 3.5.2 indicate that the proposed learning mech-

anism and matheuristic are generally not sensitive to the initial solution and the type of

ADS, with respect to computational efficiency and solution quality (the optimal solution

on the instances used). A more detailed analysis indicates, however, that using “Exp”

in computing the initial solution provides slightly better efficiency compared to using

the maximum demand. A similar remark may be made with respect to the parameter

m, the variants with m = b |K |2 c examining fewer ADS in the course of the algorithm.

Following these observations and the preliminary results, the final L&opt algorithm ini-

tiates the search from the expected-value solution, and sets the parameter m to iterate

over m = {b |K |2 c,b
|K |

3 c,b
|K |

4 c}).
The results of of the L&Opt, with these settings are displayed in Column 6, while

Columns 7 and 8 display those of CPLEX and the LBr matheuristic. The last two

columns of Table 3.5.2 display the comparative performance of the L&Opt matheuristic

with respect to CPLEX and LBr, by providing the time ratios calculated as tCPLEX
tL&Opt

and
tLBr

tL&Opt
. The summation of computation times over all instances for each variant is shown

on the last line as “Total" (the average is displayed for the last two columns).

52

Table 3.5.2: Comparison of CPU times
Prob Variant1 Variant2 Variant3 Variant4 L&Opt CPLEX LBr Time Ratio

Time Time Time Time Time Time Time CPLEX LBr
R4.1-16 0.51 0.51 0.51 0.51 0.51 0.79 0.38 1.49 0.74
R4.1-32 1.9 1.8 1.95 1.97 1.4 1.4 0.7 1 0.51
R4.1-64 6.70 5.6 6.46 6.71 5.01 5.03 4.3 1.01 0.85
R4.3-16 19.96 14.28 20.33 18.33 7.2 5.20 2.37 0.72 0.3
R4.3-32 50.21 53.92 60 58 37.02 30.23 7.53 0.81 0.19
R4.3-64 184.11 243.94 201 195 181.02 183.3 29.57 1.01 0.15
R4.5-16 53.67 23.86 40 39.54 20.01 19.12 13.86 0.95 0.65
R4.5-32 150.34 67.25 210 202 54.84 196 42.84 3.57 0.77
R4.5-64 398.74 339.7 580 579.1 339.1 685.5 176.73 2.02 0.51
R5.7-16 2.49 2.21 2.32 2.62 2.6 5.53 6.35 2.12 2.6
R5.7-32 8.56 9.20 10.10 10.50 8.56 15.96 18.2 1.86 2.12
R5.7-64 29.40 30 31.3 31.2 29.96 50.73 75.56 1.69 2.5
R7.1-16 0.65 0.63 0.69 0.63 0.61 0.32 0.47 0.52 0.7
R7.1-32 2.43 2.44 2.44 2.23 1.83 0.83 1.18 0.45 0.64
R7.1-64 9.27 8.56 8.9 10.94 4.61 3.64 4.77 0.78 1.03
R7.3-16 23.21 22.68 24.1 22.8 20.21 5.33 8.05 0.26 0.3
R7.3-32 61 59.2 67 65 46.21 19.67 30.5 0.42 0.65
R7.3-64 148 134 160 155 100.89 116.19 197.66 1.15 1.97
R7.5-16 18.88 18.17 18.9 18.86 16.8 15.82 15.91 0.94 0.94
R7.5-32 5.56 5.19 5.51 5.33 5.01 35.02 53.94 6.99 10.6
R7.5-64 17.92 17.85 19.78 17.59 17.01 153.25 315.41 9.01 18.52
R8.5-16 308.20 300.45 350.21 320.51 290.07 402.87 250.61 1.38 0.86

Total 1193.51 1060.99 1471.29 1443.86 900.41 1549.64 1256.89 -
Avg 1.82 2.17

We observe that the proposed L&Opt performs very efficiently by changing the value

of parameter m throughout the algorithm, rather than fixing it to a single value. The

proposed matheuristic is also faster than CPLEX and LBr, except for a few very-easy to

solve instances requiring less than 30 seconds of running time. L&Opt outruns the two

other methods by an average factor of 1.82 and 2.17, respectively.

3.5.3 Experiments on larger instances

The second set of experiments aimed to assess the behavior and performance of the

learning mechanism and the L&Opt metaheuristic on larger instances, not yet tackled

in the literature. We 1) compare the performances of L&Opt and CPLEX on those in-

stances; 2) analyze in more depth the behavior of the proposed algorithm, in particular

with respect to the impact of demand correlations and instance characteristics (fixed cost

and capacity ratios); and 3) illustrate the efficiency of L&Opt in improving the solution

through time.

A total of 225 (5*5*3*3) instances, derived from the sets R11 to R15 (Table 3.5.1),

53

were generated for these experiments. As an illustration of the challenge to address such

instances, consider that the deterministic equivalent problems of R15 instances with 64

scenarios consists of 5 375 800 variables and 282 880 constraints. Thus, 500 minutes of

CPU time was allocated to the three methods for these experiments.

Table 3.5.3 gives a general overview of the the computational performance of CPLEX

for the instances considered. Column “# Opt.” indicates the number of instances solved

to optimality (out of the 45 instances in each class) within 500 minutes of CPU time,

while Column “# Failures” reports the number of instances for which CPLEX could not

solve the root LP relaxation problem within the same time. The difficulty increases with

the instance size, class R15 representing the most difficult ones (failure to solve the LP

relaxation in 20 out of 45 instances). These results underline the difficulty of even very

good commercial MIP solvers to address a large portion of these instances (i.e., 180 out

of 225).

Table 3.5.3: CPLEX performance on large R instances
Prob. # Inst. # Opt. # Failures

R11 45 18 0
R12 45 18 5
R13 45 9 0
R14 45 0 6
R15 45 0 20
Total 225 45 31

To analyze the performance of L&Opt, we first focus on the 45 instances solved

to optimality by CPLEX. Table 3.5.4 displays the comparison results, which show that

L&Opt was able to find the optimal solutions of all these 45 instances. It indicates

that L&Opt performs as well as CPLEX in terms of the number of instances solved to

optimality. The computational time to hit the optimal solution are, on average, 56.1

and 126.3 minutes for CPLEX and L&Opt, respectively. Figure 3.1 illustrates, however,

that L&Opt reaches high quality solutions fast, e.g., solutions with average optimality

gaps (L&Opt−CPLEX
CPLEX ∗ 100) of 1.2%, 0.8%, and 0.74% after 23, 30, and 63.1 minutes,

respectively.

Turning to the 180 instances that CPLEX was not able to solve to optimality, we

54

Table 3.5.4: Performance comparison on easy instances
Opt. Sol. Opt. Sol.

Inst. CPLEX Time L&opt Time
45 45 56.1 45 126.3

1.2	

0.8	 0.74	

0	
0	

0.4	

0.8	

1.2	

1.6	

2	

23.2	 43.2	 63.2	 83.2	 103.2	 123.2	

O
p+

m
al
ity

	D
ev
ia
+o

n	
(%

)	

Time	(min)	

Figure 3.1: Optimality gap of L&Opt through time

compared the best results of L&Opt, CPLEX and the LBr matheuristic after 500 minutes

of CPU time. Table 3.5.5 displays the results. Each line corresponds to a class of in-

stances, Column “# of Ins” indicating the number of instances in each. The two “Wins”

column report the percentage of instances for which L&Opt provided better solutions

compared to CPLEX and LBr, respectively. Columns 4 and 6 report the average gaps,

in %, between L&Opt and the two other methods computed as L&Opt−CPLEX
L&Opt ∗ 100 and

L&Opt−LBr
L&Opt ∗ 100, respectively. Negative values indicate the superiority of L&Opt over

CPLEX and LBr in terms of solution quality.

Table 3.5.5: Comparative performance of L&Opt and CPLEX on difficult instances
Prob. # of L&Opt/CPLEX L&Opt/LBr Time to beat(min)

Inst. Wins(%) Gap(%) Wins(%) Gap(%) CPLEX LBr
R11 27 88.8 -9.23 % 88.8 -9.60 % 64.94 61.32
R12 27 77.7 -6.13 % 81.4 -6.77 % 43.51 40.02
R13 36 83.3 -18.58 % 83.3 -23.36 % 60.79 55.2
R14 45 86.6 -15.16 % 86.6 -15.35 % 62.25 60.21
R15 45 100 -23.30 % 100 -23.79 % 70.05 68.32

We also report, in the last two columns, the average time for L&Opt to find a better

55

solution than CPLEX and LBr within 500 min. We observed that, for more than 80%

of instances, L&Opt found a better solution compared to those CPLEX and LBr found

within 500 minutes, in 70 and 68.4 minutes, respectively, .

Overall, we noted that, for 119 out of 180 instances, L&Opt provided relative im-

provements of 17.20% and 18.4% in average over the solution found by CPLEX and

LBr, respectively. The three methods provided the same solution quality for 30 out of

180 instances. Worth noticing, for the 31 instances for which CPLEX and LBr could not

provide any solution after 500 minutes, L&Opt provided a feasible solution within 63

minutes (on average) and continued to improve it through time.

3.5.3.1 Algorithm behavior

We continue to analyze the behavior of the learning-based matheuristic algorithm,

given various instance characteristics.

We studied the performance of the L&Opt matheuristic and that of CPLEX according

to the ratio index values. Each line of the Table 3.5.6 presents the aggregated results of

the 15 instances for a given combination of ratio level and number of scenarios (results

computed only when a CPLEX lower bound or feasible solution, as required, was avail-

able). Column “Failure” represents the number of instances for which CPLEX could

not solve the LP relaxation and, thus, no lower bound, within 500 minutes of CPU time.

Column “OptGap” represents the average optimality gap of CPLEX after 500 minutes

CPU time. The last column displays the average gap (in %) between the best solutions

found by L&Opt and CPLEX, computed as L&Opt−CPLEX
L&Opt ∗100.

The results underline the impact of these instance characteristics on the behavior of

the algorithms. In particular, they indicate that the instances that are the most difficult to

address are not those with the highest fixed cost and capacity ratio, an observation often

made for deterministic CMND problems e.g., [50], but rather those with intermediate

ratios (e.g., 3 and 5). This observation is in line with the results of Crainic et al. [29].

This behavior may be caused by the higher number of similar optimal designs that exist

for such intermediary deterministic CMND instances, compared to instances with low

or high ratios. Then, when demand is stochastic, such instances would display broader

56

Table 3.5.6: Algorithm performance by instance type
Instance # CPLEX L&Opt/CPLEX
Type |S| Inst. Failure OptGap Gap

1 16 15 0 7.6% -3.75 %
1 32 15 0 12.21% -5.12 %
1 64 15 2 19.63% -4.49 %
3 16 15 0 49.2% -26.38 %
3 32 15 3 58.7% -30.87 %
3 64 15 9 70.3% -33.89 %
5 16 15 0 29.1% -13.42 %
5 32 15 3 38.6% -22.63 %
5 64 15 7 44.9% -23.45 %
7 16 15 0 3.63% -0.42 %
7 32 15 0 8.53% -2.79 %
7 64 15 3 7.66% -4.95 %
9 16 15 0 10.77% -5.40 %
9 32 15 1 22.44% -11.25 %
9 64 15 3 24.39% -9.25 %

differences among scenarios requiring more effort to identify an overall satisfactory,

hopefully optimal, solution.

We also analyzed the impact of the scenario correlations, and observed that the de-

mand correlation has little impact on the difficulty to address the problem. Finally, as

expected, increasing the number of scenarios makes the problem more difficult to ad-

dress for both L&Opt and CPLEX.

3.5.3.2 Improvement through time

It is also interesting to note how the quality of the solutions evolves over time. We

thus let L&Opt and CPLEX run for eight hours and compared the evolution of the

two methods. Table 3.5.7 displays the comparative results of L&Opt after two and

eight hours (noted L&Opt(2h) and L&Opt(8h), respectively), with respect to those of

CPLEX at the end of the eight hours (CPLEX(8h)). The relative gaps were computed

as L&Opt−CPLEX
L&Opt ∗ 100 (negative values indicate superiority of L&Opt) for the instances

for which CPLEX found a feasible solution. Columns “Max” and “Avg” display the

57

maximum and average gaps, respectively, of the two comparisons.

The results clearly show that L&Opt not only outperforms CPLEX in producing

better solutions for difficult instances, but that it also does so in less computation time.

Significant improvements are already observed after two hours of L&Opt, 5.36% on

average and up to a maximum of 21.61% for the largest instances. These results are

better when the matheuristic is given the same computation time, as shown in the last

two columns, with a 15.61% average relative gap and a maximum of 48.76% for the

largest instances.

Table 3.5.7: Performance comparison between L&Opt and CPLEX through time
Pro L&Opt(2h)/CPLEX(8h) L&Opt(8h)/CPLEX(8h)

Max(%) Avg(%) Max(%) Avg(%)
R11 -9.86 -2.27 -17.44 -9.23
R12 -5.01 -3.21 -14.27 -6.13
R13 -15.5 -4.71 -28.59 -18.58
R14 -9.82 -6.37 -36.25 -15.16
R15 -21.61 -10.25 -48.76 -23.30

We complete this analysis by illustrating the behavior of the method we propose on

the large instances for which CPLEX failed to provide any information (not even a lower

bound) in eight hours of CPU time. Figure 3.2 displays the improvement in solution

value obtained in time by L&Opt relative to the initial solution for two instances, 15.3-0-

32 and 15.3-0-64. The relative improvement after t hours relative to the initial solution,

L&Opt(1h), was calculated as L&Opt(t)−L&Opt(1h)
L&Opt(t) ∗100. The figure shows that the largest

improvement occurs quite rapidly at the beginning of the search, but L&Opt continues

to find improving solutions as more time is given.

3.6 Conclusions

We introduced a learning-based matheuristic for the stochastic fixed charge multi-

commodity network design problem with uncertain demands. The innovative learning

mechanism systematically explores combinations of scenarios to extract information re-

garding the solution structure of the stochastic problem. The matheuristic builds a global

58

-­‐25	

-­‐20	

-­‐15	

-­‐10	

-­‐5	

0	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

Re
la
%v

e	

Im

pr
ov
em

en
t(
%
)	

Time(h)	

15.3-­‐0-­‐32	

15.3-­‐0-­‐64	

Figure 3.2: Relative improvement over initial solution in time

image of the promising structure of the stochastic solution out of the partial knowledge

produced by the learning mechanism, and exploits it to define reduced-size problems

that are solved by a MIP solver.

The results of extensive computational experiments showed that the proposed matheuris-

tic performs very well, being highly effective in finding good-quality solutions for the

large stochastic network design instances. This is very promising as, although presented

in the context of the complex network-design problem setting, the proposed learning

mechanism and matheuristic can be adapted to many other stochastic combinatorial op-

timization problems.

Acknowledgments

While working on this project, T.G. Crainic was Adjunct Professor with the Depart-

ment of Computer Science and Operations Research, Université de Montréal. Partial

funding for this project has been provided by the Natural Sciences and Engineering

Council of Canada (NSERC), through its Discovery Grant program, and by the Fonds

Québécois de la Recherche sur la nature et les technologies (FQRNT) through its strate-

gic center infrastructure grant program.

59

CHAPTER 4

ARTICLE 2: A REDUCED-COST-BASED RESTRICTION AND REFINEMENT

MATHEURISTIC FOR STOCHASTIC NETWORK DESIGN

Chapter notes: This chapter has been submitted for publication to the European

Journal of Operation Research. The published technical report is as follows: F. Sarayloo,

T.G. Crainic and W. Rei, A Reduced Cost-based Restriction and Refinement Matheuris-

tic for Stochastic Network Design. Technical report, Publication CIRRELT-2018-32,

Centre Interuniversitaire de Recherche sur les Réseaux d’Entreprise, la Logistique et le

Transport (CIRRELT), Montreal, Canada. Preliminary work was presented at the fol-

lowing conference:

• Optimization Days 2017, Montreal, Canada, May, 2017

Abstract

We propose a solution approach for stochastic network design problems with uncertain

demands. We investigate how to efficiently use reduced cost information as a means

of guiding variable fixing to define a restriction that reduces the complexity of solving

the stochastic model without sacrificing the quality of the solution obtained. We then

propose a matheuristic approach that iteratively defines and explores restricted regions

of the global solution space that have a high potential of containing good solutions.

Extensive computational experiments show the effectiveness of the proposed approach

in obtaining high-quality solutions, while reducing the computational effort to obtain

them.

Keywords: Stochastic capacitated network design, uncertain multicommodity demand,

two-stage formulation, reduced-cost based guidance, matheuristic

61

4.1 Introduction

The Multicommodity Capacitated Fixed-charge Network Design (MCFND) formula-

tion represents a generic model that can be used to formulate problems in a variety of ap-

plications such as transportation, logistics and telecommunications [26, 82, 83]. In these

applications, it is required to design a capacitated network to be used to route a given set

of commodities in order to satisfy known demands between origin-destination pairs. In

doing so, one pays not only a routing cost proportional to the number of distributed units

of each commodity moved over a network arc, but also the fixed cost whenever an arc

is used. The main goal of MCFND problems is to find the optimal design (i.e., selected

arcs to be included in the final network) that minimizes the total cost, computed as the

sum of the fixed and routing costs.

Stochastic MCFND (SMCFND) under demand uncertainty has received increasing

attention in recent years. In this paper, we address the SMCFND as a two-stage stochas-

tic program in which design decisions are made in the first stage before demands are

observed. Once demands are observed, second-stage (routing) decisions are made to

adapt the first stage solution to the observed demands. We represent the demand un-

certainty using the well-known scenario-based approach where the uncertain demand is

modeled via a finite number of discrete scenarios together with their associated probabil-

ities. The SMCFND problem then becomes a mixed integer program of generally very

large dimensions, that is extremely hard to solve using state-of-the-art solvers in all but

trivial cases.

Stochastic network design problems are notoriously complex and difficult to address.

Not surprisingly, researchers investigated how the solution to the deterministic model re-

lates to its stochastic counterpart. It has been shown that, despite the fact that the solution

to the deterministic model behaves badly in stochastic settings [63, 123], there are situa-

tions in which the deterministic solution shares some properties with the corresponding

stochastic solution [76, 116–118]. These authors conclude that the deterministic solution

carries useful information (i.e., some structural patterns) that can be leveraged to solve

the stochastic case. Specifically, Crainic et al. [25] investigated how the reduced cost

62

associated with non-basic variables in deterministic solutions can be used to guide the

selection of variables to exclude from the stochastic formulation. The authors did not,

however, study network design formulations.

Inspired by these insights, our first goal is to investigate how to efficiently use re-

duced cost information extracted from the solution obtained by the deterministic (ex-

pected value) problem, as a means of guiding variable fixing, to define a good restriction

that reduces the complexity of solving the SMCFND. Furthermore, we study how to

improve the variable fixing performance by proposing a number of strategies in which

reduced cost information is extracted from different solutions obtained by upgrading the

expected value solution. Our final purpose is then to incorporate the hints derived from

the analysis of the proposed variable fixing strategies, exploiting reduced cost informa-

tion, into an iterative matheuristic approach, to efficiently deal with difficult stochastic

instances.

The contributions of this paper are threefold. First, we propose a number of differ-

ent strategies to investigate how to use the deterministic (expected value) solution and

efficiently extract reduced cost information to define an appropriate restriction, without

sacrificing the quality of the solution obtained. Second, we propose a new matheuris-

tic approach which jointly makes use of a state-of-the-art commercial solver and the

insights derived from the analysis of the proposed variable fixing strategies. The pro-

posed matheuristic iteratively defines and explores restricted regions of the global solu-

tion space that have a high potential of containing good (hopefully, optimal) solutions.

The restricted problem, at each iteration, is defined by exploiting reduced costs infor-

mation extracted from multiple solutions. Third, we carry out extensive computational

experiments on a large number of benchmark instances in the stochastic network design

problem literature. The results show that the proposed algorithm is highly efficient in

finding good-quality solutions for very difficult instances available in the literature.

The rest of the paper is organized as follows. We recall the two-stage formulation of

the stochastic network design problem in Section 4.2, and briefly review some relevant

literature in Section 4.3. Section 4.4 introduces the proposed matheuristic. Finally,

we present and analyze the experimental results in Section 4.5 and provide concluding

63

remarks in Section 4.6.

4.2 Problem description

The two-stage stochastic formulation, or the a priori optimization model [17], is a

stochastic modeling approach in which decision variables are divided into two groups;

namely, first stage and second stage variables. Traditionally, in the case of two-stage

stochastic network design problems with uncertain demands, the first stage involves de-

cisions on the configuration of the network (i.e., design decisions), and the second-stage

consists of determining the commodity flow distribution of the observed demands in an

optimal fashion based on the configuration imposed by the first stage.

Let us describe the two-stage stochastic formulation for the SMCFND problem [29].

Let G = (N ,A) be a directed network with N representing a finite set of nodes and A

a finite set of potential arcs. The set of commodities is represented by K where each is

recognized by a unique pair of origin-destination nodes (o(k),s(k)). For each design arc

(i, j) ∈A , we define the fixed cost fi j incurred if the arc is included in the final design

and the capacity ui j limiting the total commodity flow that may use the arc (i, j). We

also define the unit routing cost ck
i j for each commodity k ∈K and arc (i, j) ∈A .

We assume the finite scenario set S with the strictly positive corresponding prob-

abilities of p1, . . . , p|S |. For a given scenario s ∈S , assuming that dks is the demand

volume of commodity k under the scenario s, the demand of costumer i for commodity

k under the scenario s, i.e., dks
i , is either set to dks if node i is the origin of commodity k,

−dks if node i is the destination of commodity k, or 0 otherwise.

Let the design variable yi j be a binary variable, which indicates if arc (i, j) is included

in the network, in the first stage. Once demands are realized, in the second-stage, xks
i j is

the amount of commodity k’s demand in the resulting solution for scenario s that flows

on arc (i, j). The so-called extensive form of the two-stage stochastic program may be

written as follows:

64

minimize ∑
(i, j)∈A

fi jyi j + ∑
s∈S

ps
∑

k∈K
∑

(i, j)∈A
ci jxks

i j (4.1)

subject to ∑
j∈N +(i)

xks
i j − ∑

j∈N −(i)
xks

ji = dks
i , ∀i ∈N , ∀k ∈K , ∀s ∈S (4.2)

∑
k∈K

xks
i j ≤ ui jyi j, ∀(i, j) ∈A , ∀s ∈S (4.3)

yi j ∈ {0,1}, ∀(i, j) ∈A (4.4)

xks
i j ≥ 0, ∀(i, j) ∈A , ∀k ∈K , ∀s ∈S

(4.5)

The objective function (4.1) minimizes the total system cost, consisting of the sum of

the fixed cost for the included arcs and the expectation of routing costs taken over all the

demand scenarios. Constraints (4.2) represent the flow conservation equations in each

scenario, requiring that demand of commodity k ∈K is routed from its origin node to

its destination. Constraints (4.3) ensure that the same design is used in each scenario,

and that arc capacity ui j is never violated. Constraint (4.4) and (4.5) impose integrality

and non-negativity restrictions on decision variables. We refer to this problem as the

MCFND(S).

4.3 Literature review

The existing methodologies for stochastic network design problems are mostly based

on decomposition strategies. There are two major groups of decomposition methods for

stochastic integer programs: by stage and by scenario. The L-shape method is a stage-

wise decomposition method, introduced by Van Slyke and Wets [120], which has been

used to develop various solution methods for stochastic problems. For completeness,

detailed review on this type of decomposition approach for SMCFND may be found in

[32] and [93]. The progressive hedging (PH) method for addressing stochastic linear

programs is a scenario-wise decomposition technique that was originally proposed in

Rockafellar and Wets [103]. The PH algorithm is the foundation of a number of heuristic

65

methods for SMCFND problems (e.g., [29, 34]).

The other approach in the literature to deal with the difficulty of stochastic programs

relies on considering the deterministic version and studying its solution structure to in-

vestigate its relationship with its stochastic counterpart. It is well known that solutions

to deterministic formulations tend to behave badly in stochastic settings. Despite this,

a number of research studies have shown that there are problems where the determin-

istic solution shares some properties with the corresponding stochastic solution, irre-

spective of their quality in terms of objective function. For example, Thapalia et al.

[116, 117, 118] have shown that for the single-commodity network design problem,

certain structural patterns from the deterministic solution reemerge in the stochastic so-

lution, despite the fact that the value of stochastic solution (VSS) is high. (The VSS

is a standard metric proposed in [17] which measures the expected gain from solving

a stochastic model rather than its deterministic counterpart). Similar observations were

made by Wang et al. [124] for scheduled network design problems. Maggioni and Wal-

lace [80] analyzed the quality of the deterministic solution in terms of its structure and

upgradeability to the stochastic solution in a set of stochastic programs of different types.

In a follow-up work to analyze the quality of the deterministic solution, Crainic et al. [25]

studied how reduced costs can be used as a measure to identify which variables should

be excluded from the stochastic problem. This study concluded that reduced costs can

indeed be used to efficiently identify properties from deterministic solutions that should

be included in stochastic solutions. Following these insights, in the context of the SM-

CFND problem, we aim to exploit reduced cost information extracted from different

solutions to be used as a measure to identify sets of 0 and 1 design variables to be fixed

in the stochastic problem, leading to reduced-size restricted problems. This would help

in algorithmic developments providing means to efficiently address large instances.

In recent years, increasing attention has been devoted to the integration, or hybridiza-

tion, of metaheuristics with mathematical programming as an efficient algorithmic ap-

proach. This approach, referred to as matheuristics, appears very promising by exploit-

ing the synergies of mathematical programming and metaheuristics (see, Puchinger and

Raidl [92], Raidl [94] for a survey and a taxonomy). With the expansion of general-

66

purpose MIP solvers over the last decade, various hybridization of heuristic methods

(e.g., variable fixing techniques) with commercial MIP solvers have become increas-

ingly popular. Several matheuristic approaches to complex combinatorial problems use

the idea of fixing the value for some variables as a “problem reduction” technique in

order to reduce the analysis of a whole solution space to a promising region. Examples

of such approaches can be found for Knapsack Problems (e.g., the core algorithm pro-

posed by Balas and Zemel [11] and the kernel search proposed by Angelelli et al. [5])

and in the context of routing problems (e.g., Archetti et al. [6] and De Franceschi et al.

[37]), where mixed integer linear programming models are solved to thoroughly explore

promising regions of the solution space.

Such effective problem reduction techniques in an iterative matheuristic appear use-

ful for stochastic problems because of their complexity and size. However, little effort

has been devoted in the stochastic literature to designing such matheuristic methods.

For example, [108] proposed an iterative matheuristic based on the problem reduction

technique, in which learning techniques were used to generate a series of MIP subprob-

lems as restricted regions. It should be noted that in Sarayloo et al. [108], the restriction

consists of fixing variables only to 1. The main question, therefore, is how to further

develop the idea of fixing variables to define more restricted regions at each iteration by

identifying sets of 0 and 1 design variables.

Our aim in this paper is to design a matheuristic approach by applying a problem re-

duction technique, fixing variables to 0 and 1 (i.e., inclusion and exclusion of variables),

to further reduce the size of sub-problems and take advantage of the strong search ca-

pabilities of CPLEX as a black-box solver. We propose such a methodology in the next

section.

4.4 The proposed matheuristic

The basic idea of our proposed method is to solve in an iterative fashion a series

of restricted problems which are constructed by exploiting reduced cost information ex-

tracted from different solutions. At each iteration, we identify two distinct subsets of

67

design variables to be fixed to 1 and 0, leading to the reduced-size model. The resulting

restricted problems are then solved by a MIP solver. We believe that using a refined ap-

proach in the selection of fixed variables is crucial to the algorithm’s success. Therefore,

we study how reduced cost information extracted from the solution obtained by the LP

relaxation of the expected value (EV) problem can be leveraged so as to guide variable

fixing within MCFND(S) formulation.

In the following section 4.4.1, we present a number of strategies to examine how we

can identify the desired set of fixed variables based on reduced cost information. The

detailed algorithm will then be explained in Section 4.4.2.

4.4.1 Reduced cost-based variable fixing strategies

In this section, we propose several strategies to study how to efficiently exploit re-

duced cost information extracted from the solution obtained by the deterministic (ex-

pected value) problem as a means of guiding variable fixing in the context of stochastic

network design. We consider two main factors within each strategy, including the choice

of solution from which we extract the reduced costs, and the choice of variables (i.e.

design variables or flow variables). By considering these factors, we design and exam-

ine different strategies to efficiently determine the desirable set of fixed variables. In the

following, we describe our proposed strategies.

Strategy 1. We first follow the variable fixing method proposed in Crainic et al.

[25]. Let s̄l p = (ȳl p, x̄l p) be the optimal solution of LP relaxation of the EV problem.

We recall that the EV solution is obtained by considering the expected values of the

random demand variables (i.e., dk
i =: d̄k

i) and solving the following deterministic (single-

scenario) program (DSSP):

68

minimize ∑
(i, j)∈A

fi jyi j + ∑
k∈K

∑
(i, j)∈A

ci jxk
i j (4.6)

subject to ∑
j∈N +(i)

xk
i j− ∑

j∈N −(i)
xk

ji = dk
i , ∀i ∈N , ∀k ∈K (4.7)

∑
k∈K

xk
i j ≤ ui jyi j, ∀(i, j) ∈A (4.8)

yi j ∈ {0,1}, ∀(i, j) ∈A (4.9)

xk
i j ≥ 0 ∀(i, j) ∈A , ∀k ∈K (4.10)

Thus, in this strategy, the considered solution is s̄l p which is derived from the LP re-

laxation of DSSP (4.6)-(4.10) and the choice of variable is the design variables ȳl p. Let

J s̄l p

0 = {1,2, . . . , |J s̄l p

0 |} represent the index set of zero design variables ȳl p
j = 0 in the

solution s̄l p and R
J s̄l p

0
y = {r1, . . . ,r j, . . . ,r|J s̄l p

0 |} be the set of reduced cost with respect

to the components ȳl p
j , j ∈J s̄l p

0 . The set R
J s̄l p

0
y is then sorted in non-decreasing order.

Let rmax = max
j∈J s̄l p

0
{r j : r j ∈R

J s̄l p
0

y } and rmin = min
j∈J s̄l p

0
{r j : r j ∈R

J s̄l p
0

y } be re-

spectively the maximum and the minimum of the reduced costs of the set R
J s̄l p

0
y . To

determine the groups of variables to be fixed, the difference rmax− rmin is divided into

N0 classes of constant size rmax−rmin

N0
. We then solve the model (4.1)-(4.5) by fixing to 0

the variables belonging to the classes p0 to N0 where 1≤ p0 ≤ N0.

Strategy 2. To evaluate the effect of using an improved solution in producing a

good set of fixed variables, we try to upgrade the solution of the EV problem. To do

so, we use the expected value solution as an input to the MCFND(S) model (4.1)-(4.5)

by adding the constraints y ≥ ȳ and then solve its LP relaxation, yielding the solution

s̄′ = (ȳ′, x̄′s1, . . . , x̄′s|S|). Thus, in this strategy, the considered solution is s̄′ and the choice

of variable is the design variables ȳ′. Let J s̄′
0 represent the index set of zero design

variables , i.e., ȳ′j = 0, in the solution s̄′, and R
J s̄′

0
y be the set of reduced costs with

respect to the components ȳ′j j ∈J s̄′
0 . The set R

J s̄′
0

y is then sorted in non-decreasing

order. Let rmax and rmin be respectively the maximum and the minimum of the reduced

69

costs of the set R
J s̄′

0
y . To determine the group of variables to be fixed, the difference

rmax − rmin is divided into N0 classes of constant size rmax−rmin

N0
. We then solve the

model (4.1)-(4.5) by fixing to 0 the variables belonging to the classes p0 to N0 where

1≤ p0 ≤ N0.

Strategy 3. In this strategy, we try to upgrade the solution of the EV problem,

s̄ = (ȳ, x̄), to improve it even further than Strategy 2. To evaluate the effect of improving

the solution obtained by the EV problem on producing a good set of fixed variables,

we produce a feasible solution to the MCFND(S) model (4.1)-(4.5). To do so, we use

the solution obtained by the EV problem as an input to the model (4.1)-(4.5) by adding

the constraints y ≥ ȳ and then solve the problem to obtain the upgraded solution s̄′′ =

(ȳ′′, x̄′′s1, . . . , x̄′′s|S|). Thus, in this strategy, the considered solution is s̄′′ and the choice

of variables is the design variables ȳ′′. Let J s̄′′
0 represent the index set of zero design

variables, i.e., ȳ′′j = 0, in the solution s̄′′, and R
J s̄′′

0
y be the set of reduced costs with

respect to the components ȳ′′j , j ∈J s̄′′
0 . It should be noted that, given the fact that

we are solving the MCFND(S) model (4.1)-(4.5) with the integrality requirements, we

need to perform one additional step to obtain the reduced cost values. Once the problem

(4.1)-(4.5) is solved and its optimal (integer) solution, s̄′′, is obtained, we will then need

to solve the LP relaxation of the problem (4.1)-(4.5) while the design variables are fixed

to the values of the obtained optimal solution. In this way, one can obtain the set of

reduced cost values associated to the design variables. The set R
J s̄′′

0
y is then sorted in

non-decreasing order. Let rmax and rmin be respectively the maximum and the minimum

of the reduced costs of the set R
J s̄′′

0
y . Following this strategy, the difference rmax− rmin

is divided into N0 classes of constant size rmax−rmin

N0
. We then solve the model (4.1)-(4.5)

by fixing to 0 the variables belonging to the classes p0 to N0 where 1≤ p0 ≤ N0.

The potential to exclude (or include) a specific arc from the desired network can also

be assessed through the reduced cost associated with the flow variables that report the

amount of each commodity transported through the arc. By evaluating the opportunity

cost of excluding (or including) an arc using the specific reduced costs associated with

all flow variables of that arc, one may hopefully provide a good measure to determine

70

the variables to fix. We thus propose two more strategies, as follows.

Strategy 4. In this strategy, as in Strategy 3, the considered solution is s̄′′ =

(ȳ′′, x̄′′s1, . . . , x̄′′s|S|). However, we investigate the benefit of using reduced costs asso-

ciated with the flow variables to identify the set of variables to be fixed. Let J s̄′′
0 repre-

sents the index set of the design variables set to zero in solution s̄′′ and rks
j be the reduced

costs with respect to the flow variables of commodity k in scenario s on arc index j (i.e.,

x′′ks
j). We define r̄ j = ∑s∈S ps

∑k∈K (1/|K |)rks
j to aggregate all reduced costs associated

with the flow variables assigned to arc index j.

Let R
J s̄′′

0
x represents the set of aggregated reduced costs corresponding to index set

J s̄′′
0 using the flow variables. The set R

J s̄′′
0

x is then sorted in non-decreasing order. Let

r̄max and r̄min be respectively the maximum and the minimum of the reduced costs of the

set R
J s̄′′

0
x . We divide the difference r̄max− r̄min into N0 classes of constant size r̄max−r̄min

N0
.

We then solve the model (4.1)-(4.5) by fixing to 0 the variables belonging to the classes

p0 to N0 where 1≤ p0 ≤ N0.

Strategy 5. In this strategy, the considered solution is again s̄′′=(ȳ′′, x̄′′s1, . . . , x̄′′s|S|).

However, we consider the reduced cost corresponding to both the design and the flow

variables used in the previous strategies, thus obtaining a composite reduced cost; r+
j =

r j + r̄ j. Let J s̄′′
0 represent the index set of zero design variables, i.e., ȳ′′j = 0, in the

solution s̄′′, and R
J s̄′′

0
xy represents the set of composite reduced costs corresponding to

index set J s̄′′
0 using both of the design and flow variables. The set R

J s̄′′
0

xy is then sorted

in non-decreasing order. Let r+max and r+min be respectively the maximum and the mini-

mum of the reduced costs of the set R
J s̄′′

0
xy . We divide the difference r+max− r+min into

N0 classes of constant size r+max−r+min

N0
. We then solve the model (4.1)-(4.5) by fixing to

0 the variables belonging to the classes p0 to N0 where 1≤ p0 ≤ N0.

To determine the desirable variables to be fixed to 1 (i.e., open arcs), one may use

the strategies described above; however, we need to consider the reduced cost associated

with the variables at their upper bound (i.e., the design variables that are equal to 1 in

the solutions considered in Strategies 1-5). Thus, instead of fixing the last classes p0 to

N0 (with the largest reduced cost values), we fix the variables belonging to the classes 1

to p1, where 1≤ p1 ≤ N1, which have the smallest reduced costs values.

71

4.4.2 Description of the algorithm

As described previously, the proposed matheuristic solves a sequence of restricted

problems. That is, at each iteration, two distinct subsets of design variables, defined and

guided by reduced cost information, are used to construct the restricted problem. The

constructed restricted problem, defined by fixing the identified design variables to 0 or

1, is then solved by an MIP solver. Algorithm 5 sums up the entire procedure. We refer

to problem P as the MCFND(S) problem (4.1)-(4.5) including all binary design vari-

ables. On the other hand, the restricted problem RP represents the MCFND(S) problem

restricted by subsets of the design variables that are fixed to 0 or 1. In the following

subsections, each component of Algorithm 5 is described in details.

72

Algorithm 5 Reduced cost-based restriction and refinement matheuristic
1: Initialization: . Section 4.4.2.1

2: k := 0; construct initial solution yIni; set ybest := yIni; let J best
1 be the index set of design

variables which are 1 in ybest ;

3: k := 1;

4: repeat

5: Constructing the restricted problem: . Section 4.4.2.2

6: phase 1:

7: Construct APk by fixing J best
1 in the problem P as APk := P|J best

1
;

8: Generate solution pool Pk = {s1,s2, . . . ,sN} for APk considering parameter α;

9: phase 2:

10: Perform Algorithm 6 to establish two subsets J Pk

0 and J Pk

1 using reduced cost infor-

mation associated with Pk;

11: Solving the restricted problem: . Section 4.4.2.2

12: Solve RPk which is constructed by fixing J Pk

0 ∪J Pk

1 in problem P as RPk :=

P|
J Pk

0 ∪J Pk
1

yielding the solution y∗
RPk with objective value z∗

RPk ;

13: Improvement check and Diversification: . Section 4.4.2.3

14: if z∗
RPk < zbest then

15: ybest := y∗
RPk and update J best

1 ;

16: zbest := z∗
RPk ;

17: Go to line 26;

18: end if

19: if time limit is not exceeded then

20: if ybest has not been improved in the last q attempts then

21: Let α ← α +∆(α) and go to line 8;

22: else

23: Enlarge the search space of RPk by reducing the size of J Pk

0 and J Pk

1 and go

to line 12;

24: end if

25: end if

26: k := k+1;

27: until stopping criteria

28: return ybest .

73

4.4.2.1 Initialization

At the beginning of Algorithm 5, we construct an initial solution yIni using the pro-

cedure described in Strategy 3. To do so, we use the expected value solution as an input

to the model (4.1)-(4.5) and then solve the problem to obtain the solution yIni. Let yIni

be the current best solution (i.e., ybest := yIni), and J best
1 be the index set of design

variables which are equal to 1 in solution ybest .

4.4.2.2 Constructing and solving the restricted problem - based on primal-dual

information

At each iteration of Algorithm 5, a restricted problem is constructed by determining

two distinct sets of fixed variables. The restricted problems are defined by exploring at-

tributes originating from multiple solutions. The exploration is performed by examining

the information obtained through a two-phase procedure. In the first phase, the primal

information (i.e., solutions) are generated and, in the second phase, a learning procedure

is applied on their dual information. In the following, we describe the proposed two

phases leading to the restricted problem RPk at each iteration k.

Phase 1: Generating the pool of solutions - primal information The first step

to construct the restricted problem involves creating multiple solutions. We believe the

solutions obtained by the MCFND(S) model would provide better information as com-

pared to solutions obtained by DSSP (4.6)-(4.10). Therefore, to generate multiple good

quality solutions, we aim to create solutions obtained by the MCFND(S) model and store

them as a pool of solutions at each iteration of Algorithm 5. To generate these solutions,

we first construct a reduced size auxiliary problem at each iteration k, denoted by APk.

To construct APk, we use the current best solution (i.e., ybest) and fix design variables

associated with indexes j ∈J best
1 in problem P (i.e., APk := P|J best

1
) in order to reduce

the problem size. We note that feasible solutions for APk are feasible for the MCFND(S)

problem as well.

As stated in Algorithm 5, line 8, we generate multiple solutions for APk and store

them in the solution pool Pk. The solution pool Pk, for APk, contains N different solu-

74

tions s1,s2, . . . ,si, . . . ,sN whose objective functions z(si) are within α% of the optimum,

i.e., such that z(si)≤ z(sk,best)+αz(sk,best)/100, ∀i = 1, . . . ,N where sk,best and z(sk,best)

are the optimal solution to APk and its objective function value, respectively .

We note that we use the solution pool functionality of the CPLEX solver to generate

Pk. These solutions are generated during the global MIP tree exploration performed by

CPLEX, where the generated solutions in pool Pk are distinguishable by the values of

their (binary) design variables only.

Phase 2: Reduced cost based learning - dual information The main purpose of

this phase is to identify two index sets of desirable arcs to be closed J Pk

0 or opened

J Pk

1 in RPk according to the information learned from the reduced costs associated

with the solutions in pool Pk = {s1,s2, . . . ,si, . . . ,sN}.
The steps of this phase are stated in Algorithm 6. For each generated solution si ∈

Pk, we represent the index set of design variables which are equal to 0 by J si

0 ; the index

set of design variables which are equal to 1 by J si

1 ; the value of objective function by

z(si); and the weight by w(si) = 1
z(si)−minsi∈P z(si)

, which indicates the relative quality of

si. The index sets of desirable variables J Pk

0 and J Pk

1 are created according to the

desirability factor l j associated with each arc j, measured using all solutions in Pk. We

first define the desirability factor li
j associated with each arc j in solution i. To do so, we

consider three alternative variants (in lines 3-5) to extract the reduced cost information

according to different choices of variables: 1) if the choice of variable is y, we consider

the reduced cost values associated with y variables, i.e., r j, as the desirability factor, li
j :=

r j; 2) if the choice of variable is x, it means we consider r̄ j as the desirability factor, li
j :=

r̄ j (recall that r̄ j = ∑s∈S ps
∑k∈K(1/|K |)rks

j , where rks
j is the reduced costs with respect

to the flow variables of commodity k in scenario s on arc index j (i.e., x′′ks
j)); 3) if the

choice of variable is both x and y, we consider the composite reduced cost, r+ = r j+ r̄ j, as

the desirability factor, i.e., li
j := r+

j . Once, the li
j values associated with each solution i are

computed, we aggregate the desirability factors over all solutions (in line 7) as follows:

l0 j = ∑
si∈P

w(si)∗ li
j for j ∈

⋂
si∈Pk

J si

0 and l1 j = ∑
si∈P

w(si)∗ li
j for j ∈

⋂
si∈Pk

J si

1 . Let

Lk
0 = {(j, l0 j)| j ∈

⋂
si∈PkJ

si

0 } and Lk
1 = {(j, l1 j)| j ∈

⋂
si∈PkJ

si

1 }. We then sort Lk
0

75

according to l0, j in non-decreasing order. Let lmax
0 and lmin

0 the maximum and minimum

values in Lk
0. To determine the cluster of desirable variable to be fixed to zero, we divide

the difference lmax
0 − lmin

0 in N0 classes of constant size lmax
0 −lmin

0
N0

and store the index of

variables belonging to the classes p0 to N0 (1 ≤ p0 ≤ N0) in J Pk

0 . We perform the

same sorting procedure for Lk
1 according to l1, j. Let lmax

1 and lmin
1 be the maximum and

minimum values in Lk
1, respectively. We then divide the difference lmax

1 − lmin
1 in N1

classes of constant size lmax
1 −lmin

1
N1

and store the index of variables belonging to the classes

1 to p1 (1≤ p1 ≤ N1) in J Pk

1 . The two sets J Pk

0 and J Pk

1 are returned as the index

sets of the most desirable arcs, at iteration k, to be closed and opened, respectively.

Algorithm 6 Reduced cost-based learning procedure

1: Initialization Define the sets J si

0 and J si

1 for si ∈Pk, let w(si) be the weight of
solution si;

2: for all si ∈Pk do
3: if the choice of variable is y, then li

j := r j for j ∈J si

0 and j ∈J si

1 ;

4: if the choice of variable is x, then li
j := r̄ j for j ∈J si

0 and j ∈J si

1 ;

5: if the choice of variable is both x and y, then li
j := r+j for j ∈J si

0 and j ∈J si

1 ;
6: end for
7: Aggregate the desirability factor li

j over all solutions as follows:

l0, j = ∑
si∈P

w(si) ∗ li
j for j ∈

⋂
si∈PkJ

si

0 and l1, j = ∑
si∈P

w(si) ∗ li
j for j ∈⋂

si∈Pk
J si

1 ;

8: Let Lk
0 = {(j, l0 j)| j ∈

⋂
si∈PkJ

si

0 }. Sort Lk
0 in non-decreasing order according to

l0 j and then create the set J Pk

0 (as in Section 4.4.2.2);
9: Let Lk

1 = {(j, l1 j)| j ∈
⋂

si∈PkJ
si

1 }. Sort Lk
1 in non-decreasing order according to

l0, j and then create the set J Pk

1 (as in Section 4.4.2.2);
10: return J Pk

0 and J Pk

1 .

Solving the restricted problem Once the index sets of arcs to be closed and opened

(i.e., J Pk

0 and J Pk

1) are established, we then construct the restricted problem RPk

by fixing the design variables belonging to the two sets J Pk

0 and J Pk

1 to 0 and 1,

respectively, in problem P (i.e., RPk := P|
J Pk

0 ∪J Pk
1

). We then solve RPk to obtain

solution y∗
RPk with objective value z∗

RPk (line 12).

76

4.4.2.3 Improvement check and Diversification

In this part of the algorithm, we check the improvement and, if needed, perform the

diversification step (lines 14 to 25). Once the restricted problem is solved (line 12), the

following steps depend on the solution found by the solver. If a better solution is found,

it becomes the new incumbent (ybest := y∗
RPk), and the search continues from this solution

in the next iteration (lines 14 to 18). However, if the new found solution is not better

than the current best solution and the time limit is not exceeded, we attempt to improve

the solution by performing the diversification step (lines 19-25) as follows. If ybest has

not been improved in the last q attempts, we go to line 8 and generate a different solution

pool by increasing parameter α (line 21). Otherwise, we attempt to improve the solution

by enlarging the search space by freeing more variables in the current restricted problem

RPk. To do so, we remove ν0 (ν1) percent of variables with the largest (smallest) values

of l0 j (l1 j) from J Pk

0 (J Pk

1) to reduce the number of variables that are fixed in RPk

and then go to line 12 to find a better solution. The stopping criterion is the maximum

computation time denoted as tmax.

4.5 Experimental results

This section presents the results of extensive computational experiments performed

to assess the performance of the proposed matheuristic. We first describe the test in-

stances and experimental settings in Section 4.5.1 and then provide a comparative anal-

ysis of the different proposed strategies in Section 4.5.2. We then detail the numeri-

cal results of the proposed matheuristic (denoted by RCHeur) by analyzing 1) in Sec-

tion 4.5.3.1, the impact of the various features of the proposed RCHeur, and 2) in

Section 4.5.3.2, the power of the proposed RCHeur in dealing with difficult instances

through a comparative analysis of its performance versus the results of CPLEX and the

Learn&Optimize (denoted by L&Opt) procedure proposed in Sarayloo et al. [108].

77

4.5.1 Data and experimental settings

We used 11 problem classes (R5-R15) from the set of R instances of the stochastic

FCMND problem introduced in Crainic et al. [29]. Each class is characterized by a

number of nodes |N |, number of arcs |A |, and number of commodities |K |, specified

in Table 4.5.1. Each of these classes contains five networks with different “ratio” index

values 1, 3, 5, 7, and 9, which indicate continuously increasing ratios of fixed to variable

costs and total demand to total network capacity [29]. For each of these networks, there

are instances with 16, 32, and 64 scenarios. Demands were assumed to be linearly

correlated, and three different levels of correlations (0, 0.2, and 0.8) were considered to

create different instances.

Table 4.5.1: Characteristics of instances
Problem |N | |A | |K | Problem |N | |A | |K |

R04 10 60 10 R10 20 120 40
R05 10 60 25 R11 20 120 100
R06 10 60 50 R12 20 120 200
R07 10 82 10 R13 20 220 40
R08 10 83 25 R14 20 220 100
R09 10 83 50 R15 20 220 200

Algorithms were implemented in C++. The numerical experiments were performed

on a Sun Fire X4100 cluster of 16 computers, each has two 2.6 GHz Dual-Core AMD

Opteron processors and 8192 Megabytes of RAM, operating under Solaris 2.10. To

evaluate the quality of solutions produced by the proposed heuristic approach, we also

solve these instances with CPLEX version 12.2. The time limit is set to 500 minutes,

when calling CPLEX in the following experiments.

4.5.2 Analyzing different strategies when using reduced cost information

In this section, we analyze and compare different strategies proposed in Section

4.4.1. In this part of the experiments, we focus on relatively easy instances (R5-R10

with ratios 1, 3, 5, 7, and 9 and correlations 0 and 0.8). By doing so, we aim to qualify

the quality of solutions obtained by different strategies, as the optimal solution of the

78

majority of these instances can be obtained by CPLEX.

4.5.2.1 Comparing the strategies: fixing design variables to 0

In this section, we focus on investigating the reduced cost of the non-basic variables

which are at their lower bound (i.e., 0). We first present the results obtained by applying

Strategy 1 where the optimal solution of the LP relaxation of the EV problem is used (

i.e., s̄l p). Strategy 1 is denoted by Str1(p0,N0) where the sorted set of reduced cost values

R
J s̄l p

0
y is divided into N0 equivalent sized classes, and then the variables belonging to

the classes p0 to N0 are fixed to 0.

We perform the experimental analysis exploring the behaviour of Strategy 1 while

varying the values p0 and N0 to determine suitable values of p0
? and N0

?. These values

(p0
?,N0

?) are then fixed and used for the remaining strategies to compare their perfor-

mance. We present the comparative results according to the following measures: fea-

sibility, solution quality, and computational efforts. Given the fact that fixing design

variables to 0 may result in infeasibility issues, we report in Table 4.5.2 the number of

instances which are infeasible by performing Strategy 1 with the following (p0,N0) val-

ues: Str1(p0,3), p0 = 2,3 and Str1(p0,9), p0 = 3,4,5,6,7,8,9. Moreover, to qualify the

results obtained by performing Strategy 1 in terms of solution quality and computation

time, we provide a comparative analysis versus CPLEX in Table 4.5.3. The Gap and

Time values reported for CPLEX refer, respectively, to the optimal gap and the compu-

tation time in seconds. As for “Str1”, Gap and Time represent the optimality gap relative

to the lower bound of CPLEX and the total computation time, respectively.

Table 4.5.2: Number of infeasible instances (INF)
Str1(p0,3) Str1(p0,9)

Ratio Ins 2 3 3 4 5 6 7 8 9
1 36 0 0 4 0 0 0 0 0 0
3 36 0 0 4 0 0 0 0 0 0
5 36 7 0 15 7 7 7 0 0 0
7 36 12 9 21 12 12 9 9 9 3
9 36 0 0 10 0 0 0 0 0 0

Total 180 19 9 54 19 19 16 9 9 3

79

Table 4.5.2 shows that the total number of infeasible instances increases from 3 in-

stances (in the case of Str1(9,9)) to 19 instances (in the case of Str1(4,9)). However, the

sharp increase in the number of infeasible instances happens in the case of Str1(3,9)).

As shown in Table 4.5.3, the results in the case of Str1(3,3), i.e., fixing one out

of 3 classes of variables, are as follows. The number of infeasible instances is 9, the

average optimality gap is 2.12% which is better than CPLEX with an average gap of

2.57% and the average computation time is reduced by almost 10% compared to CPLEX.

Considering that Str1(3,3) provides a little reduction in time, fixing less variables in

Str1(p0,9), p0 = 8,9 does not seem reasonable since they cannot provide much fixed

variables. However, in the case of Str1(2,3), i.e., fixing two out of 3 classes of variables,

the number of infeasible instances is 19, the average optimality gap is 1.59% which is

better than CPLEX with an average of 2.49%, and the computation time is reduced by

almost 50% relative to CPLEX. We note that fixing more variables in Str1(p0,9), p0 =

1,2,3 results in a significant increase in the number of infeasible instances (more than

54 out of 180 instances) as shown in Table 4.5.2. Therefore, it seems that Str1(2,3)

is able to provide a good performance in terms of improvement in solution quality and

reduction in computation time, both compared to CPLEX, and is a good compromise

for the considered instances. In the following, our goal is to examine if it is possible

to improve the results of Strategy 1, i.e., Str1(2,3), by upgrading the expected value

solution and using a different choice of variables, as explained earlier in Strategies 2 to

5. To do so, we present the results of the other strategies proposed in Section 4.4.1 and

compare them with the values obtained by Str1(2,3).

Table 4.5.4 displays the comparative results of performing Strategies 1 to 5 consid-

ering (p?0,N
?
0) = (2,3), i.e, fixing to 0 almost two thirds of the non-basic variables with

the highest reduced costs relative to R
J s̄l p

0
y ,RJ s̄′

0
y , R

J s̄′′
0

y R
J s̄′′

0
x , and R

J s̄′′
0

xy in Strate-

gies 1 to 5, respectively. As previously described, the Gap and Time values reported for

CPLEX refer, respectively, to the optimal gap and the total computation time in seconds

(between parenthesis). As for the different strategies “Str1” to “Str5”, Gap and Time

represent the optimality gaps relative to the lower bound of CPLEX and the total com-

putation time in seconds, respectively. Column “INF” indicates the number of infeasible

80

Table 4.5.3: Performance comparisons of Str1(p0,N0) vs. CPLEX when fixing variables
to 0

Ratio Ins CPLEX Str1(2,3) CPLEX Str1(3,3)
Gap(%) Gap(%) INF Gap(%) Gap(%) INF
(Time) (Time) (Time) (Time)

1 36 0.00 0.00 0 0.00 0.00 0
(154) (52) (154) (204)

3 36 6.7 2.75 0 6.7 5.09 0
(14081) (8604) (14081) (12241)

5 36 2.46 2.10 7 2.82 2.36 0
(14081) (10203) (15453) (12445)

7 36 0.24 0.4 12 0.32 0.45 9
(7010) (1670) (7390) (4182)

9 36 3.05 2.70 0 3.05 2.74 0
(11622) (6229) (14461) (11880)

Avg 180 2.49 1.59 2.57 2.12
(10388) (5351) (9017) (8192)

instances. It should be noted that we consider a gap of 100% for infeasible instances to

make the results comparable over all strategies. The results clearly show that there are no

more infeasibility issues in Strategies 2 to 5, indicating the noticeable effect of upgrad-

ing the EV solution. In terms of solution quality, the performance of using reduced cost

is enhanced by providing an improvement of at least 10.35% in optimality gap, when

we upgrade the solutions in Strategies 2 to 5 (with an average optimality gap of at most

1.7%), compared to Strategy 1 (with an average optimality gap of 12.05%) which uses

the solution of the LP relaxation of the EV problem. Furthermore, using the reduced

costs associated with flow variables (i.e., R
J s̄′′

0
x), as defined in Strategy 4, provides the

least computation time compared to the other strategies.

4.5.2.2 Comparing the strategies: fixing design variables to 1

To study the possibility of using reduced cost information for fixing variables to 1,

we present the results of applying the same strategies presented in Section 4.4.1 on the

non-basic variables at their upper bound (i.e., 1). We first examine the performance of

Strategy 1. In this strategy, denoted by Str1(p1,N1), we use the optimal solution of the

81

Table 4.5.4: Performance comparisons of Strategies 1 to 5 when fixing variables to 0
Pro Ins CPLEX Str1 R

J s̄l p
0

y Str2 R
J s̄′

0
y Str3 R

J s̄′′
0

y Str4 R
J s̄′′

0
x Str5 R

J s̄′′
0

xy
Gap(%) Gap(%) INF Gap(%) INF Gap(%) INF Gap(%) INF Gap(%) INF
(Time) (Time) (Time) (Time) (Time) (Time)

R05 30 0.00 26.66 8 0.33 0 0.13 0 0.05 0 0.13 0
(1437) (1408) (135) (92.9) (91.3) (83.4)

R06 30 1.61 1.05 0 1.00 0 1.30 0 1.26 0 1.25 0
(11401) (4670) (4969) (3630) (2274) (2319)

R07 30 0.10 6.68 2 0.38 0 0.31 0 0.47 0 0.31 0
(1745) (2037) (179) (219) (232) (192)

R08 30 0.98 21.33 6 1.99 0 1.25 0 1.7 0 1.25 0
(7217) (6334) (663) (2724) (1037) (1402)

R09 30 4.51 2.32 0 2.03 0 1.48 0 1.98 0 1.48 0
(16353) (11036) (8243) (7173) (3087) (4636)

R10 30 8.17 14.28 3 4.47 0 4.43 0 4.61 0 4.34 0
(23243) (15953) (13959) (17994) (9300) (12117)

Avg 180 2.56 12.05 1.7 1.48 1.67 1.46
(10229) (6906) (4601) (5305) (2665) (3458)

LP relaxation of the EV problem, i.e., s̄l p. The set of reduced cost values RJ s̄l p
1 is then

divided into N1 classes, and the variables belonging to the classes 1 to p1 are fixed to 1.

Given the fact that there are no feasibility issues in these strategies by fixing variables

to 1, we only present the comparison results on optimality gaps and computation times

versus CPLEX in Table 4.5.5 to qualify the results obtained by Strategy 1. As shown in

Table 4.5.5, in the case of fixing only one out of 3 classes (Str1(1,3)), Strategy 1 perform

as well as CPLEX in terms of both optimality gaps and computation time. Moreover,

in the case of fixing two out of 3 classes (Str1(2,3)), Strategy 1 performs slightly better

than CPLEX by providing optimality gaps of 2.53% (in 9538 seconds) versus 2.56%

(in 10229 seconds). The results show that Strategy 1 is not as effective in identifying

variables fixed to 1 when compared to variables fixed to 0. This means that the LP

relaxation of the EV problem (i.e., s̄l p) does not provide many variable fixing choices,

since there are too few design variables that are equal to 1 in the solution ȳl p (there

are a maximum of 3 design variables which are equal to 1 in the ȳl p for the instances

with ratios 1, 3 and 5). These results indicate the need to upgrade the EV solution,

as explained in the proposed Strategies 2 to 5, in order to provide a good set of fixed

variables. Nevertheless, we observed that fixing variables to 1 in Strategy 1, with the

values (p1,N1) = (2,3) (i.e., 2 out of 3 classes), is again an acceptable compromise to

produce relatively good solutions over all instances. We will now examine whether we

can improve the performance of Strategy 1 by upgrading the solution and using different

choices of variables in Strategies 2 to 5.

82

Table 4.5.5: Performance comparisons of Str1(p1,N1) vs. CPLEX for fixing to 1
Ratio Ins CPLEX Str1(1,3) Str1(2,3)

Gap(%) Gap(%) Gap(%)
(Time) (Time) (Time)

1 36 0.00 0.00 0.00
(353) (315) (292)

3 36 6.70 6.75 6.70
(14081) (13790) (13270)

5 36 2.82 2.83 2.80
(15453) (14972) (14372)

7 36 0.24 0.26 0.27
(6823) (6465) (6185)

9 36 3.05 2.96 2.99
(14461) (14215) (13572)

Avg 180 2.56 2.56 2.53
(10229) (9951) (9538)

Table 4.5.6 shows the comparative results of performing Strategies 1 to 5 with (p1,N1)=

(2,3), i.e, fixing to 1 two thirds of the non-basic variables with the smallest reduced costs

relative to R
J s̄l p

1
y ,RJ s̄′

1
y , R

J s̄′′
1

y , R
J s̄′′

1
x , and R

J s̄′′
1

xy in Strategies 1 to 5, respectively. The

table reports the same information as Table 4.5.4. The results show that, in terms of so-

lution quality and computation time, the performance of using reduced cost is enhanced

when we upgrade the solution in Strategies 2 to 5 compared to strategy 1 which uses the

solution of the LP relaxation of the EV problem. Furthermore, using the reduced costs

associated with flow variables (i.e., R
J s̄′′

1
x) in Strategy 4 provides the least computation

time compared to the other strategies. However, when assessing the optimality gaps ob-

tained, we observe that all strategies 2 to 5 seem to be equivalent (i.e., the difference is

at most 0.07%).

4.5.3 Numerical results of proposed matheuristic

In this section we present the results of the proposed matheuristic by evaluating 1)

the effects of various components of the algorithm in Section 4.5.3.1, and 2) its power

to deal with very difficult instances reported in the literature in Section 4.5.3.2. We note

83

Table 4.5.6: Performance comparisons of Strategies 1 to 5 for fixing to 1
Pro Ins CPLEX Str1 R

J s̄l p
1

y Str2 R
J s̄′

1
y Str3 R

J s̄′′
1

y Str4 R
J s̄′′

1
x Str5 R

J s̄′′
1

xy
Gap Gap(%) INF Gap(%) INF Gap(%) INF Gap(%) INF Gap(%) INF

(Time) (Time) (Time) (Time) (Time) (Time)
R05 30 0.00 0.00 0 0.09 0 0.23 0 0.28 0 0.23 0

(1437) (1468) (328) (490) (81.11) (313)
R06 30 1.61 1.55 0 1.09 0 1.09 0 1.44 0 1.08 0

(11401) (11248) (7688) (7815) (2499) (6668)
R07 30 0.10 0.08 0 0.47 0 0.46 0 0.60 0 0.46 0

(1745) (1603) (749) (450) (266) (322)
R08 30 0.98 1.01 0 1.59 0 1.55 0 1.93 0 1.55 0

(7217) (6354) (5874) (5970) (1886) (4324)
R09 30 4.51 4.39 0 1.96 0 1.94 0 1.98 0 1.90 0

(16353) (15121) (9442) (10372) (4401) (8957)
R10 30 8.17 8.14 0 6.12 0 5.65 0 4.81 0 5.65 0

(23243) (21430) (26270) (25396) (10751) (23444)

Avg 180 2.56 2.53 0 1.88 0 1.82 0 1.84 0 1.81 0
(10229) (9538) (8391) (8333) (3314) (7338)

that, according to the analysis carried out in the previous section, the parameters (p0,N0)

and (p1,N1) are set to (2,3), in both cases. Also, the choice of variables in Algorithm 6

corresponds to the flow variables. A preliminary analysis was conducted to fine tune the

ν0, ν1, α , q and N parameters, which were set at the following values .05, .05, .02, 3 and

3, respectively.

4.5.3.1 Impact analysis

The purpose of this section is to evaluate the effects of two features of the proposed

matheuristic, which are using solutions obtained by the MCFND(S) model and also mul-

tiple solutions. To do this, we designed two experiments to assess the effect of using

stochastic versus deterministic solutions and multiple versus single solutions to generate

the pool of solutions. The “Gap” and “Time” represent the optimality gap with respect

to the lower bound of CPLEX and computation time in seconds, respectively.

Impact of using solutions obtained by the MCFND(S) model. To evaluate the

impact of using feasible solutions obtained by the MCFND(S) model rather than those

obtained by DSSP on performance of the proposed matheuristic, we show in Table 4.5.7

a comparison of both versions. In version “Deter-sols”, to generate the solution pool Pk

in Algorithm 5, we first choose randomly N scenarios and then solve their corresponding

DSSP (4.6)-(4.10). However, in the version “Stoch-sol”, we use the solutions obtained

by the MCFND(S) problem, as explained in Section 4.4.2.2. We observed that using

solutions obtained by MCFND(S) in the proposed matheuristic produces better results,

84

with an average gap of 1.29% (compared with 1.73% when using the solution obtained

by DSSP) in almost half the time, which highlights the importance of using good quality

solutions to identify the set of fixed variables.

Table 4.5.7: Performance comparison on using the DSSP solution vs MCFND(S) solu-
tions

Pro Ins CPLEX Det-Sols Stoch-Sol
Gap(%) Time Gap(%) Time Gap(%) Time

R05 30 0.00 1437 0.1 722 0.06 399
R06 30 1.61 11401 1.11 8415 0.94 5607
R07 30 0.10 1745 0.55 673 0.11 558
R08 30 0.98 7217 1.68 4949 1.24 3391
R09 30 4.51 16353 2.44 11818 1.41 7137
R10 30 8.17 23243 4.82 19350 4.03 10131
Avg 180 2.56 10229 1.73 9125 1.29 4725

Impact of using multiple solutions. Is there any value in using multiple solutions

versus single solution? To answer this question and evaluate the impact of using multiple

solutions (here [N = 3] in Algorithm 5) versus a single solution on the performance of

the proposed matheuristic, we show in Table 4.5.8 a comparison of both versions in

columns “SingleSol” and “MultipleSol”. The results show that using multiple solutions

in the proposed matheuristic leads to better results, with an average gap of 1.29% (versus

1.55% in the case of using a single solution) in less computation time. The fact that

using multiple solutions rather than a single solution results in reduced computation

time is a surprising observation. This may be explained by the fact that, while generating

multiple solutions requires more computational effort at each iteration, the more refined

information provided by multiple solutions leads to better solutions faster. These results

strengthen the idea of generating multiple solutions at each iteration of the algorithm.

4.5.3.2 Performance on difficult instances

To evaluate the quality and power of the proposed matheuristic, and to address very

difficult instances in the literature, we present the computational results performed on

large R instances (i.e., R11-R15, as described in Table 4.5.1). We focus on 180 in-

85

Table 4.5.8: Performance comparison of using single solution vs. multiple solutions
Pro Ins CPLEX SingleSol MultipleSol

Gap(%) Time Gap(%) Time Gap(%) Time
R05 30 0.00 1437 0.06 430 0.06 399
R06 30 1.61 11401 0.94 6201 0.94 5607
R07 30 0.10 1745 0.32 673 0.11 558
R08 30 0.98 7217 1.26 4706 1.24 3391
R09 30 4.51 16353 1.85 8218 1.41 7137
R10 30 8.17 23243 4.92 13850 4.03 10131
Avg 180 2.56 10229 1.55 5673 1.29 4725

stances that CPLEX was not able to solve to optimality after 500 minutes of computation

time. We compare the performance of the proposed matheuristic, the Learn&Optimize

(L&Opt) matheuristic proposed in Sarayloo et al. [108], and the MIP algorithm of

CPLEX 12.8 to deal with these difficult instances. Table 4.5.9 provides a general view of

the effectiveness of RCHeur by displaying the average improvement gap (negative val-

ues indicate better results) and percentage of instances with improved solutions (column

“Win”) obtained by RCHeur over those of the other methods. Columns “RCHeur/CPLEX”

and“RCHeur/L&Opt” report the average improvement gap relative to L&Opt and CPLEX

computed as RCHeur−CPLEX
RCHeur ∗100 and RCHeur−L&Opt

RCHeur ∗100 after 500 minutes of computa-

tion time. We considered the best solution provided by CPLEX and L&Opt with a time

of 500 minutes to assess the improvement provided by the proposed RCHeur. Over-

all, regarding the comparisons “RCHeur/CPLEX”, we observed that CPLEX failed to

provide any information after 500 minutes for 31 instances, and so we report the im-

provements only over the remaining 149 instances. We observed that RCHeur provides

better solutions for all instances with a relative average improvement of 19.95%, com-

pared to the solutions produced by CPLEX. This clearly shows the difficulty of these

instances. Regarding the comparisons “RCHeur/L&Opt”, both procedures were able to

provide feasible solutions within the time limit, and so we report the improvements over

all 180 instances. We observed that, on average, RCHeur is superior to L&Opt for more

than 90% of the instances, with a relative average improvement of 6.07%, indicating

the ability of RCHeur to deal with these very difficult instances. These results confirm

86

that the proposed matheuristic is the method of choice for such difficult instances, for

which the most powerful integer programming solvers are unable to even solve the LP

relaxation of the problem.

Table 4.5.9: Performance comparison between RCHeur and L&Opt on difficult instances
Pro # of RCHeur/CPLEX RCHeur/L&Opt

Ins Gap(%) Win(%) Gap(%) Win(%)
R11 27 -18.42 100 -8.01 100
R12 27 -9.79 100 -3.20 100
R13 36 -22.23 100 -3.32 86
R14 45 -21.38 100 -6.49 80
R15 45 -27.97 100 -9.34 86

4.6 Conclusions

In this paper, we investigated how to efficiently use reduced cost information ex-

tracted from the solution obtained by the LP relaxation of the EV problem to define

good restrictions in the context of stochastic network design. We specifically proposed

different strategies to improve the EV solution and then extract the associated reduced

costs. The purpose of each strategy was to identify an appropriate subset of design vari-

ables (using reduced cost information) to be fixed in the stochastic problem and obtain a

good quality solution. We subsequently proposed a matheuristic approach that iteratively

defines restricted problems constructed by exploiting reduced cost information extracted

from multiple solutions. The results of extensive computational experiments showed

that the proposed algorithm is highly effective in finding good-quality solutions for very

large instances of stochastic network design problems, while reducing the computational

effort to obtain them.

We conclude this section with a few possible directions for future research. One pos-

sible direction is the adaptation of the proposed approach to be applied on more practical

variants of the classical network design model like service network design models. The

other possible direction comes from the fact that most solution methods for stochastic

network design problems in the literature are based on exact methods. Thus, due to the

87

NP-hardness nature of SND problems, this research area still needs more studies based

on heuristic approaches. It would be worthwhile to develop various metaheuristic and

matheuristic approaches which incorporate different learning and memorizing mecha-

nisms to handle such large-scale problems.

Acknowledgments

While working on this project, T.G. Crainic was Adjunct Professor with the Depart-

ment of Computer Science and Operations Research, Université de Montréal. Partial

funding for this project has been provided by the Natural Sciences and Engineering

Council of Canada (NSERC), through its Discovery Grant program, and by the Fonds

Québécois de la Recherche sur la nature et les technologies (FQRNT) through its strate-

gic center infrastructure grant program.

88

CHAPTER 5

ARTICLE 3: AN INTEGRATED LEARNING AND PROGRESSIVE HEDGING

METHOD TO SOLVE STOCHASTIC NETWORK DESIGN

Chapter notes: The article in this chapter is expected to be submitted to the EURO

Journal on Computational Optimization. More comparative analysis will be prepared

for testing the solution approach before submission.

Abstract

In this paper we address Multicommodity Capacitated Fixed-charge Network De-

sign problem with uncertain demands, modeled as a two-stage stochastic program. We

rely on the progressive hedging algorithm (PHA) of Rockafellar and Wets where the

scenarios are grouped in subproblems. We propose a two phase integrated learning

and progressive hedging (ILPH) approach to deal with large number of scenarios. In our

proposed approach, the Learn&Optimize procedure is adapted and applied as an efficient

heuristic method to address the multi-scenario subproblems. We exploit the knowledge

learned through the Learn&Optimize and particularly introduced a new reference point

in each aggregation step of ILPH by exploiting the knowledge regarding the promising

design variables which are built through the Learn&Optimize applied in the subprob-

lems. In this way, we inject the knowledge learned through the heuristic procedure into

the PHA leading to the proposed ILPH, which is considered as the main contribution in

this paper. Given the fact that PHA may not converge to a single solution in the case of

integer problems, the algorithm proceeds to the second phase if a consensus solution is

not obtained. In phase II, we fix the design variables for which a consensus is obtained

and solve the restricted problems to obtain the final solution. Extensive computational

experiments illustrate that the proposed approach should be the method of choice when

high-quality solutions to very large instances of stochastic network problems need to be

found quickly.

90

5.1 Introduction

Multicommodity Capacitated Fixed-charge Network Design (MCFND) models rep-

resent a generic model that have been used to address many important planning problems

in a variety of applications, such as transportation, logistics and telecommunications

[26, 82, 83]. In these applications, it is required to design a network (i.e., choose a set

of available arcs with associated capacity) that is to be used to route a given set of com-

modities in order to satisfy known demands between origin-destinations pairs. In doing

so, one pays not only a routing cost proportional to the number of units of each com-

modity over a network arc, but also the cost that has to be paid whenever an arc is used.

The objective of MCFND is to find the optimal design (i.e., selected arcs to be included

(open) in the final network) that minimizes the total cost, computed as the sum of the

fixed and routing costs.

In the real world, we are faced with the uncertainty in one or more of the elements

of MCFND. Demand is, for instance, one of the key sources of uncertainty in any real

world applications. Ignoring the demand uncertainty and its impact, that is, solving a de-

terministic model using a single estimate in replacement of a stochastic parameter, can

lead to unfavorable and arbitrarily bad solutions. One should therefore consider demand

uncertainty in the design process, which gives rise to the stochastic MCFND considered

in this paper. The foremost consideration in incorporating uncertainties into the decision

making process is the determination of an appropriate representation of the uncertain

parameters. Scenario-based methodology is one of the most common approach in the

literature. In this approach, the uncertainty is described by a finite set of discrete scenar-

ios capturing how the uncertainty might play out in the future, together with associated

probabilities.

In this paper, we consider the stochastic network design problem as a two stage

stochastic program where first-stage decisions, i.e., design decisions, are made prior to

realization of demand scenarios. Contingent on these design decisions and the realiza-

tions of the uncertain parameters, the second stage (routing) decisions are determined to

adapt the first stage solution to the observed demand. Modelling uncertainty with sce-

91

narios leads to a very large scale mixed integer program, known as the extensive form

(EF), which is too difficult to be handled with exact solution methods and state-of-the-

art MIP solvers. Therefore, heuristic approaches are attractive methodologies to produce

good-quality solutions within reasonable computing effort.

The PHA of Rockafellar and Wets [103] is considered as a successful meta-heuristic

approach, when faced with non-convex integer problems [29, 34, 59]. The method de-

composes the problem according to the scenarios (through the application of an aug-

mented Lagrangian strategy) and solves the sub-problems for each scenario separately.

When applied to network design, each single-scenario subproblem (SSSP) solved at each

iteration of the PHA represents a deterministic network design problem yielding a (po-

tentially different) design [29, 34]. These designs are aggregated (by taking the weighted

average over all designs) in order to create a single reference point. Then in the next it-

eration the fixed cost associated with each arc is modified through a Lagrangian type

technique to hopefully induce resulting subproblems that yield solutions closer to the

current reference point. Given the fact that PHA may not converge to a single solution

in the case of integer problems, the algorithm proceeds to the second phase to produce

the final solution.

In this paper, instead of having each sub-problem associated with a single scenario

(i.e., SSSP), each subproblem includes multiple scenarios. Grouping scenarios and solv-

ing multi-scenario subproblems (MSSP) were successfully applied in the context of net-

work design problem by Crainic et al. [34]. They have shown that by solving multi-

scenario subproblems, the proposed PHA-based metaheuristic produces better results in

terms of solution quality and computing efficiency. However, the difficulties in solving

the subproblems pose big challenges in such setting. We aim to contribute in addressing

these challenges and improving the performance of PHA by proposing some significant

refinements.

The contribution of this article is threefold. First, we introduce a new progressive

hedging-based meta-heuristic to efficiently address the stochastic network design prob-

lem. The proposed method takes advantage of specialized methods (referred to as the

Learn&Optimize procedure in [108]) to solve multi-scenario subproblems. Second, we

92

introduce a new reference point in each aggregation step of PHA by exploiting local

information on promising design variables which are built through the Learn&Optimize

procedure applied in the subproblems. In this way, we integrate the knowledge learned

through the subproblems into the PHA leading to the proposed integrated learning and

progressive hedging (ILPH) approach to guide the overall search mechanism toward a

unique design vector, which is considered as the main contribution in this paper. Third,

we show, by means of extensive experimental campaign, the interest of the proposed

approach in terms of computation time and solution quality, especially in dealing with

very difficult instances with large number of scenarios.

The rest of paper is organized as follow. In Section 5.2, we recall the two-stage

formulation of stochastic network design problem and briefly review some relevant lit-

erature in Section 5.3. Section 5.4 introduces the main ideas and a detailed description

of our solution methodology. Finally, we present and analyze the experimental results in

Section 5.5 and provide concluding remarks in Section 5.6.

5.2 Problem description

In this section, we present the two-stage stochastic program with recourse (referred

to as the a priori optimization in [17]) for the MCFND problem proposed by Crainic

et al. [29]. In such settings, a set of decisions have to be made a priori in a context

where the related environmental information is not completely available, namely the

demand volume of each commodity to transport from its origin to its destination. In the

first stage of stochastic network design, the model makes the decisions on the network

configuration (i.e. the design decisions). However, in the second stage, commodity

flow decisions, from origins to destinations, are made in an optimal way based upon

the restricted configuration imposed by the first stage and the realized random demands.

This model is described in detail in Crainic et al. [29], and we briefly recall it here. The

following notations are used:

Sets and indices:

• N : Set of nodes, indexed by i = 1, . . . , |N |.

93

• A : Set of potential arcs (i, j) ∈A .

• K : Set of commodities, indexed by k = 1, . . . , |K | where each of them is recog-

nized by a unique pair of origin-destination nodes o(k)− s(k).

• S : Set of scenarios used to model demand uncertainty, indexed by s = 1, . . . , |S |
with strictly positive corresponding probabilities of realization p1, . . . , p|S|.

Variables:

• yi j: Binary design variable, which indicates if the arc (i, j) ∈A is included in the

network in the first stage.

• xks
i j : Continuous flow variable representing the amount of commodity k’s demand

that flows on arc (i, j) ∈A under scenario s ∈S .

Parameters:

• fi j: Fixed cost incurred if the arc (i, j) ∈A is included in the final design.

• ui j: Capacity on arc (i, j) ∈A limiting the total commodity flow that may use it.

• ck
i j: Unit routing cost for each commodity k ∈K and arc (i, j) ∈A .

• dks
i : Demand volume of commodity k ∈K in node i ∈A under scenario s ∈S .

The mathematical formulation is as follows:

minimize ∑
(i, j)∈A

fi jyi j + ∑
s∈S

ps
∑

k∈K
∑

(i, j)∈A
ci jxks

i j (5.1)

subject to ∑
j∈N +(i)

xks
i j − ∑

j∈N −(i)
xks

ji = dks
i , ∀i ∈N , ∀k ∈K , ∀s ∈S (5.2)

∑
k∈K

xks
i j ≤ ui jyi j, ∀(i, j) ∈A , ∀s ∈S (5.3)

yi j ∈ {0,1}, ∀(i, j) ∈A (5.4)

xks
i j ≥ 0, ∀(i, j) ∈A , ∀k ∈K , ∀s ∈S

(5.5)

94

Model (5.1)-(5.5) is a large-scale mixed integer program with a block-diagonal struc-

ture, each block, defined by constraints (5.2) and (5.3). Constraints (5.2) represent the

flow conservation equations in each scenario, requiring that each commodity’s demand

be routed from its origin node to its destination node. For a given scenario s ∈S , as-

suming that dks is the demand volume of commodity k under scenario s, the demand

of costumer i for commodity k under scenario s, i.e., dks
i , is either set to dks if node i

is the origin of commodity k, −dks if node i is the destination of commodity k, or 0

otherwise. Constraints (5.3) ensure that the same design is used in each scenario, and

that arc capacity ui j is never violated. Constraints (5.4) and (5.5) impose integrality and

non-negativity restrictions on decision variables. The objective function (5.1) minimizes

the total system cost, consisting of the sum of the fixed cost for the included arcs and the

expectation of routing costs taken over all the demand scenarios. We refer to this model

as MCFND(S) where its optimal solution is a single design that is cost-effective under

all considered scenarios.

5.3 Literature review

There are limited solution methodologies that have been proposed for stochastic net-

work design problems. As mentioned earlier, when a finite set of scenarios is used to

estimate the stochastic parameters (see Dupačová et al. [41] and King and Wallace [70]

for an overview on scenario generation methods), a stochastic program can be formu-

lated as a equivalent (multi-scenario) deterministic problem. But due to the large scale of

the problem, taking advantage of the structure used in decomposition-based approaches

is especially beneficial and is the focus of much of the algorithmic work in this area.

The goal of decomposition-based approaches is to divide the complex problem into sub-

problems to be able to solve them more efficiently. Such decomposition strategies can

be categorized into two types. The first type decomposes the problem via decisional

stages while the second type decomposes by scenarios. The former category (referred

to as the L-shape method introduced in [120]) is a cutting-plane method which is the

95

application of Benders decomposition to the solution of the equivalent (multi-scenario)

deterministic problem. For completeness, detailed review on this type of decomposition

approach for stochastic MCFND may be found in [32] and [93].

In the second category of decomposition strategies, referred to as the scenario de-

composition, the original problem is decomposed by scenarios by applying Lagrangian

relaxation to the non-anticipativity constraints (i.e., the constraints ensuring that a single

design is used under all considered scenarios). Once the problem is decomposed, then

each scenario becomes a deterministic problem to be solved (i.e., a single-scenario sub-

problem (SSP) defined for each scenario). The resulting scenario subproblems can then

be used to obtain a general lower bound, by solving the Lagrangian dual as in [110],

or as a means to produce more efficient solution approaches, e.g., [43] and [4], or by

applying the progressive hedging based meta heuristics proposed in [29]. In the follow

up work, Crainic et al. [33] introduced a new progressive hedging based metaheuris-

tic that solves subproblems that may comprise multiple scenarios (i.e., multi-scenario

subproblem (MSSP) defined for each group of scenarios).

Applying scenario-decomposition based methods, one could leverage efficient meta-

heuristics that are available for deterministic network design models (in the case of

SSSP), or, for stochastic network design formulated using a reduced number of scenarios

to address the subproblems (in the case of MSSP). Although the literature on efficient

metaheuristic methods proposed for deterministic MCFND problems is very rich (e.g.,

[31, 50, 51, 61]), there are only limited contributions on efficient heuristic methods for

solving the MCFND(S) problem. For example, Sarayloo et al. [108] proposed a learning

based matheuristic approach where the main novelty is to provide a learning heuris-

tic which is able to effectively identify structures of good-quality solutions where the

scenarios and their influences on design decisions are gradually considered. In fact, a

global image of the promising structure of the stochastic solution is built by gradually

learning from the partial knowledge produced by the learning mechanism. The proposed

matheuristic produces information on the promising design variables related to the con-

sidered scenarios. This can be used in the PHA to gather more refined local information

yielded by subproblems to guide the search to a global good solution.

96

Exploiting common solution structures that exist between deterministic and stochas-

tic solutions is another feature that may be employed in the solution methods based on

scenario decomposition. Due to the high complexity and difficulty of stochastic network

design problems (NDPs), a number of attempts in the literature on the stochastic NDP

has been devoted to investigating how the solution to the deterministic model relates to

the stochastic counterpart. It has been shown that, despite the fact that the solution to

the deterministic model behaves badly in the stochastic settings [63, 123], there are sit-

uations where the deterministic solution shares some properties with the corresponding

stochastic solution [25, 76, 116–118]. They show that the deterministic solution car-

ries useful information (i.e., some structural patterns) which can be extracted to simplify

the stochastic case. Following this insight, Sarayloo et al. [109] proposed a number of

strategies to extract reduced cost information from good quality solutions to be used as

a guide for fixing the variables in the MCFND(S) problems (i.e. fixing to 0 and 1).

Revisiting the PHA comprising multi-scenario subproblems appears a methodologi-

cal avenue worth studying [34]. However, one still needs to iteratively solve a series of

multi-scenario subproblems, which remains challenging. We propose to work towards:

1) solving a series of models at each iteration more efficiently 2) extracting more refined

local information from subproblems to guide the search toward a global good design

solution.

5.4 Solution methodology

In this section, we first re-write the MCFND(S) model (5.1)-(5.5) by partitioning the

scenarios into groups and provide the outline of our proposed ILPH method with mul-

tiple scenario sub-problems in Section 5.4.1. Then, we describe the proposed method-

ological developments and strategies applied in each step of ILPH in Sections 5.4.2-

5.4.4. Finally, we provide the detailed pseudocode of our proposed ILPH method in

Section 5.4.5.

97

5.4.1 Preliminaries and the outline of the proposed PHA

We first formalize the progressive hedging method applied on the MCFND(S) model

(5.1)-(5.5), where subproblems comprise multiple scenarios. To do so, we first need to

partition the scenarios into groups in the MCFND(S) model (5.1)-(5.5). The groups are

used to define the sub-problems. We then provide the outline of our proposed integrated

learning and PH method.

Let G be the set of group indices. Suppose that the set of scenarios are partitioned to

the |G| groups denoted by {C1, . . . ,C|G|} where Cg ⊂ S ∀g ∈ G. Let pg = ∑s∈Cg ps. The

first stage variables yg
i j are subscripted with a group index. This can be seen as creating

a copy yg
i j of each yi j for each group g in order to allow design decisions to depend on

the group, and yields the following model:

min ∑
g∈G

pg(
∑

(i, j)∈A
fi jy

g
i j + ∑

s∈Cg

ps

pg ∑
k∈K

∑
(i, j)∈A

ck
i jx

ks
i j
)

(5.6)

subject to ∑
j∈N +(i)

xks
i j − ∑

j∈N −(i)
xks

ji = dks
i , ∀i ∈N , ∀k ∈K ,∀s ∈Cg,∀g ∈ G

(5.7)

∑
k∈K

xks
i j ≤ ui jy

g
i j, ∀(i, j) ∈A ,∀s ∈Cg,∀g ∈ G (5.8)

yg
i j = ȳi j, ∀(i, j) ∈A , ∀g ∈ G (5.9)

yg
i j ∈ {0,1}, ∀(i, j) ∈A , ∀g ∈ G, (5.10)

xks
i j ≥ 0, ∀(i, j) ∈A , ∀k ∈K ,∀s ∈Cg,∀g ∈ G (5.11)

Constraints (5.9), called as the non-anticipativity constraints, force all first stage de-

cisions (i.e., design variables) to be equal to a single “overall design vector” denoted by

ȳi j. We recall that the objective function and the rest of constraints are the ones that were

previously introduced.

Following the decomposition scheme proposed in [103] , constraints (5.9) are relaxed

using an augmented Lagrangian strategy, which yields the following objective function:

98

min ∑
g∈G

pg
(

∑
(i, j)∈A

fi jy
g
i j + ∑

s∈Cg

ps

pg ∑
k∈K

∑
(i, j)∈A

ck
i jx

ks
i j + ∑

(i, j)∈A
λ

g
i j(y

g
i j− ȳi j)+

ρ

2
(yg

i j− ȳi j)
2
)

(5.12)

The Lagrangian multipliers λ
g
i j ∀(i, j) ∈ A ,∀g ∈ G are associated with the relaxed

constraints (5.9) and ρ is a penalty ratio. Given the binary requirements for the design

variables, after rearranging the terms, the function may be reduced to

min ∑
g∈G

pg
(

∑
(i, j)∈A

(fi j +λ
g
i j−ρ ȳi j +

ρ

2
)
yg

i j+ ∑
s∈Cg

ps

pg ∑
k∈K

∑
(i, j)∈A

ck
i jx

ks
i j

)
− ∑

(i, j)∈A
λ

g
i jȳi j + ∑

(i, j)∈A

ρ

2
ȳi j (5.13)

For a given overall design ȳi j, the above formulation is decomposable according to

the groups, taking the form of MCFND(S) problem with reduced number of scenarios

and modified fixed costs fi j +λ
g
i j−ρ ȳi j +

ρ

2 , ∀(i, j) ∈A . The sub-problem SPg associ-

ated with group g can be expressed as follows:

SPg: minimize ∑
(i, j)∈A

(
fi j +λ

g
i j−ρ ȳi j +

ρ

2
)
yg

i j + ∑
s∈Cg

ps

pg ∑
k∈K

∑
(i, j)∈A

ck
i jx

ks
i j (5.14)

subject to ∑
j∈N +(i)

xks
i j − ∑

j∈N −(i)
xks

ji = dks
i , ∀i ∈N , ∀k ∈K , ,∀s ∈Cg (5.15)

∑
k∈K

xks
i j ≤ ui jyi j, ∀(i, j) ∈A , ∀s ∈Cg (5.16)

yg
i j ∈ {0,1}, ∀(i, j) ∈A , (5.17)

xks
i j ≥ 0, ∀(i, j) ∈A , ∀k ∈K , ∀s ∈Cg, (5.18)

The PHA proposed for stochastic network design problem in Crainic et al. [34] con-

sists of two main phases. In the first phase, a modified version of the classical PH

99

algorithm is used. It iteratively solves an optimization subproblem for each group of

scenarios separately. Using the different subproblem’s solutions, it creates a reference

point representing the level of consensus among the scenario group subproblems. The

PHA adjust the fixed costs of each group subproblem (reflected as “penalties”) to incen-

tivize them to eventually produce a single high quality solution, until a stopping criterion

is met. In phase II, information obtained during the PH iterations is used to identify a

set of design variables for which consensus is obtained. This allows us to fix several

variables in the original problem.

The outline of our proposed ILPH method is given in Algorithm 7. In our pro-

posed approach, we adapt the Learn&Optimize procedure proposed in Sarayloo et al.

[108] to be used as an efficient heuristic method to address the multi-scenario subprob-

lems at each iteration (line 3). We aim to exploit the knowledge learned through the

Learn&Optimize procedure in the aggregation and penalty updates of the ILPH to hope-

fully improve its performance (lines 4-5). In this way, we inject the information obtained

by the Learn&Optimize into the PHA which results in the integrated approach, which is

our main contribution in this paper. Given the fact that the PHA may not converge to

a single solution in the case of integer problems, the algorithm proceeds to the second

phase if a consensus solution is not obtained, once the stopping criterion is met. In phase

II, we fix the design variables for which a consensus is obtained and solve the restricted

problems to obtain the final solution (line 8).

Algorithm 7 The outline of the proposed integrated learning and PH method
1: Initialization . Section 5.4.2
2: while Stopping criteria is not met do
3: Solving heuristically multi-scenario subproblems . Section 5.4.3
4: Aggregation . Section 5.4.4
5: Penalty update . Section 5.4.4
6: end while
7: Phase II:
8: Fix the design variables for which consensus is obtained and solve the restricted

problem

In what follows, a step-by-step description of our adaptation of PHA is provided. We

100

first describe the initialization step in Section 5.4.2 and proceed to describe the heuristic

Learn&Optimize used to heuristically solve the multi-scenario subproblems in Section

5.4.3. We then explain, in Section 5.4.4, how we exploit the information provided by

applying the Learn&Optimize procedure in subproblems to create a new reference point

and update the Lagrangian multipliers to hopefully improve the performance of PHA.

5.4.2 Initialization

The algorithm is initialized by constructing the list of scenario groups C̄ = {C1, . . . ,C|G|}.
The scenarios within each group are chosen randomly. For each group g ∈ G, we solve

heuristically subproblem SP0
g : minimize∑(i, j)∈A

(
fi jy

g
i j+∑s∈Cg

ps

pg ∑k∈K ∑(i, j)∈A ck
i jx

ks
i j)

st. (5.15)− (5.18) using the Learn&Optimize procedure described in Section 5.4.3.

Once we heuristically solved the subproblems g ∈ G, we then perform the aggregation

step to produce the reference (aggregated) point as well as the other heuristic solution as

explained in section 5.4.4.

5.4.3 Solving subproblems heuristically using Learn&Optimize procedure

The most challenging part of the PHA is solving the multi-scenario stochastic net-

work design problem SPν
g : (5.14)-(5.18) that occur as subproblems at each iteration ν .

Dealing with multiple scenarios in conjunction with the integrality constraints makes the

subproblems very hard to solve to optimality. But, there is evidence suggesting that the

exact solution of the subproblem is not required [67], and that heuristic solutions can

work satisfactorily [77].

We adapt the Learn&Optimize procedure, as a heuristic method proposed in Sarayloo

et al. [108], to be applied in subproblems of the PHA. It should be noted that there are

two important reasons we integrate the so-called Learn&Optimize in the PHA. First, we

apply it as an efficient heuristic to solve the subproblems heuristically [108]. Our second

reason is that we aim to exploit the knowledge learned through the Learn&Optimize

procedure in the aggregation step of PHA to hopefully improve its performance. In

this sense, we inject the the local information obtained by Learn&Optimize within the

101

subproblems into the PHA. which results in the integrated approach.

The Learn&Optimize procedure, proposed in [108], iteratively executes a learn-

ing step, to learn and build statistics on solution characteristics. As we need to apply

Learn&Optimize multiple times at each iteration of PHA to address the multi-scenario

subproblems, we will need to make some modifications to efficiently integrate the pro-

cedure in the PHA. We recall the learning step and highlight the proposed modifications

in Section 5.4.3.1, while Section 5.4.3.2 provides the full description of the adapted

Learn&Optimize procedure.

5.4.3.1 Learning step

To learn and build statistics on solution characteristics yielding the set of promising

design variables, Sarayloo et al. [108] introduced the concept of Artificial Demand Sce-

nario (ADS) built out of particular combinations of two scenarios. Given the fact that

we are faced with multi-scenario subproblem which should be solved multiple times at

each iteration of PHA, we introduce Group-based Artificial Demand Scenario Gb-ADS

and define the associated auxiliary problem which helps us to address the multi-scenario

subproblems more efficiently. In this way, we could improve the efficiency of the learn-

ing step by decreasing the number of ADSs while treating all scenarios involved in each

subproblem. One then learns by iteratively building Gb-ADSs, solving the associated

auxiliary problems, and gradually building an image of design variables potentially be-

longing to good solutions to the multi-scenario subproblem. We proceed by defining the

Gb-ADS and the associated auxilary problem AP.

A Group-based Artificial Demand Scenario Gb-ADS δδδ
g, g ∈ G under the scenarios

in group g i.e., (sg
1, . . . ,s

g
|g|) can be then expressed as

102

δδδ
g =



δ
g
1 (s

g
1, . . . ,s

g
|g|)

δ
g
2 (s

g
1, . . . ,s

g
|g|)

δ
g
3 (s

g
1, . . . ,s

g
|g|)

...

δ
g
|K |(s

g
1, . . . ,s

g
|g|)


, such that δ

g
k (s

g
1, . . . ,s

g
|g|)= dk(s

g
1)∨dk(s

g
2)∨ . . .∨dk(s

g
|g|),∀k∈K .

(5.19)

Let ∆g be set of Gb-ADSs, δ g, generated for the group g containing the scenarios

Cg. We use a simple procedure to construct the set ∆g in this paper. Algorithm 8 builds

a set ∆g of cardinality N∆g , through the random selection of the demand values of given

scenarios in Cg. In other words, we build the vector of Gb-ADS δδδ
g, g ∈ G under the

scenarios in group g i.e., (sg
1, . . . ,s

g
|g|) by randomly selecting si ∈Cg in order to copy its

demand value associated to commodity k (i.e., dk(si)) and let δ
g
k ← dk(si) (line 2-4). The

procedure stops when it builds N∆g number of Gb-ADSs (line 6).

Algorithm 8 Construct ∆g

1: repeat
2: for all k ∈K do
3: Randomly choose si ∈Cg and let δ

g
k ← dk(si)

4: end for
5: Let ∆g← δδδ

g⋃
∆g

6: until |∆g|= N∆g

7: Return ∆g

As proposed in Sarayloo et al. [108], we aim to explore the solution characteristics

associated to each Gb-ADS, δδδ
g ∈ ∆g, to extract information regarding promising design

variables. The exploration is performed by solving an Auxilary Problem, AP(δδδ g, ŷ), for

each artificial demand scenario δδδ
g ∈ ∆g considering a given design ŷ.

For completeness, we recall the Auxilary Problem proposed in Sarayloo et al. [108].

To define ÃPg(δδδ
g, ŷ), we separate the set of arcs A according to the given design ŷ.

Then, A = A 0∪A 1, where A 0 = {(i, j)|(i, j) ∈A , ŷi j = 0} and A 1 = {(i, j)|(i, j) ∈
A , ŷi j = 1} are the sets of closed and open arcs in ŷ, respectively. By considering the

103

fact that the fixed cost f ν
i j is updated at each iteration of PHA, we then define a modified

arc variable cost c̄i j by linearizing the fixed cost of the closed arcs

c̄i j =

ci j +
f ν
i j

ui j
, ∀(i, j) ∈A 0,

ci j, ∀(i, j) ∈A 1
(5.20)

and solve the ÃP(δδδ g, ŷ) multi-commodity network flow problem

ÃPg(δδδ
g, ŷ) : minimize ∑

k∈K
∑

(i, j)∈A
c̄i jxk

i j (5.21)

subject to ∑
j∈N +(i)

xk
i j− ∑

j∈N −(i)
xk

ji = δ
ig
k , ∀i ∈N , ∀k ∈K (5.22)

∑
k∈K

xk
i j ≤ ui j, ∀(i, j) ∈A (5.23)

xk
i j ≥ 0, ∀(i, j) ∈A , ∀k ∈K

(5.24)

Solving ÃPg(δδδ
g, ŷ) yields the solution xi j(δδδ

g) = ∑k∈K xk
i j,∀(i, j) ∈ A, with Aδδδ

g =

{(i, j)|xi j(δδδ
g)> 0}. We define a corresponding design solution as yδδδ

g

i j = 1, when xi j(δδδ
g)>

0, and 0, otherwise. It is noteworthy that some of the arcs in A 0, closed in ŷ, may be

open in yδδδ
g

i j to satisfy the demand vector δδδ
g. These modifications capture the interactions

occurring in the integration of multiple scenarios within δδδ
g, yielding partial information

regarding the design arcs required to address the uncertainty captured by the scenarios

involved in group g. Repeating this procedure for different Gb-ADSs builds the knowl-

edge we seek.

5.4.3.2 Learn& Optimize procedure

The adapted Learn&Optimize procedure we apply in this paper iteratively executes a

learning step to identify a promising set of design variables. Then, a partial-optimization

step is performed where the identified promising variables are fixed and the reduced-size

104

formulation is solved exactly. The original procedure is proposed in Sarayloo et al. [108],

however, we make some modification to efficiently apply the procedure in the series of

subproblems at each iteration of the PHA.

The Learn&Optimize procedure is described in Algorithm 9. The set of Gb-ADSs,

∆gν , is reconstructed at each iteration ν of PHA as described in Algorithm 8. Such an

approach, i.e., reconstructing a new set of ∆gν at each iteration of PHA, may allow us

to obtain information that would not be available from using a single set of ∆gν in all

iterations. We define the frequency memory, Fgν

i j , representing how often arc (i, j) has

been used in the solutions of the different ÃPg(δδδ
g, ŷ) and the normalized frequencies

values, fgν

i j , which is computed as fgν

i j := Fgν

i j /max{Fgν

i j |(i, j) ∈A } (line 10). We keep

the frequency memories built in the previous iterations i.e., Fgν

i j ← Fgν−1
i j in order to

keep track of promising arcs from the beginning. We also define A ν
∆gν , the set of design

arcs used in at least one ÃPg(δδδ
g, ŷ) in iteration ν , and A gν , the set of promising design

variables to be identified by the procedure.

The main loop (lines 3 to 9) iterates over the Gb-ADSs in ∆gν , each being discarded,

after it has been examined. The loop stops when the set of artificial demand scenarios

becomes empty. The ÃPg(δδδ
g, ŷ) is solved for each δδδ

g ∈ ∆gν , to distribute the demand

of δδδ
g (line 5). The corresponding design vector is created (line 7), while the set of

used design arcs and the frequency memories are updated on line 6. Once artificial

demand scenarios δδδ
g ∈ ∆gν are treated, then a reduced problem by fixing A gν as the

most frequently used arcs (given a threshold τ) is solved using a MIP solver yielding

the design solution ygν

i j ,∀(i j) ∈ A . The procedure returns the normalized frequencies

values fgν

i j , ∀(i, j) ∈A , as well as the design solution ygν

i j ,∀(i j) ∈A .

5.4.4 Aggregation and Penalty updates in the proposed PHA

In this section, we explain how we exploit and inject the local information obtained

by the Learn& Optimize procedure into the PHA to produce a new reference point as

well as a new heuristic design, in each aggregation step of PHA, to hopefully improve

its performance. The new reference point, described in section 5.4.4.1, is created by ex-

ploiting the solution characteristics (primal information) and serves as the new reference

105

Algorithm 9 Learn&Optimize procedure to solve SPν
g

1: Initialization: Fgν

i j ← Fgν−1
i j ,∀(i j) ∈ A, A gν ← /0; construct ∆gν ;

2: Learning and memorizing:
3: repeat
4: Randomly choose a Gb-ADS δ g ∈ ∆gν ;
5: Solve ÃPg(δδδ

g, ŷν) yielding xν
i j(δδδ

g),∀(i, j) ∈A ;

6: Identify A ν

δδδ
g and compute yδδδ

g

i j , ∀(i, j) ∈A ν

δδδ
g ;

7: Update A ν
∆gν := A ν

∆gν

⋃
A ν

δδδ
g and Fgν

i j := Fgν

i j +1, for all (i, j) ∈A ν

δδδ
g ;

8: Remove δδδ
g from ∆gν ;

9: until ∆gν = /0;
10: Normalize frequencies fgν

i j := Fgν

i j /max{Fgν

i j |(i, j) ∈A }, ∀(i, j) ∈A ;
11: for all (i, j) ∈A do
12: if fgν

i j ≥ τ then A gν ←A gν ∪{(i, j)};
13: end if
14: end for
15: Partial optimization:
16: Solve SPν

g , by fixing variables belonging to A gν to open, yielding solution
ygν

i j ,∀(i j) ∈A

17: Return the normalized frequencies fgν

i j , ∀(i j) ∈A and solution ygν

i j ,∀(i j) ∈A .

point to update the penalties in the PHA, whereas the proposed heuristic design, in sec-

tion 5.4.4.2, is created by exploiting the dual information associated with the solutions

of subproblems and serves as the initial solution for the subproblems in the following

iteration.

5.4.4.1 Introducing a new reference point

As the reference point is used to indicate what appears to be the current trend for

opening and closing arcs amongst the subproblem designs, it is obviously vital to have a

good aggregated point reflecting such a trend amongst the subproblems. As mentioned

earlier, the reference point in the PHA applied on stochastic MCFND in [29, 34], is

constructed as follows: ȳν
i j ← ∑g∈G pgygν

i j ,∀(i, j) ∈ A . The dual prices λ
gν

i j are then

updated, using the reference solution ȳν
i j and the sole external parameter associated with

the basic PHA, i.e., ρ , as follows: λ
gν

i j ← λ
gν−1
i j +ρ(ygν

i j − ȳν
i j). The mentioned strategy

only considers a single design vector obtained by each subproblem to produce the ref-

106

erence point. However, it is worth to exploit more local information obtained by each

subproblem, specially when each subproblem presents a multi-scenario structure.

In this paper we introduce a new reference point by exploiting the information de-

rived by the learning mechanisms in the subproblems. In the Learn&Optimize proce-

dure performed to solve each subproblem, we create the history of promising design

variables identified in each subproblem. We accordingly build frequency memories

Fgν

i j ,∀(i, j) ∈ A , as well as the normalized values, i.e., fgν

i j ∈ [0,1],∀(i, j) ∈ A . Us-

ing the refined information, provided by fgν

i j , we have the opportunity to better explore

the trend amongst the design variables that becomes available during the iterations of the

Learn&Optimize procedure.

We then propose ỹν
i j ← ∑g∈G pgfgν

i j , ∀(i, j) ∈ A , where pg = ∑s∈Cg ps, as a refer-

ence point in the aggregation step of the ILPH. Therefore, the Lagrangian multipliers

λ
gν

i j ∀(i, j) ∈ A are updated using the new reference point ỹν
i j ∀(i, j) ∈ A as follows:

λ
gν

i j ← λ
gν−1
i j +ρ(fgν

i j − ỹν
i j).

5.4.4.2 Producing a temporary design solution

The second idea is to exploit dual information provided by subproblem solutions to

create a temporary design solution at each iteration of PHA. This is motivated by the

observation made in Sarayloo et al. [109] suggesting that special knowledge obtained by

reduced cost values associated with multiple solutions could allow the identification of

a good quality solution in the context of stochastic network design problems.

We extract reduced cost information associated with the solutions of subproblems

in the ILPH algorithm to produce a temporary design solution. This temporary design

solution ŷν
i j,∀(i, j)∈A is constructed in the aggregation step of the ILPH algorithm and

serves as a initial design solution for the Learn&Optimize procedure in the following

iteration. To create the solution ŷν
i j, we proceed as follows. We initially use the solution

ỹν
i j← ∑g∈G pg f gν

i j , ∀(i, j) ∈A and partition the set of design variables into two disjoint

subsets:

• ˆA1 = {(i, j)|ỹν
i j ≤ l0 or ỹν

i j ≥ u1}: the set of design variables for which a consensus

107

has been almost obtained (given thresholds l0 and u1) among the groups, or in other

words, (almost) all groups agree that these arcs have to be opened.

• ˆA2 = {(i, j)|l0 ≤ ȳν
i j ≤ u1}: the set of the remaining design variables or those for

which a consensus has not been obtained.

All design variables in ˆA1 are set to the value 0 or 1 as follows,

ŷν
i j =

0, if ỹν
i j ≤ l0,

1, if ỹν
i j ≥ u1.

(5.25)

For the rest of variables in ˆA2, the decision is based on reduced cost information.

To do so, let rg
i j,∀(i, j) ∈ ˆA2 be the reduced cost associated with yg

i j ∀(i, j) ∈ ˆA2; G1
i j =

{g|yg
i j = 1} be the set of groups where the associated design variables yg

i j is one, and

r̄gν

i j = ∑g∈G1
i j

pgrgν

i j ,(i, j)∈ ˆA be the average reduced cost over groups g ∈G1
i j. It should

be noted that, given the fact that we are solving the restricted problem SPν
g with the

integrality requirements, we need to perform one additional step to obtain the reduced

cost values. Once the restricted problem SPν
g is solved and its optimal (integer) solution,

ygν

i j ,∀(i j) ∈A , is obtained, we will then need to solve the LP relaxation of the problem

SPν
g while the design variables are fixed to the values of the obtained optimal solution

ygν

i j ,∀(i j)∈A . In this way, one can obtain the set of reduced cost values associated with

design variables.

We represent the set of reduced cost by R = {r̄gν

i j |(i, j) ∈ ˆA2}. In order to identify

good candidate design variables to be fixed to 1 (open), we choose the variables with

the smallest reduced cost values. To do so, we sort R in non-decreasing order according

to r̄gν

i j . Let rmax
1 and rmin

1 be the maximum and minimum values in R. We then divide

the difference rmax
1 − rmin

1 in N1 classes and store (i, j) belonging to the first classes 1

to p1 in R1. We then set ŷν
i, j ← 1, ∀(i, j) ∈ R1 and ŷν

i j ← 0, ∀(i, j) /∈ R1. Consequently,

the solution ŷν
i j ∀(i, j) ∈A , in each iteration ν , is created by exploiting the reduced cost

information associated with multiple solutions obtained by all considered groups.

We note that the reference point created in the previous section may not be used as

an initial solution for the Learn&Optimize procedure, because ỹν
i j, ∀(i, j), ∈A is not a

108

{0,1} design solution. However, the solution ŷν
i j, ∀(i, j) ∈A we created in this section

is an actual {0,1} design solution.

5.4.5 The algorithm

Algorithm 10 sums up the entire procedure which consists of two main phases (sim-

ilar to Crainic et al. [34]). In initialization phase, we solve the multi-scenario sub prob-

lems SP0
g,∀g ∈ G, where the original fixed cost is considered in the objective function.

In phase I, the multi-scenario subproblems are solved approximately as explained in

Section 5.4.3. In each aggregation step, ỹ and ŷ are constructed and accordingly the

Lagrangian multipliers are updated as described in Section 5.4.4. To produce a global

feasible solution, yMν
i j , ∀(i, j)∈A , at each iteration of PHA, we follow the strategy used

in [29, 34] to construct a heuristic feasible network yMν at each iteration ν , by setting

the design variables yMν
i j , ∀(i, j) ∈A to

yMν
i j =

1, if ygν

i j = 1, for any g ∈ G,

0, otherwise .
(5.26)

The best network found, i.e., yBest , is updated based on the quality (total cost) of the

feasible solution yMν obtained at each iteration ν . We use similar stopping criteria (in

line 9) as those in Crainic et al. [34]. Namely, we stop after a total of NItr iterations,

NImp consecutive iterations without improving the best known solution, tmax CPU time,

or when there are fewer than γ (0≤ γ ≤ 1) percent of the arcs for which a consensus has

not been reached. When such a situation occurs, phase II is used to resolve it. In phase

II, we fix the design variables for which a consensus is obtained and solve the original

problem to obtain the final design solution yFinal . In line 28, we update ybest , if needed.

5.5 Experimental results

This section presents results of extensive computational experiments performed to

assess the performance of the proposed algorithm. We used two collections of instances

109

Algorithm 10 The proposed integrated learning and progressive hedging method
1: Initialization
2: Let ν ← 0 λ

gν

i j ← 0,∀(i, j) ∈A , ρν ← ρ0

3: Construct the list of scenario groups C̄ = {C1, . . . ,C|G|}
4: for each group g do
5: Solve SP0

g heuristically by performing Algorithm 8 in Section 5.4.3
6: end for
7: Construct solutions yMν

i j , ỹν
i j, and ŷν

i j as stated in lines 18-21
8: Phase I: Seek consensus on the arcs (i,j) that should exist in the design
9: while stopping criteria not met do

10: Iteration update:
11: ν ← ν +1
12: Solving subproblems heuristically:
13: for each group g do
14: Solve SPν

g heuristically by performing Algorithm 8 in Section 5.4.3, considering La-
grangian multipliers λ

gν−1
i j ,∀(i, j) ∈ A and solution ŷν−1

i j ,∀(i, j) ∈ A , to obtain fgν

i j and
ygν

i j ∀(i, j) ∈A
15: end for
16: Aggregation:
17: Construct solution yMν

i j ,∀(i, j) ∈A according to (5.26)
18: Update the best feasible solution yBest ← yMν , if appropriate;
19: Let ỹν

i j← ∑g∈G pgfgν

i j , ∀(i, j) ∈A where pg = ∑s∈Cg ps

20: Update solution ŷν
i j,∀(i, j) ∈A as described in Section 5.4.4.2

21: Penalty updates:
22: Adjust penalty values λ

gν

i j ← λ
gν−1
i j +ρ(fgν

i j − ỹν
i j) and ρν ← αρν−1

23: end while
24: Phase II: Solve a restriction as a MIP problem
25: Fix the design variables for which consensus is obtained in MCFND(S) (5.1)-(5.5)
26: Solve the restricted MCFND(S) model (5.1)-(5.5) to obtain a final design y f inal

27: Update best solution, yBest ← y f inal if appropriate.

which are described in Section 5.5.1. To evaluate the performance of the proposed al-

gorithm (ILPH), we also considered alternative approaches to be tested on the same

instances and performed the following algorithms:

• IBM-ILOG CPLEX 12.6.1 with its default settings (CPLEX in the following) on

the MILP associated with an instance; and

• The basic progressive hedging with single scenario subproblem (PH-S in the fol-

lowing)

110

After presenting the two collections of instances, we start by analyzing the results

obtained on the first collection of instances containing a smaller number of scenarios.

We compare the performance of the proposed method with that of CPLEX in terms of

optimality gap and computational time on these easier instances in Section 5.5.2. To

assess the power of the proposed algorithm in dealing with a large number of scenarios,

we provide a performance comparison of the proposed ILPH versus PH-S and CPLEX

on the second collection of instances in Section 5.5.3.

5.5.1 Data and experimental setting

We consider five problem classes (R5-R9) from the set of R instances of the stochas-

tic MCFND problem introduced in Crainic et al. [29]. Each class is characterized by a

number of nodes |N |, number of arcs |A | and number of commodities |K |, specified

in Table 5.5.1. For each instance class, we consider five networks (namely, networks 1,

3, 5, 7, and 9) which indicate continuously increasing ratios of fixed to variable costs

and total demand to total network capacity. In the first collection of instances, for each

of these networks, there are instances with 16, 32 and 64 scenarios with two different

levels of correlations 0.2 and 0.8. A total of 150 instances were thus obtained. We fol-

lowed the strategy proposed in Crainic et al. [34] to generate the groups of scenarios

randomly. To do so, we randomly determine the number of groups between |S |/2 and

|S |/4 and then randomly assign scenarios to groups. In order to have instances with a

larger number of scenarios, we followed the procedure in Boland et al. [18]. In the sec-

ond collection of instances, for each of the networks, there are 10 instances with 1000

scenarios and two levels of correlations 0.2 and 0.8 which are generated as follows. For

each commodity and for each network, the minimum and maximum demand are deter-

mined over all scenarios considered in Crainic et al. [29]. Then, the demand is generated

for the commodity in each of the |S | scenarios by drawing uniformly randomly from the

interval determined by the minimum and maximum demand. For grouping the scenarios

in the instances with 1000 scenarios, we considered 100 scenarios for each subproblem.

Therefore, we determined 10 subproblems at each iteration of the proposed algorithm,

where the scenarios are chosen randomly within each group.

111

For the implementation, algorithms were coded in C++ using IBM-ILOG CPLEX

12.6.1 as the MILP solver. We used similar stopping criteria for both of PH-S and ILPH,

as presented in Crainic et al. [29]: NItr = 1000, tmax = 8h, and γ = .1 . The parameter

NImp is set to 10 and 4 for PH-S and ILPH, respectively. A preliminary experiment

was conducted on the proposed ILPH to fine tune the τ , N1, and p1 parameters to the

values .95, 3, and 2, respectively. We also set N∆g = |K | ∗ |Cg|. We let ŷ0 ← yexp

be the initial integer solution at iteration 0 in the Learn&Optimize procedure, where

yexp is the optimal solution to the expected value (EV) problem. The EV problem is

obtained by replacing the random demand variable by their expected values and solving

the deterministic problem. These settings generally worked well on our test problems.

To reduce the time required to complete phase I, the optimality tolerance parameter of

CPLEX was set to 1 percent when solving the sub-problems. This parameter is set to its

default value when solving the restricted problem of the second phase. Unless otherwise

specified, all other CPLEX parameters were set to their default values since preliminary

experiments indicated that these settings yielded better results. All experiments were

performed on a Sun Fire X4100 cluster of 16 computers. Each has two 2.6 GHz Dual-

Core AMD Opteron processors and 8192 Megabytes of RAM, operating under Solaris

2.10.

Table 5.5.1: Characteristics of instances
Problem |N | |A | |K |

R05 10 60 25
R06 10 60 50
R07 10 82 10
R08 10 83 25
R09 10 83 50

5.5.2 Performance comparison on the first collection of instances

In the first part of experiments, we focus on the first collection of instances (with 16,

32 and 64 scenarios) for which CPLEX is able to provide either the optimal solution or

at least a feasible solution for all of them within the time limit of 8 hours. However, this

112

is not the case in the second collection of instances. Table 5.5.2 reports the performance

of the proposed ILPH versus CPLEX, in terms of optimality gap and total computational

time. The Gap and Time values reported for CPLEX refer, respectively, to the optimal

gap, and the total computation time expressed in seconds. For ILPH, Gap and Time

represent the corresponding optimality gap relative to the lower bound of CPLEX, and

the total computation time in seconds, respectively. We observed that the proposed ILPH

with an optimality gap of 1.18% performs a little better than CPLEX with an optimality

gap of 1.21% on average. However, ILPH is more than 10 times faster than CPLEX on

this collection of instances.

The results above are encouraging and demonstrate the potential of ILPH, but the

instances are inadequate to fully reveal the power of ILPH. In this collection of instances,

most of the instances can be solved to optimality by CPLEX in less than 2 hours. This is

not the setting for which a decomposition approach is designed. The ILPH is designed

to be used in settings where the instances are large, difficult, and cannot be solved in a

reasonable amount of time when providing the MILP formulation to a solver. Indeed,

solving the root relaxation may already be computationally prohibitive. In the following

subsection, we present results on instances that are (somewhat) more appropriate to show

the benefits of ILPH.

Table 5.5.2: Performance comparison versus CPLEX on first collection of instances
Pro Ins CPLEX ILPH

Gap Time Gap Time
R05 30 0.00% 1411 0.06% 118
R06 30 1.51% 11076 1.46% 951
R07 30 0.12% 2130 0.84% 105
R08 30 0.96% 7516 1.24% 841
R09 30 3.48% 16415 2.20% 840
Avg 1.21% 7709.6 1.18% 571.3

5.5.3 Performance comparison on the second collection of instances

In the following, we focus on the much more difficult instances with 1000 scenarios.

We provide the comparative results of the proposed ILPH versus CPLEX (in Tables 5.5.3

113

and 5.5.4) and PH-S (in Table 5.5.5) to show the advantage of the proposed method in

dealing with such difficult instances. Each row of these tables refers to 10 instances with

1000 scenarios with different characteristics mentioned in Section 5.5.1.

In Table 5.5.3, we first report the average optimality gap, OptGap, that CPLEX is

able to provide after a time limit of 8 hours. Note that we consider the optimality gap of

100% for those instances for which CPLEX is not able to provide any feasible solution.

In column ILPH/CPLEX , we report the percentage of relative difference between the

best solutions found by the two algorithms (i.e., zILPH and zCPX) by imposing a 8 hour

time limit on the two solution methods. The relative difference is computed as (zILPH −
zCPX)/zILPH . The negative values refer to the cases where ILPH provides better solutions

than CPLEX. In the last columns, we compare the two solution methods based on the

percentage of instances for which the considered solution method is able to provide the

optimal solution (Opt.) and a feasible solution (Sol.).

The results in Table 5.5.3 show that ILPH outperforms CPLEX on these difficult

instances where the average optimality gap provided by CPLEX is 33.93%. In terms

of the percentage of instances with a feasible solution, we observed that ILPH is able

to provide a feasible solution in all instances. However, CPLEX is not able to find

any feasible solution in 20 percent of instances after 8 hours of computation time, thus

indicating the difficulty of these instances. Moreover, ILPH performs as well as CPLEX

in terms of the percentage of instances (24%) for which an optimal solution is found. In

terms of solution quality, the results indicate that ILPH is able to provide an impressive

improvement of -26.6% over CPLEX with a time limit of 8 hours.

Table 5.5.3: Performance comparison on second collection of instances versus CPLEX
Pro Ins OptGap(%) ILPH/CPLEX(%) ILPH CPLEX

CPLEX 8 h Opt. Sol. Opt. Sol.
R05 10 17.94% -11.89% 40% 100% 40% 100%
R06 10 47.87% -41.38% 40% 100% 40% 100%
R07 10 9.70% -2.51% 20% 100% 20% 100%
R08 10 27.72% -15.34% 20% 100% 20% 100%
R09 10 66.37% -61.89% 0% 100% 0% 40%
Avg 33.93% -26.60% 24% 100% 24% 80%

114

In order to show the power of the proposed ILPH in finding good solutions quickly,

we report the comparative results of ILPH versus CPLEX in a shorter amount of time

for these difficult instances. Table 5.5.4 displays the results obtained by the two methods

with 3 hours of time limit. The table reports the same information as Table 5.5.3, but

for a time limit of 3 h. The average optimality gap provided by CPLEX is 45.59%,

indicating the difficulty of these problems. We observed that ILPH is able to find a

feasible solution in all considered instances, while CPLEX is not able to do so in 32%

of instances. In terms of the percentage of instances for which the two algorithms can

hit the optimal solution after 3 hours of time limit, ILPH performs 5 times better than

CPLEX. Furthermore, ILPH provides an improvement, in solution quality of -39.23%,

which is facinating.

Table 5.5.4: Efficiency of the ILPH versus CPLEX in finding good solution quickly
Pro Ins OptGap(%) ILPH/CPLEX(%) ILPH CPLEX

CPLEX 3 h Opt. Sol. Opt. Sol.
R05 10 22.56% -12.62% 40% 100% 0% 100%
R06 10 63.90% -62.31% 20% 100% 20% 40%
R07 10 15.97% -4.34% 20% 100% 0% 100%
R08 10 41.36% -35.03% 20% 100% 0% 80%
R09 10 84.18% -81.84% 0% 100% 0% 20%
Avg 45.59% -39.23% 20% 100% 4% 68%

Table 5.5.5 displays the performance results of the proposed ILPH compared to PH-

S, in terms of solution quality and computation time. In order to investigate how the

proposed ILPH performs compared to PH-S, we consider the best solution provided

after the first phase (i.e., yBest) by ILPH and PH-S. Column “ILPH/PH−S” reports the

relative improvement (in percentage), computed as (zILPH − zPH−S)/zILPH , after a time

limit of 8 hours. The negative values indicate that ILPH outperforms PH-S. We also

report the average computation time in seconds (Time) and the percentage of instances

with a feasible solution (Sol.) for the two algorithms.

We observed that the proposed ILPH provides solutions with an improvement of

-15.28% compared to PH-S in almost one third of computation time, on average. Fur-

thermore, PH-S is not able to provide any solution in 8% of instances, while ILPH is

115

able to provide a feasible solution in all considered instances.

Table 5.5.5: Performance comparison on second collection of instances versus PH-S
Pro Ins ILPH/PG-S Time Sol.

Phase1 ILPH PH-S ILPH PH-S
R05 10 -8.45% 582 5325 100% 100%
R06 10 -10.14% 4121 19277 100% 100%
R07 10 -10.16% 1210 3576 100% 100%
R08 10 -5.14% 13755 14822 100% 100%
R09 10 -42.47% 7611 30613 100% 60%
Avg -15.28% 5456 14728 100% 92%

5.6 Conclusions

This paper explores the development of an efficient optimization approach to ad-

dress the large and complex stochastic MCFND problems. We proposed a two phase

integrated learning and PH method as a matheuristic approach to handle a large number

of scenarios in the considered context. We adapt the Learn&Optimize procedure to be

used as an efficient heuristic method to address the multi-scenario subproblems at each

iteration of the PHA. We exploited the knowledge learned through the Learn&Optimize

and particularly introduced a new reference point in each aggregation step of PHA by ex-

ploiting the knowledge regarding the promising design variables which are built through

the Learn&Optimize applied in the subproblems. In this way, we inject the knowledge

learned through the heuristic procedure into the PHA leading to the proposed ILPH

method, which considered as the main contribution in this paper.

Through computational experiments, we have shown that the proposed algorithm

performs very well in terms of both solution quality and computation time. We have

provided comparative analysis that show the superiority of the proposed approach versus

CPLEX and the basic PHA (with single scenario subproblems). The results indicate

that the proposed algorithm is able to provide impressive improvements of 26.6% and

15.28% (when dealing with large instances with 1000 scenarios) versus CPLEX and the

basic PHA, respectively. The analysis also indicates that ILPH should be the method

116

of choice where high-quality solutions to very complex instances of stochastic network

problems containing a large number of scenarios need to be found quickly.

We conclude by providing a few possible directions for future research. This could

include investigating whether the algorithm would be as successful or not in solving dif-

ferent optimization problems or other variants of MCFND as it is in solving the current

version considered in this paper. Indeed, it is a general-purpose algorithm and can be

applicable to different stochastic programs. Tailored implementations of the proposed

PHA can lead to quite effective ad-hoc heuristics for very large stochastic programming

applications. Other research avenues include considering other strategies for updating

the penalties within the PHA and other methods for solving the sub-problems. Finally,

another important research direction is to develop parallel PHA strategies, which will

further amplify its advantages and benefits.

Acknowledgments

While working on this project, T.G. Crainic was Adjunct Professor with the Depart-

ment of Computer Science and Operations Research, Université de Montréal. Partial

funding for this project has been provided by the Natural Sciences and Engineering

Council of Canada (NSERC), through its Discovery Grant program, and by the Fonds

Québécois de la Recherche sur la nature et les technologies (FQRNT) through its strate-

gic center infrastructure grant program.

117

CHAPTER 6

CONCLUSIONS

The present dissertation addressed the stochastic network design problem under de-

mand uncertainty as a two-stage stochastic program. In such setting, design decisions

are made in the first stage before the actual demand is realized, while second-stage flow-

routing decisions adjust the first-stage solution to the observed demand realization. The

main goal of the stochastic network design formulations is to find a single optimal design

solution for the range of possible demand realizations. To represent the uncertainty, we

used the well-known scenario approach, where stochastic demands are modeled via a

finite number of discrete scenarios together with associated probabilities. This leads to a

very large scale mixed integer program which is extremely hard, even without the pres-

ence of integrality requirements, to be handled with exact methods and state-of-the-art

solvers. Therefore, there is an apparent need to propose and develop heuristic solution

methodologies to solve such large stochastic models, efficiently.

In summary, concerning the subject and the scope of the thesis, we have sought to

better understand the solution structure of stochastic network design problems to enrich

the current research literature by contributing in the solution methodologies.

In Chapter 3, we introduced a learning-based matheuristic for the stochastic fixed

charge network design problem. The innovative learning mechanism systematically ex-

plores combinations of scenarios so as to extract relevant information regarding the so-

lution structure of the stochastic problem. Using these mechanisms, scenarios and their

influences on design decisions were successively considered through the algorithm. In

fact, a global image of the promising structure of the stochastic solution is built by gradu-

ally learning from the partial knowledge produced by the learning mechanism supporting

the collection and use of the memory. This is indeed the main novelty of the proposed

approach in dealing with uncertainty. The proposed Learn&Optimize matheuristic iter-

atively exploited the obtained knowledge of learning heuristic to define a reduced size

problem to be solved by a MIP solver.

We presented the results of extensive computational experiment using the proposed

matheuristic and compared the latter with solutions produced by CPLEX. The results

show that the proposed algorithm is highly effective at finding good-quality solutions on

the largest available subset of instances for stochastic network design problems.

In Chapter 4, we investigated how to efficiently design learning mechanisms based

on dual information as a means of guiding variable fixing within the context of stochastic

network design. We looked at how reduced cost information extracted from the solution

obtained by the LP relaxation of the EV problem can be leveraged so as to guide variable

selection within stochastic formulations. We particularly explored different strategies to

determine the desirable set of variables to be fixed using reduced cost information ex-

tracted from a solution obtained by a deterministic expected value problem. The purpose

of the proposed strategies was to identify appropriate subsets of design variables (using

reduced cost information) to be fixed to open or closed in the stochastic problem, as a re-

striction, and obtain a good quality solution. We considered two main factors within each

strategy, including the choice of solution from which we extract the reduced costs, and

the choice of variables (i.e. design variables or flow variables). Each of these strategies

utilized a single solution to learn from the associated reduced cost values (corresponding

to design or flow variables) so as to create an appropriate set of fixed variables.

An analysis of the proposed strategies showed that the variable fixing process could

be significantly improved if the EV solution was reconstructed, upgraded, and if its asso-

ciated reduced cost information was extracted afterwards. Subsequently, a matheuristic

approach was proposed which iteratively defined restricted problems constructed by ex-

ploiting reduced cost information extracted from multiple solutions. The main novelty

of the proposed approach is its use of primal and dual information to define the restricted

problems in a more effective manner. The results show that the proposed algorithm is

highly efficient at finding good-quality solutions and even outperforms our proposed

method in the first study for very large instances of stochastic network design problems.

In Chapter 5, an efficient solution method was designed which was intended to effec-

tively manage a large numbers of scenarios. We proposed a two-phase solution approach,

based on the progressive hedging algorithm of Rockafellar and Wets [103]. In phase I,

119

the PHA was used: the problem is first decomposed by partitioning the set of scenar-

ios into groups, and then the sub-problems associated with each group are addressed

iteratively to guide their solutions to a consensus solution. To deal with difficulties

in solving multi-scenario subproblems, the Learn&Optimize procedure, as an efficient

heuristic method, was adapted to address the multi-scenario subproblems at each itera-

tion of ILPH. We also introduced a new reference point within each aggregation step of

our PHA (as opposed to of the weighted average solution) by exploiting the information

garnered from subproblems, and using this information to update the PHA penalties.

In this way, we inject the knowledge learned through the heuristic procedure into the

PHA, resulting in the proposed ILPH method. In phase II, a reduced size problem is

constructed by fixing the design variables for which a consensus is obtained, and the re-

sulting smaller problem is solved to generate the final solution. We showed, by means of

extensive comparative analysis, the superiority of the proposed ILPH algorithm as com-

pared against CPLEX and the classical PHA. We are continuing to work on this research

work to apply different strategies, in choosing the set of (similar or dissimilar) scenarios

in subproblems, like those proposed in [34], to enhance the obtained results. However,

the random strategy applied in this dissertation still provides a good performance which

underlines the worthiness of a general methodology when a very simple random strategy

is involved.

6.1 Future research directions

We conclude this chapter by highlighting some research perspectives.

One possible direction is the continued study of the learning based matheuristic ap-

proach which iteratively uses a MIP commercial solver as a subroutine for handling

subproblems. In designing such approaches, the key question that arises is how reduced

size problems should be constructed by designing effective learning mechanisms. While

providing an all-inclusive rule for the learning mechanism does not seem to be a feasible

approach, some interesting guidelines emerge from the analysis of solution structures of

stochastic problems. Moreover, the nature of the methods proposed in this dissertation

120

also suggests straightforward parallelization strategies that, despite their simplicity, can

lead to an attractive reduction in computation time and improvement of the accuracy

level.

Apart from the classical network design model addressed in this dissertation, there

are still many potential areas to adapt the proposed matheuristic approaches for different

variants of this model that have not been addressed so far, like service network design

models. It would be worthwhile to develop various metaheuristic and matheuristic ap-

proaches which incorporate different learning and memorizing mechanisms to handle

such large-scale problems.

The frontiers of stochastic network design research are increasingly dependent on

sophisticated modeling approaches. In scenario-based stochastic programs for ND prob-

lems, two stage modeling approaches were widely applied due to their relative simplicity.

However, time staging information is needed as information arrives over time. Thus, de-

veloping multi-stage stochastic programs and developing efficient solution approaches

for them will be welcomed by researchers and practitioners.

Another key question for scenario-based stochastic programs is how to generate an

efficient set of scenarios to model the underlying stochasticity in SND. Although much

literature has studied scenario generation and reduction in the stochastic programing

community [41, 70], there is still much space to explore these approaches in this research

area. More importantly, evaluating scenario generation methods in terms of stability and

quality criteria should be examined in SND problems as well.

Finally, the last conclusion to be drawn from this dissertation is that, while there are

several research studies for ND problems under uncertainty, there are only a few papers

to cope with real world situations. Possible reasons for the lack of application papers

include : (1) preparation and aggregation of data are rather time-consuming to model

comprehensive SND problems, and (2) in many real cases there is not enough histori-

cal data for the uncertain parameters. Thus, this research area still needs more studies

exploring realistic models based on real-world applications and handling computational

aspects to solve large-sized problems.

121

BIBLIOGRAPHY

[1] Ahmadi-Javid, Amir, Amir Hossein Seddighi. 2013. A location-routing problem

with disruption risk. Transportation Research Part E: Logistics and Transporta-

tion Review 53 63–82.

[2] Ahuja, Ravindra K, Thomas L Magnanti, James B Orlin, et al. 1993. Network

flows: theory, algorithms, and applications. Prentice hall Englewood Cliffs, NJ.

[3] Albareda-Sambola, Maria, Antonio Alonso-Ayuso, Laureano F Escudero, Elena

Fernández, Celeste Pizarro. 2013. Fix-and-relax-coordination for a multi-period

location–allocation problem under uncertainty. Computers & Operations Re-

search 40(12) 2878–2892.

[4] Alonso-Ayuso, Antonio, Laureano F Escudero, Araceli Garín, M Teresa Ortuño,

Gloria Pérez. 2003. An approach for strategic supply chain planning under un-

certainty based on stochastic 0-1 programming. Journal of Global Optimization

26(1) 97–124.

[5] Angelelli, Enrico, Renata Mansini, M Grazia Speranza. 2010. Kernel search:

A general heuristic for the multi-dimensional knapsack problem. Computers &

Operations Research 37(11) 2017–2026.

[6] Archetti, Claudia, M Grazia Speranza, Martin WP Savelsbergh. 2008. An

optimization-based heuristic for the split delivery vehicle routing problem. Trans-

portation Science 42(1) 22–31.

[7] Armacost, Andrew P, Cynthia Barnhart, Keith A Ware. 2002. Composite vari-

able formulations for express shipment service network design. Transportation

Science 36(1) 1–20.

[8] Ayvaz, Berk, Bersam Bolat, Nezir Aydın. 2015. Stochastic reverse logistics net-

work design for waste of electrical and electronic equipment. Resources, conser-

vation and recycling 104 391–404.

[9] Azaron, A, KN Brown, SA Tarim, M Modarres. 2008. A multi-objective stochas-

tic programming approach for supply chain design considering risk. International

Journal of Production Economics 116(1) 129–138.

[10] Balakrishnan, Anantaram, Thomas L Magnanti, Richard T Wong. 1989. A dual-

ascent procedure for large-scale uncapacitated network design. Operations Re-

search 37(5) 716–740.

[11] Balas, Egon, Eitan Zemel. 1980. An algorithm for large zero-one knapsack prob-

lems. Operations Research 28(5) 1130–1154.

[12] Benyoucef, Lyes, Xiaolan Xie, Guy Aime Tanonkou. 2013. Supply chain net-

work design with unreliable suppliers: a lagrangian relaxation-based approach.

International Journal of Production Research 51(21) 6435–6454.

[13] Beraldi, Patrizia, Francesco De Simone, Antonio Violi. 2010. Generating sce-

nario trees: A parallel integrated simulation–optimization approach. Journal of

Computational and Applied Mathematics 233(9) 2322–2331.

[14] Bidhandi, Hadi Mohammadi, Rosnah Mohd Yusuff. 2011. Integrated supply chain

planning under uncertainty using an improved stochastic approach. Applied Math-

ematical Modelling 35(6) 2618–2630.

[15] Billingsley, Patrick. 2008. Probability and measure. John Wiley & Sons.

[16] Binato, Silvio, Mário Veiga F Pereira, Sérgio Granville. 2001. A new benders

decomposition approach to solve power transmission network design problems.

IEEE Transactions on Power Systems 16(2) 235–240.

[17] Birge, John R, Francois Louveaux. 2011. Introduction to stochastic programming.

Springer Science & Business Media.

[18] Boland, Natashia, Matteo Fischetti, Michele Monaci, Martin Savelsbergh. 2016.

Proximity Benders: a decomposition heuristic for stochastic programs. Journal

of Heuristics 22(2) 181–198.

123

[19] Cario, Marne C, Barry L Nelson. 1997. Modeling and generating random vectors

with arbitrary marginal distributions and correlation matrix. Tech. rep., North-

western University.

[20] Cavellucci, Celso, Christiano Lyra. 1997. Minimization of energy losses in elec-

tric power distribution systems by intelligent search strategies. International

Transactions in Operational Research 4(1) 23–33.

[21] Charnes, Abraham, William W Cooper. 1959. Chance-constrained programming.

Management Science 6(1) 73–79.

[22] Chouinard, Marc, Sophie D´Amours, Daoud Aït-Kadi. 2008. A stochastic pro-

gramming approach for designing supply loops. International Journal of Produc-

tion Economics 113(2) 657–677.

[23] Chouman, Mervat, Teodor Gabriel Crainic. 2014. Cutting-plane matheuristic for

service network design with design-balanced requirements. Transportation Sci-

ence 49(1) 99–113.

[24] Chouman, Mervat, Teodor Gabriel Crainic, Bernard Gendron. 2016. Commod-

ity representations and cut-set-based inequalities for multicommodity capacitated

fixed-charge network design. Transportation Science 51(2) 650–667.

[25] Crainic, Teodor G, Francesca Maggioni, Guido Perboli, Walter Rei. 2017. Re-

duced cost-based variable fixing in two-stage stochastic programming. Annals of

Operations Research doi:10.1007/s10479-018-2942-8.

[26] Crainic, Teodor Gabriel. 2000. Service network design in freight transportation.

European Journal of Operational Research 122(2) 272–288.

[27] Crainic, Teodor Gabriel. 2005. Parallel computation, co-operation, tabu search.

Metaheuristic Optimization via Memory and Evolution. Springer, 283–302.

124

[28] Crainic, Teodor Gabriel, Fausto Errico, Walter Rei, Nicoletta Ricciardi. 2015.

Modeling demand uncertainty in two-tier city logistics tactical planning. Trans-

portation Science 50(2) 559–578.

[29] Crainic, Teodor Gabriel, Xiaorui Fu, Michel Gendreau, Walter Rei, Stein W Wal-

lace. 2011. Progressive hedging-based metaheuristics for stochastic network de-

sign. Networks 58(2) 114–124.

[30] Crainic, Teodor Gabriel, Michel Gendreau. 2007. A scatter search heuristic for

the fixed-charge capacitated network design problem. Metaheuristics. Springer,

25–40.

[31] Crainic, Teodor Gabriel, Michel Gendreau, Judith M. Farvolden. 2000. A

simplex-based tabu search method for capacitated network design. INFORMS

Journal on Computing 12(3) 223–236.

[32] Crainic, Teodor Gabriel, Mike Hewitt, Francesca Maggioni, Walter Rei. 2016.

Partial decomposition strategies for two-stage stochastic integer programs. Pub-

lication CIRRELT-2016-37, Centre interuniversitaire de recherche sur les réseaux

d’entreprise, la logistique et le transport, Université de Montréal, Montréal, QC,

Canada.

[33] Crainic, Teodor Gabriel, Mike Hewitt, Walter Rei. 2014. Partial decomposition

strategies for two-stage stochastic integer programs. Publication CIRRELT-2014-

13, Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logis-

tique et le transport, Université de Montréal, Montréal, QC, Canada.

[34] Crainic, Teodor Gabriel, Mike Hewitt, Walter Rei. 2014. Scenario grouping in

a progressive hedging-based meta-heuristic for stochastic network design. Com-

puters & Operations Research 43 90–99.

[35] Da Silva, Marcos Carneiro, Paulo Morelato França, Paulo D Bishop Da Silveira.

1996. Long-range planning of power distribution systems: secondary networks.

Computers & Electrical Engineering 22(3) 179–191.

125

[36] Daskin, Mark S, Lawrence V Snyder, Rosemary T Berger. 2005. Facility location

in supply chain design. Logistics systems: Design and optimization. Springer,

39–65.

[37] De Franceschi, Roberto, Matteo Fischetti, Paolo Toth. 2006. A new ILP-based

refinement heuristic for vehicle routing problems. Mathematical Programming

105(2-3) 471–499.

[38] Defourny, Boris, Damien Ernst, Louis Wehenkel. 2013. Scenario trees and pol-

icy selection for multistage stochastic programming using machine learning. IN-

FORMS Journal on Computing 25(3) 488–501.

[39] Dubey, Rameshwar, Angappa Gunasekaran, Stephen J Childe. 2015. The design

of a responsive sustainable supply chain network under uncertainty. The Interna-

tional Journal of Advanced Manufacturing Technology 80(1-4) 427–445.

[40] Dupačová, Jitka. 1995. Multistage stochastic programs: The state-of-the-art and

selected bibliography. Kybernetika 31(2) 151–174.

[41] Dupačová, Jitka, Giorgio Consigli, Stein W Wallace. 2000. Scenarios for multi-

stage stochastic programs. Annals of Operations Research 100(1-4) 25–53.

[42] Dupačová, Jitka, Nicole Gröwe-Kuska, Werner Römisch. 2003. Scenario reduc-

tion in stochastic programming. Mathematical Programming 95(3) 493–511.

[43] Escudero, Laureano F, María Araceli Garín, María Merino, Gloria Pérez. 2012.

An algorithmic framework for solving large-scale multistage stochastic mixed 0–

1 problems with nonsymmetric scenario trees. Computers & Operations Research

39(5) 1133–1144.

[44] Fattahi, Mohammad, Kannan Govindan. 2017. Integrated forward/reverse logis-

tics network design under uncertainty with pricing for collection of used products.

Annals of Operations Research 253(1) 193–225.

126

[45] Fischetti, Matteo, Andrea Lodi. 2003. Local branching. Mathematical program-

ming 98(1-3) 23–47.

[46] Gaivoronski, Alexei A. 2006. Stochastic optimization in telecommunications.

Handbook of Optimization in Telecommunications. Springer, 761–799.

[47] Gascon, Viviane, Abdelhamid Benchakroun, Jacques A Ferland. 1993. Electricity

distribution planning model: A network design approach for solving the master

problem of the Benders decomposition method. INFOR: Information Systems and

Operational Research 31(3) 205–220.

[48] Gavish, Bezalel. 1983. Formulations and algorithms for the capacitated minimal

directed tree problem. Journal of the ACM 30(1) 118–132.

[49] Gendron, Bernard, Teodor Gabriel Crainic. 1994. Relaxations for multicommod-

ity capacitated network design problems. Tech. Rep. CRT-965, Université de

Montréal, Centre de recherche sur les transports.

[50] Ghamlouche, Ilfat, Teodor Gabriel Crainic, Michel Gendreau. 2003. Cycle-based

neighbourhoods for fixed-charge capacitated multicommodity network design.

Operations Research 51(4) 655–667.

[51] Ghamlouche, Ilfat, Teodor Gabriel Crainic, Michel Gendreau. 2004. Path re-

linking, cycle-based neighbourhoods and capacitated multicommodity network

design. Annals of Operations Research 131(1-4) 109–133.

[52] Giarola, Sara, Nilay Shah, Fabrizio Bezzo. 2012. A comprehensive approach to

the design of ethanol supply chains including carbon trading effects. Bioresource

Technology 107 175–185.

[53] Glover, Fred. 1997. Tabu search and adaptive memory programming–advances,

applications and challenges. Interfaces in Computer Science and Operations Re-

search. Springer, 1–75.

127

[54] Goh, Mark, Joseph YS Lim, Fanwen Meng. 2007. A stochastic model for risk

management in global supply chain networks. European Journal of Operational

Research 182(1) 164–173.

[55] Gouveia, Luis. 1995. A 2n constraint formulation for the capacitated minimal

spanning tree problem. Operations Research 43(1) 130–141.

[56] Govindan, Kannan, Mohammad Fattahi. 2017. Investigating risk and robustness

measures for supply chain network design under demand uncertainty: A case

study of glass supply chain. International Journal of Production Economics 183

680–699.

[57] Guillén-Gosálbez, Gonzalo, Ignacio E Grossmann. 2009. Optimal design and

planning of sustainable chemical supply chains under uncertainty. AIChE Journal

55(1) 99–121.

[58] Hatefi, Seyed Morteza, Fariborz Jolai, S Ali Torabi, Reza Tavakkoli-Moghaddam.

2015. A credibility-constrained programming for reliable forward–reverse logis-

tics network design under uncertainty and facility disruptions. International Jour-

nal of Computer Integrated Manufacturing 28(6) 664–678.

[59] Haugen, Kjetil K, Arne Løkketangen, David L Woodruff. 2001. Progressive hedg-

ing as a meta-heuristic applied to stochastic lot-sizing. European Journal of Op-

erational Research 132(1) 116–122.

[60] Heitsch, Holger, Werner Römisch. 2003. Scenario reduction algorithms in

stochastic programming. Computational Optimization and Applications 24(2-3)

187–206.

[61] Hewitt, Mike, George L Nemhauser, Martin WP Savelsbergh. 2010. Combin-

ing exact and heuristic approaches for the capacitated fixed-charge network flow

problem. INFORMS Journal on Computing 22(2) 314–325.

128

[62] Higle, Julia L, Suvrajeet Sen. 1991. Stochastic decomposition: An algorithm for

two-stage linear programs with recourse. Mathematics of Operations Research

16(3) 650–669.

[63] Higle, Julia L, Stein W Wallace. 2003. Sensitivity analysis and uncertainty in

linear programming. Interfaces 33(4) 53–60.

[64] Høyland, Kjetil, Michal Kaut, Stein W Wallace. 2003. A heuristic for moment-

matching scenario generation. Computational optimization and applications

24(2-3) 169–185.

[65] Høyland, Kjetil, Stein W Wallace. 2001. Generating scenario trees for multistage

decision problems. Management Science 47(2) 295–307.

[66] Infanger, Gerd. 1992. Monte Carlo (importance) sampling within a Benders de-

composition algorithm for stochastic linear programs. Annals of Operations Re-

search 39(1) 69–95.

[67] Kall, Peter, Stein W Wallace, Peter Kall. 1994. Stochastic programming. Springer.

[68] Kaut, Michal, Hercules Vladimirou, Stein W Wallace, Stavros A Zenios. 2007.

Stability analysis of portfolio management with conditional value-at-risk. Quan-

titative Finance 7(4) 397–409.

[69] Kim, Jinkyung, Matthew J Realff, Jay H Lee. 2011. Optimal design and global

sensitivity analysis of biomass supply chain networks for biofuels under uncer-

tainty. Computers & Chemical Engineering 35(9) 1738–1751.

[70] King, Alan J, Stein W Wallace. 2012. Modeling with stochastic programming.

Springer Science & Business Media.

[71] Klibi, Walid, Alain Martel. 2012. Modeling approaches for the design of re-

silient supply networks under disruptions. International Journal of Production

Economics 135(2) 882–898.

129

[72] Klibi, Walid, Alain Martel. 2012. Scenario-based supply chain network risk mod-

eling. European Journal of Operational Research 223(3) 644–658.

[73] Klibi, Walid, Alain Martel, Adel Guitouni. 2010. The design of robust value-

creating supply chain networks: a critical review. European Journal of Opera-

tional Research 203(2) 283–293.

[74] Lanza, G., T.G Crainic, W. Rei, N. Ricciardi. 2017. Service Network Design

Problem with Quality Targets and Stochastic Travel Time. Publication CIRRELT-

2017, Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logis-

tique et le transport, Université de Montréal, Montréal, QC, Canada.

[75] Lederer, Phillip J, Ramakrishnan S Nambimadom. 1998. Airline network design.

Operations Research 46(6) 785–804.

[76] Lium, Arnt-Gunnar, Teodor Gabriel Crainic, Stein W Wallace. 2009. A study

of demand stochasticity in service network design. Transportation Science 43(2)

144–157.

[77] Løkketangen, Arne, David L Woodruff. 1996. Progressive hedging and tabu

search applied to mixed integer (0, 1) multistage stochastic programming. Journal

of Heuristics 2(2) 111–128.

[78] Lurie, Philip M, Matthew S Goldberg. 1998. An approximate method for sam-

pling correlated random variables from partially-specified distributions. Manage-

ment Science 44(2) 203–218.

[79] Lyhagen, Johan. 2001. A method to generate multivariate data with moments

arbitrary close to the desired moments. Tech. rep., SSE/EFI Working Paper Series

in Economics and Finance.

[80] Maggioni, Francesca, Stein W Wallace. 2012. Analyzing the quality of the ex-

pected value solution in stochastic programming. Annals of Operations Research

200(1) 37–54.

130

[81] Magnanti, Thomas L, P Mireault, Richard T Wong. 1985. Tailoring Benders

decomposition for uncapacitated network design. Mathematical Programming

Study 25 112–154.

[82] Magnanti, Thomas L, Richard T Wong. 1984. Network design and transportation

planning: Models and algorithms. Transportation Science 18(1) 1–55.

[83] Minoux, Michel. 1989. Networks synthesis and optimum network design prob-

lems: Models, solution methods and applications. Networks 19(3) 313–360.

[84] Mulvey, John M, Robert J Vanderbei, Stavros A Zenios. 1995. Robust optimiza-

tion of large-scale systems. Operations Research 43(2) 264–281.

[85] Nickel, Stefan, Francisco Saldanha-da Gama, Hans-Peter Ziegler. 2012. A multi-

stage stochastic supply network design problem with financial decisions and risk

management. Omega 40(5) 511–524.

[86] Norkin, Vladimir I, Yuri M Ermoliev, Andrzej Ruszczyński. 1998. On optimal

allocation of indivisibles under uncertainty. Operations Research 46(3) 381–395.

[87] Norkin, Vladimir I, Georg Ch Pflug, Andrzej Ruszczyński. 1998. A branch and

bound method for stochastic global optimization. Mathematical Programming

83(1-3) 425–450.

[88] Park, Sukun, Tae-Eog Lee, Chang Sup Sung. 2010. A three-level supply chain

network design model with risk-pooling and lead times. Transportation Research

Part E: Logistics and Transportation Review 46(5) 563–581.

[89] Peterson, Bruce E. 1980. A cut-flow procedure for transportation network opti-

mization. Networks 10(1) 33–43.

[90] Pimentel, Bruno S, Geraldo R Mateus, Franklin A Almeida. 2013. Stochastic ca-

pacity planning and dynamic network design. International Journal of Production

Economics 145(1) 139–149.

131

[91] Pishvaee, Mir Saman, Masoud Rabbani, Seyed Ali Torabi. 2011. A robust opti-

mization approach to closed-loop supply chain network design under uncertainty.

Applied Mathematical Modelling 35(2) 637–649.

[92] Puchinger, Jakob, Günther R Raidl. 2005. Combining metaheuristics and exact al-

gorithms in combinatorial optimization: A survey and classification. International

Work-Conference on the Interplay Between Natural and Artificial Computation.

Springer, 41–53.

[93] Rahmaniani, Ragheb, Teodor Gabriel Crainic, Michel Gendreau, Walter Rei.

2017. The Benders decomposition algorithm: A literature review. European

Journal of Operational Research 259(3) 801–817.

[94] Raidl, Günther R. 2006. A unified view on hybrid metaheuristics. International

Workshop on Hybrid Metaheuristics. Springer, 1–12.

[95] Ramezani, Majid, Mahdi Bashiri, Reza Tavakkoli-Moghaddam. 2013. A robust

design for a closed-loop supply chain network under an uncertain environment.

The International Journal of Advanced Manufacturing Technology 66(5-8) 825–

843.

[96] Randazzo, CD, Henrique Pacca Loureiro Luna. 2001. A comparison of optimal

methods for local access uncapacitated network design. Annals of Operations

Research 106(1-4) 263–286.

[97] Randazzo, CD, Henrique Pacca Loureiro Luna, Philippe Mahey. 2001. Benders

decomposition for local access network design with two technologies. Discrete

Mathematics and Theoretical Computer Science 4(2).

[98] Rappold, James A, Ben D Van Roo. 2009. Designing multi-echelon service parts

networks with finite repair capacity. European Journal of Operational Research

199(3) 781–792.

[99] Realff, Matthew J, Jane C Ammons, David J Newton. 2004. Robust reverse pro-

duction system design for carpet recycling. IIE Transactions 36(8) 767–776.

132

[100] Resende, Mauricio GC, Celso C Ribeiro, Fred Glover, Rafael Martí. 2010. Scatter

search and path-relinking: Fundamentals, advances, and applications. Handbook

of metaheuristics. Springer, 87–107.

[101] Riis, Morten, Kim Allan Andersen. 2002. Capacitated network design with un-

certain demand. INFORMS Journal on Computing 14(3) 247–260.

[102] Riis, Morton, Kim Allan. Andersen. 2000. Capacitated network design with un-

certain demand. Tech. rep., Department of Operations Research University of

Aarhus.

[103] Rockafellar, R Tyrrell, Roger J-B Wets. 1991. Scenarios and policy aggregation

in optimization under uncertainty. Mathematics of Operations Research 16(1)

119–147.

[104] Romero, R, A Monticelli. 1994. A hierarchical decomposition approach for trans-

mission network expansion planning. IEEE Transactions on Power Systems 9(1)

373–380.

[105] Sabri, Ehap H, Benita M Beamon. 2000. A multi-objective approach to simul-

taneous strategic and operational planning in supply chain design. Omega 28(5)

581–598.

[106] Sahinidis, Nikolaos V. 2004. Optimization under uncertainty: state-of-the-art and

opportunities. Computers & Chemical Engineering 28(6-7) 971–983.

[107] Santoso, Tjendera, Shabbir Ahmed, Marc Goetschalckx, Alexander Shapiro.

2005. A stochastic programming approach for supply chain network design under

uncertainty. European Journal of Operational Research 167(1) 96–115.

[108] Sarayloo, Fatemeh, Teodor Gabriel Crainic, Walter Rei. 2018. A learning-

based matheuristic for stochastic multicommodity network design. Publica-

tion CIRRELT-2018-12, Centre interuniversitaire de recherche sur les réseaux

d’entreprise, la logistique et le transport, Université de Montréal, Montréal, QC,

Canada.

133

[109] Sarayloo, Fatemeh, Teodor Gabriel Crainic, Walter Rei. 2018. A reduced cost-

based restriction and refinement matheuristic for stochastic network design. Pub-

lication CIRRELT-2018-32, Centre interuniversitaire de recherche sur les réseaux

d’entreprise, la logistique et le transport, Université de Montréal, Montréal, QC,

Canada.

[110] Schütz, Peter, Asgeir Tomasgard, Shabbir Ahmed. 2009. Supply chain design

under uncertainty using sample average approximation and dual decomposition.

European Journal of Operational Research 199(2) 409–419.

[111] Schütz, Peter, Asgeir Tomasgard, Shabbir Ahmed. 2009. Supply chain design

under uncertainty using sample average approximation and dual decomposition.

European Journal of Operational Research 199(2) 409–419.

[112] Smith, J Cole, Andrew J Schaefer, Joyce W Yen. 2004. A stochastic integer pro-

gramming approach to solving a synchronous optical network ring design prob-

lem. Networks 44(1) 12–26.

[113] Smith, James E. 1993. Moment methods for decision analysis. Management

Science 39(3) 340–358.

[114] Snyder, Lawrence V, Mark S Daskin. 2006. Stochastic p-robust location problems.

IIE Transactions 38(11) 971–985.

[115] Tanonkou, Guy-Aimé, Lyès Benyoucef, Xiaolan Xie. 2008. Design of stochastic

distribution networks using lagrangian relaxation. IEEE Transactions on Automa-

tion Science and Engineering 5(4) 597–608.

[116] Thapalia, Biju K, Teodor Gabriel Crainic, Michal Kaut, Stein W Wallace. 2011.

Single-commodity network design with stochastic demand and multiple sources

and sinks. INFOR: Information Systems and Operational Research 49(3) 193–

211.

134

[117] Thapalia, Biju K, Teodor Gabriel Crainic, Michal Kaut, Stein W Wallace. 2012.

Single-commodity network design with random edge capacities. European Jour-

nal of Operational Research 220(2) 394–403.

[118] Thapalia, Biju K, Stein W Wallace, Michal Kaut, Teodor Gabriel Crainic. 2012.

Single source single-commodity stochastic network design. Computational Man-

agement Science 9(1) 139–160.

[119] Tsiakis, Panagiotis, Nilay Shah, Constantinos C Pantelides. 2001. Design of

multi-echelon supply chain networks under demand uncertainty. Industrial &

Engineering Chemistry Research 40(16) 3585–3604.

[120] Van Slyke, Richard M, Roger Wets. 1969. L-shaped linear programs with appli-

cations to optimal control and stochastic programming. SIAM Journal on Applied

Mathematics 17(4) 638–663.

[121] Verweij, Bram, Shabbir Ahmed, Anton J Kleywegt, George Nemhauser, Alexan-

der Shapiro. 2003. The sample average approximation method applied to stochas-

tic routing problems: a computational study. Computational Optimization and

Applications 24(2-3) 289–333.

[122] Vu, Duc Minh, Teodor Gabriel Crainic, Michel Toulouse. 2013. A three-phase

matheuristic for capacitated multi-commodity fixed-cost network design with

design-balance constraints. Journal of Heuristics 19(5) 757–795.

[123] Wallace, Stein W. 2000. Decision making under uncertainty: Is sensitivity analy-

sis of any use? Operations Research 48(1) 20–25.

[124] Wang, X., T.G Crainic, S.W Wallace. 2016. Stochastic Scheduled Service Net-

work Design: The Value of Deterministic Solutions. Publication CIRRELT-2016-

14, Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logis-

tique et le transport, Université de Montréal, Montréal, QC, Canada.

135

[125] You, Fengqi, Ignacio E Grossmann. 2008. Design of responsive supply chains

under demand uncertainty. Computers & Chemical Engineering 32(12) 3090–

3111.

136

	Résumé
	Abstract
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Dedication
	Acknowledgments
	Introduction
	Contributions
	Outline of the dissertation

	Background and Literature review
	Deterministic network design
	Arc-based formulation
	Alternative formulations
	Solution methods

	Stochastic network design
	Modelling approaches
	Related works in stochastic network design problems

	Conclusions

	ARTICLE 1: A Learning-based Matheuristic for Stochastic Multicommodity Network Design
	Introduction
	Problem description and literature review
	Two-stage SMCND formulation
	Literature review

	The learning mechanism and heuristic
	Artificial Demand Scenario
	Partial learning - the scenario-pair case
	The learning procedure

	The Matheuristic
	Computational results
	Data and experimental settings
	Sensitivity analysis
	Experiments on larger instances

	Conclusions

	ARTICLE 2: A Reduced-Cost-based Restriction and Refinement Matheuristic for Stochastic Network Design
	Introduction
	Problem description
	Literature review
	The proposed matheuristic
	Reduced cost-based variable fixing strategies
	Description of the algorithm

	Experimental results
	Data and experimental settings
	Analyzing different strategies when using reduced cost information
	Numerical results of proposed matheuristic

	Conclusions

	ARTICLE 3: An Integrated Learning and Progressive Hedging Method to Solve Stochastic Network Design
	Introduction
	Problem description
	Literature review
	Solution methodology
	Preliminaries and the outline of the proposed PHA
	Initialization
	Solving subproblems heuristically using Learn&Optimize procedure
	Aggregation and Penalty updates in the proposed PHA
	The algorithm

	Experimental results
	Data and experimental setting
	 Performance comparison on the first collection of instances
	 Performance comparison on the second collection of instances

	Conclusions

	Conclusions
	 Future research directions

	Bibliography

