
Université de Montréal

Representation Learning for Visual Data

par Vincent Dumoulin

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée à la Faculté des arts et des sciences
en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en informatique

Septembre, 2018

c� Vincent Dumoulin, 2018.

Résumé

Cette thèse par article contribue au domaine de l’apprentissage de représen-
tations profondes, et plus précisement celui des modèles génératifs profonds, par
l’entremise de travaux sur les machines de Boltzmann restreintes, les modèles gé-
nératifs adversariels ainsi que le pastiche automatique.

Le premier article s’intéresse au problème de l’estimation du gradient de la
phase négative des machines de Boltzmann par l’échantillonnage d’une réalisation
physique du modèle. Nous présentons une évaluation empirique de l’impact sur la
performance, mesurée par log-vraisemblance négative, de diverses contraintes asso-
ciées à l’implémentation physique de machines de Boltzmann restreintes (RBMs),
soit le bruit sur les paramètres, l’amplitude limitée des paramètres et une connec-
tivité limitée.

Le second article s’attaque au problème de l’inférence dans les modèles géné-
ratifs adversariels (GANs). Nous proposons une extension du modèle appelée infé-
rence adversativement apprise (ALI) qui a la particularité d’apprendre jointement
l’inférence et la génération à partir d’un principe adversariel. Nous montrons que
la représentation apprise par le modèle est utile à la résolution de tâches auxiliaires
comme l’apprentissage semi-supervisé en obtenant une performance comparable à
l’état de l’art pour les ensembles de données SVHN et CIFAR10.

Finalement, le troisième article propose une approche simple et peu coûteuse
pour entrâıner un réseau unique de pastiche automatique à imiter plusieurs styles
artistiques. Nous présentons un mécanisme de conditionnement, appelé normalisa-
tion conditionnelle par instance, qui permet au réseau d’imiter plusieurs styles en
parallèle via l’apprentissage d’un ensemble de paramètres de normalisation unique
à chaque style. Ce mécanisme s’avère très e�cace en pratique et a inspiré plusieurs
travaux subséquents qui ont appliqué l’idée à des problèmes au-delà du domaine
du pastiche automatique.

Mots-clés: réseaux neuronaux, apprentissage automatique, apprentissage de re-
présentations profondes, apprentissage non supervisé, modèles à énergie, calcul
par système physique, modèles génératifs, réseaux adversariels génératifs, synthèse
d’image, pastiche automatique

ii

Summary

This thesis by articles contributes to the field of deep learning, and more specif-
ically the subfield of deep generative modeling, through work on restricted Boltz-
mann machines, generative adversarial networks and style transfer networks.

The first article examines the idea of tackling the problem of estimating the
negative phase gradients in Boltzmann machines by sampling from a physical im-
plementation of the model. We provide an empirical evaluation of the impact
of various constraints associated with physical implementations of restricted Boltz-
mann machines (RBMs), namely noisy parameters, finite parameter amplitude and
restricted connectivity patterns, on their performance as measured by negative log-
likelihood through software simulation.

The second article tackles the inference problem in generative adversarial net-
works (GANs). It proposes a simple and straightforward extension to the GAN
framework, named adversarially learned inference (ALI), which allows inference
to be learned jointly with generation in a fully-adversarial framework. We show
that the learned representation is useful for auxiliary tasks such as semi-supervised
learning by obtaining a performance competitive with the then-state-of-the-art on
the SVHN and CIFAR10 semi-supervised learning tasks.

Finally, the third article proposes a simple and scalable technique to train a
single feedforward style transfer network to model multiple styles. It introduces
a conditioning mechanism named conditional instance normalization which allows
the network to capture multiple styles in parallel by learning a di↵erent set of
instance normalization parameters for each style. This mechanism is shown to be
very e�cient and e↵ective in practice, and has inspired multiple e↵orts to adapt
the idea to problems outside of the artistic style transfer domain.

Keywords: neural network, machine learning, deep learning, unsupervised learn-
ing, energy-based models, physical computing, generative modeling, generative ad-
versarial network, image synthesis, style transfer

iii

Contents

Résumé . ii

Summary . iii

Contents . iv

List of Figures . vii

List of Tables . ix

1 Background . 1

1.1 Machine learning . 1
1.1.1 Formalism . 2
1.1.2 Machine learning problems 5
1.1.3 Training . 7
1.1.4 Artificial neural networks . 8
1.1.5 Convolutional neural networks 11

1.2 Probabilistic graphical models . 13
1.2.1 Directed probabilistic graphical models 14
1.2.2 Undirected probabilistic graphical models 15

1.3 Generative adversarial networks . 15
1.4 Energy-based models . 17

1.4.1 Definition . 17
1.4.2 Training . 18
1.4.3 Sampling . 19
1.4.4 Boltzmann machines . 20
1.4.5 Restricted Boltzmann machines 20
1.4.6 Training an RBM . 21

2 Prologue to First Article . 22

2.1 Article Details . 22
2.2 Context . 22
2.3 Contributions . 23

iv

2.4 Recent Developments . 23

3 On the Challenges of Physical Implementations of RBMs 24

3.1 Introduction . 24
3.2 RBM training challenges . 26
3.3 The D-Wave system . 27
3.4 Methodological notes . 30
3.5 Simulating noisy parameters . 31
3.6 Simulating limited parameter range 34
3.7 Combined simulation of noise and limited parameter range 35
3.8 Simulating limited connectivity . 36
3.9 Conclusion . 37

4 Prologue to Second Article . 39

4.1 Article Details . 39
4.2 Context . 39
4.3 Contributions . 39
4.4 Recent Developments . 40

5 Adversarially Learned Inference . 43

5.1 Introduction . 43
5.2 Adversarially learned inference . 44

5.2.1 Relation to GAN . 46
5.2.2 Alternative approaches to feedforward inference in GAN . . 47
5.2.3 Generator value function . 48
5.2.4 Discriminator optimality . 48
5.2.5 Relationship with the Jensen-Shannon divergence 51
5.2.6 Invertibility . 51

5.3 Related Work . 52
5.4 Experimental results . 53

5.4.1 Samples and Reconstructions 53
5.4.2 Latent space interpolations 54
5.4.3 Semi-supervised learning . 54
5.4.4 Conditional Generation . 56
5.4.5 Importance of learning inference jointly with generation . . . 57

5.5 Conclusion . 60

6 Prologue to Third Article . 65

6.1 Article Details . 65
6.2 Context . 65
6.3 Contributions . 65

v

6.4 Recent Developments . 66

7 A learned representation for artistic style 67

7.1 Introduction . 67
7.2 Style transfer with deep networks 70

7.2.1 N-styles feedforward style transfer networks 73
7.3 Experimental results . 74

7.3.1 Methodology . 74
7.3.2 Training a single network on N styles produces stylizations

comparable to independently-trained models 76
7.3.3 The N-styles model is flexible enough to capture very di↵er-

ent styles . 78
7.3.4 The trained network generalizes across painting styles 78
7.3.5 The trained network can arbitrarily combine painting styles 78

7.4 Discussion . 79

8 Discussion . 96

References . 98

vi

List of Figures

1.1 Iris features . 2
1.2 Learning curves . 8
1.3 Neural network . 9
1.4 Convolutional neural networks . 12
1.5 1D example of pooling and subsampling 13
1.6 A distribution over independent variables A, B and C 14
1.7 Bayesian and Markov networks . 14
1.8 Boltzmann machines . 19

3.1 Chimera graph . 28
3.2 Applying noise to an RBM’s parameters 31
3.3 Noisy RBM samples . 32
3.4 RBM noise resilience and limited parameter magnitude resilience . . 33
3.5 RBM noise resilience samples . 34
3.6 RBM limited parameter magnitude samples 34
3.7 Combined noise and parameter magnitude constraints, limited con-

nectivity constraint in an RBM . 35
3.8 RBM limited connectivity samples 36
3.9 RBM chimera connectivity samples 36

5.1 The ALI game . 45
5.2 SVHN samples and reconstructions 49
5.3 CelebA samples and reconstructions 49
5.4 CIFAR10 samples and reconstructions 50
5.5 Tiny ImageNet samples and reconstructions 50
5.6 CelebA interpolations . 55
5.7 CelebA conditional generation . 57
5.8 Learning behavior on a toy dataset 58

7.1 Varied pastiches and style interpolations 68
7.2 Style transfer network training diagram 69
7.3 Conditional instance normalization diagram 69
7.4 Monet pastiches . 72
7.5 Comparing with single-style networks 75
7.6 Fine-tuning for additional styles . 76

vii

7.7 Four-way style interpolations . 77

viii

List of Tables

1.1 Semantics of an Iris observation . 3

5.1 SVHN test set misclassification rate 54
5.2 CIFAR10 test set misclassification rate 56
5.3 CIFAR10 model hyperparameters (unsupervised) 61
5.4 SVHN model hyperparameters (unsupervised) 62
5.5 CelebA model hyperparameters (unsupervised) 63
5.6 Tiny ImageNet model hyperparameters (unsupervised) 64

7.1 Style transfer network hyperparameters. 81

ix

List of Abbreviations

AI Artificial intelligence

AIS Annealed importance sampling

ALI Adversarially learned inference

BiGAN Bidirectional GAN

CD Contrastive divergence

CNN Convolutional neural network

CVAE Convolutional variational autoencoder

DRAW Deep recurrent attentive writer

ELBO Evidence lower-bound

EM Expectation-maximization

GAN Generative adversarial network

GPU Graphical processing unit

KL Kullback-Leibler, as in “Kullback-Leibler divergence”

LAPGAN Laplacian pyramid of generative adversarial networks

NLL Negative log-likelihood

PCD Persistent contrastive divergence

PGM Probabilistic graphical model

RBM Restricted Boltzmann machine

RNN Recurrent neural network

SGD Stochastic gradient descent

VAE Variational autoencoder

x

Acknowledgments

I would like to thank my mother Marie-Hélène Labrecque and my father Yves
Dumoulin for their unconditional support during the course of my studies. From
as far as I can recall, they encouraged me to pursue my intellectual curiosity, which
I think is one of the greatest gifts one can give to a child.

My mother is an example of kindness, empathy and resilience which I try to
emulate as best as I can. Completing a PhD is an emotional ride with its ups
and downs, and she, along with my sister Cassandra Dumoulin and my partner
Anne-Sophie Gendron, was a comforting and invaluable presence during my times
of doubt.

I retain from my father the will to be fully invested in my passions which he
always encouraged me to cultivate. He was and remains my best audience when
comes the time to share my excitement about what interests me and my victories,
small and big.

I would like to thank my partner Anne-Sophie Gendron for her love and sup-
port, and for being patient and understanding during the inevitable rush periods
preceding submission deadlines. I would also like to thank Claude Roy for sparking
my interest in research and in pursuing a graduate degree.

My first contact with machine learning in general, and deep learning in particu-
lar, was from a talk my advisor, Yoshua Bengio, gave in the physics department at
Université de Montréal. Were it not for his contagious passion and his willingness
to take me as an undergraduate summer intern in his lab, I would not be where
I stand today. His commitment to understanding intelligence and to fostering a
vibrant research community is an incredible source of inspiration for me. I would
also like to thank my co-advisor, Aaron Courville, for the countless discussions
which we shared over the years and which helped shape my view of deep learning.
His openness to hearing other points of view and being challenged on his ideas gave
me the confidence to express and defend mine freely and the humility to welcome
the ones of other people.

Finally, I would like to thank the many students whose paths I crossed during
my PhD. In particular, I would like to thank Ian Goodfellow and David Warde-
Farley for taking the time to help a then-junior graduate student with both theory
and practice and to patiently answer the many questions he had. Deep learning
research is as much about having good ideas as it is to implement them and share
them with the world, and their help has proven invaluable for the latter.

xi

1 Background

Artificial intelligence (AI) is a subject which captivates a lot of people. The

long-term goal of AI is to emulate biological intelligence, which is a very hard

problem to solve. We will refer to this as general AI. In the short term, AI’s

objective is to solve tasks without the need for human intervention. This is what

we call specific AI.

The “classical” approach to solving specific AI problems is to translate human

knowledge into instructions that a computer can understand. For instance, a pro-

gram can be written to control the speed of a vehicule using simple rules: if the

vehicule’s speed falls below 60 km/h, start accelerating, and if its speed goes above

100 km/h, stop accelerating.

1.1 Machine learning

However, in many cases, this traditional approach fails, because human knowl-

edge is not always easily put into words. Oftentimes, human experts rely on intu-

itions that are gained through experience without ever being explicitly stated. For

instance, the act of walking does not require an explicit cognitive process, and most

people are unaware of the small adjustments their body performs to keep them in

balance. Even though recognizing a face is something we do naturally, it is very

di�cult to describe what a face is without using abstract concepts, such as eyes,

nose and mouth, which themselves rely on abstract concepts to be described.

Instead of relying on prior knowledge and expertise to solve specific AI tasks,

another approach would be to let the program learn from data. This is what we

call machine learning.

1

4 6 8
x0

2

4

x
1

4 6 8 10
x0

0

2

4

6

8

x
2

4 6 8
x0

0

1

2

3

x
3

1 2 3 4 5
x1

0

2

4

6

8

x
2

1 2 3 4 5
x1

�1

0

1

2

3

x
3

0 2 4 6 8
x2

�1

0

1

2

3

x
3

I. setosa

I. versicolor

I. virginica

Figure 1.1 – Pairwise scatter plots of the Iris features.

1.1.1 Formalism

Datasets and data-generating distributions

In order to introduce machine learning algorithms more formally, let us con-

sider the concrete example of the Iris dataset (Fisher, 1936), which is a set of 150

observations of iris flowers of 3 di↵erent species. Each observation is composed of

4 real-valued features, each of which quantifies a di↵erent flower characteristic, as

well as a categorical feature corresponding to the flower species (Figure 1.1).

The set of all observations is noted

D = {x(1)
, . . . ,x

(N)}, (1.1)

where x
(i) = (x(i)

1
, . . . , x

(i)
D)T is a single observation. In our example, N = 150 is

the number of observations and the semantics of x 2 D are outlined in Table 1.1.

Note that D is only a subset of all observations that can be made: there are

certainly more than 150 iris flowers in the world, and if we were to make another set

2

xi Domain Description

x1 R Sepal length

x2 R Sepal width

x3 R Petal length

x4 R Petal width

x5 {0, 1, 2} Species

Table 1.1 – Semantics of an Iris observation.

of 150 observations, we would be getting di↵erent results. In fact, all observations

come from some data-generating distribution P (x) that is unknown to us.

Parametric and non-parametric functions

In order to do something useful with these observations, we need to have a

function that receives an input and produces an output.

This function can either be parametric or non-parametric. Parametric functions

are described by a fixed number of parameters, whereas non-parametric functions

have a number of parameters that grows with |D| (e.g. the nearest neighbours

algorithm).

We will concentrate on families of parametric functions, noted F . Each function

f 2 F corresponds to a specific assignment of a set of parameters ✓. For instance,

we could choose F to be the family of all linear functions mapping the first three

real-valued features of Iris to some real number y:

F = {f✓ : R3 ! R | y = f✓(x1:3) = ✓0 + ✓1x1 + ✓2x2 + ✓3x3} (1.2)

Di↵erent values of ✓ correspond to di↵erent functions in F . For example,

✓ = (0, 1, 1, 1)) y = x1 + x2 + x3,

✓ = (1,�1, 1,�1)) y = 1� x1 + x2 � x3.

(1.3)

3

Loss function

The choice of ✓ is guided by the task we wish to solve. Ideally, ✓ would be

such that f✓ performs well on all observations x ⇠ P (x). Unfortunately, since we

do not have access to the data-generating distribution, the best we can do is to

concentrate on D.

For this, we introduce a loss function L(✓, D), which quantifies how bad f✓

performs on our task for all x 2 D (higher values are worse). We wish to find a

value ✓min that minimizes L, that is,

✓min = arg min
✓

L(✓, D). (1.4)

In other words, assuming some “true” underlying function f
⇤ which we are trying

to approximate, L measures how badly f✓ “deviates” from f
⇤.

Going forward with Equation 1.2, let us pretend that we want to predict the

value of x4 based on x1:3. One choice of L could be

L(✓, D) =
X

x2D

(f✓(x1:3)� x4)
2
, (1.5)

i.e., we consider f✓(x1:3) to be a linear predictor of x4, and we wish to penalize

large discrepancies between the predicted value f✓(x1:3) and the true value x4. We

would then set out to find the value ✓min that minimizes L(✓, D) for our specific

problem instance.

Generalization and the bias-variance trade-o↵

Note that finding a ✓min that minimizes L on observations from the finite dataset

D sampled from P (x) does not guarantee that f✓min will generalize well, i.e. it will

perform well on unseen observations.

On one hand, if F is not rich enough (e.g., if F is the family of linear functions

while f
⇤ is a quadratic function), then f✓min will deviate from f

⇤ in expectation over

datasets D sampled from P (x) — in other words, f✓min will be a biased estimate of

f
⇤.

On the other hand, if F is rich enough to reduce L(✓min, D) to zero for any

dataset, the function f✓min obtained through learning may be very sensitive to the

specific values of observations in D. The function will su↵er from high variance, i.e.

4

it will on average deviate largely from its expected value over datasets D sampled

from P (x).

Model selection

In choosing F , we have to trade between bias and variance. The correct trade-

o↵ is impossible to determine in advance. Instead, we can select a subset of D,

called the test set, which will not be used to select ✓min. We will use the test set

to obtain an unbiased estimate of how well f✓min generalizes (in the sense that the

di↵erence between the loss measured on the test set and the loss measured on the

whole data-generating distribution is zero in expectation). The family F with the

best bias-variance trade-o↵ is the one that has the best generalization performance.

However, in choosing F , we have introduced a bias in our generalization per-

formance estimate: F performs well on the test set because it was chosen for that

very reason, which means that the di↵erence between the loss measured on the test

set and the loss measured on the whole data-generating distribution is no longer

zero in expectation. This is why in practice we often split D into three sets:

1. the training set, which is used to find ✓min,

2. the validation set, which is used to choose F , and

3. the test set, which is used to obtain an unbiased estimate of the model’s

generalization performance.

1.1.2 Machine learning problems

The problems machine learning attempts to solve fall into three broad cate-

gories:

1. supervised learning,

2. unsupervised learning, and

3. reinforcement learning.

Supervised learning

A problem for which both the input and the expected output are given is called

a supervised learning problem. We are interested in predicting

5

1. categorical outputs (classification) or

2. real-valued outputs (regression).

In our Iris example, predicting the species of an observation (x5) given its real-

valued features (x1:4) would be an instance of a classification problem, whereas

predicting x4 given x1:3 would correspond to a regression problem.

Unsupervised learning

An unsupervised learning problem is a problem for which there is no specific

output to predict. Instead, we are interested in discovering underlying structure in

the inputs we are observing, such as

1. grouping examples together (clustering),

2. finding a mathematical description of where examples are likely to be found

in feature space (density estimation), or

3. finding a more compact representation of the examples that preserves useful

information (dimensionality reduction).

In our Iris example, trying to group observations together based only on x1:4 is

an instance of a clustering problem. Trying to predict whether a x1:4 configuration

corresponds to a plausible iris flower observation would correspond to a density

estimation problem. Finally, finding a 2D representation of the observations that

preserves most of the information in order to display Figure 1.1 in a single scatter

plot would be an instance of a dimensionality reduction problem.

Reinforcement learning

Reinforcement learning is somewhat di↵erent than supervised and unsupervised

learning. We will briefly describe it for the sake of completion.

In reinforcement learning, an agent is allowed to interact with a stateful en-

vironment. Certain states are rewarded, while other states are penalized. The

actions the agent takes a↵ect the state of the environment. The agent is trained to

find a policy, mapping states to actions, which maximizes the reward it receives.

For instance, an autonomous helicopter (the agent) could be trained to stay in

flight as long as it can. Each time frame spent in the air is rewarded, and crashes

are penalized. The helicopter would learn a policy mapping its state (e.g. linear

6

speed, angular speed, linear acceleration, angular acceleration, altitude) to actions

(e.g. adjusting the pitch of rotors) that allow it to stay airborne.

1.1.3 Training

Training, or learning, is the act of finding a ✓min that minimizes L(✓, D). Al-

though some machine learning algorithms (like linear regression) allow an analytical

solution, most algorithms rely on gradient-based optimization for training.

Gradient descent

If L(✓, D) is di↵erentiable with respect to ✓, we can iteratively reduce L with

the following parameter update equation:

✓ ✓ � ↵
@

@✓
L(✓, D). (1.6)

This is what we call gradient descent. The ↵ scalar is called the learning rate

and controls the pace at which ✓ travels along the loss function’s gradient.

For large datasets, computing the gradient for all observations may be very

expensive. An alternative is to update parameters using one or a few examples

at a time. This called stochastic gradient descent (SGD), because the gradient

with respect to one observation is a stochastic approximation of the true gradient

(assuming that our observations are coming from the same distribution). Even

though the gradient is noisy, this approach benefits from a faster convergence rate

(Bousquet and Bottou, 2008).

As a middle ground, people often work with small batches of data (called mini-

batches) at a time to leverage the parallelization o↵ered by computing hardware,

such as graphical processing units (GPUs).

Learning diagnostics

One of the best tools available to troubleshoot learning is the learning curve

(Figure 1.2), a plot of the training and test losses as a function of the number of

parameter updates.

When we fail to obtain a su�ciently low training loss, we are in an underfitting

regime (Figure 1.2a). This is related to the bias problem: if we make a poor choice

7

Parameter updates

Loss

Training

Test

(a) This profile is common in underfitting
settings.

Parameter updates

Loss

Training

Test

(b) Overfitting regime, after the vertical
bar is passed.

Figure 1.2 – Learning curves.

of F , no learning can make the model perform very well. Note that other issues may

also cause underfitting, such as the presence of local minima or saddlepoints (for

non-convex loss functions) or a high variance on the gradient (when the gradient

is computed using stochastic approaches).

When there is a significant gap between the training and test losses, we are in an

overfitting regime (Figure 1.2b): we have failed to generalize to unseen examples.

This is related to the variance problem: the model adapts to accidental variations in

the dataset which would not be there if we had access to the whole data-generating

distribution, and it loses generalization power.

Preventing overfitting may be done using various approaches:

— Choosing a less flexible F .

— Adding a regularization penalty to the loss function that induces a preference

over the functions of F .

— Monitoring the validation loss and choosing the ✓ associated with the lowest

validation loss (early stopping).

1.1.4 Artificial neural networks

One very popular type of function families is what we call artificial neural

networks. The best way to describe what they are is to show how the output of

one such function is computed.

We start with the input x, which is called the visible layer. We typically apply

an a�ne transformation to it followed by an elementwise nonlinearity:

8

x1 x2 x3 x4 x5

h1 h2 h3

y

Figure 1.3 – Neural network with one hidden layer.

a1 = W1x + b1,

h1,i = g(a1,i)
(1.7)

The resulting vector h1 is called the first hidden layer. We distinguish between

the pre-activations a1 and the activations h1. Nonlinearities often used in practice

include

— the logistic function �(x) = (1 + exp(�x))�1,

— the hyperbolic tangent function, and

— the rectified linear function ReLU(x) = max(0, x).

This process is iteratively repeated for all M hidden layers of the neural network:

am = Wmhm�1 + bm,

hm,i = g(am,i)
(1.8)

The last layer of a neural network, called the output layer, usually di↵ers from

other layers and its form depends on the type of problem we are trying to solve. If

we are doing regression, the output layer might look like

y = w
T
out

hM + bout (1.9)

whereas for classification problems we would use

9

aout = W
T
out

xM + bout,

y = softmax(a)
(1.10)

where the softmax function is a convenient way to output a normalized distri-

bution over K classes:

softmax(z)i =
e
zi

PK
k=1

ezk
(1.11)

A neural network is usually represented as in Figure 1.3.

Backpropagation algorithm

The gradient of a neural network’s loss function with respect to its parameters

is computed via the backpropagation algorithm (Rumelhart et al., 1988), which

e�ciently makes use of the chain rule. i

The algorithm works as follows:

1. Compute the gradient of the loss with respect to the network’s output (@L@y).

2. Compute the gradient of the loss with respect to the last hidden layer as

@L
@hM

=
@L
@y

@y

@hM
. (1.12)

3. For hidden layers M � 1 to 1, compute the gradient of the loss with respect

to that layer as

@L
@aj+1

=
@L

@hj+1

@hj+1

@aj+1

, then
@L
@hj

=
@L

@aj+1

@aj+1

@hj
(1.13)

by re-using the gradient with respect to the layer above.

i. The backpropagation algorithm is a special case of the more general reverse-mode automatic
di↵erentiation algorithm (Griewank and Walther, 2008), which handles more exotic cases like
control-flow statements.

10

4. Gradients with respect to parameters of the layer j are computed as

@L
@bj

=
@L
@aj

@aj

@bj
,

@L
@Wj

=
@L
@aj

@aj

@Wj
.

(1.14)

The gradient thus propagates backwards from layer to layer in the network.

1.1.5 Convolutional neural networks

One category of artificial neural networks that is particularly useful for computer

vision is the convolutional neural network (CNN).

Anatomy of a CNN

A layer in a CNN is split into groups called feature maps. Units within a feature

map are laid on a grid, like pixels in an image, and feature maps are stacked one

onto another such that units of all feature maps at the ith row and jth column

share the same spatial location. We denote the unit of the ith feature map located

at row j and column k as xi,j,k.

As an example, consider a color image (Figure 1.4a). It is composed of three

feature maps: the red channel, the green channel, and the blue channel. Units at

the ith row and jth column of those three feature maps form a pixel: each of the

three units measures something di↵erent about the same spatial location.

Convolution

To go from one CNN layer to the next, we convolve i an a�ne transformation

over the layer. This involves sliding an N ⇥M ⇥ J ⇥ K kernel W (where N is

the number of input feature maps, M is the number of output feature maps, and J

and K are the height and width of the kernel) across the input feature maps and

computing the weighted sums defined by the kernel (Figure 1.4b):

i. The operation is actually cross-correlation, but for the purpose of CNNs it makes little
di↵erence, as the parameters are learned anyways.

11

x0

x1

x2

x2,2,0

x2

(a) Color image. The red, green and
blue channels correspond to the feature
maps x0, x1 and x2, respectively. The
pixel at the first row and third column
has (R,G,B) values (x0,2,0, x1,2,0, x2,2,0).

(b) Convolution from two input fea-
ture maps to one output feature map.
The grey output pixel is computed as
a weighted sum of a 2 ⇥ 2 window of
units at the same location across all in-
put feature maps. The window slides
over the input feature maps to produce
the remaining 15 output values, but the
weights remain the same.

Figure 1.4 – Convolutional neural networks.

hm,r,s =
N�1X

i=0

J�1X

a=0

K�1X

b=0

Wi,m,a,bxi,r+a,s+b + bm (1.15)

where bm is the bias for the m
th output feature map. The resulting set of

feature maps is passed through an elementwise nonlinearity, just as with regular

neural networks.

This is motivated by two intuitions:

— Natural images exhibit characteristics that can be described in terms of

local features. For instance, a square can be described as a group of straight

edges interacting together (forming lines or corners). Because of that, we

can drastically reduce the number of free parameters by introducing sparse

connectivity in the form of local feature detectors.

— We can re-use local feature detectors at di↵erent locations in an image: a

vertical edge is detected the same no matter where it is located in an image.

This allows us to reduce the number of free parameters even further through

weight sharing.

12

1 -2 3 4 0 -1 2

3 4 4 4 2

3 4 2

Figure 1.5 – 1D example of pooling and subsampling. Input units are max-pooled in groups
of 3, and pooled units are subsampled by a factor of 2.

Pooling and subsampling

In classifying images, we are more interested in deciding whether a particular

type of object is present than its exact location. We can therefore benefit from

building translational invariance in the network through pooling.

Pooling works by summarizing every n ⇥ m group of units in a feature map,

either by taking their mean or the maximum value within the group (Figure 1.5).

Since pooled units aggregate information from a group of units, it’s oftentimes

not necessary to consider all pooled units. Instead, we subsample by retaining only

every k
th unit of the pooled feature maps.

1.2 Probabilistic graphical models

Probabilistic graphical models (PGM) are a way to encode a distribution over

a set of random variables as a graph. This representation can potentially be much

more compact than the usual probability table. i

This is due to the fact that PGMs encode dependencies between random vari-

ables as edges or arrows between nodes. When there are a lot of conditional in-

dependences, the probability table contains a lot of redundant information which

PGMs help eliminate (Figure 1.6).

i. This section is adapted in part from a blog post on variational autoencoders (Dumoulin,
2014).

13

(a, b, c) P (A = a, B = b, C = c)

(0, 0, 0) 3/32

(0, 0, 1) 1/32

(0, 1, 0) 9/32

(0, 1, 1) 3/32

(1, 0, 0) 3/32

(1, 0, 1) 1/32

(1, 1, 0) 9/32

(a) The probability table contains a lot of
reduntant information.

X P (X = 0)

A 1/2

B 1/4

C 3/4

(b) Knowing that A, B and C are indepen-
dent, the distribution can be represented
much more compactly.

Figure 1.6 – A distribution over independent variables A, B and C.

A

B

C

(a) Bayesian network for
P (A,B,C) = P (A)P (B | A)P (C | A,B).

A

B

C

�1

�2

(b) Markov network for
P (A,B,C) = 1

Z�1(A,B)�2(A,C).

Figure 1.7 – Graphical representation of Bayesian and Markov networks.

There are two types of PGMs: directed PGMs and undirected PGMs. Both rely

on a graph in which random variables are represented as nodes and dependencies

between random variables are represented as edges (or arrows).

1.2.1 Directed probabilistic graphical models

Directed PGMs, also known as Bayesian networks, rely on directed acyclic

graphs. Distributions they encode are of the form

P (X1, X2, . . . , XN) =
NY

i=1

P (Xi | Pa(Xi)) (1.16)

14

where Pa(Xi) is a subset of {X1, . . . , Xn} \ {Xi} on which Xi depends directly.

To go from a distribution to its graphical representation, each random variable

is mapped to a node in the graph, and an arrow between each node in Pa(Xi) and

Xi is added for all Xi (Figure 1.7a).

1.2.2 Undirected probabilistic graphical models

Undirected PGMs, also known as Markov networks, rely on undirected graphs.

Distributions they encode are of the form

P (X1, X2, . . . , XN) =
1

Z
P̃ (X1, X2, . . . , XN),

P̃ (X1, X2, . . . , XN) =
mY

i=1

�i(Di)
(1.17)

where

Z =
X

X1,...,XN

P̃ (X1, X2, . . . , XN) (1.18)

is the partition function making sure the distribution is normalized, �i(Di) is a

non-negative function called factor, and Di is a subset of {X1, . . . , XN}.

To go from a distribution to its graphical representation, each factor is mapped

to a “factor” node in the graph, each random variables is mapped to a “variable”

node in the graph, and an edge is drawn between a variable node and a factor node

if the corresponding variable appears in the corresponding factor (Figure 1.7b).

1.3 Generative adversarial networks

Generative adversarial networks (Goodfellow et al., 2014) are a family of gener-

ative models which rely on two networks, the generator network and the discrimi-

nator network, to implicitly learn the data-generating distribution. Informally, the

generator is tasked with mapping a source of random noise to samples which the

discriminator believes were sampled from the data-generating distribution, while

15

the discriminator is tasked with correctly classifying the samples it receives as being

either from the generator distribution (label 0) or the data-generating distribution

(label 1).

More formally, let q(x) be the data-generating distribution, and let p(x) be the

generator distribution implicitly defined by

x = G(z), z ⇠ p(z), (1.19)

where z is the source of random noise, p(z) is its distribution, and G(z) is an

arbitrary function (usually a neural network) called the generator network mapping

z to x.

Moreover, let C = 0 be the event x ⇠ p(x) and C = 1 be the event x ⇠ q(x),

and let D(x) be the discriminator network, whose output is interpreted as

D(x) = P (C = 1). (1.20)

Finally, let

V (D, G) = Eq(x)[log D(x)] + Ep(z)[log(1�D(G(z)))] (1.21)

be the value function minimized and maximized by the generator and discrim-

inator networks, respectively.

Then the optimization problem

min
G

max
D

V (D, G) (1.22)

has the following properties:

— For a fixed G, maximizing V (D, G) with respect to D produces a discrim-

inator whose output can be interpreted as the Jensen-Shannon divergence

(Lin, 1991) between q(x) and p(x).

— The global minimum of maxD V (D, G) with respect to G is attained if and

only if p(x) = q(x) for all x, at which point V (D, G) = � log 4.

In other words, in the non-nonparametric limit and assuming D and G are opti-

mized in function space, alternating between maximizing V (D, G) with respect to

D and doing one gradient step to minimize V (D, G) with respect to G will converge

to the generator distribution being equal to the data-generating distribution.

16

In practice, minimizing V (D, G) with respect to G is replaced with maximizing

Ṽ (D, G) = Ep(z)[log D(G(z))] (1.23)

for optimization reasons. Furthermore, D and G are trained in parameter space

using simultaneous updates, which has been shown by Nagarajan and Kolter (2017)

(under suitable conditions) to be an optimization procedure for which equilibrium

points are locally asymtotically stable, meaning that for some region around an

equilibrium point the optimization procedure converges at an exponential rate to

that equilibrium point.

1.4 Energy-based models

1.4.1 Definition

Energy-based models form a commonly used group of undirected probabilistic

graphical models. Their distribution has the form

p(s) =
exp (�E(s))

Z
(1.24)

where E(s) is the energy function and Z is the usual undirected PGM partition

function, i.e.

Z =
X

s̃

exp (�E(s̃)). i (1.25)

Configurations with lower energy are more probable, and configurations with

higher energy are less likely. We are interested in finding a parametrization for

the energy function which minimizes the energy of training examples compared to

other configurations.

i. We suppose that s is discrete for simplicity, but the identities that follow also hold for the
continuous case.

17

1.4.2 Training

Training an energy-based model can be done by maximizing the log-likelihood

of the training set.

When s is fully observed, the gradient of the log-likelihood with respect to the

set ✓ of model parameters is

@

@✓
log p(s) = � @

@✓
E(s) + Ep(s̃)


@

@✓
E(s̃)

�
. (1.26)

The gradient decomposes into two terms:

1. The positive phase term� @
@✓E(s) wants to decrease the energy of an example

s, and thus increase its probability.

2. The negative phase term Ep(s̃)

⇥
@
@✓E(s̃)

⇤
wants to increase the energy of all

other configurations, and thus decreases their probability.

In the fully observed case, the positive phase is tractable, but the negative phase

is intractable for all but the smallest models: the number of configurations over

which to sum to compute the partition function increases exponentially with the

dimensionality of s. The negative phase is usually approximated by Monte Carlo:

Ep(s̃)


@

@✓
E(s̃)

�
⇡ 1

N

NX

i=1

@

@✓
E(s̃i), s̃i ⇠ p(s̃) (1.27)

When s is partially observed, the probability distribution can be written as

p(v,h) =
exp (�E(v,h))

Z
, (1.28)

where s has been partitioned into a set v of visible (or observed) variables and

a set h of hidden (or latent) variables.

In the partially observed case, the log-likelihood gradient is

@

@✓
log p(v) =

@

@✓
log

0

@
X

h̃

p(v, h̃)

1

A

= �Ep(h̃|v)


@

@✓
E(v, h̃)

�
+ Ep(ṽ,h̃)


@

@✓
E(ṽ, h̃)

�
,

(1.29)

18

v1 v2 v3 v4 v5

h1 h2 h3

(a) Boltzmann machine. The edges be-
tween h1, h2 and h3 make the positive phase
of the gradient intractable.

v1 v2 v3 v4 v5

h1 h2 h3

(b) Restricted Boltzmann machine. Nodes
form a bipartite graph, with v and h being
the two partition sets.

Figure 1.8 – Boltzmann machines over a set v = (v1, v2, v3, v4, v5) of observed variables and a
set h = (h1, h2, h3) of latent variables.

and the positive phase also becomes intractable except for small models and

particular architectures like the restricted Boltzmann Machine (RBM).

1.4.3 Sampling

Samples can be drawn from some energy-based models using Gibbs sampling.

The state s is first initialized at a random value of s(0). We then successively

sample s
1
, . . . , s

T by doing T Gibbs steps.

A Gibbs step consists of successively sampling variables in s given all other

variables, i.e.

s
(t+1)

i ⇠ p(si | s
(t+1)

0
, . . . s

(t+1)

i�1
, s

(t)
i+1

, . . . , s
(t)
|s|), i = 1, . . . , |s|. (1.30)

At the end of the T Gibbs steps, a sample is obtained. T has to be large enough

to allow for the sampler to burn in: it takes some time before the sampler reaches

equilibrium, and initial samples won’t represent the desired distribution well. The

time required to reach equilibrium is dependent on the initial state but can be

formally defined in the worst-case scenario as the mixing time. When we say that

our sampler “mixes well”, we loosely mean that it reaches equilibrium quickly.

Once the first sample is obtained, subsequent samples can be drawn by doing

N Gibbs steps starting from the previous sample, with the appropriate value of N

depending on how well the model mixes. In practice it is common to simply run

multiple chains in parallel to obtain multiple samples.

The procedure can be accelerated through block Gibbs sampling. Instead of

19

sampling one variable at a time, s is partitioned into sets of variables that are

conditionally independent given all other variables, and all variables in a partition

set are sampled at once.

1.4.4 Boltzmann machines

When the energy function is quadratic, the model is called a Boltzmann ma-

chine:

E(s) = �sTW s� s
T
b (1.31)

Boltzmann machines in general are not guaranteed to have a tractable positive

phase in the gradient, because nothing forces the latent variables to be conditionally

independent given the observed variables, i.e. there may be edges between latent

nodes in the graph (Figure 1.8a).

1.4.5 Restricted Boltzmann machines

When we add to a Boltzmann machine the constraint that there can be no

edges between visible pairs or between latent pairs of nodes, the model becomes a

Restricted Boltzmann machine (RBM) (Smolensky, 1986). Its energy function has

the form

E(v,h) = �bT
v � c

T
h� h

T
Wv (1.32)

The graphical representation of an RBM is a bipartite graph with v and h being

the two partition sets (Figure 1.8b).

For v 2 {0, 1}|v| and h 2 {0, 1}|h|, the positive phase of an RBM’s gradient is

� Ep(h̃|v)


@

@✓
E(v, h̃)

�
= � @

@✓
F(v) (1.33)

where

F(v) = �bT
v �

|h|X

j=1

log(1 + exp(cj + Wjv)) (1.34)

is the free energy of v.

20

Sampling from an RBM is done by block Gibbs sampling, alternating between

sampling from v given h and vice versa. Conditional distributions are analytically

computed as

p(vi = 1 | h) = �(hT
W:,i + c),

p(hj = 1 | v) = �(Wj,:v + b)
(1.35)

1.4.6 Training an RBM

Even though its positive phase is tractable, the RBM has an intractable negative

phase (Long and Servedio, 2010) that has to be approximated via sampling-based

methods, such as contrastive divergence (CD) (Hinton, 2002; Hinton et al., 2006)

or persistent contrastive divergence (PCD) (Younes, 1999; Tieleman, 2008).

In CD, samples are drawn by initializing visible configurations with training

examples and doing one Gibbs step. The CD-k variant of this method does k

Gibbs steps instead of one. In doing so, we increase the energy of configurations

near training examples. Coupled with the positive phase, it has the e↵ect of creating

energy ‘wells’ around training examples. Even though CD performs well in practice,

the parameter updates it yields do not correspond to the gradient of any function

(Sutskever and Tieleman, 2010).

In PCD, the state of a set of fantasy particles is made to persist across parameter

updates and samples are drawn by doing one Gibbs step. As with CD-k, PCD-k is

a variant of PCD which does k Gibbs steps instead of one. The idea behind PCD

is that if the fantasy particles are near equilibrium and a small parameter update

is made, it will not take too many Gibbs steps to reach equilibrium again.

21

2 Prologue to First Article

2.1 Article Details

On the Challenges of Physical Implementations of RBMs.

Vincent Dumoulin, Ian J. Goodfellow, Aaron Courville, and Yoshua Bengio.

Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1199-1205.

Personal Contribution.

I am first contributor to this work with regards to experiment design, analysis

and writing, and I was in charge of carrying out the experiments.

2.2 Context

We consider the use of physical hardware to train RBMs. Although RBMs

are powerful machine learning models, learning and some kinds of inference in the

model require sampling-based approximations, which, in classical digital computers,

are implemented using expensive MCMC. Physical computation o↵ers the oppor-

tunity to reduce the cost of sampling by building physical systems whose natural

dynamics correspond to drawing samples from the desired RBM distribution. Such

a system avoids the burn-in and mixing cost of a Markov chain. However, hardware

implementations of this variety usually entail limitations such as low-precision and

limited range of the parameters and restrictions on the size and topology of the

RBM.

22

2.3 Contributions

We conduct software simulations to determine how harmful each of these re-

strictions is. Our simulations are based on the D-Wave Two computer, but the

issues we investigate arise in most forms of physical computation.

Our findings suggest that designers of new physical computing hardware and

algorithms for physical computers should focus their e↵orts on overcoming the

limitations imposed by the topology restrictions of currently existing physical com-

puters.

2.4 Recent Developments

Physical implementation of machine learning models, and more specifically

Boltzmann machines, remains a niche research area to this day — notable examples

include NIPS 2015’s Quantum Machine Learning Workshop.

Recent research e↵orts in the deep learning community have shifted from energy-

based models to explicit or implicit directed probabilistic graphical models (PGMs),

which can be sampled from easily through ancestral sampling. The training of ex-

plicit directed PGMs like variational autoencoders (Kingma and Welling, 2014;

Rezende et al., 2014) and various flavours of autoregressive models (Larochelle and

Murray, 2011; Germain et al., 2015; van den Oord et al., 2016c,b,a) has been made

practical by recent advances in stochastic inference (for latent-variable models)

and the introduction of highly parallelizable autoregressive structures (for autore-

gressive models). Implicit directed PGMs have been spearheaded by generative

adversarial networks (GANs) (Goodfellow et al., 2014), which take a radically dif-

ferent approach to obtaining gradients on the directed PGM model, and which

will be expanded upon in more detail in chapter 5. Of note for this article is the

recently-proposed GibbsNet model (Lamb et al., 2017), which can be thought of

as an energy-based model defined implicitly through the conditionals q(z | x) and

p(x | z) and which is trained using an adversarial framework.

23

3
On the Challenges of

Physical Implementations of

RBMs

3.1 Introduction

A restricted Boltzmann machine, as discussed in subsection 1.4.5, is a gener-

ative model that has found widespread application (Hinton et al., 2006; Bengio,

2012; Coates and Ng, 2011). At the time of this work, RBMs remain part of

the state of the art system for classifying permutation invariant MNIST (Hinton

et al., 2012). RBMs and other Boltzmann machines are the dominant means of

using deep learning to solve tasks that involve unsupervised learning and prob-

abilistic modeling, such as filling in missing values or classification with missing

inputs (Goodfellow et al., 2013a). Unfortunately, the log likelihood of the RBM

is intractable (Long and Servedio, 2010), and for other Boltzmann machines most

other interesting quantities are intractable as well. In this work, we explore the use

of quantum hardware to overcome these di�culties. This approach could possibly

unlock the untapped potential of non-restricted Boltzmann machines.

The model may be trained using sampling-based approximations to the gradient

of the log likelihood (Younes, 1999; Tieleman, 2008). However, drawing a fair

sample from the model is also intractable (Long and Servedio, 2010).

Drawing samples from an RBM on a classical digital computer is an active area

of research (Salakhutdinov, 2010; Desjardins et al., 2010; Cho et al., 2010). Exist-

ing approaches are based on Markov chain Monte Carlo (MCMC) procedures. The

cost of drawing a fair sample using an MCMC method may be high if the number

of steps required to get a good sample is high. This occurs in practice because

some RBMs represent distributions with modes that are separated by regions of

extremely low probability, which the Markov chain crosses only rarely. This is par-

ticularly problematic because it interacts with the learning procedure in a vicious

circle: as training progresses, parameters (weights and biases) gradually become

larger, corresponding to sharper probabilities (higher near training examples, and

24

smaller elsewhere), i.e., corresponding to sharper modes separated by zones of lower

probability. Since training procedures based on approximating the log-likelihood

gradient require sampling from the model (usually by MCMC), as training pro-

gresses sampling becomes more di�cult (mixing more slowly between modes, i.e.,

more samples would be required to achieve the same level of variance in the MCMC

estimator of the gradient), making the gradient less reliable and thus slowing down

training.

One possible solution is to construct a physical system whose natural behavior

is to take on states with the desired probability. One may then obtain the desired

samples by observing the behavior of the system, rather than explicitly performing

computations to simulate the dynamics of such a system. We refer to this approach

as “physical computation”. It is similar in spirit to “analog computation” but we

find that term inappropriate in this case, since the sampled states remain digital.

Note that this is di↵erent from the idea of building an RBM “in hardware”–we are

not merely advocating designing an FPGA that specializes in performing the kinds

of digital computations used for simulating an RBM.

Physical computation is a strategy being actively pursued by D-Wave Systems

Inc. i and DARPA’s UPSIDE program ii. In particular, the D-Wave Two system can

be viewed as a physical implementation of an RBM. Most approaches to physical

computation share the property that they greatly simplify the complexity of a task

that is di�cult for digital computers, but also introduce many limitations that

digital computers do not share. For instance, any physical implementation of an

RBM will likely face the issues of noisy parameters, limited parameter range and

restricted architecture. This work aims at getting a better understanding of the

e↵ect of these three constraints on the training and performance of the physical

RBM and ultimately, of the feasibility of the physical approach. In particular, we

would like to address the following questions:

— Which constraint has the worst e↵ect on performance?

— Under which circumstances can a physical implementation of the RBM be

reasonably trained?

— Are there ways to mitigate the degrading e↵ects of constraints imposed by

i. http://www.dwavesys.com/en/products-services.html
ii. http://www.darpa.mil/Our_Work/MTO/Programs/Unconventional_Processing_of_

Signals_for_Intelligent_Data_Exploitation_(UPSIDE).aspx

25

physical computation?

Currently, the only practical physical RBM available is the D-Wave Two system

(but see (Dupret et al., 1996) for earlier work on physical computation also associ-

ated with Ising models). It su↵ers from all three of the limitations we wish to study.

In order to study each limitation in isolation, we performed a suite of feasibility

studies using a simulated physical computer, that we implemented in software on

a GPU. Using a simulation allows us to observe what happens when a physical

computer has noisy parameters, but not limited parameter range or architecture

restrictions, etc. Because these experiments are performed in simulation, we do

not capture the benefit of physical computation: faster, less correlated samples.

Instead, we aim to characterize the potential detriments of physical computation.

In particular, by studying each constraint in isolation, we are able to infer their

relative e↵ect on performance and thereby o↵er guidance for how both hardware

and algorithm designers can best focus their e↵orts on those properties of physical

computation that impose the greatest barriers to its practical use.

3.2 RBM training challenges

As discussed in subsection 1.4.5, the negative phase of an RBM’s gradient is

obtained via a sampling-based approximation. Although conditional sampling in

an RBM is trivial, sampling from p(v,h) or from p(v) cannot be done in a single

step and requires the use of Monte Carlo Markov chains, which in general becomes

computationally expensive if the parameters W, b, and c are configured in a way

that makes the Markov chain mix slowly.

The persistent contrastive divergence (PCD) algorithm (also known as stochas-

tic maximum likelihood) (Younes, 1999; Tieleman, 2008) uses a persistent Gibbs

(MCMC) sampling scheme that sequentially samples from the conditionals p(h | v)

and p(v | h) to recover samples from the joint distribution. These samples are then

used in a Monte Carlo approximation of the negative phase contribution of the log

likelihood gradient.

While PCD has established itself as probably the most popular method of max-

imizing log likelihood in RBMs, it su↵ers from one important weakness. In many

situations, as learning progresses and the model parameters begin to increase in

26

magnitude, the Gibbs sampler at the heart of the negative phase contribution of

the gradient can su↵er from poor mixing properties. Generally, it occurs when

the hidden and visible activations become highly correlated. Poor mixing in the

Gibbs sampling induced Markov chain leads to poor sample diversity which in turn

leads to poor estimates of the negative phase statistics which ultimately lead to

a poor approximation of the likelihood gradient. This problem can be somewhat

mitigated by increasing sample diversity through the use of PCD-k (using k Gibbs

sampling steps between gradient updates). Other ways to mitigate the negative

phase mixing issue include the use of auxilliary parameters (Tieleman and Hinton,

2009) and tempering methods (Salakhutdinov, 2009; Desjardins et al., 2010; Cho

et al., 2010).

The promise of a physical implementation of the RBM is that we entirely

sidestep the di�cult mixing problem that occurs in the negative phase of train-

ing by aquiring fair, uncorrelated samples directly from a physical implementation

of the RBM. In the next section we review the D-Wave machine, to our knowledge

the only existing physical implementation of an RBM-like model.

3.3 The D-Wave system

The D-Wave Two system implements an Ising model (Ising, 1925). Specifically,

it has a signed state vector s 2 {�1, 1}512 and a quadratic energy function

E(s) = s
T
Js + g

T
s

where J is analogous to the weights of a Boltzmann machine and g is analogous to

its biases. The set of Ising model distributions with {�1, 1} states is isomorphic

to the set of Boltzmann machine distributions with {0, 1} states. The conversion

between the parameters of the two model families is a linear mapping. An RBM

with {0, 1} states h and v encoded with weights W and biases b and c can be

converted to use {�1, 1} states via the mapping:

27

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

(a)

1

3

1

3

2

4

2

4

1

3

1

3

2

4

2

4

(b)

1

3

1

3

2

4

2

4

1

3

1

3

2

4

2

4

(c)

Figure 3.1 – Two di↵erent ways of mapping pixels of an image to visible units of an RBM with
chimera connectivity (3.1a). Pixel blocks (3.1b) involves mapping adjacent 2⇥ 2 blocks of pixels
to adjacent, fully-connected groups of units while respecting the relative positions of blocks of
pixels. Extended pixel blocks (3.1c) makes the pixel blocks overlap, to capture more long-range
relationships.

W
0 =

W

4

b
0
i =

1

2
bi +

1

4

X

j

Wij

c
0
i =

1

2
ci +

1

4

X

j

Wji

(3.1)

One can draw samples from a Boltzmann machine using the D-Wave Two sys-

tem just by performing this linear conversion of the parameters prior to requesting

the sample. The resulting {�1, 1} sample may be converted to a {0, 1} sample

simply by replacing all instances of -1 with 0. The choice of parameterization

a↵ects the learning dynamics of stochastic gradient descent, and the Boltzmann

28

parameterization is usually better, so it is generally best to regard the model as a

Boltzmann machine even if the interface to the sampling hardware uses the Ising

parameterization.

The actual probability distribution sampled by the D-Wave Two system devi-

ates slightly from p(s) / exp(�E(s)). Moreover, it is di�cult to control the value

of J or g precisely. Both e↵ects can be approximated by adding Gaussian noise

to J and g. To simulate the D-Wave Two system with reasonable accuracy, the

noise should be added to J once each time the value of J is changed to a new

unique value, but the noise on g should be resampled every time a new sample is

drawn i. This is the approach we take in our GPU-based simulator of the D-Wave

Two system. (One complication we do not attempt to model is that if the same

value of J is requested twice, the error on J should be the same both times–it is

not truly noise, but rather a deterministic error that has a Gaussian distribution

when compared over multiple points in J space.) Other approaches to physical

computation, such as those explored by DARPA’s UPSIDE program, face similar

issues with noise.

The D-Wave Two system also imposes restrictions on the magnitude of each

individual element of J and g. This is common to most approaches to physical

computation.

Finally, many elements of J are constrained to be zero. This is because the

various elements of the state vector are physically laid out in a 2-D grid, and only

nearby elements can interact with each other. Specifically, the connectivity of the

graphical model is constrained to be a chimera graph as illustrated in Figure 3.1.

We observe that this chimera graph can be partitioned to form a bipartite graph.

Under such a partition, the D-Wave Two system comes very close to being an

RBM. The only di↵erence between this model and an RBM is that the noise on

the biases causes the biases to be random variables rather than parameters of the

model.

Denil and De Freitas have also explored the use of D-Wave hardware for training

RBMs. Like our work, their work is primarily a feasibility study based on software

simulations. Their approach di↵ers from ours in three respects: 1) We partition

the D-Wave Two system into visible and hidden states using a partitioning that

makes the chimera graph bipartite, so the hardware implements an RBM. Denil

i. Andrew Berkley, D-Wave Principal Scientist, personal communication

29

and De Freitas used a di↵erent partitioning that allowed visible-visible and hidden-

hidden interactions. 2) We train using sampling-based approximations to the log

likelihood gradient, while they train using empirical derivatives of an autoencoder-

like cost function. 3) Our focus is on understanding how detrimental each of the

limitations of the D-Wave hardware is in isolation, while Denil and De Freitas focus

on devising an algorithm that works reasonably well with all limitations in place

simultaneously.

3.4 Methodological notes

All models were trained using PCD-15. We used standard train / test split for

the MNIST (LeCun et al., 1998), Connect-4 and OCR Letters (Larochelle et al.,

2010) datasets. For all experiments involving training on the simulated physical

computer, we used the simulator to draw samples for the negative phase of PCD,

but used exact mean field for the positive phase. Training examples were binarized

every time they were presented by sampling from a Bernoulli distribution, such that

the grayscale value in [0, 1] in the original image gives the probability of that pixel

being a 1 in the binary image. Unless explicitly stated, all models were trained

using the same hyperparameters.

Negative log-likelihood (NLL) of all models is approximated using annealed im-

portance sampling (AIS) (Salakhutdinov and Murray, 2008). When noise is added

to parameters, the expected AIS is computed by Monte Carlo, with test examples

binarized by following the same method as with training examples.

Although the constraints we apply are dictated by the D-Wave Two system, we

are simulating a low-precision RBM, which means that constraints are enforced on

parameters directly, without converting them to the Ising parametrization first.

All images of samples are displaying the expected value of the visible units given

binary samples of the hidden units.

30

MNIST dataset

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
�sampling

100

120

140

160

180

200

T
es

t
N

L
L

es
ti

m
at

or

Noisy weights and biases

Noisy weights

Noisy biases

Connect-4 dataset

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
�sampling

20

22

24

26

28

30

32

34

36

T
es

t
N

L
L

es
ti

m
at

or

Noisy weights and biases

Noisy weights

Noisy biases

(a)

MNIST dataset

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
�test

100

120

140

160

180

200

220

T
es

t
N

L
L

es
ti

m
at

or

�training = 0.10

�training = 0.00

Connect-4 dataset

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
�test

20

22

24

26

28

30

32

34

36

T
es

t
N

L
L

es
ti

m
at

or

�training = 0.10

�training = 0.00

(b)

Figure 3.2 – (3.2a) Test negative log likelihood (RBM) estimator of a regularly-trained RBM
when Gaussian noise is applied to parameters during sampling. For each noise level, RBM was
computed for 5 di↵erent seeds. Noise on biases has practically no e↵ect on performance compared
to noise on weights. (3.2b) Test RBM estimator of two RBMs trained with di↵erent weights and
bias noise distributions when Gaussian noise is applied to parameters during sampling. For each
noise level, NLL was computed for 5 di↵erent seeds. For both experiments, qualitatively similar
results were obtained for the OCR Letters dataset but not displayed due to space constraints.

3.5 Simulating noisy parameters

Consider the case where we have a trained RBM (trained by any succesful

means; in these experiments we obtained ours by traditional training on a digital

computer), and we would like to draw samples from it using physical computation.

In this case, we know that the model parameters represent the desired distribution

well. However, when loaded into the physical computer, the parameters may not be

preserved exactly. We simulate this by adding Gaussian noise to the parameters.

See Figure 3.2a for a summary of the experimental results in this case. We find

that noise on biases has a negligible e↵ect on NLL compared to noise on weights.

31

(a) �test = 0.00 (b) �test = 0.10 (c) �test = 0.15

(d) �test = 0.00 (e) �test = 0.10 (f) �test = 0.15

Figure 3.3 – Random samples after 100,000 Gibbs steps for an RBM trained without noise
(top row) and for an RBM trained with Gaussian noise of standard deviation � = 0.1 applied to
weights and biases (bottom row), for di↵erent levels of parameter noise.

This could be explained by the fact there are simply more weight parameters than

bias parameters contributing to the energy function. In that case, variance of the

energy function would be dominated by variance on weights. From these tests, we

can observe two things:

1. Adding noise to the model parameters quickly degrades its performance.

2. Noise on the biases is less harmful than noise on the weights.

Of course, these parameters were trained to work well in the absence of noise.

It is possible to learn di↵erent parameters, that are chosen to diminish the e↵ect

of noise. In order to do this, we trained an RBM using the simulated physical

computer to draw the negative phase samples during training. The negative phase

repels the model parameters from regions that produced poor samples. Using noise

on the parameters while generating the negative phase samples increases the range

of the repulsion – not only must the parameters not generate bad samples, noisy

32

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
�training

100

105

110

115

120

125

130

135

T
es

t
N

L
L

es
ti

m
at

or

(a)

10�3 10�2 10�1 100 101 102

Maximal parameter magnitude

100

150

200

250

300

350

400

450

500

T
es

t
N

L
L

es
ti

m
at

or

(b)

Figure 3.4 – (3.4a) Test NLL estimator computed by sampling with no added parameter noise
from RBMs trained with various parameter noise levels. For each noise level, 5 models were
trained using the same hyperparameters but di↵erent seeds. (3.4b) Test NLL estimator computed
by sampling from RBM trained with various magnitude constraints. For each magnitude level, 5
models were trained using the same hyperparameters but di↵erent seeds.

versions of the parameters must not do so either.

We compared how RBM performance evolves as we increase parameter noise

during sampling with that of the RBM trained without noisy parameters (Fig-

ure 3.2b). We used the same noise distribution for both weights and biases.

We find that training with noisy parameters helps reducing the degrading e↵ect

of sampling with noisy parameters. For instance, by training with � = 0.10 on

parameters and sampling with the same �, we were able to reduce NLL estimator

increase by 21.9% in average when compared to training without noise. Further-

more, the benefits of training with noisy parameters before sampling with noisy

parameters extends to noise levels greater than used during training.

The e↵ect of training with noisy parameters is also qualitatively visible when

looking at samples from the model (Figure 3.3). We observe that adding noise

to parameters during sampling increases visual noise in samples, and also makes

samples collapse to major modes. By training with noisy parameters, we are able to

soften these e↵ects, even when sampling with parameter noise greater than training

noise.

As for how much parameter noise an RBM can support during training, we

trained RBMs using various noise levels on weights and biases and computed their

test NLL estimator when sampling with no added noise (Figure 3.4a). A noise

33

(a) �train = 0.10 (b) �train = 0.30 (c) �train = 0.70

Figure 3.5 – Random samples after 100,000 Gibbs steps for three di↵erent parameter noise
levels. Sampling was done without adding noise to parameters.

(a) Max. mag. = 100.0 (b) Max mag. = 1.0 (c) Max mag. = 0.001

Figure 3.6 – Random samples after 100,000 Gibbs steps for three di↵erent parameter magnitude
constraints.

level of � = 0.1 is the biggest noise we could add before the RBM’s performance

noticeably started to degrade. Figure 3.5 o↵ers a qualitative overview of this e↵ect.

This means noisy parameters negatively a↵ects learning for all but the smallest

noise values.

3.6 Simulating limited parameter range

We now turn our attention to the parameter range constraint. We trained

RBMs by forcing their parameter magnitude to stay below a certain threshold

value and observed the e↵ect of that value on test NLL (Figure 3.4b). Whenever

34

0.06 0.08 0.1 0.12 0.14
�training

0.5

1.0

2.0

4.0

8.0
M

ax
im

um
pa

ra
m

et
er

am
pl

it
ud

e

115
120
125
130
135
140
145
150
155
160

T
es

t
N

L
L

es
ti

m
at

or

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of removed connections

100

120

140

160

180

200

220

T
es

t
N

L
L

es
ti

m
at

or

(b)

Figure 3.7 – (3.7a) Test NLL estimator for combinations of noise and magnitude constraints.
In all cases, the model was evaluated using the same � as it was trained with. (3.7b) Test NLL
estimator computed by sampling from RBMs trained with varying amounts of removed connec-
tions (selected at random) in order to simulate a constrained architecture. For each proportion of
removed connections, 5 models were trained using the same hyperparameters but di↵erent seeds.

parameter updates would bring a parameter outside of that range, it was clipped

to the threshold value.

We find that a magnitude constraint higher than or equal to 1.0 has little to no

e↵ect on performance, but that forcing parameters’ magnitude to be smaller than

that quickly degrades performance. See Figure 3.6 for a qualitative overview.

3.7 Combined simulation of noise and limited

parameter range

We combined noise and magnitude constraints together to see how they inter-

act. We explored constraint space around reasonable noise and magnitude values

and looked at how they a↵ect NLL (Figure 3.7a). The two constraints appear to

work well together. In fact, a model with higher noise and small parameter values

performs nearly as well as a standard RBMs. We think that the constraint on pa-

rameter values may actually be helpful, because they force the RBMs to find good

weight vector directions that generalize well, rather than just scaling up its weights

35

(a) 0.10 (b) 0.80 (c) 0.99

Figure 3.8 – Random samples after 100,000 Gibbs steps for three di↵erent proportions of
removed connections.

(a) (b)

Figure 3.9 – Random samples after 100,000 Gibbs steps for two RBMs trained with a chimera
connectivity pattern, using (3.9a) pixel blocks and (3.9b) extended pixel blocks pixel-to-units map-
pings.

to overpower the noise. As always, one should be careful about generalizing these

conclusions to values outside the ranges evaluated in these experiments.

3.8 Simulating limited connectivity

We trained RBM by forcing a random subset of weights to be zero and ob-

served how it a↵ected test NLL (Figure 3.7b). It turns out the RBM can cope

with a reasonable amount of removed connections: even when half the weights

are forced to be zero, test NLL only increases by about 4.3%. However, physical

implementations will likely have sparse connectivity; for instance, the connectivity

36

pattern of a D-Wave machine (Figure 3.1) applied to an RBM with 784 visible units

and 784 hidden units is so that over 99% of its connections are removed. In the

aforementioned experiment, 99% removed connections results in a disappointing

200.3 ± 0.2 test NLL. When looking at samples (Figure 3.8), we observe that the

RBM’s representative power decreases as we force more weights to be zero, until

samples no longer resemble digits.

Fortunately, physical implementations of an RBM will most likely have some

kind of structure to their connectivity pattern, so the results we get by forcing a

random subset of the weights to be zero are somewhat pessimistic.

When we train an RBM with 784 visible units and 784 hidden units with chimera

connectivity pattern, results are much better. There are many ways to map pixels

of an image to visible units of the model; we tried two that seemed the most

logical (Figure 3.1). The pixel blocks mapping lead to a test NLL of 138.2, while

the extended pixel blocks mapping lead to a test NLL of 160.9. When we look at

samples from both RBMs (Figure 3.9), we see that digit structure is much better

preserved than when we randomly force the same proportion of weights to be zero,

although samples still barely look like digits. In all cases, the limited architecture

seems to be the most damaging constraint studied in this work.

3.9 Conclusion

In this work, we have performed a series of simulation experiments to determine

the feasibility of implementing an RBM using physical computation. We have

evaluated the impact of three barriers to the success of physical computation: noise

on the model parameters, limited range on the model parameters, and limited

topology of the model.

We have found that noise on the parameters noticeably degrades performance,

though this can be mitigated by training using the same sampler in the negative

phase as will be used to draw samples at test time. We have found that the limits

on the range of the parameters do not significantly impair the performance of

the RBM. Finally, and most importantly, we have found that restrictions on the

topology of the model can impair the model’s performance more than any of the

other limitations we consider. While structured sparsity like in the D-Wave Two

37

system’s chimera topology does perform well for the number of connections it has,

the overall number of connections is still low enough to cause many di�culties.

Note however that experiments on noisy weights were performed on fully-

connected RBMs. If, as suggested when discussing Figure 3.2, the e↵ect of noisy

parameters is dominated by noise on weights because there are more weights than

biases, then a constrained architecture might mitigate the e↵ect of noisy weights

simply by reducing their number. This needs to be verified in future experiments.

This suggests that quantum hardware designers should concentrate their e↵orts

on reducing noise on weights and on increasing the number of connections between

elements in the quantum computers, and quantum machine learning researchers

should focus their e↵orts on designing approaches that can cope with noisy weights

and restricted topology.

38

4 Prologue to Second Article

4.1 Article Details

Adversarially Learned Inference.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex

Lamb, Martin Arjovsky, and Aaron Courville. Proceedings of the International

Conference on Learning Representations, 2017.

Personal Contribution.

I am first contributor to this work with regards to experiment design, analysis

and writing.

4.2 Context

Generative adversarial networks (GANs) (Goodfellow et al., 2014) have estab-

lished themselves as a powerful generative model framework, yet they sidestep the

inference problem.

At the time this work was published, there existed no principled adversarial

framework for learning inference and generation jointly. This made it di�cult

to reuse GANs for auxiliary tasks that require inference, such as semi-supervised

learning, inpainting, and image manipulation at an abstract level.

4.3 Contributions

We introduce the adversarially learned inference (ALI) model, which jointly

learns a generation network and an inference network using an adversarial process.

39

The generation network maps samples from stochastic latent variables to the data

space while the inference network maps training examples in data space to the

space of latent variables. An adversarial game is cast between these two networks

and a discriminative network is trained to distinguish between joint latent/data-

space samples from the generative network and joint samples from the inference

network. We illustrate the ability of the model to learn mutually coherent infer-

ence and generation networks through the inspection of model samples and recon-

structions and confirm the usefulness of the learned representations by obtaining a

performance competitive with state-of-the-art on the semi-supervised SVHN and

CIFAR10 tasks.

Our paper was published concurrently to a paper titled Adversarial Feature

Learning (Donahue et al., 2017) which proposes the same adversarial inference

framework under the name BiGAN. The two papers di↵er in their quantitative

evaluation setups — BiGAN is instead evaluated on the transferability of its learned

features to the ImageNet classification task as well as the Pascal VOC classification,

detection, and segmentation tasks — and by the fact that in contrast to BiGAN’s

deterministic inference network, ALI considers stochastic — and also sometimes

implicit — inference networks.

4.4 Recent Developments

As of this writing, generative adversarial networks remain a very active area

of research, and as such it is di�cult to condense all recent developments in this

section. For a more thorough overview, see Goodfellow (2016), Warde-Farley and

Goodfellow (2016), and Creswell et al. (2018).

This paper inscribes itself in a rich line of work on implicit inference networks

— which promise the benefit of modeling arbitrarily complex posterior distribu-

tions without having to maintain a tractable density — that continues to this day.

Most related to ALI is work that leverages adversarial training to train implicit

inference networks q(z | x) to perform variational inference in generative models

that factorize as p(z)p(x | z) — in analogy to recognition networks in variational

autoencoders. Makhzani et al. (2015) propose adversarial autoencoders, which

decompose the Kullback-Leibler (KL) term of the evidence lower-bound (ELBO)

40

optimized by a variational autoencoder into an entropy term and a cross-entropy

term and minimize the cross-entropy term indirectly via adversarial training, which

opens the door to the use of implicit approximate posteriors. However, to the best

knowledge of the author of this thesis, this possibility is only mentioned textually

and not put into practice. The ALI model proposed in this paper also allows the

use of implicit inference networks, this time in a fully adversarial training setup,

which is briefly mentioned in the text and put into practice in the toy experiment

on 2D gaussian mixtures. This detail is sadly not pointed out in the paper, but is

visible in the open-sourced experimental code. The idea of a black-box inference

network is centrally featured in work by Mescheder et al. (2017) on adversarial

variational Bayes. The authors replace the KL term of the ELBO with a discrim-

inator that is trained to distinguish between samples of the q(x)q(z | x) joint and

the q(x)p(z) joint. Similar ideas were also concurrently discussed in Huszár (2017)

and in a blog post by the same author. More recently, Makhzani (2018) proposes

a fully-adversarial alternative to ALI which leverages two discriminators. The first

discriminator is trained to distinguish between samples of the q(z)p(x | z) joint

and samples of the p(z)p(x | z) joint, and the second discriminator is trained to

distinguish between samples of the q(z) joint and samples of the p(z) joint.

Recent work also explores the use implicit inference networks in a broader con-

text. Belghazi et al. (2018b) extend ALI to accommodate a hierarchy of latent

variables. Karaletsos (2016) proposes a local message passing variational inference

algorithm for structured models that relies on adversarial training — more specif-

ically, multiple local discriminators are used rather than a single, global discrim-

inator trained on the joint distribution. Tran et al. (2017) introduce hierarchical

implicit models (HIMs) along with a likelihood-free variational inference procedure

— which employs an implicit variational family for the local latent variables — to

perform variational inference on HIMs. Semi-implicit (Yin and Zhou, 2018) and im-

plicit (Titsias and Ruiz, 2018) inference networks are also used to directly optimize

the ELBO (or a lower-bound of the ELBO) in a variational inference setting.

Aside from the inference problem in GANs, many questions are yet to be an-

swered satisfyingly, namely guaranteeing a consistent convergence to an equilibrium

point of the value function under the min-max optimization procedure, addressing

the mode collapse problem, and providing an objective measure of performance.

On the adversarial inference front, Li et al. (2017a) outlined a non-identifiability

41

issue with ALI caused by the lack of cycle-consistency and which can result in poor

reconstructions in practice. As a remedy, the authors propose to augment the ALI

loss function with a conditional entropy term.

Recently, various flavors of discriminator gradient penalties have emerged as

reliable ways to stabilize the training of GANs. These include the gradient penalty

proposed by Gulrajani et al. (2017) in the context of Wasserstein GAN training, the

gradient penalty proposed by Kodali et al. (2017) in the context of training the non-

saturating formulation of GANs, as well as the gradient penalty proposed by Roth

et al. (2017) in the context of f -divergence-based GAN training. In fact, Fedus

et al. (2018) argues that the gradient penalty itself is generally useful irrespective

of the specific GAN-flavoured cost function.

A recent and promising solution to address the mode collapse problem is MINE,

an adversarial estimator of mutual information proposed by Belghazi et al. (2018a).

The authors use their estimator to encourage the maximization of mutual infor-

mation between model samples and their latent code, which acts as a proxy to

maximize the entropy of the samples.

Finally, the performance measure front, Wu et al. (2017) recently proposed to

use annealed importance sampling (AIS) to measure the log-likelihood of decoder-

based models, which GANs are an instance of. Heusel et al. (2017) also recently

introduced the Fréchet Inception Distance as a better replacement for the widely-

used Inception Score (Salimans et al., 2016), which Lucic et al. (2017) leverages

along with precision, recall, and F1 metrics to conduct a large-scale evaluation of

existing GAN variants.

42

5 Adversarially Learned

Inference

5.1 Introduction

Deep directed generative model has emerged as a powerful framework for mod-

eling complex high-dimensional datasets. These models permit fast ancestral sam-

pling, but are often challenging to learn due to the complexities of inference. Re-

cently, three classes of algorithms have emerged as e↵ective for learning deep di-

rected generative models: 1) techniques based on the Variational Autoencoder

(VAE) that aim to improve the quality and e�ciency of inference by learning

an inference machine (Kingma and Welling, 2014; Rezende et al., 2014), 2) tech-

niques based on Generative Adversarial Networks (GANs) that bypass inference

altogether (Goodfellow et al., 2014) and 3) autoregressive approaches (van den

Oord et al., 2016b,c,a) that forego latent representations and instead model the

relationship between input variables directly. While all techniques are provably

consistent given infinite capacity and data, in practice they learn very di↵erent

kinds of generative models on typical datasets.

VAE-based techniques learn an approximate inference mechanism that allows

reuse for various auxiliary tasks, such as semi-supervised learning or inpainting.

They do however su↵er from a well-recognized issue of the maximum likelihood

training paradigm when combined with a conditional independence assumption on

the output given the latent variables: they tend to distribute probability mass dif-

fusely over the data space (Theis et al., 2016). The direct consequence of this is

that image samples from VAE-trained models tend to be blurry (Goodfellow et al.,

2014; Larsen et al., 2016). Autoregressive models produce outstanding samples but

do so at the cost of slow sampling speed and foregoing the learning of an abstract

representation of the data. GAN-based approaches represent a good compromise:

they learn a generative model that produces higher-quality samples than the best

VAE techniques (Radford et al., 2016; Larsen et al., 2016) without sacrificing sam-

43

pling speed and also make use of a latent representation in the generation process.

However, GANs lack an e�cient inference mechanism, which prevents them from

reasoning about data at an abstract level. For instance, GANs don’t allow the sort

of neural photo manipulations showcased in (Brock et al., 2017). Recently, e↵orts

have aimed to bridge the gap between VAEs and GANs, to learn generative models

with higher-quality samples while learning an e�cient inference network (Larsen

et al., 2016; Lamb et al., 2016; Dosovitskiy and Brox, 2016). While this is certainly

a promising research direction, VAE-GAN hybrids tend to manifest a compromise

of the strengths and weaknesses of both approaches.

In this work, we propose a novel approach to integrate e�cient inference within

the GAN framework. Our approach, called Adversarially Learned Inference (ALI),

casts the learning of both an inference machine (or encoder) and a deep directed

generative model (or decoder) in an GAN-like adversarial framework. A discrim-

inator is trained to discriminate joint samples of the data and the corresponding

latent variable from the encoder (or approximate posterior) from joint samples from

the decoder while in opposition, the encoder and the decoder are trained together

to fool the discriminator. Not only are we asking the discriminator to distinguish

synthetic samples from real data, but we are requiring it to distinguish between

two joint distributions over the data space and the latent variables.

With experiments on the Street View House Numbers (SVHN) dataset (Netzer

et al., 2011), the CIFAR-10 object recognition dataset (Krizhevsky and Hinton,

2009), the CelebA face dataset (Liu et al., 2015) and a downsampled version of the

ImageNet dataset (Russakovsky et al., 2015), we show qualitatively that we main-

tain the high sample fidelity associated with the GAN framework, while gaining the

ability to perform e�cient inference. We show that the learned representation is

useful for auxiliary tasks by achieving results competitive with the state-of-the-art

on the semi-supervised SVHN and CIFAR10 tasks.

5.2 Adversarially learned inference

Consider the two following probability distributions over x and z:

— the encoder joint distribution q(x, z) = q(x)q(z | x),

— the decoder joint distribution p(x, z) = p(z)p(x | z).

44

x ⇠ q(x)

ẑ ⇠ q(z | x)

D(x, z)

x̃ ⇠ p(x | z)

z ⇠ p(z)

G
z
(
x
)

G
x
(z

)
(x, ẑ) (x̃, z)

Figure 5.1 – The adversarially learned inference (ALI) game.

These two distributions have marginals that are known to us: the encoder marginal

q(x) is the empirical data distribution and the decoder marginal p(z) is usually

defined to be a simple, factorized distribution, such as the standard Normal dis-

tribution p(z) = N (0, I). As such, the generative process between q(x, z) and

p(x, z) is reversed.

ALI’s objective is to match the two joint distributions. If this is achieved,

then we are ensured that all marginals match and all conditional distributions also

match. In particular, we are assured that the conditional q(z | x) matches the

posterior p(z | x).

In order to match the joint distributions, an adversarial game is played. Joint

pairs (x, z) are drawn either from q(x, z) or p(x, z), and a discriminator network

learns to discriminate between the two, while the encoder and decoder networks

are trained to fool the discriminator.

The value function describing the game is given by:

min
G

max
D

V (D, G) = Eq(x)[log(D(x, Gz(x)))] + Ep(z)[log(1�D(Gx(z), z))]

=

ZZ
q(x)q(z | x) log(D(x, z))dxdz

+

ZZ
p(z)p(x | z) log(1�D(x, z))dxdz.

(5.1)

An attractive property of adversarial approaches is that they do not require

that the conditional densities can be computed; they only require that they can be

sampled from in a way that allows gradient backpropagation. In the case of ALI,

this means that gradients should propagate from the discriminator network to the

encoder and decoder networks.

45

This can be done using the the reparametrization trick (Kingma, 2013; Bengio

et al., 2014, 2013). Instead of sampling directly from the desired distribution,

the random variable is computed as a deterministic transformation of some noise

such that its distribution is the desired distribution. For instance, if q(z | x) =

N (µ(x), �2(x)I), one can draw samples by computing

z = µ(x) + �(x)� ✏, ✏ ⇠ N (0, I). (5.2)

More generally, one can employ a change of variable of the form

v = f(u, ✏) (5.3)

where ✏ is some random source of noise.

The discriminator is trained to distinguish between samples from the encoder

(x, ẑ) ⇠ q(x, z) and samples from the decoder (x̃, z) ⇠ p(x, z). The generator is

trained to fool the discriminator, i.e., to generate x, z pairs from q(x, z) or p(x, z)

that are indistinguishable one from another. See Figure 5.1 for a diagram of the

adversarial game and Algorithm 1 for an algorithmic description of the procedure.

In such a setting, and under the assumption of an optimal discriminator, the

generator minimizes the Jensen-Shannon divergence (Lin, 1991) between q(x, z)

and p(x, z). This can be shown using the same proof sketch as in the original

GAN paper (Goodfellow et al., 2014).

5.2.1 Relation to GAN

ALI bears close resemblance to GAN, but it di↵ers from it in the two following

ways:

— The generator has two components: the encoder, Gz(x), which maps data

samples x to z-space, and the decoder Gx(z), which maps samples from the

prior p(z) (a source of noise) to the input space.

— The discriminator is trained to distinguish between joint pairs (x, ẑ =

Gx(x)) and (x̃ = Gx(z), z), as opposed to marginal samples x ⇠ q(x)

and x̃ ⇠ p(x).

46

Algorithm 1 The ALI training procedure.
✓g, ✓d initialize network parameters
repeat

x(1)
, . . . ,x(M) ⇠ q(x) . Draw M samples from the dataset and the prior

z(1)
, . . . , z(M) ⇠ p(z)

ẑ(i) ⇠ q(z | x = x(i)), i = 1, . . . , M . Sample from the conditionals
x̃(j) ⇠ p(x | z = z(j)), j = 1, . . . , M

⇢
(i)
q D(x(i)

, ẑ(i)), i = 1, . . . , M . Compute discriminator predictions

⇢
(j)
p D(x̃(j)

, z(j)), j = 1, . . . , M

Ld � 1

M

PM
i=1

log(⇢(i)
q)� 1

M

PM
j=1

log(1� ⇢
(j)
p) . Compute discriminator

loss
Lg � 1

M

PM
i=1

log(1� ⇢
(i)
q)� 1

M

PM
j=1

log(⇢(j)
p) . Compute generator loss

✓d ✓d �r✓dLd . Gradient update on discriminator network
✓g ✓g �r✓gLg . Gradient update on generator networks

until convergence

5.2.2 Alternative approaches to feedforward inference in

GAN

The ALI training procedure is not the only way one could learn a feedforward

inference network in a GAN setting.

In recent work, Chen et al. (2016) introduce a model called InfoGAN which

minimizes the mutual information between a subset c of the latent code and x

through the use of an auxiliary distribution Q(c | x). However, this does not

correspond to full inference on z, as only the value for c is inferred. Additionally,

InfoGAN requires that Q(c | x) is a tractable approximate posterior that can be

sampled from and evaluated. ALI only requires that inference networks can be

sampled from, allowing it to represent arbitrarily complex posterior distributions.

One could learn the inverse mapping from GAN samples: this corresponds to

learning an encoder to reconstruct z, i.e. finding an encoder such that Ez⇠p(z)[kz�
Gz(Gx(z))k2

2
] ⇡ 0. We are not aware of any work that reports results for this ap-

proach. This resembles the InfoGAN learning procedure but with a fixed generative

model and a factorial Gaussian posterior with a fixed diagonal variance.

Alternatively, one could decompose training into two phases. In the first phase,

a GAN is trained normally. In the second phase, the GAN’s decoder is frozen and

an encoder is trained following the ALI procedure (i.e., a discriminator taking both

47

x and z as input is introduced). We call this post-hoc learned inference. In this

setting, the encoder and the decoder cannot interact together during training and

the encoder must work with whatever the decoder has learned during GAN training.

Post-hoc learned inference may be suboptimal if this interaction is beneficial to

modeling the data distribution.

5.2.3 Generator value function

As with GAN, when GAN’s discriminator gets too far ahead, its generator may

have a hard time minimizing the value function in Equation 5.1. If the discrimi-

nator’s output is sigmoidal, then the gradient of the value function with respect to

the discriminator’s output vanishes to zero as the output saturates.

As a workaround, the generator is trained to maximize

V
0(D, G) = Eq(x)[log(1�D(x, Gz(x)))] + Ep(z)[log(D(Gx(z), z))] (5.4)

which has the same fixed points but whose gradient is stronger when the discrimi-

nator’s output saturates.

The adversarial game does not require an analytical expression for the joint

distributions. This means we can introduce variable changes without having to

know the explicit distribution over the new variable. For instance, sampling from

p(z) could be done by sampling ✏ ⇠ N (0, I) and passing it through an arbitrary

di↵erentiable function z = f(✏).

However, gradient propagation into the encoder and decoder networks relies on

the reparametrization trick, which means that ALI is not directly applicable to

either applications with discrete data or to models with discrete latent variables.

5.2.4 Discriminator optimality

Proposition 1. Given a fixed generator G, the optimal discriminator is given by

D
⇤(x, z) =

q(x, z)

q(x, z) + p(x, z)
. (5.5)

48

(a) SVHN samples. (b) SVHN reconstructions.

Figure 5.2 – Samples and reconstructions on the SVHN dataset. For the reconstructions,
odd columns are original samples from the validation set and even columns are corresponding
reconstructions (e.g., second column contains reconstructions of the first column’s validation set
samples).

(a) CelebA samples. (b) CelebA reconstructions.

Figure 5.3 – Samples and reconstructions on the CelebA dataset. For the reconstructions,
odd columns are original samples from the validation set and even columns are corresponding
reconstructions.

49

(a) CIFAR10 samples. (b) CIFAR10 reconstructions.

Figure 5.4 – Samples and reconstructions on the CIFAR10 dataset. For the reconstructions,
odd columns are original samples from the validation set and even columns are corresponding
reconstructions.

(a) Tiny ImageNet samples. (b) Tiny ImageNet reconstructions.

Figure 5.5 – Samples and reconstructions on the Tiny ImageNet dataset. For the reconstruc-
tions, odd columns are original samples from the validation set and even columns are correspond-
ing reconstructions.

50

Proof. For a fixed generator G, the complete data value function is

V (D, G) = Ex,z⇠q(x,z)[log(D(x, z))] + Ex,z⇠p(x,z)[log(1�D(x, z))]. (5.6)

The result follows by the concavity of the log and the simplified Euler-Lagrange

equation first order conditions on (x, z)! D(x, z).

5.2.5 Relationship with the Jensen-Shannon divergence

Proposition 2. Under an optimal discriminator D
⇤, the generator minimizes the

Jensen-Shanon divergence which attains its minimum if and only if q(x, z) =

p(x, z).

Proof. The proof is a straightforward extension of the proof in Goodfellow et al.

(2014).

5.2.6 Invertibility

Proposition 3. Assuming optimal discriminator D and generator G. If the en-

coder Gx is deterministic, then Gx = G
�1

z and Gz = G
�1

x almost everywhere.

Sketch of proof. Consider the event R✏ = {x : kx � (Gx � Gz)(x))k > ✏} for some

positive ✏. This set can be seen as a section of the (x, z) space over the elements z

such that z = Gz(x). The generator being optimal, the probabilities of R✏ under

p(x, z) and q(x, z) are equal. Now p(x | z) = �x�Gx(z), where � is the Dirac delta

distribution. This is enough to show that there are no x satisfying the event R✏

and thus Gx = G
�1

z almost everywhere. By symmetry, the same argument can be

applied to show that Gz = G
�1

x .

The complete proof is given in (Donahue et al., 2017), in which the authors inde-

pendently examine the same model structure under the name Bidirectional GAN

(BiGAN).

51

5.3 Related Work

Other recent papers explore hybrid approaches to generative modeling. One

such approach is to relax the probabilistic interpretation of the VAE model by

replacing either the KL-divergence term or the reconstruction term with variants

that have better properties. The adversarial autoencoder model (Makhzani et al.,

2015) replaces the KL-divergence term with a discriminator that is trained to dis-

tinguish between approximate posterior and prior samples, which provides a more

flexible approach to matching the marginal q(z) and the prior. Other papers ex-

plore replacing the reconstruction term with either GANs or auxiliary networks.

Larsen et al. (2016) collapse the decoder of a VAE and the generator of a GAN into

one network in order to supplement the reconstruction loss with a learned similar-

ity metric. Lamb et al. (2016) use the hidden layers of a pre-trained classifier as

auxiliary reconstruction losses to help the VAE focus on higher-level details when

reconstructing. Dosovitskiy and Brox (2016) combine both ideas into a unified loss

function.

ALI’s approach is also reminiscent of the adversarial autoencoder model, which

employs a GAN to distinguish between samples from the approximate posterior

distribution q(z | x) and prior samples. However, unlike adversarial autoencoders,

no explicit reconstruction loss is being optimized in ALI, and the discriminator

receives joint pairs of samples (x, z) rather than marginal z samples.

Independent work by Donahue et al. (2017) proposes the same model under the

name Bidirectional GAN (BiGAN), in which the authors emphasize the learned

features’ usefulness for auxiliary supervised and semi-supervised tasks. The main

di↵erence in terms of experimental setting is that they use a deterministic q(z | x)

network, whereas we use a stochastic network. In our experience, this does not

make a big di↵erence when x is a deterministic function of z as the stochastic

inference networks tend to become determinstic as training progresses. When using

stochastic mappings from z to x, the additional flexiblity of stochastic posteriors

is critical.

52

5.4 Experimental results

We applied ALI to four di↵erent datasets, namely CIFAR10 (Krizhevsky and

Hinton, 2009), SVHN (Netzer et al., 2011), CelebA (Liu et al., 2015) and a center-

cropped, 64⇥ 64 version of the ImageNet dataset (Russakovsky et al., 2015). i

Transposed convolutions are used in Gx(z). This operation corresponds to

the transpose of the matrix representation of a convolution, i.e., the gradient of

the convolution with respect to its inputs. For more details about transposed

convolutions and related operations, see Dumoulin and Visin (2016); Shi et al.

(2016); Odena et al. (2016).

5.4.1 Samples and Reconstructions

For each dataset, samples are presented (Figures 5.2a, 5.3a 5.4a and 5.5a). They

exhibit the same image fidelity as samples from other adversarially-trained models.

We also qualitatively evaluate the fit between the conditional distribution q(z |
x) and the posterior distribution p(z | x) by sampling ẑ ⇠ q(z | x) and x̂ ⇠ p(x |
z = ẑ) (Figures 5.2b, 5.3b, 5.4b and 5.5b). This corresponds to reconstructing the

input in a VAE setting. Note that the ALI training objective does not involve an

explicit reconstruction loss.

We observe that reconstructions are not always faithful reproductions of the

inputs. They retain the same crispness and quality characteristic to adversarially-

trained models, but oftentimes make mistakes in capturing exact object placement,

color, style and (in extreme cases) object identity. The extent to which reconstruc-

tions deviate from the inputs varies between datasets: on CIFAR10, which arguably

constitutes a more complex input distribution, the model exhibits less faithful re-

constructions. This leads us to believe that poor reconstructions are a sign of

underfitting.

This failure mode represents an interesting departure from the bluriness char-

acteristic to the typical VAE setup. We conjecture that in the underfitting regime,

the latent variable representation learned by ALI is potentially more invariant to

less interesting factors of variation in the input and do not devote model capacity

i. The code for all experiments can be found at https://github.com/IshmaelBelghazi/ALI.
Readers can also consult the accompanying website at https://ishmaelbelghazi.github.io/
ALI.

53

Model Misclassification rate

VAE (M1 + M2) i 36.02

SWWAE with dropout ii 23.56

DCGAN + L2-SVM iii 22.18

SDGM iv 16.61

GAN (feature matching)
v

8.11 ± 1.3

ALI (ours, L2-SVM) 19.14 ± 0.50

ALI (ours, no feature matching) 7.3

Table 5.1 – SVHN test set misclassification rate

.

to capturing these factors.

5.4.2 Latent space interpolations

As a sanity check for overfitting, we look at latent space interpolations between

validation set examples (Figure 5.6). We sample pairs of validation set examples

x1 and x2 and project them into z1 and z2 by sampling from the encoder. We then

linearly interpolate between z1 and z2 and pass the intermediary points through

the decoder to plot the input-space interpolations.

We observe smooth transitions between pairs of examples, and intermediary

images remain believable. This is an indicator that ALI is not concentrating its

probability mass exclusively around training examples, but rather has learned latent

features that generalize well.

5.4.3 Semi-supervised learning

We investigate the usefulness of the latent representation learned by ALI through

semi-supervised benchmarks on SVHN and CIFAR10.

i. Kingma et al. (2014)
ii. Zhao et al. (2016)
iii. Radford et al. (2016)
iv. Maaløe et al. (2016)
v. Salimans et al. (2016)

54

Figure 5.6 – Latent space interpolations on the CelebA validation set. Left and right columns
correspond to the original pairs x1 and x2, and the columns in between correspond to the decoding
of latent representations interpolated linearly from z1 to z2. Unlike other adversarial approaches
like DCGAN (Radford et al., 2016), ALI allows one to interpolate between actual data points.

We first compare with GAN on SVHN by following the procedure outlined in

Radford et al. (2016). We train an L2-SVM on the learned representations of a

model trained on SVHN. The last three hidden layers of the encoder as well as

its output are concatenated to form a 8960-dimensional feature vector. A 10,000

example held-out validation set is taken from the training set and is used for model

selection. The SVM is trained on 1000 examples taken at random from the re-

mainder of the training set. The test error rate is measured for 100 di↵erent SVMs

trained on di↵erent random 1000-example training sets, and the average error rate

is measured along with its standard deviation.

Using ALI’s inference network as opposed to the discriminator to extract fea-

tures, we achieve a misclassification rate that is roughly 3.00 ± 0.50% lower than

reported in Radford et al. (2016) (Table 5.1), which suggests that ALI’s inference

mechanism is beneficial to the semi-supervised learning task.

We then investigate ALI’s performance when label information is taken into

account during training. We adapt the discriminative model proposed in Salimans

et al. (2016). The discriminator takes x and z as input and outputs a distribution

over K + 1 classes, where K is the number of categories. When label information

is available for q(x, z) samples, the discriminator is expected to predict the label.

When no label information is available, the discriminator is expected to predict

K + 1 for p(x, z) samples and k 2 {1, . . . , K} for q(x, z) samples.

Interestingly, Salimans et al. (2016) found that they required an alternative

training strategy for the generator where it tries to match first-order statistics in

55

Number of labeled examples 1000 2000 4000 8000

Model Misclassification rate

Ladder network i
20.40

CatGAN ii
19.58

GAN (feat. matching)
iii

21.83±2.01 19.61±2.09 18.63±2.32 17.72±1.82

ALI (ours, no feat. matching) 19.98±0.89 19.09±0.44 17.99±1.62 17.05±1.49

Table 5.2 – CIFAR10 test set misclassification rate for semi-supervised learning using di↵erent
numbers of trained labeled examples. For ALI, error bars correspond to 3 times the standard
deviation.

the discriminator’s intermediate activations with respect to the data distribution

(they refer to this as feature matching). We found that ALI did not require feature

matching to obtain comparable results. We achieve results competitive with the

state-of-the-art, as shown in Tables 5.1 and 5.2. Table 5.2 shows that ALI o↵ers

a modest improvement over Salimans et al. (2016), more specifically for 1000 and

2000 labeled examples.

We are still investigating the di↵erences between ALI and GAN with respect to

feature matching, but we conjecture that the latent representation learned by ALI

is better untangled with respect to the classification task and that it generalizes

better.

5.4.4 Conditional Generation

We extend ALI to match a conditional distribution. Let y represent a fully

observed conditioning variable. In this setting, the value function reads

V (D, G) =Eq(x) p(y)[log(D(x, Gz(x,y),y))]+

Ep(z) p(y)[log(1�D(Gx(z,y), z,y))]
(5.7)

We apply the conditional version of ALI to CelebA using the dataset’s 40 binary

attributes. The attributes are linearly embedded in the encoder, decoder and dis-

i. Rasmus et al. (2015)
ii. Springenberg (2016)
iii. Salimans et al. (2016)

56

Figure 5.7 – Conditional generation sequence. We sample a single fixed latent code z. Each
row has a subset of attributes that are held constant across columns. The attributes are male,
attractive, young for row I; male, attractive, older for row II; female, attractive, young for row
III; female, attractive, older for Row IV. Attributes are then varied uniformly over rows across
all columns in the following sequence: (b) black hair; (c) brown hair; (d) blond hair; (e) black
hair, wavy hair; (f) blond hair, bangs; (g) blond hair, receding hairline; (h) blond hair, balding;
(i) black hair, smiling; (j) black hair, smiling, mouth slightly open; (k) black hair, smiling, mouth
slightly open, eyeglasses; (l) black hair, smiling, mouth slightly open, eyeglasses, wearing hat.

criminator. We observe how a single element of the latent space z changes with

respect to variations in the attributes vector y. Conditional samples are shown in

Figure 5.7.

5.4.5 Importance of learning inference jointly with gener-

ation

To highlight the role of the inference network during learning, we performed

an experiment on a toy dataset for which q(x) is a 2D gaussian mixture with 25

mixture components laid out on a grid. The covariance matrices and centroids have

been chosen such that the distribution exhibits lots of modes separated by large

low-probability regions, which makes it a decently hard task despite the 2D nature

of the dataset.

We trained ALI and GAN on 100,000 q(x) samples. The decoder and discrim-

inator architectures are identical between ALI and GAN (except for the input of

the discriminator, which receives the concatenation of x and z in the ALI case).

Each model was trained 10 times using Adam (Kingma and Ba, 2014) with ran-

dom learning rate and �1 values, and the weights were initialized by drawing from

57

Figure 5.8 – Comparison of (a) ALI, (b) GAN with an encoder learned to reconstruct latent
samples (c) GAN with an encoder learned through ALI, (d) variational autoencoder (VAE) on a
2D toy dataset. The ALI model in (a) does a much better job of covering the latent space (second
row) and producing good samples than the two GAN models (b, c) augmented with an inference
mechanism.

58

a gaussian distribution with a random standard deviation.

We measured the extent to which the trained models covered all 25 modes by

drawing 10,000 samples from their p(x) distribution and assigning each sample to

a q(x) mixture component according to the mixture responsibilities. We defined

a dropped mode as one that wasn’t assigned to any sample. Using this definition,

we found that ALI models covered 13.4 ± 5.8 modes on average (min: 8, max: 25)

while GAN models covered 10.4 ± 9.2 modes on average (min: 1, max: 22).

We then selected the best-covering ALI and GAN models, and the GAN model

was augmented with an encoder using the learned inverse mapping and post-hoc

learned inference procedures outlined in subsection 5.2.2. The encoders learned for

GAN inference have the same architecture as ALI’s encoder. We also trained a

VAE with the same encoder-decoder architecture as ALI to outline the qualitative

di↵erences between ALI and VAE models.

We then compared each model’s inference capabilities by reconstructing 10,000

held-out samples from q(x). Figure 5.8 summarizes the experiment. We observe

the following:

— The ALI encoder models a marginal distribution q(z) that matches p(z)

fairly well (row 2, column a). The learned representation does a decent job

at clustering and organizing the di↵erent mixture components.

— The GAN generator (row 5, columns b-c) has more trouble reaching all

the modes than the ALI generator (row 5, column a), even over 10 runs of

hyperparameter search.

— Learning an inverse mapping from GAN samples does not work very well:

the encoder has trouble covering the prior marginally and the way it clus-

ters mixture components is not very well organized (row 2, column b). As

discussed in subsection 5.2.2, reconstructions su↵er from the generator drop-

ping modes.

— Learning inference post-hoc doesn’t work as well as training the encoder and

the decoder jointly. As had been hinted at in subsection 5.2.2, it appears

that adversarial training benefits from learning inference at training time in

terms of mode coverage. This also negatively impacts how the latent space

is organized (row 2, column c). However, it appears to be better at matching

q(z) and p(z) than when inference is learned through inverse mapping from

GAN samples.

59

— Due to the nature of the loss function being optimized, the VAE model

covers all modes easily (row 5, column d) and excels at reconstructing data

samples (row 3, column d). However, they have a much more pronounced

tendency to smear out their probability density (row 5, column d) and leave

“holes” in q(z) (row 2, column d). Note however that recent approaches

such as Inverse Autoregressive Flow (Kingma et al., 2016) may be used to

improve on this, at the cost of a more complex mathematical framework.

In summary, this experiment provides evidence that adversarial training benefits

from learning an inference mechanism jointly with the decoder. Furthermore, it

shows that our proposed approach for learning inference in an adversarial setting

is superior to the other approaches investigated.

5.5 Conclusion

We introduced the adversarially learned inference (ALI) model, which jointly

learns a generation network and an inference network using an adversarial process.

The model learns mutually coherent inference and generation networks, as exhibited

by its reconstructions. The induced latent variable mapping is shown to be use-

ful, achieving results competitive with the state-of-the-art on the semi-supervised

SVHN and CIFAR10 tasks.

Acknowledgements

The authors would like to acknowledge the support of the following agencies

for research funding and computing support: NSERC, Calcul Québec, Compute

Canada. We would also like to thank the developers of Theano (Bergstra et al.,

2010; Bastien et al., 2012; Theano Development Team, 2016), Blocks and Fuel

(van Merriënboer et al., 2015), which were used extensively for this work. Finally,

we would like to thank Yoshua Bengio, David Warde-Farley, Yaroslav Ganin and

Laurent Dinh for their valuable feedback.

60

Appendix

Operation Kernel Strides Feature maps BN? Dropout Nonlinearity

Gz(x) – 3 ⇥ 32 ⇥ 32 input

Convolution 5 ⇥ 5 1 ⇥ 1 32
p

0.0 Leaky ReLU

Convolution 4 ⇥ 4 2 ⇥ 2 64
p

0.0 Leaky ReLU

Convolution 4 ⇥ 4 1 ⇥ 1 128
p

0.0 Leaky ReLU

Convolution 4 ⇥ 4 2 ⇥ 2 256
p

0.0 Leaky ReLU

Convolution 4 ⇥ 4 1 ⇥ 1 512
p

0.0 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 512
p

0.0 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 128 ⇥ 0.0 Linear

Gx(z) – 64 ⇥ 1 ⇥ 1 input

Transposed convolution 4 ⇥ 4 1 ⇥ 1 256
p

0.0 Leaky ReLU

Transposed convolution 4 ⇥ 4 2 ⇥ 2 128
p

0.0 Leaky ReLU

Transposed convolution 4 ⇥ 4 1 ⇥ 1 64
p

0.0 Leaky ReLU

Transposed convolution 4 ⇥ 4 2 ⇥ 2 32
p

0.0 Leaky ReLU

Transposed convolution 5 ⇥ 5 1 ⇥ 1 32
p

0.0 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 32
p

0.0 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 3 ⇥ 0.0 Sigmoid

D(x) – 3 ⇥ 32 ⇥ 32 input

Convolution 5 ⇥ 5 1 ⇥ 1 32 ⇥ 0.2 Maxout

Convolution 4 ⇥ 4 2 ⇥ 2 64 ⇥ 0.5 Maxout

Convolution 4 ⇥ 4 1 ⇥ 1 128 ⇥ 0.5 Maxout

Convolution 4 ⇥ 4 2 ⇥ 2 256 ⇥ 0.5 Maxout

Convolution 4 ⇥ 4 1 ⇥ 1 512 ⇥ 0.5 Maxout

D(z) – 64 ⇥ 1 ⇥ 1 input

Convolution 1 ⇥ 1 1 ⇥ 1 512 ⇥ 0.2 Maxout

Convolution 1 ⇥ 1 1 ⇥ 1 512 ⇥ 0.5 Maxout

D(x, z) – 1024 ⇥ 1 ⇥ 1 input

Concatenate D(x) and D(z) along the channel axis

Convolution 1 ⇥ 1 1 ⇥ 1 1024 ⇥ 0.5 Maxout

Convolution 1 ⇥ 1 1 ⇥ 1 1024 ⇥ 0.5 Maxout

Convolution 1 ⇥ 1 1 ⇥ 1 1 ⇥ 0.5 Sigmoid

Optimizer Adam (↵ = 10
�4

, �1 = 0.5, �2 = 10
�3

)

Batch size 100

Epochs 6475

Leaky ReLU slope, maxout pieces 0.1, 2

Weight, bias initialization Isotropic gaussian (µ = 0, � = 0.01), Constant(0)

Table 5.3 – CIFAR10 model hyperparameters (unsupervised). Maxout layers (Goodfellow et al.,
2013b) are used in the discriminator.

61

Operation Kernel Strides Feature maps BN? Dropout Nonlinearity

Gz(x) – 3 ⇥ 32 ⇥ 32 input

Convolution 5 ⇥ 5 1 ⇥ 1 32
p

0.0 Leaky ReLU

Convolution 4 ⇥ 4 2 ⇥ 2 64
p

0.0 Leaky ReLU

Convolution 4 ⇥ 4 1 ⇥ 1 128
p

0.0 Leaky ReLU

Convolution 4 ⇥ 4 2 ⇥ 2 256
p

0.0 Leaky ReLU

Convolution 4 ⇥ 4 1 ⇥ 1 512
p

0.0 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 512
p

0.0 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 512 ⇥ 0.0 Linear

Gx(z) – 256 ⇥ 1 ⇥ 1 input

Transposed convolution 4 ⇥ 4 1 ⇥ 1 256
p

0.0 Leaky ReLU

Transposed convolution 4 ⇥ 4 2 ⇥ 2 128
p

0.0 Leaky ReLU

Transposed convolution 4 ⇥ 4 1 ⇥ 1 64
p

0.0 Leaky ReLU

Transposed convolution 4 ⇥ 4 2 ⇥ 2 32
p

0.0 Leaky ReLU

Transposed convolution 5 ⇥ 5 1 ⇥ 1 32
p

0.0 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 32
p

0.0 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 3 ⇥ 0.0 Sigmoid

D(x) – 3 ⇥ 32 ⇥ 32 input

Convolution 5 ⇥ 5 1 ⇥ 1 32 ⇥ 0.2 Leaky ReLU

Convolution 4 ⇥ 4 2 ⇥ 2 64
p

0.2 Leaky ReLU

Convolution 4 ⇥ 4 1 ⇥ 1 128
p

0.2 Leaky ReLU

Convolution 4 ⇥ 4 2 ⇥ 2 256
p

0.2 Leaky ReLU

Convolution 4 ⇥ 4 1 ⇥ 1 512
p

0.2 Leaky ReLU

D(z) – 256 ⇥ 1 ⇥ 1 input

Convolution 1 ⇥ 1 1 ⇥ 1 512 ⇥ 0.2 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 512 ⇥ 0.2 Leaky ReLU

D(x, z) – 1024 ⇥ 1 ⇥ 1 input

Concatenate D(x) and D(z) along the channel axis

Convolution 1 ⇥ 1 1 ⇥ 1 1024 ⇥ 0.2 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 1024 ⇥ 0.2 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 1 ⇥ 0.2 Sigmoid

Optimizer Adam (↵ = 10
�4

, �1 = 0.5, �2 = 10
�3

)

Batch size 100

Epochs 100

Leaky ReLU slope 0.01

Weight, bias initialization Isotropic gaussian (µ = 0, � = 0.01), Constant(0)

Table 5.4 – SVHN model hyperparameters (unsupervised).

62

Operation Kernel Strides Feature maps BN? Dropout Nonlinearity

Gz(x) – 3 ⇥ 64 ⇥ 64 input

Convolution 2 ⇥ 2 1 ⇥ 1 64
p

0.0 Leaky ReLU

Convolution 7 ⇥ 7 2 ⇥ 2 128
p

0.0 Leaky ReLU

Convolution 5 ⇥ 5 2 ⇥ 2 256
p

0.0 Leaky ReLU

Convolution 7 ⇥ 7 2 ⇥ 2 256
p

0.0 Leaky ReLU

Convolution 4 ⇥ 4 1 ⇥ 1 512
p

0.0 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 512 ⇥ 0.0 Linear

Gx(z) – 512 ⇥ 1 ⇥ 1 input

Transposed convolution 4 ⇥ 4 1 ⇥ 1 512
p

0.0 Leaky ReLU

Transposed convolution 7 ⇥ 7 2 ⇥ 2 256
p

0.0 Leaky ReLU

Transposed convolution 5 ⇥ 5 2 ⇥ 2 256
p

0.0 Leaky ReLU

Transposed convolution 7 ⇥ 7 2 ⇥ 2 128
p

0.0 Leaky ReLU

Transposed convolution 2 ⇥ 2 1 ⇥ 1 64
p

0.0 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 3 ⇥ 0.0 Sigmoid

D(x) – 3 ⇥ 64 ⇥ 64 input

Convolution 2 ⇥ 2 1 ⇥ 1 64
p

0.0 Leaky ReLU

Convolution 7 ⇥ 7 2 ⇥ 2 128
p

0.0 Leaky ReLU

Convolution 5 ⇥ 5 2 ⇥ 2 256
p

0.0 Leaky ReLU

Convolution 7 ⇥ 7 2 ⇥ 2 256
p

0.0 Leaky ReLU

Convolution 4 ⇥ 4 1 ⇥ 1 512
p

0.0 Leaky ReLU

D(z) – 512 ⇥ 1 ⇥ 1 input

Convolution 1 ⇥ 1 1 ⇥ 1 1024 ⇥ 0.2 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 1024 ⇥ 0.2 Leaky ReLU

D(x, z) – 1536 ⇥ 1 ⇥ 1 input

Concatenate D(x) and D(z) along the channel axis

Convolution 1 ⇥ 1 1 ⇥ 1 2048 ⇥ 0.2 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 2048 ⇥ 0.2 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 1 ⇥ 0.2 Sigmoid

Optimizer Adam (↵ = 10
�4

, �1 = 0.5)

Batch size 100

Epochs 123

Leaky ReLU slope 0.02

Weight, bias initialization Isotropic gaussian (µ = 0, � = 0.01), Constant(0)

Table 5.5 – CelebA model hyperparameters (unsupervised).

63

Operation Kernel Strides Feature maps BN? Dropout Nonlinearity

Gz(x) – 3 ⇥ 64 ⇥ 64 input

Convolution 4 ⇥ 4 2 ⇥ 2 64
p

0.0 Leaky ReLU

Convolution 4 ⇥ 4 1 ⇥ 1 64
p

0.0 Leaky ReLU

Convolution 4 ⇥ 4 2 ⇥ 2 128
p

0.0 Leaky ReLU

Convolution 4 ⇥ 4 1 ⇥ 1 128
p

0.0 Leaky ReLU

Convolution 4 ⇥ 4 2 ⇥ 2 256
p

0.0 Leaky ReLU

Convolution 4 ⇥ 4 1 ⇥ 1 256
p

0.0 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 2048
p

0.0 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 2048
p

0.0 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 512 ⇥ 0.0 Linear

Gx(z) – 256 ⇥ 1 ⇥ 1 input

Convolution 1 ⇥ 1 1 ⇥ 1 2048
p

0.0 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 256
p

0.0 Leaky ReLU

Transposed convolution 4 ⇥ 4 1 ⇥ 1 256
p

0.0 Leaky ReLU

Transposed convolution 4 ⇥ 4 2 ⇥ 2 128
p

0.0 Leaky ReLU

Transposed convolution 4 ⇥ 4 1 ⇥ 1 128
p

0.0 Leaky ReLU

Transposed convolution 4 ⇥ 4 2 ⇥ 2 64
p

0.0 Leaky ReLU

Transposed convolution 4 ⇥ 4 1 ⇥ 1 64
p

0.0 Leaky ReLU

Transposed convolution 4 ⇥ 4 2 ⇥ 2 64
p

0.0 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 3 ⇥ 0.0 Sigmoid

D(x) – 3 ⇥ 64 ⇥ 64 input

Convolution 4 ⇥ 4 2 ⇥ 2 64 ⇥ 0.2 Leaky ReLU

Convolution 4 ⇥ 4 1 ⇥ 1 64
p

0.2 Leaky ReLU

Convolution 4 ⇥ 4 2 ⇥ 2 128
p

0.2 Leaky ReLU

Convolution 4 ⇥ 4 1 ⇥ 1 128
p

0.2 Leaky ReLU

Convolution 4 ⇥ 4 2 ⇥ 2 256
p

0.2 Leaky ReLU

Convolution 4 ⇥ 4 1 ⇥ 1 256
p

0.2 Leaky ReLU

D(z) – 256 ⇥ 1 ⇥ 1 input

Convolution 1 ⇥ 1 1 ⇥ 1 2048 ⇥ 0.2 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 2048 ⇥ 0.2 Leaky ReLU

D(x, z) – 2304 ⇥ 1 ⇥ 1 input

Concatenate D(x) and D(z) along the channel axis

Convolution 1 ⇥ 1 1 ⇥ 1 4096 ⇥ 0.2 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 4096 ⇥ 0.2 Leaky ReLU

Convolution 1 ⇥ 1 1 ⇥ 1 1 ⇥ 0.2 Sigmoid

Optimizer Adam (↵ = 10
�4

, �1 = 0.5, �2 = 10
�3

)

Batch size 128

Epochs 125

Leaky ReLU slope 0.01

Weight, bias initialization Isotropic gaussian (µ = 0, � = 0.01), Constant(0)

Table 5.6 – Tiny ImageNet model hyperparameters (unsupervised).

64

6 Prologue to Third Article

6.1 Article Details

A learned representation for artistic style.

Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. Proceedings of

the International Conference on Learning Representations, 2017.

Personal Contribution.

I am first contributor to this work with regards to experiment design, analysis

and writing.

6.2 Context

At the time this work was published, deep learning-based artistic style trans-

fer was achieved either through an optimization-based procedure on an arbitrary

content-style image pair (Gatys et al., 2015b, 2016b), or using a feedforward neural

network trained on a single style for an arbitrary content image (Ulyanov et al.,

2016a; Li and Wand, 2016; Johnson et al., 2016). Importantly, these approaches

did not learn an explicit reprentation for the style they modeled.

6.3 Contributions

In this work we investigate the construction of a single, scalable deep network

that can parsimoniously capture the artistic style of a diversity of paintings. We

demonstrate that such a network generalizes across a diversity of artistic styles by

reducing a painting to a point in an embedding space. Importantly, this model

65

permits a user to explore new painting styles by arbitrarily combining the styles

learned from individual paintings.

6.4 Recent Developments

Follow-up work has explored having the style image inform the conditioning of

the style directly rather than through a learned embedding (Ghiasi et al., 2017;

Huang and Belongie, 2017).

The conditional instance normalization technique introduced in this work was

a direct inspiration for a class of conditioning mechanisms which has found success

in speech recognition (Kim et al., 2017), visual question-answering (de Vries et al.,

2017), and visual reasoning (Perez et al., 2017a,b).

Artistic style transfer and texture synthesis are still being actively worked on.

Recent advances include work on achieving finer-grained control on the stylized

image in terms of color, spatial location, and spatial scale of the textures and

patterns (Gatys et al., 2017), alternative loss function formulations (Chen and

Schmidt, 2016; Li et al., 2017b; Berger and Memisevic, 2017), and GAN-based

approaches (Li and Wand, 2016; Jetchev et al., 2016; Bergmann et al., 2017).

66

7 A learned representation for

artistic style

7.1 Introduction

A pastiche is an artistic work that imitates the style of another one. Computer

vision and more recently machine learning have a history of trying to automate

pastiche, that is, render an image in the style of another one. This task is called

style transfer, and is closely related to the texture synthesis task. While the latter

tries to capture the statistical relationship between the pixels of a source image

which is assumed to have a stationary distribution at some scale, the former does

so while also attempting to preserve some notion of content.

On the computer vision side, Efros and Leung (1999) and Wei and Levoy (2000)

attempt to “grow” textures one pixel at a time using non-parametric sampling of

pixels in an examplar image. Efros and Freeman (2001) and Liang et al. (2001)

extend this idea to “growing” textures one patch at a time, and Efros and Freeman

(2001) uses the approach to implement “texture transfer”, i.e. transfering the tex-

ture of an object onto another one. Kwatra et al. (2005) approaches the texture

synthesis problem from an energy minimization perspective, progressively refining

the texture using an EM-like algorithm. Hertzmann et al. (2001) introduces the

concept of “image analogies”: given a pair of “unfiltered” and “filtered” versions of

an examplar image, a target image is processed to create an analogous “filtered”

result. More recently, Frigo et al. (2016) treats style transfer as a local texture

transfer (using an adaptive patch partition) followed by a global color transfer,

and Elad and Milanfar (2017) extends Kwatra’s energy-based method into a style

transfer algorithm by taking content similarity into account.

On the machine learning side, it has been shown that a trained classifier can

be used as a feature extractor to drive texture synthesis and style transfer. Gatys

et al. (2015a) uses the VGG-19 network (Simonyan and Zisserman, 2014) to extract

features from a texture image and a synthesized texture. The two sets of features

67

(a) With conditional instance normalization, a single style transfer network can capture
32 styles at the same time, five of which are shown here. All 32 styles in this single model
are in the Appendix. Golden Gate Bridge photograph by Rich Niewiroski Jr.

(b) The style representation learned via conditional instance normalization permits the
arbitrary combination of artistic styles. Each pastiche in the sequence corresponds to a
di↵erent step in interpolating between the � and � values associated with two styles the
model was trained on.

Figure 7.1 – Pastiches produced by a style transfer network trained on 32 styles chosen for
their variety.

68

St
yl

e
tr

an
sf

er

ne
tw

or
k

co
nv

1

co
nv

2

co
nv

3

co
nv

4

co
nv

5

Ls Ls

Lc

fu
lly

 c
on

ne
ct

ed

Ls Ls

VGG-16

Figure 7.2 – Style transfer network training diagram (Johnson et al., 2016; Ulyanov et al.,
2016a). A pastiche image is produced by feeding a content image through the style transfer
network. The two images, along with a style image, are passed through a trained classifier, and
the resulting intermediate representations are used to compute the content loss Lc and style loss
Ls. The parameters of the classifier are kept fixed throughout training.

x xnorm= (x - μ) / σ zz = ᵛs xnorm + βs

ᵛ{μ, σ}
β

s

Figure 7.3 – Conditional instance normalization. The input activation x is normalized across
both spatial dimensions and subsequently scaled and shifted using style-dependent parameter
vectors �s,�s where s indexes the style label.

are compared and the synthesized texture is modified by gradient descent so that

the two sets of features are as close as possible. Gatys et al. (2015b, 2016b) extends

this idea to style transfer by adding the constraint that the synthesized image also

be close to a content image with respect to another set of features extracted by the

trained VGG-19 classifier.

While very flexible, this algorithm is expensive to run due to the optimization

loop being carried. Ulyanov et al. (2016a), Li and Wand (2016) and Johnson et al.

(2016) tackle this problem by introducing a feedforward style transfer network,

which is trained to go from content to pastiche image in one pass. However, in doing

so some of the flexibility of the original algorithm is lost: the style transfer network

69

is tied to a single style, which means that separate networks have to be trained

for every style being modeled. Subsequent work has brought some performance

improvements to style transfer networks, e.g. with respect to color preservation

(Gatys et al., 2016a) or style transfer quality (Ulyanov et al., 2016b, 2017), but to

our knowledge the problem of the single-purpose nature of style transfer networks

remains untackled.

We think this is an important problem that, if solved, would have both scientific

and practical importance. First, style transfer has already found use in mobile

applications, for which on-device processing is contingent upon the models having

a reasonable memory footprint. More broadly, building a separate network for

each style ignores the fact that individual paintings share many common visual

elements and a true model that captures artistic style would be able to exploit and

learn from such regularities. Furthermore, the degree to which an artistic styling

model might generalize across painting styles would directly measure our ability to

build systems that parsimoniously capture the higher level features and statistics

of photographs and images (Simoncelli and Olshausen, 2001).

In this work, we show that a simple modification of the style transfer network,

namely the introduction of conditional instance normalization, allows it to learn

multiple styles (Figure 7.1a).We demonstrate that this approach is flexible yet

comparable to single-purpose style transfer networks, both qualitatively and in

terms of convergence properties. This model reduces each style image into a point

in an embedding space. Furthermore, this model provides a generic representation

for artistic styles that seems flexible enough to capture new artistic styles much

faster than a single-purpose network. Finally, we show that the embeddding space

representation permits one to arbitrarily combine artistic styles in novel ways not

previously observed (Figure 7.1b).

7.2 Style transfer with deep networks

Style transfer can be defined as finding a pastiche image p whose content is

similar to that of a content image c but whose style is similar to that of a style

image s. This objective is by nature vaguely defined, because similarity in content

and style are themselves vaguely defined.

70

The neural algorithm of artistic style proposes the following definitions:

— Two images are similar in content if their high-level features as extracted by

a trained classifier are close in Euclidian distance.

— Two images are similar in style if their low-level features as extracted by a

trained classifier share the same statistics or, more concretely, if the di↵er-

ence between the features’ Gram matrices has a small Frobenius norm.

The first point is motivated by the empirical observation that high-level fea-

tures in classifiers tend to correspond to higher levels of abstractions (see Zeiler

and Fergus (2014) for visualizations; see Johnson et al. (2016) for style transfer

features). The second point is motivated by the observation that the artistic style

of a painting may be interpreted as a visual texture (Gatys et al., 2015a). A

visual texture is conjectured to be spatially homogenous and consist of repeated

structural motifs whose minimal su�cient statistics are captured by lower order

statistical measurements (Julesz, 1962; Portilla and Simoncelli, 2000).

In its original formulation, the neural algorithm of artistic style proceeds as

follows: starting from some initialization of p (e.g. c, or some random initialization),

the algorithm adapts p to minimize the loss function

L(s, c, p) = �sLs(p) + �cLc(p), (7.1)

where Ls(p) is the style loss, Lc(p) is the content loss and �s, �c are scaling hyper-

parameters. Given a set of “style layers” S and a set of “content layers” C, the style

and content losses are themselves defined as

Ls(p) =
X

i2S

1

Ui
|| G(�i(p))�G(�i(s)) ||2F (7.2)

Lc(p) =
X

j2C

1

Uj
|| �j(p)� �j(c) ||2

2
(7.3)

where �l(x) are the classifier activations at layer l, Ul is the total number of units

at layer l and G(�l(x)) is the Gram matrix associated with the layer l activations.

In practice, we set �c = 1.0 and and leave �s as a free hyper-parameter.

In order to speed up the procedure outlined above, a feed-forward convolutional

network, termed a style transfer network T , is introduced to learn the transforma-

tion (Johnson et al., 2016; Li and Wand, 2016; Ulyanov et al., 2016a). It takes as

71

Figure 7.4 – A single style transfer network was trained to capture the style of 10 Monet
paintings, five of which are shown here. All 10 styles in this single model are in the Appendix.
Golden Gate Bridge photograph by Rich Niewiroski Jr.

input a content image c and outputs the pastiche image p directly (Figure 7.2).

The network is trained on many content images (Deng et al., 2009) using the same

loss function as above, i.e.

L(s, c) = �sLs(T (c)) + �cLc(T (c)). (7.4)

While feedforward style transfer networks solve the problem of speed at test-

time, they also su↵er from the fact that the network T is tied to one specific painting

style. This means that a separate network T has to be trained for every style to be

imitated. The real-world impact of this limitation is that it becomes prohibitive

to implement a style transfer application on a memory-limited device, such as a

smartphone.

72

7.2.1 N-styles feedforward style transfer networks

Our work stems from the intuition that many styles probably share some degree

of computation, and that this sharing is thrown away by training N networks

from scratch when building an N -styles style transfer system. For instance, many

impressionist paintings share similar paint strokes but di↵er in the color palette

being used. In that case, it seems very wasteful to treat a set of N impressionist

paintings as completely separate styles.

To take this into account, we propose to train a single conditional style transfer

network T (c, s) for N styles. The conditional network is given both a content

image and the identity of the style to apply and produces a pastiche corresponding

to that style. While the idea is straightforward on paper, there remains the open

question of how conditioning should be done. In exploring this question, we found

a very surprising fact about the role of normalization in style transfer networks:

to model a style, it is su�cient to specialize scaling and shifting parameters after

normalization to each specific style. In other words, all convolutional weights of a

style transfer network can be shared across many styles, and it is su�cient to tune

parameters for an a�ne transformation after normalization for each style.

We call this approach conditional instance normalization. The goal of the pro-

cedure is transform a layer’s activations x into a normalized activation z specific

to painting style s. Building o↵ the instance normalization technique proposed in

Ulyanov et al. (2016b, 2017), we augment the � and � parameters so that they’re

N ⇥ C matrices, where N is the number of styles being modeled and C is the

number of output feature maps. Conditioning on a style is achieved as follows:

z = �s

✓
x� µ

�

◆
+ �s (7.5)

where µ and � are x’s mean and standard deviation taken across spatial axes and �s

and �s are obtained by selecting the row corresponding to s in the � and � matrices

(Figure 7.3). One added benefit of this approach is that one can stylize a single

image into N painting styles with a single feed forward pass of the network with a

batch size of N . In constrast, a single-style network requires N feed forward passes

to perform N style transfers (Johnson et al., 2016; Li and Wand, 2016; Ulyanov

et al., 2016a).

Because conditional instance normalization only acts on the scaling and shifting

73

parameters, training a style transfer network on N styles requires fewer parameters

than the naive approach of training N separate networks. In a typical network

setup, the model consists of roughly 1.6M parameters, only around 3K (or 0.2%) of

which specify individual artistic styles. In fact, because the size of � and � grows

linearly with respect to the number of feature maps in the network, this approach

requires O(N ⇥L) parameters, where L is the total number of feature maps in the

network.

In addition, as is discussed in subsection 7.3.4, conditional instance normaliza-

tion presents the advantage that integrating an N + 1th style to the network is

cheap because of the very small number of parameters to train.

7.3 Experimental results

7.3.1 Methodology

Unless noted otherwise, all style transfer networks were trained using the hy-

perparameters outlined in the Appendix’s Table 7.1.

We used the same network architecture as in Johnson et al. (2016), except for

two key details: zero-padding is replaced with mirror-padding, and transposed con-

volutions (also sometimes called deconvolutions) are replaced with nearest-neighbor

upsampling followed by a convolution. The use of mirror-padding avoids border

patterns sometimes caused by zero-padding in SAME-padded convolutions, while

the replacement for transposed convolutions avoids checkerboard patterning, as

discussed in in Odena et al. (2016). We find that with these two improvements

training the network no longer requires a total variation loss that was previously

employed to remove high frequency noise as proposed in Johnson et al. (2016).

Our training procedure follows Johnson et al. (2016). Briefly, we employ the Im-

ageNet dataset (Deng et al., 2009) as a corpus of training content images. We train

the N -style network with stochastic gradient descent using the Adam optimizer

(Kingma and Ba, 2014). Details of the model architecture are in the Appendix. A

complete implementation of the model in TensorFlow (Abadi et al., 2015) as well

as a pretrained model are available for download i. The evaluation images used

i. https://github.com/tensorflow/magenta

74

N styles 1 style

Figure 7.5 – The N -styles model exhibits learning dynamics comparable to individual models.
(Left column) The N-styles model converges slightly slower in terms of content loss (top) and as
fast in terms of style loss (bottom) than individual models. Training on a single Monet painting
is represented by two curves with the same color. The dashed curve represents the N -styles
model, and the full curves represent individual models. Emphasis has been added on the styles
for Vetheuil (1902) (teal) and Water Lilies (purple) for visualization purposes; remaining colors
correspond to other Monet paintings (see Appendix). (Center column) The N-styles model reaches
a slightly higher final content loss than (top, 8.7±3.9% increase) and a final style loss comparable
to (bottom, 8.9 ± 16.5% decrease) individual models. (Right column) Pastiches produced by the
N -styles network are qualitatively comparable to those produced by individual networks.

75

5,000 steps 40,000 steps

fin
e-

tu
ne

d
fro

m
 s

cr
at

ch

Figure 7.6 – The trained network is e�cient at learning new styles. (Left column) Learning
� and � from a trained style transfer network converges much faster than training a model from
scratch. (Right) Learning � and � for 5,000 steps from a trained style transfer network produces
pastiches comparable to that of a single network trained from scratch for 40,000 steps. Conversely,
5,000 step of training from scratch produces leads to a poor pastiche.

for this work were resized such that their smaller side has size 512. Their stylized

versions were then center-cropped to 512x512 pixels for display.

7.3.2 Training a single network on N styles produces styl-

izations comparable to independently-trained models

As a first test, we trained a 10-styles model on stylistically similar images,

namely 10 impressionist paintings from Claude Monet. Figure 7.4 shows the result

of applying the trained network on evaluation images for a subset of the styles,

with the full results being displayed in the Appendix. The model captures di↵erent

color palettes and textures. We emphasize that 99.8% of the parameters are shared

across all styles in contrast to 0.2% of the parameters which are unique to each

painting style.

To get a sense of what is being traded o↵ by folding 10 styles into a single

network, we trained a separate, single-style network on each style and compared

them to the 10-styles network in terms of style transfer quality and training speed

(Figure 7.5).

The left column compares the learning curves for style and content losses be-

76

Figure 7.7 – The N -styles network can arbitrarily combine artistic styles. (Left) Combining
four styles, shown in the corners. Each pastiche corresponds to a di↵erent convex combination of
the four styles’ � and � values. (Right) As we transition from one style to another (Bicentennial
Print and Head of a Clown in this case), the style losses vary monotonically.

tween the single-style networks and the 10-styles network. The losses were averaged

over 32 random batches of content images. By visual inspection, we observe that

the 10-styles network converges as quickly as the single-style networks in terms of

style loss, but lags slightly behind in terms of content loss.

In order to quantify this observation, we compare the final losses for 10-styles

and single-style models (center column). The 10-styles network’s content loss is

around 8.7 ± 3.9% higher than its single-style counterparts, while the di↵erence

in style losses (8.9 ± 16.5% lower) is insignificant. While the N -styles network

su↵ers from a slight decrease in content loss convergence speed, this may not be a

fair comparison, given that it takes N times more parameter updates to train N

single-style networks separately than to train them with an N -styles network.

The right column shows a comparison between the pastiches produced by the

10-styles network and the ones produced by the single-style networks. We see that

both results are qualitatively similar.

77

7.3.3 The N-styles model is flexible enough to capture very

di↵erent styles

We evaluated the flexibility of the N -styles model by training a style transfer

network on 32 works of art chosen for their diversity. Figure 7.1a shows the result

of applying the trained network on evaluation images for a subset of the styles.

Once again, the full results are displayed in the Appendix. The model appears to

be capable of modeling all 32 styles in spite of the tremendous variation in color

palette and the spatial scale of the painting styles.

7.3.4 The trained network generalizes across painting styles

Since all weights in the transformer network are shared between styles, one way

to incorporate a new style to a trained network is to keep the trained weights fixed

and learn a new set of � and � parameters. To test the e�ciency of this approach,

we used it to incrementally incorporate Monet’s Plum Trees in Blossom painting

to the network trained on 32 varied styles. Figure 7.6 shows that doing so is much

faster than training a new network from scratch (left) while yielding comparable

pastiches: even after eight times fewer parameter updates than its single-style

counterpart, the fine-tuned model produces comparable pastiches (right).

7.3.5 The trained network can arbitrarily combine painting

styles

The conditional instance normalization approach raises some interesting ques-

tions about style representation. In learning a di↵erent set of � and � parameters

for every style, we are in some sense learning an embedding of styles.

Previous work suggested that cleverly balancing optimization strategies o↵ers

an opportunity to blend painting styles i. To probe the utility of this embed-

ding, we tried convex combinations of the � and � values to blend very distinct

painting styles (Figure 7.1b; Figure 7.7, left column). Employing a single convex

combination produces a smooth transition from one style to the other. Suppose

(�1, �1) and (�2, �2) are the parameters corresponding to two di↵erent styles. We

use � = ↵ ⇥ �1 + (1� ↵)⇥ �2 and � = ↵ ⇥ �1 + (1� ↵)⇥ �2 to stylize an image.

i. For instance, https://github.com/jcjohnson/neural-style

78

Employing convex combinations may be extended to an arbitrary number of styles
i. Figure 7.7 (right column) shows the style loss from the transformer network for

a given source image, with respect to the Bicentennial Print and Head of a Clown

paintings, as we vary ↵ from 0 to 1. As ↵ increases, the style loss with respect to

Bicentennial Print increases, which explains the smooth fading out of that style’s

artifact in the transformed image.

7.4 Discussion

It seems surprising that such a small proportion of the network’s parameters

can have such an impact on the overall process of style transfer. A similar intuition

has been observed in auto-regressive models of images (van den Oord et al., 2016c)

and audio (van den Oord et al., 2016a) where the conditioning process is mediated

by adjusting the biases for subsequent samples from the model. That said, in the

case of art stylization when posed as a feedforward network, it could be that the

specific network architecture is unable to take full advantage of its capacity. We

see evidence for this behavior in that pruning the architecture leads to qualitatively

similar results. Another interpretation could be that the convolutional weights of

the style transfer network encode transformations that represent“elements of style”.

The scaling and shifting factors would then provide a way for each style to inhibit

or enhance the expression of various elements of style to form a global identity of

style. While this work does not attempt to verify this hypothesis, we think that

this would constitute a very promising direction of research in understanding the

computation behind style transfer networks as well as the representation of images

in general.

Concurrent to this work, Gatys et al. (2017) demonstrated exciting new meth-

ods for revising the loss to selectively adjust the spatial scale, color information and

spatial localization of the artistic style information. These methods are complemen-

tary to the results in this paper and present an interesting direction for exploring

how spatial and color information uniquely factor into artistic style representation.

i. Please see the code repository for real-time, interactive demonstration. A screen capture is
available at https://www.youtube.com/watch?v=6ZHiARZmiUI.

79

The question of how predictive each style image is of its corresponding style

representation is also of great interest. If it is the case that the style representation

can easily be predicted from a style image, one could imagine building a transformer

network which skips learning an individual conditional embedding and instead learn

to produce a pastiche directly from a style and a content image, much like in the

original neural algorithm of artistic style, but without any optimization loop at test

time.

Finally, the learned style representation opens the door to generative models

of style: by modeling enough paintings of a given artistic movement (e.g. impres-

sionism), one could build a collection of style embeddings upon which a generative

model could be trained. At test time, a style representation would be sampled from

the generative model and used in conjunction with the style transfer network to

produce a random pastiche of that artistic movement.

In summary, we demonstrated that conditional instance normalization consti-

tutes a simple, e�cient and scalable modification of style transfer networks that

allows them to model multiple styles at the same time. A practical consequence

of this approach is that a new painting style may be transmitted to and stored

on a mobile device with a small number of parameters. We showed that despite

its simplicity, the method is flexible enough to capture very di↵erent styles while

having very little impact on training time and final performance of the trained

network. Finally, we showed that the learned representation of style is useful in

arbitrarily combining artistic styles. This work suggests the existence of a learned

representation for artistic styles whose vocabulary is flexible enough to capture a

diversity of the painted world.

Acknowledgments

We would like to thank Fred Bertsch, Douglas Eck, Cinjon Resnick and the rest

of the Google Magenta team for their feedback; Peyman Milanfar, Michael Elad,

Feng Yang, Jon Barron, Bhavik Singh, Jennifer Daniel as well as the the Google

Brain team for their crucial suggestions and advice; an anonymous reviewer for

helpful suggestions about applying this model in a mobile domain. Finally, we

would like to thank the Google Cultural Institute, whose curated collection of art

photographs was very helpful in finding exciting style images to train on.

80

Appendix

Operation Kernel size Stride Channels Padding Nonlinearity

Network – 256⇥ 256⇥ 3 input

Convolution 9 1 32 SAME ReLU

Convolution 3 2 64 SAME ReLU

Convolution 3 2 128 SAME ReLU

Res. block 128

Res. block 128

Res. block 128

Res. block 128

Res. block 128

Upsampling 64

Upsampling 32

Convolution 9 1 3 SAME Sigmoid

Res. block – C channels

Convolution 3 1 C SAME ReLU

Convolution 3 1 C SAME Linear

Add the input and the output

Upsampling – C channels

Nearest-neighbor interpolation, factor 2

Convolution 3 1 C SAME ReLU

Padding mode REFLECT

Normalization Conditional instance normalization after every convolution

Optimizer Adam (Kingma and Ba, 2014)

Optimizer hyperparameters ↵ = 0.001, �1 = 0.9, �2 = 0.999

Parameter updates 40,000

Batch size 16

Weight initialization Isotropic gaussian (µ = 0, � = 0.01)

Table 7.1 – Style transfer network hyperparameters.

81

Claude Monet, Grainstacks at Giverny; the Evening Sun (1888/1889).

Claude Monet, Plum Trees in Blossom (1879).

Claude Monet, Poppy Field (1873).

82

Claude Monet, Rouen Cathedral, West Façade (1894).

Claude Monet, Sunrise (Marine) (1873).

Claude Monet, The Road to Vétheuil (1879).

83

Claude Monet, Three Fishing Boats (1886).

Claude Monet, Vétheuil (1879).

Claude Monet, Vétheuil (1902).

84

Claude Monet, Water Lilies (ca. 1914-1917).

Roy Lichtenstein, Bicentennial Print (1975).

Ernst Ludwig Kirchner, Boy with Sweets (1918).

85

Paul Signac, Cassis, Cap Lombard, Opus 196 (1889).

Paul Klee, Colors from a Distance (1932).

Frederic Edwin Church, Cotopaxi (1855).

86

Jamini Roy, Crucifixion.

Henri de Toulouse-Lautrec, Divan Japonais (1893).

Egon Schiele, Edith with Striped Dress, Sitting (1915).

87

Georges Rouault, Head of a Clown (ca. 1907-1908).

William Hoare, Henry Hoare, ”The Magnificent”, of Stourhead (about 1750-1760).

Giorgio de Chirico, Horses on the seashore (1927/1928).

88

Vincent van Gogh, Landscape at Saint-Rémy (Enclosed Field with Peasant) (1889).

Nicolas Poussin, Landscape with a Calm (1650-1651).

Bernardino Fungai, Madonna and Child with Two Hermit Saints (early 1480s).

89

Max Hermann Maxy, Portrait of a Friend (1926).

Juan Gris, Portrait of Pablo Picasso (1912).

Severini Gino, Ritmo plastico del 14 luglio (1913).

90

Richard Diebenkorn, Seawall (1957).

Alice Bailly, Self-Portrait (1917).

Grayson Perry, The Annunciation of the Virgin Deal (2012).

91

William Glackens, The Green Boathouse (ca. 1922).

Edvard Munch, The Scream (1910).

Vincent van Gogh, The Starry Night (1889).

92

Pieter Bruegel the Elder, The Tower of Babel (1563).

Wolfgang Lettl, The Trial (1981).

Douglas Coupland, Thomson No. 5 (Yellow Sunset) (2011).

93

Claude Monet, Three Fishing Boats (1886).

John Ruskin, Trees in a Lane (1847).

Giuseppe Cades, Tullia about to Ride over the Body of Her Father in Her Chariot (about 1770-1775).

94

Berthe Morisot, Under the Orange Tree (1889).

Giulio Romano (Giulio Pippi), Victory, Janus, Chronos and Gaea (about 1532-1534).

Wassily Kandinsky, White Zig Zags (1922).

95

8 Discussion

The articles presented in this thesis are inspired by and seek to advance knowl-

edge in the field of representation learning in one way or another.

The simulation work on physical implementations of restricted Boltzmann ma-

chines gives insight into the way in which RBM performance degrades when sub-

jected to real-world constraints, such as noise on parameters, limited parameter

amplitude and sparse connectivity constraints. While research e↵orts have shifted

from energy-based models towards directed probabilistic graphical models over the

past few years, dedicated hardware is exactly the kind of innovation which may

spark a renewed interest in those models, and the conclusions presented in this

work are likely to be relevant to any e↵ort in that direction.

The work on adversarial inference in GANs provides access to the representa-

tion learned by the generator, allowing its re-use for auxiliary tasks such as semi-

supervised learning and image manipulation in an abstract space. While this work

does not specifically address other current open GAN problems, such as consistent

convergence to an equilibrium point of the value function, mode collapse, or finding

an objective measure of performance, it does provide an inference framework which

will remain usable even when those problems are resolved.

Finally, the work on artistic style transfer focuses on learning a representation

of artistic style, which opens the door to new exciting directions of research. Anal-

ysis on the learned representation of a large collection of paintings — e.g., through

clustering or low-dimensional projections — may reveal interesting connections be-

tween works of art in a purely automated fashion. Manipulating and comparing the

learned representations between di↵erent artistic styles may help explain the com-

putation carried out by intermediary layers in the style transfer network. This work

also had an impact outside of the field of artistic style transfer, with the realization

that the conditioning mechanism it introduces can be applied to many di↵erent

problem settings. In fact, a very general view emerges in the form of a learned

representation of tasks — in the case of artistic style transfer, a task corresponds

96

to imitating a particular style — where the representation itself is indicative of the

computation required to solve a given task. This shift in perspective may provide

valuable insight on how di↵erent tasks relate to each other, and help rationalize

the computational behaviour of the conditioned networks.

97

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,

G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,

Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,

J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens,

J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,

V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and

Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous

systems.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A.,

Bouchard, N., Warde-Farley, D., and Bengio, Y. (2012). Theano: New features

and speed improvements. In Proceedings of the NIPS Workshop on Deep Learning

and Unsupervised Feature Learning.

Belghazi, I., Baratin, A., Rajeswar, S., Ozair, S., Bengio, Y., Courville, A., and

Hjelm, D. (2018a). Mutual information neural estimation. In Proceedings of the

International Conference on Machine Learning.

Belghazi, M. I., Rajeswar, S., Mastropietro, O., Rostamzadeh, N., Mitrovic,

J., and Courville, A. (2018b). Hierarchical adversarially learned inference.

arXiv:1802.01071.

Bengio, Y. (2012). Deep learning of representations for unsupervised and transfer

learning. In Proceedings of the ICML Workshop on Unsupervised and Transfer

Learning.

Bengio, Y., Léonard, N., and Courville, A. (2013). Estimating or propagating gra-

dients through stochastic neurons for conditional computation. arXiv:1308.3432.

Bengio, Y., Thibodeau-Laufer, E., Alain, G., and Yosinski, J. (2014). Deep gener-

98

ative stochastic networks trainable by backprop. In Proceedings of the Interna-

tional Conference on Machine Learning.

Berger, G. and Memisevic, R. (2017). Incorporating long-range consistency in

CNN-based texture generation. In Proceedings of the International Conference

on Learning Representations.

Bergmann, U., Jetchev, N., and Vollgraf, R. (2017). Learning texture manifolds

with the periodic spatial GAN. In Proceedings of the International Conference

on Machine Learning.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G.,

Turian, J., Warde-Farley, D., and Bengio, Y. (2010). Theano: a CPU and GPU

math expression compiler. In Proceedings of the Python in Science Conference.

Bousquet, O. and Bottou, L. (2008). The tradeo↵s of large scale learning. In

Advances in Neural Information Processing Systems.

Brock, A., Lim, T., Ritchie, J., and Weston, N. (2017). Neural photo editing with

introspective adversarial networks. In Proceedings of the International Confer-

ence on Learning Representations.

Chen, T. Q. and Schmidt, M. (2016). Fast patch-based style transfer of arbitrary

style. arXiv:1612.04337.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel, P.

(2016). InfoGAN: Interpretable representation learning by information maximiz-

ing generative adversarial nets. In Advances in Neural Information Processing

Systems.

Cho, K., Raiko, T., and Ilin, A. (2010). Parallel tempering is e�cient for learn-

ing restricted boltzmann machines. In Proceedings of the International Joint

Conference on Neural Networks.

Coates, A. and Ng, A. Y. (2011). The importance of encoding versus training

with sparse coding and vector quantization. In Proceedings of the International

Conference on Machine Learning.

99

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., and

Bharath, A. A. (2018). Generative adversarial networks: An overview. IEEE

Signal Processing Magazine, 35(1):53–65.

de Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O., and Courville, A.

(2017). Modulating early visual processing by language. In Advances in Neural

Information Processing Systems.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet:

A large-scale hierarchical image database. In Proceedings of the Conference on

Computer Vision and Pattern Recognition.

Denil, M. and De Freitas, N. (2011). Toward the implementation of a quantum

RBM. In Proceedings of the NIPS Workshop on Deep Learning and Unsupervised

Feature Learning.

Desjardins, G., Courville, A. C., Bengio, Y., Vincent, P., and Delalleau, O. (2010).

Tempered Markov chain Monte Carlo for training of restricted Boltzmann ma-

chines. In Proceedings of the International Conference on Artificial Intelligence

and Statistics.

Donahue, J., Krähenbühl, P., and Darrell, T. (2017). Adversarial feature learning.

In Proceedings of the International Conference on Learning Representations.

Dosovitskiy, A. and Brox, T. (2016). Generating images with perceptual similarity

metrics based on deep networks. In Advances in Neural Information Processing

Systems.

Dumoulin, V. (2014). Morphing faces. https://vdumoulin.github.io/

morphing_faces.

Dumoulin, V., Belghazi, I., Poole, B., Lamb, A., Arjovsky, M., Mastropietro, O.,

and Courville, A. (2017a). Adversarially learned inference. In Proceedings of the

International Conference on Learning Representations.

Dumoulin, V., Goodfellow, I. J., Courville, A., and Bengio, Y. (2014). On the

challenges of physical implementations of RBMs. In Proceedings of the AAAI

Conference on Artificial Intelligence.

100

Dumoulin, V., Shlens, J., and Kudlur, M. (2017b). A learned representation for

artistic style. In Proceedings of the International Conference on Learning Rep-

resentations.

Dumoulin, V. and Visin, F. (2016). A guide to convolution arithmetic for deep

learning. arXiv:1603.07285.

Dupret, A., Belhaire, E., Rodier, J.-C., Lalanne, P., Prévost, D., Garda, P., and

Chavel, P. (1996). An optoelectronic CMOS circuit implementing a simulated

annealing algorithm. IEEE Journal of Solid-State Circuits, 31.

Efros, A. A. and Freeman, W. T. (2001). Image quilting for texture synthesis and

transfer. In Proceedings of the Conference on Computer Graphics and Interactive

Techniques.

Efros, A. A. and Leung, T. K. (1999). Texture synthesis by non-parametric sam-

pling. In Proceedings of the IEEE Conference on Computer Vision.

Elad, M. and Milanfar, P. (2017). Style-transfer via texture-synthesis. IEEE Trans-

actions on Image Processing, 26.

Fedus, W., Rosca, M., Lakshminarayanan, B., Dai, A. M., Mohamed, S., and

Goodfellow, I. (2018). Many paths to equilibrium: GANs do not need to decrease

a divergence at every step. In Proceedings of the International Conference on

Learning Representations.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.

Annals of eugenics, 7.

Frigo, O., Sabater, N., Delon, J., and Hellier, P. (2016). Split and match: Example-

based adaptive patch sampling for unsupervised style transfer. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition.

Gatys, L., Ecker, A. S., and Bethge, M. (2015a). Texture synthesis using convolu-

tional neural networks. In Advances in Neural Information Processing Systems.

Gatys, L. A., Bethge, M., Hertzmann, A., and Shechtman, E. (2016a). Preserving

color in neural artistic style transfer. arXiv:1606.05897.

101

Gatys, L. A., Ecker, A. S., and Bethge, M. (2015b). A neural algorithm of artistic

style. arXiv:1508.06576.

Gatys, L. A., Ecker, A. S., and Bethge, M. (2016b). Image style transfer using con-

volutional neural networks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2414–2423.

Gatys, L. A., Ecker, A. S., Bethge, M., Hertzmann, A., and Shechtman, E. (2017).

Controlling perceptual factors in neural style transfer. In Proceedings of the

Conference on Computer Vision and Pattern Recognition.

Germain, M., Gregor, K., Murray, I., and Larochelle, H. (2015). MADE: Masked

autoencoder for distribution estimation. In Proceedings of the International Con-

ference on Machine Learning.

Ghiasi, G., Lee, H., Kudlur, M., Dumoulin, V., and Shlens, J. (2017). Exploring

the structure of a real-time, arbitrary neural artistic stylization network. In

Proceedings of the British Machine Vision Conference.

Goodfellow, I. (2016). NIPS 2016 tutorial: Generative adversarial networks. Pre-

sented at the Neural Information Processing Systems Conference.

Goodfellow, I., Mirza, M., Courville, A., and Bengio, Y. (2013a). Multi-prediction

deep Boltzmann machines. In Advances in Neural Information Processing Sys-

tems.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Advances

in Neural Information Processing Systems.

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y.

(2013b). Maxout networks. In Proceedings of the International Conference on

Machine Learning.

Griewank, A. and Walther, A. (2008). Evaluating derivatives: Principles and tech-

niques of algorithmic di↵erentiation, volume 105. Siam.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. (2017).

Improved training of Wasserstein GANs. In Advances in Neural Information

Processing Systems.

102

Hertzmann, A., Jacobs, C. E., Oliver, N., Curless, B., and Salesin, D. H. (2001).

Image analogies. In Proceedings of the Conference on Computer Graphics and

Interactive Techniques.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Klambauer, G., and

Hochreiter, S. (2017). GANs trained by a two time-scale update rule converge

to a Nash equilibrium. In Advances in Neural Information Processing Systems.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive

divergence. Neural computation, 14.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for

deep belief nets. Neural computation, 18.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov,

R. R. (2012). Improving neural networks by preventing co-adaptation of feature

detectors. arXiv:1207.0580.

Huang, X. and Belongie, S. (2017). Arbitrary style transfer in real-time with adap-

tive instance normalization. In Proceedings of the International Conference on

Computer Vision.

Huszár, F. (2017). Variational inference using implicit distributions.

arXiv:1702.08235.

Ising, E. (1925). Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik

A Hadrons and Nuclei, 31.

Jetchev, N., Bergmann, U., and Vollgraf, R. (2016). Texture synthesis with spa-

tial generative adversarial networks. In Proceedings of the NIPS Workshop on

Adversarial Training.

Johnson, J., Alahi, A., and Fei-Fei, L. (2016). Perceptual losses for real-time style

transfer and super-resolution. In Proceedings of the European Conference on

Computer Vision.

Julesz, B. (1962). Visual pattern discrimination. IRE transactions on Information

Theory, 8.

103

Karaletsos, T. (2016). Adversarial message passing for graphical models. In Ad-

vances in Neural Information Processing Systems.

Kim, T., Song, I., and Bengio, Y. (2017). Dynamic layer normalization for adaptive

neural acoustic modeling in speech recognition. In Interspeech.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. In

Proceedings of the International Conference on Learning Representations.

Kingma, D. P. (2013). Fast gradient-based inference with continuous latent variable

models in auxiliary form. arXiv:1306.0733.

Kingma, D. P., Mohamed, S., Rezende, D. J., and Welling, M. (2014). Semi-

supervised learning with deep generative models. In Advances in Neural Infor-

mation Processing Systems.

Kingma, D. P., Salimans, T., and Welling, M. (2016). Improving variational in-

ference with inverse autoregressive flow. In Advances in Neural Information

Processing Systems.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. In Pro-

ceedings of the International Conference on Learning Representations.

Kodali, N., Abernethy, J., Hays, J., and Kira, Z. (2017). On convergence and

stability of GANs. arXiv:1705.07215.

Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from

tiny images. Technical report, University of Toronto.

Kwatra, V., Essa, I., Bobick, A., and Kwatra, N. (2005). Texture optimization for

example-based synthesis. ACM Transactions on Graphics (ToG), 24.

Lamb, A., Dumoulin, V., and Courville, A. (2016). Discriminative regularization

for generative models. arXiv:1602.03220.

Lamb, A. M., Hjelm, D., Ganin, Y., Cohen, J. P., Courville, A. C., and Bengio, Y.

(2017). GibbsNet: Iterative adversarial inference for deep graphical models. In

Advances in Neural Information Processing Systems.

104

Larochelle, H., Bengio, Y., and Turian, J. (2010). Tractable multivariate binary

density estimation and the restricted Boltzmann forest. Neural computation, 22.

Larochelle, H. and Murray, I. (2011). The neural autoregressive distribution esti-

mator. In Proceedings of the International Conference on Artificial Intelligence

and Statistics.

Larsen, A. B. L., Sønderby, S. K., and Winther, O. (2016). Autoencoding be-

yond pixels using a learned similarity metric. In Proceedings of the International

Conference on Machine Learning.

LeCun, Y., Bottou, L., Bengio, Y., and Ha↵ner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86.

Li, C., Liu, H., Chen, C., Pu, Y., Chen, L., Henao, R., and Carin, L. (2017a). Alice:

Towards understanding adversarial learning for joint distribution matching. In

Advances in Neural Information Processing Systems.

Li, C. and Wand, M. (2016). Precomputed real-time texture synthesis with marko-

vian generative adversarial networks. In Proceedings of the European Conference

on Computer Vision.

Li, Y., Fang, C., Yang, J., Wang, Z., Lu, X., and Yang, M.-H. (2017b). Uni-

versal style transfer via feature transforms. In Advances in Neural Information

Processing Systems.

Liang, L., Liu, C., Xu, Y.-Q., Guo, B., and Shum, H.-Y. (2001). Real-time texture

synthesis by patch-based sampling. ACM Transactions on Graphics, 20.

Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Trans-

actions on Information Theory, 37.

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep learning face attributes

in the wild. In Proceedings of the IEEE International Conference on Computer

Vision.

Long, P. M. and Servedio, R. (2010). Restricted Boltzmann machines are hard to

approximately evaluate or simulate. In Proceedings of the International Confer-

ence on Machine Learning.

105

Lucic, M., Kurach, K., Michalski, M., Gelly, S., and Bousquet, O. (2017). Are

GANs created equal? A large-scale study. arXiv:1711.10337.

Maaløe, L., Sønderby, C. K., Sønderby, S. K., and Winther, O. (2016). Auxil-

iary deep generative models. In Proceedings of the International Conference on

Machine Learning.

Makhzani, A. (2018). Implicit autoencoders. arXiv:1805.09804.

Makhzani, A., Shlens, J., Jaitly, N., and Goodfellow, I. (2015). Adversarial au-

toencoders. arXiv:1511.05644.

Mescheder, L., Nowozin, S., and Geiger, A. (2017). Adversarial variational Bayes:

Unifying variational autoencoders and generative adversarial networks. In Pro-

ceedings of the International Conference on Machine Learning.

Nagarajan, V. and Kolter, J. Z. (2017). Gradient descent GAN optimization is

locally stable. In Advances in Neural Information Processing Systems.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Read-

ing digits in natural images with unsupervised feature learning. In Proceedings

of the NIPS Workshop on Deep Learning and Unsupervised Feature Learning.

Odena, A., Dumoulin, V., and Olah, C. (2016). Deconvolution and checkerboard

artifacts. Distill.

Perez, E., de Vries, H., Strub, F., Dumoulin, V., and Courville, A. (2017a). Learn-

ing visual reasoning without strong priors. In Proceedings of the ICML Workshop

on Machine Learning in Speech and Language Processing.

Perez, E., Strub, F., de Vries, H., Dumoulin, V., and Courville, A. (2017b). FiLM:

Visual reasoning with a general conditioning layer. arXiv:1709.07871.

Portilla, J. and Simoncelli, E. P. (2000). A parametric texture model based on joint

statistics of complex wavelet coe�cients. International Journal of Computer

Vision, 40.

Radford, A., Metz, L., and Chintala, S. (2016). Unsupervised representation learn-

ing with deep convolutional generative adversarial networks. In Proceedings of

the International Conference on Learning Representations.

106

Rasmus, A., Valpola, H., Honkala, M., Berglund, M., and Raiko, T. (2015). Semi-

supervised learning with ladder network. In Advances in Neural Information

Processing Systems.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation

and approximate inference in deep generative models. In Proceedings of the

International Conference on Machine Learning.

Roth, K., Lucchi, A., Nowozin, S., and Hofmann, T. (2017). Stabilizing training of

generative adversarial networks through regularization. In Advances in Neural

Information Processing Systems.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988). Learning representa-

tions by back-propagating errors. Cognitive modeling, 5.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,

Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). ImageNet large scale

visual recognition challenge. International Journal of Computer Vision, 115.

Salakhutdinov, R. (2010). Learning deep Boltzmann machines using adaptive

MCMC. In Proceedings of the International Conference on Machine Learning.

Salakhutdinov, R. and Murray, I. (2008). On the quantitative analysis of deep belief

networks. In Proceedings of the International Conference on Machine Learning.

Salakhutdinov, R. R. (2009). Learning in Markov random fields using tempered

transitions. In Advances in Neural Information Processing Systems.

Salimans, T., Goodfellow, I. J., Zaremba, W., Cheung, V., Radford, A., and Chen,

X. (2016). Improved techniques for training GANs. In Advances in Neural

Information Processing Systems.

Shi, W., Caballero, J., Theis, L., Huszar, F., Aitken, A., Ledig, C., and Wang,

Z. (2016). Is the deconvolution layer the same as a convolutional layer?

arXiv:1609.07009.

Simoncelli, E. P. and Olshausen, B. A. (2001). Natural image statistics and neural

representation. Annual review of neuroscience, 24.

107

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for

large-scale image recognition. In Proceedings of the International Conference on

Machine Learning.

Smolensky, P. (1986). Information processing in dynamical systems: Foundations

of harmony theory. Technical report, DTIC Document.

Springenberg, J. T. (2016). Unsupervised and semi-supervised learning with cate-

gorical generative adversarial networks. In Proceedings of the International Con-

ference on Learning Representations.

Sutskever, I. and Tieleman, T. (2010). On the convergence properties of contrastive

divergence. In Proceedings of the International Conference on Artificial Intelli-

gence and Statistics.

Theano Development Team (2016). Theano: A Python framework for fast compu-

tation of mathematical expressions. arXiv:1605.02688.

Theis, L., van den Oord, A., and Bethge, M. (2016). A note on the evaluation of

generative models. In Proceedings of the International Conference on Learning

Representations.

Tieleman, T. (2008). Training restricted Boltzmann machines using approximations

to the likelihood gradient. In Proceedings of the International Conference on

Machine Learning.

Tieleman, T. and Hinton, G. (2009). Using fast weights to improve persistent con-

trastive divergence. In Proceedings of the International Conference on Machine

Learning.

Titsias, M. K. and Ruiz, F. J. (2018). Unbiased implicit variational inference.

arXiv:1808.02078.

Tran, D., Ranganath, R., and Blei, D. (2017). Hierarchical implicit models and

likelihood-free variational inference. In Advances in Neural Information Process-

ing Systems.

Ulyanov, D., Lebedev, V., Vedaldi, A., and Lempitsky, V. (2016a). Texture net-

works: Feed-forward synthesis of textures and stylized images. In Proceedings of

the International Conference on Machine Learning.

108

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2016b). Instance normalization: the

missing ingredient for fast stylization. arXiv:1607.08022.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2017). Improved texture networks:

Maximizing quality and diversity in feed-forward stylization and texture synthe-

sis. In Proceedings of the Conference on Computer Vision and Pattern Recogni-

tion.

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,

Kalchbrenner, N., W. Senior, A., and Kavukcuoglu, K. (2016a). Wavenet: A

generative model for raw audio. arXiv:1609.03499.

van den Oord, A., Kalchbrenner, N., and Kavukcuoglu, K. (2016b). Pixel recurrent

neural networks. In Proceedings of the International Conference on Machine

Learning.

van den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., and

Kavukcuoglu, K. (2016c). Conditional image generation with PixelCNN de-

coders. In Advances in Neural Information Processing Systems.

van Merriënboer, B., Bahdanau, D., Dumoulin, V., Serdyuk, D., Warde-Farley, D.,

Chorowski, J., and Bengio, Y. (2015). Blocks and Fuel: Frameworks for deep

learning. arXiv:1506.00619.

Warde-Farley, D. and Goodfellow, I. (2016). 11 adversarial perturbations of deep

neural networks. Perturbations, Optimization, and Statistics.

Wei, L.-Y. and Levoy, M. (2000). Fast texture synthesis using tree-structured

vector quantization. In Proceedings of the Conference on Computer Graphics

and Interactive Techniques.

Wu, Y., Burda, Y., Salakhutdinov, R., and Grosse, R. (2017). On the quantitative

analysis of decoder-based generative models. In Proceedings of the International

Conference on Learning Representations.

Yin, M. and Zhou, M. (2018). Semi-implicit variational inference. arXiv:1805.11183.

Younes, L. (1999). On the convergence of markovian stochastic algorithms with

rapidly decreasing ergodicity rates. Stochastics: An International Journal of

Probability and Stochastic Processes, 65.

109

Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional

networks. In Proceedings of the European Conference on Computer Vision.

Zhao, J., Mathieu, M., Goroshin, R., and Lecun, Y. (2016). Stacked what-where

auto-encoders. In ICLR Workshop Track.

110

