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Résumé

L’apprentissage profond est une approche connectioniste à l’apprentissage auto-
matique. Elle a pu exploiter la récente production massive de données numériques
et l’explosion de la quantité de ressources computationelles qu’a amené ces der-
nières décennies. La conception d’algorithmes d’apprentissage profond repose sur
trois facteurs essentiels: l’expressivité, la recherche efficace de solution, et la géné-
ralisation des solutions apprises. Nous explorerons dans cette thèse ces thèmes du
point de vue de la reparamétrisation.

Plus précisement, le chapitre 3 s’attaque à une conjecture populaire, selon la-
quelle les énormes réseaux de neurones ont pu apprendre, parmi tant de solutions
possibles, celle qui généralise parce que les minima atteints sont plats. Nous dé-
montrons les lacunes profondes de cette conjecture par reparamétrisation sur des
exemples simples de modèles populaires, ce qui nous amène à nous interroger sur les
interprétations qu’ont superposées précédents chercheurs sur plusieurs phénomènes
précédemment observés.

Enfin, le chapitre 5 enquête sur le principe d’analyse non-linéaire en compo-
santes indépendantes permettant une formulation analytique de la densité d’un
modèle par changement de variable. En particulier, nous proposons l’architecture
Real NVP qui utilise de puissantes fonctions paramétriques et aisément inversible
que nous pouvons simplement entrâıner par descente de gradient. Nous indiquons
les points forts et les points faibles de ce genre d’approches et expliquons les algo-
rithmes développés durant ce travail.

Mots clés: réseaux de neurones, réseaux neuronaux, réseaux de neurones pro-
fonds, réseaux neuronaux profonds, apprentissage automatique, apprentissage pro-
fond, apprentissage non-supervisé, modélisation probabiliste, modélisation géné-
rative, modèles probabilistes, modèles génératifs, réseaux générateurs, inférence
variationnelle, généralisation, astuce de la reparamétrisation
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Summary

Deep learning is a connectionist approach to machine learning that successfully
harnessed our massive production of data and recent increase in computational re-
sources. In designing efficient deep learning algorithms come three principal themes:
expressivity, trainability, and generalizability. We will explore in this thesis these
questions through the point of view of reparametrization.

In particular, chapter 3 confronts a popular conjecture in deep learning at-
tempting to explain why large neural network are learning among many plausible
hypotheses one that generalize: flat minima reached through learning general-
ize better. We demonstrate the serious limitations this conjecture encounters by
reparametrization on several simple and popular models and interrogate the inter-
pretations put on experimental observations.

Chapter 5 explores the framework of nonlinear independent components en-
abling closed form density evaluation through change of variable. More precisely,
this work proposes Real NVP, an architecture using expressive and easily invert-
ible computational layers trainable by standard gradient descent algorithms. We
showcase its successes and shortcomings in modelling high dimensional data, and
explain the techniques developed in that design.

Keywords: neural networks, deep neural networks, machine learning, deep
learning, unsupervised learning, probabilistic modelling, probabilistic models, gen-
erative modelling, generative models, generator networks, variational inference,
generalization, reparametrization trick
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oung Chung, Kelvin Xu, Kratarth Goel, Kyunghyun Cho, Kyle Kastner, Li Yao, Marcin

Moczulski, Mathias Berglund, Mathieu Germain, Mehdi Mirza, Mélanie Ducoffe, Mo-
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Durk Kingma, Édouard Oyallon, Edward Grefenstette, Emmy Qin, Eric Jang, Eugene

Belilovsky, Gabriel Synnaeve, Gabriella Contardo, Georgia Gkioxari, George Edward

Dahl, Grzegorz Swirszcz, Hugo Larochelle, Ilya Sutskever, Irwan Bello, Jackie Kay, Jamie

Kiros, Jascha Sohl-Dickstein, Jean Pouget-Abadie, Johanna Hansen, Jon Gauthier, Jon

Shlens, Joost Van Amersfoort, Junhyuk Oh, Justin Bayer, Karol Hausman, Konstanti-

nos Bousmalis, Luke Vilnis, Maithra Raghu, Marc Gendron Bellemare, Mareija Baya,

Matthew Hoffman, Matthew W. Hoffman, Max Welling, Mengye Ren, Mike Schuster,

xv



Misha Denil, Mohammad Norouzi, Moustapha Cissé, Naomi Saphra, Nal Kalchbrenner,

Natasha Jaques, Navdeep Jaitly, Neha Wadia, Nicolas Le Roux, Nicolas Usunier, Nicole

Rafidi, Olivier Pietquin, Oriol Vynials, Peter Xi Chen, Pierre Sermanet, Pierre-Antoine

Manzagol, Prajit Ramachandran, Quoc Viet Le, Rafal Jozefowicz, Rahul Krishnan, Raia
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1Machine learning

Computer science can be defined as the study and application of efficient auto-

matic algorithmic processes. This field has known unreasonable effectiveness in its

application to domains like commerce, finance, entertainment, logistics, and educa-

tion through by enabling the automation of simple tasks such as querying, storing,

and processing data at impressive scale.

However, most of these algorithmic processes were traditionally implemented

through direct programming. As direct programming involved careful writing of

explicit handcrafted rules, logics, and heuristics, researchers soon realized that such

traditional approach proved to be too cumbersome for tasks like computer vision

and natural language processing to be efficient. Indeed, although these problems

were mostly trivial for the average neurotypical, able-bodied person, manually de-

signing good solutions was near impossible.

The work presented in this thesis has been done in the framework of machine

learning. Machine learning is a subfield of computer science that aimed to address

this shortcoming in direct programming. Instead, it would enable to specify non-

constructively a solution to these problems through examples of correct behaviors.

The model would then learn on that data to obtain the desired behavior.

The recent increase in data production and computational power that happened

in the last few decades was a key component in the success of this approach and

appropriately addressed new challenges in information processing and automation

brought by this surge, now making machine learning an important, if not essential,

part of computer science.

I will introduce machine learning briefly in this chapter but further details on the

concept can be found in Bishop (2006); Murphy (2012); Goodfellow et al. (2016).
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1.1 Definition

Machine learning is the study of systems that can adapt and learn from data.

This paradigm becomes particularly useful when collecting a large amount of data

on these complex tasks can prove to be more productive and less human labor

intensive than hand-crafting programmed behaviors. Relying instead on increasing

computing power, machine learning would, in this situation, harness this large

amount of data to induce a set of behaviors to solve these problems.

More formally, machine learning is characterized by the ability to “learn from

experience E with respect to some class of tasks T and performance measure P“,

i.e. “its performance at tasks in T , as measured by P , improves with experience

E“ (Mitchell, 1997). Since the said experience, tasks, and performance measure

largely vary depending on the problem at hand, I will specify and detail the domains

we are interested in.

Experience The nature of the experience of a machine learning algorithm will

be numerical. Often the numbers presented to this algorithm will take the form

of a set of elements in an input domain X , which is usually finite sequences of

scalars or vectors. The domain can be a finite set of elements, scalar R, vector

space RdX (with dX the data dimensionality), finite sequences of these domains
⋃

m∈N+ (Xsub)m, or any combination of these domains. Most commonly, the base

domain will be a vector space R
dXsub , each element of a vector of that domain are

called a feature. In supervised learning, this domain is supplemented with an output

domain Y .

A common assumption on these series is that they are independently and iden-

tically distributed, meaning each example is drawn independently from the same

data distribution p∗X . This assumption is often essential in establishing the gener-

alization capability of most machine learning algorithms.

Task Machine learning algorithms can be used on a large array of problems.

These problems are often reframed in a more abstract task including supervised

learning and unsupervised learning tasks. Supervised learning tasks are charac-

terized by its goals of finding a mapping f from input space X to output space

Y . The output space for classification, regression, and structured prediction are
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respectively a finite set, scalar, or a subset of finite sequences of these domains.

Unsupervised learning aims at characterizing the input space distribution itself in

some meaningful way, including density estimation, clustering, or imputation of

missing values.

Performance measure One key component in describing a problem in machine

learning is the performance measure we aim to optimize. More often, we minize

instead its opposite, the loss function L(f). In our case, the loss function can be

decomposed into a corresponding value ℓ(f, x) for each element x ∈ X (or ℓ(f, x, y)

for each pair (x, y) ∈ X×Y), resulting in an expression of the loss as the expectation

L(f, p∗X) = Ex∼p∗X
[ℓ(f, x)] =

∫

x∈X
ℓ(f, x) dp∗X(x)

or L(f, p∗X,Y ) = Ex,y∼p∗X,Y
[ℓ(f, x, y)] =

∫

(x,y)∈X×Y

ℓ(f, x, y) dp∗X,Y (x, y).

A common loss function in classification is for example the 0-1 loss : ℓ01(f, x, y) =

1 (f(x) = y).

Given these definitions, the task of learning consists in finding a good, if not

optimal, behavior among a set F of possible functions, called the hypothesis space,

in order to minimize this expected loss L(f, p∗X) = Ex∼p∗X
[ℓ(f, x)], also called the

expected risk.

However, this data distribution over which the expectation would be computed

is not directly provided to the system. Instead, the system is only provided with a

finite amount of data D = (x(n))n≤N ∈ XN that will allow the model to properly

infer a correct behavior. One way to find an approximate solution is empirical risk

minimization (Vapnik, 1992), where we minimize a Monte Carlo approximation of

the expected loss called the empirical loss (also known as empirical risk, Vapnik,

2013),

L̂(f,D) =
1

N

N
∑

n=1

ℓ(f, x(n)).

This principle serves as the basis of reformulating machine learning as an optimiza-
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tion in the hope that this minimization will result in a reasonable solution with

respect to the expected loss, which we also call the generalization error. This gen-

eralization loss is also estimated by Monte Carlo using separate data from the same

distribution1. To this effect, the data is often separated in at least two subsets, the

training subset Dtrain, on which the algorithm is trained, and the test subset Dtest,

on which the expected loss is estimated.

1.2 Examples

1.2.1 Linear regression

One of the simplest examples of machine learning problem is the scalar linear

regression problem. As the name indicates, the class of functions used will be the

set of linear functions from RdX '→ R (see figure 1.1b),

Flinear =
{

f : x = (xi)i≤dX '→
dX
∑

i=1

wi · xi, ∀w = (wi)i≤dX ∈ R
dX
}

.

In reality, we are considering the set of affine functions in RdX '→ R, which would

be equivalent to linear functions on the augmented vectors x̃ = (1, x0, . . . , xdX ).

Let D = (x(n), y(n))n≤N ∈ (RdX ,R)N , the loss we aim to minimize in this regres-

sion problem is the mean squared loss (see figure 1.1a)

L̂MSE(f,D) =
1

N

N
∑

n=1

(

f(x(n))− y(n)
)2

L̂MSE(w,D) =
1

N

N
∑

n=1

(< x(n), w > −y(n))2.

Although the linear function hypothesis space is so limited that it would rarely

contain the data generating behavior in most realisitic cases, it allows for closed

form solution inference. Let X be the design matrix, a matrix of size n× d whose

1We don’t consider in this dissertation the important case of transfer learning when the ob-
jective is loss minimization on another distribution.
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(a) Plot of the quadratic loss with re-
spect to the difference between the pre-
diction and the target.

(b) A 2-D visualization of a trained linear re-
gression model with the associated data points.
The learned relationship between input and
output is constrained to be affine. In some cases
(including this one), that it enough.

Figure 1.1 – Visualization of a trained linear regression model with the associated loss function.

rows are corresponding to the vectors (x(n))n≤N , and y ∈ RN the vector containing

each corresponding value (y(n))n≤N . The loss function can be rewritten

L̂MSE(w,D) =
1

N
(XwT − yT )T (XwT − yT )

which is minimized when its derivative with respect to w is zero

∂L̂MSE(w,D)

∂wT
=

1

N
(XwT − yT ) = 0⇒ XTXwT = XTyT ⇒ wT = (XTX)−1XTyT .

1.2.2 Logistic regression

Despite its name, logistic regression is a classification problem, meaning that

the data of interest D = (x(n), y(n))n≤N is in (RdX , {0, 1})N for the binary case.

The class of function is still Flinear but instead of predicting values directly the

predictor will output a score for ”positive” label 1, we then follow the plug-in rule:

if the score is positive then the prediction will be 1, otherwise it will be 0.
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mization techniques. Unfortunately, both assume some degree of linearity in the

problem, which is a very limited case. These algorithms are lacking expressive

power.

A decomposition of the generalization error in Bottou and Bousquet (2008)

provides insight on the desiderata of machine learning approaches. Let’s consider

an hypothesis space F , A a stochastic algorithm which take a dataset D as in-

put to return a predictor f̄ ∈ F by approximate empirical risk minimization,

f̂ = argminf∈F

(

L̂(f,D)
)

∈ F a solution to empirical risk minimization in the

family F , f ∗
F = argminf∈F

(

L(f)
)

an optimal predictor with respect to the gener-

alization error in the family F , and f ∗ = argminf

(

L(f)
)

the optimal predictor for

generalization (not necessarily in F), then Bottou and Bousquet (2008) proposes

the following decomposition:

E
[

L(f̄)
]

= E

[

L(f̄)− L(f̂)
]

+ E

[

L(f̂)− L(f ∗
F)
]

+ E [L(f ∗
F)− L(f ∗)]

+ E [L(f ∗)] .

E [L(f ∗)] is the irreducible error you can have in a problem and computing this

quantity requires generally to find the solution f ∗. In that decomposition, the other

terms are: E [L(f ∗
F)− L(f ∗)] is called the approximation error , E

[

L(f̄)− L(f̂)
]

is the optimization error , and E

[

L(f̂)− L(f ∗
F)
]

is the estimation error . To follow

the nomenclature of Raghu et al. (2017), these terms correspond to the expressivity ,

trainability , and generalizability of a model.

1.3.1 Expressivity

One necessary condition for meaningful learning is to be flexible enough to

adapt to training data. As mentioned earlier, the previous linear models (logistic

regression and linear regression, see figure 1.1b and 1.2b) are however unlikely to

include the optimal predictor f ∗ for most interesting problems. If the problem is on

the contrary very nonlinear, such model are likely to underfit, i.e. not being able to

approximate well the solution regardless of the quantity of data and computation.

It is in general the case that the hypothesis space picked in our machine learning
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algorithm does not include f ∗ and therefore introduces a bias in the solutions found.

Given that observation, we woud like to adopt a family of predictors that would

include a good enough approximation of f ∗.

This is often done by increasing the model capacity to approximate different

functions. To that effect, one could increase the number of features when specifying

the model, increase the expressivity of a kernel function in shallow learning, or

increase the size of a neural network in deep learning. The more functions a model

can approximate the more powerful we consider it.

1.3.2 Trainability

If the effectiveness of a machine learning model was solely defined by its expres-

sivity, a simple solution would be to arbitrarily increase model capacity to minimize

the approximation error. However, one of the hurdles practioners would face with

that approach is the finite computational resources at hand.

Machine learning methods related to empirical risk minimization are generally

doing a search of the hypothesis space in order to approximately minimize a loss

function. The larger and complex this hypothesis space, the less effective that

search will be. For example, loss functions involving neural networks are notoriously

non-convex in general, making the use of a convex optimization algorithm less

reliable. Practical restriction in the ability to fully explore the hypothesis space

results in a decrease in the effective capacity of a model.

Inference in the chosen model has to be at least tractable, i.e. computable in

reasonable time, making a naive approach to memory-based learning (or instance-

based learning) hardly scalable with the size of the dataset. Therefore it is here

essential for machine learning models to discover reliable patterns and redundancy

in the data to reduce in order to decrease unnecessary computation or memory

usage.

1.3.3 Generalizability

Another reason to discover these patterns and redundancy is that they also en-

able meaningful learning. Generalization is a central question in machine learning:

if the model was only able to extract information about the training data but could

not extrapolate to new examples, the predictor would be hardly useful. Aimlessly
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increasing a model’s effective capacity often results in discovering and focusing on

coincidental spurious patterns, i.e. noise, from the training set on which we do em-

pirical risk minimization. As a result, the estimation error increases. We call this

effect overfitting. The solution obtained from training on the Monte Carlo estimate

of the expected loss is said to have high variance: the predictor is more a function

of the particular instantiation of the dataset than of the task itself. A more com-

mon quantity to measure overfitting is the difference between generalization loss

and training loss, called the generalization gap,

L(f)− L̂(f,Dtrain).

Under scalability constraints, increasing the amount of data used, artificially

augmenting the data if necessary, reduces that variance reliably. If our model is

consistent, it will converge to the true model f ∗ by definition. But collecting more

data by an order of magnitude can be very expensive and time-consuming.

A way to overcome the variance of the resulting predictor is to average an

ensemble of several valid hypotheses. One could, for example, implement boostrap

aggregation (Breiman, 1996) (also known as bagging) and train on a few instances of

the same model on different subsets of the training set. Bayesian inference (Neal,

2012; Andrieu et al., 2003; Solomonoff, 1978) averages on every valid hypotheses

reweighted by their relevance according to an a priori knowledge and the training

set.

Under that same computation budget, limiting the computation can also prove

to be effective in reducing overfitting, but possibly at the cost of increased bias.

Reducing model capacity is an example of such approach. One could also reduce

the effective capacity by adding stochasticity in model search or model inference.

The model search can also be guided towards simpler hypotheses. For example,

one can augment empirical risk minimization with a regularization term or penalty

term, i.e. a term that aims at effectively bridging the difference between the em-

pirical risk and the expected risk, in a similar fashion as the classic generalization

bounds from statistical learning theory, resulting in the regularized empirical risk

minimization problem

L̂Reg(f,Dtrain) = L̂(f,Dtrain) +R(f).
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We call regularization the process of reducing (effective) model capacity in order

to increase generalizability.

Since using such regularization would hinder performance on the training set,

the regularization needs either to be decided prior to any training or tuned using

a held-out subset of the dataset. Since the test set Dtest must remain unused until

final evaluation (e.g. Dwork et al., 2015), one should use instead a third separate

subset, which is traditionally called the validation set Dvalid.

1.3.4 Tradeoff

Although bias, computation, and variance can be arbitrarily separated to un-

derstand phenomena in machine learning, they remain ultimately entangled in a

bias-variance-computation tradeoff. The figure 1.3 shows the bias-variance tradeoff,

a subset of this bias-variance-computation tradeoff.

Ideally, we wish to have an algorithm which will perform well on all counts: the

model must be expressive, tractable, and generalize well. Now the infamous no free

lunch theorem (Wolpert, 1996) states that no general purpose algorithm can fulfill

those desiderata. Therefore, to enable the design of efficient learning algorithms,

one must aim at restricting the set of tasks they want to solve. The less exhaustive

is this set, the more opportunities we would have to provide a model with the

appropriate inductive bias.

Figure 1.3 – A cartoon plot of the generalization loss with respect to the effective capacity. The
blue line is the training loss, the red one is the generalization gap, and their sum, the generalization
loss is in purple. This plot illustrate the bias-variance tradeoff : although increasing effective
capacity decreases the training error, it increases the generalization gap. Although increasing
effective capacity reduces training error, the return is decreasing exponentially. On the other
hand, the incurred variance of the estimated solution f̂ can increase with capacity to the point
where the model is effectively useless. As a result, the generalization loss (in purple) is minimized
in the middle. Best seen with colors.

10





2 Deep learning

2.1 The hypothesis space

Bengio et al. (2007) define an AI-set of tasks of interest. These tasks includes

perception, control, and planning. The raw sensory input involved in those tasks are

typically high dimensional, e.g. a mere color image of size 64 × 64 already results

in vectors of more than 10, 000 dimensions. As a a result, we are encountering

a curse of dimensionality in these problems, when expressivity, trainability, and

generalizability degrade exponentially with the number of dimensions.

A key ingredient in enabling learning on these problems is to exploit their reg-

ularities. A starting point for local generalization (i.e. around data points) is to

embed the system with a smoothness prior : nearby points should have similar prop-

erties in terms of labeling and density1. This prior can be strengthened by taking

advantage of the dominant structure of the data. In particular, one characteristic

we hope to exploit in these tasks is the relatively low intrinsic dimensionality of

the data. For instance, natural images remain around a data point predominantly

along specific directions. This assumption is called the manifold hypothesis.

An efficient learning algorithm would hopefully be able to obtain global gen-

eralization (i.e. outside the immediate vicinity of data points). Whereas purely

local template matching algorithms would resort to one-hot representations (an

extremely sparse vector with only one non-zero component) deep learning (Bengio,

2009; Goodfellow et al., 2016) exploits the notion of distributed representation (Hin-

ton, 1984), where information is instead distributed across multiple dimensions. An

example of such distributed distribution would be a binary representation for a set

of N integers, which takes less space than a one-hot binary representation (log2(N)

instead of N).

An ideal outcome would be to successfully disentangle factors of variation into

1In hindsight, the existence of adversarial examples (Szegedy et al., 2014; Goodfellow et al.,
2015) in recent deep learning systems shows how weak such inductive bias is in those systems.
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Figure 2.1 – Computational graph of a feedforward neural network layer. The computation
goes upward, the botton nodes are the inputs and the top nodes are the outputs. Each output
node take all the input with different strength (defined by the weight matrix), before applying a
nonlinearity if necessary.

different features, which would allow an efficient reusability of these disentan-

gled features. Such features facilitate global generalization by sharing statistical

strength, by exploiting recombinations of the properties of training examples, one

can extrapolate outside their vicinity.

2.1.1 Artificial neural networks

A key component in learning those distributed representations are artificial neu-

ral networks, composed typically from feedforward layers with functional equation

h = φact(xW + b)

where h is a vector output, the result of an affine operation, represented by the

matrix W , called the weights, and a vector b called the offset, composed with an

element-wise activation function φact, which can be

• the identity function, the layer is then called linear 2;

• the logistic sigmoid function (figure 2.2a)

φsigmoid(x) =
(

1 + exp(−x)
)−1

;

• the hyperbolic tangent function (figure 2.2b)

φtanh(x) = 2 φsigmoid(2x)− 1;
2If the neural network is solely a composition of linear layers, then it can only express linear

functions.
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(a) Logistic sigmoid (b) Tangent hyperbolic (c) Rectified linear

Figure 2.2 – Examples of activation functions.

• the rectified linear function (Jarrett et al., 2009; Nair and Hinton, 2010; Glorot

et al., 2011) (figure 2.2c)

φrect(x) = max(0, x).

These feedforward layers can typically be composed obtain the desired predic-

tion following the recurrence

h(k+1) = φact,(k)(h
(k)W (k) + b(k))

where h(0) would be the input x of the artificial neural network and for k > 0, h(k)

would be called a hidden layer, with the exception of the last, which would be the

output layer. Each dimension of these hidden vectors are typically called neurons,

to follow the neural network analogy, which are connected by these weights W (k)

(see Figure 2.1). When none of the element of the weight matrix is constrained to

be 0, then we call the corresponding layer fully-connected.

Although the default parametrization of such layer is to make the affine oper-

ation arbitrary, there is value in exploiting the particular structure in signals of

interest. For instance, the local structure and limited translation equivariance of

natural images and sound signals enables us to restrict this affine transformation to

be a discrete convolution (LeCun and Bengio, 1994; Kavukcuoglu et al., 2010) (see

also Dumoulin and Visin, 2016), resulting in improving generalization by limiting

the hypothesis space, and computational efficiency, both memory-wise parameter

sharing across the signal and computation time as convolution involves less com-
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Figure 2.3 – Computational graph of a deeper feedforward neural network. The computation
goes upward, the botton nodes are the inputs and the nodes above are the hidden and output
units. Each hidden and output node take all the input from previous layer with different strength
(defined by the weight matrix), before applying a nonlinearity if necessary.

putation (because of the underlying sparse connectivity) that can be more easily

parallelized.

2.1.2 Powerful architecture

For some non-linear activation functions, even a one hidden layer neural network

can approximate any continuous function with arbitrary precision on a bounded

set given that this hidden layer is sufficiently large, this result is known as the

universal approximation theorem (e.g. Cybenko, 1989; Hornik, 1991; Barron, 1993),

grounding further the intuition in subsection 1.3.1 that increasing the size of the

model by adding hidden units does indeed improve its capacity.

However, this capacity might come at an unbearable cost in terms of computa-

tion and generalization for shallow models, even when exploiting parallel compu-

tations. Several arguments have been made (e.g. Bengio et al., 2006; Bengio and

Delalleau, 2011; Martens and Medabalimi, 2014; Montufar et al., 2014; Eldan and

Shamir, 2016; Poole et al., 2016; Raghu et al., 2017; Telgarsky, 2016) demonstrating

the effectiveness of favoring deep architectures, i.e. models with many layered com-

putations, over shallow ones, i.e. models with fewer of these layers. The argument

15





algorithm (Rumelhart et al., 1988), which combines the chain rule for derivatives

with dynamic programming. If we consider the layer

h(k+1) = φact,(k)(h
(k)W (k) + b(k))

then the gradients follow the recursive equation

∂L

∂(W (k))T
= φ′

act,(k)(h
(k)W (k) + b(k))⊙ (h(k))T · ∂L

∂(h(k+1))T

∂L

∂(b(k))T
= φ′

act,(k)(h
(k)W (k) + b(k))⊙ ∂L

∂(h(k+1))T

∂L

∂(h(k))T
= φ′

act,(k)(h
(k)W (k) + b(k))⊙ ∂L

∂(h(k+1))T
·
(

W (k)
)T

where ⊙ is the element-wise multiplication.

While the h(k) quantities are computed through the forward computation, the
∂L

∂(h(k))T
are computed during the backward computation of the derivative. As the

forward computations are stored in memories, the computation of these derivatives

are as efficient as the forward computation. These functionalities are implemented

in frameworks including automatic differentiation toolkits like Theano (Bergstra

et al., 2010; Bastien et al., 2012) and Tensorflow (Abadi et al., 2016).

2.2.2 Stochastic gradient descent

The iterative (batch) gradient descent algorithm (illustrated in figure 2.5) lays

the foundation of most gradient-based algorithms used in deep learning. The al-

gorithm proceeds as follow to follow a loss LDtrain = L̂(·,Dtrain): we start from a

given initialization (possibly random) of the parameter θ0 ∈ Θ and at each step

t we update the parameter by substracting a vector proportional to the gradient
∂LDtrain

∂θt
(θt), scaled by a positive factor αt called the learning rate. An advantage

with iterative algorithms is their ability to be interrupted at any step on their way

to a local minimum and still provide in theory a decent approximate solution given

the computational budget. Moreover, in several successful deep learning models,

even a local minimum can often reach very good performance.

17





A computational hurdle with batch gradient descent however is that computing

the gradient requires computing

LDtrain(θt) =
1

|Dtrain|
∑

x∈Dtrain

ℓ(θ, x),

which remains ultimately linear with the size of the training set, which can still

be too expensive as a significant number of steps need to be taken in order to

reasonably approximate a minimum. Fortunately, for a uniformly and randomly

selected subset M̂train of Dtrain, if we note

LM̂train
(θt) =

1

|M̂train|

∑

x∈M̂train

ℓ(θ, x),

then
∂LM̂train

∂θt
(θt) is an unbiased stochastic approximation of

∂LDtrain
∂θt

(θt)

EM̂train

[

∂LM̂train

∂θt
(θt)

]

=
∂LDtrain

∂θt
(θt)

whose computational cost becomes linear with the size of the subset M̂train, which

we call mini-batch. Because it uses a stochastic approximation of the gradient

instead of the exact estimate, this variant is called stochastic gradient descent (Er-

moliev, 1983) (described in Algorithm 2). Under mild assumption, this algorithm

converges to a local minimum, even for a mini-batch of size 1 (Robbins and Monro,

1951; Bottou, 1998). There are of course tradeoffs to consider when picking the

(mini)batch size, a smaller mini-batch will use less computation and memory, and

the noise incurred in gradient estimation can result in regularization (Wilson and

Martinez, 2003), a larger batch can also help exploit parallelizable computational

processes and provide a more accurate estimation of the gradient (Goyal et al.,

2017).
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pure optimization, there are several approaches to tackle this conditioning prob-

lem. Momentum (Nesterov et al., 2007; Sutskever et al., 2013) uses a moving

average of the stochastic gradient estimate which can counter fluctuation issues

for example. One can also precondition the problem, i.e. rearrange its geometry

such that the new problem has a more appropriate conditioning, by using second

order methods (e.g Amari, 1998; Pascanu and Bengio, 2014; Martens and Grosse,

2015) or adaptative learning rate (e.g Tieleman and Hinton, 2012; Dauphin et al.,

2015; Wilson et al., 2017) methods. In particular, we will use Adaptative Moment

estimation (AdaM) (Kingma and Ba, 2015) (described in Algorithm 3) for train-

ing models, despite its issue regarding convergence properties (Sashank J. Reddi,

2018).

Algorithm 3 AdaM algorithm

Require: Initialization of θ0 ∈ Θ, learning rate sequence (αt)t≥0 ∈ (R∗
+)

N, decay
coefficients (β1, β2) ∈ [0, 1[, damping coefficient ϵ > 0
θ ← θ0
µ1 ← 0
µ2 ← 0
t← 0
while not termination(ℓ, θ,Dtrain) do
Sample mini-batch M = M̂train ⊂ Dtrain uniformly
µ1 ← β1µ1 + (1− β1) (∇θLM̂) (θ)
µ2 ← β2µ2+(1−β2) ((∇θLM̂) (θ))⊙2 (gradient estimate squared element-wise)

θ ← θ − αt
µ1

1−βt+1
1

√

1−βt+1
2

µ2+ϵ

t← t+ 1
end while
return θ

2.2.3 Gradient flow

Another view of conditioning in deep learning problem has been the issue of gra-

dient flow : as gradient is estimated through backward computation, how much does

the signal degrade. In particular, as the gradient is propagated backward, its norm

can grow/shrink exponentially, resulting in exploding/vanishing gradients (Hochre-

iter, 1991; Bengio et al., 1994). As this issue becomes more significant with depth,

this has been one of the main hurdle in training deep networks.
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Several techniques have helped mitigate this difficulty, for instance new ini-

tialization techniques (e.g. Glorot et al., 2011; Sutskever et al., 2013; Sussillo and

Abbott, 2014). A significant effort has been put into architectural design of deep

models in order to improve gradient propagation.

• Glorot et al. (2011) show the advantage of using the rectified linear activation

functions in deep neural networks in terms of gradient propagation, whose

piecewise linear design enabled better gradient propagation than saturating

nonlinearities like logistic sigmoid.

• Batch normalization (Ioffe and Szegedy, 2015; Desjardins et al., 2015) inte-

grate feature normalization in the forward equation, with moments estimated

from the current mini-batch, in order to alleviate gradient propagation issues.

• Weight normalization (Badrinarayanan et al., 2015; Salimans and Kingma,

2016; Arpit et al., 2016) reparametrizes the weights as a product of a norm

and normalized direction.

• Hochreiter (1991); Bengio et al. (1994) laid the principles to design the long-

short term memory (Hochreiter and Schmidhuber, 1997b; Zaremba et al.,

2014) recurrent neural networks (Rumelhart et al., 1988), which in turn was

influential in the design of skip connections (Lin et al., 1996), highway net-

works (Srivastava et al., 2015), and residual networks(He et al., 2015a, 2016).

In particular residual networks replace some fully connected feedforward lay-

ers with residual blocks with forward equation h(k+1) = h(k) + fres,(k)(h(k))

where fres,(k) is a small and shallow neural network (see figure 2.7). These

residual connections possibly solve a shattered gradient (Balduzzi et al., 2017)

problem, i.e. when the gradients with respect to the parameters are similar

to white noise.
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Figure 2.7 – Computational graph of a typical residual block. The output of the small neural
network is added to the input. This operation represented by dashed arrows which are called the
residual connections.

There is arguably a relationship between architectural design and adaptative

gradient methods through reparametrization. If η = Φ−1(θ) a reparametrization of

θ (with Φ bijective), then by taking the new loss function L(η)
Dtrain

= LDtrain ◦ Φ, the
gradient in this reparametrized problem has the form

(

∇ηL(η)
Dtrain

)

(η) = (∇θLDtrain) (θ) · (∇ηΦ) (η),

resulting in a different gradient descent algorithm (reminiscent of themirror descent

algorithm, Beck and Teboulle, 2003) by manipulation of the problem geometry

θt+1 = Φ(ηt+1)

= Φ
(

ηt − αt

(

∇ηL(η)
Dtrain

)

(ηt)
)

= Φ
(

Φ−1(θt)− αt (∇θLDtrain) (θt) · (∇ηΦ)
(

Φ−1(θt)
))

as shown by Sohl-Dickstein (2012) when Φ is linear.

23



2.3 Generalizability of deep learning

Although expressivity and fast computation enabled successful applications of

deep learning models to object recognition in images (e.g Krizhevsky et al., 2012;

Goodfellow et al., 2014a; Simonyan and Zisserman, 2015; Szegedy et al., 2015; He

et al., 2016, 2017), machine translation (e.g. Cho et al., 2014; Sutskever et al.,

2014; Bahdanau et al., 2015; Wu et al., 2016; Gehring et al., 2016), and speech

recognition (e.g. Dahl et al., 2012; Hinton et al., 2012; Graves et al., 2013; Hannun

et al., 2014; Chorowski et al., 2015; Chan et al., 2016; Collobert et al., 2016), it does

not solely explain their success. In order for learning to succeed, the algorithms

need to have some degree of generalizability.

A recent study (Zhang et al., 2017) highlighted the well-known issue that sta-

tistical learning theory notions like Vapnik–Chervonenkis dimension (Vapnik and

Chervonenkis, 2015) and Rademacher complexity (Bartlett and Mendelson, 2002)

used to obtain probably approximately correct (PAC) generalization bounds cannot

be applied to deep learning models to obtain useful bounds. Indeed, the only guar-

antee they provide is a generalization error lower than 100%, they are therefore

called vacuous (Dziugaite and Roy, 2017).

One of the promising approaches to explaining generalization in deep learning is

the holistic approach of stochastic approximation (Nesterov and Vial, 2008; Bottou

et al., 2016), encompassing the joint issues of approximation, computation, and

stochasticity. In particular, the notion of uniform stability (Bousquet and Elisseeff,

2002) allowed to explore an interesting path in building generalization bounds in

restricted cases (Hardt et al., 2016; Gonen and Shalev-Shwartz, 2017). Unfortu-

nately, this approach does not account for the particularity of the problem at hand

whereas, as stated earlier, its complexity should modulate the tradeoff between

approximation quality, computation, and estimation reliability.

The PAC-Bayes framework (McAllester, 1999; Langford and Caruana, 2001;

Dziugaite and Roy, 2017; Neyshabur et al., 2017) provides nonvacuous data-dependent

bounds on the generalization gap. It relies on defining an a priori distribution p

(i.e. defined before any training) on the parameter θ and a distribution q defined

by training, and gives an expression of the generalization gap as function of the

24



Kullback-Leibler divergence (Kullback and Leibler, 1951) between p and q

KL(q∥p) = Eθ∼q

[

log

(

q(θ)

p(θ)

)]

,

grounding the intuition put forward in Hinton and Van Camp (1993) of using this

quantity as a regularization term, an approach known as minimum description

length (MDL).

Heskes and Kappen (1993) formulate the limit sampling process of stochastic

gradient descent in the continuous time limit, on which Mandt et al. (2016); Smith

and Le (2017) build on in an attempt to bridge between stochastic gradient descent

and variational inference (Neal and Hinton, 1998; Wainwright et al., 2008). This

contrasts slightly with works (Welling and Teh, 2011; Ahn et al., 2012) that relate

stochastic gradient descent with Markov Chain Monte Carlo (Andrieu et al., 2003)

approaches to inference through Hamiltonian Monte Carlo (Neal et al., 2011).

Dziugaite and Roy (2017); Neyshabur et al. (2017) attempt to relate the in-

tuition of this PAC-Bayes approach to the conjecture formulated in Hochreiter

and Schmidhuber (1997a) that flat minima, i.e. around which the error is ap-

proximately constant, generalize better than sharp ones, i.e. around which the

error varies largely. This conjecture has been lasting since and was maintained

by Chaudhari et al. (2017); Keskar et al. (2017); Smith and Le (2017); Krueger

et al. (2017).
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3

On the relevance of loss
function geometry for
generalization

While several works argue in favor of the conjecture that flat minima generalize

better than sharp ones, the definition of said flatness/sharpness varies from one

manuscript to the other. However, the intuition behind that notion is fairly sim-

ple: if one imagines the error as a one-dimensional curve, a minimum is flat if there

is a wide region around it with roughly the same error, otherwise the minimum

is sharp. When moving to higher dimensional spaces, defining flatness becomes

more complicated. In Hochreiter and Schmidhuber (1997a) it is defined as the size

of the connected region around the minimum where the training loss is relatively

similar. Chaudhari et al. (2017) relies, in contrast, on the curvature of the second

order structure around the minimum, while Keskar et al. (2017) looks at the max-

imum loss in a bounded neighbourhood of the minimum. All these works rely on

the fact that flatness results in robustness to low precision arithmetic or noise in

the parameter space, which, using a minimum description length-based argument,

suggests a low expected overfitting (Bishop, 1993).

We will demonstrate how several common architectures and parametrizations

in deep learning are already at odds with this conjecture, requiring at least some

degree of refinement in its statements. In particular, we show how the geometry of

the associated parameter space can alter the ranking between prediction functions

when considering several measures of flatness/sharpness. We believe the reason for

this contradiction stems from the Bayesian arguments about KL-divergence made

to justify the generalization ability of flat minima (Hinton and Van Camp, 1993;

Dziugaite and Roy, 2017). Indeed, the Kullback-Liebler divergence is invariant to

reparametrization whereas the notion of ”flatness” is not. The demonstrations of

Hochreiter and Schmidhuber (1997a) are approximately based on a Gibbs formal-

ism and rely on strong assumptions and approximations that can compromise the

applicability of the argument, including the assumption of a discrete function space.

Work (Dinh et al., 2017) done in collaboration with Dr. Razvan Pascanu, Dr. Samy Bengio,
and Pr. Yoshua Bengio.
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set containing θ such that ∀θ′ ∈ C(L, θ, ϵ),L(θ′) < L(θ) + ϵ. The ϵ-flatness will be

defined as the volume of C(L, θ, ϵ). We will call this measure the volume ϵ-flatness.

In Figure 3.1, C(L, θ, ϵ) will be the purple line at the top of the red area if the

height is ϵ and its volume will simply be the length of the purple line.

Flatness can also be defined using the local curvature of the loss function around

the minimum if it is a critical point 1. Chaudhari et al. (2017); Keskar et al. (2017)

suggest that this information is encoded in the eigenvalues of the Hessian. However,

in order to compare how flat one minimum is versus another, the eigenvalues need

to be reduced to a single number. Here we consider the spectral norm and trace of

the Hessian, two typical measurements of the eigenvalues of a matrix.

Additionally Keskar et al. (2017) define the notion of ϵ-sharpness. In order

to make proofs more readable, we will slightly modify their definition. However,

because of norm equivalence in finite dimensional space, our results will transfer to

the original definition in full space as well. Our modified definition is the following:

Definition 2. Let B2(ϵ, θ) be an Euclidean ball centered on a minimum θ with

radius ϵ. Then, for a non-negative valued loss function L, the ϵ-sharpness will be

defined as proportional to

max
θ′∈B2(ϵ,θ)

(

L(θ′)− L(θ)
1 + L(θ)

)

.

In Figure 3.1, if the width of the red area is 2ϵ then the height of the red area

is maxθ′∈B2(ϵ,θ) (L(θ′)− L(θ)) ≥ 0.

ϵ-sharpness can be related to the spectral norm |||(∇2L)(θ)|||2 of the Hessian

(∇2L)(θ). Indeed, a second-order Taylor expansion of L around a critical point

minimum is written

L(θ′) = L(θ) + 1

2
(θ′ − θ) (∇2L)(θ)(θ′ − θ)T

+ o(∥θ′ − θ∥22).

1In this chapter, we will often assume that is the case when dealing with Hessian-based mea-
sures in order to have them well-defined.
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In this second order approximation, the ϵ-sharpness at θ would be

|||(∇2L)(θ)|||2ϵ2

2 (1 + L(θ)) .

3.2 Properties of deep rectified Networks

Before moving forward to our results, in this section we first introduce the nota-

tion used in the rest of chapter. Most of our results, for clarity, will be on the deep

rectified feedforward networks with a linear output layer that we describe below,

though they can easily be extended to other architectures (e.g. convolutional, etc.).

Definition 3. Given K weight matrices (θk)k≤K with nk = dim (vec(θk)) and n =
∑K

k=1 nk, the output y of a deep rectified feedforward networks with a linear output

layer is:

y = φrect (φrect (· · ·φrect(x · θ1) · · · ) · θK−1) · θK ,

where

• x is the input to the model, a high-dimensional vector

• vec reshapes a matrix into a vector.

Note that in our definition we excluded the bias terms, usually found in any

neural architecture. This is done mainly for convenience, to simplify the rendition

of our arguments. However, the arguments can be extended to the case that in-

cludes biases. Another choice is that of the linear output layer. Having an output

activation function does not affect our argument either: since the loss is a function

of the output activation, it can be rephrased as a function of linear pre-activation.

Deep rectifier models have certain properties that allows us in section 3.4 to

arbitrary manipulate the flatness of a minimum.

An important topic for optimization of neural networks is understanding the

non-Euclidean geometry of the parameter space as imposed by the neural architec-

ture (see, for example, Amari, 1998). In principle, when we take a step in parameter

space what we expect to control is the change in the behavior of the model (i.e.
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of the measure chosen to compare two instantiations of a neural network, because

of the structure of the model, it also exhibits a large number of symmetric config-

urations that result in exactly the same behavior. Because the rectifier activation

has the non-negative homogeneity property, as we will see shortly, one can con-

struct a continuum of points that lead to the same behavior, hence the metric is

singular. It means that one can exploit these directions in which the model stays

unchanged to shape the neighbourhood around a minimum in such a way that, by

most definitions of flatness, this property can be controlled. See Figure 3.2 for a

visual depiction, where the flatness (given here as the distance between the different

level curves) can be changed by moving along the curve.

Let us redefine, for convenience, the non-negative homogeneity property (Neyshabur

et al., 2015; Lafond et al., 2016) below. Note that beside this property, the reason

for studying the rectified linear activation is for its widespread adoption (Krizhevsky

et al., 2012; Simonyan and Zisserman, 2015; Szegedy et al., 2015; He et al., 2016).

Definition 4. A given a function φ is non-negative homogeneous if

∀(z,α) ∈ R× R
+,φ(αz) = αφ(z)

.

Theorem 1. The rectified function φrect(x) = max(x, 0) is non-negative homoge-

neous.

Proof. Follows trivially from the constraint that α > 0, given that x > 0⇒ αx > 0,

iff α > 0.

For a deep rectified neural network without biases it means that:

φrect

(

x · (αθ1)
)

· θ2 = φrect(x · θ1) · (αθ2),

meaning that for this one (hidden) layer neural network, the parameters (αθ1, θ2)

is observationally equivalent to (θ1,αθ2). This observational equivalence similarly

holds for convolutional layers.

Given this non-negative homogeneity, if (θ1, θ2) ≠ (0, 0) then
{

(αθ1,α−1θ2),α >

0
}

is an infinite set of observationally equivalent parameters, inducing a strong
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non-identifiability in this learning scenario. Other models like deep linear net-

works (Saxe et al., 2013), leaky rectifiers (He et al., 2015b) ormaxout networks (Good-

fellow et al., 2013) also have this non-negative homogeneity property.

In what follows we will rely on such transformations, in particular we will rely

on the following definition:

Definition 5. For a single hidden layer rectifier feedforward network we define the

family of transformations

Tα : (θ1, θ2) '→ (αθ1,α
−1θ2)

which we refer to as an α-scale transformation.

Note that an α-scale transformation will not affect the generalization, as the

behavior of the function is identical. Also while the transformation is only defined

for a single layer rectified feedforward network, it can trivially be extended to any

architecture including a rectified network as a submodule, e.g. a deep rectified

feedforward network. For simplicity and readability we will rely on this definition.

3.3 Rectified neural networks and Lipschitz

continuity

Relative to recent works (Hardt et al., 2016; Gonen and Shalev-Shwartz, 2017)

assuming Lipschitz continuity of the loss function to derive uniform stability bound,

we make the following observation:

Theorem 2. For a one-hidden layer rectified neural network of the form

y = φrect(x · θ1) · θ2,

if L is not constant, then it is not Lipschitz continuous.

Proof. Since a Lipschitz function is necessarily absolutely continuous, we will con-

sider the cases where L is absolutely continuous. First, if L has zero gradient almost

everywhere, then L is constant.
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Now, if there is a point θ with non-zero gradient, then by writing

(∇L)(θ1, θ2) = [(∇θ1L)(θ1, θ2)

(∇θ2L)(θ1, θ2)],

we have

(∇L)(αθ1,α−1θ2) = [α−1(∇θ1L)(θ1, θ2)

α(∇θ2L)(θ1, θ2)].

Without loss of generality, we consider (∇θ1L)(θ1, θ2) ≠ 0. Then the limit of the

norm

∥(∇L)(αθ1,α−1θ2)∥22 = α−2∥(∇θ1L)(θ1, θ2)∥22
+ α2∥(∇θ2L)(θ1, θ2)∥22

of the gradient goes to +∞ as α goes to 0. Therefore, L is not Lipschitz continuous.

This result can be generalized to several other models containing a one-hidden

layer rectified neural network, including deeper rectified networks.

3.4 Deep rectified networks and flat minima

In this section we exploit the resulting strong non-identifiability to showcase a

few shortcomings of some definitions of flatness. Although α-scale transformation

does not affect the function represented, it allows us to significantly decrease several

measures of flatness. For another definition of flatness, the α-scale transformation

shows that all minima are equally flat.
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3.4.1 Volume ϵ-flatness

Theorem 3. For a one-hidden layer rectified neural network of the form

y = φrect(x · θ1) · θ2,

and a minimum θ = (θ1, θ2), such that θ1 ≠ 0 and θ2 ≠ 0, ∀ϵ > 0 C(L, θ, ϵ) has an
infinite volume.

We will not consider the solution θ where any of the weight matrices θ1, θ2 is

zero, θ1 = 0 or θ2 = 0, as it results in a constant function which we will assume

to give poor training performance. For α > 0, the α-scale transformation Tα :

(θ1, θ2) '→ (αθ1,α−1θ2) has Jacobian determinant αn1−n2 , where once again n1 =

dim (vec(θ1)) and n2 = dim (vec(θ2)). Note that the Jacobian determinant of this

linear transformation is the change of volume induced by Tα and Tα ◦ Tβ = Tαβ.

We show below that there is a connected region containing θ with infinite volume

and where the error remains approximately constant.

Proof. We will first introduce a small region with approximately constant error

around θ with non-zero volume. Given ϵ > 0 and if we consider the loss function

continuous with respect to the parameter, C(L, θ, ϵ) is an open set containing θ.

Since we also have θ1 ≠ 0 and θ2 ≠ 0, let r > 0 such that the L∞ ball B∞(r, θ) is

in C(L, θ, ϵ) and has empty intersection with {θ′, θ′1 = 0}. Let v = (2r)n1+n2 > 0

the volume of B∞(r, θ).

Since the Jacobian determinant of Tα is the multiplicative change of induced by

Tα, the volume of Tα (B∞(r, θ)) is vαn1−n2 . If n1 ≠ n2, we can arbitrarily grow the

volume of Tα (B∞(r, θ)), with error within an ϵ-interval of L(θ), by having α tends

to +∞ if n1 > n2 or to 0 otherwise.

If n1 = n2, ∀α′ > 0, Tα′ (B∞(r, θ)) has volume v. Let C ′ =
⋃

α′>0 Tα′ (B∞(r, θ)).

C ′ is a connected region where the error remains approximately constant, i.e. within

an ϵ-interval of L(θ).
Let α = 2∥θ1∥∞+r

∥θ1∥∞−r
. Since

B∞(r, θ) = B∞(r, θ1)× B∞(r, θ2),
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property of a minimum.

3.4.2 Hessian-based measures

The non-Euclidean geometry of the parameter space, coupled with the mani-

folds of observationally equal behavior of the model, allows one to move from one

region of the parameter space to another, changing the curvature of the model

without actually changing the function. This approach has been used with success

to improve optimization, by moving from a region of high curvature to a region of

well behaved curvature (e.g. Desjardins et al., 2015; Salimans and Kingma, 2016).

In this section we look at two widely used measures of the Hessian, the spectral

radius and trace, showing that either of these values can be manipulated without

actually changing the behavior of the function. If the flatness of a minimum is

defined by any of these quantities, then it could also be easily manipulated.

Theorem 4. The gradient and Hessian of the loss L with respect to θ can be

modified by Tα.

Proof.

L(θ1, θ2) = L(αθ1,α−1θ2),

2 we have then by differentiation

(∇L)(θ1, θ2) = (∇L)(αθ1,α−1θ2)

[

αIn1 0

0 α−1In2

]

⇔ (∇L)(αθ1,α−1θ2) = (∇L)(θ1, θ2)
[

α−1In1 0

0 αIn2

]

and

(∇2L)(αθ1,α−1θ2)

=

[

α−1In1 0

0 αIn2

]

(∇2L)(θ1, θ2)
[

α−1In1 0

0 αIn2

]

.

2Note that this equation also proves that the Fisher information matrix is singular.
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Sharpest direction Through these transformations we can easily find, for any

critical point which is a minimum with non-zero Hessian, an observationally equiv-

alent parameter whose Hessian has an arbitrarily large spectral norm.

Theorem 5. For a one-hidden layer rectified neural network of the form

y = φrect(x · θ1) · θ2,

and critical point θ = (θ1, θ2) being a minimum for L, such that (∇2L)(θ) ≠ 0,

∀M > 0, ∃α > 0, |||(∇2L) (Tα(θ))|||2 ≥ M where |||(∇2L) (Tα(θ))|||2 is the spectral

norm of (∇2L) (Tα(θ)).

Proof. The trace of a symmetric matrix is the sum of its eigenvalues and a real

symmetric matrix can be diagonalized in R, therefore if the Hessian is non-zero,

there is at least one non-zero positive diagonal element. Without loss of generality,

we will assume that this non-zero element of value γ > 0 corresponds to an element

in θ1. Therefore the Frobenius norm |||(∇2L) (Tα(θ))|||F of

(∇2L)(αθ1,α−1θ2)

=

[

α−1In1 0

0 αIn2

]

(∇2L)(θ1, θ2)
[

α−1In1 0

0 αIn2

]

.

is lower bounded by α−2γ.

Since all norms are equivalent in finite dimension, there exists a constant r > 0

such that r|||A|||F ≤ |||A|||2 for all symmetric matrices A. So by picking α <
√

rγ
M
,

we are guaranteed that |||(∇2L) (Tα(θ))|||2 ≥M .

Any minimum with non-zero Hessian will be observationally equivalent to a

minimum whose Hessian has an arbitrarily large spectral norm. Therefore for any

minimum in the loss function, if there exists another minimum that generalizes

better then there exists another minimum that generalizes better and is also sharper

according the spectral norm of the Hessian. The spectral norm of critical points’

Hessian becomes as a result less relevant as a measure of potential generalization

error. Moreover, since the spectral norm lower bounds the trace for a positive

semi-definite symmetric matrix, the same conclusion can be drawn for the trace.
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Many directions However, some notion of sharpness might take into account

the entire eigenspectrum of the Hessian as opposed to its largest eigenvalue, for

instance, Chaudhari et al. (2017) describe the notion of wide valleys, allowing

the presence of very few large eigenvalues. We can generalize the transformations

between observationally equivalent parameters to deeper neural networks withK−1
hidden layers: for αk > 0, Tα : (θk)k≤K '→ (αkθk)k∈K with

∏K
k=1 αk = 1. If we define

Dα =

⎡

⎢

⎢

⎢

⎢

⎣

α−1
1 In1 0 · · · 0

0 α−1
2 In2 · · · 0

...
...

. . .
...

0 0 · · · α−1
K InK

⎤

⎥

⎥

⎥

⎥

⎦

then the first and second derivatives at Tα(θ) will be

(∇L) (Tα(θ)) = (∇L)(θ)Dα

(∇2L) (Tα(θ)) = Dα(∇2L)(θ)Dα.

We will show to which extent you can increase several eigenvalues of (∇2L) (Tα(θ))

by varying α.

Definition 6. For each n×n matrix A, we define the vector λ(A) of sorted singular

values of A with their multiplicity λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

If A is symmetric positive semi-definite, λ(A) is also the vector of its sorted

eigenvalues.

Theorem 6. For a (K − 1)-hidden layer rectified neural network of the form

y = φrect(φrect(· · ·φrect(x · θ1) · · · ) · θK−1) · θK ,

and critical point θ = (θk)k≤K being a minimum for L, such that (∇2L)(θ) has rank
r = rank ((∇2L)(θ)), ∀M > 0, ∃α > 0 such that (r −mink≤K(nk)) eigenvalues are

greater than M .

Proof. For simplicity, we will note
√
M the principal square root of a symmetric

positive-semidefinite matrix M . The eigenvalues of
√
M are the square root of the

eigenvalues of M and are its singular values. By definition, the singular values of
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√

(∇2L)(θ)Dα are the square root of the eigenvalues of Dα(∇2L)(θ)Dα. Without

loss of generality, we consider mink≤K(nk) = nK and choose ∀k < K,αk = β−1

and αK = βK−1. Since Dα and
√

(∇2L)(θ) are positive symmetric semi-definite

matrices, we can apply the multiplicative Horn inequalities (Klyachko, 2000) on

singular values of the product
√

(∇2L)(θ)Dα:

∀i ≤ n,j ≤ (n− nK),

λi+j−n

(

(∇2L)(θ)D2
α

)

≥ λi
(

(∇2L)(θ)
)

β2.

By choosing β >
√

M
λr((∇2L)(θ)) , since we have ∀i ≤ r,λi ((∇2L)(θ)) ≥ λr ((∇2L)(θ)) >

0 we can conclude that

∀i ≤ (r − nK),

λi
(

(∇2L) (Tα(θ))
)

= λi
(

(∇2L)(θ)D2
α

)

≥ λi+nk

(

(∇2L)(θ)
)

β2

≥ λr
(

(∇2L)(θ)
)

β2 > M.

It means that there exists an observationally equivalent parameter with at least

(r −mink≤K(nk)) arbitrarily large eigenvalues. Since Sagun et al. (2016) seems to

suggests that rank deficiency in the Hessian is due to over-parametrization of the

model, one could conjecture that (r −mink≤K(nk)) can be high for thin and deep

neural networks, resulting in a majority of large eigenvalues. Therefore, it would

still be possible to obtain an equivalent parameter with large Hessian eigenvalues,

i.e. sharp in multiple directions.

3.4.3 ϵ-sharpness

Full space We have redefined for ϵ > 0 the ϵ-sharpness of Keskar et al. (2017)

as follow

max
θ′∈B2(ϵ,θ)

(

L(θ′)− L(θ)
1 + L(θ)

)
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ES

[

max
δ∈S∩B2(ϵ,0)

(

L(θ + δ)− L(θ)
1 + L(θ)

)]

≥ P
(
∣

∣(ϵ u) · (0, θ2)
∣

∣ ≥ ∥θ2∥22
) Lconst − L(θ)

1 + L(θ)

⇒ ES

[

max
δ∈S∩B2(ϵ,0)

(

L
(

Tα(θ) + δ
)

− L
(

Tα(θ)
)

1 + L
(

Tα(θ)
)

)]

≥ P
(
∣

∣(ϵ u) · (0,α−1θ2)
∣

∣ ≥ α−2∥θ2∥22
) Lconst − L(θ)

1 + L(θ) α→ +∞−−−−−−→
Lconst − L(θ)
1 + L(θ) .

By exploiting the non-Euclidean geometry and non-identifiability of rectified

neural networks, we were able to demonstrate some of the limits of using typi-

cal definitions of minimum’s flatness as core explanation for generalization. Al-

though reaching the degenerate cases built in these proofs might be difficult to

reach through standard optimization techniques, it brings up the question of which

of the many parameters (and sharpness values) one is using when comparing two

predictors in order to assess their relative expected generalization.

3.5 Allowing reparametrizations

In the previous section 3.4 we explored the case of a fixed parametrization,

that of deep rectifier models. In this section we demonstrate a simple observation.

If we are allowed to change the parametrization of some function f , we can ob-

tain arbitrarily different geometries without affecting how the function evaluates

on unseen data. The same holds for reparametrization of the input space. The

implication is that the correlation between the geometry of the parameter space

(and hence the error surface) and the behavior of a given function is meaningless

if not preconditioned on the specific parametrization of the model.
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(a) Loss function with default parametrization

(b) Loss function with reparametrization

(c) Loss function with another reparametrization

Figure 3.5 – A one-dimensional example on how much the geometry of the loss function depends
on the parameter space chosen. The x-axis is the parameter value and the y-axis is the loss. The
points correspond to a regular grid in the default parametrization. In the default parametrization,
all minima have roughly the same curvature but with a careful choice of reparametrization, it is
possible to turn a minimum significantly flatter or sharper than the others. Reparametrizations
in this figure are of the form η = (|θ − θ̂|2 + b)a(θ − θ̂) where b ≥ 0, a > − 1

2
and θ̂ is shown with

the red vertical line.

42



3.5.1 Model reparametrization

One thing that needs to be considered when relating flatness of minima to their

probable generalization is that the choice of parametrization and its associated

geometry are arbitrary. Since we are interested in finding a prediction function in

a given family of functions, no reparametrization of this family should influence

generalization of any of these functions. Given a bijection Φ onto θ, we can define

new transformed parameter η = Φ−1(θ). Since θ and η represent in different space

the same prediction function, they should generalize as well.

Let’s call L(η) = L ◦ Φ the loss function with respect to the new parameter η.

We generalize the derivation of subsection 3.4.2:

L(η)(η) = L
(

Φ(η)
)

⇒ (∇L(η))(η) = (∇L)
(

Φ(η)
)

· (∇Φ)(η)

⇒ (∇2L(η))(η) = (∇Φ)(η)T · (∇2L)
(

Φ(η)
)

· (∇Φ)(η)

+ (∇L)
(

Φ(η)
)

· (∇2Φ)(η).

At a differentiable critical point, we have by definition (∇L) (Φ(η)) = 0, therefore

the transformed Hessian at a critical point becomes

(∇2L(η))(η) = (∇Φ)(η)T · (∇2L)
(

Φ(η)
)

· (∇Φ)(η).

This means that by reparametrizing the problem we can modify to a large

extent the geometry of the loss function so as to have sharp minima of L in θ cor-

respond to flat minima of L(η) in η = Φ−1(θ) and conversely. Figure 3.5 illustrates

that point in one dimension. Several practical (see chapter 5, Dinh et al., 2014;

Rezende and Mohamed, 2015; Kingma et al., 2016; Dinh et al., 2016) and theoret-

ical works (Hyvärinen and Pajunen, 1999) show how powerful bijections can be.

We can also note that the formula for the transformed Hessian at a critical point

also applies if Φ is not invertible, Φ would just need to be surjective over Θ in order

to cover exactly the same family of prediction functions

{fθ, θ ∈ Θ} = {fΦ(η), η ∈ Φ−1(Θ)}.
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Radial transformation We can describe an elementary transformation to lo-

cally perturb the geometry of a finite-dimensional vector space and therefore affect

the relative flatness between a finite number minima, at least in terms of spectral

norm of the Hessian. We define the function:

∀δ > 0, ∀ρ ∈]0, δ[,∀(r, r̂) ∈ R+×]0, δ[,

ψ(r, r̂, δ, ρ) = 1 (r /∈ [0, δ]) r + 1 (r ∈ [0, r̂]) ρ
r

r̂

+ 1 (r ∈]r̂, δ])
(

(ρ− δ) r − δ
r̂ − δ + δ

)

ψ′(r, r̂, δ, ρ) = 1 (r /∈ [0, δ]) + 1 (r ∈ [0, r̂])
ρ

r̂

+ 1 (r ∈]r̂, δ]) ρ− δ
r̂ − δ

For a parameter θ̂ ∈ Θ and δ > 0, ρ ∈]0, δ[, r̂ ∈]0, δ[, inspired by the radial

flows (Rezende and Mohamed, 2015) in we can define the radial transformations

∀θ ∈ Θ, Φ−1(θ) =
ψ
(

∥θ − θ̂∥2, r̂, δ, ρ
)

∥θ − θ̂∥2

(

θ − θ̂
)

+ θ̂

with Jacobian

∀θ ∈ Θ, (∇Φ−1)(θ) = ψ′(r, r̂, δ, ρ) In

− 1 (r ∈]r̂, δ]) δ(r̂ − ρ)
r3(r̂ − δ) (θ − θ̂)T (θ − θ̂)

+ 1 (r ∈]r̂, δ]) δ(r̂ − ρ)
r(r̂ − δ) In,

with r = ∥θ − θ̂∥2.
First, we can observe in Figure 3.6 that these transformations are purely local:

they only have an effect inside the ball B2(θ̂, δ). Through these transformations,

you can arbitrarily perturb the ranking between several minima in terms of flat-

ness. Although this transformation is not differentiable everywhere, neither is a

loss function involving rectified networks, and a C∞ version can be built from this

piece-wise linear version (defined as is for convenience).
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Normalizations Instances of commonly used reparametrization are batch nor-

malization (Ioffe and Szegedy, 2015), or the virtual batch normalization variant (Sal-

imans et al., 2016), and weight normalization (Badrinarayanan et al., 2015; Sali-

mans and Kingma, 2016; Arpit et al., 2016). Im et al. (2016) have plotted how

the loss function landscape was affected by batch normalization. However, we will

focus on weight normalization reparametrization as the analysis will be simpler,

but the intuition with batch normalization will be similar. Weight normalization

reparametrizes a nonzero weight θi as θi = s ηi
∥ηi∥2

with the new parameter being the

scale s and the unnormalized weight ηi ≠ 0. Note that without the scale parameter,

the Fisher-Rao norm (Liang et al., 2017) of ηi,

Ex

[

⟨ηi,∇ηiℓ(ηi, x)⟩2
]

is always zero.

Since we can observe that θi is invariant to scaling of ηi, reasoning similar to

section 3.2 can be applied with the simpler transformations T ′
α : ηi '→ αηi of ηi

for α ≠ 0. Moreover, since this transformation is a simpler isotropic scaling, the

conclusion that we can draw can be actually more powerful with respect to ηi:

• every minimum has infinite volume ϵ-sharpness;

• every minimum is observationally equivalent to an infinitely sharp minimum

and to an infinitely flat minimum when considering nonzero eigenvalues of

the Hessian;

• every minimum is observationally equivalent to a minimum with arbitrarily

low full-space and random subspace ϵ-sharpness and a minimum with high

full-space ϵ-sharpness.

This further weakens the link between the flatness of a minimum and the gen-

eralization property of the associated prediction function, i.e. sharp minima can

generalize and flat minima can generalize poorly, when a specific parameter space

has not been specified and explained beforehand. In particular, the geometry of

default parametrizations used when training deep nets should rarely reflect well the

associated generalization properties of the associated minimizers (Li et al., 2017).
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3.5.2 Input representation

As we conclude that the notion of flatness for a minimum in the loss function

by itself is not sufficient to determine its generalization ability in the general case,

we can choose to focus instead on properties of the prediction function instead.

Motivated by some work in adversarial examples (Szegedy et al., 2014; Goodfellow

et al., 2015) for deep neural networks, one could decide on its generalization prop-

erty by analyzing the gradient of the prediction function on examples. Intuitively,

if the gradient is small on typical points from the distribution or has a small Lips-

chitz constant, then a small change in the input should not incur a large change in

the prediction.

But this infinitesimal reasoning is once again very dependent of the local geom-

etry of the input space. For an invertible preprocessing ξ, e.g. feature normaliza-

tion (Aksoy and Haralick, 2001; Coates et al., 2011), whitening (Hyvärinen et al.,

2004) or gaussianization (Chen and Gopinath, 2001), we will call fu = f ◦ ξ−1 the

prediction function on the preprocessed input u = ξ(x). We can reproduce the

derivation in section 3.5 to obtain

∂fu
∂uT

(

ξ(u)
)

=
∂f

∂xT

(

ξ−1(u)
)∂ξ−1

∂uT
(u).

As we can alter significantly the relative magnitude of the gradient at each point,

analyzing the amplitude of the gradient of the prediction function might prove

problematic if the choice of the input space have not been explained beforehand.

This remark applies in applications involving images, sound or other signals with

invariances (Larsen et al., 2015a). For example, Theis et al. (2016) show for images

how a small drift of one to four pixels can incur a large difference in terms of L2

norm.

3.6 Discussion

It has been observed empirically that minima found by standard deep learning

algorithms that generalize well tend to be flatter than found minima that did

not generalize well (Chaudhari et al., 2017; Keskar et al., 2017). However, when

following several definitions of flatness, we have shown that the conclusion that flat
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minima should generalize better than sharp ones cannot be applied as is without

contextualizing those experimental observations. Previously used definitions fail

to account for the complex geometry of some commonly used deep architectures.

We demonstrated that by building general enough counter-examples exploiting the

equivariance of flatness/sharpness with respect to geometry and the invariance of

generalizability with respect to geometry. In particular, the non-identifiability of

the model induced by symmetries, allows one to alter the flatness of a minimum

without affecting the function it represents. Additionally the whole geometry of

the error surface with respect to the parameters can be changed arbitrarily under

different parametrizations.

In the spirit of Swirszcz et al. (2016), this chapter indicates that more care

is needed to define flatness to avoid degeneracies of the geometry of the model

under study in order to relate it to generalization. Also such a concept can not

be divorced from the particular parametrization of the model or input space. For

instance, a possible explanation for the observations in Keskar et al. (2017) could

be that small batch stochastic gradient descent is more attracted to flat minimizers

in the geometry adopted and can provide better generalization properties, making

the choice of parametrization in stochastic gradient descent a confounding factor.

This encourages a more hollistic point of view that includes the learning algorithm

in order to obtain a correct and useful interpretation of previous experimental re-

sults. This also means that altering the stochastic optimization algorithm could

as well change the relationship between loss function landscape and generaliza-

tion. Alternatively, another possible venue would be to use quantities invariant to

reparametrization, as the Kullback-Leibler divergence is, or grounded in a particu-

lar reference parametrization and geometry.

48



4 Deep probabilistic models

Probabilistic modeling is an essential framework in machine learning to take into

account uncertainty. Quantifying these uncertainties into probability distributions

can in turn be used to estimate confidence of in your predictions and assess your po-

tential estimation error. Moreover, considering the stochasticity of the problem can

allow the model to disentangle noise from a more learnable correlation structure.

These uncertainties can emerge from different sources. The simplest explanation

of these uncertainties is the possible inherent stochasticity that we can assume

from the problem and its data generating process. Often, this assumption comes

from a lack of information, including a partial observability of the underlying data

generation. For example, we consider a dice throw random because we cannot fully

observe the dice throwing process. This lack of information can also come from the

inability of a model to fully register every information provided, the approximation

made by modeling data are too coarse and the model becomes underspecified as a

result: some subtlety in the observations can be discarded as random noise.

4.1 Generative models

We will focus on generative models, a particular type of probabilistic model, for

the rest of the dissertation. These models define an approximation pθ,X of the data

generating process p∗X and can provide in turn interesting functions and processes.

Several of these models enable density estimation, possibly conditional, as to esti-

mate confidence in certain outcomes. Synthesis tasks, like speech synthesis, often

involve sampling from such approximations. That sampling can be conditioned on

clamped values of a vector in missing values imputation problems like inpainting.

These models are often learned in an unsupervised (or self-supervised) fashion.

This learning task can become particularly challenging as it involves accounting
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for every variability of raw sensory inputs, as opposed to supervised tasks (e.g.

classification and regression) where all the information about a data point only

needs to be summarized into a single univariate output.

4.1.1 Maximum likelihood estimation

In order to learn these models, one needs to define a cost function to minimize.

We choose to train our generative models by minimizing the Kullback-Leibler diver-

gence (Kullback and Leibler, 1951) (KL divergence) between the data distribution

p∗X and its approximation pθ

KL(p∗X∥pθ,X) = Ex∼p∗X

[

log

(

pθ,X(x)

p∗X(x)

)]

≥ 0.

This divergence belongs to the larger family of reparametrization invariant f -

divergences (Ali and Silvey, 1966; Csiszár et al., 2004; Liese and Vajda, 2006)

Df (p
∗
X∥pθ,X) = Ex∼p∗X

[

f

(

p∗X(x)

pθ,X(x)

)]

= Eξ(x)∼p∗
ξ(X)

[

f

(

p∗ξ(X) (ξ(x))

pθ,ξ(X) (ξ(x))

)]

,

for any function ξ bijective. These f -divergences take 0 as a minimum value and

only when p∗X = pθ,X .

One interesting property is that the problem of minimizing this Kullback-Leibler

divergence is equivalent to the consistent maximum likelihood estimation, that is

KL(p∗X∥pθ,X) = Ex∼p∗X

[

log

(

p∗X
pθ,X

)]

= Ex∼p∗X

[

log
(

p∗X(x)
)]

− Ex∼p∗X

[

log
(

pθ,X(x)
)]

= −H(p∗X)− Ex∼p∗X

[

log
(

pθ,X(x)
)]

,

where H(p∗X) = −Ex∼p∗X

[

log
(

p∗X(x)
)]

is the (information) entropy of p∗. As we

cannot compute p∗X in most problems, this entropy cannot be computed. Fortu-

nately, this quantity is constant with respect to pθ,X , therefore minimizingKL(p∗X∥pθ,X)
is equivalent to minimizing

L(pθ,X , p∗X) = Ex∼p∗X
[ℓNLL (pθ,X , x)] ≃

1

N

∑

x∈Dtrain

ℓNLL (pθ,X , x) = L̂(pθ,X ,Dtrain),

50



where ℓNLL

(

pθ,X , x
)

= − log (pθ,X(x)) is the negative log-likelihood of pθ,X on x.

This minimization is equivalent to maximizing the (log-)likelihood

log (pθ,X(Dtrain)) = log

(

∏

x∈Dtrain

pθ,X(x)

)

=
∑

x∈Dtrain

log
(

pθ,X(x)
)

= −
∑

x∈Dtrain

ℓNLL (pθ,X , x) .

It is worth noting that several cost functions can find their probabilistic equiv-

alent:

• The squared loss is equivalent to a negative log-likelihood of a Gaussian dis-

tribution with fixed variance. Indeed, the log-density of a normal distribution

of mean µ and covariance matrix Σ is

log
(

pN (·|µ,Σ)(x)
)

= −1

2

(

(x− µ)Σ(x− µ)T + dX log(2π) + log (det(Σ))
)

.

If Σ = IdX , we recover the square loss up to additive and multiplicative

constants with respect to µ.

• The logistic loss with a score s is equivalent to a negative log-likelihood of a

Bernoulli distribution B(· | q) with probability q = σsigmoid(s) for x = 1. The

log-density would be

log
(

pB(·|q)(x)
)

= −
(

x log(1 + e−s) + (1− x) log(1 + es)
)

.

4.1.2 Alternative learning principles

Maximum likelihood has been a widely adopted framework for learning prob-

ablistic models. There are however several learning principles one could adopt as

an alternative to maximum likelihood.

Notably Gutmann and Hyvärinen (2010) introduced the concept of noise con-

trastive estimation, reducing the density estimation problem to a classification prob-

lem. In this formulation, the training data is labeled positively (y = 1) and is
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augmented with an equal set of points generated from a noise distribution p−,X ,

labeled negatively (y = 0), resulting in the generating process

y ∼ B
(

·
∣

∣

∣

1

2

)

⎧

⎨

⎩

x | y ∼ p∗X if y = 1

x | y ∼ p−,Xotherwise.

The task is to classify between data points and noise generated points with a logistic

loss. This results in learning an approximation pθ,Y |X(y | x) from which we can

estimate the implicit density (Mohamed and Lakshminarayanan, 2016)

pθ,X(x) =
pθ,Y |X(y = 1 | x)
pθ,Y |X(y = 0 | x)p−,X(x).

Designing a proper noise distribution p−,X(x) is essential for applying this learn-

ing principle successfully, as the concepts we learn aim at distinguishing both data

and noise distributions. The learned structure will be as interesting as the features

that distinguish these distributions, too different and the learned structure will

be trivial, too similar and the model will only focus on perceptually insignificant

details. Generative adversarial networks (see Goodfellow et al., 2014b) overcomes

this problem by adapting through an adversarial scheme in picking p−,X(x).

Through the lens of noise contrastive estimation, one could see the unsupervised

density estimation problem as an extremely unbalanced binary classification task.

As unbalanced classification tasks often struggle with the different performance

measures, e.g. precision, recall, or F-score, one can use to evaluate those models.

This indicates the difficulty of building interesting performance metrics for genera-

tive models, in addition to the analyses of Theis et al. (2016). This is why we will

consider metrics for this task as probes for properties of our models instead of mere

performance metrics, as unsupervised learning remains a misspecified problem 1.

4.1.3 Mixture of Gaussians

To explain the challenges in designing efficient probabilistic generative models,

I will introduce the mixture of Gaussians model or Gaussian mixture model. We

1As several machine learning tasks can be.
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Figure 4.1 – A plot of the log-density of a mixture of Gaussians in a two dimensional space,
with samples generated from the same mixture model.

choose X = RdX and define for K components the following generative process:

z ∼ Cat (· | (αk)k≤K)

x | z ∼ N (· | µz,Σz)

where (αk)k≤K ∈ [0, 1]K such that
∑K

k=1 αk = 1 are the mixture coefficients,

Cat (· | (αk)k≤K) is the associated categorical distribution, (µk)k≤K ∈ (RdX )K are

the mixtures means and (Σk)k≤K ∈ (RdX×dX )K are the mixtures covariances.

z is called a latent or unobserved variable of the model, this latent variable is

usually containing more relevant information concerning the associated data point,

separated from its noise.

The resulting density model is

pθ,X(x) =
K
∑

k=1

αk N (x;µk,Σk) (marginal distribution)

pθ,X,Z(x, z) = αz N (x;µz,Σz) (joint distribution).

As there are no known closed form solution for a finite dataset, one can instead

optimize iteratively the parameters of the model using the expectation maximization
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algorithm (Neal and Hinton, 1998; McLachlan et al., 2004). This algorithm involves

at every step evaluating the posterior distribution pθ,Z|X(z | x) to evaluate the

expected log-distribution

Ez∼pθ,Z|X(·|x)

[

log
(

pθ′(x, z)
)]

=
K
∑

z=1

pθ,Z|X(z | x) log
(

pθ′,X,Z(x, z)
)

(expectation phase)

and then maximizing the expected log-distribution with respect to θ′ (maximization

phase) before replacing θ ← θ′. Fortunately, this model enables tractable and

efficient computation of the posterior distribution pθ,Z|X(z | x) and closed form

solution of the problem

argmax
θ′∈Θ

(

Ez∼pθ,Z|X(·|x) [log (pθ′,X,Z(x, z))]
)

The Gaussian mixture model assumes an organization of data into clusters and

only captures linear correlations within a cluster, meaning that a single mixture

component cannot model more complex, nonlinear manifolds. In order to model

richer structures, the model has to increase significantly its number of mixture com-

ponents. However, the number of parameters, and the computational burden for

inference and sampling scale linearly with a rapidly increasing number of clusters.

In general, the problems of scalable inference, efficient sampling, and parameter

efficiency are central when designing generative models.

4.2 Deep generative models

In order to efficiently capture the complexity of interesting problems, researchers

capitalized on the progress of machine learning models in supervised learning and

the increase of computational power. In particular, they harnessed the recent

advances in deep learning (presented in chapter 2) to build deep generative models.

An important challenge when implementing deep generative models is enabling

tractability of their various operations, sampling, inference, and density estimation,

despite the highly nonlinear nature of deep models of interest.
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x0 x1 x2 . . .

Figure 4.2 – A probabilistic graphical model corresponding to autoregressive model. This graph
represent a trivial connectivity, it is fully connected.

4.2.1 Autoregressive models

A simple way to design generative models with deep neural networks stems from

the observation that deep models can already model conditional probabilities. As

we have pointed out in subsection 4.1.1, one can for example build a conditional

scalar Gaussian distribution by outputting a mean and a variance parameters for

this conditional distribution. In general, a conditional distribution can be imple-

mented using a deep network by outputting the parameters of this distribution.

Then, a joint distribution can be implemented with neural networks using a

simple probability chain rule (Frey, 1998)

pθ,X(x) = pθ,X1(x1)
dX−1
∏

k=1

pθ,Xk+1|X<k
(xk+1 | x<k),

with pθ,Xk+1|X<k
defined as a conditional distribution on xk+1 whose parameters is

an output of a neural network with input (xk′)<k. This decomposition correspond

to a trivial dependency structure and probabilistic graphical model (see figure 4.2).

A very inefficient way to implement these neural networks would be to create

dX−1 separate neural networks for each conditional model pθ,Xk+1|X<k
(xk+1 | xk′<k).

We can easily show that that solution hardly scales with the dimensionality of

the problem. Bengio and Bengio (1999); Larochelle and Murray (2011) propose

instead to reuse computations and reduce parameters by using a single neural

network with a specific sparsity pattern in connectivity (see figure 4.3) such that

only the input (xk′)k′<k can define the distribution for xk. Such topology can be

efficiently implemented through the use of recurrent neural networks (e.g. Bengio

et al., 2003), for example long short term memory networks (e.g. Graves, 2013; Theis

and Bethge, 2015; van den Oord et al., 2016b), or by adopting an autoregressive

masking patterns (Germain et al., 2015; van den Oord et al., 2016b,a).
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x1 x2 x3 x4

pX1
pX2|X1

pX3|X≤2
pX4|X≤3

Figure 4.3 – An example of autoregressive masking pattern, the computational graph repre-
sented going bottom up. We see that there is no path connecting xk to p(xk | x<k).

Using that learning scheme has many advantages. The learning of the model

can be clearly done through stochastic gradient descent on a tractable negative

log-likelihood criterion, and without the presence of latent variables, inference can

be done very efficiently. The graph structure of the model reveals a very straight-

forward unbiased ancestral sampling procedure to generate from it.

x1 ∼ pX1

x2 ∼ pX2|X1(· | x1)

. . .

xdX ∼ pXdX
|X<dX

(· | x<dX )

Nonetheless, one could hope to improve on the sampling procedure, which scales

linearly with the number of dimension of the input space and is non-parallelizable.
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4.2.2 Deep generator networks

Latent space Z Data space X

gθ−→

Figure 4.4 – A generator network approach follows the spirit of inverse transform sampling:
sample from a simple distribution a noise variable z, and pass it through the generator network
gθ to obtain a sample x = gθ(z) with the desired distribution. In this example, the desired
distribution is the two moons dataset, which exhibit two interesting properties in its structure:
the separation into two clusters, and the nonlinear correlation structure among each cluster.

Given a cumulative distribution function CDFp, inverse transform sampling (De-

vroye, 1986) is a scheme to efficiently sample from a univariate distribution p

u ∼ U ([0, 1]) (4.1)

x = CDF−1
p (u). (4.2)

This decomposes the problem of sampling from a complex distribution into sam-

pling from a simple uniform distribution and the application of an inverse CDF.

In a similar fashion for higher dimensionalities, the deep generator network

approach to generative models aims at building a generative process that can be

summarized into two elementary steps of

• sampling z ∈ Z = RdZ from a simple standard distribution pZ (see equation

4.1);

• passing that sample through a deep neural network gθ (see equation 4.2 and

figure 4.4).

These operations can often be well parallelized.
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Z X

Figure 4.5 – Graphical model corresponding to the emission model: a latent noise variable z is
generated from a standard distribution, this variable is then used to build the parameters of the
conditional distribution pθ,X|Z .

Emission model

One potential issue when attempting to learn deep generator network models

with maximum likelihood is that their associated density model might not be well

defined everywhere or just 0, especially if Z has a lower dimensionality than X . A

typical solution to this is to add noise to the resulting distribution.

The resulting generative process remains very simple as illustrated figure 4.5:

we sample z typically from a standard distribution pZ , e.g. N (· | 0, IdZ ), then pass

z through a neural network to output the parameters of a conditional distribution

pθ,X|Z , e.g. N (· | µθ(z),Σθ(z)).

Variational inference

Following the standard approach to train deep models, deep probabilistic models

can be learned using gradient-based methods. When learning deep latent variable

models, the differentiation of the log-likelihood goes as follow

∂ log (pθ,X(x))

∂θT
=

1

pθ,X(x)

∂pθ,X(x)

∂θT

=
1

pθ,X(x)

∂

∂θT
(

Ez∼pZ

[

pθ,X|Z(x | z)
])

=
1

pθ,X(x)

∂

∂θT

(
∫

z∈Z
pθ,X|Z(x | z)pZ(z)dz

)

=
1

pθ,X(x)

∫

z∈Z

∂

∂θT
(

pθ,X|Z(x | z)
)

pZ(z)dz

=
1

pθ,X(x)

∫

z∈Z
pθ,X|Z(x | z)

∂ log
(

pθ,X|Z(x | z)
)

∂θT
pZ(z)dz
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∂ log (pθ,X(x))

∂θT
=

∫

z∈Z

pθ,X|Z(x | z)pZ(z)
pθ,X(x)

·
∂ log

(

pθ,X|Z(x | z)
)

∂θT
dz

=

∫

z∈Z

pθ,X,Z(x, z)

pθ,X(x)
·
∂ log

(

pθ,X|Z(x | z)
)

∂θT
dz

=

∫

z∈Z

∂ log
(

pθ,X|Z(x | z)
)

∂θT
pθ,Z|X(z | x)dz

= Ez∼pθ,Z|X

[

∂ log
(

pθ,X|Z(x | z)
)

∂θT

]

.

This means that even for gradient descent on log-likelihood, computing the

posterior pθ,Z|X is necessary. However, unlike with Gaussian mixture models, the

problem of computing the posterior pθ,Z|X becomes intractable for deep latent

variable models as it involves computing for instance the expectation pθ,X(x) =

Ez∼pZ

[

pθ,X|Z(x | z)
]

. Another reason for this intractability is the well known ex-

plaining away effect: conditioned on an observed variable x, the elements zi of the

random vector z, that were independent unconditionally, become deeply entangled.

A typical approach to overcome this intractability is to use instead an approxi-

mation q of the posterior pθ,Z|X . This approximate posterior will usually be designed

to allow simpler computation of expectations involved, or at least a Monte Carlo

approximation of them. Learning using this approximate posterior is enabled by

the use of the variational lower bound (Neal and Hinton, 1998; Wainwright et al.,

2008), also known as the evidence lower bound,

log(pθ,X(x)) =

∫

z

log(pθ,X(x))q(z)dz

=

∫

z

log

(

pθ,X,Z(x, z)

pθ,Z|X(z | x)

)

q(z)dz

=

∫

z

log

(

pθ,X,Z(x, z)q(z)

pθ,Z|X(z | x)q(z)

)

q(z)dz

=

∫

z

log

(

pθ,X,Z(x, z)

q(z)

)

q(z)dz +

∫

z

log

(

q(z | x)
pθ,Z|X(z | x)

)

q(z)dz

= Ez∼q(z)

[

log

(

pθ,X,Z(x, z)

q(z)

)]

+KL
(

q(z)∥pθ,Z|X(z | x)
)

≥ Ez∼q(z)

[

log

(

pθ,X,Z(x, z)

q(z)

)]

= −LELBO(pθ,X,Z , q, x).
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Z X

Figure 4.6 – The Helmoltz machine uses an inference network to output an approximate posterior
for variational inference qλ(· | x).

The choice of q will typically tradeoff the approximation quality, quantified by

KL
(

q(z)∥pθ,Z|X(z | x)
)

, for computational tractability. A typical approximation

one uses is themean field approximation (Saul et al., 1996), where all the dimensions

of z given x are considered independent. For a Gaussian distribution, it means that

the covariance matrix will be diagonal.

Gradient-based inference

Training a deep latent variable model with an approximate posterior depends

on the approximation quality of the variational lower bound. This depends on

how close q is to pθ,Z|X . While undirected models, such as restricted Boltzmann

machines (Smolensky, 1986) and deep Boltzmann machines (Salakhutdinov and

Hinton, 2009) benefits from a convenient conditional independence structure that

allows fixed point iteration inference, choosing a parametrized distribution qλ will

be one of the few pratical options in this case (e.g. Valpola and Karhunen, 2002;

Honkela and Valpola, 2004). This parametrized approximate posterior can be cho-

sen so as to minimize the divergenceKL
(

qλ(z)∥pθ,Z|X(z | x)
)

or, equivalently, max-

imize the variational lower bound. This reframes the problem of inference into an

optimization problem for every x of the variational lower bound, which becomes

the unified cost function for optimizing both generation and inference. Stochastic

variational inference (Paisley et al., 2012; Hoffman et al., 2013) involves estimating

this bound through a Monte Carlo scheme

log

(

pθ,X,Z(x, z)

qλ(z)

)

z ∼ qλ.

In order to amortize the cost of inference for each x and θ encountered, Helmholtz

machines (Dayan et al., 1995) exploit the commonalities between inference prob-
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lems over each x by learning a parametrized inference network qλ(· | x) (see fig-

ure 4.6) where the parameter of the distribution is a function of x. For instance, if

the approximate posterior is a diagonal Gaussian then the inference network will

output its mean and standard deviation µλ(x), σλ(x). The resulting model becomes

very similar to a regularized autoencoder (Hinton and Zemel, 1993) where z can be

seen as a stochastic code and the loss function

−Ez∼q(z)

[

log

(

pθ,X,Z(x, z)

qλ(z | x)

)]

=−Ez∼q(z)

[

log
(

pθ,X|Z(x | z)
)]

+KL (qλ(z | x)∥pZ(z))

can be decomposed into a reconstruction error and a regularization term on the

stochastic code. This comparison have earned this model the name variational

autoencoder (Kingma and Welling, 2014a; Mnih and Gregor, 2014; Rezende et al.,

2014), with qλ as the encoder and pθ,X|Z as the decoder.

This inference network will be typically learned through gradient descent as well,

which will be doubly stochastic as both z and x are sampled, x from the dataset

and z from qλ(· | x). A widely applicable approach to obtain an unbiased gradient

estimator is the use of the Reinforce (REward Increment = Non-negative Factor

× Offset Reinforcement × Characteristic Eligibility) estimator (Williams, 1992).

This estimator, also known as the score function estimator (Kleijnen and Rubin-

stein, 1996) or likelihood ratio estimator (Glynn, 1990), for the variational lower

bound is obtained by the following derivation:

−
∂LELBO

(

pθ,X,Z , qλ, x
)

∂λT

=
∂

∂λT

(

Ez∼q(z)

[

log

(

pθ,X,Z(x, z)

qλ(z | x)

)])

=
∂

∂λT

(
∫

z∈Z
log

(

pθ,X,Z(x, z)

qλ(z | x)

)

qλ(z | x)dz
)

=

∫

z∈Z

∂

∂λT

(

log

(

pθ,X,Z(x, z)

qλ(z | x)

)

qλ(z | x)
)

dz

=

∫

z∈Z

(

log

(

pθ,X,Z(x, z)

qλ(z | x)

)

∂qλ(z | x)
∂λT

−
∂ log

(

qλ(z | x)
)

∂λT
qλ(z | x)

)

dz
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=

∫

z∈Z
log

(

pθ,X,Z(x, z)

qλ(z | x)

)

∂ log
(

qλ(z | x)
)

∂λT
qλ(z | x)dz

= Ez∼q(z)

[

log

(

pθ,X,Z(x, z)

qλ(z | x)

)

∂ log
(

qλ(z | x)
)

∂λT

]

estimated by

log

(

pθ,X,Z(x, z)

qλ(z | x)

)

∂ log
(

qλ(z | x)
)

∂λT
z ∼ qλ(· | x).

This estimator suffers however from high variance, hindering its efficiency for

training any models. Several variance reduction techniques attemping to address

this issue were developed, including control variate approaches (e.g. Greensmith

et al., 2004; Paisley et al., 2012; Tucker et al., 2017; Grathwohl et al., 2017).

One particularly efficient solution for variational autoencoders was the use of the

reparametrization trick (Williams, 1992; Graves, 2011; Bengio et al., 2014; Kingma

and Welling, 2014a,b; Rezende et al., 2014). For a continuous latent variable z, one

can use the principle of inverse transform sampling to re-express z as a function of

an auxiliary random variable ϵ (see figure 4.7) with standard distribution p∗ϵ . For

example, if z ∼ N
(

· | µλ(x), σλ(x)
)

, then we can rewrite

z = µλ(x) + σλ(x)⊙ ϵ

with ϵ ∼ N (· | 0, IdZ ) and ⊙ being the element-wise multiplication. The gradient

can then be simply estimated using backpropagation and the law of the unconscious

statistician by

∂ log
(

pθ,X|Z(x | µλ(x) + σλ(x))
)

∂λT

+
∂KL

(

qλ(z | x)∥pZ(z)
)

∂λT
ϵ ∼ N (· | 0, IdZ ).

Although this estimator is not guaranteed to be lower variance than the score

function estimator (Gal, 2016), it has often proven to be the most practical for

training deep generative models with continuous latent variables.
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Reinforce Reparametrization trick

Z X

←→
Z X

ϵ

Figure 4.7 – An illustration of the reparametrization trick. Considering z as a random variable
sampled from a conditional distribution qλ(z | x) (e.g. N (· | µλ(x),σλ(x))) results in using the
Reinforce estimator. However, by rewriting z as deterministic function of x and a stochastic
standard variable ϵ (e.g. µλ(x) + σλ(x) with z ∼ N (· | 0, IdZ

)), we can estimate a potentially
lower variance gradient estimate by backpropagation.

Evaluation

Although these variational autoencoders can be successfully trained to maximize

the evidence lower bound, the lower bound obtained with a mean field approxima-

tion remains an inaccurate estimate of the log-likelihood. This results in some

degree of underfitting, which results in practice in models that generate blurry

samples (for fully connected models) or samples that lack global coherency (for

convolutional models). Moreover, the quality of this approximation, quantified by

KL (qλ(z | x)∥pZ(z)), is also intractable.

A more accurate lower bound can be provided using importance sampling (Rezende

et al., 2014; Burda et al., 2016):

log
(

pθ,X(x)
)

= log
(

Ez∼pZ

[

pθ,X|Z(x | z)
])

= log

(

Ez∼qλ(·|x)

[

pθ,X|Z(x | z) pZ(z)

qλ(z | x)

])

= log

(

Ez∼qλ(·|x)

[

pθ,X,Z(x, z)

qλ(z | x)

])

= log

(

E(zk)k≤K∼qλ(·|x)K

[

1

K

K
∑

k=1

pθ,X,Z(x, zk)

qλ(zk | x)

])
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log

≥ E(zk)k≤K∼qλ(·|x)K

[

log

(

1

K

K
∑

k=1

pθ,X,Z(x, zk)

qλ(zk | x)

)]

K → +∞−−−−−−→ log
(

pθ,X(x)
)

.

This bound has the advantage to be asymptotically unbiased with respect to the log-

likelihood, however Wu et al. (2017) empirically showed that the rate of convergence

remains too slow to be accurate enough in practice.
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5
Real NVP: a deep tractable
generative model

Ideally, we would want to capitalize on the advantage of fast generative pro-

cess that the generator network paradigm provides while being able to evaluate

the model performance accurately and efficiently. Such a generative model should

also be expressive enough so as to enable accurate enough modeling data with rich

structure. This final chapter will present the nonlinear independent components

estimation (Nice) (Dinh et al., 2014) approach, for real-valued non-volume pre-

serving with Real NVP (Dinh et al., 2016), which provides a possible avenue to

explore that approach.

5.1 Computing log-likelihood

5.1.1 Change of variable formula

In order to build that model, we can look back at the inverse transform sampling

algorithm described subsection 4.2.2 (see figure 5.1). The principle that underpins

this approach is the change of variable formula, which provides a closed form ex-

pression of the density of gθ(z)

pθ,X (gθ(z)) = pZ(z)

∣

∣

∣

∣

det

(

∂gθ(z)

∂zT

)
∣

∣

∣

∣

−1

,

with dZ = dX and gθ bijective from Z to X . This formula (which can be derived

from a p(x)dx = p(z)dz identity), which quantifies the change in density incurred

through bijective reparametrizations, can be understood as follow:

Work (Dinh et al., 2014, 2016) done in collaboration with Dr. Jascha Sohl-Dickstein, David
Krueger, Dr. Samy Bengio, and Pr. Yoshua Bengio. Part of this work (Dinh et al., 2016) was
done during an internship at Google Brain.
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Latent space Z Data space X

Generation
z ∼ pZ
x = gθ(z)

gθ−→

Inference
x ∼ p∗X
z = fθ(x)

fθ←−

KL(p∗θ,Z∥pZ) KL(p∗X∥pθ,X)

Figure 5.1 – Real NVP follows the generator network paradigm (first line with red figures):
gθ transforms a prior distribution (here standard Gaussian) into an approximation of the data
distribution. The training of the model is very similar to expectation maximization as the function
fθ provides the inference for z given a data point x (second line with blue figures). However, the
generator function here is not only deterministic but also invertible (bijective to be more precise):
there is only one latent vector z corresponding to x. The transformations are demonstrated on a
model trained on the two moons dataset. Best seen with colors.

• the density of the outcome gθ(z) is proportional to pZ(z) the prior density in

the latent space;

• the Jacobian ∂gθ(z)
∂zT

quantifies the local infinitesimal changes obtained by ap-

plying the generator network function gθ. In particular, the Jacobian deter-

minant
∣

∣

∣
det
(

∂gθ(z)
∂zT

)
∣

∣

∣
reflects the local change of volume which affects the

density as

density =
mass

volume
.

The maximum likelihood formulation of independent components analysis (Pham

and Garat, 1997; Hyvärinen et al., 2004; Hyvärinen and Pajunen, 1999) is built on

the change of variable formula

pθ,X (x) = pZ (fθ(x))

∣

∣

∣

∣

det

(

∂fθ(x)

∂xT

)
∣

∣

∣

∣

,
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where fθ = g−1
θ is the unmixing function or normalizing flow (Tabak and Turner,

2013) and with pZ a distribution with independent components, gaussianization (Chen

and Gopinath, 2001) being a special case where pZ is a standard Gaussian distri-

bution. For log-likelihood, the formula becomes

log
(

pθ,X(x)
)

= log
(

pZ
(

fθ(x)
))

+ log

(
∣

∣

∣

∣

det

(

∂fθ(x)

∂xT

)
∣

∣

∣

∣

)

,

Evaluating this density pZ
(

fθ(x)
)

is generally easy as it involves a forward pass

through a function fθ, that we will could parametrize as a feedforward network,

and pZ can be chosen to be as simple as a standard Gaussian. However, comput-

ing the Jacobian determinant det
(

∂fθ(x)
∂xT

)

can quickly become intractable in high

dimensional cases, as computing the Jacobian of a function is expensive and so is

computing the determinant of the resulting large Jacobian matrix. Moreover, an

additional hurdle when using that model for generation is computing a forward

pass through generator network gθ = f−1
θ , which requires inverting a non-trivial fθ

function.

While direct computation of these quantities is still manageable in low dimen-

sional problems (e.g Bengio, 1991; Baird et al., 2005), several works (e.g. Valpola

and Karhunen, 2002; Honkela and Valpola, 2004; Rippel and Adams, 2013) resorted

to use an emission model instead as described in 4.2.2, trained through variational

inference.

5.1.2 Tractable architecture

Design of invertible functions

One of the challenges when training these invertible generative models is to

design architectures that enable these computations. Autoregressive models (de-

scribed in subsection 4.2.1) are already allowing tractable log-likelihood computa-

tion and sampling, albeit by a trivial chain rule probability decomposition.

Autoregressive invertible functions Hyvärinen and Pajunen (1999) offers an

interesting reformulation of these autoregressive models as a nonlinear bijective

transformation: if we consider the conditional cumulative distribution functions
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CDFθ,Xk|X<k
associated to the density pθ,X , then

zk = CDFθ,Xk|X<k
(xk | x<k)

are independent with distribution U ([0, 1]) if x ∼ pθ,X . Equivalently, if z ∼
U ([0, 1])dZ then

x1 = CDF−1
θ,X1

(z1)

∀k ≤ dZ , xk = CDF−1
θ,Xk|X<k

(zk | x<k).

This view reframes successfully autoregressive models into the nonlinear indepen-

dent components analysis framework. Nonetheless, the inversion process can only

be done dimension by dimension and is hardly parallelizable.

Coupling layer We can notice that the linear computational cost with the num-

ber of dimensions is actually due to the fine-grained partitioning of the dimensions

into individual components (x1, x2, . . . , xdX ). However, one could exploit a coarser

partioning (I1, I2) that would allow for better parallelization. To that effect, we

proposed to use the following affine coupling layer structure (see figure 5.2a)

yI1 = xI1

yI2 =
(

xI2 + tθ(xI1)
)

⊙ exp
(

sθ(xI1)
)

.

A forward pass through such layer leaves the dimensions in I1 unchanged whereas

xI2 is transformed linearly with parameters output by translation and scaling func-

tions (tθ, sθ) ∈
(

RI1 '→ RI2
)2
. tθ and sθ have little constraints on their definition

apart from their interfaces, the domain and the codomain. In our experiments, we

will choose them to be the output of a deep neural network. In a fashion similar

to Germain et al. (2015); van den Oord et al. (2016b,a), this partitioning can be

rewritten using a binary masking b, with bI1 = 1 and bI2 = 0,

y = b⊙ x+ (1− b)⊙
(

x+ tθ(b⊙ x)
)

⊙ exp
(

sθ(b⊙ x)
)

=
(

x+ (1− b)⊙ tθ(b⊙ x)
)

⊙ exp
(

(1− b)⊙ sθ(b⊙ x)
)

.

When sθ = 0 we will call the coupling layer additive.

68



xI1
xI2

tθ +

sθ ×

yI1
yI2

exp

(a) Computational graph for
the forward pass of an affine
coupling layer.

xI1
xI2

−tθ +

−sθ ×

yI1
yI2

exp

(b) Computational graph for
the forward pass of the inverse
of an affine coupling layer.

Figure 5.2 – Computational graphs (from bottom up) corresponding to the forward pass of an
affine coupling layer and its inverse.

This model can be seen as a neural version of Feistel networks (Menezes et al.,

1996), used in cryptography, or a nonlinear lifting scheme (Sweldens, 1998), used

in signal processing.

Properties of coupling layers

Although the proposed architecture is unconventional in deep learning, its prop-

erties make it very practical for the purpose of learning a deep generator network.

Inversion Learning and sampling from a generator network through maximum

likelihood requires being able to invert its forward pass. A coupling layer follows a

pattern similar to a lifting scheme (Sweldens, 1998) and, similarly, can be efficiently

inverted with the inverse forward equation

⎧

⎨

⎩

yI1 = xI1

yI2 =
(

xI2 + tθ(xI1)
)

⊙ exp
(

sθ(xI1)
)

⇔

⎧

⎨

⎩

xI1 = yI1

xI2 = yI2 ⊙ exp
(

− sθ(yI1)
)

− tθ(yI1).
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Note that the amount of computation involved in the inversion is no more complex

as the forward pass (see figure 5.2b), which is usually already efficient.

Inference As discussed in 5.1.1, computing the log-likelihood of a generator net-

work requires computing its Jacobian determinant. The Jacobian of a coupling

layer has the following form

∂y

∂xT
=

⎡

⎣

II1 0
∂yI2
∂xT

I1

ediag
(

sθ(xI1)
)

⎤

⎦ ,

where ediag
(

sθ(xI1 )
)

= diag
(

exp
(

sθ(xI1)
))

is a diagonal matrix whose entry are

the elements of the vector exp
(

sθ(xI1)
)

. This Jacobian matrix is triangular and,

as a result, its determinant can be very efficiently computed as the product of its

diagonal

dX
∏

k=1

exp
(

sθ(xI1)
)

k
= exp

(

dX
∑

k=1

(

sθ(xI1)
)

k

)

.

This shows that the functions sθ and tθ affect the complexity of this computation

only through their own forward pass, which allow for a large range of expressive

models. The triangularity of the unmixing function Jacobian was also exploited

in the context of nonlinear independent components analysis in Deco and Brauer

(1995a,b), albeit with a fine-grained partitioning similar to autoregressive models.

Gradient flow The architecture of coupling layers bears strong similarities with

highway networks (Srivastava et al., 2015), and benefits from similar gradient flow

properties, especially its additive variant (Dinh et al., 2014) which is very simi-

lar to residual networks (He et al., 2015a, 2016; Gomez et al., 2017) (described

subsection 2.2.3).

Composition Although this layer enables several tractable computations of in-

terest and allows the use of powerful models, the associated transformation leaves

several components unchanged. Fortunately, this difficulty can be easily overcome

by composing coupling layers in an alternating pattern, such that the components
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5.2 Preliminary experiments

5.2.1 Setting

General architecture

As a proof of concept, we first experimented with Real NVP with fθ as a

composition of four additive coupling layers with alternating pattern. Each addi-

tive coupling layer uses as a translation function tθ a deep fully-connected rectified

neural network with linear output. Because additive coupling layers are actu-

ally volume preserving, a final layer, a diagonal matrix parametrized exponentially

exp(γ), is appended to this unmixing function. This diagonal matrix can be easily

inverted by exp(−γ). The model is trained using the AdaM optimization algo-

rithm (Kingma and Ba, 2015) with parameters αt = 10−3, β1 = 0.9, β2 = 0.999, a

damping coefficient of 10−8, and a batch size of 100.

Datasets

We have trained this model on four image datasets: the Mixed NIST dataset

(MNIST) (LeCun et al., 1998b), a dataset of 28× 28 grayscale images of digits, the

Toronto face dataset (TFD) (Susskind et al., 2010), a dataset of 48× 48 grayscale

face images, the Street View house numbers (SVHN) (Netzer et al., 2011) dataset,

a dataset of 32× 32 color images of street numbers, and the CIFAR-10 dataset

(Krizhevsky and Hinton, 2009), a dataset of 32× 32 natural color images. For

TFD, the unlabeled set is used for training.

Caveats in maximum likelihood learning

The change of variable formula shows us that the scale of the images consid-

ered is very important in order to compute the log-likelihood. In our experiments,

MNIST, TFD and SVHN are constrained in the [0, 1]dX hypercube whereas CIFAR-

10 is constrained on the [−1, 1]d hypercube.

Moreover, due to bitmap encoding, images are often initially encoded to be in

the quantized space !0, 255"dX . It is easy to see that one can obtain an infinitely

high test log-likelihood value model by just using a distribution converging to a

73



Dataset MNIST TFD SVHN CIFAR-10
Dimensionality dX 28× 28 = 784 48× 48 = 2304 32× 32 = 3072 32× 32 = 3072

Preprocessing None ZCA ZCA ZCA
# hidden layers 5 4 4 4
# hidden units 1000 5000 2000 2000

Prior Logistic Gaussian Logistic Logistic
Mean log-likelihood 1980.50 5514.71 11496.55 5371.78

Bits/dim 4.36 4.55 2.60 4.48

Table 5.1 – Architecture and results for each dataset. # hidden units refer to the number of
units per hidden layer.

mixture of Dirac on these 256dX values:

pθ,X(x) =
1

256dX

dX
∏

i=1

(

255
∑

k=0

δk(xi)

)

The most common to work around this issue is to add a uniform noise U([0, 1]) (Uria
et al., 2013; van den Oord and Schrauwen, 2014), in order to bridge the quanta,

before rescaling to the desired hypercube. It has also the benefit of upper-bounding

the log-likelihood of a model by the negentropy of this noise.

Detailed architectures

Whitening (Hyvärinen et al., 2004; Krizhevsky and Hinton, 2009) is used as

preprocessing for TFD, SVHN and CIFAR-10. The translation function for MNIST

has five hidden layers of 1000 units each, for TFD, we use four layers of 5000 hidden

units each, and for CIFAR-10 and SVHN, eah of those four hidden layers have 2000

units. The distribution pZ is picked to be standard logistic distribution

pZk
(zk) = σsigmoid(zk)σsigmoid(−zk)

which worked best, except for TFD, where we used a standard Gaussian. The

architectures are summarized table 5.1.
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5.2.2 Results

Log-likelihood

Table 5.1 shows the quantitative results obtained on these datasets. The mean

log-likelihood is computed following the change of variable formula and is averaged

over examples. As in Theis and Bethge (2015); van den Oord et al. (2016b), we use

also bits per dimension (bits/dim), also known as bits per pixel, as a normalized

log-likelihood metric. The bits/dim is computed by using the change of variable

formula from the mean log-likelihood (averaged over dimensions), with a uniform

noise of U([0, δ]), as follow:

1

dX log(2)
L̂(pθ,X ,Dtrain)− log2(δ).

As we mentioned in subsection 5.2.1, as L̂(pθ,X ,Dtrain) ≥ dX log(δ), the bits/pixel

metric is always positive.

Samples

As mentioned in figure 5.1, we generate unbiased samples x from the resulting

density model as follow

z ∼ pZ

x = gθ(z) = f−1
θ (z).

Because the support of the modelling density is RdX whereas the dataset is actually

constrained in a hypercube, we simply choose to clip the resulting samples in this

hypercube.

Although the model is able to model reasonably the MNIST and TFD datasets,

the architecture fails to capture the complexity of the SVHN and CIFAR-10 datasets

(see figure 5.5).
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(a) MNIST (b) TFD

(c) SVHN (d) CIFAR-10

Figure 5.5 – Unbiased samples from a trained model from section 5.2. We sample z ∼ pZ and
we output x = gθ(z). Although the model is able to model reasonably the MNIST and TFD
datasets, the architecture fails to capture the complexity of the SVHN and CIFAR-10 datasets.
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(a) Original images
for MNIST

(b) Initial states
for MNIST

(c) Inference of missing
values for MNIST

(d) Original images
for TFD

(e) Initial states
for TFD

(f) Inference of missing
values for TFD

Figure 5.7 – Inpainting experiments. We list below the type of the part of the image masked
per line of the above middle figure, from top to bottom: top rows, bottom rows, odd pixels,
even pixels, left side, right side, middle vertically, middle horizontally, 75% random, 90% random.
We clamp the pixels that are not masked to their ground truth value and infer the state of the
masked pixels by Langevin sampling. Note that random and odd/even pixels masking are the
easiest to solve as neighboring pixels are highly correlated and clamped pixels gives therefore
useful information on global structure, whereas more block structured masking results in more
difficult inpainting problems.
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of structure by directly using deep convolutional residual networks with identity

connections (He et al., 2016) in our translation and scale networks.

Normalizations

When considering a centered distribution pZ , one could consider the loss func-

tion resulting from the change of variable formula as regression to 0 regularized by

the log-Jacobian determinant. As a result, we have observed in our previous exper-

iment a strong signal from gradient descent to have the intermediary representation

(output by coupling layers) to be close to 0, which results in poor conditioning and

hinders gradient descent progress.

In order to avoid that phenomenon, we use weight normalization (Badrinarayanan

et al., 2015; Salimans and Kingma, 2016; Arpit et al., 2016) and batch normaliza-

tion (Ioffe and Szegedy, 2015). In particular, we adapt batch normalization to

the transformation of probabilistic variables to fit it into the change of variable

framework. If we consider a diagonal linear layer

z '→ a⊙ z + b.

The associated Jacobian for this layer is simply
∏

i ai. In the context of batch

normalization, we estimate online these coefficients as a =
(

σ̂2
M̂

+ ν
)− 1

2
(with

ν > 0 a damping coefficient) and b = −µ̂M̂ ⊙ a with the mini-batch M̂ statistics

µ̂M̂ =
1

M̂

∑

x∈M̂

x

σ̂2
M̂

=
1

M̂

∑

x∈M̂

(x− µ̂M̂)2.

We use that replacement and therefore use the log-Jacobian determinant

−1

2

∑

i

log
(

(σ̂2
M̂
)i + ν

)

.

As in Ioffe and Szegedy (2015), we cumulate the global statistics of training set to

obtain the parameters we use at test time.
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benefit of distributing the loss function throughout the network, following the phi-

losophy similar to guiding intermediate layers using classifiers at several levels (Lee

et al., 2014). It also reduces significantly the amount of computation and memory

used by the model, allowing us to train larger models.

5.4 Larger-scale experiments

5.4.1 Setting

Bounding the support

As pointed out in section 5.2, the learned density have in general a support

in the whole RdX space whereas we know that the dataset is constrained to a

specific hypercube. For examples, the pixel values of a bitmap image representation

typically lie in [0, 256]dX after application of the recommended jittering procedure

(Uria et al., 2013; Theis et al., 2016). Therefore, we instead model the density of

σ−1
sigmoid

(

α + (1−α)
256 ⊙ x

)

, where α ∈]0, 12 [ is constant used in order to reduce the

numerical instability stemming from boundary effects. Here we pick α = 0.05.

Datasets

We train our model on four natural image datasets: CIFAR-10 (Krizhevsky

and Hinton, 2009) (32 × 32 images), small Imagenet (Russakovsky et al., 2015;

van den Oord et al., 2016b), Large-scale Scene Understanding (LSUN) (Yu et al.,

2015), CelebFaces Attributes (CelebA) (Liu et al., 2015). More specifically, we train

on the downsampled to 32 × 32 and 64 × 64 versions of Imagenet (van den Oord

et al., 2016b). For the LSUN dataset, we train on the bedroom, tower and church

(outdoor) categories. The procedure for LSUN is the same as in Radford et al.

(2015): we downsample the image so that the smallest side is 96 pixels and take

random uniform crops of 64 × 64. For CelebA, we use the same procedure as in

(Larsen et al., 2015b): we take an approximately central crop of 148 × 148 then

resize it to 64× 64.
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PixelRNN Conv DRAW IAF-VAE
Dataset (van den Oord et al., 2016b) Real NVP (Gregor et al., 2016) (Kingma et al., 2016)

CIFAR-10 3.00 3.49 < 3.59 < 3.11
Imagenet 3.86 (3.83) 4.28 (4.26) < 4.40 (4.35)
(32× 32)
Imagenet 3.63 (3.57) 3.98 (3.75) < 4.10 (4.04)
(64× 64)
LSUN 2.72 (2.70)

(bedroom)
LSUN 2.81 (2.78)
(tower)
LSUN 3.08 (2.94)

(church outdoor)
CelebA 3.02 (2.97)

Table 5.2 – Bits/dim results for CIFAR-10, Imagenet, LSUN datasets and CelebA. Test results
for CIFAR-10 and validation results for Imagenet, LSUN and CelebA (with training results in
parenthesis for reference).

first three coupling layers a residual network with four residual blocks, with one

hidden layer, with every hidden layer containing 32 hidden feature maps. Only two

residual blocks are used for images of size 64 × 64. For CIFAR-10, we use eight

residual blocks, 64 feature maps, and downscale only once. After each downscaling,

we double the number of hidden feature maps used. We use the AdaM optimizer

with the same parameters as section 5.2, except with a batch size of 64. We also add

a small L2 regularizer ∥θ∥22 on the weight scale parameters (in weight normalization

parametrization) with a coefficient of 5 · 10−5. The images are randomly flipped

horizontally.

5.4.2 Results

Log-likelihood

We show in table 5.2 that, while not improving over more modern methods like

pixel recurrent neural network (PixelRNN ) (van den Oord et al., 2016b) and varia-

tional autoencoders with inverse autoregressive flow (IAF ) (Kingma et al., 2016),

the number of bits per dimension obtained is competitive with other generative

methods. As we notice that our performance increases with the number of parame-

ters, we hypothesize that we are in an underfitting regime where larger models are

likely to further improve performances. For CelebA and LSUN, the number of bits

per dimension for the validation set was decreasing throughout training, so little

overfitting is expected.
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Figure 5.12 – On the left column, examples from the dataset. On the right column, samples
from the model trained on the dataset. The datasets shown in this figure are in order: CIFAR-10,
Imagenet (32× 32), Imagenet (64× 64), CelebA, LSUN (bedroom).

Samples

We show in figure 5.12 samples generated from the model with training exam-

ples from the dataset for comparison. As mentioned in (Theis et al., 2016; Gregor

et al., 2016), maximum likelihood is a principle that values diversity over sample

quality in a limited capacity setting. As a result, our model outputs sometimes

highly improbable samples as we can notice especially on CelebA. As opposed to

variational autoencoders with diagonal Gaussian approximate posterior, the sam-

ples generated from our model look not only globally coherent but also sharp. A

hypothesis is that as opposed to these models, Real NVP does not rely on fixed

form reconstruction cost like an L2 norm which tends to reward capturing low

frequency components more heavily than high frequency components. The multi-

86



scale architecture used is also able to effectively capture the global structure of

these image datasets. Unlike autoregressive models, sampling from our model is

done very efficiently as it is parallelized over input dimensions. On Imagenet and

LSUN, our model seems to have captured well the notion of background/foreground

and lighting interactions such as luminosity and consistent light source direction

for reflectance and shadows.

(a) Imagenet (64× 64) (b) CelebA

(c) LSUN (bedroom) (d) LSUN (church outdoor)

Figure 5.13 – We exploit the convolutional structure of our generative model to generate samples
×10 bigger than the training set image size. The model perform best on random crops generated
datasets like LSUN categories.
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Figure 5.14 – Manifold generated from four examples in the dataset. Clockwise from top left:
CelebA, Imagenet (64× 64), LSUN (tower), LSUN (bedroom).

Inspired by the texture generation work by (Gatys et al., 2015; Theis and

Bethge, 2015) and extrapolation test with DCGAN (Radford et al., 2015), we also

evaluate the statistics captured by our model by generating images ten times as

large as present in the dataset (see figure 5.13). As we can observe in the following

figures, our model seems to successfully create a “texture” representation of the

dataset while maintaining a spatial smoothness through the image. Our convolu-

tional architecture is only aware of the position of considered pixels through edge

effects in convolutions, which makes our model well suited to model a stationary

process. This also explains why these samples are more coherent with the training

distribution in LSUN, where the training data was obtained using random crops.

Manifold learning

We also illustrate the smooth semantically consistent meaning of our latent vari-

ables. In the latent space, we define a manifold based on four validation examples

z(1), z(2), z(3), z(4), and parametrized by two parameters φ and φ′ by,

z = cos(φ)
(

cos(φ′)z(1) + sin(φ′)z(2)
)

+ sin(φ)
(

cos(φ′)z(3) + sin(φ′)z(4)
)

.
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We project the resulting manifold back into the data space by computing g(z). This

resulting manifold is very similar to a sphere in latent space and points sampled

uniformly in angle space are shown figure 5.14. We observe that the model seems to

have organized the latent space such that a smooth transition between latent vectors

in Z results in a smooth transition in X while keeping plausible images during the

transition, unlike mere pixel space interpolation. This reasoning faces of course

its limit when transition between two completely unrelated examples, bringing the

dilemma of either forcing sharp transition or leaving implausible samples on the

path.

Structure of the latent space

As in (Gregor et al., 2016), we further try to grasp the semantic of our learned

layers latent variables by doing ablation tests. We infer the latent variables and

resample the lowest levels of latent variables from a standard Gaussian, increasing

the highest level affected by this resampling (see figure 5.15). As we can see in

figure 5.16, the semantic of our latent space seems to be more on a graphic level

rather than higher level concept. Although the heavy use of convolution improves

learning by exploiting image prior knowledge, it is also likely to be responsible for

this limitation.

Let’s rewrite an example of the equation for the shortcut connections enabling

the discarding of components at different levels for 64× 64 images model:

z(1) = f (1)
θ (x) z(2) = f (2)

θ (z(1)I1
)

z(3) = f (3)
θ (z(2)I1

) z(4) = f (4)
θ (z(3)I1

)

z(5) = f (5)
θ (z(4)I1

) z = (z(1)I2
, z(2)I2

, z(3)I2
, z(4)I2

, z(5)).

If we resample using a standard Gaussian ϵ then we would display in figure 5.16

gθ
(

(z(1)I2
, z(2)I2

, z(3)I2
, z(4)I2

, z(5))
)

(original image)

gθ
(

(ϵ(1)I2
, z(2)I2

, z(3)I2
, z(4)I2

, z(5))
)

(minimal corruption)

. . .

gθ
(

(ϵ(1)I2
, ϵ(2)I2

, ϵ(3)I2
, ϵ(4)I2

, z(5))
)

(maximal corruption).

gθ
(

(ϵ(1)I2
, ϵ(2)I2

, ϵ(3)I2
, ϵ(4)I2

, ϵ(5))
)

would then correspond to a complete resampling.
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Figure 5.16 – Conceptual compression from a model trained on CelebA (top left), Imagenet
(64 × 64) (top right), LSUN (bedroom) (bottom left), and LSUN (church outdoor) (bottom
right). The leftmost column represent the original image, the subsequent columns were obtained
by storing higher level latent variables and resampling the others, storing less and less as we go
right. From left to right: 100%, 50%, 25%, 12.5%, and 6.25% of the latent variables are kept.
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5.5 Discussion

In this chapter, we have defined a class of invertible functions with tractable

Jacobian determinant, enabling exact and tractable log-likelihood evaluation, in-

ference, and sampling. We have shown that this class of generative models achieves

competitive performance, both in terms of sample quality and log-likelihood.

Although, the model enabled efficient and exact log-likelihood closed form eval-

uation and equally efficient sampling, the drawback that was brought by archi-

tectural constraints proved to be a sufficient hurdle to slightly underperform on

the log-likelihood metric (which proved to be more valued when available than

sampling efficiency) compared to more modern techniques like pixel recurrent/con-

volutional neural network (PixelRNN/CNN ) (van den Oord et al., 2016b,a) and

variational autoencoders with inverse autoregressive flow (IAF ) (Kingma et al.,

2016). As Rainforth et al. (2017) demonstrated how tighter variational bounds

does not necessarily improve associated models, we can wonder to which extent

optimizing the log-likelihood directly might result in a problem harder than a more

relaxed evidence lower bound optimization problem. Moreover, although the vari-

ational autoencoder can only maximize an evidence lower bound during training,

this class of models have more flexibility in the class of generator network and in-

ference function it can use. For example, Rezende and Mohamed (2015); Kingma

et al. (2016) harnesses the ability fo variational autoencoders to use flows with in-

verse that are expensive or lacking closed form expression. At this stage, it remains

unknown whether this lack of effective capacity comes from a lack of expressivity

or optimization difficulties, which leaves this venue open for further research.

Although this work missed the objective of building a state-of-the-art generative

models, the insights brought here and the techniques developed proved to be useful

in the domain of deep probabilistic modelling:

• it contributed to popularize the change of variable formula in deep learn-

ing which was also useful for stochastic variational inference through the

reparametrization trick, as described in the seminal work on variational in-

ference through normalizing flows (Rezende and Mohamed, 2015; Tomczak

and Welling, 2016, 2017; Louizos and Welling, 2017; Kingma et al., 2016)

which contributed to overcome a significant hurdle in training powerful vari-

ational autoencoder models;
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• it reintroduced the formulation of real-valued autoregressive models as con-

tinuous bijective transformations with triangular Jacobian (Deco and Brauer,

1995a,b; Hyvärinen and Pajunen, 1999) in modern deep learning, which

proved to be useful in the conception of deep probabilistic models (Kingma

et al., 2016; Papamakarios et al., 2017; van den Oord et al., 2017);

• the trainable invertible architecture from the layering of coupling layers en-

abled the design of trainable reversible Markov chain to learn more efficient

Markov chain Monte Carlo algorithms (Song et al., 2017; Levy et al., 2017).

Moreover, this same trainable invertible architecture was crucial in the design of

more memory-efficient backpropagation through reversible neural networks archi-

tectures (Gomez et al., 2017), by efficiently recomputing necessary quantities in-

stead of storing them in memories. This type of architecture with invertible compo-

nents enables the design of experiments (Jacobsen et al., 2018) that have recently

cast doubt on the conventional wisdom of the necessity of discarding information

in feature space in order to obtain performing classifiers.
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Conclusion

The work presented in this thesis aimed at deepening our understanding of the

three essential questions for the design of deep learning architectures described in

chapter 1: expressivity, trainability, and generalizability. In particular, this work

approached these themes in the context of deep learning, described in chapter 2,

through the lens of reparametrization in order to confront several important re-

search directions.

Chapter 3 demonstrates how the notion of flatness in the loss function, which

is equivariant to reparametrization and the incurred change in loss function geom-

etry, cannot be directly correlated with a low generalization gap, as it is invariant

to reparametrization and loss function geometry, even for popular deep learning

architectures. As a result, this work challenged an otherwise widespread belief on

sharp/flat minima resulting in high/low generalization gap.

In chapter 5, we explore the change of variable formula, which quantifies the

density resulting from bijective reparametrizations of the input space. We designed

Real NVP, an expressive architecture trainable on this closed form expression

which proved to be competitive for generative modelling (which we described in

chapter 4), in an attempt to question the necessity of an approximation scheme

adopted for learning generator networks. Instead, it resulted in useful insights and

techniques in the development of these approximation schemes.

This work have attemped to tackle central deep learning problems which calls

upon new research avenues. For example, more promising analyses on general-

ization performance of deep models would be likely to include a holistic view of

our algorithms, including loss function and stochastic optimization procedure alto-

gether. The failure of Real NVP in providing state-of-the-art generative models

brings new incentive in designing more efficient models with similar properties, by

relaxing the bijectivity constraint or using discrete variables.
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Dauphin, Y. N., Pascanu, R., Gülçehre, Ç., Cho, K., Ganguli, S., and Bengio, Y.

(2014). Identifying and attacking the saddle point problem in high-dimensional

non-convex optimization. NIPS.

Dayan, P., Hinton, G. E., Neal, R. M., and Zemel, R. S. (1995). The helmholtz

machine. Neural computation, 7(5):889–904.

99



Deco, G. and Brauer, W. (1995a). Higher order statistical decorrelation without

information loss. In Advances in Neural Information Processing Systems, pages

247–254.

Deco, G. and Brauer, W. (1995b). Nonlinear higher-order statistical decorrelation

by volume-conserving neural architectures. Neural Networks, 8(4):525–535.

Denton, E., Chintala, S., Szlam, A., and Fergus, R. (2015). Deep generative im-

age models using a laplacian pyramid of adversarial networks. arXiv preprint

arXiv:1506.05751.

Desjardins, G., Simonyan, K., Pascanu, R., et al. (2015). Natural neural networks.

In Advances in Neural Information Processing Systems, pages 2071–2079.

Devroye, L. (1986). Sample-based non-uniform random variate generation. In

Proceedings of the 18th conference on Winter simulation, pages 260–265. ACM.

Dinh, L., Krueger, D., and Bengio, Y. (2014). Nice: Non-linear independent com-

ponents estimation. arXiv preprint arXiv:1410.8516.

Dinh, L., Pascanu, R., Bengio, S., and Bengio, Y. (2017). Sharp minima can

generalize for deep nets. In Precup and Teh (2017), pages 1019–1028.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2016). Density estimation using real

nvp. In ICLR’2017, arXiv:1605.08803.

Dumoulin, V. and Visin, F. (2016). A guide to convolution arithmetic for deep

learning. arXiv preprint arXiv:1603.07285.

Dwork, C., Feldman, V., Hardt, M., Pitassi, T., Reingold, O., and Roth, A. (2015).

The reusable holdout: Preserving validity in adaptive data analysis. Science,

349(6248):636–638.

Dziugaite, G. K. and Roy, D. M. (2017). Computing nonvacuous generalization

bounds for deep (stochastic) neural networks with many more parameters than

training data. In Elidan, G., Kersting, K., and Ihler, A. T., editors, Proceedings

of the Thirty-Third Conference on Uncertainty in Artificial Intelligence, UAI

2017, Sydney, Australia, August 11-15, 2017. AUAI Press.

100



Eldan, R. and Shamir, O. (2016). The power of depth for feedforward neural

networks. In Conference on Learning Theory, pages 907–940.

Ermoliev, Y. (1983). Stochastic quasigradient methods and their application to

system optimization. Stochastics: An International Journal of Probability and

Stochastic Processes, 9(1-2):1–36.

Frey, B. J. (1998). Graphical models for machine learning and digital communica-

tion. MIT press.

Gal, Y. (2016). Uncertainty in deep learning. PhD thesis, PhD thesis, University

of Cambridge.

Gatys, L. A., Ecker, A. S., and Bethge, M. (2015). Texture synthesis using convo-

lutional neural networks. In Advances in Neural Information Processing Systems

28: Annual Conference on Neural Information Processing Systems 2015, Decem-

ber 7-12, 2015, Montreal, Quebec, Canada, pages 262–270.

Gehring, J., Auli, M., Grangier, D., and Dauphin, Y. N. (2016). A convolutional

encoder model for neural machine translation. arXiv preprint arXiv:1611.02344.

Germain, M., Gregor, K., Murray, I., and Larochelle, H. (2015). MADE: masked

autoencoder for distribution estimation. CoRR, abs/1502.03509.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks.

In Aistats, volume 15, page 275.

Glynn, P. W. (1990). Likelihood ratio gradient estimation for stochastic systems.

Commun. ACM, 33(10):75–84.

Gomez, A. N., Ren, M., Urtasun, R., and Grosse, R. B. (2017). The reversible

residual network: Backpropagation without storing activations. In Advances in

Neural Information Processing Systems, pages 2211–2221.

Gonen, A. and Shalev-Shwartz, S. (2017). Fast rates for empirical risk minimization

of strict saddle problems. arXiv preprint arXiv:1701.04271.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

101



Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S., and Shet, V. (2014a). Multi-

digit number recognition from street view imagery using deep convolutional neu-

ral networks. In ICLR’2014, arXiv:1312.6082.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,

S., Courville, A. C., and Bengio, Y. (2014b). Generative adversarial nets. In

Advances in Neural Information Processing Systems 27: Annual Conference on

Neural Information Processing Systems 2014, December 8-13 2014, Montreal,

Quebec, Canada, pages 2672–2680.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). Explaining and harnessing

adversarial examples. In ICLR’2015 arXiv:1412.6572.

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A. C., and Bengio, Y.

(2013). Maxout networks. ICML (3), 28:1319–1327.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A.,

Tulloch, A., Jia, Y., and He, K. (2017). Accurate, large minibatch sgd: Training

imagenet in 1 hour. arXiv preprint arXiv:1706.02677.

Grathwohl, W., Choi, D., Wu, Y., Roeder, G., and Duvenaud, D. (2017). Back-

propagation through the void: Optimizing control variates for black-box gradient

estimation. Arxiv preprint arXiv:1711.00123.

Graves, A. (2011). Practical variational inference for neural networks. In Shawe-

Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F. C. N., and Weinberger, K. Q.,

editors, Advances in Neural Information Processing Systems 24: 25th Annual

Conference on Neural Information Processing Systems 2011. Proceedings of a

meeting held 12-14 December 2011, Granada, Spain., pages 2348–2356.

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep

recurrent neural networks. In Acoustics, speech and signal processing (icassp),

2013 ieee international conference on, pages 6645–6649. IEEE.

102



Greensmith, E., Bartlett, P. L., and Baxter, J. (2004). Variance reduction tech-

niques for gradient estimates in reinforcement learning. The Journal of Machine

Learning Research, 5:1471–1530.

Gregor, K., Besse, F., Rezende, D. J., Danihelka, I., and Wierstra, D. (2016).

Towards conceptual compression. In Lee et al. (2016), pages 3549–3557.

Gutmann, M. and Hyvärinen, A. (2010). Noise-contrastive estimation: A new esti-

mation principle for unnormalized statistical models. In International Conference

on Artificial Intelligence and Statistics, pages 297–304.

Guyon, I., von Luxburg, U., Bengio, S., Wallach, H. M., Fergus, R., Vishwanathan,

S. V. N., and Garnett, R., editors (2017). Advances in Neural Information

Processing Systems 30: Annual Conference on Neural Information Processing

Systems 2017, 4-9 December 2017, Long Beach, CA, USA.

Hannun, A. Y., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., Prenger,

R., Satheesh, S., Sengupta, S., Coates, A., and Ng, A. Y. (2014). Deep speech:

Scaling up end-to-end speech recognition. CoRR, abs/1412.5567.

Hardt, M., Recht, B., and Singer, Y. (2016). Train faster, generalize better: Sta-

bility of stochastic gradient descent. In Balcan and Weinberger (2016), pages

1225–1234.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. arXiv

preprint arXiv:1703.06870.

He, K., Zhang, X., Ren, S., and Sun, J. (2015a). Deep residual learning for image

recognition. CoRR, abs/1512.03385.

He, K., Zhang, X., Ren, S., and Sun, J. (2015b). Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification. In Proceedings

of the IEEE international conference on computer vision, pages 1026–1034.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Identity mappings in deep residual

networks. CoRR, abs/1603.05027.

Heskes, T. M. and Kappen, B. (1993). On-line learning processes in artificial neural

networks. North-Holland Mathematical Library, 51:199–233.

103



Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A.,

Vanhoucke, V., Nguyen, P., Sainath, T. N., et al. (2012). Deep neural networks

for acoustic modeling in speech recognition: The shared views of four research

groups. IEEE Signal Processing Magazine, 29(6):82–97.

Hinton, G. E. (1984). Distributed representations.

Hinton, G. E. and Van Camp, D. (1993). Keeping the neural networks simple by

minimizing the description length of the weights. In Proceedings of the sixth

annual conference on Computational learning theory, pages 5–13. ACM.

Hinton, G. E. and Zemel, R. S. (1993). Autoencoders, minimum description length

and helmholtz free energy. In Cowan, J. D., Tesauro, G., and Alspector, J.,

editors, Advances in Neural Information Processing Systems 6, [7th NIPS Con-

ference, Denver, Colorado, USA, 1993], pages 3–10. Morgan Kaufmann.

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen netzen.

Diploma, Technische Universität München, 91.

Hochreiter, S. and Schmidhuber, J. (1997a). Flat minima. Neural Computation,

9(1):1–42.

Hochreiter, S. and Schmidhuber, J. (1997b). Long short-term memory. Neural

Computation, 9(8):1735–1780.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. (2013). Stochastic varia-

tional inference. The Journal of Machine Learning Research, 14(1):1303–1347.

Honkela, A. and Valpola, H. (2004). Unsupervised variational bayesian learning of

nonlinear models. In Advances in neural information processing systems, pages

593–600.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks.

Neural networks, 4(2):251–257.

Hyvärinen, A., Karhunen, J., and Oja, E. (2004). Independent component analysis,

volume 46. John Wiley & Sons.

Hyvärinen, A. and Pajunen, P. (1999). Nonlinear independent component analysis:

Existence and uniqueness results. Neural Networks, 12(3):429–439.

104



Im, D. J., Tao, M., and Branson, K. (2016). An empirical analysis of deep network

loss surfaces. arXiv preprint arXiv:1612.04010.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In Bach and Blei (2015), pages

448–456.

Jacobsen, J.-H., Smeulders, A., and Oyallon, É. (2018). i-revnet: Deep invertible
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