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Abstract

During rest, brain activity is synchronized between different regions widely distributed throughout 

the brain, forming functional networks. However, the molecular mechanisms supporting functional 

connectivity remain undefined. We show that functional brain networks defined with resting-state 

functional magnetic resonance imaging can be recapitulated by using measures of correlated gene 

expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly 

enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state 

functional connectivity in a large sample of healthy adolescents. Expression levels of these genes 

are also significantly associated with axonal connectivity in the mouse. The results provide 

convergent, multimodal evidence that resting-state functional networks correlate with the 

orchestrated activity of dozens of genes linked to ion channel activity and synaptic function.

Brain activity at rest exhibits intrinsic low-frequency synchronization between anatomically 

distinct brain regions (1). When observed with functional magnetic resonance imaging 

(fMRI), this coherence between regions (functional connectivity) defines 15 to 20 brain 

networks associated with such canonical functions as vision, language, episodic memory, 

and spatial attention (2–4). These functional networks are disrupted in several 

neurodegenerative and neuropsychiatric diseases (5) and may constitute the maps followed 

by neurodegenerative diseases marching, trans-synaptically, across the brain (6). Although it 

has been shown that connectivity within the default-mode network (DMN) (7) and 

topological measures of whole-brain networks (8) are heritable, the set of genes promoting 

functional connectivity remains unknown. To pursue this question, we applied a network 

modeling approach to both neuroimaging and gene expression data.
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Using resting-state fMRI data from 15 healthy right-handed subjects (eight females, age 

range 18 to 29 years), we computed 14 well-known and reproducible functional networks 

(fig. S1) (9) by using independent component analysis (ICA). We then mapped samples from 

the Allen Institute for Brain Science (AIBS) human microarray data set (six subjects, two 

contributed both hemispheres, four contributed one hemisphere, one female, age range 24 to 

57 years, totaling 3702 brain samples) (table S1) (10) to these networks by using normalized 

Montreal Neurological Institute (MNI) coordinates. To avoid biases due to gross 

transcriptional dissimilarities in different brain regions, we excluded basal ganglia, 

cerebellum, and deep gray matter (including hippocampus), leaving only cortex samples 

(data file S1). This removed the basal ganglia network, leaving 13 networks. Of 1777 cortex 

samples, 501 were mapped to the 13 functional networks, and 1276 to “non-network” 

regions of the brain. We focused the analysis on four large nonoverlapping networks: dorsal 

default-mode (dDMN), salience, sensorimotor, and visuospatial (Fig. 1A), comprising 241 

samples total. These four networks were chosen because they are well characterized in the 

imaging literature (2, 11–14), consist of noncontiguous regions in both hemispheres, and 

have adequate coverage in the AIBS data (Fig. 1B).

We used the transcriptional similarity of gene expression profiles between brain tissue 

samples to define correlated gene expression networks. In mouse brains, transcriptional 

similarity reflects cytoarchitecture (15), but in human brains, the differences are more subtle 

across the neo-cortex (10). As opposed to gene coexpression networks, which quantify gene-

gene relationships across tissue samples (16), a correlated gene expression network 

quantifies tissue-tissue relationships across genes. Nodes were defined by brain tissue 

samples (Fig. 1B); edges were weighted by similarity between vectors of gene expression 

values at each sample. After preprocessing and assigning one probe for each of the 16,906 

genes (data file S2) (17), we measured expression similarity by means of Pearson correlation 

(17), setting negative correlations to zero. Then we asked whether there are observable 

genetic correlates for the functional network organization: Are gene expression correlations 

in functionally grouped regions higher than can be expected by chance?

We defined the strength fraction in functional networks as a measure of the relationship 

between correlated gene expression within and outside the set of functional networks of 

interest. Denoting W the sum of all edge weights within all functional networks, Wi the sum 

of weights within the four functional networks of interest, and T the brain graph’s total 

strength (sum of all edge weights linking the full 1777-nodes graph), the strength fraction is 

S = Wi/(T − W). Higher values of S mean that the samples in the set of functional networks 

are more similar to each other, relative to the remaining brain regions (fig. S2). We assessed 

significance using permutation testing (18), randomly reshuffling 10,000 times the sample-

to-network assignment in the full 1777-nodes graph. In addition to considering only cortex 

samples, so as to avoid biasing results toward similar tissues (10), before computation we 

removed edges linking two samples belonging to the same tissue class [defined by means of 

regional ontology (fig. S3 and table S4)]. Grouping gene expression samples according to 

functional networks yielded a higher strength fraction than that of other groupings of 

samples; the spatial organization of functional networks corresponded to regions that have 

more highly correlated gene expression than expected by chance (P < 10−4). Given that we 

used only cortical samples, that we removed edges linking tissues of the same class, and that 
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functional networks are spatially distributed, this finding cannot emerge from spatial 

proximity or gross tissue similarity.

We next sought to identify which genes, specifically, drive the relationship between 

correlated gene expression and functional networks. We computed the marginal influence of 

each gene on strength fraction of all four functional networks together (17) and ranked genes 

across all six different two-way splits of the six subjects (17). Then, we computed list 

overlap statistics (19) between the two brain subgroups at a false discovery rate (FDR) of 

5%. Combining results from six splits, the final list was obtained via stability selection (20), 

selecting genes that appear in the majority of splits (four or more out of six). This resulted in 

a consensus list of 136 genes (table S2).

We validated our findings in vivo (supplementary text) using paired genome-wide single-

nucleotide polymorphism (SNP) data and resting state fMRI (rs-fMRI) recordings in n = 259 

14-year-olds (126 females) from the IMAGEN database (21), which has more subjects, but 

not all were usable (data file S3) (17). The strength fraction for the combined four networks 

in the rs-fMRI data was computed for every subject (as in the AIBS gene expression data) 

and used as a quantitative imaging phenotype in a genome-wide association study (GWAS) 

(fig. S4), correcting for several covariates, including motion. We computed a z statistic (22) 

for the enrichment of P values in the consensus list. Genetic variation in the consensus list 

was significantly associated with in vivo rs-fMRI strength fraction (z = 2.55, P = 0.006). 

Thus, not only gene expression levels but also common polymorphisms in the consensus 

genes were related to the strength of functional networks. Subjects at both ends of the 

spectrum of multilocus genetic scores [representing the multiallelic effect of the genes in the 

consensus list on the functional connectivity phenotype (17)] showed definite differences in 

functional connectivity strength mostly within the functional networks themselves, but also 

between the functional networks (Fig. 2 and fig. S5).

We next investigated the relationship between our gene list and the connectivity of axonal 

projections underlying functional networks. We used the Allen Institute mouse brain atlas 

(15), which offers finely sampled whole-genome expression data, together with a recent 

mesoscale model of mouse connectivity derived from the Allen Mouse Brain Connectivity 

Atlas (AMBCA) (23). To match human data, we focused on the mouse isocortex and used a 

38-region parcellation (Fig. 3A) (23). With 57 mouse orthologs for our consensus gene list, 

we obtained a correlated gene expression network, representing transcriptional similarity 

between these 38 regions. We computed a normalized, symmetric connectivity matrix from 

the significant connections in the ipsilateral connectivity model of the AMBCA (17). We 

tested the association between the mouse connectivity graph and transcriptional similarity 

graph (Fig. 3, B and C) using a modified Mantel procedure; we randomly selected gene 

subsets of the same size as our ortholog consensus list 10,000 times in order to obtain a null 

distribution. The correlation between transcriptional similarity in these 38mesoscale 

isocortex regions and their axonal connectivity was significantly higher when using our list 

than expected by chance (P = 0.011, or P = 0.022 when using the contralateral connectivity 

model).
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Last, we categorized the consensus gene list using Gene Ontology (GO) by computing 

statistical overrepresentation for Biological Processes (BP), Cellular Component (CC), and 

Molecular Function (MF) with the Database for Annotation, Visualization, and Integrated 

Discovery (DAVID) 6.7 (24). The only significant MF annotation [P < 0.05, Benjamini-

Hochberg False Discovery Rate (FDRBH)–corrected] related to ion transport. No BP 

annotation was significant. Four out of six significant CC annotations (P < 0.03 FDRBH) 

concerned ion channels, in particular involving sodium channels such as SCN4B or 

receptors such as GABRA5 (full annotation list is available in tables S5 and S6). Significant 

associations with nine diseases, including Alzheimer’s disease and schizophrenia (P < 0.05 

FDRBH), which are network disorders, were also found (table S10). We validated 

annotations in vivo on IMAGEN data by restricting the analysis to these seven significant 

GO terms. Genetic variation in all but 1 GO term was significantly associated with in vivo 

functional connectivity (z > 4.02, P < 2.8 × 10−5 uncorrected) (table S9). Using a mouse 

transcriptome database (25), we also found that 39 mouse orthologs from our list were 

significantly enriched in neurons, 19 in astrocytes, and 14 in oligodendrocytes (76 were not 

significantly overexpressed in any of these three cell types). This suggests that the 

relationship between gene expression and spatial organization into functional networks may 

be due to neuronal processes more than to support cell or white-matter processes.

Functional networks are fundamental to many brain processes in humans. Here, we show 

that network strength was correlated with the expression of genes tightly linked to synaptic 

function. The preservation of the association between functional networks and gene 

expression across the lifespan (IMAGEN, 14-year-olds; AIBS, 24- to 55-year-olds) is 

remarkable and could be partly explained by the relative stabilization of interregional 

transcriptional similarity from adolescence onwards (26). Genes in our list may also play a 

role in certain diseases; some are implicated in brain disorders such as Alzheimer’s and 

schizophrenia (27), whose pathogenesis is thought to relate, in part, to aberrant connectivity. 

Beyond humans, it appears that similar mechanisms extend to lower animals because our list 

is significantly associated with mouse neural connectivity, and several gene functions from 

our list were found in a study examining genes supporting neural connectivity in rodents 

(tables S3, S7, and S8) (28). Thus, our results show that across developmental stages and 

species, functional connectivity in brain networks is integrally linked to the machinery of 

synaptic communication.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Functional networks in MRI and gene expression data
(A) The four functional networks of interest. Red, dorsal default mode; yellow, salience; 

green, visuospatial; blue, sensorimotor. (B) AIBS brain samples assigned to their 

corresponding functional network. Solid circles are samples assigned to the four networks of 

interest, open circles show samples in the nine other networks, and dots show non-network 

AIBS samples.
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Fig. 2. In vivo functional connectivity differences related to the consensus gene list
Difference in in vivo functional connectivity between the averages of the top 20 and the 

bottom 20 subjects in IMAGEN, ranked by genotype score with respect to the consensus list 

of genes. (A) Difference matrix sorted by functional network (correlation differences smaller 

than |0.05| are not shown). Positive values indicate connections that are stronger in high 

genotype score subjects, and negative values indicate the opposite. Connections are mostly 

increased within functional networks, but also between some functional networks. (B) MNI 

space sagittal view of within-network connections that are stronger in high-genotype-score 

subjects. Regions (disks) are coded according to the functional network they belong to: red, 

dorsal default mode; yellow, salience; green, visuospatial; blue, sensorimotor. Connections 

(lines) are color-coded to their functional networks. (C) Same, for connections that are 

stronger in low-genotype-score subjects. The majority of connections are strengthened in 

high-genotype-score subjects.
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Fig. 3. Mouse mesoscale connectivity and transcriptional similarity
(A) Mouse isocortex parcellated into 38 regions (23). (B) Corresponding symmetrized, 

thresholded, and normalized ipsilateral axonal connectivity weights. (C) Transcriptional 

similarity (genetic correlation), using our consensus list of genes.
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