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Résumé 
La L-3,4-dihydroxyphénylalanine (L-DOPA) est le traitement le plus efficace de la maladie de 

Parkinson. Cependant, avec une administration chronique de L-DOPA, les patients développent 

des complications motrices telles que les dyskinésies. Des études antérieures ont montré que le 

blocage des récepteurs type 3 de la sérotonine (5-HT3) réduit les niveaux de dopamine dans les 

ganglions de la base, suggérant qu'il pourrait atténuer la libération de dopamine qui caractérise 

l'état dyskinétique. Ici, nous avons étudié les effets de l’ondansétron, un antagoniste hautement 

sélectif du récepteur 5-HT3 à diminuer et à prévenir le développement des dyskinésies induites 

par L-DOPA chez le rat lésé a la 6-hydroxydopamine. Dans la première expérience, les rats 

sensibilisés avec L-DOPA pour induire des mouvements involontaires anormaux (AIMs), ont 

reçu L-DOPA en combinaison avec l'ondansétron ou un véhicule. Dans la seconde expérience, 

les doses efficaces d'ondansétron ont été administrées simultanément avec L-DOPA pendant 22 

jours, et la sévérité des dyskinésies a été évaluée. Après 3 jours d’élimination, L-DOPA a été 

administré en aigu et la sévérité des dyskinésies évaluée. Nous avons trouvé que l'ondansétron 

0,0001 mg/kg en combinaison avec L-DOPA, a significativement diminué la sévérité des 

dyskinésies par rapport à L-DOPA seul. Ondansétron 0,0001 mg/kg, administré en même temps 

que L-DOPA, a retardé le développement des dyskinésies. L'action anti-dyskinétique de 

l'ondansétron n'a pas compromis le bénéfice thérapeutique conféré par la L-DOPA. Ces résultats 

suggèrent que l'antagonisme des récepteurs 5-HT3 est une stratégie thérapeutique 

potentiellement nouvelle et efficace pour soulager la sévérité et prévenir le développement des 

dyskinésies. 

 

Mots-clés : maladie de Parkinson, dyskinésie, sérotonine, récepteur 5-HT3, L-DOPA, 6-

OHDA, rat 
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Abstract 
L-3,4-dihydroxyphenylalanine (L-DOPA) is the most effective treatment for Parkinson’s 

disease However, with chronic administration of L-DOPA, patients develop motor 

complications such as dyskinesia. Previous studies have shown that 5-HT3 receptor blockade 

reduces dopamine levels within the basal ganglia, suggesting that it could mitigate the aberrant 

dopamine release that characterises the dyskinetic state. Here, we investigated the effects of the 

highly-selective 5-HT3 antagonist ondansetron at diminishing the expression of established, and 

preventing the development of L-DOPA-induced dyskinesia in the 6-hydroxydopamine-

lesioned rat. In the first set of experiments, rats were primed with L-DOPA to induce abnormal 

involuntary movements (AIMs), after which L-DOPA was administered, in combination with 

ondansetron or vehicle. The effect of ondansetron on L-DOPA anti-parkinsonian action was 

subsequently determined by the cylinder test. In the second set of experiments, rats were 

administered effective doses of ondansetron, started concurrently with L-DOPA for 22 days, 

during which dyskinesia severity was monitored. After a 3-day washout period, an acute 

challenge of L-DOPA was administered and AIMs severity was assessed. We found that acute 

challenges of ondansetron 0.0001 mg/kg in combination with L-DOPA, significantly 

diminished the severity of AIMs compared to L-DOPA alone. Ondansetron 0.0001 mg/kg, when 

started concurrently with L-DOPA, attenuated the priming process leading to the development 

of dyskinesia. The anti-dyskinetic action of ondansetron did not compromise the therapeutic 

benefit conferred by L-DOPA. These results suggest that 5-HT3 receptor antagonism is a 

potentially new and effective therapeutic strategy to alleviate the severity, and prevent the 

development of dyskinesia.  

 

Keywords: Parkinson’s disease, dyskinesia, serotonin, 5-HT3 receptor, L-DOPA, 6-OHDA, 

rat  
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1. General Introduction 
Parkinson’s Disease (PD) was initially described in An Essay on Shaking Palsy by the 

British physician James Parkinson in 1817 (1). However, it was only until 1861 that the French 

neurologist Jean-Martin Charcot, known as “the founder of modern neurology”, coined the term 

“Parkinson’s disease” and distinguished bradykinesia as a separate clinical feature of the illness 

(2). PD is one of the most common neurodegenerative disorders that affects nearly 1% of the 

population over 65 years of age (3, 4). PD can be defined by four cardinal motor features: tremor 

at rest, akinesia (or bradykinesia), rigidity and postural instability (5). In addition to these 

symptoms, many patients are also affected by non-motor symptoms including dementia, 

autonomic dysfunction, and sleep disorders (6). The onset of PD is gradual and clinical 

manifestations do not appear until there is a loss of approximately 40-60% of the dopamine 

(DA) neurons in the substantia nigra (SN) pars compacta (SNc) and about 80% of striatal nerve 

terminals (7-10). In more severe stages PD, neuronal loss spreads to outside the SNc to regions 

including the locus coeruleus, raphe nuclei (RN), olfactory bulb and cerebral cortex, and this 

widespread neurodegeneration may be responsible for the progression of non-motor symptoms 

of PD (11) (12). The pathological hallmark of the disease is the presence of intracellular 

proteinaceous inclusions, known as Lewy bodies (LBs), however, the role of LBs in the 

pathogenesis of PD is still unknown (13). Alpha-synuclein (α-synuclein) is a major component 

of LBs and recent studies demonstrate that specific α-synuclein conformations are directly toxic 

to neurons (14, 15) and can propagate via a “prion-like” mechanism of pathogenesis (16).  

Currently, the most effective symptomatic drug for PD is the biochemical precursor to 

DA, L-3,4-dihydroxyphenylalanine (L-DOPA), which helps to relieve motor symptoms by 

restoring striatal DA levels. However, as L-DOPA is also converted into DA in the peripheral 

nervous system, chronic L-DOPA therapy results in adverse effects, notably debilitating 

involuntary movements, termed L-DOPA induced dyskinesia (LID) (17). Moreover, the longer 

the duration of treatment, the greater the number of PD patients that develop LID and 

approximately 80 to 90% of patients suffer from LID after 10 years of treatment (18, 19). 

Patients with advanced PD suffer from these erratic movements that cannot be adequately 

controlled with existing therapies (20), which underscores the urgent need to develop therapies 

that attenuate dyskinesia. In recent years, the understanding of neuronal mechanisms that 
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underlie the pathophysiology of LID has grown and has been associated with events including 

the pulsatile stimulation of dopaminergic receptors, downstream changes in proteins and genes 

and abnormalities in non-dopaminergic transmitter systems, which modify the activity of the 

basal ganglia (BG) circuitry (21).  

2. Parkinson’s Disease 

2.1.  Epidemiology of Parkinson’s Disease 

Epidemiological studies show that PD is an age-related disease with men at higher risk 

of developing the disease than women (3). In Canada, it is estimated that about 99,000 

individuals are living with PD and by 2031, the number of is expected to increase by 65% to 

163,700 (22). In addition, Canadians with PD tend to be older individuals with an average age 

of diagnosis of 66.2 years of age (22). 

The global prevalence PD is estimated at between 18 to 300 per 100,000 individuals 

while the incidence of PD is between 10 and 50 cases per 1000,000 individuals per year, 

respectively (23, 24). Incidence of PD is heavily age-dependent, and onset is rare before 50 

years of age until a sharp increase of incidence is observed after 60 years of age (25). The disease 

prevalence is estimated at 1% in subjects over 65 years of age and increases to 4.3% in those 

over the age of 85 (26). Most of the increase is attributed to the general trend of an increasingly 

ageing population (27). Despite the worldwide distribution of PD, incidence rates may vary 

among populations. The conflicting results between individuals studies may reflect differences 

in research methodologies, particularly in case definitions, diagnostic criteria, and the age 

distribution of the study population (28). A collaborative study in four European countries using 

similar case-finding methods and diagnostic criteria did not reveal any differences (29). In 

contrast, a meta-analysis of six studies found a lower prevalence in Africa than in Europe or 

North America (30), but no significant difference was reported between African Americans and 

Caucasians living in Mississippi (31). In addition, an autopsy study found that African 

Americans showed the same prevalence of incidental LB disease when compared with 

Caucasian populations (32). Similarly, lower prevalence rates have also been reported in some 

Asian countries (23, 33-35) but some studies have found similar estimates to Western countries 

(36, 37). Accordingly, differences in environmental exposure or interethnic distribution of 
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susceptibility genes may also contribute to the ethnic differences in estimates of PD prevalence 

and incidence (38, 39). Moreover, the variation in PD prevalence reported amongst studies may 

be related to differences in response rates, survival and case certainty rather than ethnic 

differences in PD prevalence (31, 38, 40, 41). Thus, the relative contribution of genetic or 

environmental variations to population differences in PD incidence is still unclear (26).  

 Some studies report a higher prevalence of PD in men than in women (42-45) with a 

male-to-female ratio of about 1.5 (46-48) but other studies found no significant differences in 

PD prevalence between men and women (29, 49, 50). Consistent with prevalence studies, 

prospective studies have reported a higher incidence of PD in men than in women (29, 42, 51-

53). The neuroprotective effects of oestrogens in women and X-linked genetic factors may 

account for the higher risk of PD in men but their role is still controversial (54).  

2.2.  Aetiology of Parkinson’s Disease 
The aetiology of PD is poorly understood but considerable advances in sequencing 

technology, genetics (55) and clinical studies (20) have contributed to a greater comprehension 

on the pathogenic processes occurring in PD. The common view today is that PD is a 

multifactorial disease that arises from the combined effects of exposure to environmental risk 

factors, genetic susceptibility, and complex genetic-environmental interactions (26, 39). Ageing 

is the strongest risk factor of developing PD (56) and can be explained by the increasing failure 

of normal physiological and biochemical processes that lead to the increased vulnerability of 

DA neurons to toxic insult (57). Growing evidence suggests that impairments in the regulation 

of protein homeostasis including processes such as protein aggregation, intracellular protein and 

membrane trafficking and disruptions to the ubiquitin-proteasome and lysosome-autophagy are 

implicated in the pathogenesis of PD (58). In addition, it has been suggested that the genetics of 

PD are involved in aberrations in synaptic structure and function (58), which confirmed the 

importance of mitochondrial dysfunction in toxin models of PD (59).  
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2.3.  Risk factors of Parkinson’s disease 

2.3.1. Non-genetic risk factors 

2.3.1.1. Environmental hypothesis 

Evidence linking exposure to agrochemicals, including pesticides and herbicides to an 

increased risk of PD has been postulated for many years (60, 61). In particular, it has been 

demonstrated that rotenone (62) and paraquat (63-65) cause nigral dopaminergic cell death in 

rodents. Furthermore, individuals exposed to pesticides had a 70% higher incidence of 

developing PD those not exposed (66). Additional environmental factors identified include 

industrialization, rural environment (67), use of well water (68), intake of various metals, etc.  

(69-71) but studies show conflicting outcomes (72). Although several studies report a positive 

association between environmental risk factors and PD, no factor has been consistently 

implicated as the sole causative agent (73). Similarly, the degree of pesticide exposure that may 

lead to PD is unknown.  

2.3.1.2. Discovery of MPTP-induced Parkinson’s disease 

The discovery of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced 

parkinsonism (74) stimulated an interest in exposure to environmental risk factors for PD. 

MPTP causes the degeneration of nigrostriatal dopaminergic neurons with the loss of striatal 

dopamine in various species, including primates, cats and mice (75-80). In 1982, several young 

people developed an acute and severe form parkinsonism, due to MPTP produced during their 

illegal synthesis process of heroin (74, 81). MPTP is highly lipophilic, and can be metabolized 

into 1-methyl-4-phenylpyridinium (MPP+), the active toxic molecule, by brain monoamine 

oxidase B (MAO-B) (75-80, 82). MPP+ is accumulated by high affinity DA transporters (DAT) 

into the mitochondria of dopaminergic neurons (83). Once inside the mitochondria, MPP+ binds 

to and inhibits NADH-ubiquinone oxidoreductase I (complex I) of the mitochondrial electron 

transport chain (84). This results in an impairment of ATP production, elevated intracellular 

calcium concentration and free radical generation (81). Accumulation of MPP+ in dopaminergic 

neurons causes neurodegeneration via reactive oxygen species-mediated oxidative stress and 

results in DA neuron death (85-87). MPTP-induced parkinsonism exhibits similar phenomena 

to PD, particularly the preferential loss of DA nerve terminals of the putamen and DA neuron 
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loss of the SNc. Primates exposed to MPTP are responsive to L-DOPA treatment, and develop 

motor complications after chronic administration (88). Despite the contributions of the MPTP-

lesioned animal models to the knowledge of pathways implicated in PD pathogenesis, they do 

not fully capture all the features of the disease. For example, MPTP-induced parkinsonism is 

not progressive, an acute rather than chronic increase in α-synuclein occurs and LB formation 

is absent (57, 64, 89). In addition, the investigation of agents based on MPTP models in clinical 

trials has not been successful thus far. Thus, the underlying pathways in the MPTP models of 

PD may not all be shared with those in PD patients (64).  

A recent systematic review of meta-analyses identified several environmental factors 

that are associated with a risk of developing PD (90). Two factors, physical activity and 

constipation, presented with convincing evidence for a strong association with PD. Several 

cohort studies support the protective effect of physical activity for PD (91, 92). Also, 

constipation may be an early premorbid manifestation of PD (93) and laboratory studies and 

laboratory studies reported an abnormal deposition of α-synuclein within the submucosal and 

myenteric plexuses of the enteric nervous system (94, 95). Highly significant association for 

increased PD risk included head injury (96), anxiety or depression (97), while decreased risk is 

associated with smoking (97) and high uric acid levels (98). Additional non-genetic risk factors 

significantly associated with development of PD include a decrease in risk with alcohol (99) and 

coffee consumption (100), whereas pesticides (101), well water (97), and male sex (102, 103) 

are linked to an increase in risk. Although substantial evidence supports the association of 

environmental risk factors and PD, the heterogeneity amongst the examined meta-analyses 

suggests that some associations may reflect reverse causation, residual confounding, 

information bias and sponsor conflicts. In addition, the variation in cohort studies and case-

control studies, differences in exposure assessment (frequency and exposure types) may account 

for the biased estimates of association. Furthermore, the authors emphasize that mechanisms of 

several putative risk factors are poorly understood, and additional studies are required to clarify 

the association between these factors and the risk of developing PD. 

2.3.2. Genetic risk factors  

Clinical observation of increased prevalence of PD amongst relatives of patients (104, 

105) and the discovery of families with genetic forms of parkinsonism (106-109) heightened 
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interest in the heritability of PD. However, familial aggregation does not necessarily imply 

genetic causation (110, 111)  and a large PD twin study found no increased concordance for PD 

amongst monozygotic twins (112). However, for subjects with an onset before 50 years of age, 

a significant concordance rate in identical twins was identified, which suggests young onset PD 

has a greater genetic component. In contrast, a later twin study using clinical assessment and 

fluoro-dopa positron emission tomography (PET) to image dopaminergic function reported 

increased concordance amongst monozygotic twins (113), which supports a role of genetics in 

PD aetiology.  

Significant advances in understanding the pathogenic processes of PD in the past few 

decades have been made due to the identification of genetic mutations and chromosomal loci 

associated with parkinsonism (Table I, page 9) (114-116). The majority of PD cases are sporadic 

(117) but Mendelian loci and the high-risk glucocerebrosidase (GBA) locus collectively 

account for approximately 10 – 40% of disease risk depending on the population under study 

(114). Genetic factors that have been identified include mutations in the genes for α-synuclein 

(SNCA), and leucine-rich repeat kinase 2 (LRRK2), which are responsible for autosomal-

dominant PD forms, whereas mutations in the genes PARK2 (Parkin), PARK7 (PTEN-induced 

putative kinase 1, PINK1), PARK7 (DJ-1), and PARK9 (ATPase 13A2, ATP13A2) account for 

early-onset autosomal recessive PD forms (117). Recently, two other autosomal dominant PD 

genes, vacuolar protein sorting 35 (VPS35) and eukaryotic translation initiation factor 4-gamma 

(EIF4G1), have been identified (118-120). Early candidate gene studies and subsequent meta-

analyses provided conclusive evidence demonstrating that polymorphisms in SNCA (121), 

LRRK2 (122), microtubule-associated protein tau (MAPT) (123) and glucocerebrosidase 

(GBA) (124) impact PD susceptibility.  

High-density arrays of single nucleotide polymorphisms identified genetic susceptibility 

factors in genome-wide association studies (GWAS), where the frequencies of putative risk 

alleles are compared in patients and controls (125). Genetic variations may be susceptibility 

factors or disease modifiers, affecting penetrance, age at onset, severity, and progression (126). 

The most commonly studied candidate genes include genes involved in DA metabolism, 

mitochondrial metabolism, detoxification, other neurodegenerative diseases and familial PD (3, 

127) and genes associated with putative risk factors for PD including oestrogen receptor gene 

polymorphisms (128), the tau HI haplotype (129) and the apolipoprotein E epsilon 2 allele (130). 
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Although the significance of many loci identified with an increase in PD risk is still unknown, 

they account for a population attributable risk of > 60% (131). 

2.3.2.1. Risk Loci 

2.3.2.1.1. GBA 

The GBA gene encodes a lysosomal enzyme β-glucocerebroside, which is involved in 

glycolipid metabolism (116). Homozygous GBA mutations cause Gaucher’s disease, an 

autosomal recessive lysosomal storage disease caused by accumulation of glucocerebrosides 

(132). In contrast, heterozygous mutations in GBA are associated with a higher risk of PD where 

approximately 5-10% of PD patients have GBA mutations as opposed to an estimated frequency 

of 1% in healthy controls but this may be underestimated in certain populations (133-137). 

Carriers of only one mutated allele have a 5-fold increased risk to develop PD compared with 

non-carriers, which makes GBA one of the strongest genetic risk factors reported to date (134). 

The high prevalence of PD amongst GBA mutation carriers, which is also age-dependent and 

rises up to 30% at 80 years of age (138), has led to the suggestion that GBA mutations can act 

as dominant factors with reduced penetrance rather than simple risk variants (139). The 

mechanism underlying the association of mutations in GBA with the development of PD and 

other LB disorders (140) is not known, but may be caused by alterations in lipid metabolism or 

autophagy and lysosomal function (115). In fact, the mechanism of pathogenicity may be linked 

to α-synuclein as intracellular glucocerebrosides facilitate the aggregation of α-synuclein into 

toxic oligomers and fibrils (141), which are the main constituent of LBs (142). Moreover, α-

synuclein is primarily degraded through autophagy and GBA mutations interfere with 

autophagic clearance of α-synuclein fibrils (143, 144). Consequently, fibrils are likely to 

accumulate in the cell (145, 146), following which they may propagate through cell to cell 

transmission (147, 148). 
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Table I: Genes and loci associated with Parkinson’s Disease 

Adapted from (114-116). 

locus  gene  inheritance  clinical phenotype pathology 
Mendelian Genes         

PARK1 and 
PARK4  SNCA  AD  parkinsonism with common dementia LBs 
PARK2  Parkin  AR  early-onset, slowly progressing parkinsonism LBs rarely 
PARK3  unknown  AD  late-onset parkinsonism LBs 
PARK5  UCH-L1  AD  late-onset parkinsonism unknown  
PARK6  PINK1  AR  early-onset, slowly progressing parkinsonism one case with LBs 
PARK7  DJ-1  AR  early-onset parkinsonism unknown  

PARK8  LRRK2  AD  
late-onset parkinsonism 

usually LBs; 
sometimes tangles or 
neither 

PARK9  ATP13A2  AR  early-onset parkinsonism with Kufor-Rakeb 
syndrome unknown  

PARK10  unknown  AD  unclear unknown  
PARK11  unknown  AD  late-onset Parkinsonism unknown  
PARK12  unknown  unknown  unclear unknown  
PARK13  HTRA2  unknown  unclear unknown  

PARK 14 PLA2G6 AR aggressive and complex parkinsonism with 
pyramidal features LBs 

High-risk locus    
Gaucher's locus GBA   late-onset parkinsonism LBs 

  SNCA   typical PD LBs 
Low-risk loci     

  LRRK2    typical PD LBs 
FTDP-17 MAPT   dementia, sometimes parkinsonism neurofibrillary tangles 
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2.3.2.1.2. MAPT 

Most of the gene loci discovered through GWAS are present in more than 5% of the 

population (allele frequencies of > 10%) and carriers of the risk allele have a less than two-fold 

increase of disease risk over the general population average (114). The majority of these low-

risk loci appear to mediate their effect by altering gene expression rather than through 

translational changes. The MAPT is a protein that can form aggregates similar to α-synuclein 

and beta-amyloid. Mutations in the MAPT gene cause a range of neurodegenerative phenotypes 

but some can lead to a typical PD presentation (149). The H1 haplotype at the MAPT locus has 

been consistently suggested as a risk factor for PD (150, 151) and gene duplications at MAPT 

cause frontotemporal dementia (152), which suggests that the pathogenic cascades in the 

tauopathies can provoke severe neurodegeneration leading to parkinsonism (153, 154). 

Moreover, MAPT promotes the formation of α-synuclein oligomers and fibrils (115) and in 

transgenic mice that exhibit the LB variant of Alzheimer’s disease, cognitive decline is 

accelerated and associated with amyloid beta, tau and α-synuclein pathologies compared to age-

matched control animals (155). Thus, synergistic interactions between α-synuclein and tau may 

promote their fibrillization and the formation of pathological inclusions characteristic of 

neurodegenerative diseases.  

2.3.2.2. Autosomal dominant forms of Parkinson’s disease 

2.3.2.2.1. LRRK2  

The most common cause of autosomal-dominant Mendelian form of PD is mutations in 

the LRRK2 at the PARK8 locus, which account for nearly 10% of all familial dominant inherited 

forms (156). The G2019S kinase domain mutation is the most frequent LRRK2 mutation (157), 

and responsible for 5-40% of sporadic or dominantly inherited PD, depending on the population 

studied (158-160). Higher G20119S prevalence rates have been reported in more isolated 

populations, such as the Ashkenazi Jewish (161) and North African Berber Arab (162) 

populations, which can be explained by a genetic founder effect (163). Patients with LRRK2 

mutations tend to display late-onset PD with symptoms indistinguishable from those of sporadic 

PD, even though LB pathology is sometimes absent or lacking (164, 165). Thus, the disconnect 

between clinical manifestations of PD and the presence of LBs (166, 167) supports the theory 
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that inclusions may not be necessary for neurodegeneration and may instead be a consequence 

of PD (115). The mechanism underlying the neurodegeneration caused by LRRK2 mutations 

and its natural substrate are still unknown. However, cell culture studies suggest that 

neurotoxicity in vitro requires intact kinase activity (168, 169), prompting increased interest 

towards LRRK2 kinase inhibitors (170) as a potential neuroprotective strategy.  

2.3.2.2.2. α-synuclein 

SNCA mutations are the second most common cause of dominant PD (171) and various 

studies have reported a link between familial PD and duplications or triplications in the SNCA 

gene (172). The SNCA genes encodes α-synuclein, which accumulates in LBs predominantly 

within the brainstem. As LB pathology is also the dominant pathology observed in most cases 

of LRRK2-related PD, this suggests that SNCA and LRRK2 affect a common pathway that 

leads to α-synuclein aggregation (139). Moreover, gene triplication leads to earlier onset and 

faster progression of disease than duplication, which suggests a gene-dose effect between α-

synuclein levels and disease severity (173). The link between α-synuclein expression levels and 

the appearance of PD is well-established across studies, and leads to the hypothesis that a gain-

of-function by α-synuclein underlies pathogenesis of PD (115). In addition, recent in vivo 

evidence shows that it binds to and promotes assembly of soluble N-ethylmaleimide-sensitive 

factor attachment protein receptor (SNARE) complexes, which are required for the fusion of 

vesicles to the pre-synaptic membrane (174, 175). Triple knock-out mice lacking α-synuclein 

also exhibit deficits in SNARE complex assembly and develop accelerated age-associated motor 

impairments and early-onset mortality, but do not show neurodegeneration (168, 174).  

2.3.2.2.3. VPS35 

VPS35 gene encodes a major component of the retromer complex involved in endosomal 

trafficking to the trans Golgi (119, 176). Recent studies have identified a single missense 

(D620N) mutation in VPS35 as a new cause of autosomal-dominant PD in two independent 

exome sequencing studies on Swiss (118) and Austrian families (119). Frequency of mutation 

carriers is low and has been estimated to represent about 0.1% of the PD population (177). 

Patients with a VPS35 mutation exhibit classical late-onset, L-DOPA responsive parkinsonism 

similar to that of sporadic PD, with a slightly earlier age at onset (139). Specific deletion 
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of VPS35 in DA neurons of mice results in PD-like deficits, including loss of DA neurons and 

accumulation of α-synuclein and early degeneration at 2-3 months of age (178). Consistent with 

this data, overexpression of human D620N VPS35 variants induce the marked degeneration of 

SNc DA neurons and axonal pathology (179). In addition, mutations in VPS35 caused extensive 

mitochondrial fragmentation and cell death as well as functional deficits in vitro, in mouse SNc 

neurons in vivo, and in human fibroblasts from PD patient bearing the D620N mutation (180). 

Defects in macroautophagy, aminomethylphosphonic acid (AMPA) receptor trafficking to 

dendritic spines or alterations in mitochondrial dynamics and turnover have been proposed as 

the mechanism underlying VPS35-induced neurodegeneration (181). Although the mode of 

action by which it causes PD is unclear, modulation of the development of DA neurons via the 

wingless-related integration site pathway (182, 183) and aberrant brain iron accumulation (184, 

185) have been suggested as possible mechanisms. Furthermore, recent studies demonstrate that 

VPS35 may interact with other PD-linked gene products including LRRK2, SNCA and Parkin 

(186-190) in a common pathway that leads to the neurodegeneration observed in PD.  

2.3.2.3. Autosomal recessive forms of Parkinson’s disease  

2.3.2.3.1. Parkin, PINK1, DJ-1 

Mutations in Parkin are the most common cause of autosomal recessive forms of PD, 

whereas mutations in PINK1 and DJ-1 are relatively less prevalent (139). Parkin gene mutations 

account for almost 50% of early-onset recessive familial PD and up to 15% of early onset 

sporadic cases (191, 192). Pathology underlying Parkin-related PD does not tend to show LBs, 

unlike the autosomal dominant and idiopathic forms. Clinical manifestation of Parkin mutations 

is often indistinguishable from that of the sporadic disease except for the earlier age at onset 

(generally before 45 years of age) (139). Wild-type Parkin, PINK1 and DJ-1 are involved in 

processes of mitochondrial quality control and regulation such as mitogenesis, mitophagy and 

mitochondrial homeostasis and transport (139, 163). Studies suggest that the function of these 

proteins in a mitochondrial quality control pathway is impaired in PD, leading to the 

accumulation of bioenergetically compromised mitochondria, however, it is unclear how this 

might give rise to substantial nigral degeneration and PD (193).  
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2.3.2.3.2. ATP13A2, FBXO7 and PLA2G6  

More rarely, recessively inherited forms of atypical parkinsonism are caused by 

mutations in the ATP13A2, F-box only protein 7 (FBXO7) and phospholipase A2, group VI 

(PLA2G6) genes (131). Mutations in ATP13A2 were first identified from families with Kufor-

Rakeb syndrome, a rare hereditary disease with typical signs of PD that also includes symptoms 

of more extensive neurodegeneration (194). Loss of function mutations of ATP13A2 underlie 

an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and 

dementia (194) while heterozygous mutations may be a risk factor for PD (195). ATP13A2 

mutations likely play a role in lysosome degradation (131) and recent studies demonstrate that 

ATP13A2 can rescue against α-synuclein toxicity in a yeast, Caenorhabditis elegans (C. 

elegans) and neuronal culture model of PD (196). FBXO7 mutations cause early-onset 

autosomal recessive parkinsonism with pyramidal signs and after an initial favourable response 

to L-DOPA, patients often develop dyskinesia (197). Most of the reported FBXO7 mutations 

are loss of function (198) but no neuropathology has been described thus far. Mutations in 

PLA2G6 cause an early-onset recessive degenerative disorder characterized by spasticity, ataxia 

and dystonia but adult onset forms can manifest as dystonia-predominant parkinsonism (199) 

that is responsive to L-DOPA (200). PD associated with PLA2G6 is caused by the homozygous 

or compound heterozygous inheritance of various missense mutations (201-203).  

The clinical and sometimes pathological resemblance of genetic PD to sporadic disease 

make it a suitable human model to identify at-risk individuals in earlier and possibly prodromal 

phases of the disease (116). However, monogenic causes of PD represent less than 10% of PD 

cases in most populations (204) whereas the majority of cases seem to arise from complex 

interactions among genes and between genes and environmental factors (39). Thus, 

environmental factors appear to be more important determinants than ethnic and genetic factors 

in the aetiology of PD. Further efforts are warranted to understand how genetic causes and risk 

factors of PD play a role in the underlying pathophysiology in hopes of developing targeted 

therapies that alter disease course (139).  
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2.4.  Pathophysiology of Parkinson’s disease 

Based on autopsy findings in PD patients, Braak and colleagues postulated that α-

synuclein aggregates form in the periphery in early stages of PD before α-synuclein aggregation 

in the brain (205) and also propose a six-stage system for PD based on the stereotypic pattern 

of α-synuclein spreading (206). The Braak model is based on the presence of LBs and Lewy 

neurites (LNs) where the pathogenic process begins in the lower brainstem in the dorsal motor 

nucleus of the vagus nerve and anterior olfactory structures (206). The disease then spreads 

rostrally from the dorsal motor nucleus of the vagus nerve through the medulla, pontine 

tegmentum, midbrain and basal forebrain before ultimately reaching the cerebral cortex. This 

process follows a specific pattern where susceptible regions are affected in a predictable 

topographic sequence (207) where severity of the lesions and the clinical manifestations of the 

disease increase as the pathology ascends from the brainstem (208). Accordingly, in vitro (209, 

210), in vivo (211, 212) and clinical evidence (213, 214) suggest that cell types in the central 

nervous system (CNS) exhibit a propensity for developing Lewy pathology that shares common 

features. In spite of the support for Braak’s hypothesis, there is criticism around whether it 

accurately reflects the development of PD in all patients as studies report that Braak staging fails 

to describe the disease progression in upwards of 50% of α-synuclein immunoreactive cases 

(215-217). Moreover, the absence of information on the loss of neurons and synaptic 

connections in the original Braak papers has been the subject of scrutiny (218, 219) as the 

scientific premises underlying the model remain unclear  (220). Thus, the inconsistencies 

between the Braak model and conflicting reports of the spread of pathology require further study 

to determine the relationship and likely also require a deeper understanding of the mechanisms 

underlying the role of α-synuclein in disease progression (207).  

Several lines of evidence have implicated dysfunctions in the ubiquitin-proteasome 

system in PD pathogensis (221-223), which have been further supported by the identification of 

disease-causing mutations in genes encoding proteins involved in protein degradation in PD 

(224). Impairment of ubiquitination pathways and proteasomal function could result in defects 

in the clearance of toxic aggregates and result in their accumulation and degeneration of DA 

neurons (223, 225). Although systemic administration of proteasomal inhibitors modelled a 

behavioural and pathological phenotype reminiscent of PD (226), this model has been met with 
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great scrutiny due to the extensive variability in the consequences of in vivo proteasomal 

inhibition (227). Moreover, questions on the molecular connections between these systems and 

pathogenesis of PD remain, including the divergent fate of misfolded proteins for degradation 

or inclusion formation, and further studies, that likely exploit advances in genetics and 

technologies (228), are warranted to clarify this relationship.  

2.4.1. Lewy bodies in Parkinson’s Disease 

Idiopathic or sporadic PD is characterized by the selective loss of neurons and 

appearance of abnormal cytoplasmic proteinacious aggregates called LBs in the soma or LNs in 

the processes in DA neurons (173). Immunohistochemistry  shows that LBs consist primarily of 

the protein α-synuclein (229), as well as other proteins such as ubiquitin (230) and parkin co-

regulated gene  (231). Studies have suggested that misfolded α-synuclein and the deposition of 

LBs within midbrain neurons could contribute to neuronal damage and cell death (232). In 

addition to SNc DA neurons, neuronal loss and Lewy pathology also occurs extensively in locus 

coerulus noradrenergic neurons, RN serotonergic neurons, enteric DA neurons, post-ganglionic 

sympathetic noradrenergic neurons and olfactory neurons (11, 12).  

2.4.2. Alpha-synuclein in Parkinson’s disease 

α-synuclein is of the main constituents of LBs and LNs, and accumulates widely in 

central and peripheral neurons of PD patients (233). Given it predominates in pre-synaptic 

terminals and the nuclear envelope, it plays a role in SNARE-mediated exocytosis and synaptic 

vesicle transport (234). Moreover, α-synuclein is present in mitochondria in PD brain and may 

affect mitochondrial function both in vitro and in vivo, possibly leading to the vulnerability of 

nigrostriatal DA neurons in PD (235-238). Accordingly, it has been demonstrated that α-

synuclein aggregation may be associated with oxidative or nitrosative stress (239-241), which 

may be important in the pathogenesis in neurodegenerative disorders with LBs, like PD (242). 

Converging evidence also supports the hypothesis that α-synuclein oligomers (243, 244) and 

fibrils (245, 246), the pathologic form of α-synuclein, may participate in the propagation of 

neurodegeneration observed in PD (247). Thus, the misfolded α-synuclein fibrils present in LBs 

(142) and their self-propagation and spread, reminiscent of a “prion-like” process, suggest that 

their mode of cell-to-cell transmission is not in disagreement with the Braak staging and a 
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possible peripheral origin of Lewy pathology (210, 211, 248-250). Furthermore, the prion 

hypothesis of α-synuclein transmission is supported by evidence from transgenic mouse models 

of synucleinopathy and viral vector-mediated α-synuclein overexpression in rats (251, 252) and 

nonhuman primates (253, 254). However, no data from transgenic mice models has reported the 

spontaneous pathological α-synuclein (255) and conflicting findings surround the specificity of 

peripheral α-synuclein for PD in humans (255), for instance, some studies have found similar 

levels of α-synuclein accumulation in the colon of patients with PD compared with healthy 

controls (256-258).  

2.4.3. Oxidative stress in Parkinson’s disease  

Oxidative stress defines a disequilibrium between the levels of reactive oxygen species 

(ROS) produced and the ability of a biological system to detoxify the reactive intermediates, 

ultimately creating a perilous state contributing to cellular damage (259). An increasing body of 

evidence suggests that in PD, oxidative stress and mitochondrial damage contribute to a 

sequence of events that lead to the degeneration of DA neurons in the SNc (57, 260-262). In 

addition to mitochondrial dysfunction, DA metabolism (263), neuroinflammation (259), iron 

(264), calcium (265) and ageing (266) also contribute to ROS production in the PD brain. 

Indeed, post-mortem brain analyses consistently show increased oxidative damage to lipids 

(267, 268), proteins (269), deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) (270, 

271). Further support for the link between oxidative stress and DA neuronal degeneration has 

been demonstrated by modelling motor symptoms of PD in toxin-induced animal models that 

cause oxidative stress such as 6-hydroxydopamine (6-OHDA), MPTP, rotenone and paraquat 

(272). It has also been suggested that mechanisms that contribute to neurodegeneration act in a 

feed forward manner where primary insults lead to oxidative stress, which damages key cellular 

proteins and disrupts lipid membranes that in turn cause more ROS production (259).  

2.4.4. Mitochondrial dysfunction in Parkinson’s Disease  

In addition to the dual role of mitochondria as both a source and target of ROS (273-

275), compelling evidence suggests that mitochondrial dysregulation is critical in the 

pathogenesis of PD (259). Mitochondria are dynamic organelles with important functions in 

cellular respiration, energy metabolism, calcium homeostasis, stress response and apoptosis 
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pathways (260). Several groups have reported decreased complex I activity in the SN of PD 

patients (276-278), and the finding of the downregulation of genes encoding mitochondrial 

proteins further supports the role of mitochondrial dysfunction in PD (279). In addition, PD-

related proteins, including DJ-1, PINK1, Parkin, α-synuclein and LRRK2, are also involved in 

mitochondria quality control leading to exacerbations of ROS generation and susceptibility to 

oxidative damage (259).  

2.5.  Dopaminergic system in Parkinson’s disease 

DA neurons form four major systems within the mammalian brain: the nigrostriatal, 

mesolimbic, mesocortical and tuberoinfundibular systems (280) that originate from the A9, 

A10, and A8 groups of dopamine-containing cells, respectively (281, 282). In the nigrostriatal 

pathway, projections from dopaminergic neurons with cell bodies in the SN terminate in the 

striatum (283). The mesolimbic pathway consists of dopaminergic neurons that originate in the 

ventral tegmental area (VTA) and project to the nucleus accumbens and related limbic regions, 

whereas VTA neurons that project to the prefrontal cortex establish the mesocortical pathway 

(284). Last, the tuberohypophyseal pathway consists of dopaminergic projections from the 

hypothalamus to the pituitary gland, and its secretions regulate prolactin (285). Due to their wide 

connectivity within distinct pathways, DA neurons exert a variety of functions including 

locomotion, addiction, reward, learning and memory, cognition, stress and movement (286).  

DA is a monoamine neurotransmitter synthesized in a series of enzymatic reactions 

(287), beginning with the conversion of the amino acid tyrosine into L-DOPA via the rate-

limiting enzyme tyrosine hydroxylase (TH) (Figure 1, page 19). L-DOPA is subsequently 

decarboxylated into DA by the enzyme aromatic acid decarboxylase (AADC). DA is then 

packaged into pre-synaptic vesicles by the vesicular monoamine transporter type 2 (VMAT2) 

and released at nerve terminals into the synapse upon stimulation. Released DA bind to DA 

receptors to elicit a response in the post-synaptic cell and this interaction is important in the 

modulation of motor function through the BG circuitry. Extracellular DA is either metabolized 

by MAO-B and catechol-O-methyl transferase (COMT) in the cytosol or transported back into 

the pre-synaptic terminal via the DAT. Following re-entry of DA into the pre-synaptic neuron, 

DA can be repackaged into vesicles and recycled or degraded into the metabolite homovanillic 

acid (HVA).  
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A deficit in the number of nigrostriatal dopaminergic neurons, characteristic of PD, 

disrupts the dopaminergic transmission and produces abnormal motor features in affected 

subjects. 

2.5.1. Nigrostriatal dopaminergic pathway 

Dopaminergic terminals in the striatum consist of dense innervation of fibres from two 

specific groups of neurons in the brainstem (282, 288) . The first group are neurons with cell 

bodies in the VTA that project to the nucleus accumbens and olfactory tubercle. The second 

group have cell bodies in the SNc and project primarily to the putamen and the caudate nucleus. 

The tegmental and nigral afferents form the nigrostriatal dopaminergic pathways.  

2.5.2. Classification of dopamine receptors and their distribution in the 

basal ganglia 

DA receptors are a family of G protein-coupled receptors (GPCRs) with five subtypes, 

D1-D5, that are divided into two groups (289). D1-like receptors are comprised of D1 and D5 

receptors and mainly couple G proteins (290), which stimulate adenylyl cyclase and cyclic 

adenosine monophosphate (cAMP) production (291, 292). In contrast, D2-like receptors 

comprise D2, D3 and D4 receptors; they couple with Gαi /Gαo and inhibit adenylyl cyclase and 

negatively regulate cAMP production (293, 294). D1-like receptors have an excitatory effect by 

stimulating cAMP production, whereas activation of D2-like receptors is inhibitory. D2 

receptors are the presynaptic receptors of the dopaminergic system and are responsible for the 

negative feedback on levels of synaptic DA (295).  

Both D1Rs and D2Rs are highly expressed by striatal medium spiny neurons (MSNs) 

(296, 297) and are present at lower levels in the cortex as compared to the striatum (298). D1 

receptors are expressed in striatonigral neurons containing substance P and dynorphin that 

project to the SN pars reticulata (SNr) and to the globus pallidus (GP) pars interna (GPi), which 

constitute the direct striatal output pathway (299). In contrast, D2 receptors are predominantly 

localized in striatofugal neurons expressing encephalin, which project to the GP pars externa 

(GPe), constituting the indirect pathway (300, 301). D1 receptors are post-synaptic whereas D2 

receptors are also localized on pre-synaptic nigrostriatal dopaminergic terminals, on SNc 

neurons, and on pre-synaptic cortico-striatal terminals where they can inhibit striatal glutamate 
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release (296, 302, 303). In humans and nonhuman primates, D3 receptors are mostly found in 

the nucleus accumbens and caudate nucleus-putamen complex but are also localized in the GPi, 

anterior thalamus, amygdala, hippocampus and cortex (304-306). In the human striatum, there 

is approximately D3:D2 receptors is approximately 1:2, and D3 receptors can co-localize with 

both D1 and D2 receptors (305, 307).  

Figure 1: Dopaminergic synapse. After DA is synthesized in the pre-synaptic neuron and 
released into the nerve terminal, extracellular levels of DA are regulated through several 
mechanisms. DAT is responsible for the reuptake of DA back into the pre-synaptic neuron, 
VMAT2 packages DA back into synaptic vesicles, pre-synaptic D2 receptors control DA 
synthesis and release, and MAO-B and COMT are involved in the extracellular metabolism of 
DA. Following the release of DA at synaptic terminals, DA can bind to two types of DA 
receptors on post-synaptic neurons. The D1 receptor is coupled to Golf and activates cAMP-
dependent signalling pathways while the D2 receptor is coupled to Gi and inhibits the same 
pathways. AADC: aromatic L-amino acid decarboxylase; AC: adenylate cyclase; COMT: 
catechol-o-methyl-transferase; DAT: dopamine transporter; MAO-B: monoamine oxidase B; 
TH: tyrosine hydroxylase; VMAT2: vesicular monoamine transporter 2. Modified from (308). 
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2.6.  Clinical features of Parkinson’s disease 

Traditionally described as a motor disorder, numerous brain structures are affected at 

different time points along the course of the disease manifestation, and both motor and nonmotor 

symptoms are observed in PD.  

2.6.1. Motor symptoms of Parkinson’s disease 

The four cardinal motor features of PD are the following: bradykinesia, muscular 

rigidity, resting tremor and impairment of postural balance leading to disturbances in gait and 

falls. Movement can be normal in early disease (309) due to the redundancy in BG activity and 

the capacity of the striatum to compensate functionally for lower degrees of DA deficiency (7). 

However, after the loss of approximately 80% striatal DA and loss 60% SNc DA neurons, motor 

symptoms begin to appear (7-10). Initially, the symptoms are mild and are usually confined to 

one side of the body but over the disease course, symptoms are increasingly impairing and 

involve the contralateral side as well (310). Motor features are heterogeneous and in spite of the 

lack of consensus on the classification of subtypes, empirical clinical observations suggest the 

existence of two major subtypes: tremor-dominant PD with a relative absence of other motor 

symptoms and non-tremor-dominant PD, a phenotype described as akinetic-rigid syndrome and 

postural instability gait disorder (311). Bradykinesia is defined as difficulty in planning, 

initiating and executing movements, as well as with performing sequential and simultaneous 

tasks (312). This often manifests as deficits in fine motor control (312), slower reaction 

times(313, 314) and slowness in performing daily activities (315-318). Moreover, bradykinesia 

leads to impairment of the power of voluntary movement (319, 320). Muscle rigidity is 

described as increased resistance to passive joint movement, and can often lead to a flexed 

posture (321). The combination of these motor symptoms along with disturbances in gait, leads 

to greater disability in PD patients. In addition to motor symptoms, PD patients also experience 

debilitating nonmotor symptoms.  

2.6.2. Non-motor symptoms of Parkinson’s disease 

The spectrum of non-motor features encompasses olfactory dysfunction, sleep 

disturbances, autonomic dysfunction, gastrointestinal (GI) distress, memory loss and dementia, 

as well as neuropsychiatric conditions (6, 322-324) (325, 326). Virtually all patients with PD 
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exhibit at least one nonmotor symptom with an average of 7.8–11.9 nonmotor symptoms per 

patient (322, 327-330). Moreover, nonmotor symptoms have been reported to affect the quality 

of life of PD patients to a greater extent than motor features (330-332).  

Olfactory dysfunction is of one of the most common nonmotor symptoms in PD that 

affects over 80% of patients with PD (333), a prevalence with greater sensitivity for PD 

compared to many other clinical markers. Although robust evidence indicates that olfactory loss 

precedes PD (334-340), the lead time for olfactory loss is variable, and some patients may 

develop detectable loss before or after developing parkinsonism (309). In addition, strong 

evidence supports rapid eye movement (REM) sleep behaviour disorder (RBD) as a predictor 

of synucleinopathies, most commonly PD with or without dementia LBs (309). RBD is defined 

as apparent enactment of dreams during REM sleep, associated with a loss of normal REM sleep 

atonia (341). Five prospective studies have reported that synucleinopathies, i.e. PD, dementia 

with LBs or multiple system atrophy develop in up to 80-90% of patients with RBD (342-347). 

Moreover, one study showed that α-synuclein deposition was present in brains of 98% of 

subjects with neurodegenerative disease who also had RBD confirmed by polysomnography 

(348).  

Additional symptoms relating to autonomic dysfunction include constipation, orthostatic 

hypotension, urinary and sexual dysfunction and somnolence. α-synuclein is abundant in the GI 

system (256), which led some to speculate that prion-like spreading might occur from the GI 

tract to the brain (207), and a delay in colon transit time that results in constipation could 

theoretically facilitate this spreading (309). Although this remains controversial, pathological 

evidence supports the capacity of α-synuclein to spread (349) and a preliminary report showed 

that vagotomy may reduce the risk of PD (350). Depression and anxiety are commonly comorbid 

in PD, however, their potential as a marker is limited by the low relative risks (351-355) and 

predictive value (309), and highly variable lead times for psychiatric manifestations (353-356). 

Cognitive impairment is traditionally associated to late stages of PD but mild cognitive changes 

are also observed in de novo PD (357). In general, nonmotor features precede the appearance of 

motor symptoms in PD, including olfactory dysfunction, RBD, constipation, urinary and sexual 

dysfunction, which show promise as potential markers of prodromal PD (358).  
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2.7.  Current pharmacotherapy for Parkinson’s disease 

Currently available therapies are not disease-modifying or neuroprotective and they 

provide only symptomatic relief for motor features of the disease (359). There are non-

pharmacological, pharmacological and surgical treatments that attempt to restore dopaminergic 

activity using L-DOPA and DA receptor agonists.  

2.7.1. L-DOPA  

Administration of L-DOPA with  a peripheral AADC inhibitor such as carbidopa or 

benserazide is the most effective treatment for relief of motor symptoms of parkinsonism, 

particularly for controlling bradykinesia (360). The addition of carbidopa or benserazide 

enhances the therapeutic benefits of L-DOPA, reduces the dose of L-DOPA required, and 

minimize peripheral adverse effects (361). 

2.7.1.1. Pharmacology of L-DOPA 

DA was first synthesized in 1910 (362) and its biochemical precursor was synthesized 

the following year (363). In a seminal study, Ehringer and Hornykiewicz discovered that DA 

levels were reduced in the striataum of PD patients (364). Moreover, Hornykiewicz observed a 

correlation between most of the PD motor symptoms and striatal DA depletion (365). The 

introduction of DA replacement therapy with L-DOPA in the early 1960s revolutionized 

symptomatic treatment of PD (366). Unlike DA, L-DOPA crosses the blood brain barrier 

(BBB), and is effective at alleviating motor features of PD during early stages of treatment 

(367). Barbeau and colleagues reported an improvement of parkinsonism, mostly with respect 

to rigidity, after oral administration of L-DOPA to patients with PD (368). Furthermore, Cotzais 

and colleagues reported that high doses of L-DOPA had marked beneficial effect on the motor 

symptoms of parkinsonism, mostly bradykinesia and rigidity (369-371).  

As AADC is also present outside of the brain, peripheral metabolism of L-DOPA can 

cause adverse side effects including hypotension, nausea and vomiting (372, 373). Thus, a 

peripheral acting AADC inhibitor, such as carbidopa or benserazide, that does not cross the 

BBB is often co-administered, to limit the peripheral decarboxylation of L-DOPA so that more 

L-DOPA is available to enter the brain, while minimizing the aforementioned peripheral adverse 
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effects. The addition of peripherally acting AADC inhibitors allowed a reduction in the required 

dose of L-DOPA up to 60-80% (374, 375), potentiated its efficacy, led to a faster onset of anti-

parkinsonian benefit and a reduction of cardiovascular and GI side effects (371, 373, 376).  

L-DOPA is absorbed in in the duodenum and proximal jejunum by active transport via 

the large neutral amino acid system (377, 378). L-DOPA enters the body and brain by active 

transport (379, 380) and competes with dietary proteins and amino acids (381). Thus, high 

protein intake can reduce L-DOPA anti-parkinsonian action and indeed, intraduodenal delivery 

of L-DOPA leads to a decline of motor performance following oral protein intake (382). In the 

clinic, L-DOPA has a short half-life of 1.5 to 2 hours (383-388). After oral administration, L-

DOPA plasma levels reach a maximum about one hour after intake, although this may vary due 

to the unpredictable absorption (387-389). L-DOPA plasma levels are 10–15-fold higher than 

L-DOPA levels in the ventricular cerebrospinal fluid (390). COMT inhibitors are often used to 

extend the duration of L-DOPA anti-parkinsonian action and indeed, tolcapone, entacapone and 

opicapone increase the area under the curve when administered with L-DOPA (391, 392). 

L-DOPA is converted into DA by AADC in DA neurons from the SN and projections 

(393), serotonin (5-HT) neurons from the raphe complex and their striatal projections (394, 395) 

and noradrenergic neurons from the locus coeruleus and their projections (396). Due to the 

characteristic degeneration of the nigrostriatal system in PD, L-DOPA is converted in DA 

mostly by raphe-striatal 5-HT neurons, and to a lesser extent, by striatal intrinsic AADC-

containing interneurons (397-399).  

Although L-DOPA is the most effective treatment for PD, chronic administration of L-

DOPA is associated with the development of motor complications including motor fluctuations 

and LIDs (400). LID represent a major limitation of current pharmacotherapy for PD as the 

majority of patients experience dyskinesia after a few years of treatment (400, 401) and 

underscores the need to develop effective therapeutic strategies for patients suffering from these 

involuntary movements.  

2.7.2. Dopamine agonists 

DA receptor agonists such as ropinirole, pramipexole and rotigotine are commonly 

employed and their main advantages over L-DOPA are: they do not require enzymatic activation 
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and have a longer duration of action (402). However, due to their action on DA receptors, their 

adverse effect profile includes: hallucinations, confusion, nausea, and increased incidence of 

impulse control disorders including pathological gambling and hypersexuality (403). 

Apomorphine, a DA agonist, is primarily used as rescue therapy for temporary relief of off-

periods of akinesia in patients with fluctuating response to dopaminergic therapy (404), but is 

not available in Canada. 

2.7.3. MAO-B inhibitors 

Selective MAO-B inhibitors like selegiline and rasagiline delay the breakdown of DA in 

the striatum (287). As their efficacy is modest, they can be used as a monotherapy in early PD 

and in advanced stages of the disease, they can be administered as an adjunct to reduce off time 

in patients with declining response to L-DOPA (405).  

2.7.4. COMT inhibitors 

COMT inhibitors block the peripheral degradation of LDOPA, which leads to its 

increased half-life and enhanced central bioavailability (406). Two COMT inhibitors are 

available in Canada, tolcapone and entacapone, while opicapone is also available in Europe, 

although entacapone is preferred because it is not associated with hepatotoxicity (407-409). 

They are used as adjunctive treatment in patients who develop motor fluctuations to prolong the 

effect of L-DOPA (410).  

2.7.5. Anti-cholinergics and amantadine 

Anti-cholinergic agents like trihexyphenidyl and benztropine were historically used for 

the treatment of PD before the introduction of L-DOPA. Their main therapeutic effect is on 

tremor and they are only indicated in early PD or as an adjunct to DA replacement therapy. 

Amantadine modulates dopaminergic and cholinergic transmissions and is also a non-

competitive N-methyl-D-aspartate (NMDA) receptor antagonist with a modest efficacy and 

improves parkinsonian symptoms in mildly affected patients with early disease and reduces 

LIDs in patients with advanced disease.  
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2.7.6. Treatments for non-motor symptoms 

Non-motor symptoms in PD are being increasingly recognized as important issues 

diminishing the quality of life of patients, although treatment options remain inadequate (6, 

326). Thus, medications used to treat related conditions are usually tried in PD, e.g. 

antidepressants for depression, atypical antipsychotics for psychosis, laxatives for constipation, 

etc. However, several of the currently used interventions lack robust evidence and require 

further research to discern their role in the management of nonmotor symptoms of PD }(326). 

2.8.  Surgical interventions for Parkinson’s disease 

Surgical brain treatments are increasingly attractive options for patients with PD, 

particularly in advanced stages because they diminish motor fluctuations and decrease 

dyskinesia severity (411). Deep brain stimulation (DBS) is the most popular surgical 

intervention and aims to modulate abnormal neuronal activity within a circuit to alleviate 

symptoms (412). Several clinical trials have demonstrated that stimulation of the subthalamic 

nucleus (STN) or GPi is effective in moderate to severe cases of PD (413). Inasmuch as its 

invasiveness, this surgical intervention is considered a symptomatic treatment limited to patients 

with advanced PD who no longer achieve adequate symptomatic relief with medication (411). 

As a result, patients who undergo DBS are on average 58.6 years of age with an average disease 

duration of 12 years (414-417). The precise mechanism(s) underlying the action of DBS is still 

unclear but the commonly accepted hypothesis is that electrical stimulation of the brain exerts 

inhibitory effects on structures such as neuron cell bodies close to the current and the output 

nuclei of the BG (418, 419).  

3. L-DOPA induced dyskinesia 

3.1.  Clinical characteristics of dyskinesia 

Dyskinesia, originates from the Greek word (δυσκινησία) meaning “bad movement” and 

is medically defined as any nonvoluntary movement, and dyskinesia is clinically heterogeneous 

in presentation and progression (420). Typically, it firsts appear on the more severely 

parkinsonian side of the body (421) and affects the distal lower limb, followed by an ascending 

spread but with disease progression, both sides are ultimately affected (422).  



26 

 

LID develops with disease progression and with repeated DA replacement therapy in 

PD. Although administration of DA agonists can elicit dyskinesia, the prevalence is lower than 

L-DOPA monotherapy (423, 424). Thus, in attempt to minimize the induction and delay the 

onset of drug-induced dystonia and chorea, DA agonists may be used in early disease. 

Alternatively, once fluctuations and dyskinesia appear, DA agonists may allow to reduce the 

dose of L-DOPA to  reduce existing dyskinesia in PD (420). In contrast, a concern with the 

addition of COMT inhibitors, which delay the breakdown of L-DOPA, is that L-DOPA will 

have a longer duration of action and may induce dyskinesia (425). 

3.2.  Timing of dyskinesia 

LID expression is based on the timing of appearance in relation to the on-off 

phenomenon of the patient (420), which is defined as the switch between mobility and 

immobility in patients treated with L-DOPA (426). On-time refers to periods when the patient 

is responsive to L-DOPA and experiences improvement in mobility, whereas off-time applies 

to periods when the patient responds poorly to L-DOPA and impaired motor function including 

tremor, akinesia or rigidity, which often occurs as an end-of-dose or “wearing off” of the effect 

of L-DOPA, or because L-DOPA has not been taken (420). In particular, the on period is the 

most common time during which  LID is present, i.e. in 70-80% of patients who experience it 

while being in the on-state (427). During the on period, dopaminergic stimulation in the patient’s 

brain is maximal or increased. Moreover, LID may be categorized into different presentation 

forms where the most common forms are peak-dose dyskinesia, off-period dyskinesia and 

diphasic dyskinesia. These forms of LID likely lie somewhere along a clinical continuum and 

may vary between patients, and even fluctuate between different doses in the same patients. In 

general, LID appears first in the foot, ipsilaterally to the side of the body more severely affected 

by parkinsonian symptoms, with inversion of the foot and ankle. A possible explanation may be 

the early loss of dopaminergic innervation in the dorsolateral striatum, which corresponds 

somatotopically to the foot area innervated by the SNc (428). Over the course of disease 

progression, dyskinesia eventually spreads to other body areas, and may follow the pattern of 

progression of parkinsonian symptoms (429). In addition, the forms of dyskinesia are not 

mutually exclusive, and a combination of choreic and dystonic movements, and the three types 

of dyskinesia may be observed in patients throughout the L-DOPA cycle (430).   
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3.2.1. Peak dose dyskinesia 

Peak-dose LID is the most common subtype that occurs at high plasma levels of L-

DOPA and coincides with the maximal anti-parkinsonian effect. These are often expressed as 

spasmodic twitching or jerking in the muscles of the superior extremities and neck. They are 

predominantly characterized by a choreic phenotype but can also include dystonic movements 

(431). They tend to be less disabling and less painful than the other forms of dyskinesia.  

3.2.2. Off-period dyskinesia 

In contrast, off-period dyskinesia occurs when the DA levels are falling and 

dopaminergic stimulation in the brain is low. Thus, the patient is subsequently in the off state or 

in the transition from the on to off state. This phenomenon tends occurs more commonly during 

the night, or prior to the first L-DOPA dose in morning or just after taking the dose (432). 

Phenotypically, off-period dyskinesia mainly consists of dystonic movements (433) frequently 

affecting the foot of the more affected side, but can also be segmental or generalized in 

distribution (431). A characteristic manifestation includes foot inversion and painful flexion of 

the toes (421). This phenomenon can be combated by taking more dopaminergic medication, 

particularly longer acting DA agonists and controlled release L-DOPA to avoid a decrease in 

DA levels over night(434). 

3.2.3. Diphasic dyskinesia 

Diphasic dyskinesia, also described as dystonia-improvement-dystonia (D-I-D), occurs 

at two different time points of a single dose cycle, at the beginning and at the end of the treatment 

effect, separated by an on period of minimal dyskinesia (435). In general, it is assumed at the 

time points of dyskinesia, L-DOPA levels are rising and falling, respectively. They affect both 

extremities but tend to affect the lower limbs of the most affected side more (436). It is 

characterized by repetitive and rapidly alternating dystonia and consists of flexion/extension of 

the foot or stereotyped movements (437). A notable feature is that while the lower limbs are 

moving involuntarily, the upper body can exhibit parkinsonian symptoms such as tremor (438).  
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3.3.  Risk factors for the induction of dyskinesia 

3.3.1. Priming 

Priming is defined as the neurochemical and functional aberrant modifications in the 

DA-denervated BG that eventually lead to the emergence of dyskinesia in response to the 

repeated administration of L-DOPA or DA agonists (439). Over time, with repeated treatment, 

the chance of dopaminergic stimulation eliciting LID is increased and once LID has been 

established, the severity of dyskinesia increases (440).  

Priming is produced by a two-step administration of dopaminergic drugs, including DA 

agonists and L-DOPA, and, encompasses an induction and expression phase. During the 

induction phase, the first administration of dopaminergic drugs, followed by the second 

administration, results in priming, i.e. the neurochemical and behavioural sensitization of the 

animal to subsequent challenge with dopaminergic drugs (441). At the behavioural level, 

chronic dopaminergic treatment induces dyskinesia that, once established, never stops and 

progressively increases in severity with further treatment (442). In the expression phase, once 

LID is established, the brain maintains the primed state such that even in the absence of 

treatments, a single challenge with L-DOPA or DA agonist will elicit dyskinesia at nearly the 

same severity (440). In addition, priming is associated with neurochemical maladaptive 

modifications in the DA-denervated striatum similar to those observed in animal models of 

dyskinesia induced by chronic DA replacement therapy (443). These include changes in the 

production of cAMP, phosphorylation of phosphoprotein of 32 kDa, and expression of mRNA 

encoding immediate early genes, dynorphin and glutamic acid decarboxylase isoform 67, which 

all regulate the activity of striatal output neurons (443).  

The major factors that affect the induction of dyskinetic movements are the extent of 

nigral dopaminergic cell loss, the type of drug administered, and the method of drug 

administration (444). Nigral cell degeneration is responsible for plastic changes in BG function 

that lead to dyskinesia priming (308). The extent of denervation regulates the level and duration 

of drug exposure required to induce dyskinesia. In general, normal nonhuman and human 

primates do not develop dyskinesia when treated with chronic pharmacological doses of L-

DOPA (445). In contrast, humans or primates exposed to MPTP, which induces nigral cell loss, 
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and PD patients with severe nigral denervation develop dyskinesia rapidly after starting L-

DOPA therapy (446).  

The method of drug delivery is regarded as one factor that is important in the 

development of dyskinesia, in addition to other determinants including nigrostriatal dopamine 

denervation and dopamine receptor sensitivity. The greater propensity of L-DOPA to induce 

dyskinesia than DA agonists is attributed to more than differing duration of action and/or plasma 

half-life and pharmacology of receptors (447). Orally administered L-DOPA has a short half-

life of 60-90 minutes (448) and due to its central and peripheral pharmacokinetic effects amongst 

many other factors, it is associated with a gradually shorter action duration with continued 

disease progression (449). In contrast, orally administered DA agonists have half-lives of 

several hours or more, notably cabergoline has a half-life of 72-96 hours (450, 451). Therefore, 

intermittent oral doses of L-DOPA with a shorter duration of action may be associated with 

pulsatile stimulation of dopaminergic receptors, whereas administration of longer-acting DA 

agonists results in the tonic and phasic release of DA and more continuous physiological 

dopaminergic stimulation, which results in a lower incidence of dyskinesia (452, 453).  

The different pharmacological profile of L-DOPA compared to DA agonists may also 

underlie variations in dyskinesia induction. Orally-administered DA agonists display a higher 

affinity for D2 DA receptors compared to D1 receptors (454, 455), whereas L-DOPA interacts 

with all five subtypes of DA receptors present in the basal ganglia (456, 457). Evidence suggests 

that dyskinesia is associated with specific alterations in D1 receptor function and D2-selective 

DA agonists may induce less dyskinesia because of this pharmacological difference (458). In 

addition, several DA agonists also demonstrate affinity for non-dopaminergic receptors, for 

example, cabergoline also antagonizes 5-HT2A receptors (451), which has been demonstrated to 

exert an anti-dyskinetic effect (459, 460). Thus, the relatively lower association of dyskinesia 

with DA agonists than L-DOPA may be due to their lack of selectivity for the D1 receptor and 

the broader pharmacology of L-DOPA (450).  

Moreover, results from clinical trials have been conflicting on the association between 

continuous delivery of L-DOPA, such as intraduodenal L-DOPA infusion, also known as 

duodopa, and the risk of dyskinesia development (461). In two small trials, duodopa 

administration over a 12-h period daily over 6 months but not over a 14-h period daily over 18 

months, reduced the severity of dyskinesia (462, 463). In contrast, a recent study reported no 
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effect of duodopa on dyskinesia severity (464). In addition, this method of continuous drug 

delivery still encompasses some pulsatility of post-synaptic dopaminergic receptors, and in the 

event of uninterrupted drug administration, there is the issue of tolerance (461). Therefore, while 

pulsatile L-DOPA may be implicated in the development of dyskinesia, compared to other 

factors, the extent of its contribution remains relatively unclear.  

3.4. Risk factors for developing dyskinesia 

Processes that underlie the induction of dyskinesia are different from those responsible 

for the execution of involuntary movements in response to subsequent drug treatment (439). 

The risk factors for LID include the age of PD onset, duration of L-DOPA treatment and dose, 

which suggests that the progressive loss of DA neurons and L-DOPA exposure are implicated 

in the development of LID (465-467). Cotzias and colleagues, who are credited with the first 

successful use of L-DOPA to treat PD, were also the first to report the incidence of LID (371). 

Studies subsequently noted the high incidence and variation of LID, and treatment-limiting 

effect of L-DOPA. Moreover, several studies reported that continuous rather than intermittent 

exposure to L-DOPA is associated with a decrease in the incidence of LID. Accordingly, 

continuous infusion of L-DOPA via an intestinal gel increased on time without dyskinesia 

compared to immediate-release oral formulation of L-DOPA (464).  

3.4.1. Duration of L-DOPA therapy 

The duration of L-DOPA therapy is considered an important risk factor for the 

development of LID. After five years of L-DOPA treatment, about 50% of patients are reported 

to have developed LID (423, 468, 469) and after 15 years, the incidence rises to more than 90% 

of patients suffering from dyskinesia (19). LID occurs more frequently with longer duration of 

L-DOPA treatment (470). However, it remains to be determined to what extent each of  

treatment duration,  the effect of neurodegeneration, disease duration and dose contribute to the 

development and expression of LID (420). Thus, disease duration and severity, are also shown 

to correlate highly with the duration of therapy as well as the prevalence of dyskinesia.  
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3.4.2. Impact of L-DOPA dose 

In general, L-DOPA does not typically induce dyskinesia in normal individuals (471, 

472). In hemiparkinsonian rats, the dosage is critically involved in dyskinesia via loss of 

synaptic depotentiation (473). That L-DOPA induces dyskinesia and alleviates extrapyramidal 

symptoms is generally considered as a continuous dose-dependent pharmacological spectrum 

(474). A landmark paper by Ahlskog and Muenter looked at the epidemiology of LID in studies 

from the pre-L-DOPA era and from the modern area (468). The frequency of LID between 

prospective clinical trials and observational studies yielded similar figures and the overall 

frequency of LID applies to both. However, dyskinesia occurred earlier in the pre-L-DOPA era 

during L-DOPA treatment than the modern era, which is partially attributed to the longer 

durations of pre-existing PD. Moreover, the reported difference in LID frequency suggests that 

greater depletion of dopaminergic striatal terminals may increase the likelihood of developing 

LID. Similarly, LID occurs later now than in earlier series of studies, which may be explained 

by the higher dose used in the past, which led to the earlier appearance of dyskinesia (475). A 

large retrospective study found that the risk of developing LID was a higher initial L-DOPA 

dose (476), which is in agreement with a later cross-sectional study, adjusted for other risk 

factors (476). In line with this data, a placebo-controlled clinical trial also reported that patients 

with LID were taking higher L-DOPA doses at the appearance of dyskinesia compared to 

patients without dyskinesia (477). However, the cumulative dose of L-DOPA does not differ 

significantly between the groups, as observed in a retrospective study (478). Furthermore, it is 

difficult to determine the exact effect of L-DOPA dosage as PD patients may receive different 

doses at different time points throughout the day as the drug regimen changes throughout the 

course of disease (420).   

Studies suggest that females are more likely to develop dyskinesia than males (479, 480) 

but it appears that sex cannot fully explain this phenomenon. In fact, given the same dose of L-

DOPA with an AADC inhibitor, females are exposed to a higher plasma concentration time 

curve compared to males, when adjusted for kilogram of body weight (481). It seems that body 

weight affects the pharmacokinetics of L-DOPA, which in turn, may influence the onset of 

dyskinesia (480, 482). This is further supported by a subanalysis of a prospective clinical trial, 

which reported that dose per kilogram body weight is the most significant factor in the 
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development of LID (483). In contrast, multiple logistic regression analysis found that female 

gender, absolute dose, body weight and disease duration were insignificant (483). Thus, 

treatment with high L-DOPA dose relative to patient’s body weight seems to be a significant 

risk factor for LID (484).  

3.4.3. Impact of L-DOPA type 

L-DOPA is currently available in several formulations including oral standard-release, 

controlled-release and dispersible tablets. Controlled-release formulations theoretically reduce 

fluctuations in plasma L-DOPA levels and clinical trials have reported decreased off-time and 

reduced L-DOPA dosing frequency when compared to immediate-release formulations (485-

487). Other studies, however, suggest that controlled-release is not superior to standard release 

(488) and is associated with increased incidence of dyskinesia (488-492). To date, there is no 

consensus in selecting one formulation over another in the treatment of dyskinesia. An 

increasingly popular approach to treat motor complications in advanced PD patients is 

continuous intrajejunal infusion. Despite its cost and technical demands, this method of delivery 

improves motor fluctuations in PD and may reduce both duration and severity of dyskinesia 

(493, 494).  

3.4.4. Young age at onset 

Several epidemiological studies indicate that a young age at the onset of PD is a 

significant risk factor for LID (495). In addition, the “DA turnover” to DA synthesis and storage 

rate are inversely correlated with the onset age of PD (496). Young-onset patients might have 

more compensatory mechanisms to dopaminergic cell loss in the BG, rendering them more 

vulnerable to the development of LID (497). Moreover, young-onset patients have more nigral 

abnormalities while late onset patients have more cortical abnormalities (498). The relationship 

between the age of onset and the development of LID may be partially explained by genetic 

influences (499). Some genetically determined forms of PD at young onset have been reported 

to have a higher risk of developing LID, and a higher prevalence of dyskinesia has been reported 

in patients with a family history of PD (495, 500-503) than those without (495, 502). Mutations 

in the genes PARK 2, PARK 6 and PARK 7 are associated with young onset PD, and have been 

reported to have relatively higher rates of dyskinesia (504-506). Recent studies, however, 
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disagree with these reports and observe that carriers of PARK2 or PARK8 mutations do not 

develop LID more frequently than age- and disease duration-matched non-carriers (507, 508).  

3.4.5. Genetic risk factors 

Genetic factors may also contribute to the variability in incidence, severity and latency 

from treatment onset, and result in different susceptibility to develop dyskinesia. In addition, 

the interindividual difference and the high prevalence of LID in young-onset PD patients further 

supports the possibility of genetic susceptibility for LID (484). Genetic polymorphisms of pre-

synaptic and post-synaptic structures could be potential substrates for genetic susceptibility to 

LID (484) and the occurrence of dyskinesia is associated with specific polymorphisms for the 

DA receptors or DAT genes (509-511), the COMT gene and the mu-opioid receptor gene. 

3.5.  Dyskinesia rating scales in Parkinson’s disease 

Despite the developments in pharmacological and surgical treatments for advanced PD, 

progress has been limited by the lack of a widely accepted clinical rating scale for dyskinesia 

(512). The challenge can be attributed to the variability in the anatomical distribution of 

dyskinesia, intensity of movements, disability or impact on daily living (513). In addition, 

quantification of dyskinesia using rating scales is subject to inter- and intra-rater reliability and 

also needs to clearly discriminate from other motor parkinsonian features. Amongst the 

clinically-available scales used to assess dyskinesia, only a few meet the minimal criteria and it 

is often at the discretion of the investigators and clinicians to select one that best fits the need of 

the assessment. Lang-Fahn (514) and PD-DYS-26 (515) are more patient-oriented scales while 

more objective assessments can be obtained for impairment and disability with the Abnormal 

Involuntary Movement Scale (AIMS) (516) and the Rush Dyskinesia Rating Scale (517). 

Although the AIMS displays high inter-rater reality for tardive dyskinesia, data suggests it does 

not have a specific reference to LID, which limits its use in PD patients (518). In contrast, the 

Unified Dyskinesia Rating Scale (UDysRS), the newest rating scale developed specifically for 

the assessment of dyskinesia in PD, encompasses both patient-based and rater-based ratings of 

disability and impairment, and provides a more comprehensive measurement tool for the burden 

of dyskinesia (519). Furthermore, the intra-rater and inter-rating reliabilities and reproducibility 

of the UDysRS have been well established with a strong clinimetric profile (519-521).  
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3.6.  Pharmacological management of dyskinesia 

Pharmacological treatment for dyskinesia is based on adjustments to the intervals and 

doses of dopaminergic treatments, adjunct oral drugs with direct anti-dyskinetic effects and 

continuous administration of anti-parkinsonian drugs via pumps. To date, only two orally 

administered agents have been shown to relieve dyskinesia without worsening motor disability, 

amantadine and clozapine.  

Amantadine is a non-selective NMDA receptor antagonist and has been reported to 

reduce LID in animal models and in PD patients (522). The effectiveness of this agent in LID 

has provided support for the pathogenic role of changes in striatal NDMA receptors in 

dyskinesia (522). In addition, a randomized, placebo-controlled trial reported that treatment with 

amantadine significantly improved on time with dyskinesia and reduced AIMs after a L-DOPA 

challenge (523). Furthermore, in a placebo-controlled crossover trial, dyskinesia severity was 

reduced by nearly 50% on amantadine compared with placebo (523). Amantadine is efficacious 

as an oral anti-dyskinetic drug with a sustained effect that lasts for at least one year (524). 

However, its potential as a treatment is limited by its ability to worsen neuropsychiatric 

problems, particularly in elderly patients (525).  

Clozapine is an atypical anti-psychotic and although its exact mechanism of action is 

unclear, it may be attributed to its affinity to 5-HT 2A (5-HT2A) receptors (526). Uncontrolled 

studies of clozapine for dyskinesia have estimated a reduction by around 50 % with high doses 

(527). Moreover, a randomized, placebo-controlled 10-week study reported that clozapine is 

associated with a significant reduction in on-time with dyskinesia compared with placebo, 

without changes in off-time duration (528). The use of clozapine is limited by potential adverse 

events, agranulocytosis and myocarditis, although evidence shows that this risk decreases over 

time (529, 530).  

3.7.  Surgical options for dyskinesia 

Treatment of LID is one of the most common indications for neurosurgery in PD and 

procedures such as STN-DBS, or pallidotomy or GPi-DBS, which are thought to have a direct 

effect on dyskinesia, can provide relief of motor symptoms of PD and help control LID (531). 

Since the introduction of “chronic” high-frequency DBS by the French neurosurgeon Alim 
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Benabid (532), DBS procedures have been pivotal to improve motor symptoms (533), whereas 

ablative surgery is considered an alternative and only used when DBS is not feasible (415, 534, 

535). However, controversial issues including the timing of therapeutic intervention, the 

selection of stimulation target and adverse effects (536) as well as the restricted selection criteria 

and invasiveness of these procedures present considerable risks to patients with PD compared 

to pharmacological interventions. Thus, the present Thesis will focus more on the relevance of 

pharmacological management of LID but advances in DBS and pallidotomy are reviewed in 

(412, 444).  

3.8.  Basal ganglia circuitry in dyskinesia 

The interaction between DA and post-synaptic receptors is crucial in the modulation of 

motor function and classically described by the BG circuitry. BG are a group of interconnected 

nuclei located bilaterally in the diencephalon and midbrain and contain the striatum, GPe, GPi, 

SNc, SNr and STN (537). The BG form a neural network that relays information from the motor 

cortex to the thalamus, forming closed “cortico-striato-thalamo-cortical” loops (538). In 

addition to an involvement in the planning, initiation, and execution of voluntary movement 

(539, 540), these structures have broader roles in motor learning, executive functions, 

behaviours and emotions (541, 542). Thus, these loops functionally convey information for both 

motor and non-motor processes (543). 

Clinical-pathological observations during the 20th century found that lesions to the 

putamen, GP and STN were associated with movements disorders (544, 545), which heavily 

influenced our understanding of BG function (546). There are two opposing views on the 

anatomical substrate of information processing at the BG, the “parallel processing” and 

“information funneling” hypotheses (547). The “parallel processing” hypothesis infers that the 

processing of different types of cortical information is largely independent via parallel and 

segregated circuits (547). Five parallel circuits have been identified thus far: motor, oculomotor, 

orbitofrontal, dorsolateral prefrontal, lateral orbitofrontal and anterior cingulate loops (543). 

Each circuit appears to receive inputs from separate cortical areas, travel portions of the BG and 

thalamus and project back upon cortical input areas, forming a partially “closed” loop (543, 548-

550). In contrast, the “information funneling” hypothesis proposes the convergence of cortical 

information along the cortico-striato-pallido/nigro-thalmo-cortical system, and emphasizes the 
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contrast between the three-dimensional geometry of the axonal and dendritic arborizations in 

the striato-pallido-nigral circuit (547).  

3.8.1. Physiological state 

The BG and related nuclei can be categorized into input, output and intrinsic nuclei 

(551). Input nuclei receive incoming information from differences sources, primarily from 

cortical, thalamic and nigral areas. The primary input structure of the BG is the striatum, which 

receives excitatory input from the cortex. In contrast, output nuclei send basal ganglia 

information to the thalamus and consist of the GPi and the SNr. Finally, intrinsic nuclei such as 

the GPe the STN and the SNc are the intermediary between the input and output nuclei in the 

relay of information. 

3.8.1.1. Structures 

3.8.1.1.1. Striatum 

The striatum serves as the major input structure of the BG and the origin of its name 

refers to the striated appearance of white corticofugal fibres (552). The caudate nucleus and 

putamen are referred to as the striatum (553). In primates, the fibres of the internal capsule 

separate the caudate nucleus medially and the putamen laterally (554), whereas in rodents, the 

structures are fused together (555). There is also a ventral component of the striatum defined as 

the nucleus accumbens, which is functionally and anatomically connected to limbic brain 

structures (556). Functionally, the caudate-putamen complex is associated with movement 

regulation, whereas the ventral striatum is involved in mediating neurological functions relating 

to motivation, reward and emotion (557, 558). The striatum receives different afferent 

projections, including dopaminergic fibres from the midbrain (559), serotonergic fibres from 

the dorsal and medial raphe nucleus (560) and noradrenergic fibres from the locus coeruleus 

(561). Glutamatergic fibres originating from the cerebral cortex project to the striatum in a 

somatotopically-organized manner (562-564). The targets of cortical input are gamma-amino 

butyric acid (GABA)-containing inhibitory MSNs (565, 566) that represent of the majority of 

striatal neurons. These GABAergic output cells are homogenously distributed such that the 

striatum lacks a distinct cytoarchitectural organization, in contrast with the laminar organization 

of the cortex (555). MSNs are divided into two subtypes, which form the direct and indirect 
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pathways (567). The remaining striatal neurons are larger in size and serve as local interneurons 

composed of three subtypes: 2% contain either parvalbumin or calretinin and 1% contain the 

peptides somatostatin and acetylcholine (568, 569). Striatal interneurons are distributed in axons 

and the majority synapse onto spiny projection neurons (569).  

3.8.1.1.2. Substania nigra 

The SN is a midbrain structure that comprises two distinct components, the SNr and the 

SNc. The name “substantia nigra”, also referred to as “locus niger”, or black substance, refers 

to the high concentration of neuromelanin, a dark pigment derived from L-tyrosine, found in 

dopaminergic neurons (570). In contrast, the SNr, consists of dendritic arborizations, and is 

located ventrally to the SNc (571). Functionally, the SNr is a major output structure of the BG 

circuitry involved in sensorimotor integration and organization of behaviour (572). 

Dopaminergic neurons of the SNc project to the caudate nucleus and putamen, where they 

synapse with MSNs and release dopamine (557, 573). 

3.8.1.1.3. Subthalamic nucleus 

The STN is the uniquely placed in the BG circuitry as the sole structure emitting 

glutamatergic fibres (299). It receives excitatory glutamatergic afferents from the frontal lobes 

with especially large inputs from the motor cortex (574, 575). The STN also receives inhibitory 

GABAergic input from the GPe (576). In contrast, the STN sends excitatory glutamatergic 

output to the GPi, GPe and SNr (577-580).  

3.8.1.1.4. Output nuclei 

The output nuclei, the GPi/SNr complex, act as a single functional unit through 

inhibitory projections to the thalamus, which in turn, influences frontal lobe cortical regions 

(299). The GPi and SNr have similar cyto- and chemoarchitectural characteristics and to some 

extent, similar types of afferent and efferent systems (546). They receive afferent projections 

including glutamatergic afferents from the STN and inhibitory GABAegic afferents from the 

striatum and GPe (299). In both structures, there is a relative segregation of limbic and 

sensorimotor inputs (581). The GPi and SNr consist of inhibitory GABAergic neurons with a 
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firing rate of discharge that tonically inhibits their targets (546). Their output predominantly 

projects to the ventral anterior, ventral lateral and mediodorsal thalamus (543, 582, 583).  

3.8.1.2. Direct versus indirect pathways 

To mediate voluntary movement, equilibrium is maintained between two opposing 

pathways originating in the striatum and regulated by the SNc DA projections that synapse 

with striatal GABAergic neurons (299). 

The first population of MSNs express D1 receptors and preproenkephalin-B, an opioid 

peptide cleaved to produce co-transmitters including substance P and dynorphin (584). This 

population forms the direct pathway, and provide direct inputs to the output neurons of the GPi 

and to the SNr (Figure 20A, page 39). These structures then project to the ventral lateral and 

centro-median parts of the motor thalamus, which in turn, project towards the motor cortex. 

Striatofugal neurons subsequently send GABAergic projections inhibiting the tonic activity of 

GPi/SNr, which leads to a dis-inhibition of thalamic glutamatergic neurons. The thalamus then 

sends an excitatory glutamatergic projection that activates the motor cortex. The behavioural 

result is a facilitation of voluntary movement (585). 

In contrast, the second population of MSNs express enkpephalin and D2 receptors (584). 

These neurons project towards relay structures prior to arriving on the GPi/SNr and form the 

indirect pathway (Figure 2A, page 39). D2 neurons of the striatum project to the GPe, which in 

turn, sends GABAergic efferent fibres to the STN. The STN then provides excitatory projections 

to the output neurons of the BG. Striatopallidal MSNs subsequently emit an inhibitory 

GABAergic projection to the GPe, and further to the glutamatergic neurons of the STN. In turn, 

the STN activates the GPi/SNr. Both nuclei send an inhibitory GABAergic projection to the 

motor thalamus (ventral lateral and centro-medial nuclei) that leads to a decrease in excitatory 

thalamic output to the motor cortex. The net result is suppression of voluntary movement (585).  
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Figure 2: Schematic diagram of the classical BG circuitry describing different states. A. 
The model under physiological conditions shows an equilibrium between the direct and indirect 
pathways. B. The loss of nigrostriatal DA neurons in PD leads to the hyperactivity of the indirect 
pathway and the underactivity of the direct pathway. C. Chronic administration of L-DOPA and 
the eventual development of LID may be due to the hyperactivity of the direct pathway and 
underactivity of the indirect pathway. Reproduced from Obeso (586).  

3.8.2. Pathophysiological state: parkinsonism and dyskinesia 

3.8.2.1. Basal ganglia circuitry in Parkinson’s Disease 

In PD, the extensive degeneration of SNc dopaminergic neurons disrupts the equilibrium 

between the direct and indirect pathways and favours the hypokinetic state (7). Activity of the 

striatofugal neurons of the direct pathway diminishes, whereas the MSNs of the indirect 

pathway become overactive, motor symptoms arise as a result of this imbalance (Figure 2B, 

page 38). With striatal dopamine loss, both pathways lead to the inhibition of GPe and 

subsequent dis-inhibition of the glutamatergic fibres of the STN (572). The consequent 

hyperactivity of the GPi/SNr causes the inhibition of motor thalamic nuclei and decreased 

thalamic output. The result is the underactivity of motor cortical areas, which is reported to 

occur in the primary sensory motor cortex and supplementary motor area (587) in the 

parkinsonian state. In a groundbreaking series of experiments by Mitchell and colleagues, the 

neuronal metabolic marker 2-deoxyglucose (2-DG) was used to reveal the activity states of BG 

subnuclei in the MPTP-lesioned nonhuman primates (588-590). It was reported that the STN 

A B C 
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was hyperactivated, while the GPe and thalamic nuclei were hyperinhibited (588-590). These 

findings suggested that output structures of the BG are hyperactivated in PD (590), and were 

later confirmed through electrophysiology and mRNA expression studies (591-593). However, 

assessment of levels of neural activity in BG based on metabolic markers instead of 

electrophysiological methods is difficult to interpret because the increase in metabolism can 

reflect excitatory or inhibitory processes and the balance between pre- and post-synaptic 

metabolic activity is unclear (594).  

3.8.2.2. Basal ganglia circuitry in dyskinesia 

Early attempts to describe the pathophysiology of LID proposed a disequilibrium 

between the direct and indirect pathways that is opposite with respect to PD (595-597). A greater 

emphasis was placed on the indirect pathway in the pathogenesis of the dyskinetic state and it 

was proposed that MSNs of the indirect pathway become underactive, leading to disinhibition 

of the GPe (Figure 2C, page 38) (538). Subsequently, this causes the over-inhibition of the STN 

and leads to the underactivity of the GPi/SNr. This imbalance dis-inhibits the motor thalamus 

and motor cortex, giving rise to the overactivation of motor cortical areas and consequent 

excessive abnormal movements, which characterize the dyskinetic PD patients (598, 599). In 

MPTP-lesioned nonhuman primates, Mitchell and co-workers demonstrated that at the peak 

dose of DA agonist-induced dyskinesia, there was an increased uptake of 2-DG in the STN and 

GPi, indicating that these structures were hyperinhibited (600). In addition, there was a decrease 

in the uptake of 2-DG in the motor thalamus, which reflected its hyperactivated state in 

dyskinesia (600). In contrast, the proposed underactivity of the indirect pathway in LID is 

generally inconsistent with experimental findings, which presents limitations of the classic 

model of BG circuitry (538). For example, the underactivation of the indirect pathway due to an 

overactive GPe is not consistently seen in dyskinetic MPTP-lesioned nonhuman primates (601). 

Furthermore, MSNs of the indirect pathway are not necessarily underactive, as levels of striatal 

PPE-A mRNA are actually upregulated in dyskinetic compared to non-dyskinetic PD patients 

(602, 603).  

Bezard and colleagues later emphasized the role of the direct pathway in the 

pathogenesis of LID (604). The authors suggest that underactive/abnormal firing of the BG 

output nuclei in dyskinesia (591, 605-610) is primarily caused by overactivation of MSNs of the 
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direct pathway. Indeed, functional overactivity of the direct pathway in LID has been 

demonstrated at the cellular level by upregulated striatal mRNA expression of PPE-B and 

prodynorphin (602, 611-614), and the supersensitization of striatal D1 receptors (614). 

Moreover, treatment with the selective dopamine D1 receptor agonist ABT-431 in PD patients 

elicits dyskinesia to a similar extent to that of L-DOPA (615), which further supports the 

hypothesis of the hyperactivation of the direct pathway in dyskinesia. Overall, these findings 

are consistent with the mechanism suggested in the classic functional model, where the 

hyperactive direct pathway mediates over-inhibition of the BG output, resulting in the 

underactivation of these nuclei.  

Recently, Nadjar and colleagues showed that both the phenotype and the targets of 

striatofugal neurons, are preserved after dopamine denervation in the parkinsonian state and 

even after chronic L-DOPA treatment in non-dyskinetic and dyskinetic subjects (616). Although 

these results suggest that the phenotypical plasticity of the striatofugal system is not affected by 

the experimental condition, it does not exclude the possibility of plastic changes in the striatum 

(617). In fact, the size of the dendritic tree and density of dendritic spines of MSNs is reduced 

in the striatum of PD patients compared with controls (618), consistent with the pruning reported 

to occur in rodents (619) and in MPTP-primates (620, 621). Taken together, these plastic 

changes contribute to the development of L-DOPA related adverse events by altering the flow 

of information through the striatum and the rest of the BG (617).  

3.8.3. Present: changes to the classic model 

In the 1980s, based on the anatomy, neurochemistry, and electrophysiology studies 

available at the time, the classic model of the functional organization of the BG circuitry was 

first proposed (617). As discussed above, the classic model is based on the segregation of the 

direct and indirect pathways where neural processing occurs in a feed-forward manner to 

achieve behavioural outcome (538). Although the classic functional model has advanced our 

understanding of functional mechanisms in normal and disease states, the model is too simplistic 

and limited to describe the pathophysiology underlying PD and LID (538). For example, 

underactivity of the BG output nuclei in dyskinesia (605, 608, 609) cannot fully account for 

disease pathogenesis (607). Similarly, lesioning the GPi does not result in dyskinesia (539, 622) 

and in fact, pallidotomy of the GPi effectively alleviates LID in MPTP-lesioned primates (623) 
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and PD patients (624, 625), which is contrary to the outcome proposed by the classic functional 

model.  

Experimental reports demonstrate a greater complexity in the neural organization and 

information processing within the BG (617). This has prompted deviation from the classical 

model originally described by Alexander and Crutcher (543) to a new functional model, which 

considers the dynamic neural network in the BG circuitry (597, 626). As demonstrated by major 

experimental findings in PD and LID, the BG are not simply a “go through” structure, where 

the connectivity and functional interactions occur along a unilateral fashion along the cortico-

basal ganglia-thalamo-cortical circuits (627, 628). The organization of the BG circuitry appears 

to be interconnected rather than segregated as striatofugal axons consistently collateralize to 

both the GPe and GPi (629). In addition, major changes to the classic indirect pathway include 

the GPe as a key structure for inhibitory modulation of the striatum and output nuclei (628, 630, 

631) and the STN as another major input station that receives and sends glutamatergic 

projections (551, 574, 632). Thus, the model now incorporates internal feedback loops (597, 

626), and reciprocal connections are found between many nuclei of the circuitry (633-635). 

Furthermore, the reorganization includes functional dual di-synaptic control of the GPe and GPi 

(597, 628) via parallel cortical projections to the striatum and STN (538). The corticostriatal 

projection uses the striatum to exert inhibition of the pallidal segments (538) while the cortico-

STN projection uses the STN to mediate fast excitatory input to these structures (636). Indeed, 

parallel cortico-basal ganglia loops have been confirmed in humans by fMRI and PET studies 

(637).  

3.8.4. Serotonergic system and basal ganglia: implication in Parkinson’s 

Disease and dyskinesia 

The basal ganglia are enriched with a variety of neurotransmitters such as DA, glutamate, 

acetylcholine and 5-HT (638). In the last decade, there has been growing interest in the role of 

the serotonergic system in PD and LID, which will be further discussed in detail (section: 3.10. 

Serotonergic system in dyskinesia, page 47). Briefly, serotonergic neurons in the raphe nucleus 

project axonal fibres to multiple brain areas including the basal ganglia (639). In the DA-

denervated brain in PD, striatal serotonergic terminals contribute increasingly to the conversion 

of L-DOPA into DA (640, 641). However, the lack of auto-regulatory feedback mechanisms to 
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control DA release results in the aberrant release of DA into the extracellular space (639). 

Consequently, fluctuations in DA levels lead to the supersensitivity of postsynaptic 

dopaminergic receptors and the expression of dyskinesia (642). 

The 5-HT receptors are divided in 7 classes (5-HT1-7) with at least 14 subtypes and are 

all members the GPCR family, except for the 5-HT3 receptor (see section: 5-HT3 receptors, page 

52). These GPCRs activate an intracellular second messenger to mediate excitatory or inhibitory 

neurotransmission (643). 5-HT neurons express three subtypes of autoreceptors, amongst which 

the 5-HT1A and 5-HT1B are the most abundant (644). 5-HT1A receptors are found in the soma 

and on dendrites (645, 646), whereas 5-HT1B receptors are more abundant in terminals (647) 

and together, these autoreceptors fine-tune the synaptic release of 5-HT to maintain synaptic 

levels within a physiological range (645). Agonists of these receptors reduce neurotransmitter 

release from 5-HT neurons (645, 648-650), and since DA and 5-HT are localized in the same 

synaptic vesicles after exogenous L-DOPA administration, it is conceivable that they also 

decrease the release of L-DOPA derived DA from 5-HT terminals (394, 640, 651). 

The BG nuclei receive serotonergic afferents that mainly originate from the dorsal raphe 

nuclei (see review in (652)). Furthermore, the BG contain 5-HT, its metabolite 5-

hydroxyindoleacetic acid (5-HIAA) (560, 653, 654), the 5-HT transporter (SERT) and 5-HT 

receptors 5-HT1 to 5-HT7. The distribution of 5-HT receptors in these structures is 

heterogeneous and varies between species (655). 5-HT modulates the activity of BG nuclei by 

acting on 5-HT receptors and helps maintain the balance between the direct and indirect 

pathways (656).  

Parent and colleagues conducted an immunohistochemistry study to visualize the 5-HT 

system innervation of BG in human and nonhuman primates (657). The SN is the most densely 

innervated BG subnucleus and nigral 5-HT innervation originates from axons and arborizes 

immediately upon entering the SN (657). In addition, 5-HT mainly exerts an inhibitory effect 

on the activity of SNc DA neurons projecting to the striatum and SNr GABAergic neurons 

projecting to the thalamus and brainstem in humans and primates (657). Conversely, 5-HT 

depletion decreases firing rate and increases burst activity of SNr neurons (658). In spite of the 

apparent inhibitory effect of 5-HT input on the SNc (659, 660), lesioning the dorsal RN does 



44 

 

not alter SNc activity (661), so it is still unclear how 5-HT transmission modulates the activity 

of  dopamainergic SNc neurons (655). 

In addition, the striatum receives dense serotonergic afferents from the dorsal RN, where 

local administration of 5-HT inhibits the majority of the striatal cells (662-664). Furthermore, 

many 5-HT variscosities in the striatum could be visualized in close apposition with the 

pigmented cell bodies of the SNc (657). Stimulation of pre-synaptic 5-HT1A and 5-HT1B 

receptors inhibits striatal 5-HT release (648, 665) and activation of the 5-HT1A receptor also 

decreases glutamate release from corticostriatal projections (666-668). In contrast, the 5-HT2 

receptor exerts an inhibitory effect on striatal neuron activity, mainly by targeting MSNs (669, 

670).   

In the STN, 5-HT can act at the pre- and post-synaptical levels and, given the functional 

diversity of 5-HT receptors, exert multiple effects (671-673). The activity of STN neurons is 

modulated by 5-HT afferents and in primates, 5-HT axonal varicosities are apposed almost only 

upon dendritic spines or branches and many terminals do not form synaptic contacts (657). 

Pharmacologic lesion of the DRN and 5-HT depletion increases STN firing frequency and 

bursting activity in vivo (674, 675). 

Electrophysiology studies in rats indicate that 5-HT controls its effect by both pre- and 

post-synaptic mechanisms at the pallidal level (676). The decrease in 5-HT concentrations can 

lead to changes in pallidal activity and contribute to abnormal synchronous oscillations in BG 

components (657). Moreover, in the GPe, 5-HT depletion decreases the firing frequency and 

increases the proportion of bursty and irregular neurons (677), these results have been confirmed 

by a patch-clamp recording study where 5-HT perfusion increased the firing rate of GPe neurons 

(678). In addition, 5-HT can decrease the pre-synaptic release of glutamate and GABA from 

subthalamopallidal and striatopallidal terminals, respectively, by acting on 5-HT1B receptors 

(679). 

In PD and subsequent L-DOPA replacement therapy, the 5-HT system adapts to DA 

depletion by adopting anatomical and functional transformations (655). However, the changes 

occurring after dopaminergic lesion in animal models of PD differ across research groups, which 

may reflect methodological differences including the parkinsonian state, the age of the animals, 

injection site, toxin concentration, and the time between surgery and performing the studies 

(655). Similarly, striatal 5-HT levels have been reported to be increased (680, 681), unchanged 
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(641, 682) or decreased (683) in parkinsonian animals. On the other hand, the dorsal RN also 

undergoes adaptive changes after the dopaminergic degeneration such as the increased 5-HT1A 

expression in MPTP-lesioned primates (684). Overall, the effects of 5-HT in the BG depend on 

the specific nucleus and its receptor population (655). For example, 5-HT exerts an inhibitory 

action on striatal MSNs via direct or indirect activation of 5-HT receptors, as well as in the STN 

and SNr in vivo, whereas the overall effect of 5-HT is excitatory in the GPe (655).  

3.9.  Dopaminergic system in dyskinesia 

Mechanisms involved in the pathophysiology of LID are complex and have been 

investigated in studies using animal models and parkinsonian patients.  

 In general, DA cell loss in the nigrostriatal pathway and chronic administration of L-

DOPA or DA agonists, are viewed as necessary conditions for the appearance of LID (685).  

3.9.1. Dopamine receptor supersensitivity and dopamine sensitization 

Denervation-induced supersensitivity of DA receptors has been recognized as a plausible 

mechanism of LID. However, it is likely more complex than simply an increase in the density 

of striatal DA receptors (686-689); thus, according to this theory, then LID might appear with 

first dose of L-DOPA. However, LID does not usually emerge at the first exposure to L-DOPA 

but gradually develops over years of L-DOPA therapy, as discussed above. The development of 

LID appears to be related to an increase in the activity of D1, D2, D3 receptor subtypes while 

additional studies are required to discern the contribution of D4 and D5 receptors (685). 

3.9.2. D1-like family of dopamine receptors 

In early studies in primates, it was shown that D1 agonists were as effective as D2 

agonists to improve parkinsonian symptoms, while inducing less dyskinesia (690-692). Later 

studies, however, implicated a more important role of D1 receptors in dyskinesiogenesis. A 

study in drug-naïve MPTP-lesioned primates found that chronic administration of a D1 receptor 

agonist led to the development of dyskinesia (693). Consistent with this data, recent studies in 

6-OHDA-lesioned rats reported that D1 agonists induce dyskinesia, and that pharmacological 

blockade of D1 receptors was more effective than D2 receptor antagonism at alleviating 

dyskinesia (457, 694, 695). Furthermore, genetic knockout of D1 receptors completely 
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suppressed LID in parkinsonian mice, whereas D2 receptor knockout mice developed LID 

similar to wild-type mice (696).  

Autoradiographic studies on D1 receptors in vivo and on post-mortem tissues of animal 

models and in PD patients have been conducted with no general consensus (697), which may 

be due to the differences in experimental assays and the subregion of the striatum measured 

(685). Although the association between the expression of D1 receptors and dyskinesia is 

unclear, the sensitivity of D1 receptors, measured by GTPγS binding, was reported to be linearly 

related to the severity of LID (686). L-DOPA induced a decrease in the sensitivity of D1 

receptors in non-dyskinetic MPTP-lesioned primates, whereas its sensitivity was increased in 

dyskinetic animals (686). Moreover, D1 receptors are internalized in the cytoplasm in 6-OHDA-

lesioned rats compared to normal rats (698), which is also observed in PD patients, where D1 

receptors are preferentially localized to the cytoplasm compared to healthy controls (699). 

However, it is unclear if the change in subcellular distribution of D1 receptors is a consequence 

of distribution in development, priming process or expression of LID (685).  

D1 receptors interact with a variety of receptors and trigger signalling pathways that 

have an influence on dyskinesia development. D1 receptors interact with ionotropic glutamate 

NMDA receptors at the post-synaptic striatal level, and may also form hetero-oligomeric 

complexes (700). This interaction affects the trafficking, signalling and desensitization of both 

receptors (701, 702) and importantly, these complexes are lost in dyskinetic 6-OHDA-lesioned 

rats (703). Furthermore, extracellular signal-regulated kinase (ERK) is part of the intracellular 

pathways of both NMDA and D1 receptors (704). ERK intracellular signalling is associated 

with LID priming process (705) and the expression of LID is reduced with pharmacological 

inhibition of ERK intracellular signalling (706, 707). On the other hand, dopaminomimetic 

agents induce the expression of transcription factors such as c-jun, c-fos, ∆FosB, FosB in striatal 

neurons in normal (708, 709) and hemiparkinsonian animals (350) and require the activation of 

D1 but not D2 receptors (709). No study has reported the involvement of the D5 receptor in PD 

and LID (685). 
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3.9.3. D2-like family of dopamine receptors 

Once primed to express LID, D2 agonists will trigger abnormal involuntary movements 

(AIMs) in 6-OHDA-lesioned rats (710, 711) and LID in MPTP-lesioned primates (712, 713) 

and PD patients (714), producing greater dyskinesia than D1 agonists (690). Results from 

autoradiographic studies were more consistent than with D1 receptors, but again, the 

inconsistency observed could be due to variation in experimental assays and the striatal region 

studied (685). Expression of D2 receptors in the striatum remained unchanged (715, 716) or 

increased (717, 718) with MPTP lesion in primates and in untreated PD patients (719, 720). D2 

receptor agonists reduced MPTP-induced upregulation of D2 receptors (721, 722) not as 

efficiently as L-DOPA whereas D1 receptor agonists had no effect or produced an increase of 

D2 receptors (686). A PET study in de novo PD patients reported similar observations (723, 

724). In situ hybridization studies in primates demonstrated that MPTP induced an upregulation 

of striatal D2 receptor mRNA that was completely reversed by L-DOPA treatment (725) or 

unaffected (686, 726), whereas D2 receptor agonists decreased or reversed this expression (727). 

The influence of D2 receptor trafficking in PD and LID is not yet established (685).  

3.10. Serotonergic system in dyskinesia 

The chemical structure of 5-HT was identified in 1953 (728) and a few years later, its 

function as a neurotransmitter in the CNS was proposed (729). 5-HT plays major roles in the 

regulation of mood and emotion, cognition, feeding and satiety, circadian and sleep-wake cycle 

regulation, pain, and motor control through a variety of receptor subtypes (730, 731). 5-HT is 

synthesized from L-tryptophan by the following reactions: the tryptophan hydroxylase enzyme 

generates 5-hydroxytryptophan (5-HTP), which is then converted to 5-HT by the AADC, the 

same enzyme that catalyzes the conversion of L-DOPA into DA. In the brain, 5-HT neurons are 

clustered within the midbrain raphe nuclei (areas B1-B9) (732) and include the dorsal, median, 

magnus, obscuris, and pontis RN (733). Anatomical studies further subdivided the midbrain RN 

into two main groups based on position within the brainstem and axonal projections. The rostral 

group, which contains the dorsal RN comprises the B7 and B8 cell clusters whereas the median 

RN consists of the B5, B8 and B9 cell clusters. 5-HT plays a key role in the CNS as 5-HT neuron 

soma from the midbrain send projections throughout the entire CNS (734). In fact, one 5-HT 

cell body can be responsible for up to 500,000 cortical varicosities (735), which underscores the 
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widely distributed innervations derived from these nuclei, including the majority of 5-HT 

innervation to the forebrain regions (736, 737). Moreover, within the dorsal RN, 5-HT neurons 

are topographically organized and studies also demonstrate that 5-HT neurons within each sub-

region differ morphologically, electrophysiologically, and molecularly with respect to receptor 

expression (738). 

There is a growing appreciation for the multifaceted effect of 5-HT in PD and recent 

studies suggest that the 5-HT system is heavily implicated in the pathophysiology of LID (641). 

In animal models of PD, it has been suggested that the 5-HT system is an important source of 

striatal L-DOPA derived DA release (641, 739-741). In PD patients undergoing L-DOPA 

therapy with severe degeneration of the nigrostriatal DA system and compromised function in 

the remaining DA neurons (742-744), the 5-HT neuron derived “false transmitter” can help 

improve motor disability (641). With chronic administration of L-DOPA, and particularly in 

advanced stages of the disease, the lack of a regulatory mechanism to control synaptic 

neurotransmitter levels can provoke dyskinesia (745).  

3.10.1. Pre-clinical evidence for the involvement of the serotonergic system 

in dyskinesia 

Pharmacological studies also demonstrate the involvement of 5-HT neurons in the 

appearance of LID in animal models, as discussed above. It is generally assumed that in early 

stages of disease, L-DOPA is taken up into spared nigrostriatal DA neurons of PD animal 

models and patients, converted into DA, stored into vesicles and released in a physiologically 

regulated manner (746). The resultant DA release from these dopaminergic terminals within the 

striatum accounts for the therapeutic action of L-DOPA and is finely regulated by D2 

autoreceptors and the DAT (746). With disease progression, however, fewer DA terminals can 

convert exogenous L-DOPA into DA. Other cellular compartments can compensate for the loss 

of DA neurons in mediating the conversion of L-DOPA to DA and neurotransmitter release. 5-

HT neurons possess the same enzymatic machinery as dopaminergic terminals as they express 

AADC and VMAT2 (394, 395, 747) and thus, are able to convert L-DOPA to DA and to mediate 

its storage into synaptic vesicles (746). Various studies have demonstrated that 5-HT neurons 

can store and release DA in vivo and in vitro (644). The first report implicating 5-HT neurons 

as a source of DA release was provided by Tanaka and colleagues (743). In the study, removal 
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of 5-HT innervation by 5,7-dihydroxytryptamine (5,7-DHT) administration reduced L-DOPA 

derived extracellular DA levels by about 80% in the striatum of 6-OHDA-lesioned rats (743). 

Importantly, this also led to a near-complete suppression of LID in L-DOPA primed 

parkinsonian rats. Furthermore, the same group also showed a similar reduction in extracellular 

DA levels after co-administration of the 5-HT1A agonist 8-hydroxy-2-(di-n-

propilamino)tetralin (8-OHDPAT) with L-DOPA (744). Another group used a similar approach 

to demonstrate that lesion to the 5-HT system suppresses L-DOPA induced rotational behaviour 

and striatal c-Fos expression in 6-OHDA-lesioned rats (748). Taken together, these studies 

suggest that the action of L-DOPA in PD depends, at least in part, on its conversion to DA in 5-

HT neurons  (308).  

Risk factors that underlie the development of dyskinesia suggests that it is the 

progression of dopaminergic degeneration rather than the duration of L-DOPA treatment that is 

responsible for the emergence of LID over time (749). Indeed, parkinsonian animals only 

develop severe dyskinesia with extensive DA denervation whereas partially lesioned animals 

show no or only mild dyskinesia (745). Using a viral vector delivery of short hairpin RNA for 

TH, Ulusoy and colleagues induced significant DA deficiency, and reported that DA-depleted 

rats were resistant to the induction of dyskinesia following administration of high dose of L-

DOPA as opposed to control animals with similar striatal DA depletion (750). These findings 

may be explained by the relatively preserved striatal DA terminals after inhibition of DA 

synthesis, which act as a buffering system for exogenous L-DOPA (745). Rat transplantation 

studies also confirmed the ability of pre-synaptic DA compartment to prevent excessive DA 

receptor stimulation, as L-DOPA primed dyskinetic rats tended to normalize response to L-

DOPA after receiving ventral mesencephalic dopaminergic neuronal grafts into the lesioned 

striatum (739, 751). Similarly, in the clinic, as neurodegeneration progresses in PD patients, 

susceptibility to dyskinesia also increases over time (752). DA surges reflect uptake and 

conversion of exogenous L-DOPA by cells other than nigrostriatal DA neurons (443). 

Accordingly, several studies have demonstrated that 5-HT neurons become the main source of 

DA release in severely DA-denervated animals and that 5-HT neuron derived DA release is 

important in LID (308). In 6-OHDA lesioned rats, Carta and colleagues demonstrated that DA 

release from the 5-HT system is responsible for the appearance of LID (641). In fact, animals 
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subject to toxic lesion of the 5-HT system by the neurotoxin 5,7-DHT or pharmacological 

blockade of these neurons by 5-HT1A and 5-HT1B agonists leads to the silencing of dyskinesia 

upon treatment with L-DOPA (641). Moreover, studies consistently found that 5-HT1A and 5-

HT1B agonists exert anti-dyskinetic effects in animal models of LID (641, 753-755) . 

In early stages of disease, the therapeutic efficacy of L-DOPA and the physiological 

release of DA by 5-HT neurons is beneficial because the remaining DA terminals can buffer the 

5-HT neuron-derived DA and avoid excessive post-synaptic DA receptor stimulation (642). DA 

D2 autoreceptors are located on the pre-synaptic membrane and activate a feedback control 

mechanism to fine-tune neurotransmitter release and allow the maintenance of physiological-

like synaptic DA levels (745). However, with disease progression, the therapeutic efficacy of 

L-DOPA is partly compromised and, 5-HT neurons contribute increasingly to the conversion of 

exogenously administered L-DOPA to DA, eventually producing excessive DA receptor 

activation (745). Moreover, unlike DA neurons, 5-HT neurons lack autoregulatory feedback to 

control DA release (465, 756). As a result, the non-physiological release of DA leads to large 

fluctuations in synaptic DA levels, causing pulsatile stimulation of striatal DA receptors and 

aberrant downstream signalling cascade (757).  

3.10.1.1. 5-HT1 agonists in the treatment of dyskinesia 

Munoz and colleagues observed that a combination of 5-HT1A and 5-HT1B receptor 

agonists, using low doses of 8-OH-DPAT and CP-94253, synergistically suppressed L-DOPA 

induced AIMs in 6-OHDA-lesioned rats (758). These results were also obtained in dyskinetic 

MPTP-lesioned macaques (758). Accordingly, a rat microdialysis study reported a reduction of 

extracellular DA levels that account for the potent anti-dyskinetic effect of 5-HT1A and 5-HT1B 

receptor agonists (759). In a rat PET study, Nahimi and co-workers showed that administration 

of 8-OH-DPAT reverses L-DOPA induced decrease of [11C]-raclopride binding and increases 

extracellular DA in 6-OHDA lesioned rats (760).  

Agonists for the 5-HT1A receptor have shown acute and chronic efficacy in animal 

models and clinical studies for LID but at the expense of the therapeutic efficacy of L-DOPA 

(641, 740, 741, 761-763). The 5-HT1A receptor agonist sarizotan demonstrated efficacy in 

reducing dyskinesia in rodent and primate models of PD, as well as in idiopathic PD patients in 

early open-label studies (762). However, the anti-dyskinetic effect was not significantly 
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different compared to placebo in two Phase III clinical trials (764). Similarly, the partial non-

selective 5-HT1A receptor agonist buspirone reduced LID in patients (765) but two other studies 

found that this effect compromised the therapeutic efficacy of L-DOPA (766, 767). 5-HT1B 

receptor agonists can produce anti-dyskinetic effects in animal models of PD but no clinical 

trials have been performed with these yet (768).  

3.10.1.2. 5-HT2A antagonists in the treatment of dyskinesia 

5-HT2A receptors are localized post-synaptically and in general, they exert an excitatory 

effect (768). Rahi and colleauges demonstrated an increase in 5-HT2A receptors in the striatum 

of dyskinetic primates when compared with non-dyskinetic animals (769). Preclinical and 

clinical studies have shown the efficacy of drugs acting on 5-HT2A receptors in controlling L-

DOPA-induced motor complications (770, 771) but the results are contradictory. In MPTP-

lesioned primates, the selective 5-HT2A inverse agonist pimavanserin reduced LID without 

worsening motor scores (459), whereas another antagonist, ritanserin, alleviated LID but 

worsened L-DOPA anti-parkinsonian action (772). In addition, the 5-HT2A antagonist 

volinanserin did not reduce LID in hemiparkinsonian rats (773). Thus, further work is required 

to establish whether 5-HT2A antagonists can be beneficial in dyskinetic patients (768). 

3.10.1.3. Clinical evidence for the involvement of the serotonergic 

system in dyskinesia 

Clinical evidence on the effectiveness of 5-HT modulation in LID is still scarce (745). 

An open-label double-blind study on the efficacy of sarizotan, a partial 5-HT1A receptor agonist 

in dyskinetic patients was terminated for lack of efficacy (764, 774). This may be attributed to 

its antagonistic activity at the D2 receptors (775), as well as its action on only the 5-HT1A 

receptor, whereas experimental evidence has demonstrated that simultaneous targeting of 5-

HT1A/1B auto-receptors exerts a synergistic effect to attenuate LID (741, 758). In fact, a Phase II 

study with the mixed 5-HT1A/1B agonist eltoprazine has shown promising results (776).  

Consistent with microdialysis experiments in rats, a PET study provided support for the 

association between dyskinesia and dysregulated DA release (752). Dyskinetic patients showed 

higher synaptic DA levels one hour after L-DOPA administration compared to non-dyskinetic 

subjects, which led the authors to propose that dyskinetic patients have difficulty maintaining 
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DA levels within certain limits, likely caused by progressive degeneration of DA neurons and 

consequent reduced ability to mediate controlled DA release. In line with this view, a PET study 

using the radioligand [11C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile to 

evaluate 5-HT terminal function and the radioligand [11C]-raclopride to evaluate striatal DA 

release found that dyskinetic PD patients showed relative preservation of serotonergic terminals 

and no difference compared to non-dyskinetic PD patients (777). Furthermore, in dyskinetic PD 

patients, the same L-DOPA dose induced higher striatal synaptic DA concentration in PD 

patients with LIDs compared to non-dyskinetic PD patients, which is in agreement with previous 

studies (752, 778). Administration of the partial 5-HT1A agonist buspirone, prior to L-DOPA 

treatment, reduced L-DOPA evoked rise in striatal synaptic DA and attenuated LID (777). 

Further dividing the LID group by severity into milder and severe forms, it was found that 

buspirone modulated DA levels to a greater extent in PD patients with mild LIDs compared to 

those with severe LIDs (777). The authors concluded that striatal serotonergic terminals 

contribute to LID in human PD via aberrant processing of exogenous L-DOPA and release of 

DA as false neurotransmitter. Finally, the SERT-to-DAT binding ratio increases in PD patients 

that experience LIDs, when compared with non-dyskinetic PD patients, which further supports 

the notion that when dopaminergic innervation in the striatum is low, the 5-HT system is critical 

to the development of LIDs (779).  

Collectively, these experimental findings provide strong evidence supporting the pivotal 

role of 5-HT neurons in the induction and expression of LID. An important challenge for future 

clinical studies will be to preserve the therapeutic effect of L-DOPA following pharmacological 

dampening of 5-HT neuron activity (745). 

4. 5-HT3 receptor 

Although many serotonergic drugs tested have demonstrated efficacy in reducing 

dyskinesia, most have been at the expense of impairing L-DOPA anti-parkinsonian action (639). 

In MPTP-lesioned non-human primate models of PD, for example, selective 5-HT1A and 5-HT1B 

receptor agonists reduced dyskinesia but induced suppression of locomotor activity and 

increased motor disability (780, 781). The 5-HT3 receptor is an interesting target to study in the 

context of dyskinesia because several drugs are clinically available to modulate its function and 
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the 5-HT3 receptor has been shown to modulate striatal DA release, as discussed in detail 

(section: 5-HT3 receptors in Parkinson’s Disease and L-DOPA-induced dyskinesia, page 57). 

The 5-HT3 receptor is the sole ligand-gated ion channel amongst the 5-HT receptor 

family, while the other 5-HT receptors are all metabotropic GPCRs that modulate an 

intracellular second messenger system (782). The 5-HT3 receptor was first identified in the 

guinea pig ileum, and then more widely distributed in the peripheral nervous system (PNS) 

(783). The presence of 5-HT3 receptors in the brain was initially a subject of controversy (784) 

until adequate ligands were developed to conduct membrane binding and autoradiography 

studies (785-788), which suggested the presence of 5-HT3 receptors in the CNS. In the PNS, the 

activation of 5-HT3 receptors regulates autonomic, parasympathetic and sensory functions 

(789). 5-HT3 receptors located on vagal sensory afferents exert pronounced effects on the 

cardiovascular system (790, 791) and also control motility and peristalsis throughout the 

gastrointestinal tract (792). In addition, 5-HT3 receptors regulate nociceptive processing (793-

795), which is consistent with their expression in the dorsal root ganglion and neurons in dorsal 

horn of the spinal cord (795-798). In the CNS, 5-HT3 receptors in the hippocampus and nucleus 

accumbens are implicated in anxiety (799). Moreover, 5-HT3 receptors are implicated in drug 

addiction and alcohol consumptions in rats (800) and in humans (801) and they are also 

important for cognitive function in elderly patients (802).  

4.1.  Localization of 5-HT3 receptors  

The distribution of 5-HT3 receptors has been studied through autoradiographic, 

immunohistochemistry and in situ hybridization techniques with variation across different 

species (803), likely reflecting differences in the methodology and choice of ligands. In the PNS, 

5-HT3 receptors have been detected on pre- and post-ganglionic autonomic neurons and on 

neurons of the sensory and enteric nervous system (804-806).  

In the CNS, when compared to other 5-HT receptors, the 5-HT3 receptor displays a 

relatively lower density (805, 807). The highest density of 5-HT3 receptors are found within the 

dorsal vagal complex in the brainstem (807, 808), which comprises the nucleus tractus solitarius, 

area postrema and dorsal motor nucleus of the vagus nerve (784). Outside the brainstem, the 

highest levels of 5-HT3 receptors are expressed in regions such as the hippocampus (788), 

amygdala and superficial layers of the cerebral cortex (807, 808). However, the distribution 
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within the forebrain displays species variations, and in humans, for example, there are relatively 

high levels of 5-HT3 receptors within the caudate nucleus and putamen (809) whereas low levels 

are detected within cortical regions (809-811). In contrast, autoradiographic and homogenate 

binding studies in the rat brain have demonstrated high levels of 5-HT3 receptors in the 

neocortex (786, 812-816), hippocampus (786, 812-815) , amygdala (786, 812-814) and dorsal 

vagal complex (813, 814), whereas  a low density of 5-HT3 receptors is detected in the striatum 

(786, 815), RN (813), SN (813) and nearly absent in the cerebellum (786, 815). An 

autoradiographic binding study conducted in the mouse, ferret and rabbit brains also showed a 

similar distribution of 5-HT3 receptors within the brain (808). Moreover, an 

immunohistochemistry study in the Syrian hamster brain also reported similar results with high 

levels of the 5-HT 3A (5-HT3A) subunit within the neocortex and amygdala, and intermediate 

levels in the striatum, SN, GP and DRN (817). In general, 5-HT3 receptors are concentrated in 

regions involved in the initiation and coordination of the vomiting reflex, which may explain 

the relevance of 5-HT3 receptor antagonists in chemotherapy-induced emesis (782) as well as 

pain processing and control of anxiety (818).  

Consistent with the mapping of 5-HT3 receptors in autoradiographic studies, in situ 

hybridization studies indicate that in the rodent brain, 5-HT3A receptor mRNA transcripts are 

similarly distributed to radiolabelled 5-HT3 receptor binding sites (819). 5-HT3 mRNA is present 

in interneurons in the hippocampus and prefrontal cortex (820, 821) and this distribution 

indicates that 5-HT3 receptors may mediate the indirect inhibition of excitatory pyramidal 

neurons via activation of GABAergic interneurons. Furthermore, 5-HT3 receptor-like 

immunoreactivity is primarily associated with GABA-containing neurons in the cerebral cortex 

and hippocampus that often co-localize with the peptide hormone cholecystokinin (804, 822, 

823) or the calcium-binding protein calbindin (804). 

4.2.  5-HT3 receptor subtypes and properties 

5-HT3 receptors share electrophysiological and structural patterns with the nicotinic 

acetylcholine and GABA type A receptors, other members of the Cys-loop superfamily (824). 

A functional channel consists of five symmetrically-arranged subunits that surround a central 

ion-conducting pore (825). In rodents, two subunits have been cloned thus far: 5-HT3A (826) and 

5-HT3B (827) receptor subunits, whereas three additional subunits have been identified in 
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humans: 5-HT3C, 5-HT3D and 5-HT3E subunits (828-830). The subunits can be arranged to form 

a homomeric (5-HT3A only) receptor or heteromeric (5-HT3A and 5-HT3B subunits) receptor 

(827). Although the 5-HT3C, 5-HT3D and 5-HT3E subunits are likely to form only heteromeric 

receptors with 5-HT3 receptor subunits, their function is still being debated (828, 831).  

In contrast to the 5-HT3A subunits, the 5-HT3B subunit does not form functional 

homopentameric channels because of its retention in the endoplasmic reticulum (832). 5-HT3 

receptors in the CNS and PNS may be constructed of different subunits and, although it is known 

that all receptors contain the 5-HT3A subunit, the distribution of the 5-HT3B subunit is still 

unclear (833). Immunohistochemical studies suggested that the expression of the 5-HT3B 

subunit is restricted to the PNS (798, 834) but in situ hybridization studies showed that the 5-

HT3B subunit mRNA is present in the human brain (827). Furthermore, immunocytochemical 

studies report that 5-HT3B subunits are found in rat hippocampal neurons (835). Thus, it has 

been proposed that the 5-HT3B subunit is either present in low levels in the CNS or in very 

discrete localized cell populations (833). The function of 5-HT3 receptors depends on receptor 

composition (836, 837), and expression of the 5-HT3B subunits leads to an increase in single 

channel conductance and lower permeability to Ca2+ (827, 838). Furthermore, heteromeric 

receptors show faster activation and deactivation kinetics than homomeric receptors (839). The 

differences observed between in vitro and in vivo studies (803) may be explained by the fact 

that in vitro studies tend to be performed in cultured cells expressing only homomeric 5-HT3 

receptors (840). Whether the 5-HT3B subunit is a major determinant of 5-HT3 receptor function 

in the CNS is still being debated (836, 841, 842) and may depend on species-specific expression 

patterns (843).  

4.3.  Physiology and pharmacology of 5-HT3 receptors 

The 5-HT3 receptor is permeable to Na+, K+ and Ca2+ (844, 845) and its function depends 

on whether it localizes to nerve terminals or post-synaptic cells (803). Differences in the cellular 

localization of pre- and/or post-synaptic 5-HT3 receptors within different cerebral regions 

appear to depend on the nature of the neuron that bears these receptors (846, 847). The 

preferential localization on nerve endings is consistent with a physiological role of the 5-HT3 

receptor in the control of neurotransmitter release (848). Activation of pre-synaptic 5-HT3 

receptors is followed by rapid membrane depolarization, which causes a rapid rise in cytosolic 
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Ca2+ concentration by inducing Ca2+ influx and mobilizing intracellular Ca2+ stores, and 

modulates the release of neurotransmitters and neuropeptides including DA, cholecystokinin, 

acetylcholine, GABA, substance P or 5-HT itself (849, 850). In contrast to 5-HT3 receptors 

found predominantly in pre-synaptic regions associated with axons and terminals, in the 

hippocampus, they are mostly located on post-synaptic receptors in somatodendritic regions 

(846). Here, activation of post-synaptic 5-HT3 receptors leads to depolarization by Na+ influx 

and K+ efflux (851) where it mediates fast synaptic transmission (852, 853). Furthermore, pre- 

and post-synaptic 5-HT3 receptors exhibit distinct electrophysiological profiles with differences 

in single channel conductance, kinetics and re-sensitization time-course (827, 854, 855). For 

example, the permeation properties differ such that pre-synaptic 5-HT3 receptors are highly 

permeable to Ca2+ (851, 856-858), whereas post-synaptic receptors are less permeable to Ca2+ 

compared to Na+ and K+ (844, 859).  

Activation of the 5-HT3 receptor by its physiological ligand 5-HT, leads to the influx of 

cations through the open ion channel, which causes depolarization of the cell (860). In addition 

to 5-HT, DA may be another endogenous ligand for 5-HT3 receptors, as it displays low-affinity 

agonism of the 5-HT3 receptor (861). Frequently used 5-HT3 receptor agonists are 1-(m-

chlorophenyl)-biguanide (mCPBG), 2-methyl-5-HT and phenylbiguanide. However, they do 

not readily penetrate the BBB (862, 863), which limits their usefulness in in vivo studies. In 

recent years, SR57227A has been proposed as a high affinity agonist of the 5-HT3 receptor. 

SR57227A may be a useful tool to study the function of 5-HT3 receptor in both in vitro and in 

vivo studies (864) given its ability to cross the BBB and its affinity to central 5-HT3 receptors 

(863, 865, 866). However, due to the emetogenic and anxiogenic effects of 5-HT3 agonists, they 

have no therapeutic potential (839).  

In contrast to 5-HT3 receptor agonists, a variety of highly specific and potent antagonists 

have been developed in the last three decades and they are currently the gold standard to treat 

chemotherapy-induced emesis (867). 5-HT3 receptor antagonists can be identified by the suffix 

setron, and competitively bind to the orthosteric ligand binding site of 5-HT3 receptors (837). 

However, the nature of receptor antagonism varies, which may account for differences in their 

pharmacokinetic profile (868). The affinities of common 5-HT3 receptor antagonists are in the 

low nanomolar concentration range (7.73 to 10.45 nM) and include dolasetron, ondansetron, 
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granisetron, tropisetron and palonosetron (869). 5-HT3 antagonists are only non-selective at 

concentrations 100-fold or greater in excess of those required to antagonize the 5-HT3 receptor 

(870, 871) and their non-selective effects include agonism of 5-HT receptors (870, 872), 

antagonism of non-5-HT3 receptors (873, 874), and local blockade of ionotropic receptors (875). 

In spite of the actions cited above, pharmacological blockade of 5-HT3 receptors does 

not modify normal animal behaviour or physiological function in healthy volunteers except for 

intestinal transit time (818). However, 5-HT3 receptor antagonists demonstrated clinical efficacy 

in various forms of emesis like chemotherapy-induced, radiotherapy-induced, and post-

operative emesis (867, 876) and extends to other indications such as irritable bowel syndrome 

(877, 878), anxiety (879), chronic fatigue syndrome (880), alcohol abuse (881), fibromyalgia 

(882) and migraine (883). Although the use of 5-HT3A knockout mice has not contributed much 

to the role of 5-HT3 receptors (805), studies that investigate the effects of specific genetic 

alterations of 5-HT3 receptors (884) may further illuminate the function of these receptors.  

4.4.  5-HT3 receptors in Parkinson’s Disease and L-DOPA-induced 

dyskinesia 

Pharmacological modulation of the 5-HT system, particularly the 5-HT1A and 5-HT1B 

receptors, as discussed above, has demonstrated efficacy in preclinical and clinical studies of 

dyskinesia. Although the 5-HT3 receptor has been understudied in the context of PD and its role 

is unknown in LID, its distribution in BG draws attention to the potential of the 5-HT3 receptor 

as a novel therapeutic target for dyskinesia. Administration of pharmacological compounds 

including clozapine (528, 885, 886), mirtazapine (887), quetiapine (770), AQW051(888) and 

AZD0328 (889) have reduced the severity of dyskinesia in animal models of PD and/or in 

clinical settings. However, given the non-selective effects of these therapeutic agents, namely 

as antagonists of the 5-HT3 receptor (837, 890-896), it is conceivable that pharmacological 

blockade of 5-HT3 receptors may have contributed to the anti-dyskinetic effect of these 

compounds.  

The 5-HT3 receptor is poorly characterized in the BG compared to other members of the 

5-HT receptor family (652) and only a few radioligand binding experiments have used highly-

specific drugs to study its distribution in these nuclei. There is some controversy amongst the 
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literature concerning the variation in the binding sensitivity of the selected ligands (897). For 

instance, radioligand binding of the 5-HT3 receptor within the rodent striatum differed 

depending on the molecule used, with low levels with the antagonist radioligands [3H]-GR 

65630 (786) while strong levels of binding were observed with the agonist radioligand [3H]-

mCPBG (814) and the antagonist radioligand [125I]-iodozacopride (898). Some authours have 

reported the presence of 5-HT3 receptors in the striatum of different mammals and intriguingly, 

they observed relatively higher receptor densities of 5-HT3 receptors in human striatum 

compared to rat striatum (788, 809, 812, 813, 899-903), although the functional significance of 

this species difference is poorly understood. Of note, homogenate binding studies from patients 

with Huntington’s disease (HD) and PD suggest that the 5-HT3 receptor is localized to 

GABAergic output neurons of the caudate putamen and not predominantly located on DA 

neurons (904). In fact, the density of 5-HT3 receptors was not affected by the neurodegeneration 

associated with PD, whereas a significant proportion of HD cases showed decreased 5-HT3 

receptor binding in the striatum. HD is neuropathologically characterized by the degeneration 

of neurons with cell bodies within the caudate putamen, which include MSNs. Thus, these 

studies suggest that at least a proportion of 5-HT3 receptors is localized on neurons which 

degenerate in HD but not on DA terminals which degenerate in PD (904). Furthermore, the use 

of rat striatal synaptosomes showed the presence of functional pre-synaptic 5-HT3 receptors as 

well as its known post-synaptic localization (851, 856, 857). In contrast, membrane binding 

assays and immunolabelling of the rat and human brains only detected low levels of the 5-HT3 

receptor in the SN (813, 898, 900, 905). 

The dysregulated release of DA in the striatum is a potential pre-synaptic mechanism 

responsible for the progression of dyskinesia in parkinsonian animals and patients with PD. In 

addition to the distribution of the 5-HT3 receptor in the striatum and SN, studies also 

demonstrate that the 5-HT3 receptor modulates central dopaminergic activity. Indeed, 5-HT 

agonists stimulate the striatal release of DA in vitro (865, 906-910) and in vivo (911, 912), which 

is reversed by 5-HT3 antagonists (913). In further support of these findings, behavioural studies 

also report that the 5-HT3 receptor modifies nigrostriatal DA transmission-mediated motor 

responses such as stereotypy (914), orofacial dyskinesia (915) or rotations (863). Ondansetron 

is a potent and highly-selective prototypical 5-HT3 receptor antagonist used as an anti-emetic in 
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patients receiving cancer chemotherapy (916). It has been demonstrated that ondansetron 

reduces basal concentration of DA in the nucleus accumbens (917) and modifies mesolimbic 

DA activity in the rat and marmoset brains (918, 919), such as the inhibition of amphetamine 

induced hyperactivity. Moreover, in clinical studies, administration of ondansetron led to 

improvements in tardive dyskinesia and psychotic symptoms (920) and attenuated psychosis in 

advanced PD patients (921, 922).  

5. Animal models of Parkinson’s disease 

Animal models of PD, categorized into toxin or genetic, have led to the discovery of 

novel symptomatic treatments and uncovered mechanisms underlying some features of the 

disease (59, 923-925). Pharmacological interventions can be used to mimic the motor deficits 

of parkinsonism including neuroleptic-induced catalepsy (926) or reserpine-induced akinesia 

(927, 928). The most characterized neurotoxin-induced animals models are the complex I 

inhibitor of the respiratory chain MPTP in primates (925, 929) and mice (283, 930) and the 6-

OHDA rodent model of PD (931). On the other hand, genetic models in mice have more recently 

been developed (924) including the transgenic overexpression of mutant genes (α-synuclein and 

LRRK2) or the knockdown or knockout of autosomal recessive genes (PINK1, PARKN, DJ-1) 

(932), and in transgenic mice, preformed fibrils seed Lewy pathology and decrease survival time 

(933). Moreover, viral vector-mediated overexpression of α-synuclein in rats (251, 252, 934) 

and primates (253, 254, 935) have reproduced hallmarks of PD including Lewy-like 

synucleinopathy, progressive dopaminergic cell loss, and even a parkinsonian behavioural 

phenotype in rodents (936). Although genetic models have provided greater insight into the 

molecular mechanisms underlying PD, the recapitulation of genetic alterations discussed above 

(see section: genetic risk factors of PD, page 5) tends to elicit modest loss of DA neurons (937-

940) and does not fully capture the neuropathology of PD (924). Moreover, in spite of the reports 

of alterations in the motor function and behaviour of animals (939, 941, 942), the behavioural 

phenotypes are often distinct from the human condition (924). As the experimental work 

presented in this Thesis was conducted in the 6-OHDA-lesioned rat, the next sections will 

discuss in depth this animal model of PD.  



60 

 

5.1.  The 6-OHDA-lesioned rat  

The 6-OHDA-lesioned rat model is the classical and most widely used toxin-based 

animal model used for both in vitro and in vivo investigations, and its popularity may be 

attributed to its cost-effectiveness and minimal labour requirements (943). The catecholamine 

neurotoxin 6-OHDA is transported into cell bodies and fibres of both dopaminergic and 

noradrenergic neurons and destroys these neurons on the ipsilateral side relative to its 

administration (944). Its neurotoxic effect is based on the inhibition of mitochondrial respiratory 

enzymes (945), which causes oxidative stress and mitochondrial damage (946). Subsequently, 

these neurons can no longer exert their normal physiological functions and ultimately, die (947). 

As 6-OHDA has poor penetration across the BBB, it is injected intra-cerebrally into the site of 

interest (948). Furthermore, the neurotoxin is only relatively selective since it has the ability to 

destroy dopaminergic and noradrenergic fibres, a concern when injecting into the medial 

forebrain bundle (MFB), which includes ascending fibre systems from the raphe pontine nucleus 

and locus coeruleus, respectively (946). Therefore, to achieve the selective destruction of 

dopaminergic neurons and spare noradrenergic fibres, subjects are pre-treated with despiramine, 

a noradrenaline transporter blocker, prior to the 6-OHDA lesion (946).  

The neurotoxin 6-OHDA can be injected virtually anywhere along the nigrostriatal tract 

and a seminal study found that 6-OHDA could be injected at the origin of the ascending 

nigrostriatal DA pathway to produce a nearly complete depletion of DA in the ipsilateral 

striatum (949). Injection of 6-OHDA into the MFB leads to a close to complete nigrostriatal 

lesion, with up to 100% loss of dopaminergic terminals in the striatum (950). Generally, 6-

OHDA is injected into one of three target sites: SNc, MFB or the striatum (951), where it induces 

varying degrees of DA denervation (946), depending on what the experimental end-point is. To 

model PD, the animal model should recapitulate both dopaminergic cell loss and behavioural 

deficits associated with idiopathic PD (944). For instance, injections of the toxin at the origin of 

nigrostriatal DA bundle produce large (>97%) DA depleting lesions, which model an advanced 

stage of PD, while injections in the terminal field of the nigrostriatal pathway produce a partial 

and slower progressing lesion (952, 953) that would be of greater interest for neuroprotective 

interventions.  
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In the present study, it is of interest to study the effects of a therapeutic intervention that 

alleviate AIMs in the 6-OHDA-lesioned rat model, which resembles more advanced stages of 

PD. Thus, the injection of 6-OHDA into the MFB, which results in severe DA denervation, was 

more appropriate for the following experiments. 

5.1.1. Injection of 6-OHDA into the MFB 

The nigrostriatal dopaminergic pathway consists of the A9 cell group, located in the SNc 

(944). Axons of these neurons run along the MFB and terminate in the dorsal striatum (954). In 

PD, the dopaminergic neurons of the A9 cell group undergo extensive loss and cause a dramatic 

decline in striatal DA, leading to motor impairments (955). Unilateral injection of the MFB 

causes total destruction of A9 and A10 cell groups (956), resulting in near total depletion of DA 

in the ipsilateral striatum, denervation supersensitivity of post-synaptic DA receptors in 

ipsilateral striatum and the characteristic rotational behaviour in response to both D-

amphetamine and apomorphine (944).  

Although bilateral 6-OHDA lesions of the MFB more closely resemble the bilateral 

pathology observed in idiopathic PD (944, 957), the survival and problems with daily living 

such as swallowing and adipsia of the animals limits the use of the bilateral model (958). 

Unilateral lesioning the MFB causes can asymmetry in the motor behaviour of rats. 

Following lesion, rats initially tend to turn preferentially towards the side of the lesion (949, 

959), a postural motor asymmetry of behaviour that may recover only slightly if depletion is 

near total (944). When challenged with drugs acting on the DA system, rat displays active 

rotational behaviour due to the imbalance in DA activity between two striata, which causes 

rotational asymmetry such that the animal rotates away from the side of greater activity (931).  

5.1.2. Compensation 

An important consideration is that by inducing a DA-depleting lesion in rats, animals 

transition from a normal state to a state of severe parkinsonian symptoms (944). It is possible 

that compensatory mechanisms come into action to antagonize these neurobiological deficits, 

for instance, in the rat, PD symptoms may recover to some extent over time (960-963), whereas 

human idiopathic PD is a progressive disease with PD symptoms worsening with time (944). In 
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addition, unilateral 6-OHDA-lesioned rats shows compensatory serotonergic hyperinnervation 

of striatum, an effect that is not observed in human PD (964). This animal model of PD should 

be interpreted with caution as it may not be predictive of changes in 5-HT receptors in PD.  

6. Behavioural testing 

6.1.  Cylinder test 

It is crucial to assess the extent of DA-denervating lesions in animal models and tests of 

physiological motor behaviour can be performed to estimate lesion severity. Although many 

interventions have demonstrated anti-dyskinetic efficacy in animal models, their action may at 

times be due to a motor depressant effect, which is of no benefit in the context of PD as it would 

exacerbate parkinsonian symptoms (965). Therefore, it is important to assess that the anti-

parkinsonian efficacy of a treatment does not interfere with physiological motor behaviour. With 

the cylinder test, a measure of forelimb use during spontaneous exploration (966), it is possible 

to determine whether the efficacy of the anti-dyskinetic treatment compromises the therapeutic 

efficacy of L-DOPA. 

The cylinder test, originally described by Schallert and Tillerson, assesses the 

independent use of each forelimb during explorative activity (966). This test takes advantage of 

the rats’ innate drive to explore a novel environment by standing on their hind limbs, known as 

rearing, and using their forelimbs to contact the wall (965). Forelimb asymmetry is scored as 

independent weight bearing contacts on the cylinder wall of the ipsilateral and contralateral 

forepaws, as well as movements by both forepaws (944). Subsequently, investigators compute 

a limb use asymmetry score that expresses the performance of each limb as a percentage of total 

wall contacts. Normal rats use the right and left forepaw indifferently in this test, whereas 

unilaterally 6-OHDA-lesioned rats use the forepaw contralateral to lesion in about 10-30% of 

total supporting wall contacts (885). Use of the paw ipsilateral to lesion in ≥70% of all wall 

contacts is indicative of 88% nigrostriatal dopaminergic denervation and is used as a cut-off 

threshold for animal inclusion in studies (967).  

The cylinder test offers several advantages as a measure of physiological motor 

performance (965). On a conceptual level, the test is a true measure of spontaneous forelimb 

use as the movements exhibited by the rat in the testing cylinder are identical to those performed 
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in its home cage. In addition, it is simple, objective and rapidly executed and does not require 

pre-training of animals or extensive manipulation. Moreover, the inter-rater reliability is very 

high (r > 0.95), even with relatively inexperienced raters (966). Some investigators have argued 

against drug-induced rotational behaviour as a reliable indicator of nigrostriatal DA depletion 

(948, 968). Accordingly, the cylinder test is a drug-free test sensitive to the disrupting effects of 

DA denervating lesions and allows the animals to remain in a drug-naïve state, which is critical 

to the success of certain experimental paradigms. In addition, 6-OHDA-lesioned rats show 

robust forepaw asymmetry and the cylinder test is sensitive to the motor improvement produced 

by anti-parkinsonian compounds (see section: administration of ondansetron does not impair the 

therapeutic efficacy of L-DOPA in the cylinder test, page 96). Treatment with L-DOPA 

improves performance in the cylinder test, i.e. greater use of the contralateral parkinsonian 

forepaw, and is disrupted by the appearance of L-DOPA induced AIMs. The main drawback of 

the cylinder test is its relatively narrow dynamic range (from 20-50% of the contralateral 

forepaw) and with many repetitions of the test, the animal loses interest in exploring the novel 

environment and the total number of wall contacts gradually declines (965). Therefore, it is 

important to limit the frequency of testing sessions to a twice-weekly or weekly basis to avoid 

compromising test sensitivity. 

6.2.  ALO AIMs 

Traditionally, experimental studies of LID were exclusively performed in nonhuman 

primates. Existing literature on LID in the parkinsonian rodent assumed that the responsiveness 

to L-DOPA could only be measured with tests of contralateral rotation and many investigators 

expressed scepticism about modelling PD symptoms and treatment related dyskinesia in rodents 

(885). In fact, it was believed that only primates could show the repertoire of movement 

disorders displayed by patients (604), which could not be evaluated in rats. For decades, the 

Ungerstedt model was the gold standard model of rodent research (931) and used as a screen for 

potential anti-parkinsonian agents where, following administration of drugs that stimulate 

dopamine receptors, the animal turns away the site of lesion, i.e. displays contralateral turning 

(969).  

In the late 1990s, Cenci and collaborators were the first to develop the AIMs rating scale 

in the L-DOPA-treated 6-OHDA-lesioned rat (602). In addition to the sensitized rotational 
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behaviour displayed by dyskinetic rats, they also exhibit abnormal movements and postures 

affecting the trunk, limb and orofacial muscles contralateral to lesion. The quantification of 

AIMs in rats gradually replaced the test of contralateral rotation (970, 971), which does not 

always correlate with the development of dyskinesia (885). L-DOPA-induced AIMs in rats 

present functional and phenomenological analogies to LID in PD patients (965). Phenotypically, 

the movements are complex and involve different muscle groups that include tonic torsion of 

the upper trunk and neck and are associated with repetitive head movements and rapid flexion 

of the forelimb, similar to the choreiform on-dyskinesia exhibited by patients (965). 

Functionally, these movements are involuntary and disabling as are LID in PD patients (965).  

The standard L-DOPA treatment to induce dyskinesia consists of a priming phase of 

single daily intraperitoneal injections of L-DOPA for two to three weeks, depending on the dose 

of L-DOPA administered, followed by a maintenance of priming by two to four injections per 

week to maintain stable dyskinesia over long-term (965). Once established, the brain maintains 

its primed state, and even after stopping the initial therapy, a single acute L-DOPA or DA 

agonist administration can elicit LID at nearly the same severity (440). With a daily dose of 6-

10 mg/kg L-DOPA (combined with 15 mg/kg benserazide), approximately 50 to 80% of the 

treated rats develop AIMs by the end of the treatment period (965). The latency for the initial 

appearance of dyskinesia varies amongst individual rats (602) and the incidence of dyskinesia 

can be boosted and its latency shortened with higher L-DOPA doses (972).  

To quantify drug-induced AIMs, rats are individually placed in a transparent cylinder 

and observed for two minutes every twenty minutes for three hours following the injection of 

L-DOPA (885, 973). Rat AIMs are classified into four subtypes based on their topographic 

distribution: axial AIMs, which are dystonic postures or choreiform twisting of the neck and 

body towards the side contralateral to lesion; limb AIMs, which are abnormal purposeless 

movements of the forelimb and digits contralateral to lesion; orolingual AIMs are empty jaw 

movements and contralateral tongue protrusions; and locomotive AIMs which are increased 

locomotion with contralateral side bias (946). Although locomotive AIMs, contralateral 

rotation, are part of the dyskinetic expression, it is not a specific predictor of dyskinesia as it 

may result from increased locomotor activity in rats that display sensorimotor asymmetry, as 

discussed above. The relative presentation of different AIM subtypes may differ amongst the 
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animals but is very consistent in the same animal upon repeated testing (965). To increase the 

sensitivity of the test, the authours included an additional scale based on the amplitude of 

dyskinetic movements (Table IV, page II). The amplitude scale is scored simultaneously with 

the duration scale as described above (based on the duration and frequency). Lastly, only 

movements that are phenomenologically distinguishable from stereotypic behaviour for the rat 

are classified as dyskinetic, whereas enhanced manifestations of normal motor activities 

(grooming, gnawing, rearing and sniffing) are not included in the rating (974).  
In seminal studies, Lundblad and colleagues compared the effects of drugs with varying 

dyskinesiogenic potential on motor performance in the 6-OHDA-lesioned rat model (885). They 

reported an attenuation of AIMs by non-dopaminergic compounds with proven anti-dyskinetic 

efficacy in patients and/or primates. In contrast, AIMs were not induced by anti-parkinsonian 

treatments with low dyskinetic potential in primates (975). These studies were the first 

demonstrations that clinically-relevant measures of parkinsonian akinesia and dyskinesia could 

be obtained in rats (885). Furthermore, it demonstrated that rat AIMs share similar 

pharmacological properties to primate models of LID, particularly with respect to modulation 

of neurotransmitter systems to control the expression of dyskinesia (885, 973, 976-978).  

Another study compared the effects of various non-dopaminergic compounds on both L-

DOPA-induced AIMs and L-DOPA-induced motor improvement in 6-OHDA lesioned rats 

(973). Again, the AIMs model demonstrated a high degree of predictive validity as interventions 

with proven anti-dyskinetic action in primate models and in PD patients also modulated rodent 

axial, limb and orolingual (ALO) AIMs. However, treatments that specifically alleviated the 

severity of trunk, limb and orofacial dyskinesia did not necessarily reduce locomotive AIM 

scores. Treatments that specifically produced a decrease in ALO AIMs scores neither interfered 

with normal rat behaviour (e.g. locomotion, exploration, grooming) nor affected the locomotive 

AIM scores or rotarod activity.  

7. Objectives and hypotheses 

As presented above, growing evidence supports a pivotal role of the 5-HT system in the 

pathogenesis of LID. However, no studies have evaluated the effect of 5-HT3 receptors on 

dyskinesia expression. Thus, the present study seeks to determine and validate the efficacy of 



66 

 

5-HT3 receptor antagonism as a new therapeutic strategy to alleviate L-DOPA-induced AIMs 

in the 6-OHDA-lesioned rat model of PD. More specifically, we hypothesize that: 

1. 5-HT3 receptor blockade reduces the severity of established L-DOPA-induced AIMs; 

2. 5-HT3 receptor blockade attenuates the priming process that leads to the development of 

L-DOPA induced AIMs; 

3. 5-HT3 receptor blockade does not impair the therapeutic efficacy of L-DOPA on 

parkinsonian features. 

To validate these hypotheses, we will meet the following aims: 

1. To determine the effect of acute challenges of the highly-selective 5-HT3 antagonist 

ondansetron at alleviating established L-DOPA-induced AIMs; 

2. To determine the effect of selective 5-HT3 receptor blockade with ondansetron on the 

development of L-DOPA-induced AIMs, in the context of a de novo study;  

3. To assess whether the anti-dyskinetic benefit of 5-HT3 antagonism with ondansetron is 

achieved without compromising the anti-parkinsonian action of L-DOPA. 

Positive outcomes of the proposed experiments would provide support for 5-HT3 

receptor antagonism as a new and effective therapeutic approach to alleviate L-DOPA induced 

dyskinesia in the 6-OHDa lesioned rat model of PD. Moreover, positive results would 

demonstrate the potential of a new target to achieve an anti-dyskinetic effect without impairing 

L-DOPA anti-parkinsonian action. Given that ondansetron and other 5-HT3 receptor antagonists 

are clinically available and well tolerated, positive outcomes could rapidly lead to Phase IIa 

clinical trials, and enhance the quality of life of D patients.  



 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

II. Material and methods 
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Animals 

Adult female Sprague-Dawley rats (225 – 250 g, Charles River, Saint-Constant, Canada) 

were group-housed in a temperature, humidity- and light-controlled environment (under 12-h 

light/dark cycle, on 07:00) with free access to food and water. Experimental protocols were 

approved by Centre de Recherche du Centre Hospitalier de l’Université de Montréal Animal 

Care Committee in agreement to guidelines established by the Canadian Council on Animal 

Care. Upon arrival, rats were left undisturbed to acclimatize to the housing conditions for at 

least 5 days before experiments.  

Dose-finding pharmacokinetic study 
Based on doses of ondansetron used in the literature (979), a preliminary dose-finding 

pharmacokinetic (PK) study was conducted to determine clinically-relevant plasma levels of 

ondansetron in the rat. Blood was collected from animals (N = 2) by jugular vein puncture using 

a sparse sampling technique, as previously described (980), serial blood samples of 150 µL were 

collected prior to, and at the following time points: 2 min, 5 min, 15 min, 30 min, 1 h, 2 h, 3 h, 

and 4 h after subcutaneous administration of ondansetron 0.01 mg/kg. Samples were gently 

inverted and placed on ice pending centrifugation (1500g for 10 minutes at 4°C). Following 

centrifugation, aliquots of approximately 80 µL of plasma were stored at -80°C until analysis. 

The analytical method to quantify ondansetron in the plasma consisted of protein precipitation 

followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), which was done 

in collaboration with Dr Francis Beaudry and Ms Fleur Gaudette from Faculté de Médecine 

Vétérinaire de l’Université de Montréal and Centre de Recherche du Centre Hospitalier de 

l’Université de Montréal.  

Unilateral 6-OHDA lesion 
 Animals were rendered hemi-parkinsonian by unilateral injection of 6-OHDA into the 

right MFB as previously described (967). Animals were pre-treated with pargyline (5 mg/kg) 

and desipramine (10 mg/kg) 30 min prior to surgery. Under general anaesthesia (3% isoflurane 

in 95% O2, 5% CO2), rats were positioned onto a stereotaxic frame (Kopf Instruments, Tujunga, 

USA). 6-OHDA (7 mg/mL) was dissolved in 0.02% ascorbic saline. The 6-OHDA solution (2.5 
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µL) was injected into the right MFB using a 10 µL Hamilton microsyringe with a 30–gauge 

needle (at a flow rate of 0.5 µL/min) at the following coordinates: anteroposterior -2.8 mm, 

lateromedial -2.0 mm and dorsoventral -9.0 mm from Bregma and skull surface (981), with the 

incisor bar set at 3.3 mm below ear bars. The injection was done over 5 min and the needle was 

left in place for an additional 5 min before slowly retracting the needle to avoid reflux. At the 

end of surgery and for two additional days post-op, animals received carprofen (5 mg/kg) as 

analgesic treatment.  

Cylinder test 

Following a 14-day post-lesion recovery period, animals underwent the cylinder test to 

assess the extent of dopaminergic degeneration (966). Rats were placed in a transparent cylinder 

(14 cm diameter × 18 cm height) and recorded for 10 min. A mirror was placed behind the 

cylinder to enable the evaluator to count forelimb movements when the animal was turned away 

from the camera. Several behaviours were scored to determine the extent of forelimb-use 

asymmetry displayed by the animal during the 10-min period and analysed post hoc. The first 

limb to contact the wall during a rear or weight-shifting movement was scored as an independent 

wall placement for that limb. A subsequent placement of the other limb on the wall while 

maintaining the initial movement was scored as a “both” movement. A simultaneous placement 

of both forepaws on the walls was also considered a “both” movement. Another wall movement 

score was attributed only if both paws were removed from the vertical surface. Only animals 

exhibiting preferential use of the un-lesioned forelimb in ≥ 70% of the rears were selected to 

undergo further behavioural pharmacological testing. As mentioned above, this rearing 

asymmetry score indicative of  ≥ 88% striatal dopamine depletion (967). 

Drug treatments 
Despiramine hydrochloride, pargyline hydrochloride, 6-OHDA hydrobromide, L-DOPA 

methyl ester, benserazide hydrochloride and ondansetron hydrochloride were purchased from 

Sigma-Aldrich (St Louis, USA).  All drugs were dissolved in saline (sodium chloride 0.9% w/v) 

except for 6-OHDA and ondansetron hydrochloride, which were dissolved in ascorbate-saline 

and dimethyl sulfoxide at 100 mg/mL, respectively, and the latter was diluted to the appropriate 

concentrations in saline. All solutions were subcutaneously injected in a volume of 1.0 mL/kg 
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body weight. In the acute challenge study, treatments were randomized according to a Latin 

square design and behavioural testing sessions were separated by at least 48 h of drug washout.  

Experimental design 
The experimental design for the acute challenges and de novo studies is described in 

Figure 3, page 70.  

Acute challenges of ondansetron study 
6-OHDA lesion surgery was performed on 35 Sprague-Dawley rats. Following 

assessment of parkinsonism, 18 lesioned animals (~ 51%) exhibiting severe rearing asymmetry 

were selected and were primed daily with L-DOPA/benserazide (10/15 mg/kg, from now on 

referred to as L-DOPA) for 14 days to elicit stable and reproducible AIMs. Once AIMs were 

expressed, on days on behavioural testing, rats were administered L-DOPA (6/15 mg/kg) in 

combination with ondansetron (0.0001, 0.001, 0.01 0.1 and 1mg/kg) or vehicle, and AIMs were 

assessed, as described below (Section: ratings of AIMs, page 71), by a blinded rater.  

De novo ondansetron study 
In another set of experiments, rats were rendered hemi-parkinsonian by 6-OHDA 

injection in the MFB as described above. Following recovery and after assessment of the extent 

of lesion, rats were administered a once daily treatment of L-DOPA (6/15 mg/kg) in 

combination with ondansetron (0.0001 mg/kg, group 1, or 0.001 mg/kg, group 2, both n = 9) or 

vehicle (group 3, n = 7) for 22 days. ALO AIMs were assessed on days 1, 8, 15 and 22 by an 

experimenter blinded to treatment conditions. After a 3-day washout period, animals were 

administered an acute 6/15 mg/kg L-DOPA challenge and AIMs severity was assessed. 
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Figure 3: Schematic representation of the experimental design. A. Timeline of the acute 
challenge experiments. 6-OHDA lesioned animals underwent a L-DOPA priming phase to 
induce dyskinesia and the effect of acute ondansetron on the severity of ALO AIMs was 
evaluated. B. Timeline of the de novo experiments. Animals received treatment concurrently as 
their first L-DOPA dose, and this treatment regimen was maintained daily with weekly 
assessments of the progression of ALO AIMs, followed by an acute L-DOPA challenge after a 
washout period.  

Ratings of AIMs 

 On days of behavioural scoring, after injection of L-DOPA, rats were put in individual 

glass cylinders and observed for 2 minutes every 20 minutes over a 180 min testing session, as 

previously described (967). The severity of dyskinesia was evaluated using a validated rat AIMs 

scale, where ALO AIMs were each scored (885). Each AIMs subtype was rated on a duration 

severity scale from 0 to 4 (Table III, page I) in each monitoring interval where: 0 = no 

dyskinesia; 1 = occasional signs of dyskinesia; 2 = frequent signs of dyskinesia; 3 = continuous 

dyskinesia but interrupted by external stimuli and 4 = continuous dyskinesia not interrupted by 

external stimuli. The amplitude of AIMs was rated from 0 to 4 (Table IV, page II). Axial AIMs 

are the twisting of the neck and upper body toward the contralateral side to the lesion and 

amplitude are rated according to the following scale: 1= sustained deviation of the head and 

neck at ∼30° angle; 2 = sustained deviation of the head and neck at an angle of 60° or more; 3 
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= sustained twisting of the head, neck and upper trunk at an angle greater than 60° but up to 90° 

and 4 = sustained twisting of the head, neck and trunk at an angle greater than 90°, causing the 

rat to lose balance from a bipedal position. Limbs AIMs consist of jerky or dystonic movements 

of the contralateral limb and are rated as follows: 1 = tiny movements of the paw around a fixed 

position; 2 = movements leading to visible displacement of the limb; 3 = large displacement of 

the limb with contraction of shoulder muscles and 4 = vigorous limb displacement of maximal 

amplitude, with concomitant contraction of shoulder and extensor muscles. Orolingual AIMs 

consist of movement of jaw muscles and tongue protrusions and amplitude are rated as: 1 = 

twitching of facial muscles accompanied by small masticatory movements without jaw opening; 

2 = twitching of facial muscles accompanied by masticatory movements that occasionally result 

in jaw opening; 3 = movements with broad involvement of facial muscles and masticatory 

muscles, with frequent jaw opening and occasional tongue protrusion and 4 = involvement of 

all of the above muscles to the maximal possible degree. The ALO AIMs score represents the 

sum of axial, limbs and orolingual AIMs scores during the behavioural session, and this 

expression of AIMs scores is sensitive to the anti-dyskinetic effects of drugs used in the clinic 

(885, 973). The axial limbs (AL) AIMs score represents the sum of axial and limbs AIMs scores 

on all monitoring periods.   

Assessment of L-DOPA anti-parkinsonian action 

To assess whether the anti-dyskinetic effect of ondansetron affects the therapeutic 

efficacy of L-DOPA, preference for the un-lesioned forelimb in the cylinder test was evaluated 

as described above. Rats used in the acute challenge study underwent a 3-day washout period, 

after which they were administered a low dose of L-DOPA (3/15 mg/kg), to avoid triggering 

AIMs, in combination with vehicle or ondansetron (0.0001 0.001, 0.01, 0.1, 1 mg/kg). 45 min 

later, at peak anti-parkinsonian action, animals underwent the cylinder test, in which the number 

of rears of each paw was counted, post hoc, by a treatment-blinded experimenter.  

Perfusions  

Perfusions were performed at least 48 h post-administration of L-DOPA. Under general 

anaesthesia (4% isoflurane in 95% O2, 5% CO2), rats were euthanised by exsanguination by 
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transcardial perfusion with saline (982). After the toe pinch-response was used to determine 

depth of anaesthesia, animals were secured in a supine position on the work surface. Using sharp 

scissors, incisions were made along the thoracic midline and lateral to the ventral ribcage to 

expose the thoracic field. The rib cage was then cut through to open up the thoracic cavity and, 

using blunt scissors, the diaphragm was separated from the chest wall and the tissue connecting 

the sternum to the heart was cleared. The heart was subsequently secured with blunt forceps 

before an 18-gauge perfusion needle was inserted into the left ventricle and the needle position 

was secured by clamping a hemostat near the point of entry. An incision to right atrium was 

then made with scissors and animals were infused with a steady flow of their corresponding 

body weights of 0.9% saline (until the fluid exiting the right atrium was clear). Brains were 

rapidly removed, flash-frozen at – 55ºC in isopentane and stored at -80ºC until collection of 

striatal tissue.  

LC-MS/MS analysis for dopamine and its metabolites 
The extent of nigrostriatal lesion was determined LC-MS/MS (983). A 30-µm diameter 

tissue punch of the left and right striata was obtained and deposited into separate 1.5 mL sterile 

microcentrifuge tubes and stored at –80ºC until LC-MS/MS analysis (984). A piece of 

comparable size of cerebellum was also dissected from each brain as a control (985). 

Quantification of the biogenic amine DA and its metabolites 3,4-dihydroxyphenylacetic acid 

(DOPAC) and HVA in the striatal punches is currently being conducted in collaboration with 

Dr Lehka Sleno from Université de Québec à Montréal and the results will be presented in a 

peer-review article.  

Statistical Analysis 

Pharmacokinetic study 

Calculations of the peak plasma concentration (Cmax), time of Cmax (tmax) and half-life 

(t1/2) were done with Microsoft Office Excel (Microsoft Corporation, Redmond, USA) (986). 
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Cylinder test 

Data from the cylinder test were graphed as the mean ± standard error of the mean (SEM) 

and were analysed using one-way analysis of variance (ANOVA) with the Greenhouse-Geisser 

correction; post hoc comparisons with the lesion control and L-DOPA/vehicle control groups 

were performed using Tukey’s post hoc test. 

Taking into consideration the variation in standard deviations across treatment 

conditions in Figures 10B and 10C, a measure of effect size was provided using Glass’ delta 

(see Tables V and VI in Appendices III and IV). This estimate is recommended for unequal 

variances and under the assumption that any measure on control is untainted by the effect, the 

standard deviation of the control group is used to standardize the differences between means to 

minimize bias (987) as calculated by the formula for Glass’ delta (Figure 11 in Appendix V).   

Acute challenges of ondansetron study 

AIMs scores were expressed as the median with interquartile interval. In the acute study, 

comparisons of AIM scores used the cumulative score over the entire testing session or the peak 

of L-DOPA action, the interval from 40-120 min post-drug administration. Results were 

analysed using nonparametric Friedman test, followed by Dunn’s post hoc test.  

De novo ondansetron study 

The de novo AIMs timecourse analysis was performed using two-way ANOVA, 

followed by Tukey’s post hoc test. Data from the de novo challenge AIMs scores underwent a 

squareroot transformation (988), and were subsequently analysed by one-way ANOVA, 

followed by Tukey’s post hoc test.  

The threshold for statistical significance was assigned at P ˂ 0.05. Statistical analyses 

were performed with GraphPad Prism 7.03 (GraphPad Software Inc., La Jolla, California, 

USA).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. Results 



 

76 

 

Pharmacokinetic profile of ondansetron  
As illustrated in Figure 4 (page 76), the plasma levels of subcutaneous administration 

ondansetron are mapped over a time course. The ondansetron PK parameters assessed in the 

preliminary dose-finding ondansetron PK are summarised in Table II (page 76). Cmax was 2.31 

ng/mL while tmax and t1/2 were 15 and 39 min, respectively. 

Figure 4: Plasma levels of ondansetron in a preliminary pharmacokinetic study. 
Logarithmic (log10) time course of ondansetron plasma levels following subcutaneous 
administration of 0.01 mg/kg ondansetron (n = 2). Data are presented as the mean.  

Table II: Ondansetron pharmacokinetic parameters in the 6-OHDA-lesioned rat 

 ondansetron 

Cmax (ng/mL) 2.31  

tmax (min) 15  

t1/2 (min) 39 

Cmax: maximal plasma concentration; tmax: time at maximal plasma levels t1/2: plasma half-life. 
Ondansetron 0.01 mg/kg was administered subcutaneously to the animals (n = 2). Data are 
presented as the mean.  
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Extent of dopaminergic denervation assessed in the cylinder test 
Following 6-OHDA lesion, only animals that displayed marked forelimb asymmetry, i.e. 

used the right (un-lesioned) forepaw to initiate ≥ than 70% of wall contacts during the cylinder 

test, a score that is indicative of ≥ 88% striatal DA depletion (967), were selected for the 

behavioural studies. As shown in Figure 5A (page 77), animals that underwent the acute 

challenges of ondansetron study displayed forelimb asymmetry (F(2, 39) = 296.6, P < 0.0001, 

one-way ANOVA) with marked preferential use of the right forepaw in 83% of wall contacts 

when compared to 0.4% with the left forepaw and 15% with both forepaws, respectively (both 

P < 0.0001, Tukey’s post hoc test). As illustrated in Figure 5B (page 77), in the de novo 

ondansetron study, animals also displayed marked forelimb asymmetry (F(2, 78) = 1017, P < 

0.0001, one-way ANOVA), and preferred the use of the right forepaw in 85% rears when 

compared with 0.8% and 15% of rears using the left forepaw and both forepaws, respectively 

(both P < 0.0001, Tukey’s post hoc test).  

Figure 5: Performance in the cylinder test in drug-naïve lesioned animals. A. Animals (n = 
18) selected to undergo acute challenges of ondansetron show a marked preference for the un-
lesioned (right) forepaw in 83% of rears compared with 0.4% and 17% of rears using the 
lesioned (left) forepaw and both forepaws, respectively. B. In the de novo ondansetron study, 
animals (n = 24) prefer the right forepaw in 85% of rears while the left forepaw and both 
forepaws, only accounted for 0.8% and 15% of rears, respectively. Data are presented as the 
mean ± SEM. **: P < 0.01, ****: P < 0.0001. 
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Acute challenges of ondansetron at 0.0001 mg/kg significantly 

alleviated the severity of established AIMs 

In the acute challenges of ondansetron experiments, daily administration of L-DOPA 10 

mg/kg for two weeks to 6-OHDA-lesioned rats induced stable and reproducible dyskinetic 

behaviour. Animals subsequently received acute challenges of ondansetron or vehicle in 

combination with L-DOPA and AIMs severity was assessed.  

Duration of axial AIMs 

As shown in Figure 6A and 6B (page 80), administration of ondansetron in combination 

with L-DOPA reduced  the duration of cumulative and peak axial AIMs (Friedman Statistic [FS] 

= 32.16, P < 0.001 and FS = 21.14, P < 0.01, respectively). Thus, when ondansetron 0.0001 

mg/kg and 0.001 mg/kg was added to L-DOPA, the duration of cumulative axial AIMs was 

reduced by 55% and 52%, respectively, when compared to L-DOPA/vehicle (P < 0.001 and P 

< 0.01, Dunn’s post hoc test, Figure 6A, page 80). The addition of ondansetron 0.0001 mg/kg 

also reduced peak axial AIMs duration when compared with vehicle by 49%, compared to L-

DOPA alone (P < 0.01, Dunn’s post hoc test,  Figure 6B, page 80). Peak axial AIMs duration 

was also reduced with treatment of ondansetron 0.001, 0.01 and 1 mg/kg compared to vehicle 

but did not reach statistical significance. 

Duration of limbs AIMs 

As illustrated in Figure 6C (page 80), adding ondansetron to L-DOPA resulted in a 

significant reduction in the duration of cumulative limbs AIMs (FS = 20.76, P < 0.001). Thus, 

administration of ondansetron 0.0001 and 0.001 mg/kg in combination with L-DOPA reduced 

the duration of cumulative limbs AIMs was reduced by 49% and 41%, respectively, when 

compared with L-DOPA/vehicle (P < 0.01 and P < 0.05, Dunn’s post hoc test). Administration 

of ondansetron did not significantly diminish the duration of peak limbs AIMs (FS = 10.71, P > 

0.05, Figure 6D, page 80). The duration of limbs AIMs scores was also reduced with treatment 

of ondansetron 0.001, 0.01 0.1 and 1 mg/kg compared to vehicle but did not reach statistical 

significance. 
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Duration of orolingual AIMs 
As illustrated in Figures 6E and 6F (page 80), the severity and duration of cumulative 

and peak orolingual AIMs was comparable between the doses of ondansetron (0.0001, 0.001, 

0.01, 0.1 and 1 mg/kg) and vehicle (FS = 5.826, P > 0.05 and FS = 4.833, P > 0.05, respectively). 

Duration of AL AIMs 
As shown in Figures 6G and 6H (page 81), the addition of ondansetron to L-DOPA 

resulted in a significant decrease in the duration of cumulative and peak AL AIMs (FS = 29.01, 

P < 0.0001 and FS = 19.43, P < 0.01, respectively). Thus, treatment with ondansetron 0.0001 

and 0.001 mg/kg led to a marked decrease in the duration of cumulative AL AIMs by 57% and 

47%, respectively, when compared with L-DOPA/vehicle (P < 0.001 and P < 0.01, Dunn’s post 

hoc test, Figure 6G, page 81). Animals that received ondansetron 0.0001 mg/kg also exhibited 

a 54% reduction in the duration of peak AL AIMs, when compared with vehicle (P < 0.001, 

Dunn’s post hoc test, Figure 6H, page 81). The duration of cumulative and peak AL AIMs scores 

was also diminished with administration of ondansetron 0.001, 0.01, 0.1 and 1 mg/kg compared 

to vehicle but this was not statistically significant.  

Duration of ALO AIMs 
As shown in Figures 6I and 6J (page 81), administration of ondansetron in combination 

with L-DOPA led to a significant reduction in the duration of cumulative and peak ALO AIMs, 

respectively (FS = 23.93, P < 0.0001 and FS = 17, P < 0.001). Thus, administration of 

ondansetron 0.0001 and 0.001 mg/kg decreased the duration of cumulative ALO AIMs by 53% 

and 43%, respectively, when compared with vehicle (P < 0.01 and P < 0.05, Dunn’s post hoc 

test, Figure 6I, page 81). The duration of peak ALO AIMs was reduced with ondansetron 0.0001 

mg/kg compared to vehicle by 51% (P < 0.01, Dunn’s post hoc test, Figure 6J, page 81). In 

addition, cumulative and peak ALO AIMs scores were also diminished with treatment of 

ondansetron 0.001, 0.01, 0.1 and 1 mg/kg compared to vehicle but did not reach statistical 

significance.
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Figure 6: Effect of acute challenges of ondansetron on the duration of established L-DOPA 
induced AIMs. A. Administration of 0.0001 mg/kg ondansetron in combination with L-DOPA 
diminished the duration of cumulative and B. peak axial AIMs when compared with vehicle. C. 
Similarly, L-DOPA/ondansetron 0.0001 mg/kg resulted in a reduction in the duration of 
cumulative limbs AIMs, when compared with vehicle but had D. no effect on peak limbs AIMs 
when compared with L-DOPA/vehicle. E. F. Adding ondansetron to L-DOPA had no effect on 
orolingual AIMs when compared to L-DOPA/vehicle. G. With respect to the duration of AL 
AIMs, ondansetron 0.0001 mg/kg resulted in less severe cumulative AL AIMs, H. as well as a 
decrease in the duration of peak AL AIMs. I. The combination of ondansetron 0.0001 mg/kg 
and L-DOPA led to a significant reduction in the severity of cumulative ALO AIMs J. and a 
marked decrease in the duration of peak AIMs scores. Cumulative and peak duration AIMs 
scores are expressed as median with interquartile interval. n = 18 for all treatment conditions. *: 
P < 0.05; **: P < 0.01, ***: P < 0.001 and ****: P < 0.0001. 
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Amplitude of axial AIMs 
As illustrated in Figures 7A and 7B (page 84), during the assessment of AIMs, 

ondansetron significantly decreased the amplitude of cumulative and peak axial AIMs was 

reduced with ondansetron (FS = 54.34, P < 0.0001 and FS = 46.61, P < 0.01, respectively). 

Thus, after administration of ondansetron 0.0001 and 0.001 mg/kg, the amplitude of axial AIMs 

diminished by 67% and 66%, respectively, when compared with L-DOPA/vehicle (both P < 

0.0001, Dunn’s post hoc test, Figure 7A, page 84). In addition, peak axial AIMs also diminished 

with 0.001 and 0.001 mg/kg ondansetron by 60% and 61%, respectively, when compared with 

vehicle (both P < 0.0001, Dunn’s post hoc test, Figure 7B, page 84). Higher doses of 

ondansetron (0.01, 0.1 and 1 mg/kg) also reduced cumulative and AIMs amplitude scores but 

did not reach statistical significance.  

Amplitude of limbs AIMs 
As shown in Figures 7C and 7D (page 84), the addition of ondansetron to L-DOPA 

resulted in a decrease in the amplitude of cumulative and peak limbs AIMs, respectively, when 

compared with L-DOPA/vehicle (FS = 28.79, P < 0.0001 and FS = 20.48, P < 0.01, 

respectively). Thus, ondansetron 0.0001 and 0.001 mg/kg diminished the amplitude of 

cumulative limbs AIMs by 48% and 55%, respectively, compared to vehicle (P < 0.01 and P < 

0.001, Dunn’s post hoc test, Figure 7C, page 84). In addition, animals treated with ondansetron 

0.0001 and 0.001 mg/kg exhibited a decrease in peak axial AIMs amplitude scores, compared 

to vehicle, by 44% and 45%, respectively (both P < 0.05, Dunn’s post hoc test, Figure 7D, page 

84). The amplitude of AIMs scores was also reduced with higher doses of ondansetron compared 

to vehicle but did not reach statistical significance.  

Amplitude of orolingual AIMs 
As shown in Figures 7E and 7F (page 84), treatment with ondansetron (0.0001, 0.001, 

0.01 0.1 and 1 mg/kg) resulted in similar amplitude severity levels of cumulative and peak 

orolingual AIMs when compared with vehicle (FS = 1.744 and FS = 3.46, both P > 0.05). 
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Amplitude of AL AIMs 
As illustrated in Figures 7G and 7H (page 85), when administered with L-DOPA, 

ondansetron reduced the amplitude of cumulative and peak AL AIMs (FS = 47.25 and FS = 

40.49, both P < 0.0001). Thus, treatment with ondansetron 0.0001 mg/kg and 0.001 mg/kg 

resulted in a 61% and 64% decrease in the amplitude of cumulative amplitude AL AIMs scores, 

respectively, when compared with vehicle (P < 0.0001 and P < 0.001, Dunn’s post hoc test, 

Figure 7G, page 85). Furthermore, peak AL AIMs amplitude was diminished with ondansetron 

0.0001 and 0.001 mg/kg by 60% and 58%, respectively, compared to vehicle (both P < 0.0001, 

Dunn’s post hoc test, Figure 7H, page 85).  

Amplitude of ALO AIMs 
As shown in Figures 7I and 7J (page 85), adding ondansetron in combination with L-

DOPA led to a significant reduction in the amplitude of cumulative and peak ALO AIMs, 

respectively (FS = 30.07, P < 0.0001 and FS = 22.3, P < 0.001). Thus, adding ondansetron 

0.0001 and 0.001 mg/kg decreased the amplitude of cumulative ALO AIMs by 51% and 54%, 

respectively, when compared with vehicle (P < 0.01 and P < 0.001, Dunn’s post hoc test, Figure 

7I, page 85). In addition, the amplitude of peak ALO AIMs was also reduced with ondansetron 

0.001 and 0.001 mg/kg, when compared to vehicle, by 51% and 44%, respectively (P < 0.01 

and P < 0.05, Dunn’s post hoc test, Figure 7J, page 85).  



 

84 

 

 



 

85 

 

Figure 7: Effect of acute ondansetron treatment on the amplitude of established L-DOPA 
induced AIMs. A. When administered with L-DOPA, 0.0001 mg/kg ondansetron alleviated the 
severity of cumulative and B. peak axial AIMs when compared with vehicle. C. Similarly, 
ondansetron 0.0001 mg/kg/L-DOPA resulted in a reduction in the amplitude of cumulative 
limbs AIMs, when compared with vehicle; D. this effect was also observed in the lower 
amplitude of peak limbs AIMs when compared with vehicle/L-DOPA. E. The addition of 
ondansetron led to comparable amplitude in cumulative orolingual AIMs severity, F. as well as 
peak amplitude orolingual AIMs, when compared with vehicle. G. With respect to the amplitude 
of AL AIMs, ondansetron 0.0001 mg/kg resulted in less severe cumulative AL AIMs, and H. a 
decrease in the amplitude of peak AL AIMs. The combination of ondansetron 0.0001 mg/kg and 
L-DOPA resulted in a significant reduction in I. cumulative ALO AIMs severity and J. peak 
ALO AIMs scores. Cumulative and peak duration AIMs scores are expressed as median with 
interquartile interval. n = 18 for all treatment conditions. *: P < 0.05; **: P < 0.01, ***: P < 
0.001 and ****: P < 0.0001. 
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De novo study 

De novo treatment with ondansetron attenuates the development of L-

DOPA-induced AIMs 

Axial AIMs 

As illustrated in Figure 8A (page 89), the addition of ondansetron to L-DOPA resulted 

in a decrease in the duration of axial AIMs during the 22-day priming phase (Ftime (3,88) = 2.285, 

P > 0.05; Ftreatment (2,88) = 8.111; P < 0.001; and Finteraction (6,88) = 0.354, P > 0.05, two-way 

ANOVA). On day 8, animals treated with 0.0001 mg/kg ondansetron/L-DOPA exhibited a 53% 

reduction in the duration of axial AIMs when compared with the vehicle/L-DOPA group (P < 

0.05, Tukey’s post hoc test). The amplitude of axial AIMs was significantly different across the 

three treatment groups (Ftime (3,88) = 1.29, P > 0.05; Ftreatment (2,88) = 3.62; P < 0.05; and  

Finteraction (6,88) = 0.23, P > 0.05, two-way ANOVA, Figure 8B, page 89). Ondansetron 0.001 

mg/kg shows a slight reduction in the duration of axial AIMs whereas, the amplitude axial AIMs 

was increased with respect to the vehicle-treated animals.  

Limbs AIMs 

As shown in Figure 8C (page 89), administration of ondansetron in combination with L-

DOPA did not lead to significant reduction in the duration of limbs AIMs (Ftime (3,88) = 2.496; 

Ftreatment (2,88) = 2.87; and  Finteraction (6,88) = 0.6427, each P > 0.05, two-way ANOVA). 

Similarly, ondansetron did not significantly diminish the amplitude of limbs AIMs (Ftime (3,88) 

= 1.455; Ftreatment (2,88) = 1.181; and  Finteraction (6,88) = 0.2405, each P > 0.05, two-way ANOVA, 

Figure 8D, page 89). 

Orolingual AIMs 

As illustrated in Figure 8E (page 89), adding ondansetron to L-DOPA did not 

significantly affect the duration of orolingual AIMs (Ftime (3,88) = 1.052; Ftreatment(2,88) = 

0.9368;  and  Finteraction (6,88) = 0.5472, each P > 0.05; two-way ANOVA). In contrast, 

administration of ondansetron resulted in a significant decrease in the amplitude of orolingual 

AIMs (Ftime (3,88) = 0.8776, P > 0.05; Ftreatment (2,88) = 38.12; P < 0.0001; and  Finteraction (6,88) 

= 1.105, P > 0.05, two-way ANOVA, Figure 8F, page 89). Thus, ondansetron 0.0001 mg/kg 
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significantly reduced the amplitude of orolingual AIMs on days 1, 8, 5 and 22 by 21%, 32%, 

37% and 24%, respectively, when compared with vehicle (P < 0.05, P < 0.001, P < 0.0001 and 

P < 0.05, Tukey’s post hoc test). The dose of 0.001 mg/kg ondansetron showed a similar trend 

in the development of orolingual AIMs as the vehicle group.  

AL AIMs 

As shown in Figure 8G (page 90), the addition of ondansetron significantly reduced the 

duration of AL AIMs (Ftime (3,88) = 3.064; P < 0.05; Ftreatment (2,88) = 7.953; P < 0.001; and  

Finteraction (6,88) = 0.4133, P > 0.05, two-way ANOVA). Thus, on day 8, animals that received 

ondansetron 0.0001 mg/kg with L-DOPA exhibited a 53% shorter duration of AL AIMs, when 

compared with those that received vehicle/L-DOPA (P < 0.05, Tukey’s post hoc test). In 

contrast, ondansetron did not lead to a significant reduction in the amplitude of AL AIMs (Ftime 

(3,88) = 1.623; Ftreatment (2,88) = 2.959; and  Finteraction (6,88) = 0.1974, each P > 0.05, two-way 

ANOVA) but it appears that animals administered 0.0001 mg/kg ondansetron exhibited a slight 

decrease in the amplitude AL AIMs, when compared with the control group (Figure 8H, page 

90). Treatment with 0.001 mg/kg ondansetron produced a modest decrease in the duration of 

AL AIMs with respect to vehicle-treated animals while the severity of amplitude was unaffected. 

ALO AIMs 

As illustrated in Figure 8I (page 90), adding ondansetron resulted in a significant 

reduction in the duration of ALO AIMs (Ftime (3,88) = 2.969; P < 0.05; Ftreatment (2,88) = 8.797; 

P < 0.001; and Finteraction (6,88) = 0.6006; P > 0.05, two-way ANOVA). Thus, on day 15, 

administration of ondansetron 0.0001 mg/kg in combination with L-DOPA led to a 33% 

decrease in the duration of ALO AIMs, when compared with vehicle (P < 0.01, Tukey’s post 

hoc test). Similarly, ondansetron treatment also diminished the amplitude of ALO AIMs (Ftime 

(3,88) = 0.3526; P > 0.05; Ftreatment (2,88) = 13.87; P < 0.0001; and Finteraction (6,88) = 0.9623; P 

> 0.05, two-way ANOVA). On day 8, 0.0001 mg/kg ondansetron led to a 31% reduction in the 

amplitude of ALO AIMs, when compared with vehicle (P < 0.05, Tukey’s post hoc test, Figure 

8J, page 90). On day 15, ondansetron 0.001 mg/kg showed an 49% increase in the amplitude of 

ALO AIMs, when compared with the 0.0001 mg/kg dose (P < 0.01, Tukey’s post hoc test).   
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Timecourse graphs that present the data as median with interquartile range are shown in 

Figure 12 (Appendices VI and VII).  
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Figure 8: Time course of the development of AIMs during the 22-day priming phase of the 
de novo ondansetron study. On day 8 of priming, A. the duration of axial AIMs was 
significantly reduced in animals previously treated with L-DOPA/0.0001 mg/kg ondansetron (n 
= 9), by 53%, when compared with L-DOPA/vehicle (n = 7) (P < 0.05, Tukey’s post hoc test). 
B. In contrast, the amplitude of axial AIMS was not significantly reduced in animals that were 
previously treated with L-DOPA/ondansetron 0.0001 mg/kg (n = 9) compared to animals that 
received L-DOPA/vehicle. C. The duration and D. amplitude of limbs AIMs was comparable 
between animals administered ondansetron 0.0001 mg/kg and vehicle. E. The duration of 
orolingual AIMs was not affected by ondansetron treatment. F. Administration of L-
DOPA/ondansetron 0.0001 mg/kg resulted in a significant decrease in the amplitude of 
orolingual AIMs on days 1, 8, 5 and 22 by 21%, 32%, 37% and 24%, respectively, when 
compared with vehicle (P < 0.05, P < 0.001, P < 0.0001 and P < 0.05, Tukey’s post hoc test). 
G. On day 8, when administered with L-DOPA, 0.0001 mg/kg ondansetron significantly 
reduced the duration of AL AIMs, by 53%, when compared with L-DOPA/vehicle (P < 0.05, 
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Tukey’s post hoc test). H. The amplitude of AL AIMs was comparable between L-
DOPA/0.0001 mg/kg ondansetron and L-DOPA/vehicle. I. Administration of ondansetron 
0.0001 mg/kg resulted in a significant decrease in the duration of ALO AIMs on day 15, by 
33%, when compared with L-DOPA/vehicle (P < 0.01, Tukey’s post hoc test). J. The amplitude 
of ALO AIMs was reduced in animals that were treated with L-DOPA/ondansetron 0.0001 
mg/kg, by 31%, compared to animals that received L-DOPA/vehicle (P < 0.05, Tukey’s post 
hoc test). Data are graphed as the median. *: P < 0.05; **: P < 0.01, ***: P < 0.001, ****: P < 
0.0001 vehicle versus ondansetron 0.0001 mg/kg; ϕ: P < 0.01 ondansetron 0.0001 mg/kg versus 
ondansetron 0.001 mg/kg.  
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De novo treatment with ondansetron attenuates the development of ALO 

AIMs 

To determine if any reduction of AIMs observed during the priming phase was due to a 

symptomatic effect by ondansetron or resulted from an interference with AIMs development, 

following the 22-day priming phase, rats entered a 3-day washout period, after which they were 

administered an acute L-DOPA challenge (Figure 9, page 93).  

As shown in Figures 9A and 9B (page 93), rats previously administered L-DOPA/ 

ondansetron demonstrated a reduction in the duration of cumulative and peak ALO AIMs 

(F(2,22) = 4.814 and F(2,22) = 4.389, both P < 0.05, one-way ANOVA). Treatment with L-

DOPA/ondansetron 0.0001 mg/kg and 0.001 mg/kg did not statistically diminish the duration 

of cumulative and peak ALO AIMS when compared with L-DOPA/vehicle (both P > 0.05, 

Tukey’s post hoc test). In contrast, the dose of 0.0001 mg/kg ondansetron led to a 32% and 47% 

decrease in the duration of cumulative and peak ALO AIMs, respectively, when compared with 

the dose of 0.001 mg/kg (both P < 0.05, Tukey’s post hoc test).  

As illustrated in Figure 9C (page 93), the addition of ondansetron led to a significant 

reduction in the amplitude of cumulative ALO AIMs (F(2,22) = 5.996, P < 0.01, one-way 

ANOVA). Thus, administration of L-DOPA/ondansetron 0.0001mg/kg resulted in a decrease in 

the amplitude of cumulative ALO AIMs by 33% and 34%, respectively, when compared with 

L-DOPA/vehicle and L-DOPA/ondansetron 0.001 mg/kg, respectively (both P < 0.05, Tukey’s 

post hoc test). As shown in Figure 9D (page 93), ondansetron diminished the amplitude of peak 

ALO AIMs (F(2,22) = 3.513, P < 0.05, one-way ANOVA). Thus, ondansetron 0.0001 mg/kg 

led to a significant reduction in the amplitude of peak ALO AIMs by 47%, when compared with 

the dose of 0.001 mg/kg (P < 0.05, Tukey’s post hoc test).  
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Figure 9: Effect of ondansetron on the duration and amplitude of cumulative and peak 
AIMs severity during an acute 6 mg/kg L-DOPA challenge. During an acute L-DOPA 
challenge, rats that were previously administered L-DOPA/ondansetron 0.0001 mg/kg (n = 9) 
during the priming period exhibited similar A. cumulative and B. peak duration ALO AIMs, 
when compared with L-DOPA/vehicle (n = 6). In combination with L-DOPA, 0.0001 mg/kg 
ondansetron led to a 32% and 47% decrease in the duration of cumulative and peak ALO AIMs, 
respectively, when compared with the dose of 0.001 mg/kg (n = 9), (both P < 0.05, Tukey’s post 
hoc test). C. In contrast, previous addition of ondansetron 0.0001 mg/kg ondansetron with L-
DOPA resulted in a significant reduction in the amplitude of cumulative ALO AIMs, by 33% 
and 34%, when compared with L-DOPA/vehicle and L-DOPA/0.001 mg/kg ondansetron, 
respectively (both P < 0.05, Tukey’s post hoc test). D. Ondansetron 0.0001 mg/kg led to a 
significant decrease in the amplitude of peak ALO AIMs by 47%, when compared with the dose 
of 0.001 mg/kg (P < 0.05, Tukey’s post hoc test). Cumulative and peak AIM scores are 
expressed as median with interquartile interval. *: P < 0.05 vehicle versus ondansetron 0.0001 
mg/kg; ϕ: P < 0.05 ondansetron 0.0001 mg/kg versus ondansetron 0.001 mg/kg.  
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Administration of ondansetron does not impair the therapeutic 

efficacy of L-DOPA in the cylinder test 

Following the acute challenges of ondansetron, 6-OHDA-lesioned rats were then subject 

to a 3 mg/kg L-DOPA challenge to assess whether ondansetron treatment impairs L-DOPA anti-

parkinsonian action, as measured by the cylinder test (Figure 10, page 96). As illustrated in 

Figure 10A (page 96), treatment conditions significantly improved use of the left (lesioned) 

forepaw in making wall contacts (FS = 28.54, P < 0.0001). Although administration of L-DOPA 

did not alter performance (P > 0.05, Dunn’s post hoc test), ondansetron 0.0001 mg/kg and 1 

mg/kg resulted in a significant increase the number of rears using the impaired forepaw when 

compared to post-surgery performance (both P < 0.001, Dunn’s post hoc test).  

As shown in Figure 10B (page 96), administration of L-DOPA alone or in combination 

with ondansetron led to a decrease in the use of the right (un-lesioned) forepaw (FS = 34.89, P 

< 0.0001). When 6-OHDA-lesioned rats were administered L-DOPA, there was a significant 

decrease in the number of rears using the un-lesioned side by 34% (P < 0.01, Dunn’s post hoc 

test). This decrease in rears with the un-lesioned forepaw remained present when ondansetron 

0.0001, 0.001, 0.01, 0.1 or 1 mg/kg was combined with L-DOPA by 49%, 38%, 41%, 61% and 

41%, respectively (each, P < 0.001, P < 0.01, P < 0.001, P < 0.0001 and P < 0.0001, Dunn’s 

post hoc test). There was no difference between the number of rears using the un-lesioned side 

between L-DOPA/vehicle and L-DOPA/ondansetron, regardless of the dose of ondansetron 

(each P > 0.05, Dunn’s post hoc test).  

As illustrated in Figure 10C (page 96), 6-OHDA-lesioned animals that received L-

DOPA or L-DOPA/ondansetron, demonstrated a significant increase in rears using both 

forepaws (FS = 21.52, P < 0.0001). Following administration of L-DOPA, there was a 

significant increase in rears using both forepaws, by 156%, compared to drug-naïve animals (P 

< 0.05, Dunn’s post hoc test). In combination with L-DOPA, ondansetron 0.0001, 0.01 and 0.1 

mg/kg increased the use of both forepaws by 114%, 114% and 163%, respectively (P < 0.05, P 

< 0.05 and P < 0.001, respectively, Dunn’s post hoc test). There was no difference between the 

number of rears using both forepaws to rear between L-DOPA/vehicle and L-DOPA 

ondansetron, regardless of the dose of ondansetron (each P > 0.05, Dunn’s post hoc test). 
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Results of the effect size calculated by Glass’ delta, which accounts for the variation in 

standard deviations across treatment conditions in Figures 10B and 10C, are presented in Tables 

V and VI (Appendices III and IV).  
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Figure 10: Use of forepaws across treatment conditions. A. Left forepaw use across treatments. Drug-naïve 6-OHDA-lesioned rats 
(n = 18) did not use the left (lesioned) forepaw during rearing. Following administration of L-DOPA (3/15 mg/kg), there was no 
significant change in the number of rears with the lesioned forepaw. The addition of ondansetron 0.0001 and 1 mg/kg to L-DOPA 
significantly improved use of the lesioned forepaw, when compared with post-surgery performance. B. Right forepaw use across 
treatments. 6-OHDA-lesioned rats (n = 18) used the right (un-lesioned) forepaw in 83% of rears. When 6-OHDA-lesioned rats were 
administered L-DOPA (3/15 mg/kg), there was a significant decrease in the number of rears using the un-lesioned side by 40%. This 
decrease in rears with the un-lesioned forepaw remained present when ondansetron 0.0001, 0.001, 0.01, 0.1 or 1 mg/kg was combined 
with L-DOPA by 48%, 39%, 46%, 57% and 51%, respectively. C. Use of both forepaws across treatments. 6-OHDA-lesioned rats (n 
= 18) used both forepaws during 17% of rears. Administration of L-DOPA (3/15 mg/kg) led to a significant increase in rears using 
both forepaws by 118%. In combination with L-DOPA, ondansetron 0.0001, 0.01 and 0.1 mg/kg increased the use of both forepaws 
by 113%, 121% and 159%, respectively. Data are graphed as median with interquartile range.  *: P < 0.05; **: P < 0.01, ***: P < 
0.001, ****: P < 0.0001. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. Discussion 
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These results demonstrate that ondansetron significantly diminishes the severity of 

established L-DOPA-induced AIMs compared to L-DOPA alone, without compromising the 

anti-parkinsonian action of L-DOPA. Furthermore, administration of ondansetron, when begun 

concurrently with L-DOPA, attenuates the development of AIMs compared to L-DOPA alone. 

Taken together, these results suggest that 5-HT3 receptor antagonism represents a novel and 

effective therapeutic strategy to reduce LID in PD. The following discussion will focus on how 

5-HT3 receptor blockade may be an effective approach to reduce the severity of LID.  

Limitations and future directions 

In light of the findings reported in the present thesis, it is also important to highlight the 

limitations of the experiments. First, the pharmacokinetic study characterized peak ondansetron 

levels, previously unknown, in the rat with the doses used. However, determining brain levels 

of ondansetron in human is hardly feasible for ethical reasons, so it is not possible to compare 

or correlate plasma levels of ondansetron with brain levels. Further studies are thus needed to 

determine the plasma and brain concentration profile of ondansetron and brain ondansetron 

levels in the brain associated with maximum anti-dyskinetic activity. Second, the primary 

endpoint of this Master’s thesis was to assess the effect of ondansetron on the severity of 

dyskinesia in a PD animal model. This preclinical study modelled the administration of 

ondansetron in the clinic as an adjunct to L-DOPA and demonstrated that it achieved its effect 

on dyskinesia without impairing the therapeutic efficacy of L-DOPA. It would be interesting to 

study the effect of ondansetron on basal PD disability in a subsequent set of experiments. Third, 

in the 6-OHDA-lesioned rat, an increase in SERT levels is reported in the striatum of dyskinetic 

animals and, furthermore, levels of SERT correlate with AIMs severity (989, 990). In addition, 

following 2-3 weeks of either low or high doses of L-DOPA, SERT levels also increase in the 

rat striatum (990). Interestingly, the increase in striatal SERT levels appears to be a dose-

dependent effect of L-DOPA-induced axonal sprouting (990). Similarly, in the MPTP-lesioned 

macaque model, there is an increase in the number of 5-HT axon varicosities in the striatum, 

which is particularly pronounced where DA denervation is most severe (991). Although these 

studies may be in accordance with the agreed upon role of serotonergic terminals in the 

pathophysiology of dyskinesia (736), further anatomical characterization in the 6-OHDA-

lesioned rat model is needed before inferring their action on raphe-striatal pathways. Fourth, the 
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acute challenges of ondansetron study demonstrated the acute suppression of L-DOPA induced 

AIMs in the 6-OHDA lesioned rat model. Whether this effect would be maintained over the 

long-term remains unknown, and a chronic ondansetron study, where ondansetron would be 

administered over several days, with regular assessments of AIMs severity, could determine 

whether the anti-dyskinetic efficacy of ondansetron is maintained or if tolerance develops. Fifth, 

most of the thesis was a behavioural pharmacology study and is not informative on the 

mechanism whereby 5-HT3 receptor blockade reduces the severity of established and prevents 

the development of dyskinesia. Thus, we are actively seeking answers on elucidating the 

mechanism that underlies the action of 5-HT3 blockade, notably by conducting studies that will 

shed light on the brain areas involved in mediating the anti-dyskinetic effect of antagonising 5-

HT3 receptors. Sixth, several highly-selective 5-HT3 receptor antagonists are clinically available 

with differing affinity for the receptor and duration of action, and it would be of further interest 

to determine whether the pharmacodynamics or pharmacokinetic profiles of a drug influence its 

anti-dyskinetic efficacy. 

Pharmacokinetic study of clinically relevant doses of ondansetron 

The preliminary dose-finding PK study, which aimed at assessing whether there was a 

ceiling effect to anti-dyskinetic efficacy of higher doses of ondansetron, found that ondansetron 

0.01 mg/kg led to a Cmax of 2.31 ng/mL. Clinical studies have described oral administration of 

ondansetron in healthy volunteers and a single oral dose of 8 mg measured a Cmax of 19.9 – 31.2 

ng/mL (992, 993). The dose of 0.0001 mg/kg ondansetron that conferred the therapeutic benefit 

in the behavioural studies is likely well below plasma levels in humans and thus, well tolerated 

in humans. On the other hand, the higher doses of 0.1 and 1 mg/kg ondansetron likely led to 10-

fold to 100-fold higher than well tolerated plasma levels in humans, which limits the 

translational potential of administering higher doses of ondansetron in the clinic, especially if 

the dosing regimen requires exceeding maximum tolerated doses of ondansetron. As the PK of 

subcutaneous ondansetron administration has not been assessed in humans, it is not possible to 

make a valid comparison to assess whether the dose of 0.01 mg/kg ondansetron is clinically 

relevant (993). It is thus warranted to conduct PK studies of subcutaneous oral administration 

in primates to confirm anti-dyskinetic doses of ondansetron are clinically relevant. 
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5-HT3 blockade with ondansetron alleviates previously established 

AIMs without impairing the anti-parkinsonian efficacy of L-

DOPA 

In the present study, during the course of treatment, ondansetron at 0.0001 mg/kg 

consistently produced the lowest AIMs severity whereas the vehicle produced the most severe 

AIMs treatment, except for the orolingual AIMs. Accordingly, the duration and amplitude 

ranking time courses consistently show that the cumulative and peak AIMs with ondansetron 

0.0001 mg/kg are significantly reduced, when compared to vehicle. Importantly, ondansetron 

reduced the severity of cumulative AIMs as well as the peak severity of AIMs, which coincides 

with the peak L-DOPA concentration, suggesting that ondansetron may alleviate dyskinesia 

throughout the time period they are expressed, regardless of their intensity, which has important 

therapeutic implications. 

The dose of 0.0001 mg/kg ondansetron was the most effective at alleviating established 

AIMs, particularly the axial and limbs components, compared to the more cumulative measures 

of AL and ALO AIMs. Orolingual AIMs are often more difficult to score compared to the other 

dyskinetic parameters and, as they are more subtle, they may be overestimated or overlooked 

(965). In the investigators’ experience, milder severity levels present with subtle differences 

while at higher severity, more prominent AIMs of the neck and upper body as well as the 

forelimb can mask the appearance of orolingual AIMs. Indeed, treatment with ondansetron did 

not produce a significant reduction on the duration or the amplitude of orolingual AIMs. Thus, 

while ALO AIMs evaluate the anti-dyskinetic effect of a treatment on the sum of the three 

components, it is also of interest to express the data as AL AIMs, which are arguably relatively 

more disabling than orolingual AIMs. Interestingly, despite the lack of effect on the severity and 

temporal profile of orolingual AIMs, ondansetron appeared to have a more pronounced effect 

on the severity of ALO than AL AIMs, suggesting that the efficacy of the anti-dyskinetic effect 

is maintained on cumulative dyskinetic parameters.   

A criticism that could be raised on the scale used here is that while it evaluates the 

severity of ALO AIMs across both duration and amplitude, it does not differentiate between 

dystonic and hyperkinetic dyskinesia, which could be correlates of dystonia and chorea, 
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respectively. Steece-Collier and collaborators have introduced a modification to the scale that 

scores dystonic and hyperkinetic axial and limbs AIMs separately (994), and might allow the 

detection of differential effects of treatments on these subtypes of dyskinesia (965), and could 

possibly have enabled us to make predictions as to whether 5-HT3 blockade might be more 

effective, in clinical settings, to reduce dystonia, chorea, or both. 

The bell-shaped dose-response curve is often ascribed to 5-HT3 receptor antagonists for 

indications in preclinical and clinical studies including anxiety (995), depression (996, 997), 

drug addiction (998) and migraines (883). In general, the maximum response is already observed 

in the microgram dose range, while higher doses are ineffective (848). However, the mechanism 

underlying the dose-response curve still lacks satisfactory explanation and it remains to be 

determined whether this is due to the pharmacology of individual compounds or a group-specific 

characteristic (818). Thus, in our experiments, lower doses of ondansetron produced the greatest 

relief of dyskinesia. The most favoured mechanism proposes that, at high concentrations of 5-

HT3 antagonists, there is mutual steric hindrance at the receptor, which refers to an inappropriate 

interaction of a ligand to its receptor that results in a conformational change in the receptor that 

prevents the binding of ligands to the receptor” (999-1001) or, more speculatively, additional 

effects due to low-affinity binding to other receptors. Although ondansetron binds with low 

affinity to the 5-HT1A, 5-HT1B, α-adrenergic and opioid receptors, its binding to high-affinity 5-

HT3 receptor sites is about 250- and 500-fold higher that of the other receptors (786, 870, 1002). 

Alternatively, as the density of 5-HT3 receptors varies between different brain regions with one 

density type being completely inhibited at low concentrations and the other type only at high 

concentrations of 5-HT receptor antagonists, which could explain contrary effects (818), e.g. a 

therapeutic effect, triggered by blockade of 5-HT3 receptors within one brain area, could be off-

set when 5-HT3 receptors from another brain region are completely antagonised (882), which 

could explain the lack of efficacy of higher doses of ondansetron.  

According to the classic model of BG circuitry, dyskinesia may arise as the result of 

overactivity of the direct pathway and/or underactivity of the indirect pathway (299, 572, 580). 

Some autoradiographic studies report the expression of 5-HT3 receptors on GABAergic MSNs 

of the direct and indirect pathways (638). In view of the anti-dyskinetic results described above, 

it is possible that, at lower doses of ondansetron, the compound antagonizes inhibitory 

GABAergic projections neurons of the striatum, and may preferentially block pre-synaptic 5-
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HT3 receptors on MSNs of the direct pathway over MSNs of the indirect pathway. Here, 

ondansetron would act on the pre-synaptic nerve terminal to prevent the entry of cations into the 

neurons and their subsequent depolarization followed by release of neurotransmitters (849, 850). 

As a result, the propagation of inhibitory GABAergic signal to the EP/SNr is reduced, which 

would diminish hyperactivity of the direct pathway in LID, and may lead to the dampening of 

AIMs observed with lower doses of the compound.  

5-HT3 receptors are also found on striatal GABAergic interneurons, notably the 

stomatostatin-/nitric oxide synthase- and calretinin-expressing interneuron subtypes. These two 

major interneuron populations exhibit high input resistance and persistent low-threshold spiking 

(PLTS) in response to intracellular depolarization or excitatory synaptic stimulation 

(1003). Although the output of individual PLTS interneurons is relatively weak and sparse, they 

may form inhibitory synapses onto distal dendrites of MSNs (1004), which is consistent with 

SOM+ GABAergic terminals that have been observed on the dendrites of MSNs 

(1005). Moreover, it is possible that the low connectivity of PLTS interneurons is strengthened 

under disease states (1006), where they release neuromodulators such as neuropeptide Y, SOM 

and NO, which more speculatively, may modulate the activity of striatal GABAergic MSNs of 

the direct pathway (1007-1010).  

In addition to their action on MSNs from the direct pathway, antagonism of 5-HT3 

receptors on striatal GABAergic interneurons may exert an inhibitory effect on the activity of 

the direct pathway that partially restores inhibition of motor cortical areas to physiological 

levels. Although the presence of AADC expression in striatal interneurons may be controversial 

(1011, 1012), they could represent another source of L-DOPA derived DA (1013, 1014). Here, 

ondansetron may prevent extra synaptic DA release by blocking the 5-HT3 receptor on striatal 

interneurons, thereby diminishing fluctuations in DA levels associated with the appearance of 

LIDs (745). In contrast, at higher doses of ondansetron, the compound may also antagonize 5-

HT3 receptors on MSNs of the indirect pathway. This could theoretically result in further 

disturbance to the equilibrium between the direct and indirect pathways and lead to a greater 

disinhibition of the motor thalamus and motor cortex, exacerbating existing L-DOPA-induced 

AIMs.  

It should be noted though, that such mechanisms have yet to be demonstrated 

experimentally, which is further emphasised by the fact that there is currently no consensus in 
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the literature on the distribution of 5-HT3 receptors in the rodent BG. In the rodent striatum, 

studies have reported a variety of expression patterns ranging from weak to moderate expression 

of the 5-HT3 receptors. However, a recent immunostaining study in the mouse brain has 

attempted to address the limitations of these binding studies by using 5-HT3A receptor-green 

fluorescent protein transgenic mice to map the 5-HT3A receptor subunit in the mouse brain (897). 

The authours reported moderately high expression of the 5-HT3A receptor subunit in the 

striatum, slight expression in the thalamus but no expression in the GP and SN. Thus, based 

upon our results, assuming that the striatum is the structure that mediates, at least in part, the 

anti-dyskinetic effect of 5-HT3 blockade, these weak-moderate expression levels of the5-HT3A 

receptor are probably sufficient to mediate a behavioural effect. Another possibility is that 5-

HT3 expression is altered in the dyskinetic state, but studies on the expression of 5-HT3 in the 

dyskinetic state have yet to be performed.  

Nevertheless, 5-HT3 receptors appear to be well situated to modulate the release of 

neurotransmitters within the BG, which may be responsible for their anti-dyskinetic effect. 

Thus, anatomical, electrophysiological and behavioural studies have suggested an important 

functional crosstalk between 5-HT and DA pathways in the BG. In particular, it has been 

demonstrated that the 5-HT3 receptor mediates changes in striatal dopamine release in vitro 

(1015) and in vivo (911, 912, 1016). In fact, a microdialysis study reported that intrastriatal 

injection of the 5-HT3 antagonists 3-tropanyl-indole-3-carboxylate, MDL-72222 or ondansetron 

attenuated 5-HT or morphine-induced striatal DA release, which suggests that 5-HT acts at 5-

HT3 receptors to facilitate DA release in the striatum (1017, 1018). Consistent with these results, 

systemic administration of the 5-HT3 antagonists ondansetron and MDL 72222 did not affect 

basal DA efflux in the striatum (1018, 1019). Taken together, these results suggest that the 5-

HT3 receptor regulates evoked nigrostriatal DA release (1020), which is dependent on 

depolarization and the concomitant elevation of both DA and 5-HT tones (1021). Furthermore, 

in rat striatal slices, application of the selective 5-HT3 agonists 2-methyl-5-HT and 

phenylbiguanide increased endogenous release of DA (1022), and DA release induced by 5-HT 

and the 5-HT3 agonist 2-methyl-5-HT was attenuated by the 5-HT3 antagonist ICS 205-930 

(1023). In addition, in the dyskinetic state, where 5-HT fibres mediate DA release; 

administration of ondansetron may reduce the excitatory 5-HT innervation to the striatum, and 

this would lead to a reduction of DA release, which would translate behaviourally by a reduction 
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of dyskinesia. Lastly, it has been suggested that 5-HT3 receptor may reduce the number of 

electrically-active and firing neurons within the SN and VTA and produce reductions in evoked 

DA release within the striatum and nucleus accumbens (1024); here again, this reduction of DA 

release might translate, at the behavioural level, by a reduction of dyskinesia. Furthermore, 

behavioural experiments have also suggested that pharmacological modulation of the 5-HT3 

receptor modifies nigrostriatal DA-induced motor responses, for instance, intrastriatal injection 

of the 5-HT3 agonists SR-57227A or 2-methyl-5-HT in mice led to contralateral rotations that 

were abolished with systemic administration of the 5-HT3 antagonist ondansetron (863). Taken 

together, these studies implicate the involvement of the 5-HT3 receptor in DA release in the 

striatum, and it can be inferred that administration of ondansetron may have attenuated this 

excessive release of DA and led to the reduction in the severity of ALO AIMs. 

L-DOPA derived DA release also occurs outside the striatum and other brain regions 

that receive 5-HT innervation display increased extrasynaptic DA release that may contribute 

to the development of LID (1025). Volume transmission of DA and its overflow past its release 

site can lead to the interaction of DA with multiple synapses (1026), and this volume increases 

even further with the degeneration of DA axons and loss of DAT activity in PD (1027). Given 

that extrasynaptic DA receptors are activated further from release sites (1027), pharmacological 

modulation of DA release in the striatum may exert effects on other BG nuclei including the 

STN, the entopeduncular nucleus (EP), the rodent homologue to the primate GPi, the SNr as 

well as the thalamus. The STN is considered the major driving force in the BG circuitry (554, 

1028); thus, alterations in its activity by the 5-HT3 receptor could represent an important site of 

action to reduce dyskinesia. Intrasubthalamic injection of the 5-HT3 agonist mCPBG in rats 

induced contralateral turning behaviour, which was suppressed by lesion of the SNr (1029), 

which suggests that contralateral rotations could result from decreased excitatory input from the 

STN to the SNr, which in turn enhanced the activity of the ipsilateral motor thalamus (1029). In 

spite of the lack of autoradiographic studies on the distribution of the 5-HT3 receptor in the STN, 

these findings suggest the presence of functional 5-HT3 receptors in the STN. In line with the 

localization of 5-HT3 receptors to GABAergic neurons, including in the striatum (814, 897) and 

neocortex (804, 822, 823), blockade of 5-HT3 receptor may exert an inhibitory effect on 

subthalamic neurons. The consequent increase in glutamatergic output to the EP/SNr causes the 

inhibition of the motor thalamus and motor cortex, which might alleviate the severity of 
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dyskinesia. However, additional autoradiographic and immunohistochemical studies need to be 

conducted to confirm the expression of 5-HT3 receptors in the STN.  

Effect of ondansetron and ALO AIMs on L-DOPA anti-

parkinsonian action 

In agreement with previous studies (885, 973, 1030), L-DOPA improved 6-OHDA 

lesion-induced forelimb use asymmetry at the cylinder test. Importantly, this effect of L-DOPA 

was maintained after ondansetron was administered in our experiments, which indicates that 

ondansetron did not impair L-DOPA anti-parkinsonian effect.  

A limitation of the cylinder test is that it can be impaired by AIMs. To circumvent this 

limitation, we used L-DOPA 3 mg/kg when performing the test, a dose that should theoretically 

not trigger AIMs. However, studies report that even such small doses of L-DOPA can trigger 

AIMs after chronic dopaminergic therapy (1031, 1032), and an interference of AIMs in the 

scoring occurred in our study with higher doses of ondansetron, with which AIMs were not 

reduced, which rendered difficult accurate rearing assessment. Retrospectively, a lower dose of 

L-DOPA, might have been sufficient to assess the anti-dyskinetic action of L-DOPA without 

eliciting AIMs in the animals. Alternatively, other tests of physiological motor behaviour such 

as the rotarod test (1033), open field test (1034) or stepping test (1035) should be administered 

in conjunction with the cylinder test as they may show greater sensitivity to detect motor 

activity, although severe AIMs could theoretically alter the performance at these tests as well. 

Effect of ondansetron on the development of ALO AIMs 

In the present study, chronic L-DOPA administration for 22 days in 6-OHDA-lesioned 

rats induced the expression of AIMs and the severity increased over time before reaching a 

plateau. In contrast, in animals treated with both ondansetron 0.0001 mg/kg and L-DOPA the 

development of AIMs was significantly attenuated. Animals treated with ondansetron 0.001 

mg/kg and L-DOPA showed a similar progression in the development of AIMS as the control-

DOPA/vehicle group, as opposed to the modest anti-dyskinetic effect observed in the acute 

challenge study. Following the 22-day priming phase, animals were subject to an acute L-DOPA 

challenge to assess whether ondansetron treatment interfered with the priming process that led 
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to the development of dyskinesia, or if the apparent dyskinesia reduction during the priming 

phase was due to a symptomatic effect of the compound. If ondansetron indeed attenuates the 

development of dyskinesia, we would expect the L-DOPA/vehicle group of animals to display 

more severe AIMs when compared to the L-DOPA/ondansetron groups upon administration of 

L-DOPA alone after the washout period that followed the priming phase. We found that, upon 

acute administration of L-DOPA alone after the priming phase, the cumulative ALO AIMs 

severity was significantly diminished in animals that were primed with L-DOPA/ondansetron 

0.0001 mg/kg.  

Collectively, our results suggest that 5-HT3 blockade acutely diminishes AIMs severity 

and interferes with the development of dyskinesia. Quite interestingly is the fact that, by looking 

at the different time course figures illustrating the development of AIMs during the de novo 

study, ondansetron appeared to have little symptomatic effect, which is in contradiction with the 

less severe AIMs when animals were administered L-DOPA alone after the priming phase. A 

possible explanation may be the development of tachyphylaxis to ondansetron. Further studies 

are needed to explore this possible tolerance to the therapeutic effect of the drug, as any 

administration in clinical settings would entail chronic intake of the drug; as such, tachyphylaxis 

might reduce the translational potential of ondansetron as a treatment for dyskinesia. 

It is important to note that during the 22-day study, animals in the vehicle group had 

relatively moderate AIMs scores and consequently, any effect of treatment appears to be rather 

subtle. Furthermore, even during the L-DOPA challenge, several vehicle-treated animals had no 

to minimal dyskinesia, while amongst those that displayed dyskinesia, it was only to a moderate 

level, despite the fact that they all had significant rearing asymmetry at the cylinder test, 

indicative of severe nigrostriatal lesion. This finding was not unexpected and is in agreement 

with the literature (473, 965, 1036), as mentioned before, as several 6-OHDA-lesioned rats do 

not develop AIMs when exposed to L-DOPA, regardless of the severity of their nigrostriatal 

DA denervation. However, no or mild dyskinesia in the control group renders it more difficult 

to detect an effect in the active group, which is a limitation of conducting de novo studies in the 

6-OHDA-lesioned rat. Here however, this consideration did not prevent us from finding 

significant results.   

Although we have used the term “priming” on several instances in this Thesis, it should 

be pointed out that the existence of such a process has been debated. Indeed, the definition of 
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priming as receptor sensitivity (604, 699) or behavioural manifestation (441), depends on the 

research group. Moreover, several paradigms are used to study priming and some consider that 

priming occurs after a single administration of a dopaminergic drug whereas others indicate that 

at least two injections are required (441, 1037). Thus, it was proposed that dyskinesia 

development could be related to plastic changes induced by dopaminergic denervation in the 

striatum or accelerate aberrant changes induced by the dopaminergic lesion (440). Furthermore, 

the authors argue that DA replacement therapy may affect the propensity of treatment to elicit 

dyskinesia by increasing the likelihood of dyskinesia development, decreasing the threshold 

dose of drug needed to induce dyskinesia and shifting the dyskinesia dose-response curve to the 

left (474). Thus, the first intake and subsequent administration of L-DOPA or DA agonists may 

sensitize to the actual mechanisms that underlie LID but not induce them.  

Chronic L-DOPA administration in the 6-OHDA-lesioned rat induces the expression of 

∆FosB protein in the DA-denervated striatum of animals that develop LID (1038). Increased 

ERK1/2 phosphorylation correlates with increased ∆FosB and dyskinesia in the DA-depleted 

striatum of 6-OHDA-lesioned rats (974, 1039). Therefore, the use of biological molecular 

markers such as ∆FosB and ERK1/2 phosphorylation may provide a cellular measure of 

dyskinesia that is complementary to the behavioural assessment of dyskinesia. Further studies 

are needed to determine if de novo administration of 5-HT3 antagonists interfere with these 

molecular changes that are associated with the dyskinetic state. 

 



 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

V. Conclusion 
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There remains many gaps in our understanding of the pathophysiology of LID, and this 

unmet medical need continues to undermine the quality of life of PD patients. Here, we have 

used the 5-HT3 receptor antagonist ondansetron, because it is highly-selective and clinically 

available. Inasmuch as its high selectivity, the therapeutic benefit conferred by ondansetron is 

likely to be mediated exclusively through 5-HT3 receptor blockade. Our results therefore 

indicate that 5-HT3 receptor antagonism is a new and promising therapeutic strategy to alleviate 

established, and prevent the development of, LID in PD. Importantly, the anti-dyskinetic action 

was achieved without compromising L-DOPA anti-parkinsonian action, a problem that has 

hindered the development of several potential anti-dyskinetic approaches in the past few years 

(741, 1040-1042).  

Further studies are needed to characterise the potential of this exciting new therapeutic 

paradigm to alleviate LID. Given the effect of acute challenges of ondansetron 0.0001 mg/kg 

on the severity of established ALO AIMs, it would be of further interest to investigate whether 

chronic administration of treatment can maintain this anti-dyskinetic effect. Hence, following 

the two-week induction priming phase, animals would be administered L-DOPA/ondansetron 

on a daily basis for three weeks and ALO AIMs severity would be assessed at regular intervals. 

This would differ from the de novo experiments that seek to assess the effect of treatment on the 

development of AIMs as here, L-DOPA is administered to the animals so that they already 

exhibit AIMs before L-DOPA/experimental drug is administered. In addition, experiments in 

the gold standard model of PD, the MPTP-lesioned nonhuman primate model, could validate 

the efficacy of 5-HT3 receptor antagonism on dyskinesia as well as another complication of L-

DOPA therapy, psychosis. Given the clinical availability of 5-HT3 receptors, positive outcomes 

in the MPTP-lesioned primate model could facilitate the testing of these compounds in Phase 

IIa clinical trials in the context of dyskinesia.  
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VII. Appendix
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Table III: Duration rating scale of ALO AIMs in the 6-OHDA-lesioned rat  

Parameter Score 

axial 

0: no dyskinesia 

1: occasional signs of dyskinesia, present < 50% of observation time 

2: frequent signs of dyskinesia, present > 50% of the observation 

time 

3: dyskinesia present during the entire observation period, but 

suppressible by external stimuli 

4: continuous dyskinesia not suppressible by external stimuli 

limbs 

0: no dyskinesia 

1: occasional signs of dyskinesia, present < 50% of observation time 

2: frequent signs of dyskinesia, present > 50% of the observation 

time 

3: dyskinesia present during the entire observation period, but 

suppressible by external stimuli 

4: continuous dyskinesia not suppressible by external stimuli 

orolingual 

0: no dyskinesia 

1: occasional signs of dyskinesia, present < 50% of observation time 

2: frequent signs of dyskinesia, present > 50% of the observation 

time 

3: dyskinesia present during the entire observation period, but 

suppressible by external stimuli 

4: continuous dyskinesia not suppressible by external stimuli 
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Table IV: Amplitude rating scale of ALO AIMs in the 6-OHDA-lesioned rat  

Parameter Score 

axial 0: no dyskinesia 

1: sustained deviation of the head and neck at about a 30º angle 

2: sustained deviation of the head and neck between an angle of 30º 

and 60º 

3: sustained twisting of the head, neck and upper trunk, at an angle 

between 60º and 90º 

4: sustained twisting of the head, neck and trunk at maximal 

amplitude, causing the rat to lose balance from a bipedal position 

limbs 0: no dyskinesia 

1: tiny movements of the paw around a fixed position 

2: displacement of the whole limb (horizonal or up-and-down) 

3: large displacement of the limb with visible contraction of shoulder 

muscles 

4: vigorous limb displacement of maximal amplitude, with 

contraction of both shoulder groups and extensor muscles 

orolingual 0: no dyskinesia 

1: twitching of facial muscles accompanied by small masticatory 

movements without jaw opening 

2: twitching of facial muscles accompanied by masticatory 

movements, occasional jaw opening 

3: movements involving facial muscles and masticatory muscles, 

frequent jaw opening and occasional tongue protrusion 

4: involvement of all of the above muscles to the maximal possible 

degree 
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Table V: Glass’ delta of right forepaw use across ondansetron treatments 

 

  

dose of ondansetron 
(mg/mL) lesion veh 0.0001 0.001 0.01 0.1 1 
mean 82.31 50.79 52.07 43.17 46.03 34 43.98 
standard deviation 11.57 27.67 24.09 28.38 24.64 25.76 21.15 
Glass' delta - 2.72 2.61 3.38 3.14 4.18 3.31 
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Table VI: Glass’ delta of both forepaw use across ondansetron treatments 

dose of ondansetron 
(mg/mL) lesion veh 0.0001 0.001 0.01 0.1 1 
mean 17.09 41.03 34.83 35.28 34.88 45.95 34.56 
standard deviation 11.26 22.49 19.93 26.59 21.54 24.85 15.15 
Glass' delta - 2.13 1.58 1.62 1.58 2.56 1.55 
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Figure 11: Equation to calculate Glass’ delta 
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Figure 12: Time course of the development of AIMs during the 22-day priming phase of 

the de novo ondansetron study. On day 8 of priming, A. the duration of axial AIMs was 

significantly reduced in animals previously treated with L-DOPA/0.0001 mg/kg ondansetron (n 

= 9), by 53%, when compared with L-DOPA/vehicle (n = 7) (P < 0.05, Tukey’s post hoc test). 

B. In contrast, the amplitude of axial AIMS was not significantly reduced in animals that were 

previously treated with L-DOPA/ondansetron 0.0001 mg/kg (n = 9) compared to animals that 

received L-DOPA/vehicle. C. The duration and D. amplitude of limbs AIMs was comparable 

between animals administered ondansetron 0.0001 mg/kg and vehicle. E. The duration of 

orolingual AIMs was not affected by ondansetron treatment. F. Administration of L-

DOPA/ondansetron 0.0001 mg/kg resulted in a significant decrease in the amplitude of 

orolingual AIMs on days 1, 8, 5 and 22 by 21%, 32%, 37% and 24%, respectively, when 



 

VIII 

 

compared with vehicle (P < 0.05, P < 0.001, P < 0.0001 and P < 0.05, Tukey’s post hoc test). 

G. On day 8, when administered with L-DOPA, 0.0001 mg/kg ondansetron significantly 

reduced the duration of AL AIMs, by 53%, when compared with L-DOPA/vehicle (P < 0.05, 

Tukey’s post hoc test). H. The amplitude of AL AIMs was comparable between L-

DOPA/0.0001 mg/kg ondansetron and L-DOPA/vehicle. I. Administration of ondansetron 

0.0001 mg/kg resulted in a significant decrease in the duration of ALO AIMs on day 15, by 

33%, when compared with L-DOPA/vehicle (P < 0.01, Tukey’s post hoc test). J. The amplitude 

of ALO AIMs was reduced in animals that were treated with L-DOPA/ondansetron 0.0001 

mg/kg, by 31%, compared to animals that received L-DOPA/vehicle (P < 0.05, Tukey’s post 

hoc test). Data are graphed as the median with interquartile range. *: P < 0.05; **: P < 0.01, 

***: P < 0.001, ****: P < 0.0001 vehicle versus ondansetron 0.0001 mg/kg; ϕ: P < 0.01 

ondansetron 0.0001 mg/kg versus ondansetron 0.001 mg/kg.  
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