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ABSTRACT 

The reactive oxygen species (ROS), generated endogenously and exogenously, following 

treatment with oxidizing agents is well-known to induce double strand deoxyribonucleic acid 

(DNA) breaks (DDSB). Saccharomyces cerevisiae has been used widely as a tool to study the 

mechanisms that confer sensitivity or resistance to oxidative DDSB repair. Thesis herein describes 

two separate studies designed to better understand the DDSB repair mechanisms.  

 

The aim of the first study was to assess the role of rts1, and its associated genes, in the regulation 

of oxidative DNA-damage repair mechanisms. The study involved treatment of wild-type (WT) 

and mutant BY4741 yeast strains with Zeocin, hydrogen peroxide and hygromycin. The nuclear 

proteins from WT and rts1Δ strains were fractionated using fast protein liquid chromatography 

(FPLC), and the fractions were run on polyacrylamide gel followed by analyses of bands generated 

or lost using mass spectrometry. Our findings here show an Apn1-dependent functional role of rts1 

in DDSB-repair mechanisms. Furthermore, analysis of the FPLC fractions using mass 

spectrometry revealed up-regulation of eno1 and down-regulation of cdc19 following deletion of 

rts1. However, confirmatory experiments only showed significant association of rts1 with that 

cdc19. Hence, further studies are required to better understand the association of rts1 with that of 

cdc19 and eno1, and how their interaction affects the DNA-repair processes and/or cell cycle. 

 

In the second study, we investigated the role of histone H2A in the nuclear localization of Apn1. 

Furthermore, the study also characterized the role of H2A-E130A residue in methyl 

methanesulfonate (MMS)-induced DNA-repair response. Out findings herein demonstrated a role 

for Glu130 residue of Histone H2A in the nuclear localization of Apn1. Importantly, our data also 
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show the role of the Glu130 in determining the sensitivity as well as the growth rate of the H2A 

strain to MMS. Future investigation of the APN1-related genes will facilitate better understanding 

of the role of Apn1 and its associated genes in regulating the repair mechanisms following double 

strand DNA breaks induced by alkylating agents.  

 

Key words: Protein phosphatase 2A, Zeocin, Rts1, Cdc19, Histone H2A, Apn1, Chromosomal 

DNA, NLS, AP sites  
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RÉSUMÉ  

Les espèces réactives de l'oxygène (ROS), générées de manière endogène, et de maniére exogène 

suite à un traitement avec des agents oxydants, sont bien connues pour induire des cassures doubles 

brin (DDSB) de l'acide désoxyribonucléique (ADN). Saccharomyces cerevisiae a été largement 

utilisée comme outil pour étudier les mécanismes qui confèrent une sensibilité ou une résistance à 

la réparation oxydative du DDSB. La thèse décrit deux études distinctes conçues pour mieux 

comprendre les mécanismes de réparation du DDSB. 

 

Le but de la première étude était d'évaluer le rôle de rts1 et de ses gènes associés dans la régulation 

des mécanismes de réparation des dommages oxydatifs de l'ADN. L'étude a impliqué le traitement 

de souches de levure BY4741 de type sauvage (WT) et des souches mutantes avec de la zéocine, 

le peroxyde d'hydrogène et de l'hygromycine. Les protéines nucléaires des souches WT et rts1Δ 

ont été fractionnées en utilisant la chromatographie liquide de protéine rapide (FPLC).  Les 

fractions ont été passées sur un gel de polyacrylamide suivi par des analyses de bandes générées 

ou perdues en utilisant la spectrométrie de masse. Nos résultats ici montrent un rôle fonctionnel 

d’Apn1 dans les mécanismes de réparation DDSB, dépendamment de rts1. En outre, l'analyse des 

fractions de FPLC a révélé une augmentation de eno1 contre une diminution de cdc19 après la 

suppression de rtsl. Cependant, les expériences de confirmation ont montré qu`une association 

significative de rts1 avec CDC19. Par conséquent, d'autres études sont nécessaires pour mieux 

comprendre l'association de rts1 avec celle de cdc19 et eno1, et comment leur interaction affecte 

les processus de réparation de l'ADN et / ou le cycle cellulaire. 
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Dans la deuxième étude, nous nous sommes intéresses au  rôle de l'extrémité N-terminale de 

l'histone dans la localisation nucléaire de Apn1. L'étude a également caractérisé le rôle du résidu 

H2A-E130A dans la réponse à la réparation des dommages de l'ADN induits par le 

méthanesulfonate de méthyle (MMS). Les résultats ont démontré un rôle du résidu Glu130 de 

l'histone H2A dans la localisation nucléaire de Apn1. Nos données montrent également le rôle de 

la Glu130 dans la détermination de la sensibilité ainsi que le taux de croissance de la souche H2A 

au MMS. Une étude future des gènes associés à Apn1 facilitera une meilleure compréhension du 

rôle de cette protéine et de ses gènes associés dans la régulation des mécanismes de réparation des 

cassures double brin de l'ADN induites par les agents alkylants. 

 

Mots clés: Protéine phosphatase 2A, Zeocin, Rts1, Cdc19, Histone H2A, Apn1, ADN 

chromosomique, NLS, Sites AP. 
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CHAPTER ONE: Literature Review 

1. Literature Review 

1.1 Cancer: Epidemiology and Etiology 

Cancer is a major cause of morbidity and mortality in both developed and developing countries 

(Fidler et al. 2017). To date, over two hundred types of cancer have been identified. Among these, 

the most common types are carcinomas of the breast, lung, prostate and bowel (Ferlay et al. 2015). 

It has been estimated that cancer causes more deaths than cardiovascular diseases or stroke (Fidler 

et al. 2017). In 2012, the GLOBOCAN project estimating worldwide cancer incidence and 

mortality reported 14.1 million new cancer cases and 8.2 million cancer-related deaths (Ferlay et 

al. 2015). Gender as well as demographic differences in the incidence and prevalence of various 

cancers has also been documented (Ramotar et al. 1993, Fidler et al. 2017). 

 

Cancer, a term used to describe a group of co-morbid diseases, is characterized by abnormal and/or 

uncontrolled cell growth (Lee et al. 2016). Somatic cells divide regularly throughout the life span 

of an individual governed by a tightly-regulated sequence of events, collectively termed cell cycle 

process (Hanahan and Weinberg 2011). This homeostatic pathway ensures proper maintenance of 

cell growth and function (Hanahan and Weinberg 2011). Under normal physiology, cells 

determined with non-repairable defects or mutations during cell-cycle checkpoints are 

programmed for apoptosis (Hanahan and Weinberg 2011). However, certain deoxyribonucleic 

acid (DNA) mutations can make cells resistant to apoptosis, resulting in faster replicating abnormal 

cancerous or neoplastic cells (Hanahan and Weinberg 2011). The hallmark characteristic features 

of cancer cells include, sustained proliferation, evasion of growth suppressors, resistance to 



 
  

2 

apoptosis, replicative immortality, sustained angiogenesis, primary and secondary metastasis, 

evasion of immune system, but to name a few (Hanahan and Weinberg 2011).  

 

The etiology of cancer encompasses several genetic, epigenetic and environmental factors 

(Migliore and Coppede 2002). Genome wide association studies have identified several cancer 

susceptibility genes, including BRCA1, BRCA2, MLH1 and MSH2, with high penetrance for breast, 

ovarian and colorectal cancers (Sud, Kinnersley, and Houlston 2017). In particular, genetic 

polymorphism or mutations of various genes involved in DNA repair, tumor-suppressor, and 

proto-oncogenes genes are well known to facilitate neoplastic changes (Aunoble et al. 2000). 

Environmental factors such as ionizing radiation, alcohol, viruses, chemicals, tobacco products 

and pollutants are some of the potential carcinogenic agents (Parsa 2012). Specifically, tobacco 

smoke and alcohol products contributes to as many as half of all cancer deaths in the United States 

(Lee and Hashibe 2014). 

 

1.4 Cancer Treatment and Resistance 

The therapeutic armamentarium for metastatic cancers encompasses a wide range of 

pharmacological as well as non-pharmacological approaches. These include radiation therapy, 

chemotherapy, surgery, hormone therapy and immunomodulatory therapy (Nussbaumer et al. 

2011). However, much of the existing anti-cancer therapies are restricted by poor efficacy, cancer-

cell selectivity and/or dose-limiting side-effects (Nussbaumer et al. 2011). The persistent increase 

in the annual number of newly diagnosed cancer patients as well as cancer-related deaths (Torre 

et al. 2015) has urged the need for well-tolerated novel anti-cancer medications.  
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Over the past three decades, vast research advancements have been made to facilitate our 

understanding of the molecular mechanisms underpinning the development and/or maintenance of 

various human cancers (Narang and Desai 2009). Anti-cancer drug discovery programs around the 

globe have identified a number of molecular targets, related to cancer prognosis, growth, and/ or 

metastasis (Narang and Desai 2009). Targeting these cancer-specific molecular targets will also 

avoid unwanted physiological effects on normal somatic cells. However, the low success rate, 

together with significant cost and time involvement, of these candidate molecules have 

necessitated the use of high throughput preclinical screening methods and biological assays with 

greater specificity and predictability (Nussbaumer et al. 2011).  

 

Further to the afore-mentioned challenges, a major impediment to successful development of anti-

cancer therapeutics is the development of therapeutic resistance, which in some cases predates 

clinical intervention (Zahreddine and Borden 2013). In particular, resistance to chemotherapeutic 

agents, a gold standard therapeutic regimen for various cancers, is commonly observed in the 

clinical setting (Gatenby 2009). Cancer resistance is primarily classified as two types, viz. intrinsic 

and acquired resistance, based on the response of the tumor to initial anti-cancer therapy (Lippert, 

Ruoff, and Volm 2011). Intrinsic resistance is the inherent ability of the cancer cells to be resistant 

to traditional anti-cancer therapeutics, and has been recognized in ~50% of all cancer patients 

(Zahreddine and Borden 2013). The presence of cancer stem cells, which constitutively express 

drug transporters, DNA repair genes and are resistant to apoptosis, have been attributed towards 

intrinsic cancer resistance (Lou and Dean 2007). In contrast, acquired resistance is the 

characteristic feature of cancer cells to display little or no response, following prolonged drug 

treatment, through somatic genetic changes (Meads, Gatenby, and Dalton 2009). Both intrinsic 
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and acquired resistance can be caused due to alterations to drug metabolism or modifications of 

drug targets (Ullah 2008, Zahreddine and Borden 2013).  

 

1.3 Saccharomyces cerevisiae in Cancer Therapeutics 

The completion of genome sequences as well as myriad genetic tools, that facilitate somatic cell 

genetics, have resulted in the advent of non-mammalian models (e.g., Drosophila, yeast, zebrafish 

etc.) for cancer drug discovery and development programs (Sherman 2002, Paddison and Hannon 

2002). Among these, the ability of Saccharomyces cerevisiae to propagate in haploid as well as 

diploid state, coupled with the high degree of conservation of basic cell cycle machinery, render 

the S. cerevisiae particularly invaluable for cancer therapeutic studies (Bjornsti 2002). On a 

particular note, ~17% of S. cerevisiae genes are members of orthologous gene families associated 

with human diseases, making it a valuable model organism (Dolinski and Botstein 2007). 

 

The facile classic genetic manipulation of this budding yeast has been used widely in 

understanding the genes involved in metabolic pathways and/or cell cycle checkpoint functions 

(Bjornsti 2002). Importantly, the characteristic insensitivity of these yeast cells to many 

chemotherapeutic agents (Bjornsti 2002) can be exploited to define the role of specific genetic 

defects that potentiate therapy-induced cytotoxicity. This, combined with the high degree of 

conservation of DNA repair pathways (Simon et al. 2000), makes budding yeast an excellent 

model to study the genes involved in conferring sensitivity and/or resistance to therapeutic agents 

that induces DNA damage. 
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1.3.1 S. cerevisiae and Oxidative DNA damage 

Like any other living cells, S. cerevisiae are exposed to stress due to reactive oxygen species 

(ROS), nutrient imbalance, temperature fluctuations, pH variation and exposure to toxic chemicals 

(Folch-Mallol et al. 2004). Specific pathways in response to oxidative, osmotic and heat stress 

include a) Yap1p and Yap2p transcription, (b) HOG kinase pathway and (c) heat shock factor, 

respectively (Folch-Mallol et al. 2004). Subsequent to the sensation of stress, appropriate response 

is conveyed through repression of catabolites, amino acid regulation and nitrogen regulation 

(Attfield 1997). The oxidative stress caused by the ROS generated endogenously and exogenously 

results in DNA damage, thereby affecting cell viability. In order to better understand the molecular 

mechanisms underlying oxidative DNA damage repair, various oxidizing agents such as heavy 

metals (e.g., selenium, chromium etc.), methyl methanesulfonate (MMS) and Bleomycin have 

been used to induce double stranded DNA breaks (DDSB) (Pinson, Sagot, and Daignan-Fornier 

2000, Litwin, Dziadkowiec, and Wysocki 2013, Kitanovic et al. 2009).  

 

Bleomycin (BLM) and its related family of compounds (e.g. Zeocin) are well known for their anti-

cancer and antibiotic properties (Chen et al. 2008). The anti-tumor effect of BLM is exerted 

through oxidative lesions in chromosomal DNA, formed via a complex that is produced when 

BLM binds to iron (Fe2+) and oxygen in vivo (Bugaut et al. 2013). The activated Fe-BLM complex 

takes a hydrogen atom from the be C4’ carbon of the 2-deoxyribose moiety, resulting in two types 

of lesions: (i) oxidized apurinic/apyrimidinic (AP) sites and (ii) DNA single-strand breaks that 

terminate with 3-phosphoglycolate (Chen et al. 2008). Although DNA lesions produced by BLM-

oxidative damage is repaired by the base excision repair (BER) and nucleotide excision repair 
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(NER) pathways, the nature of damage and the phase of cell cycle determines activation of 

appropriate pathways (Boiteux and Jinks-Robertson 2013).  

 

1.3.1.1. Base Excision Repair: The primal role of APN1 

The BER is considered as the primary DNA repair pathway against lesions arising from alkylation, 

oxidation, depyrimidination, and deamination (Hoeijmakers 2001). The resultant DNA lesions are 

repaired by the actions of DNA N-glycosylases and apyrimidinic/apurinic (AP) endonucleases. 

Briefly, the BER is initiated by the cleavage of the N-glycosylic bond between the damaged base 

and the sugar moiety by the N-glycosylase enzyme, resulting in formation of an AP site (Chalissery 

et al. 2017). Subsequently, a single strand break is formed with the 3′-deoxyribosephosphate (3′-

dRP) ends, which are removed by the AP endonucleases, viz. Apn1 and Apn2 (Popoff et al. 1990). 

Previous studies have shown that the deletion of the Apn1 increases the rate of spontaneous 

mutations and renders the cell sensitive to DNA damage induced by H2O2 and MMS (Ramotar et 

al. 1991, Johnson et al. 1998). Furthermore, Apn1 has been demonstrated to be functionally 

independent of the various DNA N-glycosylases lyases (e.g., Ntg1/2, Ogg1) involved in the BER 

pathway (You et al. 1999). Importantly, apn1 mutants devoid of nuclear localization signal 

resulted in the strains inability to complement the sensitivity of apn1 deficient strain to H2O2 and 

MMS (Ramotar et al. 1991, Johnson et al. 1998). Thus, Apn1 is the major multifunctional nuclease 

involved in the repair of oxidatively damaged mitochondrial as well as nuclear DNA (Acevedo-

Torres et al. 2009). Further actions of DNA polymerase ε and δ, endonuclease Rad27 and DNA 

ligase Cdc9 completes the BER of the damaged DNA (Chalissery et al. 2017).  
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1.4 Role of RTS1 in Cell Cycle 

The canonical protein phosphatase 2A (PP2A) is a heterotrimeric complex composed of a catalytic 

subunit (C), a scaffolding subunit (A), and a regulatory subunit (B) (Zhong et al. 2014). In 

mammals, PP2A is a major intracellular protein that regulates cell growth and metabolism, and 

contains multiple isoforms of the B-regulatory subunit (Janssens and Goris 2001). In stark contrast, 

there are only two B-regulatory subunits, referred to as Rts1 and Cdc55, in budding yeast. 

  

The diversity of B subunits in the PP2A heterotrimer allows to localize phosphatase to distinct 

regions of the cell and to dephosphorylate specific substrates. As such, this enables PP2A to 

regulate diverse cell processes including DNA replication (Li and Virshup 2002). Previous works 

by others have shown that yeast strains that lack RTS1 are sensitive to temperature, ethanol and 

glycerol (Jiang 2006, Petty et al. 2016), and failed to undergo nutrient modulation of cell size 

(Artiles et al. 2009). Disruption of the RTS1 gene has been shown to delay transcription of G1 

cyclin Cln2, thereby prolonging mitosis and affecting cell cycle progression (Zapata et al. 2014). 

A role for Rts1 has also been shown in abrogation of spindle position checkpoint, but not in other 

mitotic checkpoints (Chan and Amon 2009). Together, these findings suggest a role for Rts1 in 

both G1 and mitotic cell size checkpoints. However, the role of Rts1 in the modulation of DNA-

oxidative damage is unknown. Hence, we propose to investigate the role of Rts1 in Zeocin 

mediated DDSB response, alongside with Apn1 whose role is well-established in DDSB repair. 

 

1.5 Histone H2A and APN1 

As already noted in Section 1.3.1.1, Apn1 plays a vital role in the initiation and maintenance of 

the BER pathway in response to DDSB. However, for effective DDSB repair, the BER pathway 
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must also have access and act upon the chromatin containing the damaged DNA (Soria, Polo, and 

Almouzni 2012).  

 

Histones are monomeric building blocks of chromatin involved in eukaryotic DNA packaging and 

organizing into nucleosomes (Richmond 1999). The types of core histones include H1, H2A, H2B, 

H3, and H4 (Bonisch and Hake 2012). The Histone H1 takes part in chromatin's higher order 

structure, while the rest of the canonical histones are incorporated into chromatin during DNA 

replication through the action of histone chaperones (Williamson et al. 2012). Among canonical 

histones, the H2A family, comprising H2AX and H2AZ variants, exhibits highest sequence 

divergence and are associated with DDSB-repair (Williamson et al. 2012).  

 

The canonical histone proteins, namely H2A, H2B, H3 and H4, share a common structural domain 

that consists of 3 α-helices and two β-strands (α1–β1–α2–β2–α3–αC) (Venkatesh and Workman 

2015). The α-helices are separated by two loops, called the histone fold, which facilitates 

heterodimerization of H2A with H2B and H3 with H4 (Venkatesh and Workman 2015). Each of 

the canonical histones contains an unstructured amino-terminal tail that facilitates intra- and inter-

nucleosomal interactions (Zheng and Hayes 2003). In response to DNA damage, the these N-tails 

of histones extend out of the nucleosome core are post-translationally modified (Meas, Smerdon, 

and Wyrick 2015b). Additionally, it has been shown that the N-tail pairs are redundant for cell 

viability (Kim et al. 2012). Furthermore, N-tail deletions of various histones have been shown to 

be sensitive to alkylating agents (Meas, Smerdon, and Wyrick 2015a). Given the role of H2A in 

DDSB-repair (Venkatesh and Workman 2015), and the role of N-terminal of histone in facilitating 

inter-/intra-nucleosomal interactions (Zheng and Hayes 2003), it is possible that the N-terminal of 
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histone may be involved in the recruitment of Apn1 via its interaction with the C-terminal of 

APN1.  

 

1.6 Hypothesis 

1. Rts1 is a component of PP2A. Mutants are sensitive to temperature, osmotic stress, and 

bleomycin, yet resistant to methylation. Nuclear extraction and MS analyses identified two 

proteins by comparing Rts1 WT and mutants (Cdc19 and Eno1) 

2. The Glu130 in the Histone H2A is required for the nuclear localization of Apn1. The same 

residue is also responsible in determining the sensitivity of the H2A yeast strain to methyl 

methanesulfonate (MMS). 

 

1.7 Objectives 

The study aims to investigate the role of Rts1, and its associated genes, in the regulation of 

Zeocin- and hygromycin-related DNA-damage repair mechanisms.  

1. To assess if the of histone H2A his involved in the nuclear localization of Apn1 via its 

interaction with the C-terminal of Apn1. Furthermore, the study also aims to characterize 

the role of H2A-E130A residue in MMS-induced DNA-repair response.  

 

 

 

CHAPTER 2. MATERIALS AND METHODS 

2. Materials and Methods 
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2.1. Yeast strains and growth media  

The experiment included a number of yeast wild-type (WT) and mutant strains. The yeast strains, 

such as BY4741-RTS1-TAP, BY4741-rad51Δ, BY4741-rts1Δrad51Δ, H2A-WT-APN1-GFP, 

H2A-E130A and H2A-E130A-APN1-GFP, used in the experiments herein were created 

previously in our laboratory. Yeast strains, including BY4741-rts1Δ, BY4741-CDC19-MYC, 

BY4741-ENO1-TAP-rts1Δ, BY4741-CDC19-MYC-rts1Δ, H2A-E130A-APN1-TAP and H2A-

WT-APN1-TAP were created using polymerase chain reaction (PCR) technique (Table 1). The 

yeast strains, viz. BY4741-CDC19-TAP, BY4741-ENO1-TAP, were procured from a different 

laboratory. As previously described, yeast cells were grown either in yeast extract-peptone-

dextrose (YPD) growth media containing 1% Yeast Extract (MULTICELL), 2% peptone (BIO 

BASIC INC), and 2% dextrose (BIO BASIC INC), or selective media containing 0.75% Yeast 

Nitrogen Base (3.25g in 500ml) (DIFCO) and 2% dextrose (BIO BASIC INC), supplemented with 

the amino acids necessary for cells growth depending on the genotype. Solid media was obtained 

by the addition of 2% Agar and 1.5% LB Agar. 

 

2.2 Rapid Approach to DNA Adduct Recovery (RADAR) Assay  

Yeast strains were grown overnight in 1ml YPD liquid media at 30°C. The following day, the cells 

were sub-cultured in 3ml YPD (cell to media - 1:3 ratio) at 30°C for 3 hours, and treated with 

Zeocin, methyl methanesulfonate (MMS) or hydrogen peroxide (H2O2). The treated or untreated 

(control) cells were then extracted using M buffer (RADAR lysis solution containing 4M 

Guanidine Thiocyanate (GTC), 10mM Tris-HCl PH 6.5, 20mM EDTA, 4% Triton 100X and 1% 
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Sodium lauroyl Sarcosinate (Sarkosyl)). The extracted sample was then centrifuged to collect the 

cell pellet, where GTC captures the proteins around DNA.  

Table. 1 Primers used to create mutant strains. 

 

Name Primer Sequence (5’ -> 3’) 

RTS1-F CGCTTTGTTTTCCACTTCAATTGGTAGGC  

RTS1-R CGGGGATTCTATCTTTGGTTTCTTCAACAAG 

pTW438-CDC19-F 

TGCACAATATTTCAAGCTATACCAAGCATACAATAAGCT

TATGTCTAGATTAGAAAGATTGACCTCATTAAACGT 

pTW438-CDC19-

MYC-R 

AATGAGCTTTTGCTCGGACGCCATGGTGAGAACGGTAGA

GACTTGCAAAGTGTTGGAGTGACCAGCACCGGCCTT 

H2A-Apn1-F CTATGCTTAGGAATAACGTTCG 

H2A-Apn1-R AAGTCAAAAGGGAAGATG 

 

Ethanol was used to precipitate nucleic acids and the protein concentration was quantified using 

Bradford Assay in the resultant DNA-associated proteins. The samples were then diluted with Tris-

buffered saline (TBS; 10 mM Tris (pH 6.8), 150 mM NaCl) to similar protein concentrations (800 

ng/µl) and loaded on nitrocellulose membrane using a vacuum slot-blot manifold (Bio-Rad). The 

membranes were then blocked for 1h in 5% milk-TBST and incubated with appropriate primary 

antibodies in TBST (1:2500) overnight at 4°C. Following 3 X 5min wash with TBST, the 

membranes were incubated with appropriate secondary antibodies (1:1000) for 1h at room 

temperature (RT). Membranes were then scanned using a ImageQuant Las 4000. 
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2.3 Nuclear protein extraction for fast protein liquid chromatography  

Yeast cells were grown overnight in 500ml of YPD liquid media. The following day, 300ml of 

each sample was centrifuged at 3000xg and the resulting cell pellet was weighed and washed with 

distilled water. The cells were then re-suspended in Tris buffer (pH 9.4) containing 10mM DTT 

(0.3g/ml) and incubated at 30 °C for 10min. Subsequently, the samples were centrifuged at 3000xg 

and washed with Buffer B (1.2 M D-sorbitol, 20 mM KPB pH 7.4; 1 ml of Buffer B per 0.1g of 

cell pellet). Zymolase (2.5µl/g of cell pellet) was then added and the samples were incubated at 30 

°C for 60min with gentile agitation. Following further centrifugation and washes with buffer B (1g 

/10ml), the cells were re-suspended in MIB reagent (27.3g of Monitol + 50ml of HEPES 100mM 

in 250ml final volume) followed by addition of 0.5 mM Phenylmethylsulfonyl fluoride (PMSF). 

The samples were then homogenized using a glass syringe and centrifuged at 3000xg for 5min. 

The resultant nuclear extracts were run on a Fast protein liquid chromatography (FPLC) and 

fractions were analyzed by western blot (Nassour et al. 2016).  

 

2.4 Western Blot  

Western Blot technique was used for both total extraction as well as nuclear extraction for FPLC 

filtered fractions. For total extraction, the cells pellet from overnight grown cells in YPD media 

was extracted by 20% Trichloroacetic acid (TCA) extraction or by standard extraction method. In 

TCA extraction, the samples were vortexed for 10min and then centrifuged. The cell pellet was 

mixed with 5µl of loading buffer containing mercaptoethanol and the proteins were denatured by 

heating for 5min at 100°C. In contrast, for standard extraction, total extract was obtained by 

vortexing the samples for 10min at 4°C followed by centrifugation for 3min at 3000rpm in an 

Eppendorf centrifuge. The supernatant was then collected for quantification using Bio-Rad Protein 
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Assay. Following protein quantification, equal amounts of extracted sample was mixed with 

loading buffer (50mM Tris-HCl pH 6.8, 2% SDS, 0.1% bromo-phenol blue, 2% (v/v) 2-

mercaptoethanol). Following FPLC, the filtered samples were quantified using NanoDrop, mixed 

with 5µl of loading buffer and the proteins were denatured by heating for 5min at 100°C. The 

denatured protein samples obtained by both the extraction methods were then loaded onto a 10% 

Sodium dodecyl sulfate (SDS) polyacrylamide gel. The proteins were then transferred onto a 

nitrocellulose membrane. The membrane was blocked for 30min with 5% skim milk in TBST 

(10mM Tris-HCl (pH 7.5)-150mM NaCl-0.1% Tween) then incubated overnight at 4°C with the 

mouse monoclonal anti-MYC antibody (1:5000 in 5% milk). Following washes (10min each) with 

TBST, the membrane was incubated for 1h with the Goat anti-mouse antibody (1:2500). Finally, 

the membranes were incubated for 1min in chemiluminescence reagent and developed using a 

Fujifilm ImageQuant Las 4000. 

 

2.5. Silver staining  

The silver staining was undertaken according to previous published protocols (Chevallet, Luche, 

and Rabilloud 2006). Briefly, the SDS polyacrylamide gel with protein (from FPLC fractions) was 

incubated with a fixative solution (40% MetOH, 10% GGA in water) for 20min in a glass tray. 

The gel was then washed with 30% ethanol and water (20min each). Subsequently, the gel was 

incubated for 20min with a staining solution (500 mg of Silver nitrate, 50 µl of formaldehyde 

250ml of Water) in a bottle wrapped with aluminum. The silver stain was then reduced in 0.01% 

sodium thiosulfate. The gel was then washed with water and developed (100ml developer solution; 

10g of sodium carbonate and 100µl of formaldehyde).  Following visibility of a band, the reaction 

was stopped using 5% acetic acid. 
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2.6. Mass spectrometry  

Protein bands were cut from the silver stained gels and stored in 200µl of distilled water. The 

samples were then for mass spectrometry analysis to Ross Tomaino Lab Harvard (Boston, USA).  

 

2.7 Survival curve  

In survival curve assay, the BY4741-WT, -rts1Δ, -rad51Δ and -rts1Δrad51Δ cells were grown in 

1ml YPD media overnight and sub-cultured for 3 hours in 2 ml YPD media. The cells were then 

washed with distilled water. The cell density was quantified at 600nm wavelength. The cells of 

same density were treated with YPD for different concentrations of Zeocin (25 – 75 µg/ml) and 

incubated for different time points (15, 30, 45 min) at 30°C with shaking (150 RPM) for 1h. The 

cells were then diluted with YPD media (1:10-1, 1:10-2, 1:10-3 and 1:10-4) on 96 well-plate. The 

survival was then determined, as previously described (Yang et al. 2012), by plating 100µl of serial 

diluted cells onto selective minimal media plates. The cell colonies were counted after two days 

of growth at 30 °C.  

 

2.8 Spot test  

The H2A-WT, -Apn1Δ, -E130A and -E130A-Apn1Δ strains were grown overnight in 2 ml of YPD 

liquid media at 30°C. The following day, cells were sub-cultured in 1:3 ratio in YPD liquid on the 

shaker at 30 °C. After 3 hours, optical density was measured at 600nm and several dilutions were 

prepared. From each strain, 5μl of sample was spotted manually on YPD agar plates along with 

different concentration of MMS, as previously described by (Sisakova et al. 2017). The agar plates 

were incubated for two days at 30°C before being photographed by the Alphaimager®.  
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2.9 DeltaVision microscopy 

The H2A-WT and -E130A mutant strains were grown overnight in YPD. The subsequent day, 

cells were washed and fixed with formaldehyde. The concanavalin A was used to adhere the cells 

on slides and the pictures were taken by an Olympus Delta Vision microscope at 100x. The Since 

Apn1 C-terminal was tagged with GFP, FITC filter was used while imaging. The cells were also 

co-stained DAPI to visualize nuclei.  

 

2.10 Growth Curve Assay  

The H2A-WT, -E130A, -apn1Δ and -E130A-apn1Δ strains were grown overnight in YPD and the 

optical density was determined at 0.2 in 96 microplates. Some strains were treated with a minimal 

dose of MMS (0.0025 µg/ml) and incubated at 30°C for up to 17 hours in the instrument where 

readings were automatically every 30min. The data was then analyzed data using Microsoft Excel 

2016.  

 

 

 

 

 

 

CHAPTER 3. First study results 

3.1 Role of RTS1 and its associated genes in regulating DNA-repair response 

3.1.1 Zeocin-induced DNA-damage reduces the nuclear recruitment of RTS1   
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This experiment investigated the effect of Zeocin (50µg/ml), a double stranded DNA-breaking 

agent, on the expression levels of APN1 (anti-APN1 antibody) and TAP tagged RTS1 (detected 

using anti-PAP antibody) in the BY4741-RTS1-TAP and BY4741-WT cells. The expression levels 

of APN1 in the BY4741 WT cells were not significantly affected by the Zeocin treatment (Figure 

1). In contrast, the BY4741-RTS1-TAP cells treated with Zeocin showed significant time-

dependent reduction in the expression levels of RTS1, as detected by the anti-PAP antibody 

(Figure 1). Interestingly, there was a time-dependent decrease in the expression levels of APN1 in 

the BY4741-RTS1-TAP cells following Zeocin treatment (Figure 1). 

 

 

 

Figure 1. Effect of Zeocin on the recruitment of Rts1 to the DNA. Treatment of the BY4741 WT 

cells with Zeocin at 50µg/ml did not affect the levels of APN1, suggesting the role of APN1 in 

DNA double strand break (DDSB) repair. The TAP tagged BY4741-RTS1, but not BY4741 WT, 

cells showed visible bands for anti-PAP as a secondary antibody, validating the presence of the 

tag. Treatment of BY4741-RTS1-TAP cells with Zeocin significantly reduced the levels of RTS1 

(TAP tagged) in a time-dependent manner. Interestingly, there was a reduction in the levels of 

Apn1 following treatment of BY4741-RTS1-TAP cells with Zeocin. 

3.1.2 Zeocin-induced DNA-damage reduces the survival of RTS1   



 
  

17 

Next, we assessed the role of Rts1 in cell survival following treatment with Zeocin. Our data herein 

show that the rts1Δ strains were ~25% more sensitive than the WT strain to Zeocin treatment 

(Figure 2). The rad51Δ strain displayed reduced survival following Zeocin treatment c.f. Zeocin 

treated WT or rts1Δ strains (Figure 2). The mutant strains with deletion of both RAD51 and RTS1 

genes displayed hypersensitivity to Zeocin (Figure 2). The survival of the untreated WT and 

mutant strains remained unaffected (data not shown). 
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Figure 2. Survival Curve of Zeocin (25µg/ml) treated WT, rts1Δ, rad51Δ, rts1Δrad51Δ strains. 

All mutant strains showed sensitivity to Zeocin. The order of their sensitivity to Zeocin is as 

follows: WT< rts1Δ < rad51 Δ < rts1rad51Δ strains.  

 

3.1.3 H2O2-induced oxidative stress reduces the nuclear recruitment of RTS1   

The expression levels of APN1 and RTS1 (detected by anti-PAP) in the BY4741 WT and RTS1-

TAP cells following H2O2 (0.5mM) treatment is shown in Figure 3. Treatment of BY4741 -WT as 

well as -RTS1-TAP cells with H2O2 did not produce significant changes in the expressional levels 
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of APN1. In contrast, treatment of BY4741-RTS1-TAP cells with H2O2 produced significant 

reduction in the levels of RTS1 at 60min post-H2O2 treatment. 

 

 

Figure 3. Effect of H2O2 treatment on the recruitment of Rts1 to DNA. Treatment of the BY4741–

RTS1-TAP cells with H2O2 at 0.5mM reduced the expression levels of RTS1, but not APN1, at 

60min post-treatment. No changes in the expression levels of APN1 were observed in the BY4741 

WT cells following induction of oxidative stress with H2O2. 

  

3.1.4 Protein Purification and Evaluation of RTS1-related proteins  

The nuclear extracts were prepared from the BY4741–RTS1-TAP and BY4741-rts1Δ strains, and 

proteins from these extracts were purified using FPLC fraction method. Following FPLC, fourteen 

different fractions were selected and were then analyzed using Western Blot (data not shown). The 

fractions (#22 and #23) that showed the highest amount of Rts1 were subsequently loaded onto a 

10% SDS polyacrylamide gel and stained with silver stain (Figure 4). Since, only fraction #23 

showed significant changes, further experiments were performed only using this fraction. 

Specifically, fraction #23 showed a band loss at ~60 KDa (red arrow in WT lane) and generation 

of new bands at ~37 KDa (green arrow in mutant lane) in the BY4741-rts1Δ strain (Figure 4).  
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These specific bands were then cut and sent for mass spectrometry analysis in the laboratory of 

Ross Tomaino at Harvard University (Boston, MA). Although there were other band changes (blue 

arrow; ~80 – 100 KDa) observed in the analyzed fraction (#23), they were not included in the 

present study. The mass spectrometry analysis of the band lost and generated in the rts1Δ strain 

(Fraction #23) showed presence of various proteins. Table 2 and 3 shows the lists of highly 

expressed genes in the band lost and band generated, respectively, in the rts1Δ strain. Amongst 

the list of proteins determined, Cdc19 was found to be present in both the band lost (i.e., 

determined form the band present in the WT strain) as well as in the new band generated in the 

rts1Δ strain. The new band generated in the rts1Δ strain also showed higher expressional levels of 

ENO1. 

 

3.1.5 Generation and validation of CDC19 and ENO1-related strains 

In order to study the role of CDC19 and ENO1, and its association with RTS1, we obtained 

BY4741-CDC19-TAP and BY4741-ENO1-TAP strains from Dr. Wurtele lab at Hôpital 

Maisonneuve-Rosemont (Montreal, QC). Following isolation of genomic DNA from the BY4741-

CDC19-TAP and BY4741-ENO1-TAP strains, the RTS1 gene was knocked-down using PCR 

(Table 1). The validity of RTS1 knock-down was tested using the PCR end products. The DNA 

from BY4741 WT as well as BY4741-rts1Δ strains was included as experimental controls (Figure 

5). Analysis of the end products demonstrated a band for WT strain at 2.2 Kbp, corresponding to 

RTS1 (Figure 5). Since the RTS1 was replaced with the URA3 cassette, bands were observed at 1.2 

Kbp for the BY4741-rts1Δ and BY4741-ENO-TAP-rts1Δ strains (Figure 5). This confirmed the 

successful generation of the BY4741-ENO-TAP-rts1Δ strain in our laboratory. 
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Figure 4. Silver stained polyacrylamide gel of fractions #22 and 23 extracted from BY4741 WT 

and –rts1Δ strains. Analysis of band changes showed generation of a new band (green arrow) and 

loss of a band (red arrow) in the rts1Δ strain. Blue arrow signifies other band changes that were 

not included in the present study. 
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Table 2. The list of highly expressed proteins of Fraction #23, determined using mass 

spectrometry, from the band lost (~60 KDa) in the rts1Δ strain. 

# Peptides Gene Symbol Reference 

1 13 CDC19 KPYK1_YEAST 

2 6 ALD6 ALDH6_YEAST 

3 5 SSA1 HSP71_YEAST 

4 5 SSB1 HGP75_YEAST 

 

Table 3. The list of highly expressed proteins of Fraction #23, determined using mass 

spectrometry, from the new band generated (~37 KDa) in the rts1Δ strain. 

# Peptides Gene Symbol Reference 

1 14 ENO1 ENO1_YEAST 

2 6 CDC19 KPYK1_YEAST 

3 4 TEF1 EF1A_YEAST 

4 4 SAH1 SAHH_YEAST 

 

However, observation of the band at 2.2 Kbp corresponding to RTS1 in the BY4741-CDC19-TAP-

rts1Δ strain suggests unsuccessful knock-down of the RTS1 gene (Figure 5). The findings observed 

herein also were confirmed using Western blot (Figure 6A and B). Specifically, analysis of the 

western blot using the proteins isolated from the BY4741-CDC19-TAP and BY4741-CDC19-

TAP-rts1Δ strains showed presence of non-specific bands at ~80 KDa, instead of the expected 
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bands at 55 KDa (Figure 6A). Hence, we decided to build a new strain using gap repair of the 

CDC19 gene with Myc-Tag. 

 

The CDC19 gene was amplified using PCR technique with Platinum PFX DNA polymerase using 

the primers listed in Table1. The CDC19 gene was cloned with MYC tag in the vector PTW438. 

The plasmid was transformed into D10b bacterial strain with chemical transformation. The 

colonies were grown overnight in Lb-Ampicillin liquid media and the plasmid (pCDC19-MYC) 

was extracted. Following extraction, pCDC19-MYC was transferred into BY4741 WT and rts1Δ 

strains, resulting in creation of BY4741-CDC19-Myc and BY4741-CDC19-Myc- rts1Δ strains. 

The strains generated herein were also validated using western blot, and findings showed specific 

bands as expected at 55 KDa (Figure 6B). 

 

 

Figure 5. Analysis of PCR end products to confirm the deletion of RTS1 gene. The WT strain 

showed a specific band at 2.2 Kbp, corresponding to RTS1 gene. The appearance of band 

corresponding to URA3 cassette for the BY4741-rts1Δ and BY4741-ENO-TAP-rts1Δ strains 
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validates the deletion of the RTS1 gene. In contrast, the appearance of band at 2.2 Kbp for the 

BY4741-CDC19-TAP-rts1Δ strain suggests unsuccessful deletion of the RTS1 gene. 

 

 Figure 6. Validation of the BY4741 (A) CDC19-TAP and CDC19-TAP-rts1Δ, and (B) CDC19-

MYC strains using anti-PAP and anti-Myc antibodies, respectively. Western blot of protein 

samples isolated from the CDC19-TAP and the CDC19-TAP-rts1Δ strains showed the presence 

of non-specific bands at ~80 KDa. The presence of bands at the expected size of 55 KDa in the 

CDC19-Myc strain, validates this created strain. 

 

3.1.6 Deletion of RTS1 reduces the expression of ENO1  

The nuclear proteins extracted from the BY4147 WT, -ENO1-TAP and –ENO1-TAP-rts1Δ strains 

were analyzed using western blot (Figure 7). There was a significant reduction in the expression 

of ENO1, as detected by anti-PAP antibody, in the ENO1-TAP-rts1Δ strain when compared to that 

of the ENO1-TAP strain. In contradiction to our findings herein, deletion of RTS1 results in the 

appearance of a new band at ~37 KDa (as previously described in Section 3.1.4). Mass 

spectrometry analysis of this band showed ENO1 as one of the up-regulated proteins (Table 3). On 
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a specific note, the band appeared in the rts1Δ strain showing increased expression of ENO1 was 

at ~37 KDa, whereas the expression of ENO1-TAP herein was at ~67 KDa. The actual weight of 

ENO1 is ~47 KDa and TAP is ~19 KDa  

 

Figure 7. rts1 Gene Deletion Reduces ENO1 Expression. Deletion of RTS1 gene reduced the 

expressional levels of ENO1 in the ENO1-TAP-rts1Δ strain c.f. corresponding expressional levels 

in the ENO1-TAP strain. 

 

3.1.7 Possible Role of RTS1 Gene in modulation the expression of CDC19  

The differences in the expressional levels of CDC19 was assessed and quantified in both untreated 

and Hygromycin treated BY4741-CDC19-Myc and BY4741-CDC19-Myc-rts1Δ strains (Figure 8 

and 9). The expression level of the CDC19, as detected by the anti-Myc antibody, was found to be 

reduced in the untreated CDC19-Myc-rts1Δ strain, relative to that of the untreated CDC19-Myc 
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strain (Figure 8 and 9). Following treatment with hygromycin, there was an increase in the CDC19 

levels in the BY4741-CDC19-Myc strain c.f. untreated BY4741-CDC19-Myc strain (Figure 8 and 

9). The observed up-regulation of CDC19 levels following Hygromycin treatment in the BY4741-

CDC19-Myc strain was found to be reduced in the Hygromycin treated BY4741-CDC19-Myc-

rts1Δ strain (Figure 8 and 9). There were no differences in the CDC19 levels between the untreated 

and the Hygromycin treated BY4741-CDC19-Myc-rts1Δ strains (Figure 8 and 9). However, the 

percentage of reduction in the CDC19 levels was higher for the Hygromycin treated BY4741-

CDC19-Myc-rts1Δ relative to untreated BY4741-CDC19-Myc-rts1Δ strain, when compared to 

their respective untreated or treated BY4741-CDC19-Myc strains (Figure 9). 

 

 

Figure 8. Expression levels of CDC19 in untreated and Hygromycin (25 µg/ml)-treated  BY4741-

CDC19-Myc and BY4741-CDC19-Myc-rts1Δ strains. There was a reduction in the CDC19 

expression levels in both the untreated and Hygromycin treated CDC19-Myc-rts1Δ strain 

compared to their respective untreated and Hygromycin treated CDC19-Myc strain. Treatment of 

Hygromycin increased the CDC19 levels in the CDC19-Myc strain, relative to the untreated 
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CDC19-Myc strain. In contrast, there were no differences in the CDC19 levels between the 

untreated and Hygromycin treated CDC19-Myc-rts1Δ strains. 
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Figure 9. Quantification of the expression levels of CDC19 in the untreated and Hygromycin (25 

µg/ml)-treated  BY4741-CDC19-MYC and BY4741-CDC19-MYC-rts1Δ strains. 
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CHAPTER 4. Second study results 

4.1 Role of Histone H2A-E130A residue in recruiting Apn1 

4.1.1. H2A-E130A mutant prevents localization of Apn1 to the nucleus 

Figure 10 shows the representative immunocytochemistry images of the H2A WT and H2A-

E130A cell strains stained for Apn1 and DAPI. The Apn1 was found to be localized in the nucleus 

of the H2A WT cell strains. In contrast, nuclear localization of Apn1 was not observed in the H2A-

E130A cell strains.  

 

The RADAR assay was also used to assess the expressional levels of Apn1 on the DNA of the 

H2A and H2A-E130A strains. Figure 10 shows the expression levels of Apn1 in the H2A WT and 

mutant strains. The expression levels of Apn1 was significantly higher in the H2A WT strain when 

compared to that of the H2A-E130A strain, validating an impaired attachment of the Apn1 to the 

DNA in the H2A-E130A strain. The expression levels of RNA polymerase II holoenzyme 

(RNAPII) served as an internal control for the experiment (Figure 11).  

 

4.1.2. H2A- E130A mutant is sensitive to MMS 

The sensitivity of various dilutions of H2A WT and mutant strains to MMS (0.0125 and 0.025 

µg/ml) was assessed to understand the role of Apn1 in DNA repair (Figure 12). MMS, a double 

strand breaking agent, was used to induce DNA-damage in the yeast strains (multiple dilutions) 

and spot test was used to assess the sensitivity of the cell strains. Our findings herein show that the 

H2A-E130A strain was comparatively more sensitive to MMS, in a dose-dependent manner, than 

the H2A WT strain (Figure 12).  
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Figure 10. Differences in the nuclear localization of APN1 in H2A and H2A-E130A cell strains. 

In these representative immunocytochemistry images (40X) of the H2A WT and H2A-E130A cell 

strains, GFP staining (green) represents APN1 and DAPI (blue) show nuclear staining. The merged 

images show the nuclear localization of APN1 in H2A WT, but not in H2A-E130 cell strains.  

 

Figure 11. Expressional levels of APN1 in the nucleus of H2A and H2A-E130A strains. Increased 

expressional levels of APN1 were found in the H2A WT strain c.f. the respective levels in the 

mutant strain. In contrast, there were no differences in the expression levels of RNAPII (internal 

control) between the H2A WT and mutant strains. 

H2A-APN1-GFP 

E130A-APN1-GFP 
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Figure 12. Sensitivity of H2A WT and H2A-E130A strains to MMS. MMS induced DNA damage 

in both the H2A WT and H2A-E130A cell strains in a dose-dependent manner, with H2A mutant 

strains demonstrating higher sensitivity to MMS than the H2A WT strain. Strains grown without 

addition of MMS did not show any DNA-damage, and thus served as a control for the experiment.    

 

4.1.3. Knockdown of APN1 increases the sensitivity to MMS and decreases the life span of H2A-

E130A strain. 

Treatment of varying dilutions of H2A WT, H2A-apn1Δ, H2A-E130A and H2A-E130A-apn1Δ 

strains with MMS (0.0125 and 0.025 µg/ml) produced dose-dependent DNA-damage (Figure 13). 

Importantly, the degree of MMS-induced DNA damage was increased in the H2A-E130A-apn1Δ 

strain c.f. other H2A strains (Figure 13). Similar to earlier experiments described in Section 4.1.2 

(Figure 10), there was increased DNA damage in the H2A-E130A strain compared to H2A-WT 

strain (Figure 13). At the highest dose of MMS tested herein, the H2A-apn1Δ strain showed 

increased DNA-damage relative to that of the H2A WT strain (Figure 13).  
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Comparison of the survival rates of the untreated and MMS-treated strains is shown in Figure 14 

A and B, respectively. There were no significant between-group differences in the survival of the 

non-treated strains. Although it was not significant, there was a trend towards reduction in the 

survival rate of the untreated H2A-E130A-apn1Δ strain (Figure 14A). In contrast, MMS treatment 

at 0.0125µg/ml significantly reduced the survival of both the H2A-apn1Δ and H2A-E130A-apn1Δ 

strains, relative to the survival rate of their respective APN1 WT strains (Figure 14B).  

 

Figure 13. H2A-E130A mutant strain has increased sensitivity to MMS following deletion of 

apn1. The degree of MMS-induced DNA damage was assessed in the H2A WT, H2A-apn1Δ, 

H2A-E130A and H2A-E130A-apn1Δ strains of varying dilutions. MMS produced a dose-

dependent DNA-damage response in the afore-mentioned strains. Importantly, the order of the 

degree of MMS-induced DNA damage is as follows: H2A WT < H2A-apn1Δ < H2A-E130A < 

H2A-E130A-apn1Δ.  
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Figure 14. Deletion of apn1 affects the survival rate of the H2A-E130A-apn1Δ strain. Panels A 

and B show the survival rate of the (A) untreated and (B) MMS (0.0125µg/ml)-treated H2A WT, 

H2A-E130A, H2A-apn1Δ and H2A-E130A-apn1Δ strains. There were no significant between-

group differences in the survival of the non-treated strains, whilst a trend for reduction in the 

survival of the untreated H2A-E130A-apn1Δ strain was observed. The survival rate of MMS 

treated H2A-apn1Δ and H2A-E130A-apn1Δ was reduced when compared to the MMS-treated 

H2A WT and H2A-E130A strains.  
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4. DISCUSSIONS and CONCLUSIONS 

4.1 Role of RTS1 and its associated genes in regulating DNA-repair response 

The present study shows a possible role for Rts1 in the regulation of Zeocin- and hygromycin-

related DNA-damage repair mechanisms, and associated of RTS1 with various cell-cycle 

regulatory genes, viz. APN1, CDC19 and ENO1. Specifically, treatment of wild-type (WT) and 

mutant BY4741 yeast strains with Zeocin, an antibiotic belonging to the Bleomycin family 

(Houser et al. 2001), demonstrated a reduction in the levels of RTS1 and a corresponding decrease 

in the levels of APN1. Furthermore, analysis of the fast protein liquid chromatography (FPLC) 

fractions revealed associations of Rts1 with Cdc19 an Eno1. The associations of these genes with 

Rts1 were validated using experiments involving treatment of respective mutant and tandem 

affinity protein (TAP) or Myc tagged strains with hygromycin.  

 

To date, numerous phosphatases and kinases have been implicated as major regulators of cell 

division processes (Bononi et al. 2011). Although kinases and phosphatases were thought merely 

as housekeeping enzymes, recent work have elucidated their critical role in the regulation of cell 

cycle processes (Janssens and Goris 2001, Virshup and Shenolikar 2009). One of the most versatile 

and important phosphatases involved in cell division is the protein phosphatase 2A (PP2A) (Jiang 

2006). The regulatory role of PP2A in every stage of the cell cycle has been well-documented (see 

(Jiang 2006) for detailed review). More recently, PP2A has also been implicated in tumor 

suppression (Eichhorn, Creyghton, and Bernards 2009, O’Connor et al. 2017).  

 

Rts1 protein is isoenzyme of B-regulatory subunit of the PP2A complex (Jiang 2006). The deletion 

of RTS1 in various yeast strains, and subjected to various cellular stressors (e.g. oxidative stress, 
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DNA-damage etc.), have been shown to have defects in their growth, survival and cell cycle 

processes (Yang 2001). Previous works by others have also shown that yeast strains that lack RTS1 

are sensitive to temperature, ethanol and glycerol (Jiang 2006, Petty et al. 2016). Whilst the role 

of Rts1 in various cellular stress responses is known, the mechanisms underpinning the role of 

RTS1 in modulating the expression of other cell cycle regulatory genes remains unclear.  

 

In the present study, we evaluated the role of Rts1 in DNA-stress response following treatment of 

WT and mutant yeast strains with Zeocin and/or hydrogen peroxide (H2O2). Since the role of Apn1 

has been well-established in DNA-related stress response and has a nuclear localization signal 

(Ramotar et al. 1993), we examined the expressional levels changes of RTS1 alongside with APN1. 

Specifically, treatment of BY4741-WT and –RTS1-TAP strains with Zeocin showed a time-

dependent reduction in the expressional levels of RTS1. Interestingly, the expression level of 

APN1 was also found to be reduced following Zeocin treatment, indicating a possible cross-talk 

signalling between the Apn1 and Rts1. Additionally, the treatment of the BY4741-WT and –RTS1-

TAP strains with H2O2 also resulted in a reduction in the expression levels of RTS1, but the 

expression levels of APN1 herein remained unaffected. Since H2O2 is known to cause predominant 

single-strand DNA breaks (McDonald et al. 1993, Ribeiro, Corte-Real, and Johansson 2006), 

unlike Zeocin which causes DDSB (Chankova et al. 2007), it is possible that the functional role of 

Rts1, in response to single strand DNA breaks, is independent of Apn1. Future investigation to 

understand the differences in the functional role of Rts1 in single- and double-strand DNA break 

repair mechanism is warranted. Importantly, these data taken together with our findings showing 

time-dependent reduction in the survival of the Zeocin -treated BY4741-rts1Δ strains, suggests a 

role for Rts1 in the regulation of DNA-stress related repair mechanisms.  
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In addition to the rts1 mutant, we also tested rad51 mutant that has been previously shown to be 

sensitive to Hygromycin and Bleomycin (unpublished data). Our findings show a significant 

reduction in the survival of rad51Δ strains, following Zeocin treatment. Previous work in our 

laboratory has also demonstrated increased sensitivity of rts1Δ strains to Bleomycin (unpublished 

data). Importantly, the yeast strains that lacked both RTS1 and RAD51 displayed hypersensitivity 

to Zeocin treatment. Since, rad51 has been previously associated with homologous recombination 

repair mechanism (HRR) (Krejci et al. 2012); it is possible that Rts1 may also have a role in the 

same pathway. Studies of replication fork stalling have also associated a pivotal role for Rts1 in 

the Rad51-depedent pathway (Ahn, Osman, and Whitby 2005).  

 

The role of RTS1 in modulating the expression of other cell-cycle regulatory genes remains 

unclear. Hence, we investigated the role of RTS1 in regulation of other genes related to DNA repair 

pathway. Specifically, our findings from analysis of the FPLC fractions showed deletion of a band 

at ~60 kDa and generation of a new band at ~47 KDa for the rts1Δ strain. Mass spectrometry 

analysis of these bands revealed the proteins and their encoding genes. Amongst the proteins 

found, Cdc19 was found to be up-regulated in the band lost and Eno1 was found to be up-regulated 

in the new band generate in the rts1Δ strain. The Cdc19 and Eno1 genes have been previously 

implicated in glycolysis pathway (Williamson et al. 2012, Entelis et al. 2006), as well as a potential 

tumor marker that is associated with development and progression of various tumours (He et al. 

2007). The ENO1 has also additionally been shown to have a role in cellular growth control (Apte 

and Sarangarajan 2008). Although silver stained gel showed additional bands (~80 – 100 KDa), 
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they were not included in the present study and future investigation of these bands are warranted 

in near future to better understand the RTS1-associated genes. 

 

Next, to understand association of Eno1 with Rts1, we obtained the BY4741-ENO1-TAP strain 

from Wurtele lab and subsequently created the BY4741-ENO1-TAP-rts1Δ strain. Following 

validation of the generated strain by analyzing the end products of the PCR, we investigated the 

changes in the expression levels of ENO1 following deletion of RTS1. Interestingly, the expression 

of ENO1 was found to be reduced following deletion of RTS1. In contrast to these findings, our 

mass spectrometry dataset of the new band generated in the rts1Δ strain showed an increase in the 

expression of ENO1. Future investigation of the contradictory observations is required to better 

understand these paradoxical findings. 

 

In order to understand the association of Rts1 and Cdc19 in the DNA-repair process, we obtained 

BY4741-CDC19-TAP strain from Wurtele lab. However, analysis of the PCR end products of the 

DNA obtained from this strain showed unsuccessful deletion of RTS1. Analysis of the proteins 

extracted from the BY4741-CDC19-TAP-rts1Δ strain using western blot also showed non-specific 

bands for CDC19 at ~80 KDa instead of the expected band at 55 KDa. Hence, a new strain was 

generated involving a MYC tag, i.e. BY4741-CDC19- MYC, and subsequently a rts1Δ strain was 

created (BY4741-CDC19-MYC-rts1Δ). The deletion of rts1 was confirmed in this strain using 

western blot approach. Finally, the differences in the expressional levels of CDC19 was assessed 

in both untreated and Hygromycin treated BY4741-CDC19- MYC and BY4741-CDC19-MYC-

rts1Δ strains. The expression levels of CDC19 was found to be up-regulated in the CDC19-MYC 

strain treated with hygromycin, relative to CDC19 levels in untreated CDC19-MYC strain. This 
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augmented CDC19 expression level was reduced following deletion of RTS1 gene and treatment 

with hygromycin. The levels of CDC19 were also found to be reduced in the untreated CDC19-

MYC-rts1Δ strain c.f. untreated CDC19-MYC strain, validating our findings from the mass 

spectrometry. Nevertheless, a significant limitation in the interpretation of the findings is the 

absence of loading control in the western blot while assessing the expressional level changes of 

CDC19. 

 

In summary, the present study shows a distinctive Apn1-dependant and Apn1-independent 

functional role for Rts1 in DNA-repair mechanisms involving DDSB and single strand DNA 

breaks, respectively. Furthermore, for the time, our findings show association of RTS1 with that 

CDC19 and ENO1, genes that have been previously implicated in the glycolysis pathways. 

Although, our findings show a possible role for Rts1 and Cdc19 in the hygromycin-related DNA-

damage repair response, the absence of loading control in the experiment has hindered accurate 

interpretation of these findings. The paradoxical difference in the ENO1 expression, when assessed 

using mass spectrometry and western blot technique, in the rts1Δ strain requires confirmation using 

additional experiments. Hence, further studies are required to better understand the association of 

Rts1 with that of Cdc19 and Eno1, and how their interaction affects the DNA-repair processes 

and/or cell cycle. 

 

4.2 Role of Histone H2A-E130A residue in nuclear localization of Apn1 

Our findings herein show that the Glu130 in the Histone H2A is required for the nuclear 

localization of Apn1. Additionally, the same residue is also responsible in determining the 

sensitivity of the H2A yeast strain to methyl methanesulfonate (MMS). 
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DNA lesion often occurs due to a variety of endogenous sources, such as non-enzymatic 

methylation, cytosine deamination and base oxidation, as well as exogenous sources (e.g., 

chemical oxidants, anti-cancer drugs, ionizing radiation etc.) (Meas, Smerdon, and Wyrick 2015). 

Failure to repair DNA lesions could result in chromosome rearrangement or loss, gene deletion 

and/or eventual death of cells, resulting in impaired replication, transcription and associated DNA 

damage-repair mechanisms (Hakem 2008). Excision repair mechanisms in the DNA remove the 

DNA lesions to avoid potential mutagenesis and carcinogenesis (Krokan and Bjoras 2013). 

However, predominant repairs to correct the DNA lesions occur via the base excision repair (BER) 

pathway (Krokan and Bjoras 2013). The BER pathway is initiated by creation of 

apurinic/apyrimidinic (AP) site following an N-glycosidic bond cleavage (Krokan and Bjoras 

2013, Meas, Smerdon, and Wyrick 2015).  

 

Apn1 protein plays a major role in the repair of apurinic/apyrimidinic (AP) sites (Boiteux and 

Guillet 2004). Previously, we have shown that the C-terminus of APN1 has a region spanning 

nearly 82 amino acid residues which do not have a direct role in DNA repair (Ramotar et al. 1993). 

The distal part of the C-terminus contains two short segments (Clusters 1 and 2) that form a 

bipartite nuclear localization signal. It has been previously demonstrated that the N-terminal of 

histones also facilitates intra- and inter-nucleosomal interactions (Zheng and Hayes 2003). 

Furthermore, N-tail deletions of various histones have been shown to be sensitive to alkylating 

agents (Meas, Smerdon, and Wyrick 2015). Hence, we hypothesized that Histone mutant H2A-

E130A residue may be involved in the recruitment of Apn1 via its interaction with the C-terminal 

of APN1.  
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To better understand the role of canonical core histones, such as the H2A, H2B, H3 and H4, we 

attached green fluorescent protein (GFP) on to the C-terminal chain of APN1. Subsequently, the 

APN1-GFP was introduced into a collection of histone mutant strains each expressing single amino 

acid changes of either histone H2A, H2B, H3 or H4 (unpublished data). Previous work in the 

laboratory has elucidates the role of various histone mutant libraries (unpublished data). The 

present study specifically investigated the role of H2A-E130A residue in the recruitment of Apn1 

and its role in MMS-induced DNA damage response. 

 

The H2A and mutant H2A-E130A strains were introduced with APN1-GFP. Immunocytochemical 

analysis of these strains revealed nuclear localization of APN1-GFP only in the H2A WT strain, 

but not in the H2A-E130A mutant strain. Additionally, RADAR assay was also used to quantify 

the expressional levels of APN1 in the H2A and H2A-E130A strains. Our findings herein showed 

higher APN1 levels in the H2A WT strain when compared to the H2A-E130A strain. These 

findings taken together suggest that the Glu130 residue of the H2A is required for the recruitment 

and nuclear localization of Apn1.  

 

The accumulation of AP sites in the nucleus of yeast strains due to deficiency in the recruitment 

of Apn1 has been previously shown to affect the sensitivity of the strains to DNA damaging agents 

such as MMS and Hygromycin (Ma, Resnick, and Gordenin 2008, Ramotar et al. 1993, Wemhoff 

et al. 2016). In support of this notion, the treatment of H2A-E130A strain, which showed reduced 

recruitment of Apn1, displayed sensitivity to MMS, in a dose-dependent manner, compared to the 

H2A WT strain. On a specific note, the recruitment of Apn1 has also been demonstrated to be 



 
  

39 

required for mitochondrial DNA repair, in addition to nuclear DNA repair, following MMS 

treatment (Acevedo-Torres et al. 2009). 

 

Finally, we compared the effects of reduced Apn1 nuclear recruitment and complete absence of 

APN1 (deletion of APN1 gene), on the sensitivity and life span of the untreated and the MMS-

treated H2A WT and H2A-E130A strains. In line with our hypothesis, both untreated as well as 

MMS-treated H2A-E130A-apn1Δ strains displayed hypersensitivity and reduced growth rate. Our 

findings herein are reminiscent of previous work by others showing hypersensitivity and reduced 

growth rate of MMS-apn1Δ strains (Ma, Resnick, and Gordenin 2008, Wemhoff et al. 2016). 

Interestingly, the growth rate of the MMS-treated H2A-apn1Δ was also found to be reduced, 

suggesting the importance of APN1 in the MMS-induced DNA-damage repair. 

 

In conclusion, our findings herein show preliminary data to support the role of Glu130 residue of 

Histone H2A in the nuclear localization of Apn1. Importantly, our pilot data also show the robust 

role of the Glu130 in determining the sensitivity as well as the growth rate of the H2A strain to 

MMS. Time limitations precluded the use of FPLC and subsequent mass spectrometry analysis of 

the APN1-related genes. Future investigation of the APN1-related genes will facilitate better 

understanding of the role of Apn1 and its associated genes in regulating the repair mechanisms 

following double strand DNA breaks induced by alkylating agents.  
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