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Abstract

We consider the taxation of exchanges among a set of agents where each agent owns one
object. Agents may have different valuations for the objects and they need to pay taxes for
exchanges. Using basic properties, we show that if pairwise (or some) exchanges of objects
are allowed, then all exchanges (in any possible manner) must be feasible. Furthermore,
whenever any agent exchanges his object, he pays the same fixed tax (a lump sum payment
which is identical for all agents) independently of which object he consumes. Gale’s top
trading cycles algorithm finds the final allocation using the agents’ valuations adjusted
with the fixed tax. Our mechanisms are in stark contrast to Clarke-Groves taxation
schemes or the max-med schemes proposed by Sprumont (2013).
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1 Introduction

A large literature on house exchange problems has been developed since the pioneering work
of Shapley and Scarf (1974). These problems contain a finite set of agents, each of whom is
endowed with a single house. Agents are willing to take part in cyclical exchanges if they are
better off by such trades. The key assumption in the model is that monetary transactions
are not allowed. In spite of its simplicity, house exchange models have been demonstrated to
be powerful in many real-life applications. Maybe the best-known examples are the design of
kidney exchange programs (Roth et al., 2004) and school choice mechanisms (Abdulkadiroglu
and Sénmez, 2003). However, even if it is natural to abstain from monetary transfers in some
settings, it is very unnatural in others. In a real-life house exchange problem, for example,
it is not unlikely that local authorities tax house exchanges. Even in the absence of such
tax, it is not unlikely that monetary transfers are needed to compensate for differences in
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house values. This paper considers the latter of these situations, namely a house exchange
problem with monetary transfers where the transfers are non-positive meaning that agents
pay a non-negative tax whenever being involved in a house exchange. Before detailing the
model and the main results of the paper, we provide a more general motivation for the type
of problem considered here.

In recent years, many online services that facilitate house exchange have been devel-
oped. Even if most of these online services arrange temporary trades of vacation homes (e.g.,
HomeExchange.com), there are some alternative websites where persons are helped to per-
form permanent home swaps. For example, on the UK based site EasyHouseExchange . com,
homeowners list their properties by, e.g., uploading photographs and detailed descriptions of
their houses (including estimated market values), and state what housing they are looking
for in return. The main idea is to create trading cycles among house owners. Most of these
websites saw the light of the day in the global financial crises in 2008-2009. For example,
Sergei Naumov who, in 2009, was the CEO of one of the largest US house exchange platforms
GoSwap.org stated that:

“Since the housing market tanked, homeowners wishing to upgrade to bigger homes,
downsize or relocate have become more open to the idea of making a home swap.”*

The main reason for the increased popularity in permanent house exchanges during the fi-
nancial crises was that some persons lived in houses that they no longer were able to afford.
Because they also were unable to find a buyer, it was better to downsize to a smaller house
than declaring bankruptcy even if this resulted in a financial loss. Persons with a more advan-
tageous financial situation were not late to take advantage of this situation. Consequently,
permanent trading opportunities emerged. However, even if a homeowner is involved in a
permanent cyclical trade, this does by no means imply that the homeowner can avoid paying
taxes. For example, experts at EasyHouseExchange . com informed their customers that:

“Any transaction should be dealt with in the same way that a traditional sale or
purchase would be.”?

The framework analyzed in this paper can be thought of as a situation where a social planner
attempts to design a tax schedule for house exchange. In relation to the EasyHouseEx-
change . com example and related online services, the findings in this paper can be applied to
better understand exactly how to design a tax schedule for house owners involved in perma-
nent home swaps. As will be apparent, these options are very limited, at least if the social
planner is interested in a tax scheme satisfying a number of natural and desirable properties.

Each agent is endowed with a single indivisible object and has quasi-linear preferences
over consumption bundles. Here, a consumption bundle is a pair consisting of one object
and a tax attached to that object. The aim for the social planner is to define a mechanism
or, equivalently, a tax schedule that, based on the self-reported preferences of the agents,
determines the trades and the taxes. However, such a mechanism is not unique. Consequently,
the social planner has the option to restrict the set of possible mechanisms by requiring
that the outcome of the mechanism should satisfy a number of desirable properties. These
properties are informally described below.

!See www.bankrate.com/finance/real-estate/home-swap-tough-market-1.aspx. Retrieved June 1,
2018.
2See the article “Fair Trade?” in Financial Times (May 17, 2009).



Individual rationality says that each agent weakly prefers his consumption bundle to his
endowment and paying no tax. Strategy-proofness ensures that agents honestly report their
true preferences over consumption bundles (to the social planner). Constrained efficiency says
that the rule is efficient on its range of allocations. Consistency says that the rule is robust
subject to the departure of a set of agents with their allotments when those coincide with
their endowments. Anonymity says that whenever objects are reassigned, then the names of
the agents do not matter.

It turns out that consistency and anonymity are too strong in our context as only the
no-trade rule (where all agents always keep their endowments and pay zero tax) will satisfy
one of these in conjunction with our first three basic requirements. Therefore, we only require
consistency or anonymity in “unambiguous” situations in the following sense: weak consistency
says that when a subset of agents trade objects and any agent strictly prefers his allotment to
any outside of this subset, then the rule should be robust when allocating only the endowments
of that subset; and weak anonymity says that when all agents strictly prefer their allotments
to any other allotment and no agent keeps his endowment, then the names of the agents do
not matter.

The main innovation of this paper is the introduction of a class of taxation rules called
Gale’s fixed-tax core rules. Two types of economies are considered. In the first type of econ-
omy, there are only two agents and, consequently, these agents either exchange their houses
with each other or keep their own hoses. The second type of economy contains more than two
agents. In the former of these economies, it will be demonstrated that the above properties
(without constrained efficiency) characterize the familiar Clarke-Groves mechanisms (Clarke,
1971; Groves, 1973) satisfying our constraints.® In those mechanisms, the tax paid by an
agent depends only on the valuations of the other agent and the two agents exchange ob-
jects only if the valuations for each other’s object exceed the taxes (and an agent keeping
his endowment pays no tax). Note that, unlike the classical characterizations of the class
of Clarke-Groves mechanisms, e.g., Green and Laffont (1979), Moulin (1986), and Roberts
(1979), efficiency is not imposed. Consequently, the payment function and the assignment
function must simultaneously be deduced from our desiderata.

In the larger economy with more than two agents, the picture changes dramatically. In
particular, two ingredients play a key role. The first is the no-trade rule that prescribes that
all agents keep their endowments and pay no taxes. The second is a given number o > 0,
henceforth referred to as Gale’s fixed-tax (a lump sum payment which is identical for all
agents). Given the number «, each agent’s valuations induce a weak ordinal ranking over the
objects. More precisely, an object is weakly preferred over another object if and only if the
valuation of the first object minus Gale’s fixed-tax is greater than or equal to the valuation
of the second object minus Gale’s fixed-tax. When the induced rankings are strict, Gale’s
fixed-tax core rule finds the assignment by applying Gale’s top trading cycles mechanism
(first defined in Shapley and Scarf, 1974), and agents who keep their endowments pay zero
tax whereas agents exchanging their endowment pay the fixed-tax a. The main result of the
paper (Theorem 1) shows that any rule satisfying the above properties (individual rationality,
strategy-proofness, constrained efficiency, weak consistency and weak anonymity) must be
either the no-trade rule or a Gale’s fixed-tax core rule. Existence of such rules is demonstrated
(Theorem 2) by using a construction from Saban and Sethuraman (2013), called the Highest

3Pépai (2003) studies fair prices in bidding settings.



Priority Object (HPO) algorithm.*

Our model and the results derived from it relate to and extend previous work in the
literature. A more general observation is that in order to satisfy individual rationality in a
model where agents provide resources from their endowment, Clarke-Groves mechanisms must
allow for agents to sometimes receive payments. While this is natural in some environments,
it is infeasible in others. For example, patients pay for kidney exchanges via insurance, but
it is illegal in all countries except Iran for persons to sell organs, thus ruling out Clarke-
Groves mechanisms for this application. For quasi-linear preferences, Sun and Yang (2003)
found a rule that identifies the unique Pareto efficient and envy-free allocation, for any given
economy, by minimizing payments subject to exogenously given lower bounds on payments.’
When these lower bounds are set to zero, this rule fails individual rationality and, therefore,
the “utilitarian criterion” of Clarke-Groves schemes is not the limiting factor here.

Instead of insisting on pointwise efficiency, Sprumont (2013) showed that the max-med
mechanisms are constrained optimal among all anonymous, strategy-proof, and envy-free
mechanisms. Note that Gale’s fixed-tax core rules are fundamentally different from the max-
med mechanisms since consistency cannot be applied to max-med mechanism as they are
defined only for two agents. Furthermore, neither the rule defined by Sun and Yang (2003)
nor Clarke-Groves mechanisms satisfy consistency because they both generalize the “price
externality” feature seen in second-price auctions (Vickrey, 1961). That is, the losing bidders
determine the price paid by the winner, and by considering sub-populations containing the
winner and some different sets of losing bidders, each population might generate a differ-
ent price. However, Ehlers (2014) demonstrated that no efficient, individually rational, and
strategy-proof rule can be consistent. Consequently, we do not aim for full consistency but
rather for a conditional version. The above cited rules still fail this weaker condition while
this paper uncovers a continuum of rules that satisfy it.

Miyagawa (2001) shows, in a setting where positive transfers to agents are allowed,
that any mechanism satisfying individual rationality, strategy-proofness, ontoness, and non-
bossiness must be a fixed price core rule. Under such rule, any agent has a personalized price
for any object and if involved in an exchange, the transfer is equal to his personalized price of
the object he consumes. By adding budget-balance, these personalized prices are represented
by a price vector and an agent’s transfer is equal to the difference between his personalized
price and the price of the object he consumes. The ontoness axiom means that all exchanges
are possible. Note that the mechanisms considered in this paper do not have any property
pertaining to the thickness of its range. Furthermore, as it turns out, except for the no-trade
rule, fixed-tax core rules, by satisfying constrained-efficiency, violate non-bossiness. This is
also due to the fact that in showing the existence of fixed-tax core rules satisfying the above
properties, we employ recent contributions on house exchange with indifferences and no mon-
etary transfers. In this context Jaramillo and Manjunath (2012) have shown that there exist
rules satisfying individual rationality, efficiency and strategy-proofness.® The allocations in
the range of a fixed-tax core rule correspond to all possible assignments in the house exchange
model (because the same fixed-tax is always paid), and constrained efficiency in this model
becomes efficiency in that model. Indeed, as demonstrated in this paper, the rules proposed
by Jaramillo and Manjunath (2012) satisfy all of the above defined properties.

4This class of algorithms generalizes the procedure found by Jaramillo and Manjunath (2012).

®These results was later proved on a more general preference domain by Andersson and Svensson (2008).

5Independently Alcalde-Unzu and Molis (2011) have proposed another class of rules satisfying these prop-
erties.



The remaining part of this paper is organized as follows. Section 2 presents the model
and some desirable properties. Section 3 introduces Gale’s fixed-tax core rules and states
our main result. Section 4 shows the existence of rules satisfying our properties. Section
5 contains some general remarks, e.g., a characterization of the Clarke-Groves mechanisms
in our context for the two-agent economy, and a discussion about the implications for the
presented results on a more general preference domain than the quasi-linear.

2 Agents, Preferences and Allocations

Let N ={1,...,n} denote the finite universal set of agents. Agent i owns object i and N also
denotes the set of indivisible objects. Let e : N — N denote the endowment vector such that
e; =i foralli € N. For all N' C N, let ens = (e;);ens. Agent i’s utility function u; € RY
assigns utility u;; for receiving object j. We set u; = 0. Let U; denote the set of all utility
functions for i. For all N' C N, let Uy = X;enU;. A consumption bundle is a tuple (j,t;)
where j € N and t; € R4, i.e. agent ¢ pays the tax ¢; for consuming j and his utility from
consuming (7,t;) is given by u;; — t;.

Given N’ C N, a list u = (u;);ens of individual utility functions (where u; € U; for all
i € N') is a (utility) profile (for N'). The set of utility profiles having the above properties is
denoted by U = UnrcnUn-.

Given N’ C N, a (feasible) assignment a : N’ — N’ assigns every agent i € N’ an object
j € N’ such that a; # a; for all ¢ # j (where a; denotes the object assigned to agent i).
Note that any feasible assignment (for N') assigns every agent one object and all objects are
assigned.

Given N’ C N, an allocation (for N') consists of an assignment a and a tax vector
t = (t;)ien’ € RT, denoted by (a,t) for short. Here t; denotes the tax agent ¢ is paying
in allocation (a,t) and (a;,t;) denotes i’s allotment in (a,t). Let Ays denote the set of all
allocations for N’ and A = Uy/cyApns. An allocation rule ¢ is a pair (a,t) choosing for
each N’ C N and each utility profile u € Uys an allocation (a(u),t(u)) € Axs. We say that
two rules ¢ = (a,t) and @ = (a,t) are equivalent if for all N’ C N and all u € Uyn: we
have w;q,(y) — ti(u) = Uig,(u) — ti(u) for all i € N’, i.e. for any utility profile the two chosen
allocations are utility-equivalent for all agents.

Under the no-trade rule NT', each agent keeps his endowment and no taxes are paid, i.e.
for all N’ C N and all u € Uns, NT(u) = (ens,0n7) (where Oy = (0,...,0)).

2.1 Properties

In the following we introduce some basic properties for an allocation rule ¢ = (a,t).
Individual rationality says that nobody should be worse off than keeping his endowment and
paying no tax.

Individual Rationality: For all N’ C N, all u € U, and all i € N, w;q, () — ti(u) > 0.

Obviously, if a;(u) = ¢, then we have w;; —t;(u) = —t;(u) > 0, and by ¢;(u) > 0, we obtain
t;(u) = 0. Thus, agent i pays no taz (or zero tax) if i keeps his endowment.

Strategy-proofness says that truth-telling is a weakly dominant strategy and because
agents’ preferences are private information, this property ensures that the mechanism’s



chosen allocations are based on the true preferences.

Strategy-Proofness: For all N' C N, all u € Uy, all i € N’ and all v, € U,

Wia;(u) — ti(u) > Wig; (u),u_s) — ti(u;7 U—;).
Constrained efficiency says that the rule is efficient on its range. Given N’ C N, let A%,

denote the range of rule ¢ for N', i.e. A%, = {(a(u),t(u))|u € Un+}. Let A? = Unrcn A%y

( (u),t(u)), then there

Constrained Efficiency: For all N’ C N and all u € Uy, if p(u) =
— t;(u) with strict inequality

exists no (&,t) € A%, such that for all i € N', w4, — t; > Uig, (u)
holding for some j € N'.

Consistency’ requires that if the endowments of some set of agents S are allocated among
S, then for the problem restricted to S the objects and taxes are chosen in the same way.
This is an appealing property, as it insulates groups of agents from each other, when these
agents do not trade with each other. Given S C N’ C N and u € Uy, let u|ls = (u;)ics and

ps(u) = (pi(u))ies-
Consistency: For all S C N’ C N and all u € Uy, if Ujes{ai(u)} = S, then p(uls) = ¢s(u).

Unfortunately, as we show later in Corollary 1, consistency is very strong in conjunction
with our other properties as basically only the no-trade rule will satisfy them.® Thus, we
study instead a weaker property. This imposes consistency only for groups of agents that
prefer their object to the objects outside the group. This corresponds to weakening the insu-
lation effect, which is undesirable, but the effect is preserved for the groups that value it most.

Weak Consistency: For all S C N’ C N and all u € Uy, if Ujes{a;(u)} = S and for all
i€ S and all j € N'\S, g, () — ti(u) > Uiq, ) — tj(u), then p(uls) = ps(u).

Note that by definition, if U;cg{a;(u)} = S, then consistency requires both ¢(u|s) = ¢g(u)
and p(u|yng) = @y g(u) whereas weak consistency does not necessarily constrain the rule
for N"\ S.

Let o : N/ — N” be a permutation. For any utility profile u for N’, let o(u) denote the
utility profile for N” where both the names of the agents and their endowments are relabeled
according to ¢.? Similarly, o is used for relabeling assignments and tax vectors.

Anonymity: For all N', N’ C N with |N'| = |N”|, all v € Uy and all permutations
o: N' = N",if p(u) = (a(u), t(u)), then (o (u)) = (o(a(u)), o (t(w))).

Anonymity simply says that the chosen allocations are symmetric, i.e. they do not depend
on the names of the agents. In the context of exchange anonymity does not imply that agents
with symmetric utility functions are treated equally: for instance, if two agents ¢ and j

"See Thomson (1992, 2009) for in-depth surveys of consistency.

8This is not surprising. For instance, in the context of allocating indivisible objects (without monetary
transfers), Ehlers and Klaus (2007) show that basically only mixed dicator-pairwise-exchange rules satisfy
consistency in conjunction with strategy-proofness and efficiency.

9Formally, for all i, j,k € N’ we have uij — t; > wik — t; iff Uy (i)o(j) — ti > Uo(i)o(k) — ti-



have symmetric utility functions in the sense that u;; = uj; and uy; = wj for all [ # 4,7,
anonymity does not imply that agents ¢ and j are treated equally (unless i and j form a
pairwise exchange). Anonymity only has power in “completely symmetric” situations.

Similar to weak consistency, we just require anonymity when each agent strictly prefers
his allotment to any other agent’s allotment (and any agent strictly prefers his allotment to
keeping his endowment).

Weak Anonymity: For all N N” C N with |N'| = |[N”|, all v € Uy and all per-
mutations o : N’ — N” if p(u) = (a(u),t(u)) and for all i € N’ and all j € N'\{i},
Uiay(u) — ti(w) > max{0, wiq; () — tj(u)}, then p(o(w)) = (o(a(w)), o (t(u))).

Note that (i) consistency implies weak consistency and (ii) anonymity implies weak
anonymity (but the reverse implications are not true). Similarly to consistency, as we show
later in Corollary 1, anonymity will turn out to be too strong and basically only the no-trade
rule will satisfy anonymity and our other properties.

3 Gale’s Fixed-Tax Core Rules

In the following, we define (Gale’s) fixed-tax core rules. Let v > 0 be Gale’s fixed tax (a lump
sum payment which is identical for all agents). Given i € N’ C N and u € Uy, we define the
relation R;(u;, ) over N’ as follows: for all j, k € N,

(i) jRi(ui, )k & w5 — a > wip, — o
(ii) jRi(ui, )i < uj — o > ug; and
(iii) sz(uz, Oé)j & Uy > Ujj — O
Let P;(u;, &) denote the strict ranking associated with R;(u;, ). Given N’ C N and u € Uy,
let Ry/(u, ) = (R;(u;, @));ens. Based on the fixed tax «, each utility profile induces “ordinal”
rankings over the endowments. We say that Ry (u, ) is strict (over acceptable objects) if
for all distinct 7,5,k € N', jR;(u;, )kR;(u;, )i implies jP;(u;, a)kP;(u;, )i and iR;(u;, o) j
implies i P;(u;, «)j. Now if the induced preferences are strict, then we may apply Gale’s top

trading cycles algorithm!? in order to find the unique core assignment. For strict Ry (u, o),
let C(Rn'(u,)) denote the unique core assignment.

Definition 1. A rule ¢ is a (Gale’s) fixed-tax core rule if there exists oz > 0 such that for all
N’ C N and all u € Uy,

1. for all i € N', if a;(u) # i, then t;(u) = «,
2. for all i € N, if a;(u) = 4, then t;(u) = 0, and
3. if Ry/(u, ) is strict, then a(u) = C(Rn/(u, ).

In words, a rule is a fixed-tax core rule if there exists a fixed tax a such that for any utility
profile; if an agent does not keep his endowment, then he pays the fixed tax «, the agents
who keep their endowment pay zero, and for any utility profile that induces strict ordinal
rankings, the core assignment of objects is chosen.

10The Appendix defines the HPO Algorithm, which reduces to Gale’s top trading cycles algorithm when the
induced preferences are strict.



Theorem 1. If rule ¢ satisfies individual rationality, strategy-proofness, constrained effi-
ciency, weak anonymity and weak consistency, then ¢ is a fixed-tax core rule or ¢ is the
no-trade rule.

3.1 Proof of Theorem 1

Obviously, if ¢ = NT, then Theorem 1 is true. Let ¢ # NT. We need additional notation.
Note that any assignment consists of cyclic exchanges or cycles. Formally, in assignment
a, a cycle ¢ is a sequence of distinct agents, ¢ = (i1, 1i2,...,7) such that a; = i;4; for all
le{l,....,k -1}, and a;, = i;. Then k is the length of cycle c. We use the convention to
write ¢ for both the cycle ¢ and the coalition of agents belonging to cycle ¢. Let Cp denote
the set of all cycles of length k, and C = Uyeyo, . | n1Ck the set of all cycles of length at
least two. Let Cf = {c € Cj : there exists u € U, such that a(u) = c}. Similarly we define
C¥ = Urefa,..,N3CE -

Next we show that if a cycle of length k belongs to C}, then all cycles of length & belong
to C; and all agents must pay the same tax «(k) in any cycle of length k.

Lemma 1. Let ¢ = (1,2,...,k) € C{. Then C{ = Cj, and there exists (k) > 0 such that for
all d € Cy, and all u € Uy, if a(u) = ¢, then for all i € ¢, ti(u) = a(k).

Proof: Suppose that (c,t),(c,t') € Af with t # t'. By constrained efficiency, for some
i,j € ¢, t; < tjand t; > t;. Let y = 1+ maxjeqy,. pm{ti,t7}. Let u € U be such that for

all i € ¢, ujiv1 =y, ui; = 0 and u;j = —1 for j # i,i + 1. By (c,t) € AL and constrained
efficiency, a(u) = ¢. Let i € c. We show that ;41 —t;(u) > 0: suppose not; then by individual
rationality and w;;i11 =y, ti(u) = y; let uj € U; be such that uj; =y — 3 and u;; = —1 for

all j # 4,141, and v’ = (u},u—;). By strategy-proofness and individual rationality, a;(u’) = i
and t;(u') = 0. Thus, by construction and individual rationality, a(u’) = e, and t;(u") = 0 for
all [ € c. This is now a contradiction to constrained efficiency as (c,t) € AZ and uy, | >t
for all [ € c.

Thus, for all i € ¢, ujir1 — ti(u) > 0, and a(u) = c. By construction, g, ) — ti(uw) >
max{0, uq; () — tj(u)} for all j # i. Now by weak anonymity, for all 7, j € ¢, t;(u) =t;(u) =
a(k). Because t # t/, then either t # (a(k))iec or t' # (a(k))ice, say t' # (a(k))iec. If for
all i € ¢, t; > a(k), then by constrained efficiency the allocation (c,t’) can never be chosen
for utility profiles of coalition ¢, which is a contradiction to (c,t’) € AZ. Thus, for some
i € ¢, a(k) = t;(u) > t,. But then using strategy-proofness and constrained efficiency yields
a contradiction: ¢ may report u};,; = 3(t;(u) + t]) and u;; = u;j for j # i+ 1, and then by
strategy-proofness and individual rationality, a(u},u_;) = e, and t(u},u_;) = O, which is a
contradiction to constrained efficiency by (c,t') € AZ.

Hence, for all (c,t), (¢,t') € AZ we have t = t', and a(k) =t} = t; for all i € c. Let ¢’ € Cy,
and o : ¢ — ¢ be a permutation. By weak anonymity and a(u) = ¢, we obtain a(o(u)) = ¢
and for all i € ¢, t;(0(u)) = a(k). Hence, Cf = Cy. O

In the following we show C¥ = C.

Since ¢ # NT, we must have C¥ # (). By weak anonymity and strategy-proofness, if
C3 # 0, then C3 = Cy and in any pairwise trade agents pay the tax «(2) for two-agent utility
profiles.

Let ¢ = (1,2,...,k). We say that u € U, is c-cyclic if for each i € ¢, ujit1 > uji—1 > a(2)
and u;; < 0 for all j € c\{4,7+ 1}.



Lemma 2. Let C3 # (0. Then for all k € {3,...,|N|}, Cf = C.

Proof: Suppose that for some k € {3,...,|N|},Cf =0. Let ¢ = (1,2,..., k) and fix a c-cyclic
u € Ue. By Cf =0, we have a(u) # ¢, c.

Because u is c-cyclic and from individual rationality, the only admissible trading arrange-
ment is a mix of pairwise trading and keeping one’s endowment.

First, suppose that there exists i € {1,..., k} such that a;(u) = ¢, say ¢ = 2. By individual
rationality, az(u) = 2 and ta(u) = 0. Let uy € Up be such that uh; = ug and )y, < 0 for
all I € ¢\{1,2}. Let ' = (u,u_2). By individual rationality, as(u') € {1,2}. If ag(v') = 1,
then by strategy-proofness and both as(u) = 2 and to(u) = 0, t2(u') = uz;. But then choose
uy € Uy such that uhy; > uf; > «(2) and ul, = uly, for all [ € c\{1}. Let u” = (u3,u_s).
Then by strategy-proofness and individual rationality, as(u”) = 2 and t2(u”) = 0. Thus,
without loss of generality, we may suppose for «’ that as(u’) = 2 and t2(v') = 0 (by individual
rationality). By Cf = 0, we have a1 (u’) € {1, k}.

If ai(u') = 1, then let uf € Uy be such that ufy = w12 and uf, < 0 for all I € c\{1,2}.
Let u” = (uf,u’ ;). By strategy-proofness, individual rationality and C{ = 0, a;(u") = 1
and t1(u”) = 0. Hence, by individual rationality, as(u”) = 2 and t2(v”) = 0. But now
by weak consistency, a(uf{’172}) = (1,2), which is a contradiction to constrained efficiency as
((2,1), (x(2),(2)) € .A‘él).

If a1 (u') = k, then using the same argument as above, strategy-proofness and weak con-
sistency (because 1 may deviate as above, obtain 2 and pay «(2)), we must have

U192 — Oé(2) <uip —t (’U/) < uig — tl(u')

where the first inequality follows from strategy-proofness and the second one from w1 < uq9.
Thus, we have t;(u') < a(2). Now let uf € U; be such that uf, —t1(v') > 0 > uf, — a(2)
and uf, < 0 for all I € c\{1,k}. Let u” = (uf,u’ ). By strategy-proofness, ai(v”) = k and
t1(u") = t1(v'). By Cf =0, we have ai(u”) = 1. But now by construction, uf, — t(u") >
u’l’aj(u,,) —tj(u”) for all j € \{1,k}. If ugs — tg(u”) > Upq,ury — tj(u”) for all j € c\{1,k},
then by weak consistency, ¢(u”|{1 xy) = @1y (w”). Thus, a1 (u”|(1 ) =k and 1 (u” |1 y) =
t1(u”) = t1(v') < a(2), which is a contradiction to the fact that in any pairwise trade for
two-agent utility profiles agents pay the tax a(2). Otherwise (ug1 — tx(u”) < Upa,(ury —t;5(u”)
for some j € ¢\{1, k}), choose u}’ € Uy, such that u}| = up;+1 and uf; < 0 for all I € c\{1, k},
and let v = (u}’,u” ;). Now by strategy-proofness, ax(u”) = 1 and t;(u"") = tx(u”). By
C; = 0 and individual rationality, a;(u"”) = k and 0 < ¢;(v”") < «(2). But now as above
we use weak consistency to derive a contradiction to the fact that in any pairwise trade for
two-agent utility profiles agents pay the tax «(2).

Thus, for all i € {1,...,k} we have a;(u) # i. Hence, k is even and a(u) must consist of
% pairwise exchanges (and k > 4). Without loss of generality, let ai(u) = k.

If ¢1(u) < a(2), then let u} € Ui be such that uf, —ti(u) >0 > v}, —a(2) and u}; <0
for all I € ¢\{1,k}. Let v/ = (u},u_1). By strategy-proofness, a1(u') = k and t;(v') = t1(u).
Thus, by Cf = 0, we have ai(u') = 1. Now we derive a contradiction as above using weak
consistency and the fact that in any pairwise trade for two-agent utility profiles agents pay
a(2).

If t1(u) > a(2), then let u} € U; be such that u}, = ui2 and uj; < 0 for all [ € ¢\{1,2}.
Let v’ = (u},u—1). By individual rationality, a;(u') € {1,2}. If a1(v') = 2, then by strategy-
proofness, u1a — t1(u') < uyp — t1(u) < w1z — t1(u) which implies ¢1(v') > ¢1(u) > «(2). But



then choose u € U, such that ufy—t;(v') < 0 < ufy—(2) and uf; < 0 for alll € c\{1, 2} Let
u’ = (ul,u_l). Now from strategy-proofness and individual ratlonahty, it follows aq(u”) =1
and t1(u”) = 0.

Thus, without loss of generality, let ¢ (u) > «(2), v’ = (u},u_1) be such that ujy, > «(2),
uy, <0 for all I € ¢\{1,2}, and both a;(v') =1 and ¢;(u’) = 0. NOW by weak consistency and
strategy proofness, we cannot have as(u’) = 2 (otherwise let u € Uy be such that u’2’1 = U9
and ul;, < 0 for all j # 1,2, and then we use strategy-proofness and weak consistency for
(uy,u—1") to derive a contradiction as above). Thus, by C = 0, az(v’) = 3 and az(v’) = 2.
Now we can use the same arguments as above for 3 in the role of 1 to deduce ts(u') > a(2) and
(without loss of generality) for uj € Us such that uf3, > a(2) and w3, < 0 for all I € ¢\{3,4}
and v’ = (uf,u’_5), we have az(u”) = 3 and t3(v”) = 0 (and ag(u”) 75 3). Again by strategy-
proofness and weak consistency, we cannot have a4(u”) = 4. If k = 4, then a4(u”) = 1 and
by Cf = 0, a1(u”) = k, which is a contradiction to individual rationality (by u}, < 0). If
k > 4, then by weak consistency and C{ = 0, as(u”) = 5 and a5(v”) = 4. Then using the
same arguments as above for 5 in the role of 1, we obtain a contradiction since k is finite and
even.

Thus, Cf # 0. Now weak consistency implies C;. = C. O

Note that by Lemma 1, all agents pay in any cycle of length k the same fixed tax a(k).
Let a(2) = a. We aim to show that whenever a cycle ¢ of length k forms, all agents pay the
fixed tax a(k) = a.

Lemma 3. For all N' C N and all u € Uy, if a(u) contains the cycle ¢ = (i, ..., i) of
length k, then for alll =1,...,k, t;(u) = a(k) = a.

Proof: Without loss of generality, let ¢ = (1,2,...,k) € C{. By Lemma 1, all agents pay the
fixed tax (k) in cycle ¢ for all u € U, such that a(u) = ¢, and by weak anonymity, C; = Cg.

We show «a(k) = a.. Suppose not, i.e. a(k) < a or a(k) > a.

First, suppose a(k) < «a. Consider the c-cyclic utility profile u. € U, for the cycle ¢ =
(1,...,k) such that a(k) < uy—1 < uzir1 < « for all i € ¢. Let ¢ = (k,...,1). Suppose that
a(u) # ¢,d, e.. Because in any cycle ¢ all agents pay the fixed tax a(k), constrained efficiency
implies w;q, () — ti(w) > wiz+1 — (k) > 0 for some i € c. But then a;(u) # i and

Wiip1 — ti(U) > Ui, ) — ti(w) > i1 — a(k),

which implies a(k) > t;(u). Let u; € U; be such that a(k) > u;ai(u) > t;(u) and 0 > ul; for all
1 #1i,ai(u). Let v/ = (u},u_;). By strategy-proofness, a;(u') = a;(v) and t;(v') = t;(u). But
then by indivual rationality and «(k) > u;ai ()’ i is part of a pairwise exchange under u’ with
agent j = a;(u') (and j # i). Let v} € U; be such that u}; = uj; and uj; = —1 for all | # i, j.
Let v’ = (u;’ u_;). By strategy-proofness, a;(u”) = aj(uv’) = i. By individual rationality,
a;(u”) = j and t;(u”) < a(k) < a. This is now a contradiction to weak consistency (since
u;ai(u,) < a(k) < a and in any pairwise trade for two-agent utility profiles agents pay «).
Hence, a(u) € {¢,,e.}. By constrained efficiency and the fact that in any cycle of length k
all agents pay the same fixed tax a(k), we have a(u) = c.

Let uy € Uy be such that a(k) < uhy < uhy < a and uh, = —1 for | # 1,2,3. Let
u' = (uh, u_2). Suppose that a(u’) # c,c. If for some i € c\{2}, wq, () —t2(v') > wiiy1—a(k),
then we use the same arguments as above to derive a contradiction. Otherwise, by constrained
efficiency, uj,, () ~t2 (u') > ubhs —a(k) > 0 and 2 is involved in a pairwise trade under u’. Let
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@ € U be such that for all i € ¢, g, () = U}, () and iy < 0 for [ # i,a;(u"). If there is any
trading under @, then it must be pairwise as a(u’) # ¢, ¢’. If there is any pairwise trade under
1, then using weak consistency gives together with Lemma 1 gives us a contradiction as for all
i,l € ¢ we have 1; < a. Thus, a;(4) =i for all ¢ € ¢ which is a contradiction to constrained
efficiency as t;q,(,y — ti(u') > 0 for all i € ¢ and dgg, () — t2(v') > 0 (and (a(u'), t(u')) € AZ).
Hence, a(u') € {c,'}.

Suppose that a(u') = ¢. Because ¢ is a cycle of length k, ta(u’) = a(k). Let uf € Us
be such that ufy, = uy, and uy, = —1 for I # 1,2. Let v’ = (ufy,u_s). If a(u ) =d,
then ta(u”) = a(k). But now we have ub, — a(k) > ubs — a(k), a contradiction to strategy-
proofness. Thus, a(u”) consists of a mix of pairwise trading and keeping one’s endowment
(and a(u”) contains at least one pairwise trade by constrained efficiency). But then using
the same profile @ as above we derive a contradiction using weak consistency and individual
rationality as uj; < a for all 4, j € c.

Hence, a(u') = ¢ and a;(v') = k. Let u] € Uy be such that ufy = uip and v}, = -1
for | # 1,2. Let v’ = (uf,u' ). If a(uv’) = ¢, then t1(u”) = a(k). But now we have
uhy — k) > v}, — a(k), a contradiction to strategy-proofness. Thus, a(u”) consists of a mix
of pairwise trading and keeping one’s endowment (and a(u”) contains at least one pairwise
trade by constrained efficiency). But then using the same profile 4 as above we derive a
contradiction using weak consistency and individual rationality as u/. < « for all 4,5 € c.
Hence, a(k) < « is not possible.

Second, suppose a(k) > «. Consider the same type of utility profile u for the cycle
c¢=(1,...,k) as in Lemma 2 such that o < u;;—1 < w;i+1 < a(k) for all i € c. Because in
cycles of length k the fixed tax a(k) is paid, by individual rationality, a(u) consists of a mix
of pairwise trading and keeping one’s endowment. Then using the same arguments as in the
proof of Lemma 2 yields a contradiction.

Finally, let i € N’ C N and u € Z/{N/ be such that a;(u) # i. We show t;(u) = a. Suppose
ti(u) < a. Let uj € U; be such that u, () = (o +ti(u)) and u}, = —1 for all I # a;(u),i
Let v = (u},u—;). By strategy-proofness, al(u) = a;(u) and t;(u’) = t;(u). Let j € N’ be
such that a;j(u’) = 4, and uj € U; be such that u” ) = ja (uy + 1 and u]l = —1 for all
I #aj(u),j. Let v’ = (u],u ). By strategy- proofness aj(u”) =i and t;(u”) = t;(v'). By
individual rationality and our constructlon a;(u") = a;(v') and t;(v") < a. If a;(u") = 7,
then applying weak consistency yields a contradiction because in all pairwise exchanges the
fixed tax o is paid. If a;(u”) # j, then let ap(u”) = j and uj’ € Uy, be such that up’; = up; +1
and uj; = —1 for all | # j,h. Then we derive the same conclusions as above. At some
point we arrive at a profile @ such that a(a) contains the cycle ¢, i € ¢, t;(u) < «, and
Upa, () — th(@) > 0 > dpj — tj(@) for all h € c and all j € N'\c. Then applying weak
consistency yields a contradiction because in the exchange c¢ the fixed tax « is paid by all
agents belonging to c.

Thus, for all i € N’, if a;(u) # 4, then t;(u) > a. Let @ € Upns be such that (i) @;q, ) —a >
0 > 4, for all j € N'\{4,a;(u)} and all i« € N’ with a;(u) # ¢ and (ii) 0 > 4;; for all
j € N'\{i} and all i € N’ with a;(u) = i. Then by constrained efficiency and weak consistency,
a(t) = a(u) and for all i« € N with a;(u) # 4, t;(4) = a. Thus, the assignment a(u) together
with everybody, who does not keep his endowment, paying o belongs to A%,,.

Suppose that tj(u) > « for some j € N’. Because t;(u) > « for all i € N’ such
that a;(u) # 4, the assignment a(u) together with everybody, who does not keep his
endowment, paying « belongs to A%, Pareto dominates (a(u),t(u)), which is a contradiction

tj
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to constrained efficiency. ([l

Thus, we have shown that if agent ¢ does not keep his endowment, then 4 pays the fixed
tax .

Lemma 4. For all N' C N and all w € Uy, if Ry/(u, @) is strict, then a(u) = C(Ry(u, @)).

Proof. Let ¢ = (i1,...,ix) be a top cycle in Ry/(u,«). Suppose that ¢ is not part of a(u),
say a;, (u) # i1. Because Ry/(u, ) is strict and in any exchange agents pay the fixed tax «,
then wi i, — & > ujq, () — i, (u). Let wj € Ui, be such that ug ; = g, and uj; <0 for all

[ # 11, 14%. By strategy-proofness and the fact that in cyclical exchanges the fixed tax « is paid,

aiy, (wj, ,u—y,) = ix and t;, (u} ,u—; ) = 0. Note that Ry (u;, ,u—;,, ) is strict and ¢ remains
a top cycle under R(u;k,u_ik, a). Thus, aik_l(ugk,u_ik) # ip. Similar as above u;,_, can be
replaced u;, € U;,, such that u; ;. = i, and wj ;<0 for all | # ix_1,4,. Then we

arrive at a profile v’ = (ul{h,...,ik}’ U_(;,,...ip}) Where c is still a top cycle under Ry (v, o) but
all agents in ¢ receive their endowments, i.e. for I € {i1,... i}, a;(uv’) = and ¢;(uv’) = 0. By
construction, for all I € {iy,...,ix} and all j € N'\{i1,...,ix}, 0 > Upa(u') — tj(u'). Thus,
by weak consistency, for all [ € {i1,..., i}, al(u{{il,...,ik}) =1 and tl(ul{il,...,ik}) = 0. This is
a contradiction to constrained efficiency because ¢ is top cycle under Ry/(u', ) and for all
le{l,...,k}, u;””l —a=uy;, , —a>0.

Thus, ¢ must be part of a(u). Consider a top cycle in N'\¢, say ¢ = (j1,...,Jm). If ¢ is
not part of u, then we can do the same as above: let u;m € U;,, be such that u;m i1 = Wi
and “;‘ml < 0 for all [ # j1, jm, and v’ = (uj_,u—j,). Then under u’ the cycle ¢ remains
a top cycle in the strict Ry/(v/, @), and thus by the above, a(u') contains ¢. But then by
strategy-proofness and the fact that in cyclical exchanges the fixed tax « is paid, a;,, (¢v') = jm
and t;, (u') = 0. Note that Ry/(u/, ) is strict and ¢ remains a top cycle under Ry (v/, «)
and ¢ is a top cycle in N'\c. Now the same arguments as above yield a contradiction to
weak consistency and constrained efficiency. ([l

We have shown that if C3 # (), then by Lemma 3 and Lemma 4, ¢ is a fixed-tax core rule.
Our final lemma completes the proof of Theorem 1.

Lemma 5. If C¥ # 0, then C3 # 0.

Proof. Suppose that C§ = (. By C¥ # 0, let k be minimal such that C; # 0 and for
all I € {2,...,k —1}, ¢ = 0. By weak anonymity, C{ = Cy. Let ¢ = (1,...,k) and
d = (k,...,1). By Lemma 1, there exists a unique symmetric fixed tax «a(k) for cycles of
length k. Let u € U, be such that (i) ug1 > ug3z > a(k) and ug = —1 for [ # 1,2, 3 and (ii) for
all i € \{2}, wjir1 > wji—1 > a(k) and uy = —1for l #£i—1,4,i+ 1. If a(u) # ¢, , then a(u)
is a mix of pairwise trading and keeping one’s endowment. Then we use a similar argument
as in Lemma 3, via a profile like @, to deduce a contradiction to the hypothesis that C§ =
By constrained efficiency and our choice of k, a(u) € {c,c'}.

First, let a(u) = ¢. Then by Lemma 1, ta(u) = a(k). Let u}, € Us be such that uh; = ug
and ul, = —1 for [ # 1,2. By constrained efficiency and our choice of k, a(uy,u_2) = ¢ and
to(uh, u—2) = a(k). But this is now a contradiction to strategy-proofness as ug; — a(k) >
Uug3 — Oz(k)

Second, let a(u) = ¢/. Let u} € U; be such that u}y = uip and v}, = —1 for [ # 1,2. By
constrained efficiency and our choice of k, a(u},u_1) = ¢ and ¢ (v}, u—1) = a(k). But this is
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now a contradiction to strategy-proofness as uij2 — a(k) > uyp — a(k). O

Note that Lemma 3, Lemma 5 and individual rationality imply 1. and 2. of Definition 1,
and this together with Lemma 4 implies 3. of Definition 1.

Remark 1. For all i € N, u; € U; is a vector u; € RV such that u;; = 0. Then (strictly
speaking) for N’ C N and u € Uy, the allocation p(u) may depend on the utilities over
N\N'. Our definition of a rule did not exclude this. However, as one may check, the proof of
Theorem 1 did not require this.'!

4 Existence

Theorem 1 showed if a rule ¢ satisfies individual rationality, weak anonymity, strategy-
proofness, constrained efficiency and weak consistency, then ¢ is a fixed-tax core rule or
@ is the no-trade rule. Let ¢ be a fixed-tax core rule with fixed tax o« > 0. Note that the
range of ¢ for N’ C N is given by A%, = {(a,f) € An/|t; = 0if @; = i and ; = o otherwise}.
Let W; denote the set of all weak ordinal rankings over N. Under ¢, agent ¢’s possible con-
sumption bundles are (i,0) and (j, «) with j # i. Thus, agent i’s utility functions induce all
weak ordinal rankings over his consumption bundles or over N, i.e. {R;(u;, o)|u; € U;} = Wi.

Now in order to establish, for the fixed tax «a, the existence of a rule satisfying our
properties, we use a construction of Saban and Sethuraman (2013), called the Highest Priority
Object (HPO) algorithm. This is a class of algorithms that generalizes the procedure found
by Jaramillo and Manjunath (2012), which was the first to demonstrate the existence of
individually rational, strategy-proof and efficient rules for the model of house exchange with
indifferences and no monetary transfers.

Given N’ C N, let On denote the set of feasible assignments for N'. Let f : UnyrcnWhr —
Un'cnOn be assignment rule. Then

(i) f is assignment-individually-rational iff for all N’ C N and all R € Wy, we have
fi(R)R;i for all i € N,

(ii) f is assignment-strategy-proof iff for all N’ C N, all R € Wyr, all i € N’ and all
R, € Wi, fi(R)R; fi(R}, R—;), and

(i) f is assignment-efficient iff for all N’ C N and all R € Wy, there exists no feasible
assignment a € Ops such that a; R; f;(R) for all i € N’ with strict preference holding for
some j € N'.

Fix an assignment rule f belonging to the class of Highest Priority Object Algorithms (we

define this class formally in the Appendix). Then by Saban and Sethuraman (2013), f is
assignment-individually-rational, assignment-strategy-proof and assignment-efficient.

Given o > 0, Gale’s fixed a-tax rule ¢/ = (af,tf) based on f is defined as follows: for

all N/ C N and all u € Uy, we have a/ (u) = f(Rn'(u,a)) and for all i € N', t/(u) = 0 if

f

al (u) =i and t/(u) = o otherwise.

HTndeed, if two agents are indifferent between a pairwise trade and keeping their endowments, our require-
ments do not pin down the chosen allocation, and in such situations either the agents keep their endowment
and trade pairwise depending on the utilities over other houses.
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Theorem 2. Let a > 0 and f be an assignment rule belonging to the class of HPO algorithms.
Then the fized a-tax rule ! based on f satisfies individual rationality, strategy-proofness,
constrained efficiency, weak consistency and weak anonymity.

Proof: It is straightforward to check that ¢f satisfies individual rationality,
strategy-proofness and constrained efficiency because f is assignment-individually-rational,
assignment-strategy-proof and assignment-efficient.

For weak consistency, let S C N' C N and u € Uys (setting R = Rpy/(u,«)) be such
that S = Uieg{a{(u)} = Uies{fi(R)} and w;f,(g) — t{(u) > Ui — t;(u) for all i € S and all
j € N'\S. This means that for all i € S and all j € N’\S, iP;j. But then in the HPO-
algorithm, agents in S do not point to agents in N\S (as agents always point to one of their
most preferred objects) and any pointing from the agents in N'\\S to agents in S is irrelevant.
Thus, aof (u|s) = f(R|s) = fs(R) = ag(u) and (by definition) tf(u|g) = té(u) Hence, ¢f
satisfies weak consistency.

For weak anonymity, suppose that for some N’ C N and u € Uy we have for all i € N’ and
all j € N'\{i}, a{(u) —t{(u) > 0 and alf(u) —tzf(u) > af(u) —tj(u). Setting Rn» = Ry (u, ),
this means for all i € N’ fi(Rn/)Pyi and f;(Rn/)P;j for all j € N'\{i, fi(Rn+)}. But then
f(Rnv) is the unique efficient assignment for Ry/. Now for any permutation o : N — N”

(where N” C N and |[N”| = |N'|, o(f(Ry+)) remains the unique efficient assignment for
o(Rp), and thus, by efficiency of f we have af(o(u)) = f(o(Rn)) = o(f(Rnv)) = o(af (u))
and (by definition) ¢/ (o(u)) = o(tf (u)). Hence, ¢/ satisfies weak anonymity. O

The agents-optimal mechanism in Theorem 2 is fixed-tax rule with o = 0 (call it the zero-
tax rule) and the agents-worst mechanism in Theorem 2 is the no-trade rule. Both these rules
are worst for the mechanism designer (the government) in terms of monetary transfers from
the agents to the mechanism because no taxes collected. Of course, this disregards consumer
surplus and other welfare-enhancing considerations.

5 Discussion

5.1 Two Agents

In the following we will introduce regular taxation schemes. Loosely speaking any such scheme
is based on a non-increasing function.

Let I = [z,Z]. Let g : I — Ry be a non-increasing function such that g(z) > Z. Note that
for any such function we have I < g(I)'? and that g may contain points of discontinuities,
i.e. for x € I we may have'? g(z—) > g(z) > g(a+) or g(z—) > g(z) > g(x+) (where both
inequalities may be strict and we set both g(x—) = 400 and ¢g(Z+) = T). For our purposes,
a function ¢! : [Z,+00) — I is an “inverse” of g if, for each z € [T, +00), g7 (2) € cl({x €
I:g(x—) > 2> g(z+)}). Note that g~! is not the inverse of g in the usual sense because
g~ ! is defined over [, +00) and not only g(I). Furthermore, for some 2/, 2" € I we may have
g(z') = g(2") = z and 2’ # 2", i.e. g~'(2) may select 2’ or 2" (or possibly other elements in
cd{zel:glx—)>2z>g(x+)})). Let G ={g: I — Ry : g is non-increasing, ¢(T) > T, and
g~ ! is defined as above}.

12We use the usual convention that for two sets J and J' we write J < J' if z < 2/ for all z € J and all
ZelJ.
3Here we use the convention g(x—) = lim. 0 g(z — ¢) and g(z+) = lime_o g(z + €).
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Let g € G. For each u € U, we define first a “hypothetical” (regular) tax h(u) in order
to check whether exchanging objects makes both agents better off. Below the tax hg(u) for
agent 2 is defined in dependance of w19, agent 1’s valuation for 2’s object.

(i) If uio ¢ Tu [f, +OO), then hz(u) = +00.
(ii) If uyo € I, then ho(u) = g(ui2).
(iii) If u12 € [T, +00), then ho(u) = g~ (u12).

Note that for uis > g(I) we have g~ '(u12) = z. In a symmetric way we define hy(u).

Now a regular tax rule checks first whether the agents’ valuations for the other object
exceed the hypothetical tax or not. If both valuations exceed the hypothetical taxes, then
they exchange their objects and they pay these taxes. If not, then both agents keep their
endowments and they pay no taxes. Formally, the regular tax rule ¢9 = (a9,t9) is defined
as follows: for all u € U, (i) if both w2 > hi(u) and ug; > ha(u), then a9(u) = (2,1) and
t9(u) = h(u), and (ii) otherwise a9(u) = e and t9(u) = (0, 0). The following is straightforward
and left to the reader.

Proposition 1. Let N = {1,2}. Any regular taz rule and the no-trade rule satisfy individual
rationality, strategy-proofness, weak consistency and weak anonymity.

Note that regular tax rules do not necessarily satisfy constrained efficiency.

Example 1. Let I = [0,1] and for all z € I, g(x) = 2 — z. If agents 1 and 2 report u? (with
u? = 0 and ufj = 2), then a9(u?) = (2,1) and t9(u?) = (0,0). If agents 1 and 2 report u!

(with u}, = 0 and U%j = 1), then a9(u') = (2,1) and t9(u') = (1,1). Now for ul, ¢9 violates
constrained efficiency because both agents strictly prefer ¢9(u?) to ¢9(ul).

Regular tax rules are just Clarke-Groves schemes satisfying our constraints.'4

5.2 Independence

Proposition 1 shows that constrained efficiency is independent from the other properties in
Theorem 1.

Example 2. Let N = {1,...,n}. Use the same construction as for Theorem 2 just with
the difference that any agent pays 2« when he keeps his endowment. Any such rule satisfies
all properties of Theorem 1 except for individual rationality. Note that such a rule is not a
fixed-tax rule because the assignment C'(Ry/(u,«)) is not necessarily chosen: agents pay for
keeping their endowment and might instead prefer buying another house while for not paying
any tax, then they keep their endowment.

Example 3. Let N = {1,2,3}, and 0 < «(3) < «(2). In any cycle c of length 3, agents pay
a(3), and in any cycle of length 2, agents pay «(2). For all u € Uy, if there exists a cycle
¢ = (i1,142,13) of length 3 such that u;; , — «(3) > 0 for all [ = 1,2,3, then (choose some
cycle of length 3, say ¢) a(u) = c and for all i € N, t;(u) = a(3). Otherwise a two-cycle is
chosen (and the other agent keeps his endowment). For N = {i1,is}, if u;y;, — @(2) > 0 and
Uiyiy —(2) > 0, then a(u) = (iz,i1) and t(u) = (a(2), ®(2)) (and otherwise a(u) = ey, ;,} and

See for instance Nisan (2007, Theorem 9.36) and Sprumont (2013, Lemma 1).
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t(u) = (0,0)). Then ¢ satisfies all the properties in Theorem 1 except for strategy-proofness
(because agents might disagree on which cycle of length 3 to choose, like in the proof of
Lemma 3).

Example 4. Let N = {1,...,n} and a > 0. For all N’ C N and all u € Uy, (i) if |N'|
is odd, then ¢(u) = NT(u) and (ii) if |N’| is even, let ¢(u) be the allocation chosen by an
HPO-algorithm having as fixed tax «. Then this rule satisfies all properties of Theorem 1
except for weak consistency.

Example 5. Let N = {1,...,n}, c = (1,2,...,n) and g8 € Rj\_f be a vector non-negative
payments. For all N’ C N and all u € Uy, (i) if N’ = N and for all i € N, w41 — 3; > 0,
then p(u) = (¢, 8) and (ii) otherwise a(u) = ens and t;(u) = 0 for all i € N’. Then this rule
satisfies all properties of Theorem 1 except for weak anonymity.

5.3 Anonymity and Consistency

If we strengthen weak consistency to consistency or weak anonymity to anonymity, then no
fixed-tax core rules satisfies our properties and we are only left with the no-trade rule (if there
are at least 7 agents).

Corollary 1. Let |[N| > 7.

(i) A rule ¢ satisfies individual rationality, strategy-proofness, constrained efficiency, con-
sistency and weak anonymity if and only if v is the no-trade rule.

(ii) A rule ¢ satisfies individual rationality, strategy-proofness, constrained efficiency, weak
consistency and anonymity if and only if ¢ is the no-trade rule.

Proof: In showing (i), suppose that ¢ # NT. Then C? # (). By the proof of Theorem 1,
we then have C¥ = C. Then a must be an assignment rule satisfying individual rationality,
strategy-proofness, efficiency and consistency. By Ehlers (2014, Proposition 2 (b)) no such
rule exists. Hence, ¢ = NT.

In showing (ii), suppose that ¢ # NT. Then C¥ # (). By the proof of Theorem 1, we then
have C¥ = C and in any exchange the fixed tax o > 0 is paid. Then a must be an assignment
rule satisfying individual rationality, strategy-proofness, efficiency and anonymity. Consider
N' = {1,2,3} and u € Ups such that ujo = 2+ a = uge, w13 = 1+ a = ugy, and ug =
2 + a = ug3. Then w induces the following ordinal rankings: Rj(uj, ) : 231, Ra(ug, ) : [13]2
and Rs(us, ) : 213. By (constrained) efficiency, a(u) = (2,3,1) or a(u) = (3, 1,2). But then
considering the permutation o : N’ — N’ such that o(1) = 3, 0(2) = 2 and ¢(3) = 1 gives us
a contradiction to anonymity because o(u) = u and o(R) = R, but if a(u) = (2,3,1), then
0(2,3,1) = (3,1,2) # a(u), and if a(u) = (3,1,2), then ¢(3,1,2) = (2,3,1) # a(u). Hence,
o=NT. O

5.4 General Preferences

One may check that all our results remain true if agents have general preferences over con-
sumption bundles: for all i € N, let B; = {(¢,0)} U {(j,t;) : j € N\{i} and ¢; > 0} and R,
denote the set of all preference relations on R; being (i) complete and transitive, (ii) mono-
tonic: for all j € N\{i} and all 0 < ¢; < t, we have (j,t;)P;(j,t;) and (iii) bounded: for all
j € N\{i}, all k € N and all ¢;,t;, > 0, if (j,t;)P;(k,t,), then there exists ¢/ > t; such that
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(k,t))Pi(j,t!). As quasi-linear preferences are a subset of R;, it is easy to check that Theorem
1 and its proof remain true for general preferences. Similarly, Theorem 2 continues to hold on
the general preference domain and existence is guaranteed. Note that here, instead of using
for i € N, R;(u;, ), we use

Ril{(¢,0)} U{(j,a) : j € N\{i}},

which is the restriction of R; to the consumption bundles ¢ may receive under Gale’s fixed
tax rule based on the fixed tax a.

APPENDIX

A The HPO Algorithms

In order to establish, for some flat tax «, the existence of a rule satisfying our axioms, we use
a construction of Saban and Sethuraman (2013), called the Highest Priority Object (HPO)
algorithm. In this section, we elaborate on these algorithms for the sake of completeness.

We shall first describe the algorithm in words. Note that efficient exchange in the presence
of indifferences is much more complicated than in their absence. Any allocation will decompose
into trading cycles, but these will not be the simple “top cycles” used in the classical algorithm.
Rather than find these cycles directly, the literature has employed a familiar, simpler strategy:
having agents trade until all gains are exhausted. That is, unlike in the Top Trading Cycles
algorithm, agents are required to stay in the market even after they have traded. This is
because trading within their thick indifference set may benefit others while not harming
them.

There are two phases in each step of the generic HPO algorithm, removal and update
and improvement. During removal and update, the algorithm removes the agents who are
holding one of their favorite objects, among those remaining, and whose participation in
further trading cycles cannot benefit others. These agents are then permanently assigned the
object they hold and sent away. The remaining agents update their preferences, given that
some objects are no longer available. Any agent holding an object they value at least as much
as all remaining objects is called satisfied.

During improvement, trading cycles are executed. A single agent may trade several times,
and hold several different objects, before finally being removed in the removal and update
phase.

We first make formal the removal and update phase. Because agents may hold several
different objects before leaving the algorithm, we can no longer conflate agents with objects.
Let Q be the set of (remaining) objects and i : N — € a one-to-one assignment of agents to
objects. Given p and preference profile R, the ttc graph, denoted G(IV, i, R), has vertices
N and directed edges {(i,7) : Vw € Q, u(j) R; w}. Note that the ttc graph may have loops, as
agents may hold their favorite object and remain in the algorithm. As in the body text, we
write (4,32,43,..., ) to refer to the directed path {(4,i?), (i%,4%),...,(i"71,j)}. A sink, S, of
a generic directed graph G is a (strongly) connected component: for each i,j € S, there is a
directed path (i,42,i3,...,5) C G with {i,42,43,...,i""',j} C S, and for each i € S, j ¢ S,
there is no such path from i to j. A terminal sink S is a sink with the property that for
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each i € ST, (i,i) € G. Agents in a terminal sink of G(N, u, R) are satisfied. Moreover, they
do not belong to any (directed) circuit that includes someone who is not satisfied. Thus,
they cannot contribute to any Pareto improving trades and so are permanently assigned the
objects they hold and are removed. The remaining agents have their preferences updated so
that the objects just removed are no longer in their preference ranking.

The improvement phase consists mainly of selecting a simple graph, in which each node
has out-degree 1, from the starting graph G(N,u, R). Let L be the possibly-empty set of
labeled agents. The phase may begin with some agents labeled, depending on the previous
step in the algorithm. In the first step, no agents begin labelled. If there are any labeled
agents, they select the same agent they pointed to in the last step. Thus, for these agents,
ties are broken by history. Next, agents who are not satisfied break ties based on the name of
the objects, with everyone using a common order <. Finally, satisfied agents break ties in a
more complicated manor. Label all agents whose ties are already broken, so at this point, all
the previously-labelled and unsatisfied agents are labelled. Recursively, perform the following
operations: 1) Select an unlabelled agent who is pointing to a labelled agent, breaking ties in
this selection by the name of the object each holds; 2) Break the selected agent’s ties first by
eliminating all objects held by unlabelled agents and then using the name of the objects (and
<); 3) Label the selected agent.

The set of labelled agents will expand to the entire set of agents, at which point all ties
have been broken, and we are left with a simple subgraph G C G(N, u, R). Now remove all
labels, and execute all trading cycles. We must apply labels again for use in the next step.
For each unsatisfied agent, j, who did not just trade, identify the longest path of satisfied
agents (i1,12,...,7) € G(INV,u, R). Label each of these satisfied agents. This completes one
step of the algorithm. Proceed now to the next step, beginning with removal and update.

We also give a complete, formal description of the algorithm in two figures. Algorithm 1
contains subroutines necessary to run HPO, while the HPO algorithm is Algorithm 2. The
algorithms are written in pseudocode, so the meaning of “=" is what it means in programming;:
“set the name on the left hand side to refer to the value stored on the right.” Thus, the
potentially confusing sentence N = N \ S means, “henceforth, symbol N refers to what was
previously meant by N \ S.” The order < is on the names of the objects.

The core of the algorithm consists of the repeated application of three subroutines,
PRUNE(), SUBGRAPH(), and TRADE(). PRUNE() is run first, and removes all terminal sinks
from consideration, making the sub-allocation for those agents final. SUBGRAPH() performs
the tie-breaking described above. Finally, TRADE() executes trading cycles, and should only
be passed graphs that are the output of SUBGRAPH(), as it cannot process overlapping cycles.

Given R € Wy, Q = N, and for the strict priority order < on Q, let f~(R) denote the
output of the HPO Algorithm. For all N’ C N and R’ € Whr, let @ = N’ and < |o
denote the restriction of < to €', and let f~(R’) denote the output of the HPO Algorithm
when applied to R’ and < |¢o. Now by Saban and Sethuraman (2013), f~ is assignment-
individually-rational, assignment-strategy-proof and assignment-efficient. The argument in
the proof of Theorem 2 shows that f~ satisfies weak anonymity.

In order to see weak consistency of f~, let S C N’ C N and R € Wy be such that
Uies{f*(R)} = S and for all i € S and all j € N'\S, f*(R)Pif;(R). By Uies{f;*(R)} = S,
the last condition implies for all ¢ € S and all j € N'\S, f~(R)P;j. Thus, if i € S belongs
to the terminal sink S” in the HPO Algorithm applied to R and < |/, then ST C S.
But then applying the HPO algorithm to Rg and < |g yields the same terminal sinks for
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Algorithm 1 Subroutines

: procedure PRUNE(N, Q, , R)
G=G(N,u,R)

while there is a terminal sink S of G do

(N7Q7H, R) = (N\Su Q\N(S)7 :U"N\Sa (RZ|,LL(N\S))Z€N\S) > Remove and update

end while
return (N, Q, u, R)

1

2

3

4:

5: G=G(N,u,R)
6

7

8: end procedure

L is the set of labelled agents, possibly empty.

> Repeat with new graph

GL is a graph storing the edges that were previously selected for the labelled agents. It

might also be empty.

The subgraph selection automatically chooses G¥, and then builds upon it.

9: procedure SUBGRAPH(N, Q, u, R, L, G*)

First the unsatisfied agents point, with ties broken by <

10 forie N\L,(i,i) ¢ G(N,u, R) do

11: w = min maxg, {2

12: Gt =Gl u{@i,p H(w))}
13: L =Lu/{i}.

14: end for

Now the satisfied agents point

> Break ¢’s ties with <
> ¢ points to whomever holds w

15: while there is an unlabelled agent, i € N \ L do

16: G =G(N,u,R)
17: A={ie N\L:3j¢€L,(i,j) € G} > Agents pointing to labelled agents. This set
is not empty, for otherwise there would be a terminal sink.

18: i=p ! [min< ,u(A)} > ¢ holds the highest priority object among A
19: Q= pu(L) > ¢ will point to the object of a labelled agent
20: w = min< maxg, ) > Break ties with <.
21: Gr =G Uu{(i,p ' (w))} > Increase the simple subgraph G*
22: L=LuU{i} > 4 is labelled
23: end while

24: return G > The output is the simple subgraph G

25: end procedure

26: procedure TRADE(G, y)

27: for circuits (i',i2,...,i",i') C G do
28: for k€ {1,...,n} do

29: p(i*) = (1) mod n

30: end for

31: end for

32: return p

33: end procedure
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Algorithm 2 The HPO Algorithm

,_.
@

11:
12:
13:

L=10

GE=19

u=e

while N # () do
(N,Q, u, R) = PRUNE(G(N, 1, R))
L=L\N
Gl =G|y
G =SUBGRAPH(N,Q, i, R, L, G%)
a =TRADE(G, p)
L={ieN:(ij) €l (ii) € G(N,uR),aj)

step
Gt ={(i,j):i € L,(i,j) € G}
u=a

end while

w(g)}

> Agents labelled for next

> Labeled agents’ tie-breakers stored

> Trade updated

the agents belonging to S (because they do not point to any objects in N'\S
[=(Rg) = f5'(R), which is the desired conclusion.

)1% and hence,

5The careful reader may check that Saban and Sethuraman (2013, Claim 1) is here useful.
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