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Résumé 

Bien que le cerveau ne constitue que 2% de la masse du corps chez les humains, il présente 

l’activité métabolique la plus élevée dans le corps, et en conséquence, constitue un organe 

hautement vascularisé. En fait, l’approvisionnement en sang dans le cerveau est strictement 

modulé au niveau régional par un mécanisme fondamental nommé couplage neurovasculaire 

(CNV), qui associe les besoins métaboliques locaux au flux sanguin cérébral [1, 2]. Notre 

compréhension du CNV sous des conditions physiologiques et pathologiques a été améliorée 

par un large éventail d’études menées chez les rongeurs. Néanmoins, ces études ont été 

réalisées soit sous anesthésie, soit chez la souris éveillée et immobilisée, afin d’éviter le 

mouvement de la tête pendant l'acquisition de l'image. Les anesthésiques, ainsi que le stress 

induit par la contention, peuvent altérer l'hémodynamique cérébrale, ce qui pourrait entraver 

les résultats obtenus. Par conséquent, il est essentiel de contrôler ces facteurs lors de recherches 

futures menées au sujet de la réponse neurovasculaire. 

Au cours de l’étude présente, nous avons développé un nouveau dispositif pour 

l'imagerie optique éveillée, où la tête de la souris est immobilisée, mais son corps est libre de 

marcher, courir ou se reposer sur une roue inclinée. En outre, nous avons testé plusieurs 

protocoles d'habituation, selon lesquels la souris a été progressivement entraînée pour tolérer 

l’immobilisation de tête, afin de minimiser le stress ressenti lors des sessions d'imagerie. Enfin, 

nous avons, pour la première fois, cherché à valider l'efficacité de ces protocoles d'habituation 

dans la réduction du stress, en mesurant l'évolution des taux plasmatiques de corticostérone 

tout au long de notre étude. 
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Nous avons noté que les souris s'étaient rapidement adaptées à la course sur la roue et 

que les signes visibles de stress (luttes, vocalisations et urination) étaient nettement réduits suite 

à deux sessions d'habituation. Néanmoins, les taux de corticostérone n'ont pas été 

significativement réduits chez les souris habituées, par rapport aux souris naïves qui ont été 

retenues sur la roue sans entraînement préalable (p> 0,05). 

Ce projet met en évidence la nécessité d'une mesure quantitative du stress, car une 

réduction des comportements observables tels que l'agitation ou la lutte peut être indicative non 

pas d'un niveau de stress plus faible, mais plutôt d'un désespoir comportemental. Des 

recherches supplémentaires sont nécessaires pour déterminer si la fixation de la tête lors de 

l'imagerie optique chez la souris peut être obtenue avec des niveaux de stress plus faibles, et si 

le stress induit par la contrainte effectuée avec notre dispositif est associé à des changements 

de la réponse hémodynamique. 

Mots clés – débit sanguin cérébral, couplage neurovasculaire, imagerie optique, anesthésie, 

stress, corticostérone, souris. 
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Abstract 

Whilst the brain only constitutes 2% of total body weight in humans, it exhibits the highest 

metabolic activity in the body, and as such is a highly vascularized organ.  In fact, regional blood 

supply within the brain is strictly modulated through a fundamental process termed 

neurovascular coupling (NVC), which couples local metabolic needs with cerebral blood flow [1, 

2]. A wide array of optical imaging studies in rodents has enhanced our understanding of NVC 

under physiological and pathological conditions. Nevertheless, these studies have been 

performed either under anesthesia, or in the awake mouse using restraint to prevent head-

motion during image acquisition. Both anesthetics and restraint-induced stress have been 

clearly shown to alter cerebral hemodynamics, thereby potentially interfering with the obtained 

results [3, 4]. Hence, it is essential to control for these factors during future research which 

investigates the neurovascular response. 

In the present study, we have developed a new apparatus for awake optical imaging, 

where the mouse is head-restraint whilst allowed to walk, run or rest on an inclined wheel. In 

addition, we have tested several habituation protocols, according to which the mouse was 

gradually trained to tolerate head-restraint, in order to minimize the stress experienced during 

imaging sessions. Lastly, we have, for the first time, sought to validate the efficiency of these 

habituation protocols in reducing stress, by measuring the evolution of plasma corticosterone 

levels throughout the study. 

 We noted that the mice had quickly adapted to running on the wheel, and that the overt 

signs of stress (struggling, vocalizations and urination) were clearly reduced within two 
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habituation sessions. Nevertheless, corticosterone levels were not significantly reduced in 

habituated mice, relative to naïve mice that were restrained on the wheel without prior training 

(p > 0.05). 

 This project highlights the necessity for a quantitative measure of stress, as a reduction 

in observable behaviors such as agitation or struggling may be indicative not of lower stress, but 

rather, of behavioral despair. Further research is needed to determine whether head-fixation 

during optical imaging in mice can be achieved with lower stress levels, and if restraint-induced 

stress using our apparatus is associated with changes in the hemodynamic response. 

Keywords – cerebral blood flow, neurovascular coupling, optical imaging, anesthesia, stress, 

corticosterone, mice. 
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Introduction 

Overview 

We first provide a general description of the major arteries that supply blood to the brain, and 

how they divide into progressively smaller vessels which penetrate deep into the parenchyma 

(Section 1). As we will see, blood flow through cerebral vessels is strictly modulated by a 

dynamic and complex interplay between different regulatory mechanisms including cerebral 

autoregulation and neurovascular coupling, which act to ensure constant supply of energy to 

neural tissue (Section 2). 

Whilst much of the research on the regulation of cerebral blood flow (CBF) has been 

achieved in vivo using anesthetized animals, anesthetics have been demonstrated to exert 

significant effects on the CBF. We discuss how different types of anesthetics alter cerebral 

hemodynamics and metabolism, as well as neural dynamics, brain physiology and bodily 

homeostasis (Section 3). We then introduce several imaging modalities which are commonly 

used to investigate neurovascular coupling, and have been used in awake behaving studies in 

order to avoid the effects of anesthesia on CBF (Section 4). 

 Because imaging in the awake, restrained animal is often associated with increased 

stress levels, it is important to understand the effects of stress on CBF. In our last section, we 

discuss the effects of different types of anesthetics on cerebral hemodynamics, resting brain 

metabolism, neuronal and glial dynamics, cerebral physiology and bodily homeostasis, and how 

these effects in turn can modulate the neurovascular response to sensory stimulation in rodents 

(Section 5).  
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1. Anatomy and Ultrastructure of the Cerebral Vasculature 

1.1 Major Arteries of the Brain 

While the brain only constitutes 2% of the human’s bodyweight, it exhibits remarkable 

metabolic activity, consuming a colossal one fifth of the body’s total energetic expenditure. As 

such, it is no surprise that the brain is a highly vascularized organ. In fact, with every passing 

minute, the heart supplies the central nervous system (CNS) with 0.75 liters of warm blood, 

gushing from the left ventricle into the aortic arch and through two sets of large arterial 

branches: the left and right common carotid arteries, and the left and right subclavian arteries 

(Figure 1), which serve the anterior and posterior aspects of the brain, respectively [5]. 

 

Figure 1. Arterial blood supply: from the aortic arch to the brain. 

The brain is perfused by two sets of large arteries: the internal carotids (anterior system) and the vertebral arteries 
(posterior system). The latter merge into the basilar artery and join at the base of the brain with the internal carotids 
and communicating arteries, forming the circle of Willis (figure adapted from [6] and [7]). 
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Anteriorly, the common carotid arteries give rise to bilateral external and internal carotids. The 

internal carotid arteries supply the anterior part of the cerebrum, providing the vast majority 

of the cerebral blood flow (CBF) (80%). These run upward the neck and enter the skull through 

the carotid canal. They then pierce into the dura mater and enter the subarachnoid space, where 

they bifurcate into their terminal branches, the anterior cerebral arteries and middle cerebral 

arteries. Posterior to the carotid arteries, the subclavian system branches out into the left and 

right vertebral arteries, which supply 20% of the CBF. These arteries penetrate the cranium 

through the foramen magnum, and merge medially into the single basilar artery, which 

terminates by splitting into the bilateral posterior cerebral arteries (Figure 1). 

The anterior, middle and posterior cerebral arteries fuse together through anterior and 

posterior communicating arteries into an anastomotic ring located at the base of the brain, 

known as the Circle of Willis (Figure 1). This arterial ring allows for blood reaching one 

hemisphere to circulate around the ring and perfuse the opposite side of the brain [8], thus 

enabling continued cerebral perfusion in the event of occlusion or stenosis of the internal carotid 

or vertebral arteries [9]. 

1.2 Intracerebral Vessels 

1.2.1 Architecture of the Cerebrovascular Tree 

As they leave the circle of Willis, the large intracranial arteries run along the surface of the brain, 

and branch out into pial arteries and progressively smaller arterioles and capillaries (Figure 2). 
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Figure 2. Moving down the cerebral vasculature. 

a) Illustration by Camillio Golgi (1843-1926) detailing branches of the vascular tree, from the cortical surface down 
to the microvascular bed. b) Pial arteries penetrate into the Virchow-Robin space and come in direct contact with 
the astrocytic endfeet as they dive deeper into the brain tissue (figure adapted from [10] and [1]). 

Pial arteries are large vessels (200-1000 µm diameter in humans) which lie atop of the pia mater 

(innermost layer of the cerebral meninges), and consist of an innermost layer of endothelial cells 

(ECs), vascular smooth muscle cells (VSMCs) [5], and an outer layer termed adventitia [11]. 

These arteries dive into tissue at a right angle to the brain surface and give rise to penetrating 

arteries (40-200µm), which reach an extension of the subarachnoid space termed Virchow-

Robin. As the penetrating arteries reach further into the tissue, this space disappears, and the 

parenchymal arterioles become closely associated with astrocytic endfeet. At the bottom of the 

cerebrovascular tree, capillaries (7-9 µm) form a dense network consisting  of a continuous layer 

of ECs, surrounded by pericytes and a basal membrane on which astrocytic processes are 

apposed [11]. 
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1.2.3 Perivascular Innervation 

Throughout the cerebral vasculature, nerve fibers are intimately associated with the vessel wall 

components (Figure 3). Pial arteries at the surface of the brain are supplied by extrinsic nerve 

fibers from the autonomous nervous system [12, 13]. As they dive into the brain tissue, 

penetrating arteries lose their peripheral nerve supply and, once they move past the Virchow-

Robin space, receive intrinsic innervation from within the neuropil. These neurons may signal 

through the astrocytes which surround the parenchymal vessels, causing the latter to vasodilate 

in response to neuronal activity. This association between neuronal needs and CBF is termed 

neurovascular coupling (NVC) [14] and will be addressed in Section 2.3. 

 
Figure 3. Perivascular innervation of cerebral blood vessels. 

Pial arteries receive extrinsic innervation, whereas parenchymal arteries receive afferents from local cortical 
interneurons or subcortical neurons (figure adapted from [13]). 
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2. Regulation of Cerebral Blood Flow 

Whilst the brain is one of the body’s most metabolically active organs (see Section 1.1), neurons 

store little energy as glycogen and relies almost entirely on circulating glucose as a source of 

fuel. As a result, even minor decreases in blood supply can disrupt brain function and yield 

irreversible damage to the cellular structures within minutes [15]. Conversely, pathological 

increases in CBF can cause cerebral edema, which would increase intracranial pressure and lead 

to severe neurologic complications and death [15]. It follows that strict control of CBF is 

absolutely critical, in order to ensure a constant and adequate supply of glucose and oxygen to 

the neural tissue, whilst preserving normal ranges of cerebral blood volume (CBV) and 

intracranial pressure. Hence, the brain is endowed with two regulatory mechanisms of CBF – 

cerebral autoregulation (CA) and neurovascular coupling (NVC) – which will be discussed below. 

2.1 Cerebral Autoregulation 

CA is the process by which CBF is maintained constant despite fluctuations in perfusion pressure 

[16]. In normotensive adults, cerebral perfusion is maintained at ~50 mL per 100g of brain tissue 

per minute, when mean arterial pressure (MAP) is within the range of 50 – 150 mmHg [17]. 

Above and below this range, the protective autoregulatory response is lost and the relationship 

between CBF and MAP becomes linear [18, 19] (Figure 4). 

CA is proposed to be mediated by myogenic and neurogenic mechanisms. The myogenic 

response refers to the intrinsic ability of VSMCs to counteract normal fluctuations in blood 

pressure (BP) which occur during everyday activities such as sleep, changes in posture and 

exercise [20]. This is achieved through the constriction and dilation of large cerebral arteries and 

arterioles in response to increases and decreases in intraluminal pressure, respectively [18, 21] 
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(Figure 4). Since the myogenic response is maintained in vessels denuded of endothelium [22] 

and in sympathetically and parasympathetically denervated animals (cats) [23], this mechanism 

is considered inherent to VSMCs and independent of neural and hormonal factors [24]. 

 

Figure 4. Autoregulation of blood flow with changing blood pressure. 

Cerebral perfusion is maintained at a constant value of 50 mL per 100g of brain tissue per minute 
via CA, provided mean arterial pressure is within the autoregulatory range of 50 – 150 mmHg. Above 
and below the autoregulatory range, CA is lost and CBF passively follows the perfusion pressure 
(figure adapted from [25]). 

Neurogenic control is thought to intervene during challenging during challenging 

circumstances, when the myogenic mechanism of CA has been overwhelmed. Indeed, the large 

extracranial arteries and pial arteries are extensively innervated by both the sympathetic and 

parasympathetic branches of the autonomous nervous system [26] (see Section 1.2.3), which 

have been shown to alter the limits of the autoregulatory response [23, 27]. It has been proposed 

that during acute hypertensive states, the sympathetic branch is activated and increases 

vascular tone [28], thereby protecting the microvasculature against damage and rupture. 

However, if the arterial pressure exceeds 200 mmHg, the cerebral vessels are no longer able to 

constrict, and the CBF follows changes in perfusion pressure passively [29]. 
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2.2 Neurovascular coupling 

Whilst the aforementioned mechanisms of CA are aimed at keeping the CBF within a 

predetermined autoregulatory range, NVC provides a dynamic modulation of local blood flow, 

whereby neuronal activity induces a regional increase in CBF in order to match local energetic 

demands [30, 31]. This mechanism is mediated through various metabolic pathways which 

involve neurons, astrocytes and pericytes. 

2.2.1 Neuronal Signaling 

Neurons are proposed to constitute the driving force behind NVC, due to their elevated energy 

consumption during neurotransmission [32], in addition to the important role of glutamatergic 

transmission [33, 34] and receptor activation [35, 36] in eliciting a rapid increase in CBF. 

In fact, the release of glutamate during neuronal activity has been found to activate N-

methyl-d-aspartate receptors (NMDARs), leading to Ca2+ influx into neurons and the synthesis 

of nitric oxide (NO) by neuronal nitric oxide synthase (nNOS), which elicits dilation of the VSMCs 

[37, 38] (Figure 5). Indeed, NO induces vasodilation both in brain slices and in vivo, and inhibition 

of NO synthesis in the cortex has been shown to attenuate the CBF increases that follow 

neuronal activity [39], thus confirming its role in NVC. 

2.2.2 Astrocytic Signaling 

It is no surprise that astrocytes are also implicated in NVC, as they are ideally positioned 

to transduce neuronal signals into a vascular response. Indeed, astrocytic endfeet cover about 

99% of the abluminal surface of blood vessels [40], and a single astrocyte can contact up to 

140,000 synapses [41]. 
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Accordingly, ATP released during neuronal activity was shown to stimulate astrocytic 

P2X1 receptors, leading to an increase in astrocytic Ca2+ and the activation of phospholipase D2 

(PLD2). This results in the synthesis of vasoactive arachidonic acid (AA) derivatives and 

subsequent vasodilation (Figure 5). 

In addition to activating PLD2, elevations in astrocytic Ca2+ can also induce vasodilation 

through the opening of BKCa channels [42], which results in K+ efflux into perivascular space 

[43, 44]. The subsequent increase in extracellular K+ activates inwardly rectifying K+ channels 

and induces vasodilation [45-51] (Figure 5). 

 
Figure 5. Major pathways of neuron and astrocyte-mediated neurovascular coupling. 

Neural activity may induce an increase in CBF through the release of (1) glutamate, which acts on neuronal NMDAR 
to elicit synthesis of vasodilatory NO, and (2) ATP, which activates astrocytic P2X1 receptors to induce production 
of vasoactive AA derivatives, and the release of K+ which has strong dilatory effects on the vasculature. These 
interactions between neurons, astrocytes and vascular cells effect changes in cerebral blood flow, in a bid to match 
the delivery of glucose and oxygen with the local energetic needs. AA, arachidonic acid; BKCa, large conductance 
Ca2+-activated K+ channel; cGMP, cyclic guanosine monophosphate; NMDAR, N-methyl-D-aspartate receptor; 
nNOS, neuronal nitric oxide synthase; NO, nitric oxide; PLD2, phospholipase D2; (figure adapted from [52]). 
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2.2.3 Role of Pericytes 

Pericytes, a type of vascular mural cells which wrap around cerebral capillaries [53], 

possess contractile properties similar to VSMCs [54], and thus may contribute to NVC by 

modulating capillary diameter. Indeed, several in vitro experiments have subsequently shown 

pericytes to respond to vasoactive substances such as AA derivatives, and to induce localized 

vasoconstrictions [55]. Since on average, neurons are anatomically closer to capillaries (8-23 µm) 

than to arterioles (70–160 μm), these properties of capillary vessels would allow the vascular 

network to respond to changes in metabolic demands at a more local level [56]. Subsequently, 

pericytes could propagate the vascular response to upstream arterioles through gap junctions 

between the pericytes themselves or between pericytes and the underlying endothelium [55]. 

It is possible that the signaling pathways which govern the dilation and constriction of 

pericytes are similar to those established for VSMCs, and implicate Ca2+-dependent synthesis 

and release of vasoactive AA derivatives from astrocytes (Figure 10). However, these dynamics 

remain to be explored.  
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3. Effect of Anesthetics on Cerebral Blood Flow 

Thus far, most studies on CBF regulation and NVC have been conducted in vivo under 

anesthesia. Indeed, anesthetics have been widely used during image acquisition, in order to 

minimize motion artifacts and prevent the induction of stress in the animals (see Section 5). 

Further, anesthetic preparations have the advantage of enabling the rigorous monitoring of 

physiological parameters, such as blood gases (pO2 and pCO2), pH and pressure. This is usually 

achieved in acute studies with rodents through invasive procedures such as the cannulation of 

the femoral artery, which allows to continuously monitor the BP through an attached pressure 

transducer, and artificial ventilation, which is an effective method for maintaining blood gas 

levels within the physiological range [57]. 

 In spite of the significant role anesthetics have played in neurovascular research, studies 

increasingly show that anesthesia produces a neurological condition that is distinct from any 

physiological state, leading to broad physiological changes and importantly, significant 

alterations in the hemodynamics response. This is particularly apparent in mice, which display 

poor reproducibility and inconsistent NVC in comparison with rats and other species [58-64]. In 

this section, we discuss the effects of different types of anesthetics on cerebrovascular 

dynamics, resting brain metabolism, neuronal and glial dynamics, and how these effects in turn 

can modulate the neurovascular response to sensory stimulation in rodents. 

3.1 Cerebral Hemodynamics 

Studies have found anesthesia to affect the neural-vascular relationship in rodents in a number 

of ways. First, the amplitude of the hemodynamic response was found to be approximately four 

times smaller in rodents anesthetized with urethane (1 – 1.25 g/kg) compared with 
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unanesthetized rodents, both subsequent to visual [62] and sensory stimulation [65]. Similar 

findings were obtained with α-chloralose (60 mg/kg) and propofol (0.8 mg/kg/min), whereby the 

size of the activation area in the brain and the BOLD response were significantly reduced 

following limb stimulation [66, 67]. 

 Second, the spatial dynamics of the neural-vascular response have been shown to differ 

markedly between different anesthetic conditions. For instance, cortical mapping with intrinsic 

imaging created focal localization under pentothal, whereas anesthesia with isoflurane 

produced broader and more heterogeneous activation maps in the monkey somatosensory 

cortex [68]. 

 Last, anesthetics also interfere with the temporal dynamics of the response, with 

responses in anesthetized animals increasing more slowly, peaking later, and taking more time 

to return to baseline compared with awake animals [69]. Indeed, the BOLD responses 

subsequent to hindpaw stimulation in mice had markedly different shapes under distinct 

anesthetic regimes (isoflurane, medetomidine, propofol and urethane) [70]. 

Hence, anesthesia exerts considerable influence on cerebral hemodynamics, affecting 

the size, spatial coordination and temporal profile of the hemodynamic response, with different 

effects depending on the type and dosage of anesthetic used. 

3.2 Brain Resting Metabolism 

It is well known that the brain exhibits a particularly high metabolic demand (see Section 2). 

However, nearly all anesthetics have been shown to drastically reduce the basal cerebral 

metabolic rate (CMR) in a dose-dependent manner. CMR is usually assessed in terms of 

variations in glucose utilization (CMRglc), measured using 2-deoxyglucose in animals [71]. 
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 In particular, general anesthetics such as isoflurane and halothane have been 

demonstrated to decrease CMRglc through inhibitory actions on mitochondrial ATP synthesis 

in rats [72] and mice [73]. Effectively, isoflurane was shown to reduce CMRglc in rats  by 11%, 

70%, 74% and 81% compared with the awake state, at the respective isoflurane minimal alveolar 

concentration (MAC) levels 0.5, 1.0, 1.5 and 2.0 [74, 75]. Further, α-chloralose (60 mg/kg) [76-78], 

pentobarbital (10 or 30 mg/kg) [79, 80] and phenobarbital (150 mg/kg) [81] were found to 

attenuate CMRglc by ~40-55% relative to the awake condition, especially in regions which 

exhibit high metabolic activity such as the cortex. 

 Anesthesia-induced changes in CMR have been shown to affect normal cerebral 

oxygenation. Indeed, researchers have found substantial variability in the tissue oxygenation 

under anesthesia [82], which hinders comparisons between the awake and anesthetized 

conditions. Furthermore, using a recently developed two-photon phosphorescent probe which 

provides micron-scale measurements of cerebral oxygenation, Lyons and colleagues showed 

oxygen tension to be greatly enhanced under 2% isoflurane [83]. Effectively, since most general 

anesthetics suppress CMR in a dose-dependent manner, it is expected that anesthetics will 

decrease the cerebral utilization rate of oxygen, thus leading to a rise in the oxygenation of brain 

tissue [84]. 

3.3 Neuronal, Glial and Vascular cells 

Since most anesthetics drastically attenuate cerebral metabolism, it is only to be expected that 

they would also dampen neuronal activity. In fact, anesthesia has been shown to exert strong 

inhibitory effects over baseline firing in neurons [85-88]. Specifically, anesthesia causes neurons 

to hyperpolarize by increasing inhibition and decreasing excitation [89, 90]. Indeed, whilst 
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synaptic inhibition in awake animals is similar to excitation in amplitude, in the anesthetized 

state, inhibition was shown to be much stronger than excitation [91-93]. The increase in synaptic 

inhibition observed under anesthesia is thought to be mediated through common pathways 

which involve the potentiation of GABA and glycine-mediated inhibitory transmission, and the 

suppression of glutamatergic excitatory transmission [94]. 

 As a result, anesthetized animals exhibit oscillations (1 Hz) between a depolarized up-

state, which resembles the sustained depolarization in awake animals, and a hyperpolarized 

down-state, during which synaptic activity is completely suppressed for a brief duration (~0.1 

second). These changes in neuronal firing patterns are reflected in EEG recordings by a shift 

from high-frequency, low-amplitude EEG activity, to low-frequency, high amplitude patterns 

resembling NREM sleep [95, 96]. Accordingly, mice anesthetized with isoflurane (1.0-1.5%), 

ketamine-xylazine (120 mg/kg and 10 mg/kg) or urethane (1250 mg/kg) exhibited significantly 

altered electrocorticographic activity, with slower-frequency spiking compared with awake 

mice [97]. Similarly, anesthetizing rats with halothane (0.7-1.5%) lead to a dose-dependent 

increase in delta waves, indicative of a depressed basal neuronal activity [87, 88]. Nevertheless, 

the effect of anesthetics on neuronal activity is not uniform across the brain. Rather, anesthesia 

was shown to influence spontaneous cortical activity in a region- and depth-dependent manner. 

Indeed, both isoflurane (1.5%) and ketamine (30 mg/kg and 1-2 mg/kg) exert a greater and more 

uniform modulation of frontal areas, in comparison with a preferential modulation of layer IV of 

the cortex in sensory brain regions [96, 98, 99]. 

 In addition to dampening neuronal activity, anesthetics also greatly reduce the Ca2+ 

signaling frequency in astrocytes [97, 100]. This is a critical issue, since astrocytes play an 
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essential role in supporting neuronal function (e.g. by supplying them with nutrients) and 

mediating the neurovascular response to sensory stimulation (see Section 2.2.2). Indeed, 

anesthetizing mice with isoflurane (1.0-1.5%), ketamine-xylazine (120 mg/kg and 10 mg/kg) or 

urethane (1250 mg/kg) reduces Ca2+-transient frequency by a factor of 10, bringing it down from 

2.33 in the awake state to 0.24-0.39 mmHz per cell under anesthesia. Nevertheless, how 

anesthesia alters the role of astrocytes in NVC needs to be further explored. 

 Last, some anesthetics have been shown to exert direct effects on vascular cells in the 

brain. Indeed, most volatile anesthetics (isoflurane, desflurane and halothane) are known to 

have potent vasodilatory properties, in spite of their depressive effect on cerebral metabolism. 

Accordingly, anesthesia with isoflurane (0.5 – 1.5 MAC) was found to induce a dose-dependent 

relaxation of canine cerebral arteries [101, 102] through the activation of ATP-sensitive K+ 

channels [103] and a decrease in Ca2+ signals by blocking Ca2+ channels in VSMCs [104-106]. 

Similarly, halothane is thought to promote vasodilation by depleting sarcoplasmic Ca2+ stores in 

VSMCs  [107, 108] and triggering the release of relaxing factors from ECs [109]. Hence, a known 

disadvantage of using volatile anesthetics is that they increase CBF whilst decreasing cerebral 

metabolism, leading to altered dynamics between neuronal activity and vascular responses 

[110]. 

 To conclude, anesthetics have been widely used to investigate the hemodynamic in 

animal models in vivo, leading to significant improvements in our understanding of the 

pathways which underlie NVC in physiological and pathological conditions [52]. That said, 

anesthetics exert considerable influence on cerebral metabolism, neuronal and glial dynamics, 

thereby altering neural-vascular dynamics and affecting the reproducibility of the hemodynamic 
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response (see Section 3.1). Hence, caution is required when comparing data from different 

studies or generalizing experimental results from the anesthetized animal to the awake human. 

Fortunately, recent technical advancements have facilitated the use of optical imaging 

modalities in the awake, unrestrained animal, thus enabling researchers to investigate critical 

aspects of CBF regulation and NVC under more appropriate conditions. 
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4. Optical Imaging Techniques for Evaluating the Hemodynamic 

Response in Awake Behaving Rodents 

As previously discussed, the regulation of CBF involves a dynamic and complex interplay 

between different mechanisms, which act to ensure constant perfusion of the brain parenchyma 

and an adequate supply of oxygen and nutrients to active neurons. Investigation of these 

mechanisms has been made possible owing to optical imaging techniques, which provide 

powerful tools for monitoring regional hyperemic changes in both small animals and humans 

[111-113]. Specifically, Laser Doppler flowmetry (LDF) is the most commonly used optical 

imaging technique for monitoring CBF, and hence will be described in depth in the sections 

below. We also provide a brief review of several other optical techniques that are commonly 

used for intraoperative imaging of CBF and the neurovascular response in awake behaving 

rodents, including laser speckle contrast imaging (LSCI), optical imaging of intrinsic signals 

(OIIS), two-dimensional optical imaging spectroscopy (2DOIS) and two-photon laser scanning 

microscopy (TPLSM) (see Table 1 for a comparison between these modalities). Last, we discuss 

how these technologies can be combined with other imaging modalities and optogenetic 

techniques to yield complex information on the cerebrovascular response.
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Table 1. Comparison between different optical imaging techniques commonly used for evaluating NVC in rodents. 
 

Technique & Principle 
Spatial 

Resolution 
Temporal 

Resolution 
Penetration Depth Advantages Limitations 

Laser Doppler Flowmetry (LDF) 
 
Light scattered by moving 
erythrocytes undergoes a Doppler 
shift proportional to their velocity 
[114]. 

Since LDF is a 
single-point 
measurement 
technique, it 
provides no 
spatial 
information. 

< 100 ms Up to 2 mm with infrared 
light.  Additionally, the 
probe can be positioned 
deep in the brain to image 
the desired structure (e.g. 
hippocampus) 

. Easy to use 

. High temporal resolution 

. May be performed in deep 
brain structures 
. Availability of awake models 

. No spatial 
information 
. No absolute 
measurement 
. Motion sensitive 

Laser Speckle Contrast Imaging 
(LSCI) 
 
Light scattered by moving 
erythrocytes produces a time-varying 
speckle pattern, which is converted to 
2D blood flow maps [114, 115]. 

Wide field of view 
with a spatial 
resolution of ~5 
µm 

10 – 50 ms 0.5 – 1.0 mm . High spatiotemporal 
resolution 
. Visualization of vascular 
morphology 
. Very practical & economic 
. Miniaturized version available 

. No absolute 
measurement 

Optical Imaging of Intrinsic Signals 
(OIIS) 
 
Neural activity induces a cascade of 
events which increase the tissue’s 
absorption of light, leading to a 
darkening of the cortex [116].  

Images large areas 
of the cortex (~25 
mm2) with a 
spatial resolution 
up to 50 µm. 

~100 ms Up to 2 mm with infrared 
light 

. High spatiotemporal 
resolution 
. Images large areas of the 
cortex (~25 mm2) 
. Can map different 
physiological parameters 
(neural activity, HbO, HbR and 
CBV) depending on wavelength 
used. 
. Miniaturized version available 

. Motion sensitive 

. Vascular artifacts 

Two-Photon Scanning Laser 
Microscopy (TPLSM) 
 
The blood plasma is labeled with a 
fluorescent dye, which is excluded by 
RBCs and excited through the 
absorption of two laser photons [57, 
117]. 

< 1 µm 
(0.1 µm with 
super-resolution 
techniques  [118]) 

A few 
microsecond
s 

Up to 1 mm with infrared 
light, or in the cm range 
with gradient index lenses 

. Images at the single capillary & 
subcellular level 
. Simultaneous imaging of 
neuronal & glial activity, vessel 
diameter and RBC velocity 
. High level of precision 
. Miniaturized version available 

. Images small 
regions 
. Photo-bleaching 
& cell damage 
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4.1 Laser Doppler Flowmetry (LDF) 

Laser Doppler flowmetry (LDF) is an optical imaging technique which provides 

continuous, real-time evaluation of blood flow in cerebral vessels [119-122]. This technique is 

based on the Doppler shift, which describes the change in the frequency of a wave, subsequent 

to relative movement between the source of the wave and the observer. This technique is 

routinely used in clinical [123-126] and experimental applications [127-133] involving CBF 

measurement. 

4.1.1 Theoretical Background 

A common example of Doppler shift phenomenon is the variation in the pitch of a siren 

noise from an emergency vehicle as it passes by; the received frequency of the sound waves is 

highest during the vehicle’s approach, and lowest whilst the vehicle is moving away. This is 

because as the vehicle is approaching, each successive sound wave is emitted in greater 

proximity to the observer than the previous wave. Thus, the time needed for the successive 

waves to reach the observer is progressively reduced, causing the sound waves to combine and 

resulting in a greater sound frequency. Conversely, when the vehicle is receding, the successive 

waves take longer to reach the observer, which causes the waves to spread out and leads to a 

reduced frequency. 

Because this change in frequency is contingent on the relative velocity of the source of 

the wave and the observer, the Doppler shift can be used to measure velocities. This relationship 

between the original frequency (f), the shifted frequency (f’), the relative velocity of the source 

and the observer (v) and the wave’s velocity (c) can be summarized in the equation below [114]: 
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This mechanism of wave propagation also applies to light; in fact, the optical Doppler 

shift constitutes the underlying principle of several imaging methods including ultrasound 

Doppler [134] and LDF [135]. In the latter technique, a small fiber-optic laser probe (diameter 0.5 

– 1 mm) is placed over the cerebral cortex at the desired position for CBF measurement. This 

probe emits a beam of monochromatic laser light with a wavelength ranging between 670 and 

810 nm, which is above the absorbance spectrum of erythrocytes and below that of water. This 

light is transmitted to the target tissue, and is absorbed and reflected by static and dynamic 

cells. Specifically, when the emitted light is absorbed by erythrocytes coursing through the 

cerebral blood vessels, the light’s wavelength due to the movement of these cells, resulting in a 

Doppler frequency shift (Figure 6) [114, 136, 137]. The magnitude of this shift is commensurate 

with the number and velocity of the moving cells. Hence, when the backscattered photons are 

received by the photodetector, the obtained signal is processed and the blood flow velocity can 

be deduced following Bonner and Nossal’s algorithm [137]. Due to the diffuse scattering of light 

within tissue, the LDF signal is independent of the flow’s direction. In fact, LDF is used to 

evaluate relative variations in CBF with the presumption that flow geometry does not change 

[131]. 
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Figure 6. Principle of Laser Doppler Flowmetry. 

This optical imaging technique measures CBF based on the 
Doppler frequency shift (blue) of backscattered light imparted by 
moving erythrocytes in cerebral vessels. 

4.1.2 Technical Specifications 

Flow imaging with Laser Doppler provides precise, real-time quantitative measurements of 

regional CBF and is distinguished by its superior temporal resolution (milliseconds), allowing to 

track rapid variations in flow. This feature is especially important for studying fast vascular 

responses to functional activation, e.g. subsequent to whisker or forepaw stimulation in rodents. 

However, because LDF is a single-point measurement technique, it offers little to no spatial 

information [138-140], and the measurements are restricted to a small sampling volume of 1 

mm3 which may not reflect the spatial heterogeneity of the cerebral microvasculature (e.g. 

capillaries vs. venules) adequately [141-143]. Whilst additional spatial resolution can be achieved 

with a scanning version of LDF [144], this is performed at the cost of a severely impaired 

temporal resolution (several seconds) due to time-consuming scanning, and thus is not 

recommended for the study of stimulation-induced changes in flow [145, 146]. 

Additionally, the penetration depth conferred by LDF is uncertain and is influenced by 



 

 22 

tissue properties such as the vessels’ structure and density, which alter the path length traveled 

by the photons irrespective of blood flow velocity. Hence, it is recommended when measuring 

cortical CBF that the fiber-optic probe be placed away from large superficial vessels, which 

would otherwise drastically reduce the attained depth [137, 147-149]. For imaging deep brain 

structures such as the hippocampus, a small corticostomy (~1.5 mm diameter) is performed so 

that the probe can be positioned at the desired location [150]. Penetration depth is also highly 

dependent on the wavelength of the emitted light, with infrared light penetrating deeper 

(several mm) than the blue and green light (0.15mm), and increases with the separation distance 

between the emitting and receiving fibers of the probe. Specifically, for near-infrared light (780 

nm), penetration depth reaches approximately 0.5, 1 and 2 mm for separation distances of 0.125, 

0.25 and 0.5 mm [151]. 

 Compared with other imaging techniques, LDF is relatively easy to use, and the nature 

of the signal is well understood. In fact, the LDF signal clearly originates from the variations in 

flow velocity within the tissue being imaged. However, because the sensitivity of the probe to 

CBF is influenced by the distance between the tip of the probe and a particular vessel, the signal 

cannot be quantified in absolute units of CBF (e.g. mL/100g/min); rather, it is expressed as 

variations relative to a baseline value obtained under control conditions. Consequently, in order 

to be able to compare results from different experiments, the fiber-optic probe must be 

calibrated with specific motility standards, or an absolute measure of flux must be obtained 

through another method (e.g. quantitative autoradiography) [120, 152]. 

Moreover, one of the inherent limitations of this technique is its marked sensitivity to 

motion artifacts [120, 153]. This can result either from motion of the imaged tissue, or 
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movement of the fibers of the LDF probe. Fiber movement can be prevented by using an 

integrated probe which includes both the light emitting and receiving fibers [154-156]. 

Additional care should be taken during signal acquisition by placing the LDF setup away from 

vibrating instruments such as perfusion pumps, and by positioning the probe using a 

micromanipulator. 

4.1.3 Applications in Awake Behaving studies 

Since anesthesia greatly influences the animal’s physiology, including cerebral autoregulation 

and the neurovascular response (see Section 3), many LDF systems have been proposed for 

imaging in the awake animal [69, 121, 132, 140, 157, 158]. In 1994, Sato’s group recorded the 

regional CBF in conscious rats in response to inhalation of 7% Co2, by chronically attaching a 

LDF probe to the cortex and restraining the rat in a cloth hammock [157]. More recently, Takuwa 

and colleagues established a system for measuring CBF in conscious, freely moving mice, to 

enable the chronic investigation of CBF in a relatively natural environment [140]. In subsequent 

studies, the authors used this system to investigate the hemodynamic response in the awake, 

freely moving mouse during sensory stimulation [132] and neural deactivation [133]. Further, 

Tajima and colleague confirmed the reproducibility of CBF measurements in longitudinal studies 

using awake mice, using LDF at baseline, 1 hour later, and 7 days following the baseline 

measurement. In this study, the authors also improved the LDF system by stabilizing the fiber-

optic probe on the cortex with a polyvinyl chloride tube, which is crucial for obtaining accurate 

measurements over extended recording sessions [158]. 

4.2 Laser Speckle Contrast Imaging (LSCI) 

Another optical imaging technique commonly used for CBF monitoring is laser speckle contrast 
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imaging (LSCI), whereby a coherent laser light is projected onto an area of the skull or cerebral 

cortex. As the emitted light is scattered from different parts within the illuminated surface, it 

travels across distinct path lengths before being perceived by a photodetector (Figure 7). This 

variation in path lengths yields a constructive and destructive interference that changes with the 

positioning of the scattering particles, resulting in a randomly changing intensity pattern 

referred to as “speckle” [159]. In the brain, the movement of erythrocytes within blood vessels 

produces a time-varying speckle at each pixel in the image. Spatial variations in the speckle 

pattern can be plotted to produce two-dimensional maps of CBF, which show changes in flow 

velocity over time (Figure 7) [160]. 

 
Figure 7. High resolution image of rat brain vasculature using laser speckle contrast. 

Example of (a) a raw speckle image from the barrel cortex of a rat, and (b) its derived flow index map 
(figure reproduced from [115]). 

Similarly to LDF, LSCI can be used to monitor CBF and functional activation in animal models 

with high temporal resolution (milliseconds). However, whilst the information obtained with 

LDF is spatially constrained, LSCI offers wide-field two-dimensional mapping of cortical CBF 

with excellent spatial resolution (~ 5-10 µm), allowing clear visualization of individual blood 

vessels [161, 162]. Similar high-resolution maps can be obtained using a laser Doppler scanner; 

however, this modality cannot compete with laser speckle on imaging speed. Indeed, a single 

Doppler scan requires several minutes to complete, whereas LSCI instruments enable full-field 
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imaging of CBF without requiring any scanning, and thus can be used to provide real-time 

images and even videos with some recent technologies. Nevertheless, parallel processing of the 

Doppler signals from each pixel, e.g.  using on-chip processing, is being currently investigated 

by several groups as a means to enable the production of full-field images in real time [115, 163]. 

Once these techniques are fully developed and commercialized, laser Doppler scanners may 

become more popular than LSCI due to their inherently superior spatial resolution. However, 

the implementation of this approach would likely be very costly, and LSCI may still have room 

to compete by offering a relatively inexpensive and easy-to-use alternative [115].Moreover, 

whilst most of the current LSCI techniques require the use of anesthesia, several miniature LSCI 

imagers have been proposed to enable imaging of cortical CBF in the awake active rodent. These 

imagers are sufficiently small (~3 cm high) and lightweight (≤20 g) to be carried by the rat 

without hindering its movement, and offer similar spatiotemporal resolution compared with 

conventional LSCI systems [164, 165]. 

That said, LSCI shares many of the limitations described earlier for LDF (see Section 

4.1.2). Indeed, due to the scattering nature of the cortical tissue, this technique also suffers from 

limited penetration depth and poor depth resolution, and thus can only be used to investigate 

vascular dynamics close to the cortical surface [166]. In addition, just like with LDF, the 

information obtained with LSCI cannot be expressed in absolute units. Moreover, LSCI does not 

permit rigorous quantification of CBF velocity, since the exact relation between the speckle 

contrast factor K and the flow velocity has yet to be determined [160]. Lastly, this technique is 

susceptible to artifacts which can be caused by variations in the parameters of the image 

acquisition system or in the optical characteristics of the imaging window. Hence, whilst LSCI is 
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a powerful tool for mapping CBF changes on the cortical surface, careful control of imaging 

parameters is warranted when comparing data from different imaging sessions [167]. 

4.3 Intrinsic Imaging 

Intrinsic imaging techniques such as optical imaging of intrinsic signals (OIIS) and two-

dimensional optical imaging spectroscopy (2D-OIS) are also frequently used to investigate 

cerebral hemodynamics [65, 168-181]. These approaches are based on the distinct optical 

absorption spectra of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) [31]. Because HbO 

is locally converted to HbR upon oxygen delivery to the neural tissues, the relative 

concentrations of HbO and HbR can be used to infer the blood’s oxygenation levels and 

metabolic activity [112]. Hence, when the cortex is illuminated with laser light, active areas can 

be differentiated from inactive regions of the cortex based on a change in their optical 

reflectance and absorption properties, commonly known as optical intrinsic signals.  

Intrinsic imaging offers several technical advantages over other imaging modalities. 

Indeed, the spatial resolution of OIIS is very high relative to other experimental imaging 

techniques, making it ideally suited for the study of NVC at the level of arterioles, capillaries and 

veins. As such, this technique can determine patterns of cerebral hemodynamics over large 

areas of the cortex (~25 mm2) with a spatial resolution up to 50µm and high temporal resolution 

(~100 ms) [169, 175, 182-184]. As with LDF and LSCI (see Sections 4.1.3 & 4.2), the depth of 

optical maps is determined by the wavelength of the laser light that is used to illuminate the 

cortex, with visible light detecting change at a maximum depth of 1 mm [185] and near-infrared 

light reaching up to 2 cm below the pial surface [186, 187]. Further, since intrinsic imaging does 

not necessitate contact with the cortical surface or the use of potentially phototoxic dyes (as 
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with extrinsic imaging techniques), it is minimally invasive and thus has been applied to imaging 

studies in awake, freely moving monkeys [188], cats [189], rats [180, 190] and mice [191].  

 The real power of intrinsic imaging stems from its ability to measure changes in blood 

volume, oxygenation or light scatter, according to the chosen wavelength of laser light [176, 192, 

193]. That said, a major problem with the intrinsic method is that the motion-induced noise and 

vascular artifacts associated with intrinsic signals are often of similar or larger magnitude than 

the signals themselves [194-196]. As such, it is critical to minimize motion by ensuring complete 

head stabilization of the imaged subject. Interestingly, the choice of wavelength has been 

shown to influence the presence of vascular artifacts, with orange light offering the best signal 

to noise ratio in the visual cortex [197], and green light in the auditory cortex [198]. 

4.4 Two-Photon Laser Scanning Microscopy (TPLSM) 
 
The aforementioned imaging modalities (LDF, LSCI & IOS) have greatly enhanced our 

knowledge of cerebral hemodynamics, by allowing to image broad changes in blood flow, 

volume and oxygenation. TPLSM complements these techniques by enabling a systematic 

analysis of cerebral hemodynamics at the level of individual microvessels, in conjunction with 

simultaneous measurements of neuronal and glial activity. Moreover, the deep red and infrared 

light used with TPLSM can penetrate deep into the tissue, reaching up to 1 mm in depth, or in 

the cm range when using gradient index lenses directly into the cortex from a hole in the skull 

[199-201]. Since its invention, this modality has been used extensively to image cerebrovascular 

dynamics in in vitro [42, 202-206] and in vivo [207-213]. 

With TPLSM, a laser beam is focused through an objective lens and onto a micrometers-

sized area within a specimen, in order to excite fluorescent molecules (fluophores) [214]. When 



 

 28 

the excited fluophore reverts to its ground state, a photon is emitted and the emission light is 

captured by the objective, thus yielding an image of the fluorescent structures within the 

biological sample [215-217]. Two complementary parameters, vessel diameter and RBC 

velocity, are used to assess the hemodynamics of cerebral vessels. To measure these 

parameters in vivo, the plasma is labelled with an intravenous bolus of space-occupying high-

contrast molecules, such as dextran-conjugated fluorescent dyes (e.g. fluorescein 

isothiocyanate) [218]. This enables the visualization of hemoglobins as dark shadows against a 

bright fluorescent background. 

Notably, TPLSM can be used in conjunction with anatomical markers such as traditional 

dyes and functional markers, in order to enable real-time monitoring of specific structural 

dynamics (e.g. cellular morphology or protein localization). Moreover, the use of  functional 

markers such as voltage-sensitive fluorescent dyes  and fluorescent ion indicators, can provide 

simultaneous recordings of the activity of neurons, glias and VSMCs [204-206, 210, 219]. This is 

important since it can allow to determine the complimentary roles of these cells in initiating NVC 

under physiological conditions, and the mechanisms that lead to its dysfunction in different 

pathologies. Lastly, the recent development of miniaturized, head-mounted two-photon 

microscopes has opened the door to two-photon imaging in the awake, freely moving animal 

[220]. 

That said, whilst TPLSM provides superior spatial resolution, allowing to visualize 

individual microvessels and subcellular compartments, the imaging of vascular dynamics and 

cellular activity is limited to vessels and cells that are closely associated and lie in the same 

imaging plane. This is problematic since somatosensory-evoked NVC extends laterally across 
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the brain surface and deep into the cortex, and is associated with significant trial to trial 

variability [57, 221]. Nevertheless, this limitation has been recently overcome with the advent of 

volumetric imaging, which utilizes an elongated, V-shaped point spread function to visualize a 

three-dimensional brain volume [222]. 

4.5 Multimodal imaging and Optogenetics 

All in all, optical imaging techniques utilize the optical properties of the imaged tissue such as 

reflectance, scattering and fluorescence, in order to produce image contrast. In section, we have 

described different optical imaging systems, including laser Doppler, laser speckle, intrinsic 

imaging and TPLSM, each of which has contributed significantly to our current understanding 

of the cerebral vasculature and the hemodynamic response. Since these techniques have been 

developed based on different concepts, they are distinguished in terms of spatial resolution, 

temporal resolution, depth penetration as well as the nature of the information they provide 

(Table 1). Hence, whilst LDF and LSCI provide excellent temporal resolution, intrinsic methods 

present greater versatility since they allow to track several vascular parameters (CBF, CBV and 

oxygenation). Further, all three aforementioned systems, along with macroscopic imaging 

techniques (e.g. fMRI, PET and NIRS) allow to visualize broad changes in cerebral 

hemodynamics, whereas TPLSM conveys microscopic information regarding single capillary 

flow and subcellular dynamics. Therefore, different imaging modalities can be combined in 

order to yield complimentary information about the cerebral vasculature, as has been done by 

many research groups [223-231]. For example, Ringuette and colleagues recently investigated 

the relationship between regional CBF, oxygen saturation and intracellular Ca2+ dynamics using 

three different optical imaging systems (LSCI, OIS and Ca2+-sensitive dye imaging) [230]. In 
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another recent study, Takuwa et al. developed a multimodal imaging system for simultaneous 

measurement of CBF by LSCI and PET in awake behaving mice [231]. 

 Furthermore, optical imaging can be combined with optogenetic techniques to 

manipulate cell-specific vasoactive signaling cascades in vivo. Indeed, several transgenic mouse 

lines have been developed with cell-type specific expression of light-gated ion channels or 

pumps of bacterial origin, such as channelrhodopsin-2 (ChR2) and halorhodopsin. These 

genetically encoded optical actuators can be activated using specific laser wavelengths (e.g. 

blue-green light for ChR2 or yellow for halorhodopsin), leading to activation of cells that express 

the transgene [232, 233]. Hence, optogenetics can be used to investigate the specific neuronal 

subtypes and neurotransmitters that are involved in the initiation of the vasodilatory or 

vasoconstrictive responses during functional hyperemia. However, to ensure cell specificity, 

measures must be taken in order to inhibit the spread of depolarization to other cell types. For 

instance, unless synaptic communication is prevented, photoactivation of pyramidal cells elicits 

connectivity between different brain areas, leading to the firing of several cellular types and the 

release of many neurotransmitters [34, 234]. Moreover, Rungta and colleagues have recently 

found light per se to cause a Ca2+ decrease in VSMCs and to induce vasodilation, independently 

of neural and glial activity, thus warranting the careful use of optogenetics in studies involving 

the cerebral circulation [235]. 
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5. Implications of Stress in Conscious Imaging 

5.1 Effect of Stress on Cerebral Hemodynamics 

One concern that arises when performing imaging in conscious animals is that they may 

experience high levels of stress due to head immobilization or the imaging procedure itself. As 

we will see, stress has been shown to produce systematic effects on the brain and to induce 

variations in CBF, CMR and NVC through effects on neuronal and glial populations as well as the 

cerebrovascular system. 

 Indeed, in an early review by Kety and colleagues, it was observed that one human 

participant who had showed considerable fear throughout the test situation exhibited markedly 

elevated CMR of oxygen (CMRO2) (5.0 mL/100 g/min) relative to his physiological range (3.2-4.2 

mL/100 g/min) [236]. The authors concluded that apprehension or stress could lead to increases 

in cerebral metabolism. Similarly, another study in humans showed pain-induced stress to 

increase CBF by approximately 10%, especially in frontal brain regions [237]. These clinical 

observations were replicated experimentally with rats, with 5 to 30 minutes of immobilization 

with a muscle relaxant inducing up to twofold increases in both CBF and CMRO2 [238, 239]. 

Additional stressors that were found to increase CBF and CMR in laboratory animals include 

ethanol withdrawal [240, 241], hypotension [242], hypoxia [243, 244] and conditioned fear [245, 

246]. In contrast to pharmacological immobilization and the aforementioned stressors, Ohata 

and colleagues found physical immobilization (5-15 minutes) to decrease CBF by ~12-14% in wild 

type rats [247], and to have no effect on CBF in spontaneously hypertensive rats except in the 

frontal lobe where flow was increased by 21% [248]. However, in the latter studies, the restraint 

procedure elicited hyperventilation in the rats, leading to a significant decrease in the levels of 
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vasodilatory CO2. Hence, the resulting constriction of cerebral vessels could have offset stress-

evoked increases in CBF or led to reduced flow. Interestingly, tissue lactate was reported to 

increase during physical restraint [249], reflecting an increase in CMRglc. These findings suggest 

that restraint stress increases metabolic demands in the brain, though these changes may not 

always be accompanied by an increase in CBF, due to altered cerebral hemodynamics. 

 Indeed, chronic immobilization (2 hours per day, for 10 consecutive days) was found to 

attenuate changes in CBF in the rat somatosensory cortex of following inhalation of high 

amounts of CO2 [250].  Similarly, chronic immobilization (2 hours per day, 3 weeks) diminished 

the cerebrovascular response to electrical stimulation of the rat hindpaw, as observed by the 

reduced variations in CBV and pial arterial dilatations relative to the control condition. 

Moreover, when rats were subjected to varying lengths of immobilization stress, the 

hemodynamic response was the least decreased in the acute restraint group (2 hours, single 

session), and the most decreased in the chronic 6-week restraint group, suggesting that stress 

exerts cumulative effects on NVC [251]. 

5.2 Stress-induced Modulation of the Neurovascular Unit 

 As with anesthesia-evoked NVC impairment (see Section 3.1), stress induction in 

conscious animals likely interferes with cerebral hemodynamics by effecting changes in neural, 

vascular and glial cells. Indeed, chronic stress exposure has been demonstrated to influence the 

physiology of neurons and to elicit detectable microscopic changes in neuronal networks 

involved in the processing of anxiogenic and fearful stimuli. Specifically, changes include the 

modulation of the dendritic arborization, spine and synapse count in the amygdala, the 

hippocampus and the prefrontal cortex [252]. These stress-induced structural changes are partly 
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caused by alterations in the expression of various stress-related proteins, such as tissue 

plasminogen activator [253], stress-related proteins (e.g. corticotropin-releasing factor) [254] 

and neural adhesion molecules [255].  

 Whilst most of the research conducted on the effects of stress in the CNS has been 

focused on neurons, studies increasing show glial and vascular cells to also be affected. Indeed, 

chronic stress is detrimental to the proliferation and survival of glial cells, particularly in the 

limbic brain structures. In humans, long term treatment with high dose steroids, which are 

elevated during stress, is associated with a considerable reduction in the number and density of 

glial cells in fronto-limbic regions of the brain [256]. Similarly, animal models of chronic stress 

demonstrate reduced gliogenesis in limbic regions [257], and administration of a synthetic 

glucocorticoid (dexamethasone) in vitro selectively abrogates astrocytic differentiation from 

neural precursor cells [258]. Functionally, astrocytes express both glucocorticoid and 

noradrenergic receptors, and thus constitute direct targets of stress hormone actions [259]. 

Addition of glucocorticoid to astrocytic cell cultures has been shown to interfere with glutamate 

clearance [260] and to amplify the amplitude and propagation of astrocytic Ca2+ waves two-fold 

compared with controls [261], possibly leading to enhanced communication with other cells. 

Like glucocorticoids, norepinephrine is also greatly increased during stress and has been shown 

to increase astrocytic Ca2+ signaling [262] and to interfere with astrocytic glycogenolysis and 

glutamine uptake [263] by binding noradrenergic receptors on astrocytes. Moreover, Chatterjee 

and colleagues found that addition of high levels of corticosterone (100 nM and 1 µM for 3 hours) 

to cultured astrocytes, which generates stress-like conditions, increased the release of vesicles 

containing pro-atrial natriuretic peptides (ANP) from astrocytes by altering their cytoskeletal 
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arrangement. Since ANP exerts downstream actions on both neural and vascular cells, 

influencing its release could produce alterations in NVC under stress-associated pathological 

conditions [264]. In addition to modulating astrocytic function, chronic restraint stress in mice 

[265] and rats [266] was also found to enhance microglial proliferation and ramification in the 

amygdala and hippocampus. Chronic activation of microglia is known to enhance inflammation 

through the release of cytokines such as IL-1β, IL-6, and TNF-α [267] and is thus expected to 

further exacerbate the stress-evoked alterations in cerebral hemodynamics. 

 Notably, prior to reaching neurons, astrocytes and microglia, stress hormones travel 

across the cerebral vasculature, where they may activate glucocorticoid receptors expressed on 

brain ECs and VSMCs [268, 269]. Indeed, Longden and colleagues found that subcutaneous 

delivery of corticosterone (2.5 mg/kg, daily for 7 days) in rats reduced the number of functional 

inwardly rectifying K+ channels in the myocyte membrane, which is expected to decrease 

arteriolar sensitivity to K+ released by astrocytes and thus impair K+-mediated vasodilation 

during the hemodynamic response. Accordingly, the authors reported a decrease in the 

vasodilatory response to electrical field stimulation by 43% [3]. The resulting suboptimal 

vasodilation could reduce the amount of blood delivered to active brain regions, thereby leading 

to compromised NVC and functional hypoperfusion in stressed animals. 
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Aims and Hypothesis 

 In the present thesis, our general aim was to develop an awake imaging model which 

would enable the study of NVC in the conscious, head-restrained mouse, whilst overcoming the 

effects of anesthesia and stress on the cerebral vasculature. For this purpose, we sought to meet 

three specific objectives. 

 Our first objective was to build a simple, cost-effective restraint apparatus which would 

immobilize the mouse’s head in order to prevent motion-induced noise artifacts during imaging 

sessions, whilst leaving the mouse free to run, walk or self-groom. In particular, the restraint 

apparatus ought to be easily adjustable according to each mouse’s size, in order to allow for 

natural movement and maximize the level of comfort. We also wanted the apparatus to be 

compatible with several optical imaging modalities frequently used to study NVC, including laser 

Doppler, laser Speckle, intrinsic imaging and two-photon microscopy. 

Our second objective was to create a brief yet effective training regime which would 

acclimate the mice to head restraint in preparation for the imaging sessions. Indeed, in previous 

awake imaging studies, animals have been gradually accustomed to head restraint over a 

habituation period which can vary from a single day up to several weeks [83, 270-276]. 

Importantly, the training regime should enable the mice to tolerate head restraint, whilst 

minimizing the level of stress and the amount of movement during the imaging sessions. 

For our third objective, we sought to establish a protocol for the quantitative evaluation 

of stress levels in mice. Typically, the animal’s adaptation to the restraint procedure is assessed 

visually through careful observation of the animal’s vocalizations, movement and exploratory 



 

 36 

behavior. However, few awake imaging studies to date have resorted to a quantitative measure 

of stress. In our study, we chose to measure the evolution of corticosterone levels in mice prior 

to and throughout the habituation period, in order to probe the effectiveness of our training 

regimen in reducing stress. 

Our hypothesis was that, by exposing mice to several sessions of head restraint, we 

would gradually reduce the stress that is associated with head restraint, as reflected by a 

decrease in plasma corticosterone levels. Ultimately, we would have developed a novel imaging 

model with a habituation protocol which would allow to study a hemodynamic response that is 

unadulterated by the effects of anesthetics and stress, thereby facilitating the translation of 

cerebral hemodynamics from mice to humans. 
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Methods 

Animals 

Two to three months old C57BL/6J mice (Jackson Laboratory, Canada) were housed individually 

in a temperature-controlled room (22˚C) and kept under a 12-hour light/dark cycle. All animal 

procedures were approved by the institutional Animal Care and Use Committee of Université de 

Montréal and performed in accordance with the guidelines of the Canadian Council for animal 

care. 

Main Procedures 

1. Development of a Custom-Made Restraint Apparatus 

The traditional stereotaxic apparatus used to immobilize the anesthetized mouse’s head 

would cause great discomfort to the conscious mouse and thus is not suitable for use in awake 

studies. Consequently, we have custom-built two different restraint devices aimed at 

immobilizing the awake mouse during imaging sessions (see Figure 8), in collaboration with 

Mohammad Moeini and Samuel Bélanger in Dr. Lesage’s Laboratory (École Polytechnique de 

Montréal, QC, Canada). 

Our first device consisted in a full-body restraint apparatus, the components of which 

were initially designed by software (Autodesk), then built with a three-dimensional printer and 

assembled together using screws. This device was developed based on the design of the 

traditional stereotaxic device, in that it also included a tooth holder to help adjust the 

positioning of the rodent’s head, and a nose cone, to enable the delivery of gas anesthetics when 
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required. A few adjustments were made to better suit the awake animal. For instance, the ear 

bars of the traditional stereotax, which would be too painful for the awake mouse, were replaced 

with a head piece which would similarly allow to immobilize the head, whilst exposing the cortex 

for optical imaging. We also built a larger body piece to be positioned on top of the mouse, for 

full-body restraint. Since the device components were easily detachable and replaceable, they 

could be tweaked separately in order to further reduce body movement whilst minimizing the 

discomfort of the restrained animal. 

Nevertheless, in order to further reduce the stress and discomfort associated with forced 

immobilization during prolonged imaging sessions, we proceeded to assemble a second 

restraining device, where only the animal’s head would be immobilized, and its body would be 

free to move. Specifically, this head-restraint device comprised an inclined wheel, on which the 

mouse could walk, run or rest. The wheel was built using a three-dimensional printer, and was 

set at an angle (rather than horizontally) in order to encourage the mice to run and thus prevent 

them from falling asleep during prolonged imaging sessions. The wheel was fixed atop of an 

aluminum platform and opposite of a horizontal headpost, to which the mouse’s head would 

be attached by the means of a head bar and two screws (4–40 screws, McMaster Carr, Aurora, 

OH, Canada). Both the headpost and the wheel could be adjusted to accommodate for the 

animal’s size and comfort. The parts that were used to build this apparatus are listed in Table 2.  
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Figure 8. Development of a Restraint Apparatus for Conscious Imaging in Mice. 

 (A) Image of a traditional stereotax, used with anesthetized mice. (B) Full-body 
restraint apparatus, where the mouse was immobilized with a tooth bar (1), nose cone 
(2), head piece (3) and body piece (not shown). All the pieces were created with a three-
dimensional printer and easily assembled and de-assembled using screws. 
Immobilization with this device required prior anesthesia with isoflurane. (C) Head-
restraint apparatus, which comprised an inclined wheel (4) and a horizontal headpost 
(5), affixed opposite of each other on an aluminum platform (6). The conscious mouse 
(colored in white for visibility) was gently placed on the wheel and its head bar (colored 
in red) was quickly attached to the headpost by the means of screws. The position of 
the headpost and wheel was then adjusted according to the mouse’s size and comfort. 
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Table 2. List of the parts used for building the head-restrained device. 

Quantity Description Vendor Part Number Price 
1 Rolling blade bearing - - $10.00 
1 Breadboard ThorLabs MB2025/M $110.00 
1 25 mm Post, L = 100 mm ThorLabs RS100/M $26.00 
1 Right-Angle 25.0 mm to ½ ” Post Clamp ThorLabs RA90RS/M $25.50 
1 12.7 mm Optical Post, SS, M4 Setscrew, M6 Tap, L = 

40 mm 
ThorLabs TR40/M $4.90 

1 12.7 mm Post Holder, Spring-Loaded Hex-Locking 
Thumbscrew, L = 40 mm 

ThorLabs PH40/M $7.22 

1 Mounting Adapter ThorLabs MA45-50/M $20.60 
 
 
2. Head Bar Installation Surgery 

2.1 Head Bars 

Titanium head bars were custom-made by Lesage Laboratory according to a design provided by 

Tran and Gordon [276] (see Figure 9), to be later installed onto the mouse’s skull during a brief 

surgical procedure. The head bars were to be attached to the horizontal head post of the head-

restraint apparatus during habituation and imaging sessions, in order to immobilize the animal’s 

head. 

 

Figure 9. Dimensions (in mm) of the custom-made titanium head bar. 

 (Figure adapted from [276]). 
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2.2 Anesthesia Induction 

The mouse was placed inside of a closed induction chamber, and anesthesia was induced 

with a mixture of 4% isoflurane and 3 L/min oxygen. Next, the mouse was moved to a stereotaxic 

apparatus and the anesthesia was maintained with 2% isoflurane and 1.5 L/min throughout the 

surgical procedure, which lasted approximately 15 minutes. The depth of anesthesia was 

monitored by observing the animal’s breathing rate and testing motor responses to tail and toe 

pinches, and the body temperature was measured by a rectal probe and maintained at 37˚C 

using a controlled heating pad (TCAT-2, Physitemp Instruments). 

2.3 Surgical Procedure 

All surgical instruments were sterilized with a dry bead sterilization unit (Germinator 500, 

Braintree Scientific, USA) prior to surgery. The procedure was performed as previously 

described [276-278]. Following anesthesia induction, a sterile ophthalmic gel was applied to 

protect the eyes from irritation or dehydration. The mouse was administered with Tribrissen (30 

mg/kg) and Carprofen (5 mg/kg) through subcutaneous injection into the right and left 

hindpaws, to prevent post-surgical infection and inflammation, respectively. The skin on top of 

the head was shaved, cleaned with three alternating swabs of 70% ethanol and iodine and 

numbed via subcutaneous injection of a local anesthetic (Marcaine, 2m4 mg/kg). After a 3-

minute wait (the time for the skin to become numb), an incision approximately 3 cm in length 

was performed across the midline of the brain with a pair of surgical scissors, and the two flaps 

of skin were removed, exposing the skull from the nasal bone down to the interparietal bone. 

The periosteum (vascular connective tissue) was then scraped off with a scalpel, and the skull 

was dried with gauze. Next, the skull was covered with a thin layer of tissue adhesive (3M 
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VetdbondTM, USA) along with the temporalis muscle and wound margins, whilst avoiding the 

left somatosensory cortex and surrounding skin. The tissue adhesive prevented the seepage of 

the serosanguinous fluid and enhanced the adhesion of the dental cement to the bone. Once 

the tissue adhesive had dried, a thin layer of dental cement was applied to the skull. The titanium 

bar was then positioned on the interparietal bone and glued in place by applying several coats 

of dental cement on top of the skull and the titanium bar, whilst taking great care to leave the 

left somatosensory cortex exposed for subsequent optical imaging (see Figure 10). Once the 

dental cement had cured, anesthesia was discontinued and the animal was placed in an 

individual, clean cage. 

 
Figure 10. Head bar installation surgery. 

 (A) Top view of the mouse’s skull, with the periosteum scraped off with a scalpel blade, showing bregma, lambda 
and the sagittal suture. (B) A thin layer of Vetbond tissue adhesive was applied over the skull (top), followed by 
several layers of dental cement (bottom). The head bar was installed behind lambda, over the interparietal bone, 
and the left somatosensory cortex was left unexposed for subsequent bone thinning and optical imaging with laser 
Doppler  (Figure modified from [276]). 
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2.3 Postoperative Care 

A daily dose of Tribrissen (30 mg/kg) and Carprofen (5 mg/kg) was administered during 

the following two days (or longer when required, e.g. in the event of an infection). Throughout 

the remainder of the experiment, the mice were frequently weighed and monitored for signs of 

pain or discomfort. 

3. Acclimation to Head Restraint 

The mice were gradually acclimated to head restraint using a three-step approach: handling, 

exposure to the wheel and head restraint. On the first two days of habituation, the mice were 

handled by gently placing them into the palm of the hands for 10 minutes or until grooming 

behavior was observed, in order to habituate them to the experimenter. Notably, to eliminate 

potential confounds, all behavioral experiments in mice were performed by the same 

experimenter. On the third day, the animals were placed on the inclined wheel without restraint, 

and were left to run, walk, rest or groom on the wheel for 10 minutes. For the remainder of the 

habituation protocol, each mouse was sequentially attached to the wheel for a daily session of 

predetermined duration. 

4. Bone thinning 

Prior to the optical imaging session, a 2x2 mm2 area of the overlying skull was thinned to 

translucency in order to gain visual access to the mouse left somatosensory cortex. The drilling 

was performed using a dental drill with a 0.6 mm burr at a 30˚C angle and in all directions (using 

horizontal, vertical and diagonal strokes) as to yield a smooth surface. The bone was frequently 

cooled with saline in between drillings to prevent overheating the dura matter and brain tissue. 
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A small amount of controlled bleeding was observed from the vessels in the inner cancellous 

layer of the bone, and was easily stopped by applying light pressure with a cotton swab. The 

thinning was considered sufficient when the vasculature became clearly visible after applying a 

drop of saline solution. 

5. Laser Doppler flowmetry 

Variations in CBF were continuously monitored by LDF. The optic probe was positioned 

stereotaxically on top of the thinned skull and perpendicular to the surface of the cortex, and 

was connected to a computerized data acquisition system. The positioning of the probe was 

further adjusted by screening the hemodynamic response within the somatosensory cortex, 

whilst taking care to avoid large blood vessels. The lights were then turned off, and the mouse 

was left alone for thirty minutes, in order for the CBF to stabilize. Next, the hemodynamic 

response was elicited by gently stroking the right whiskers (4-5 Hz) with a cotton swab 

continuously for three sessions of 60 seconds each, interspaced by 60 seconds of rest. Data was 

smoothed at 303, and the magnitude of CBF increases during whisker stimulation was calculated 

as percent changes relative to baseline over a period of 5 seconds, using LabChart 8 software. 

Zero values of CBF were acquired following cardiac arrest induced with an overdose of isoflurane 

at the termination of the experiment. Since the main purpose of the present study was to 

analyze the stress levels associated with awake imaging in mice, we have only collected 

preliminary values for CBF. 

6. Corticosterone ELISA 

A corticosterone enzyme-linked immunosorbent assay (ELISA) (ADI-900-097, Enzo Life 

Sciences, USA) was performed in order to track variations in stress during the habituation 
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period. The minimum corticosterone detection level of the ELISA kit was 26.99 pg/mL. Blood 

samples were taken between 9:00 am and 12:00pm, as to minimize the effect of the circadian 

rhythm on glucocortiocoid levels [279]. The blood was collected into a heparinized centrifuge 

tube, either from the facial vein of the conscious mouse (~8 µl blood) by piercing the cheek with 

a 26-gauge needle, or from the trunk following decapitation (~ 1 mL blood), and was 

immediately fractioned by centrifugation (2000 rcf, 4˚C, 20 minutes) to separate the plasma 

from other blood components. The plasma was then aspired with a micropipette and stored in 

a different tube at -20˚C. Once all the desired plasma samples were collected, they were diluted 

1:20 and an ELISA was performed to determine the corticosterone levels in each sample.  

Briefly, 100 µL of plasma or standards was added in duplicates to the wells of the 

microtiter plate, and 150 µL of assay buffer was added to the non-specific binding wells. Next, 

50 µL of blue conjugate was added to each well except the blank well, and 50 µL of yellow 

antibody was added to all wells except the blank and non-specific binding wells. The plate was 

shaken (500 rpm) for 2 hours at room temperature, after which it was rinsed with a wash solution 

and emptied on absorbent paper. Subsequently, 200 µL of the substrate was added to each well 

and was incubated for one hour at room temperature. The reaction was terminated with 50 µL 

of stop solution per well. The optical density of corticosterone was scanned at 405 nm 

wavelength using a microplate luminescence reader and the corticosterone levels were 

determined from the standard curves. 
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7. Experimental Series 

Three separate experimental series were conducted to test our hypothesis (see Results). For 

each series, we adjusted the experimental conditions, the habituation protocol and the blood 

collection method, depending on the literature and the obtained results. 

8. Statistical Analyses 

Data were expressed as means ± standard deviation of the mean. Differences in corticosterone 

levels (ng/mL) between blood plasma samples were examined with IBM SPSS 23.0 software 

using a one-way analysis of variance (ANOVA). If the results were significant, the intergroup 

variation was measured by Tukey’s multiple comparisons test. Results were considered 

significant if p < 0.05. 

Results 

1. Laser Doppler flowmetry 

Preliminary measures for CBF were performed over three sessions of whisker stimulation, in an 

awake and an anesthetized mouse. We found the hemodynamic response to be twice as large 

in the awake mouse, relative to the anesthetized animal (see Figure 11). Moreover, the awake 

animal presented fewer CBF fluctuations and artifacts at rest, and a more consistent response 

to whisker stimulation (see Figures 12, 13). 
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Figure	11.	Hemodynamic	response	to	whisker	stimulation	in	the	anesthetized	
and	awake	mouse.	

CBF	was	measured	in	the	left	somatosensory	cortex	of	one	anesthetized	and	one	awake	mouse.	
The	mean	 increase	 in	 CBF	 following	 stimulation	 of	 the	 right	 vibrissae	was	 estimated	 as	 an	
average	increase	(%)	following	three	whisker	stimulation	sessions,	relative	to	the	baseline	state	
(red	line).	

 

	
Figure	12.	Hemodynamic	response	to	sensory	stimulation	in	the	awake	behaving	mouse.	

LDF	chart	showing	variations	 in	cerebral	perfusion	(x	axis;	arbitrary	units)	as	a	function	of	time	(y	axis;	seconds).	
Variations	 in	CBF	were	measured	with	 LDF	at	baseline	 (no	 stimulation),	 and	 following	 three	 sessions	of	whisker	
stimulation	(highlighted	in	blue).	All	measurements	were	performed	in	the	left	somatosensory	cortex	of	the	same	
awake	behaving	mouse.	
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Figure	13.	Hemodynamic	response	to	sensory	stimulation	in	the	anesthetized	mouse.	

LDF	chart	showing	variations	 in	cerebral	perfusion	(x	axis;	arbitrary	units)	as	a	function	of	time	(y	axis;	seconds).	
Variations	 in	 CBF	 were	 measured	 with	 LDF	 at	 baseline	 (no	 stimulation),	 and	 following	 stimulation	 of	 the	 right	
vibrissae	 (highlighted	 in	blue).	All	measurements	were	performed	 in	 the	 left	 somatosensory	 cortex	of	 the	 same	
anesthetized	mouse.	

 

2. Corticosterone ELISA 

Experimental Series 1 

Experimental Design 

The first experimental series followed a within-subject design, where the variations in 

corticosterone levels across different experimental conditions were measured in mice (n = 7) 

using repeated blood collection from the facial vein (see Figure 14). 

 In order to habituate the mice to the experimenter, the rodents were each handled daily 

(from day 1 to day 5) by placing them on the palm of the hands until they initiated grooming 

behavior (5-10 minutes). The head bar installation surgery was performed on day 4, and the 

mouse was left to explore and run on the wheel the next day for 10 minutes without any restraint. 
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From day 6 until day 12, the mouse was restrained on the wheel for sessions which were 

gradually increased in length by 10-minute increments. On day 14, the mice were moved from 

the animal facility to the surgery room which contained the equipment required for optical 

imaging. The animal was gently attached to the wheel, its skull was thinned and the 

hemodynamic response was assessed using LDF. In order to evaluate the variations in stress 

levels throughout the acclimation period, we collected blood from the facial vein before the 

mice were exposed to the wheel as a baseline value (day 3), during habituation to head 

restraint (days 6, 9 and 12) and subsequent to LDF imaging (day 14). Upon termination of the 

experiment (day 14), blood was also collected from the mouse trunk following decapitation. We 

expected plasma corticosterone levels to reach their peak on the first day of head restraint (day 

6), and to decrease significantly by the end of the experiment (days 12 and 14), thus reflecting a 

reduction in the stress experienced by mice following habituation sessions. 

 

Figure 14. Protocol summary for habituation and blood collection in the first 
experimental series. 

Mice (n = 7) were gradually acclimated to head restraint using a three-step approach: handling, 
exposure to the wheel and head restraint. Blood was collected from each mouse on several days 
(indicated by blue triangles) in order to determine the variations in corticosterone levels. 
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Findings 

There was a statistically significant difference as revealed by one-way ANOVA (F (5,32) = 

6.492, p = 0.000). The Tukey multiple comparisons test determined corticosterone levels 

(ng/mL) to be lowest following gentle handling (34.22 ± 9.21), after which they were significantly 

increased by at least a factor of 10 (p < 0.05). The habituation sessions had no significant effect 

on corticosterone levels (p > 0.05) (Figure 15, possibly due to the prolonged duration of the 

restraint sessions, or to the cumulative stress associated with repeated puncturing of the facial 

vein for blood collection. 

 
Figure 15. Variations in corticosterone levels during habituation in the first 
experimental series. 

Mice (n = 7) were exposed to the experimenter during two handling sessions (days 1 & 2) and 
head-restrained on the wheel during seven habituation sessions (days 6-12) of increasing 
duration (10 – 40 minutes). Five blood samples were collected from the facial vein of each mouse 
(days 3, 6, 9, 12 and 14), in order to assess the variations in corticosterone levels throughout the 
habituation protocol. Trunk blood was also collected following sacrifice (day 14). Significance 
relative to the baseline value (day 3) is indicated by *. 
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Experimental Series 2 

Experimental Design 

For the second and third experimental series, we chose to follow a between-subject design, 

where mice were randomized to different habituation groups, and blood was collected only once 

per mouse (from the mouse trunk, following decapitation). This allowed to prevent potential 

increases in stress levels induced by repeated blood collection from the conscious mice. 

In the second experimental series (Figure 16), mice (n = 12) were segregated into the 

following six groups. (1) Mice in the Control group were not exposed to any manipulation by the 

experimenter prior to sacrifice and hence provided baseline levels of corticosterone. Mice in all 

other groups were all implanted with a head bar (day 1), gently handled by the experimenter 

(~10 minutes on days 2 & 3) and restrained on the wheel for 30 minutes prior to sacrifice (day 9). 

(2) The Non-Habituated group was never exposed to the wheel prior to day 9; hence, we 

expected this group to display the highest stress levels as they were neither familiarized with the 

wheel, nor habituated to head restraint. In contrast, the remaining groups were habituated to 

the wheel for 10, 20, 30 and 40 minutes, on days 5-8, respectively. (3) The Habituated group was 

immediately sacrificed following habituation, whereas (4) the Transferred group was moved 

from the animal facility to the surgery room prior to sacrifice (day 9), in order to examine 

whether changing the environment of the mice increased their corticosterone levels 

significantly. Last, whilst the last two groups both underwent thinning of the cortex and LDF 

(day 9), (5) the Conscious group was awake during bone thinning, whereas (6) the Anesthetized 

group was administered with isoflurane beforehand. The latter two groups allowed to determine 

if the thinning procedure was a significant source of stress. 
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The purpose of this experimental series was to enable us to adjust specific components 

of the habituation protocol (handling, transfer to the surgery room, thinning with or without 

anesthesia, and optical imaging), in order to minimize the stress associated with each 

procedure. Further, by comparing Non-Habituated group with the groups which underwent 

acclimation to head restraint (the Habituated, Transferred, Conscious and Anesthetized 

groups), we would be able to conclude whether the habituation protocol was successful in 

reducing stress levels during immobilization on the wheel. 

 

Figure 16. Protocol summary for habituation in the second experimental series. 

Mice (n = 12) were segregated into six groups of equal size. The blue horizontal bars indicate the 
procedures undergone by each experimental group. 

Findings 

Compared with the Control group, corticosterone levels were increased by ~16-17 times in the 

Non-Habituated, Habituated and Transferred groups, and by ~10 times in the Conscious and 

Anesthetized groups (Figure 17); however, these differences were not significant (F (5,6) = 1.43, 

p = 0.334). The probability value was increased (F (2,9) = 3.41, p = 0.079) in a subsequent analysis 

where the mice that were habituated to the wheel (in the Habituated, Transferred, Conscious 

and Anesthetized groups) were combined into in a single group (n = 8), and post-hoc analyses 
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revealed a trend for increased corticosterone in these habituated mice relative to the Control 

group (p = 0.085). Notably, the corticosterone levels were highly variable in the Non-Habituated 

group (standard deviation: ±74.77 ng/mL), highlighting the need for larger experimental groups.  

 
Figure 17. Differences in corticosterone levels between groups in the second 
experimental series. 

Mice (n = 12) were segregated into six groups of equal size. (1) The Control group was never 
manipulated, whereas the (2) Non-Habituated group was handled prior to sacrifice. The remaining 
groups underwent 4 habituation sessions of increasing durations (10-40 minutes). (3) The 
Transferred group was moved to surgery room but did not undergo LDF. The Conscious and 
Anesthetized groups were both imaged with LDF; however, the (5) Anesthetized group was 
administered with isoflurane prior to bone thinning, whereas the (6) Conscious group was not. All 
mice (except Control) were head-restrained for 30 minutes immediately prior to sacrifice and 
blood collection. 
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Experimental Series 3 

Experimental Design 

For the last experimental series, we sought to reduce the number of experimental conditions 

based on the obtained results. We attributed mice (n = 10) to three different groups, which were 

all transferred to the surgery room prior to sacrifice (day 16) (Figure 18). The Control group (n = 

4) was not manipulated by the experimenter prior to sacrifice. The two remaining groups were 

both implanted with the head bar (day 1) and subjected to LDF (day 16); however, the Non-

Habituated group (n = 3) was neither handled nor habituated to head restraint. In contrast, the 

Habituated group (n = 3) was handled by the experimenter (10 minutes, days 2 & 3), exposed to 

the wheel (10 minutes, day 4) and habituated to head restraint (15 minutes, days 5-15). This 

series was aimed at determining whether repeated exposure to head restraint was successful at 

reducing stress, independent of the length of the habituation sessions. 

 

Figure 18. Protocol summary for habituation in the third experimental series. 

Mice (n = 10) were segregated into three different groups. The blue horizontal bars indicate the 
procedures undergone by each experimental group. 

Findings 

Corticosterone levels were increased respectively by 18 and 20 times in the Habituated and Non-
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Habituated groups, relative to control mice (7.38 ± 3.45), with a strong trend towards 

significance (F (2, 7) = 4.45, p = 0.057); however, there was no significant difference between the 

Habituated and Non-Habituated groups. Moreover, we noted a large variance in the Habituated 

group (standard deviation: ±119.47 ng/ml) (Figure 19). 

 
Figure 19. Differences in corticosterone levels between groups in the third 
experimental series. 

Mice (n = 10) were segregated into 3 groups. (1) The Control group (n = 4) was never manipulated. 
(2) The Habituated group (n = 3) was handled, exposed to the wheel and habituated to head-
restraint, whereas the Non-Habituated group (n = 3) was not. 
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Further Analyses 

In a subsequent analysis, we combined similar experimental conditions from the three 

aforementioned series, in order to assess differences in corticosterone levels between mice that 

were never manipulated (Control group, n = 6), mice that were handled gently but never 

restrained (Handled group, n = 6), mice that were habituated prior to restraint (Habituated 

group, n = 11), and mice that were not habituated prior to restraint (Non-Habituated group, n = 

5). The analysis was performed by one-way ANOVA and revealed significant differences 

between the groups (F (3,24) = 6.270, p = 0.003). 

 Using Tukey’s multiple comparisons test, we found plasma corticosterone to be 

significantly increased in the Habituated group (84.72 ± 2.23) relative to the Control group (6.65 

± 2.23) (p = 0.017), and in the Non-Habituated group (114.50 ± 23.66) relative to the Control 

group (p = 0.05) and Handling group (34.22 ± 9.21) (p = 0.047) (Figure 20). 
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Figure 20. Differences in corticosterone levels between different experimental 
conditions. 

Control mice (n = 6) were never manipulated, whereas Handled mice (n = 6) were handled by the 
experimenter prior to sacrifice. Habituated (n = 11) and Non-Habituated mice (n = 5) were both 
restrained on the wheel for LDF, however only the Habituated mice underwent habituation prior 
to restraint. Significance relative to the Control and to the Handled groups is indicated by * and 
#, respectively.  
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Discussion 

Most optical imaging studies of the cerebral vasculature in rodents have been performed under 

general anesthesia, in order to prevent motion-induced artifacts and minimize stress induction 

during image acquisition. However, anesthetics have been demonstrated time and again to 

exert profound effects on cerebral hemodynamics, thereby altering neuronal responsiveness to 

sensory stimulation and hindering the study of NVC in health and disease [66, 75, 280, 281] (see 

Figures 11 – 13). Consequently, many research groups have turned to the use of awake imaging, 

where full [271, 273, 282] or partial physical restraint [132, 140, 191, 270, 274, 276, 283-291] of the 

conscious animal is used as a substitute for anesthesia, in order to keep the animal’s head still 

whilst the signal is being acquired. Nevertheless, physical restraint may increase the levels of 

stress in rodents, which could, similarly to anesthetics, interfere with CBF and resting cerebral 

metabolism (see Secti0n 3). 

In the present study, our general aim was to develop an awake imaging model which 

would enable the study of NVC in the conscious, head-restrained mouse, whilst overcoming the 

effects of anesthesia and stress on the cerebral vasculature. For this purpose, we have built a 

new head-restraint apparatus for imaging of the cerebral vasculature in awake behaving mice. 

In order to minimize struggling and motion-induced artifacts during image acquisition, we have 

tested several training regimens, which gradually accustom mice to the restraint apparatus. 

Furthermore, we have set out to provide, for the first time, a quantitative measure of the 

evolution of stress, as a means to validate the effectiveness of our habituation protocol in 

decreasing restraint-induced stress in mice prior to awake optical imaging. 
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1. Development of a head-restraint apparatus for optical imaging in 

awake behaving mice (objective 1) 

Awake imaging has constituted a major advancement for the study of the cerebrovascular 

system, allowing to sidestep the physiological confounds associated with general anesthesia. To 

date, most awake imaging studies in rodents have been performed using an air-lifted spherical 

treadmill [132, 140, 191, 274, 276, 283-290], pioneered by Dombeck’s group ten years ago [270]. 

Using this setup, the animal is head-fixed by the means of a metal head plate and allowed to rest 

or walk on a Styrofoam ball (~8 inch) at its will. The ball is levitated under the microscope using 

pressurized air and hence can rotate with the animal’s movement. Moreover, the movement of 

the Styrofoam ball can be recorded using optical sensors, thereby enabling to study the effect 

of locomotion on neuronal and cerebrovascular function. 

Nevertheless, this treadmill is associated with several practical limitations for our purposes. 

First, the large size of the setup equipment would preclude its use with certain experimental 

setups. Furthermore, in order to achieve levitation, the spherical treadmill requires a constant 

flow of pressurized air, which not only is associated with incessant noise that can be stressful for 

the mouse, but also, may become problematic during experiments which involve long-lasting 

imaging sessions. This also holds true other awake imaging systems such as the air-lifted 

homecage developed by Kislin’s group, which necessitates a significate amount of pressurized 

air in order to achieve levitation [274]. Lastly, the round, smooth surface of the Styrofoam ball 

provides an unnatural running platform for laboratory mice relative to the cage floor, and 

running is at first erratic and inconsistent, as the animals adapt to moving on the ball [276]. 

Hence, in accordance with our first objective, we have developed a new setup for head-
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restraint in the awake behaving mouse, which is more compact and suitable for use with most 

optical imaging platforms used to study NVC, including LDF, LSCI, OIIS and TPLSM. This device 

is inexpensive, easy to assemble and de-assemble, and can be swiftly adjusted in order to allow 

the mice to assume a comfortable posture. All parts were purchased from the same vendor 

(ThorLabs, NY, USA), except the wheel was designed in Autodesk software and built with a 3D 

printer. This additive manufacturing technique enables easy design replication by other 

experimenters and permits size modifications, so that our head-restraint device can be built for 

other small animals or adjusted per experimental requirements. The head post allows for sturdy 

immobilization of the head, which is essential to minimize motion-induced signal artifacts, and 

can be raised according to the animal’s height. As for the wheel, it was designed with a solid, 

ridged running surface for better grip, and could be moved laterally, in order to allow for the 

natural movement of the animal. In conjunction with the aforementioned device, we have 

developed a habituation protocol, in order to help the mice to adapt to head-restraint and 

minimize the stress experienced during the imaging sessions. 

2. Habituation to head-restraint (objective 2) 

Since most optical imaging modalities are highly sensitive to motion (see Section 4), head-

restraint of the animal during image acquisition is inevitable. However, head-restraint is known 

to induce significant stress in mice that are naïve to the condition [292], which in turn, can affect 

cerebral hemodynamics (see Section 3). Hence, it is essential that measures are taken to reduce 

stress in the restrained animals, especially in studies which tackle the regulation of the CBF. 

Indeed, whilst some groups have proceeded to image in the naïve mouse [140, 283, 293], 

rodents were usually trained to tolerate head-restraint, during a habituation period lasting 
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anywhere between a single day [271] and several weeks [272, 282] (see Table 3). In the more 

conservative protocols, mice were first handled by the experimenter and were allowed to run 

freely on the device without head-restraint for at least one session. Subsequently, daily head-

restraint sessions of increasing duration (typically up to 45 minutes) were performed in order to 

minimize the stress experienced by the mice during the following imaging sessions. Based on 

qualitative observations, several groups have found that between the second and the fourth 

habituation session, mice learned to walk or run on the device, and initiated grooming behavior 

when stationary [191, 271, 274]. Hence, these data suggest that a 4-day habituation protocol 

may be sufficient to acclimate the mice to head-restraint. 

In the present study, we have designed three separate habituation protocols, ranging from 

4 to 11 sessions of habituation to head-restraint, based on the aforementioned data and our 

results. For all protocols, mice were handled on the two first days by placing them into the 

experimenter’s hands until they initiated grooming behavior (~5-10 minutes), as previously 

reported [191, 270, 272-274, 282]. Handling ensured that the mice became familiar with the 

experimenter’s voice, smell and touch throughout the habituation protocol, and were 

accustomed to being picked up by this person [292]. Indeed, we noted that the mice were 

noticeably calmer by the second handling session, as they were less agitated, explored the hands 

of the experimenter and initiated grooming more rapidly, relative to the first session. The mice 

continued to be handled briefly (~5 min) prior to each manipulation session throughout the 

experiment.  During the third session, mice were gently placed on the wheel and allowed to 

explore it for 10 minutes without restraint. We found that all mice adapted to running on the 

wheel quickly, with some of them demonstrating exploratory and grooming behavior when 
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stationary. 

In subsequent sessions, mice were exposed to either gradually incremented head-restraint 

sessions (from 10 to 40 minutes; experimental series 1 and 2), or for repeated periods of the same 

duration (15 minutes; experimental series 3). Whilst during the first head-restraint session, some 

of the mice struggled against the head-post, emitted vocalizations and displayed decreased 

locomotion and increased urination, we found that using either type of protocol, these behaviors 

were noticeably reduced within the following two sessions. Hence, based on these qualitative 

observations, we have successfully met our second objective by designing a three-step training 

approach, which allowed mice to adapt to running on the wheel and minimized overt signs of 

stress (struggling, vocalizations and urination), in preparation for imaging of the CBF. 

Nevertheless, we sought to  validate our observations quantitatively, by using plasma 

corticosterone  as a surrogate marker of stress.
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Table 3. List of protocols designed to habituate mice to head-restraint in preparation for optical imaging. 

References Restraint Device Habituation Protocol Comments 

[283] 

Spherical treadmill 

No training Mice were head-fixed under anesthesia with isoflurane, and showed 
no signs of struggling against head-restraint 

[140] No training Repeated experiments over 7 days revealed a stable CBF response to 
whisker stimulation. 

[276] 

- No handling 
- Session 1: head-restraint (30min) 
- Session 2: head-restraint (45 min) 
Head-restraint sessions included 15 min of uninterrupted running, 
followed by whisker stimulation. 

During head-restraint, mice showed several observable behaviors 
including being quiet, running or grooming. Adding more than 2 
head-restraint sessions led to little behavioral improvement.  

[294] 1-3 daily head-restraint sessions (15-30 min).  -  

[270] 
 

Session 1: handling (10min) + free running (10min). 
Session 2: free running (10-15min). 
Session 3: surgery + head-restraint (15-20min). 

During the third session, mice learned to balance and started to walk 
or run within 5-10 minutes. 

[293] 

Not all mice were habituated to head-restraint: 
- Session 1 & 2: free running (for all mice, n = 10). 
- Sessions 3-5: head-restraint (for only 3/10 mice). 

For the 7 mice that weren’t habituated to head-restraint, it took ~10-
15 min to learn to balance and start walking or running on the ball. 
The 3 mice that were head-restrained started to walk and run 
immediately. 

[288] 3-4 Days: mice were habituated to tolerate 1-2 hours of head-restraint - 
[290] 5 consecutive days of habituation to head-restraint - 
[60] 3-7 days: head-restraint - 

[191] 

Session 1: handling + free running (10 min) 
Sessions 2-5: head-restraint (30 min; i.e. 10 min with lights on + 20 min 
with lights off) 
Session 6 & 7: head-restraint & whisker stimulation (30 min) 

After 2-3 sessions of head-restraint, mice learned to move freely on 
the ball and initiated grooming behavior when stationary. 
 

[274] Air-lifted platform 
- Handling 
- 8-12 head-restraint sessions (2 hrs), twice per day. 

Initial weight loss and suppression in locomotor activity induced by 
head-restraint were reversed by day 4 of training. 

[272] Head-post 
- Minimum 2 weeks: handling & head-restraint  
- Minimum 1 week: 2 head-restraint sessions per day; gradual increase 
duration from few seconds to 45 minutes. 

During the first 2 weeks, the mice accepted head-fixation without 
any sign of stress. 

[271] 
Semi-circular plastic 

tube 

2 training sessions on the same day: 
Session 1: head-restraint (15min) at 8am. 
Session 2: head-restraint (30 min) at 4pm. 

Mice habituated to restraint within 2–3 sessions, judging from a 
marked decrease in walking & running. 

[282] - 3-14 days: handling (> 5 min, or until grooming). 
- 1-2 weeks: restraint (gradual increase from 5 min to > 1 h). 

- 

[273] Foam-restraining 
device 

Mice were handled every day after weaning and were restrained (1-5 
min) for 1 week.  

Exposure to handling and restraint enabled long recording sessions 
(up to 4-5 hours) with reduced motion and stress of the mouse.  
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3. Quantitative evaluation of stress (objective 3) 

Following the induction of stress in mice, activation of the hypothalamic–pituitary–

adrenal axis initiates the secretion of corticotropin-releasing hormone and vasopressin from the 

parvocellular neurons in the paraventricular nucleus of the hypothalamus. Following release, 

these neuropeptides bind to corticotrophs in the anterior pituitary gland, leading to the 

synthesis of adrenocorticotropic hormone which is then secreted into the general circulation. 

Binding of the adrenocorticotropic hormone in the adrenal cortex induces the downstream 

release of glucocorticoids, including cortisol and corticosterone [295, 296]. 

Corticosterone is the main hormone involved in the regulation of stress in rodents, and 

has been demonstrated to impair NVC in rats, possibly by acting on glucocorticoid receptors in 

VSMCs [3]. Moreover, corticosterone has been shown to constitute a better adaptation-related 

marker during situations of chronic stress, relative to cortisol [279]. Based on these data, we 

have chosen to measure the variations of corticosterone levels in mice throughout habituation 

to head-restraint. Notably, whilst corticosterone levels have been previously measured in awake 

mice in non-invasive medical imaging studies (Table 4), the current study constitutes the first 

attempt at providing a quantitative measure of stress in an awake, optical imaging 

experiment.  

In our first experimental series, we noted a 10-fold increase in corticosterone subsequent 

to head-restraint, which was maintained across 7 habituation sessions (p < 0.05). We 

hypothesized that the repeated puncturing of the facial vein for blood collection may have 

conditioned the mice to associate head-restraint on the wheel with pain, thus preventing 

corticosterone from reverting to baseline levels. Consequently, in our second and third series, 
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blood was only collected from the trunk following sacrifice, which is the predominant method 

amongst previous studies [279, 297-299] (Table 4). Nevertheless, we did not observe a 

significant effect of habituation sessions on plasma corticosterone, possibly due to the large 

variance in corticosterone levels in the Non-Habituated (experimental series 2) and Habituated 

groups (experimental series 3). Notably, such individual variation amongst awake mice has 

been noted by Baba and colleagues, whereby corticosterone levels were increased between 1.8 

and 8.76 times following a one-hour placement in a single-photon emission computed 

tomography (SPECT) scanning burrow [299]. In addition, mice which were restrained using our 

device had corticosterone levels (85 – 115 ng/ml) comparable to those reported by Mizuma’s 

group following restraint in a PET scanner (~150 ng/ml) [300], indicating that the stress 

experienced in our conditions was similar to, if not milder than that in medical imaging studies. 

That said, in two medical imaging studies, corticosterone levels were reduced to at least 

twice the baseline levels as the rodents habituated to the imaging conditions [300, 301], which 

was not observed under our experimental conditions. Nevertheless, we noted that mice in the 

Conscious and Anesthetized groups (experimental series 2) exhibited corticosterone levels in 

the range of 27 – 84 ng/mL, which is at least twice as low as the levels observed on the first day 

of restraint in all published studies. In particular, these mice (n = 4) have been subjected to LDF 

imaging in our second experimental series, and as a result were left for thirty minutes in a dark, 

silent environment (in the surgery room) for the CBF to stabilize (see Methods, Section 5), 

whilst the other groups were not. 

Hence, increasing the group size in order to counter the large individual variability in 

glucocorticoid levels, and modifying the restraint environment may yield a significant reduction 
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in corticosterone subsequent to habituation sessions. In addition, it has been suggested that 

immobilizing rodents whilst leaving their body exposed in an open space may be perceived by 

the animals as a threatening position, thereby generating anxiety [292]. Accordingly, placing 

the rodent in an enclosed space such as a medical imaging scanner, or covering the body with a 

dark, loose-fitting material during optical imaging sessions may further help to reduce 

corticosterone levels. 

Lastly, whilst we have included brief handling in our habituation protocol at the 

beginning of each restraint session, based on our behavioral observations and previous reports 

(Table 3), we found corticosterone levels to be increased by 27.68 ng/mL in Handled mice 

relative to Control mice. This increase was not significant as there was a high variability in the 

Handled group (standard deviation: ±22.56), indicating that mice may each respond to 

experimental manipulation differently. Interestingly, Tran’s group reported to have eliminated 

experimental handling from their habituation protocol, as they found no improvement in stress 

behaviors, relative to mice that were not initially handled. In fact, quite on the contrary, gentle 

handling for 6 days has been reported to cause a mild increase in corticosterone levels in mice 

(from 45 to 60 ng/mL), and is even used in some studies to induce total sleep deprivation in these 

animals [298]. Taken together, these data indicate that repeated handling may induce a gradual 

sensitization of the hypothalamic–pituitary–adrenal axis, thereby leading to a sustained 

elevation in plasma corticosterone and resulting in learned helplessness.
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Table 4. Variations in corticosterone levels induced by different types of manipulations. 
 

References 
Type of 
Rodent 

Type of 
Manipulation 

Protocol for Acclimation 
& Blood Collection 

Variations in Corticosterone 
levels (ng/ml) 

Comments 

[298] 

Mice 

Gentle Handling 

2 groups of mice (n = 8 each) were gently 
handled or left undisturbed for 6 days. Trunk 
blood was collected at 12:00 on the next 
day.  

There was a delayed increase in 
corticosterone on day 6 of handling (60 
ng/ml), relative to undisturbed animals 
(45 ng/ml) (p < 0.05). 

The effects of repeated brief handling on 
murine physiology persists or even 
strengthens within 6 days, indicating 
poor adaptation.  

[279] 
Repeated 
restraint 

Mice (n = 6) were restrained daily for 8 h in 
individual micro-cages. Trunk blood was 
collected immediately after the end of the 
stress period. 

Corticosterone rose from ~0 ng/ml (day 
0) to ~900 ng/ml (day 1), before 
decreasing to ~300 ng/ml (day 8) (p 
<0.05). 

In contrast with repeated restraint, mice 
did not habituate to unpredictable 
stress, as the increase in corticosterone 
(900 ng/ml) was maintained for 9 days. 

[300] 
Restraint in a 
PET scanner 

Blood was collected from left ventricle of 
anesthetized mice (n = 5). Corticosterone 
was measured 1 h after head-fixation, on 
days 1, 3, 13 and 20 of acclimation. 

- 3.75-fold increase (150 ng/ml) from 
baseline levels (40 ng/ml) on the first day 
after head-bar surgery 
- Decreased to twice the levels of 
baseline, 30 days after surgery 

In spite of the lengthy acclimation 
period, corticosterone levels didn’t 
revert to the baseline levels found in 
intact mice housed in their home-cage. 

[299] 
Awake-SPECT 

scan 
(no restraint) 

No surgery or training. Blood was withdrawn 
from the tail vein of mice (n = 3) immediately 
after the mock scan. 

The scan induced between an 1.8 and 
8.76-fold increase, after 1 h placement in 
the scanning burrow. 

This increase was highly variable, and in 
2 of the 3 mice, was on the order of that 
observed in mice exposed to rat odors 
(1.86-2.6-fold) [302]. 

[297] 

Rats 

Restraint in 
Plexiglas 

Rats (n = 6) were restrained in a Plexiglas 
restraint device. Trunk blood was collected 
following decapitation. 

Corticosterone levels increased from 
~200 to ~470 ng/ml after 15 min of 
restraint. 

This increase was similar to that induced 
by a 20 min footshock, 1 h of rotatory 
stress or 3 days of  1 h-cold exposure. 

[301] 
Restraint in fMRI 

scanner 

Rats (n=8) were anesthetized and restrained 
in a mock fMRI scanner with scanner noise 
during daily 90 min acclimation sessions, for 
8 days. Blood was collected immediately 
after restraint via eye bleed. 

Corticosterone increased initially (first 3 
days), then decreased dramatically (days 
5 & 8) from ~240 to baseline (~60 ng/ml), 
p < 0.05. 

- Respiration and heart rate decreased 
significantly on day 3 of acclimation. 
- Head motion and noise were also 
decreased. 
- Regional CBF was altered with 
acclimation. 

[303] 

Attachment of a 
miniature PET 

scanner 
(no restraint) 

Corticosterone was measured in rats (n = 2). 
Jugular vein catheters were implanted for 
blood sampling. Sampling took place before 
and 10 min, 1 h, 2 h and 3 h after attachment 
of a miniature PET scanner.  

After 10 min, corticosterone increased by 
4-fold (~800 ng/ml). 
After 3h, corticosterone nearly 
normalized in 1 rat, and decreased to 
about twice the baseline levels in the 
other rat (~200 ng/ml). 

- 

[251] 
Restraint in 
plastic bag 

Rats (n = 10) were immobilized 2 h per day, 
for 3 weeks. Cardiac blood was collected 
under anesthesia, immediately following 
restraint. 

Plasma corticosterone was significantly 
elevated (n = 10, 96.19), compared with 
the control group (n = 10, 256.27) (p = 
0.002). 

In the forced swim test, rats showed 
decreased swimming and increased 
immobility, indicative of behavioral 
despair. 
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Conclusion and Future Directions 
  

In conclusion, we have developed a new head-restraint device for optical imaging in the 

awake behaving animal. This device is compatible with several imaging modalities, including 

LDF, LSCI, OIIS and TPLSM. In addition, we have developed a habituation protocol which, 

although it noticeably decreased overt signs of stress in mice, did not have a significant effect 

on corticosterone levels. This was possibly due to animal handling or consistent discomfort 

elicited by the device, which has led to poor adaptability of mice to head-restraint. 

For prospective studies, we recommend eliminating animal handling from the habituation 

protocol, which we expect would reduce the variability in corticosterone levels within different 

experimental conditions, as the reaction of each animal to the experimenter’s touch, voice and 

scent can be different. Furthermore, it would be important to use additional physiological (heart 

rate and breathing rate) and behavioral (open field test or forced swim test) measures of stress. 

This would allow to verify whether the behavioral changes observed in the mice following 

habituation were induced by a reduction in stress levels or by learned helplessness. Indeed, Lee 

and colleagues found that restraining rats in a plastic bag (2 h per day, for 3 weeks) led to 

substantial increase in corticosterone (from 96.19 to 256.27 ng/mL, p = 0.002), in addition to 

decreasing swimming and increasing immobility in the forced swim test, which is indicative of 

behavioral despair [251]. In contrast, habituation to restraint in a mock fMRI scanner (90 min per 

day, for 8 days) induced a significant decrease in the respiratory and heart rate on day 5 (p < 

0.05), and reduced corticosterone levels from ~240 ng/mL on day 1 back to baseline levels on 

day 8 (~60 ng/mL, p < 0.05), suggesting that the rats had successfully adapted to the scanning 
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conditions [301]. Accordingly, in addition to measuring serum corticosterone with ELISA, we 

sought to set up an open field chamber (OFC) to be used in prospective studies as a 

complementary method for determining stress levels in mice. The OFC is one of the most 

commonly used platforms to evaluate anxiety-related behaviors in mice [304]. We will use a 42 

x 42 x 29 cm quadratic chamber with Plexiglas floor and walls, which was custom-built by Lesage 

laboratory at Polytechnique Montreal (see Figure 21). Thirty-three infrared photo-emitters and 

photo-receivers are interspaced at equal intervals along the perimeter of the OFC walls. These 

emitters and receptors create an x-y grid of invisible infrared laser beams. At the beginning of 

each trial, a mouse is placed in the middle of the chamber for a 10-minute test period. The 

mouse’s movement within the chamber breaks the laser beams, thus providing information 

about the mouse’s basal locomotor activity (centimeters), time spent in the periphery (known 

as thigmotaxis), time spent in the central zone of the chamber, movement time and rest time 

(seconds). Additional behavioral measures such as defecation count and grooming behavior can 

be assessed visually using a scoring sheet. Decreased locomotor activity, time spent in the 

center, movement time and grooming behavior, and increased thigmotaxis, rest time and 

defecation would reflect a rise in the mouse’s stress levels [304]. 
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Figure 21. Custom-made open field chamber. 

 (A) Diagram of the open field chamber, showing the laser grid formed by the light emitters (green) and receivers 

(blue). The disruption of the laser beams provides information about the mouse’s location within the center (dark 

grey) or periphery (light grey) of the chamber, as well as the total distance travelled (cm), and the time spent resting 

and moving (sec). (B) Photo of the open field chamber built by Lesage laboratory. 

Moreover, for restraint devices to which animals seem to adapt poorly, it would be 

interesting to use a graded exposure technique, whereby gradually increased restraint sessions 

are paired with a liquid reward. This method is based on human behavioral modification which 

has been met with success amongst patients suffering from phobias, and was shown to be 

effective in conditioning studies in rodents [305]. Indeed, two groups have reported using water 

scheduling [294] or a sweet reward [191] in order to help head-restraint mice adapt to running 

on a Styrofoam ball. Whilst another group has anesthetized rodents prior to head-fixation in 

order to reduce stress [303], anesthesia is likely to have lasting effects on cerebrovascular 

dynamics (see Section 3) and therefore is best avoided. 

Notably, King and colleagues found regional CBF to be altered subsequent to acclimation 

to restraint in an fMRI scanner [301], indicating that restraint-induced stress does indeed affect 
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the CBF. As such, it would be essential to also evaluate how the hemodynamic response is 

affected by head-restraint and by subsequent acclimation to our device. Ultimately, this would 

allow us to determine if the device we have designed is valid for investigating the neurovascular 

response, or whether it needs to be altered in order to improve the mouse’s adaption and 

prevent the effects of stress on the cerebral vasculature.  
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