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RÉSUMÉ

La recherche sur les réseaux de neurones a permis de réaliser de larges progrès durant la
dernière décennie. Non seulement les réseaux de neurones ont été appliqués avec succès pour
résoudre des problèmes de plus en plus complexes; mais ils sont aussi devenus l’approche
dominante dans les domaines où ils ont été testés tels que la compréhension du langage, les
agents jouant à des jeux de manière automatique ou encore la vision par ordinateur, grâce à
leurs capacités calculatoires et leurs efficacités statistiques.

La présente thèse étudie les réseaux de neurones appliqués à des problèmes en vision par
ordinateur, où les représentations sémantiques abstraites jouent un rôle fondamental. Nous
démontrerons, à la fois par la théorie et par l’expérimentation, la capacité des réseaux de
neurones à apprendre de telles représentations à partir de données, avec ou sans supervision.

Le contenu de la thèse est divisé en deux parties. La première partie étudie les réseaux de
neurones appliqués à la description de vidéo en langage naturel, nécessitant l’apprentissage de
représentation visuelle. Le premier modèle proposé permet d’avoir une attention dynamique
sur les différentes trames de la vidéo lors de la génération de la description textuelle pour
de courtes vidéos. Ce modèle est ensuite amélioré par l’introduction d’une opération de
convolution récurrente. Par la suite, la dernière section de cette partie identifie un problème
fondamental dans la description de vidéo en langage naturel et propose un nouveau type de
métrique d’évaluation qui peut être utilisé empiriquement comme un oracle afin d’analyser
les performances de modèles concernant cette tâche.

La deuxième partie se concentre sur l’apprentissage non-supervisé et étudie une famille
de modèles capables de générer des images. En particulier, l’accent est mis sur les “Neural
Autoregressive Density Estimators (NADEs), une famille de modèles probabilistes pour les
images naturelles. Ce travail met tout d’abord en évidence une connection entre les modèles
NADEs et les réseaux stochastiques génératifs (GSN). De plus, une amélioration des modèles
NADEs standards est proposée. Dénommés NADEs itératifs, cette amélioration introduit
plusieurs itérations lors de l’inférence du modèle NADEs tout en préservant son nombre de
paramètres.

Débutant par une revue chronologique, ce travail se termine par un résumé des récents
développements en lien avec les contributions présentées dans les deux parties principales,
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concernant les problèmes d’apprentissage de représentation sémantiques pour les images et
les vidéos. De prometteuses directions de recherche sont envisagées.

Mot clés: réseaux de neurones, apprentissage de représentations, description naturelle
de vidéos, apprentissage supervisé, apprentissage non-supervisé, représentation visuelle
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ABSTRACT

The past decade has been marked as a golden era of neural network research. Not only
have neural networks been successfully applied to solve more and more challenging real-
world problems, but also they have become the dominant approach in many of the places
where they have been tested. These places include, for instance, language understanding,
game playing, and computer vision, thanks to neural networks’ superiority in computational
efficiency and statistical capacity.

This thesis applies neural networks to problems in computer vision where high-level and
semantically meaningful representations play a fundamental role. It demonstrates both in
theory and in experiment the ability to learn such representations from data with and without
supervision.

The main content of the thesis is divided into two parts. The first part studies neural
networks in the context of learning visual representations for the task of video captioning.
Models are developed to dynamically focus on different frames while generating a natural
language description of a short video. Such a model is further improved by recurrent convolu-
tional operations. The end of this part identifies fundamental challenges in video captioning
and proposes a new type of evaluation metric that may be used experimentally as an oracle
to benchmark performance.

The second part studies the family of models that generate images. While the first part
is supervised, this part is unsupervised. The focus of it is the popular family of Neural
Autoregressive Density Estimators (NADEs), a tractable probabilistic model for natural
images. This work first makes a connection between NADEs and Generative Stochastic
Networks (GSNs). The standard NADE is improved by introducing multiple iterations in its
inference without increasing the number of parameters, which is dubbed iterative NADE.

With a historical view at the beginning, this work ends with a summary of recent devel-
opment for work discussed in the first two parts around the central topic of learning visual
representations for images and videos. A bright future is envisioned at the end.

keywords: neural networks, representation learning, video captioning, unsupervised
learning, supervised learning, visual representation
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Chapter 1

MACHINE LEARNING

Machine learning, a subject grown out of the intersection of statistics, psychology, neu-
roscience and artificial intelligence, has prospered during the past few decades. The first
chapter looks at its historical development, reviews its core theory, exemplifies some of its
most popular models, and exposes the computational challenge ahead.

1.1. Machine learning and its relation with other subjects
Machine learning studies algorithms that learn patterns from data. Under the assumption

that there exists an unknown data generating process, the purpose of learning is to uncover
some aspects of it based on data samples it generates. Since the same data may be generated
by any process, learning is only possible when some assumptions on the data generating
process is made. This assumption is called the inductive bias that represents a hypothesis
space where a learning algorithm searches to find the best possible hypothesis, or model, that
explains the data. The need for establishing a hypothesis space is best demonstrated by the
famous no-free-lunch theorem (Wolpert, 1996). The theorem shows that there is no universal
best model. The reason is that one set of assumptions that works well in one domain may
work poorly in another. This theorem diminishes the hope of finding a general-purpose
learning algorithm that is able to solve all problems without any tuning. It motivates the
necessity of injecting assumptions or prior knowledge of human experts into the effort of
making an effective learning algorithm. In other words, learning requires prior knowledge.

Historically, machine learning grew out of the subject of artificial intelligence. In artificial
intelligence, the goal is to construct an intelligent agent that possesses some human-like
skills. To achieve that ambitious goal, an intelligent agent must be able to understand
the surroundings and to take actions. This requires the skills of knowledge representation,
reasoning, planning, and robotic control to be practically realizable. So far this goal remains
elusive. Machine learning takes a step back and focuses on knowledge representation and
reasoning. This was unified under the theory of probability by Pearl (1988). Knowledge is
built into a probabilistic model and decision making is formalized by probabilistic inference.



Another line of development for machine learning grew out of the goal of understanding
the working mechanism of the human brain in psychology and computational neuroscience.
One of the earliest development in this direction is the McCulloch-Pitts Neuron (McCulloch
and Pitts, 1943a) where a biological neuron is mathematically simplified in a spectacular
fashion and still proved to be useful in solving some difficult tasks. This type of simple
neuron, when organized in a hierarchy, has claimed many of the state-of-the-art results
on machine learning benchmarks to date. Computational neuroscience is exemplified by
biological inspired models such as Hierarchical Temporal Memory (HTM) (Hawkins and
Blakeslee, 2004) and Hierarchical Model and X (HMAX) (Riesenhuber and Poggio, 1999).
HTM consists of artificial neurons that are more biologically plausible and has been proved to
be useful at modelling time series. HMAX has been widely accepted as the standard model
of visual cortex. The recent study of Bengio et al. (2015) shed some light on the connection
between synaptic weight updates and a particular form of variational EM algorithm.

1.2. Formalizing learning
Following tradition, learning is divided into three categories. Supervised learning, un-

supervised learning and reinforcement learning. Supervised and unsupervised learning are
introduced below.

Supervised learning, such as classification and regression, focuses on the prediction of
a target ~y given an observation ~x where (~xi, ~yi) ∼ P (~x, ~y). P (~x, ~y) is an unknown data
generating distribution. In regression, ~y represents either a real-value scalar or a vector.
In classification, ~y usually represents a discrete code indicating which class ~x belongs to.
Predicting ~y given ~x is usually done by estimating P (~y|~x) using training pairs (~xi, ~yi).

Unsupervised learning is more diversified. The majority of problems in this category can
be considered as a problem of density estimation: given observations ~x ∼ P (~x), estimate
implicitly or explicitly the density P (~x).

There are two views of learning: Bayesian and frequentist. The two views differ in
the way the concept probability is treated. Bayesian learning insists on using probability
as a way to measure the degree of belief. On the other hand, frequentist learning treats
probability as the frequency of occurrence for certain events . This yields different treatment
of parameters specifying underlying probabilistic models. In Bayesian learning, there exists
a probability distribution on the parameters. As training data are seen, the degree of belief,
or the probability distribution, on model parameters shall be updated. On the other hand,
frequentist learning assumes an unknown single value of a parameter. As training data are
seen, a point estimation of a parameter is obtained by performing optimization with respect
to some criterion. The difference between these two learning paradigms is illustrated below
in terms of density estimation.
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1.2.1. Basic idea of Bayesian learning

Although not directly used in the scope of this thesis, the important idea of Bayesian
learning is briefly outlined below.

Given a training set D, the fully-fledged Bayesian models P (~x) as a marginalization over
all possible parameters θ.

P (~x|D) =
∫
θ
P (~x|θ)P (θ|D)dθ (1.2.1)

where the posterior over the parameter θ is defined as

P (θ|D) = P (D|θ)P (θ)
P (D) (1.2.2)

One has to specify the parameterizations of both the prior P (θ) and the likelihood P (D|θ)
in order to compute the posterior. When the marginalization in (1.2.1) is analytically in-
tractable, one could fall back to the maximum a posteriori (MAP) estimation

θ?MAP = arg max
θ

P (D|θ)P (θ) (1.2.3)

In MAP, P (~x|D) is approximated by

P (~x|D) ≈ P (~x|θ?MAP) (1.2.4)

(1.2.4) is a good approximation when the posterior over θ is unimodal and θ?MAP is the mode.
As more data arrive, MAP in (1.2.4) and Bayesian prediction in (1.2.1) become closer, as
MAP’s competing hypotheses become less likely. As is usually the case, performing numerical
optimization is relatively easier than estimating the integral.

1.2.2. Frequentist learning

Frequentist learning focuses on the point estimation of the model parameters. One of
the most popular frameworks is maximum likelihood estimation (MLE).

θ?MLE = arg max
θ

P (D|θ) (1.2.5)

MLE can be justified from various perspectives. MLE is closely related to the well-known
Kullback-Leibler (KL) divergence that measures the discrepancy between two probability
distributions. The KL divergence between the unknown data generating distribution P (~x)
and the model Pθ(~x) is defined as

KL(P (~x)||Pθ(~x)) =
∫
x
P (~x) log P (~x)

Pθ(~x)d~x (1.2.6)

=
∫
x
P (~x) logP (~x)−

∫
x
P (~x) logPθ(~x) (1.2.7)
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where the second term on the right is called cross-entropy between P (~x) and Pθ(~x).The first
term does not depend on θ. Using N training examples from D, The empirical minimization
of the KL is written as

θ̂?KL = arg min
θ

1
N

N∑
i=1

log P (~xi)
Pθ(~xi)

(1.2.8)

where ~xi ∼ P (~xi). Under the assumption that the examples in D are independently identi-
cally distributed (i.i.d.), the empirical risk minimization of log-likelihood can be written as
follows:

θ̂?MLE = arg max
θ

log(
N∏
i

Pθ(~xi)) (1.2.9)

= arg max
θ

N∑
i

logPθ(~xi)

= arg max
θ

1
N

∑
i

log Pθ(~xi)
P (~xi)

= arg min
θ

1
N

∑
i

log P (~xi)
Pθ(~xi)

= θ̂?KL

Thus maximizing the log-likelihood under the i.i.d. assumption is equivalent to minimizing
the KL divergence between the model distribution and the true unknown distribution.

MLE suffers from overfitting (detailed in section 1.3) when training data is scarce or
the model Pθ(~xi) is too complex. For instance, consider a dataset that only contains a few
coin flips that are all heads. θ denotes the probability of a coin flip being heads. MLE
results in θ = 1 since only heads are observed. This estimated value is highly unlikely and
overconfident. With large datasets, this kind of overfitting is still possible when a model
with a large number of parameters is used. Therefore in practice, it is common to use a
regularized version of MLE

θ̂?MLEreg = arg max
θ

[logP (D|θ) + λφ(θ)] (1.2.10)

where a regularization term φ(θ) penalizes the model complexity and λ weighs the penaliza-
tion. There exists a connection between θ̂?MLEreg and θ?MAP in (1.2.3).

θ?MAP = arg max
θ

P (D|θ)P (θ) = arg max
θ

[logP (D|θ) + logP (θ)] (1.2.11)

Therefore, θ?MAP is equivalent to θ̂?MLEreg and the regularization term in θ̂?MLEreg is interpreted
as the log of the prior P (θ).

As an estimator, the unbiasedness of MLE varies from case to case, for example, in
estimating the mean µ and the standard deviation σ in a univariate Gaussian distribution
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N (µ, σ), µ̂MLE = 1
N

∑
n xi is unbiased but σ̂2

MLE = 1
N

∑
n(xi−µ̂MLE)2 is biased. MLE has some

desirable properties as a default estimator in learning. Asymptotically, MLE is consistent,
meaning Pθ(x) → P (x) as N → ∞. It is also asymptotically optimal or efficient in that
it has the lowest variance among all the estimators. However MLE only provides a point
estimation. Compared with Bayesian learning, it does not give any measure of uncertainty
in the guess. Furthermore, MLE computation may also be expensive with complicated
probabilistic models, which is usually the case in machine learning with high dimensional
data. Other point estimators exist in machine learning. More tractable alternatives have
been proposed such as Pseudo likelihood (Besag, 1975), ratio matching (Hyvärinen, 2007),
generalized score matching (Lyu, 2009), and minimum probability flow (Sohl-Dickstein et al.,
2009) and moment maching (Li et al., 2015).

1.2.3. Parametric and non-parametric learning

Orthogonal to the categorization of learning into supervised and unsupervised, an alter-
native view is to differentiate learning algorithms between parametric and non-parametric.
In parametric learning, the parameter has a fixed size that is independent of number of
training examples N . Making predictions does not involve any explicit use of the historical
data any more since P (~x|θ) is fully realizable by a function with the learned parameter θ.
One could argue that assuming any particular parameterization of P (~x|θ) raises questions
on the reliability of the assumption. This is indeed one shortcoming of parametric learning.

Conversely, in non-parametric learning, P (~x) does not have a prefixed number of pa-
rameters and may grow automatically with more data. Indeed, most iconic non-parametric
models such as K nearest neighbor classifiers and Parzen density estimators directly memo-
rize the entire historical data. In particular, Parzen density estimator defines the probability
density

p(~x) = 1
N

N∑
n=1

1
2πh2 exp(−||~x− ~xn||

2

2h2 ) (1.2.12)

at a particular point ~x as a linear combination of Gaussians that are centered at each training
example ~xi. Similarly, one can define a Parzen density estimator for a conditional density in
(1.2.13) through the Bayes rule.

p(~y|~x) = p(~x, ~y)
p(~y) =

N∑
n=1

w( ~xn) 1
2πh2 exp(−||~y − ~yn||

2

2h2 ) (1.2.13)

where

w( ~xn) =
exp(− ||~x−~xn||

2

2h2 )∑N
n=1 exp(− ||~x−~xn||22h2 )

(1.2.14)
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The conditional kernel density in (1.2.13) can be considered as a mixture of Gaussians
where each Gaussian is defined on ~yn and each has a mixing coefficient w( ~xn) defined on
~xn. As is the requirement of this mixture, the mixing coefficients should sum to 1, which
is guaranteed by (1.2.14). Both (1.2.12) and (1.2.13) have been extensively studied in the
statistics community. One can show that they converge to the true distribution as N →∞
and h→ 0 in the appropriate rate.

The non-parametric kernel density estimator suffers from the curse of dimensionality.
This is further elaborated in section 2.2. Furthermore, making a prediction using all (or
even a small yet significant subset) of the historical examples raises a serious computational
issue when they are applied to problems involving a large number of examples. Both issues
can be alleviated by using parametric models in the inner loop of non-parametric learning.

Modern neural networks are often trained in such a hybrid approach. Hyper-parameters
such as its depth and its layer size are not fixed and could be tuned with cross-validation
as data grow. Particular choice of hyper-parameters results in a fixed number of parameters
such as its weights and biases which are trained in a parametric fashion.

1.3. Learning to generalize
Generalization is central in learning. If learning successfully recovers the underlying

data generating process, or it successfully captures the underlying factors, generalization is
achieved. Then given new examples that are not seen in learning, the learner is able to make
good decisions on it. Both supervised learning and unsupervised learning require the ability
of generalization.

1.3.1. Generalization in supervised learning

In supervised learning, a model is presented with examples that contain many variations.
Some variations are prevalent, and others are occasional and may be caused by sampling
noise. With limited learning capacity, for example limited number of parameters, a model
should focus on capturing variations that are most relevant to the learning targets in order
to generalize well. However, too limited capacity may lead to underfitting where the model
is too weak to even predict targets well on the training examples. Increasing model capacity
seems a natural choice in this situation. Yet as the capacity of a model increases, it not
only learns to associate targets with the prevalent patterns but also with noise. Overfitting
happens when a model fully captures all the variations in the training examples, yielding
superb predictions on the training examples, yet later performing poorly on the unseen data.
Thus, controlling model capacity is key to generalization.

6



1.3.2. Generalization in unsupervised learning

In unsupervised learning, overfitting and underfitting also apply. In the case of density
estimation, underfitting happens when the density model is too simple to faithfully represent
the data. For instance, one uses a single Gaussian to fit data that is generated by a mixture
of Gaussians. On the other hand, overfitting happens when the probability mass is only
assigned to the training data, resulting in very little probability mass being assigned to data
unseen in the training.

1.3.3. Formalizing the generalization error

Learning can be considered as approximating a target function f ? with an estimated
function f̂ . Then the generalization error could be formalized by a mean square error (MSE)
E[(f̂(x)−f ?(x))2] that measures the difference between the two on each data point x ∼ P (x).
Consider getting multiple data samples D from the unknown data generating distribution
P (x). An estimation f̂ of f ? is based on a particular data sample D. Since D is considered
as a random variable, so is f̂ . So f̄ = E[f̂ ] is the expectation on the random variable f̂ .
All the expectations are taken under P (x). Thus the generalization error E[(f̂ − f ?)2] is
decomposed as follows

E[(f̂ − f ?)2] = E[[(f̂ − f̄) + (f̄ − f ?)]2] (1.3.1)

= E[(f̂ − f̄)2] + 2(f̄ − f ?)E[f̂ − f̄ ] + (f̄ − f ?)2

= E[(f̂ − f̄)2] + (f̄ − f ?)2

= var[f̂ ] + bias2(f̂) (1.3.2)

It may seem a good decision to pick an unbiased estimator whenever it is possible. However,
the bias-variance decomposition in (1.3.2) indicates that it might be wise to use a biased
estimator as long as the variance is sufficiently reduced, assuming the goal of minimizing
the mean square error. The decomposition also indicates that a model that is too complex,
having too many parameters, yields low bias but higher variance. On the other hand, a
model that is too simple yields low variance but larger bias.

1.3.4. Model selection

The urge of seeking good generalization leads to the important issue of model selection.
To estimate the generalization performance of a model, one typically divides the entire
dataset into two parts, Dtrain and Dtest. The training and the model selection are performed
on Dtrain while Dtest is solely used to evaluate the generalization performance of the selected
model. Several methods can be used to select a good model.
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1.3.4.1. Bayesian model averaging

In theory, the choice of models may be considered as a random variable. This is indeed
the case in Bayesian model averaging. Following the Bayesian learning in (1.2.1)

P (~x|D) =
∫
k
P (~x|Mk,D)P (Mk|D)dMk

The posterior over a particular choice of model is

P (Mk|D) ∝ P (D|Mk)P (Mk)

and the model for the likelihood is

P (D|Mk) =
∫
θk

P (D|θk)P (θk|Mk)dθk

For the same reason of requiring to compute marginalizations, Bayesian model averaging is
rarely practical.

1.3.4.2. Cross-validation

A practically useful method in model selection is cross-validation. It is intuitively straight-
forward and easy to implement. It has been proved to work well in practice in numerous
settings in machine learning. The standard procedure is to further divide Dtrain into multiple
subsets. Training is then performed on some of the subsets and validation is performed on
the others. It is critical not to use validation subsets in training. The validation subsets are
only used to perform model selection, for example. In cross-validation, one treats parameters
and hyper-parameters in an equal footing in the sense that different configurations of both
indicate different models. Performing model selection on the validation subsets amounts to
picking a configuration of both of them that gives the best performance with respect to a
chosen criterion, such as classification error, likelihood, or average squared error.

1.3.4.3. Bagging and boosting

Bagging is short for bootstrap aggregation. In bootstrapping, one samples k batches
from the given dataset with replacement and fits a different model on each of the k sets. In
aggregation, the prediction is given by taking an average over all predictions from k models.
By averaging, the variances in the predictions of individual models tend to cancel out.

Boosting is another good way to combine models. Boosting fits a series of weak models
that, when combined together, are significantly better than individuals. The individual
models are coordinated such that model k should focus on the part that previous k − 1
models get wrong.
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1.4. The curse of dimensionality and its implication
Along with the concept of generalization, the curse of dimensionality is a related major

difficulty faced by machine learning. In a low dimensional space, regions in the space are
typically well covered by training examples. In that case, most machine learning algorithms
with enough capacity, non-parametric or not, give reasonable answers as enough information
of the data distribution is indeed available. As the dimensionality increases, the story of
fitting a generalizable model becomes dramatically different. First of all, there will not be
enough data to well cover the entire input space. Secondly, most test examples are very
different from the training examples. In fact, the neighborhood of a test example is most
likely covered by insufficient number of training examples, as argued in Bengio et al. (2010a).
As a result, generalization becomes a problem of extrapolation rather than interpolation.
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Chapter 2

REPRESENTATION LEARNING

A powerful learning algorithm must rely on a proper representation of data to solve prob-
lems. Representations could be made so powerful such that even a linear classifier such as a
perceptron (Rosenblatt, 1957) is sufficient to solve an otherwise non-linearly separable task.
However, transforming data from the input space to such a feature space is challenging in
that one does not know what makes a good representation of the given task. Learning such
representations automatically from the data is the central theme of machine learning and
neural network research. The promise is machines can extract knowledge from data with
little human intervention. This chapter follows Chapter 1, and delves into the subject area
of representation learning with the focus on using neural networks that have been proved
to be superior in solving perception related AI tasks. Important families of neural network
models are reviewed in order to facilitate the understanding of further chapters.

2.1. Challenging problems in the AI-set
Machine learning algorithms have been successfully applied to various domains. Yet there

is one particular subset of problems that remains challenging. This subset of problems require
human-like intelligent behavior, such as visual perception, auditory perception, planning and
control. As argued by Bengio and LeCun (2007), this type of problem, dubbed the AI-set,
typically involves handling perceptual signal that contains a great amount of variations. Let
us consider, for instance, the task of object recognition where the same type of object may
appear to be vastly different depending on physical factors such as the lighting condition, the
orientation and angle of the camera, the texture, the shape, the scale, background occlusion.
The number of such combined variations could easily be exponential. Therefore the solution
to such problems inevitably requires learning algorithms to be able to capture a highly
varying function under the constraints:

(1) They do not need exponential number of training examples to generalize well on a
problem with exponentially many variations.

(2) The learning should require as little human involvement as possible.



(3) The computational time performed at training and recognition should be able to scale
sub-linearly, or at most linearly with the size of the problem.

As one example from the AI-set, let us consider the problem of object recognition in static
images. This problem is difficult because of the factors of variations it embraces. The pixels
of a typical photograph will depend on the scene type and geometry, the number, shape and
appearance of objects present in the scene, their 3D positions and orientations, as well as
effects such as occlusion, shading and shadows. All those factors interact with each other
in an intricate way, making the true identity of an object a highly nonlinear function of the
input pixels.

In order to explicitly model a potentially exponential number of variations in the data,
one needs exponential number of examples that capture these variations. However, this is
hardly practical as one rarely has a collection of training cases whose number comes even
close to exponential. There is another more severe problem. Learning becomes even more
impractical if the complexity of the model needs to grow exponentially to accommodate the
growth in variations of the data. Many popular machine learning models fare poorly in that
they require exponentially many parameters to generalize.

Let us consider two examples. Kernel machines with local kernels, such as SVMs, need as
many kernels as the number of variations to well cover the input space because most kernels
are local and shortsighted (Bengio et al., 2006). Tree-based models divide input space into
cells, also requiring as many cells as the number of variations to generalize well (Bengio
et al., 2010b). Both of them, in a way, suffer severely from the curse of dimensionality.

2.2. Learning hierarchical and distributed representations
To fight the exponential growth of the number of variations, a distributed representation

becomes invaluable. The notion of distributed representation was first introduced by Hinton
(1986). The underlying assumption behind distributed representations is that the observed
data were generated by the interactions of many unknown factors, and that what is learned
about a particular factor from some configurations can often generalize to other, unseen con-
figurations of the factors. In contrast to SVMs and trees whose representations are formed
by looking in a locally defined neighbourhood, neural networks still learn representations
from local examples but local examples have a knock-on effect in the learned representations
that are far away from this neighbourhood, even in the part of the input space where no
training examples are observed. This surprising generalization property relies on the ability
to discover the underlying factors from the data. If the true factors were learned, training ex-
amples merely consist of some particular configurations of those factors, while generalization
to unseen examples is achieved if factors are configured and composed differently according
to the trained model.
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Distributed representations clearly have some advantages in tackling problems in the AI-
set. The statistical efficiency can be further improved if it is organized in a hierarchy. Deep
representation learning (Bengio et al., 2013) goes in this direction. It adds the assumption
that factors are organized into different layers, corresponding to different level of abstractions
and compositions. Higher level representations are obtained by transforming lower level
representations. This is a plausible assumption in solving problems in the AI-set. Let us
again take the aforementioned example of object recognition. The underlying factors affecting
object recognition can be naturally organized into a hierarchy. On the lowest level, factors
such as edges and corners are learned from raw image pixels. The second level composes
simple geometric shapes from the first level. The third level uses simple shapes to form object
silhouettes. As more and more levels are added, the representations become more and more
specialized and attached to a particular type of object, making efficient object recognition
feasible. Another example of problems in the AI-set is understanding the meaning of a
sentence. A sentence is naturally decomposed into elements such as letters, words, phrases
whose complexity grows as they become more and more abstract. A deep and distributed
representation is able to express such a sentence in a compact and efficient way by sharing
and reusing basic elements in the layer below.

Neural networks and its variants, including many types of graphical models, possess
desirable properties in terms of the three requirements to be considered as viable candidates
to tackle the problems in the AI-set. More specifically, they enjoy distributed representations
that could be easily organized in a hierarchical fashion. They could easily incorporate generic
AI priors to automatically discover the underlying factors of variations in the dataset while
requiring very little human intervention. Although the computational time scales differently
from case to case, in general, they enjoy efficient computation and a good solution can be
found relatively efficiently by stochastic optimization. The computational matter shall be
discussed in details shortly.

This following sections offer an introduction to several types of neural network models
that are capable of learning distributed and hierarchical representations. Three of them –
feedforward neural networks, recurrent neural networks, and auto-encoders are closely related
to the rest of the thesis. Although arguably less active in research, probabilistic graphical
models made by neural networks are also included. The focus is on the formulation of models.
The issue of computation is deferred to section 2.7. Historically, the term “neural networks”
and the term “multilayer perceptrons” (MLPs) were used interchangeably.

2.3. Feedforward neural networks
Feed-forward neural networks (Widrow and Lehr, 1990) is one of the earliest inventions

that are able to learn a hierarchical and distributed representation of inputs. It is shown in
Figure 2.1. It has a strictly feed-forward organization in that information flows only in one
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Fig. 2.1. Left: A feed-forward neural network with one input layer, one hid-
den layer, and one output layer. Right: A feed-forward neural network in a
general form whose organization is not according to layers.

fixed direction and there is no loop. Traditionally, the structure of the MLP is organized
into one input layer, one or many hidden layers and one output layer. MLPs build upon
linear or generalized linear models and expand the model capacity by learning a collection of
basis functions φj(~x). Denote ~yi one of the outputs from the last layer of a three-layer MLP,
and θ = {~w(1), ~w(2)} the parameters (including both weights and biases) of hidden layer and
output layer, the last layer of an MLP implements the following function

~yi(~h; ~w(2)) = f(
∑
j

~w
(2)
j φj(~h)) (2.3.1)

where f represents an arbitrary fixed function such as an identity function x = I(x), or
sigmoid(x) = exp(x)

1+exp(x) commonly used in binary classifications, or softmax(~xi) = exp(~xi)∑
j

exp(~xj)

commonly used in multi-class classifications. Similarly, an output from a hidden unit j is
defined as

φj(~x; ~w(1)) = f(
∑
k

~w
(1)
k ~xk) (2.3.2)

Such a two-layer model is easily generalized to the one with multiple layers. In MLPs,
each hidden unit has a fixed capacity coming on the weights associated with it. A hidden unit
only captures one aspect of the data. This aspect could be either a higher order correlation
that involves all the inputs a unit sees and it could also be a lower order correlation that
involves a small subsets of it, depending on how its weights are being set in learning. Once
each hidden unit has been trained, it responds to a subset of configurations of inputs. Some
inputs yield high value output while some yield lower value. By cascading such hidden units,
each with a limited degree of freedom, MLPs are able to capture possibly very high order
dependencies.
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Fig. 2.2. Left: An RNN with one recurrent layer, one input layer and one
output layer. Right: An RNN unfolds itself over time steps to form a feed-
forward model with shared hidden layers The figure is credited by LeCun et al.
(2015)

2.4. Recurrent neural networks
Recurrent neural networks (RNNs) have regained their popularity in recent years as the

standard machine learning model for time series such as videos, speech and texts. In Figure
2.2, inputs x is composed by a time series x0,x0, . . . ,xT with T time steps in total. In each
time step, the following parameterization is being applied on xt

st = f(Uxt +W st−1) (2.4.1)

ot = g(V st) (2.4.2)

with bias folded into the weight matrices of U , W and V , and where f and g denote element-
wise nonlinearities. It is evident from Figure 2.2 that the parameters are shared over time.
This makes RNNs particularly suitable to perform computation on inputs of arbitrary length
T without altering the number of parameters. Once unfolded, it is treated as a feed-forward
neural network. Similar to the univeral approximator property of feedforward nerual net-
works from Stinchcombe and White (1989), Siegelmann and Sontag (1995) shows that, for
any computable function, there exists an RNN with a finite number of recurrently connected
units that is able to compute it. Such theory, however, only asserts the existence rather than
their trainability and therefore has little relevance in practice.

RNNs are notoriously difficult to train in practice due to the numerical attenuation of
signal over long period of time (Bengio et al., 1994). To illustrate this with three time steps,
compute the gradient of U with backpropagation

∂ot+1

∂U
= ∂ot+1

∂st+1

∂st+1

∂U
(2.4.3)

+ ∂ot+1

∂st+1

∂st+1

∂st

∂st
∂U

(2.4.4)
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+ ∂ot+1

∂st+1

∂st+1

∂st

∂st
∂st−1

∂st−1

∂U
(2.4.5)

where the three terms capture respectively the short, intermediate and long-term depen-
dencies. Each term is essentially performing a series of matrix-vector multiplication, which
could in principle lead to exploding or vanishing gradients, depending on the singular values
of those matrices.

The work in this thesis uses extensively Long-short term memory (LSTM) recurrent neu-
ral networks, first introduced in Hochreiter and Schmidhuber (1997a), and Gated Recurrent
Units (GRUs) from Cho et al. (2014). Compared with the formulation in Figure 2.2, they
use gates to create shortcuts among distant time steps to carefully modify and preserve the
long-term memory. Chapter 5 contains detailed explanation of LSTMs and Chapter 9 for
GRUs.

2.5. Auto-encoders

input reconstruction input reconstruction

Fig. 2.3. Left: A standard auto-encoder must have an information bottleneck
in the hidden layer to avoid learning the trivial identity reconstruction function.
Right: A regularized auto-encoder that can have an over-complete hidden
layer, such as denoising auto-encoders, and contractive auto-encoders since it
cannot learn the identity function.

Unlike supervised MLPs, auto-encoders are capable of learning a hierarchical and dis-
tributed representation of inputs by performing reconstruction. It is thus unsupervised.
Figure 2.3 shows two classes of such models. Given ~x ∈ Rd, a simple auto-encoder imple-
ments the following function

~y = f(W1~x+ bh) (2.5.1)

and

~z = f(W2~y + bo) (2.5.2)

16



where ~x denotes inputs, ~y denotes activations from hidden units, and ~z denotes final outputs,
model parameters W1,W2, bh, bo are weights and biases on hidden and output units. Auto-
encoders minimize a reconstruction cost that typically takes one of the following forms

Lmse = Ex[‖ ~x− ~z ‖2] (2.5.3)

or

Lce = Ex[−
∑
i

(~xi log(~zi) + (1− ~xi) log(1− ~zi))] (2.5.4)

The cost Lmse has a probabilistic interpretation that it is equivalent to the maximum likeli-
hood estimation when assuming ~xi is a univariate Gaussian distribution given ~z. Likewise,
the cost Lce is based on the cross-entropy between two Binomial distributions and it requires
both ~x and ~z taking values between 0 and 1 for it to make sense.

On the left of Figure 2.3 is a standard auto-encoder that has a hidden layer whose number
of units is smaller than the number of inputs. On the right is a regularized auto-encoder
that could afford to have an over-complete hidden layer. This distinction is made because
a standard auto-encoder has the potential to learn an identity mapping from inputs ~x to
itself, while in a regularized one it is generally impossible since restrictions are added to
the representations learned in the hidden layer. A typical example from the standard auto-
encoder family is to set W2 = W T

1 and to use linear activation on both hidden and output
layer. One can show that this type of auto-encoder is capable of learning a span that is in
the same linear space as principle components of ~x (Baldi and Hornik, Baldi and Hornik).

The Denoising auto-encoder (DAE) (Vincent et al., 2008a) is a member of the regularized
auto-encoder family. It differs from the standard auto-encoder in that a corrupted version of
inputs x̃ is used in ~y = f(W1~̃x+bh). Intuitively, DAEs learn representations that are robust to
the partial destruction of the inputs. Alternative regularizations are possible. For instance,
in contractive auto-encoders (CAE), a regularization term ‖ Jy ‖F= ∑

i,j( ∂~yi∂~xj
)2 is added into

the cost function to penalize the sensitivity of changes in hidden activations ~y with respect
to inputs ~x. As the result of the competition between minimizing the reconstructions and
penalizing the changes in the hidden units, CAEs and DAEs are able to learn the directions
on the data manifold where changes are most significant.

2.6. Graphical models based neural networks
Probabilistic reasoning plays a central role in knowledge understanding and reasoning.

Graphical models offer many tools to compactly represent a probabilistic relationship in the
data and perform computation on it. There are two main families, directed graphical models
(DGM), historically called Bayesian networks and undirected graphical models, historically
called Markov random fields (MRF).
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Fig. 2.4. Left: An example of directed graphical models. Edges are directed.
The number in the nodes indicates a topological order. Right: The Restricted
Boltzmann machine as an example of undirected graphical models. Edges are
undirected.

2.6.1. Directed graphical models

A probability distribution can be expressed by a DGM in the form of

P (x1, . . . , xd) = P (x1)
d∏
i=2

P (xi|par(xi))

where par(xi) denotes all the parent nodes of xi. It can be shown that such a proba-
bilistic expression can be expressed equivalently in a form of a directed acyclic graph.
An example is shown in Figure 2.4. The directed graph corresponds to P (x1, . . . ,x7) =
P (x1)P (x2)P (x3|x1)P (x4|x1,x2,x3)P (x5|x1,x3)P (x6|x4)P (x7|x4,x5) for the reason that they
represent exactly the same set of conditional independencies between 7 variables.

The parametrization of individual factors P (xi|par(xi)) is flexible. When nodes have dis-
crete values, it can be parameterized by a probability table. In the continuous case, any con-
tinuous probability distribution can be adopted such as multivariate Gaussian distributions.
It is even possible, sometimes more advantageous, to use neural networks to parameterize
the factors, which offers great generalization ability over the traditional parameterizations.

To learn the parameters in the joint probability, maximum likelihood learning discussed
in section 1.2 can be applied. When every node is observed, maximum likelihood learning
over all the factors is reduced to the learning of local factors as the log probability of the
joint distribution can be written in the following form

log(Pθ(~x)) = log(Pθ1(x1)
d∏
i=2

Pθi(xi|par(xi))) = log(Pθ1(x1)) +
d∑
i=2

log(Pθi(xi|par(xi)))

where each log factor in the sum can be maximized individually.

18



In theory, the capacity of a fully observable model can be made arbitrarily large by just
adding edges between nodes. One faces the problem of explosion of parameters if the number
of nodes goes large. One compact way to avoid the explosion of parameters while keeping the
model expressive is to add latent variables that are not directly instantiated by the inputs.
For instance, one could imagine a generation process where the identity of a hand-written
digit is generated first, followed by generating the appearance of it given the identity. The
latent variable could be used to capture such identity information as well as other high level
concepts such as writing styles and habits, and furthermore such latent factors should be
learned automatically from the data.

This is a popular choice in representation learning. For instance, commonly used principal
components analysis (PCA), independent components analysis (ICA) and factor analysis
(FA) can all be interoperated as directed graphical models with Gaussian latent variables.
Sigmoid belief networks (Saul et al., 1996) goes further by stacking layers of binary latent
variables and it can be shown that it is a universal approximator (Sutskever and Hinton,
2008). The major challenge of using latent variables is the difficulty of inference. This is due
to the effect of explaining away (Pearl, 1988). It is explaining away that makes the directed
models powerful in that it introduces lateral interactions between parents. It is also because
of explaining away that exact inference is intractable except in a few very simple cases such
as PCA and standard hidden Markov models (HMM).

Expectation maximization (EM) is a general framework to treat maximum likelihood
learning in DGMs with latent variables. It is best seen from the decomposition of the
likelihood into two terms in (2.6.1).

log p(~x) = L(q) + KL(q ‖ p) (2.6.1)

L(q) =
∫
q(~z) log p(~x, ~z)

q(~z) d~z (2.6.2)

KL(q ‖ p) = −
∫
q(~z) log p(~z|~x)

q(~z) d~z (2.6.3)

EM consists of two steps. In the first step, L(q) is maximized with respect to q(~z) while
keeping p(~x, ~z) fixed. This amounts to minimizing KL(q ‖ p), making q(~z) as close as possible
to p(~z|~x). In the second step, L(q) again is maximized but with respect to p(~x, ~z) while q(~z)
is kept fixed. If the E step makes KL(q ‖ p) = 0, the side effect of the M step will necessarily
makes KL(q ‖ p) > 0. As a result, alternating the E and the M steps guarantees to increase
log p(~x) till it converges. However, when the E step is not exact, this guarantee will be lost.
Instead, only a lower bound is increased (Neal and Hinton, 1998).
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2.6.2. Variational autoencoders

The major challenge of training the directed graphical model lies in the intractability of
computing the true posterior distribution of latent variables given the observation p(~z|~x). In
EM, both Eq. (2.6.2) and (2.6.3) are valid for any distribution q. Variational Autoencoders
(VAEs) from Kingma and Welling (2013) proposed to use q(~z|~x). Following Eq. (2.6.1),

log p(~x) = L(q(~z|~x)) + KL(q(~z|~x) ‖ p(~z|~x)) (2.6.4)

= Ez∼q[log p(~x|~z) + log p(~z)− log q(~z|~x)] + KL(q(~z|~x) ‖ p(~z|~x)) (2.6.5)

= Ez∼q[log p(~x|~z)]− Ez∼q[log q(~z|~x)− log p(~z)] + KL(q(~z|~x) ‖ p(~z|~x)) (2.6.6)

≥ Ez∼q[log p(~x|~z)]− Ez∼q[log q(~z|~x)− log p(~z)] (2.6.7)

= Ez∼q[log p(~x|~z)]−KL(q(~z|~x) ‖ p(~z)) (2.6.8)

where log p(~x) is lower bounded only by the sum of Ez∼q[log p(~x|~z)] and KL(q(~z|~x) ‖ p(~z))
due to the drop of the non-negative term KL(q(~z|~x) ‖ p(~z|~x)). As one may realize from the
above derivation that the VAE objective in Eq. (2.6.8) has very little to do with autoencoders
in Section 2.5, and it just happens that the resulting lower bound contains the term q(~z|~x)
that may be parameterized by a neural network encoder, and the term p(~x|~z) that may be
parameterized by a neural network decoder. The use of “variational” in its name has its
origin in the machine learning literature where Eq. (2.6.8) is referred as the variational lower
bound of the MLE estimator. In the original work of Kingma and Welling (2013), the second
term of the objective is made analytically tractable by assuming that the encoder function
q(~z|~x) is Gaussian with a diagonal covariance matrix to simplify the computation.

In theory, one could train VAEs with the above objective by using a stochastic approx-
imation of the expectation term. This is very inefficient. Notice that the first term in
Eq. (2.6.8) can be reformulated as

Ez∼q[log p(~x|~z)] = Ez′∼N (0,1)[log p(~x|f(z′))] (2.6.9)

where ~z = f(z′) and f is a deterministic function of z′ that is sampled from a normal
distribution. This is referred as the “reparameterization trick” in Kingma andWelling (2013).
It enables the backpropagation to run from the decoder all the way to the encoder without
encountering any sampling path that blocks the gradient flow.

2.6.3. Markov random fields

MRFs are responsible for the resurgence of neural network research in 2006 with models
such as Restricted Boltzmann Machines (RBMs) from Hinton and Salakhutdinov (2006b),
Deep Belief Networks (DBNs) from Hinton et al. (2006a) and Deep Boltzmann Machines
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(DBMs) from Salakhutdinov and Hinton (2009a). MRFs hold great promise in unsuper-
vised learning. Over the years, they have become less popular as training such models is
challenging where the gradient is often intractable and requires approximations that are by
themselves computationally expensive. Unlike a DGM, an MRF represents a joint probability
distribution using a product of potentials.

p(~x) = 1
Z

∏
c

ψc(~xc) (2.6.10)

where a potential ψc(~xc) is defined on a group of variables within one of the maximal cliques
c. Z is the normalization constant that ensures p(~x) is well-defined. Contrary to the factor
used in DGM, which is strictly a valid probability, a potential is not upper bounded as long
as it is positive to ensure p(~x) > 0.

The maximum likelihood learning of an MRF is more complicated than that of a DGM
because one has to explicitly deal with the normalization term. This is illustrated via an
example below. Consider the restricted Boltzmann machines (RBM) in Figure 2.4. The joint
probability is defined as

p(v,h) = exp (−Eθ(v,h))
Z

(2.6.11)

where Z = ∑
v,h exp(−Eθ(v,h)) is the partition function, which ensures that p(v,h) is normal-

ized. We can recover the marginal distribution p(v) by summing over the latent variables:

p(v) = 1
Z

∑
h

exp (−Eθ(v,h)) (2.6.12)

It is also useful to define the Free-Energy function Fθ(v) = − log∑h exp−Eθ(v,h), which allows
us to write p(v) = exp(−Fθ(v))

Z

An RBM is further parameterized by the following energy function:

Eθ(v,h) = −
nv∑
i=1

nh∑
j=1

Wijhjvi −
∑
j

cjhj −
∑
i

bivi (2.6.13)

which groups nv visible units and nh hidden units into two separate layers, interacting
through the weight matrix W ∈ Rnh×nv . Connections between units of the same layer are
prohibited, differentiating it from other more general Boltzmann Machines. b ∈ Rnv and
c ∈ Rnh are the offsets of the visible and hidden units, and serve much the same purpose as
MLPs. While the random variable v and h can belong to many probability distributions, we
will focus here on the binary-binary RBM, where v ∈ {0,1}nv and h ∈ {0,1}nh .

p(h|v) = p(v,h)
p(v) = p(v,h)∑

h p(v,h) = exp [−Eθ(v,h)]∑
h exp [−Eθ(v,h)]
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=
exp

[
−∑j hj (cj +∑

iWijvi)
]

exp (−∑i bivi)∑
h exp

[
−∑j hj (cj +∑

iWijvi)
]

exp (−∑i bivi)

=
∏
j exp [−hj (cj +∑

iWijvi)]∑
h

∏
j exp [−hj (cj +∑

iWijvi)]

=
∏
j exp [−hj (cj +∑

iWijvi)]∏
j

∑
hj exp [−hj (cj +∑

iWijvi)]

=
∏
j

exp [−hj (cj +∑
iWijvi)]

1 + exp [−cj −
∑
iWijvi]

p(h|v) =
∏
j

p(hj|v) (2.6.14)

p(hj = 1|v) = sigmoid
(
cj +

∑
i

Wijvi

)
(2.6.15)

By symmetry of the energy function, we can write:

p(v|h) =
∏
i

p(vi|h) (2.6.16)

p(vi = 1|h) = sigmoid
bi +

∑
j

Wijhj

 (2.6.17)

We can derive the free-energy of the binary-binary RBM as follows:

Fθ(v) = − log
∑
h

exp−Eθ(v,h)

= − log
exp

(
−
∑
i

bivi

)∑
h

∏
j

exp
[
−hj

(
cj +

∑
i

Wijvi

)]
= −

∑
i

bivi − log
∏
j

1 + exp
[
−cj −

∑
i

Wijvi

]

= −
∑
i

bivi −
∑
j

log
[
1 + exp

(
−cj −

∑
i

Wijvi

)]
(2.6.18)

− log p(x; θ) = F (x) + logZ

= F (x) + log
∑
x

exp [−F (x)]

−∂ log p(x)
∂θ

= ∂F (x)
∂θ

+ 1
Z

∂Z

∂θ

= ∂F (x)
∂θ

+ 1
Z

∑
x

∂ exp [−F (x)]
∂θ
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= ∂F (x)
∂θ

− 1
Z

∑
x

exp [−F (x)] ∂F (x)
∂θ

= ∂F (x)
∂θ

− p(x)
∑
x

∂F (x)
∂θ

= ∂F (x)
∂θ

− Ep
[
∂F (x)
∂θ

]
(2.6.19)

The maximum likelihood update equations for θ, at the t-th parameter update, becomes:

θt+1 ← θt − α
(

1
|D|

∑
x∈D

[
∂F (x)
∂θ

]
− Ep

[
∂F (x′)
∂θ

])
(2.6.20)

Algorithm 1 Stochastic Maximum Likelihood Update

Obtain (mini)-batch of training examples X+
t = {x ∈ D}.

Initialize (mini)-batch of samples x(0)
t from Xt−1, approx. samples of pt−1.

for k = 0 : K do
Generate (mini)-batch of samples h(k)

t ∼ pt(h|v = x
(k)
t ).

Generate (mini)-batch of samples x(k+1)
t ∼ pt(v|h = h

(k)
t ).

end for
Define Xt as the (mini)-batch of samples x(k)

t .
θt+1 ← θt − α

(
1
|X+
t |
∑
x∈X+

t

[
∂F (x)
∂θ

]
− 1
|Xt|

∑
x′∈Xt

[
∂F (x′)
∂θ

])
.

There are many ways to perform the update rule in (2.6.20) by approximating the in-
tractable expectation. One popular choice is stochastic maximum likelihood (Tieleman,
2008) detailed in Algorithm 1.

2.7. Computational techniques
Much of the research effort in Machine learning has been devoted to modelling. Equally

important issues arise in computation. This section outlines important computational tech-
niques for training modern neural networks.

2.7.1. Optimization

The first computational challenge is in optimization. Techniques in optimization are
further divided into several types, depending on the type of models. SVMs were popular
partly because they only require quadratic programming which is essentially a convex, usually
constrained optimization problem. On the other hand, mainstream neural networks require
solving highly non-convex problems, usually unconstrained. If the objective function is
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parameter

cost

parameter
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Fig. 2.5. Left: SGD uses noisy gradient to reach global minima.Right: Second
order optimization methods use a local quadratic approximation and move to
the minimum of a quadratic curve at each step.

smooth and differentiable, as is usually the case in neural networks, the best way is to take
advantage of the gradient. To see this, use the definition of gradient when ∆θ → 0

f ′(θ)∆θ = f(θ + ∆θ)− f(θ) (2.7.1)

f(θ + ∆θ) > f(θ) → f ′(θ) and ∆θ are in the same direction, justifying the use of gradient
descent. Therefore, in gradient descent, one uses f ′(θ) as the moving direction and the length
of the move is decided by a line search. However, in practice, a technique called stochastic
gradient descent (SGD) (Bottou, 2013) proves to be more efficient. SGD uses the following
rule to update parameters in order to minimize f :

θt+1 = θt − αf ′(θt) (2.7.2)

It is shown in Robbins and Monro (1951) that the convergence to a local minimum is guaran-
teed if∑∞t=1 αt =∞ and∑∞t=1 α

2
t <∞. In SGD, f ′ is usually computed by a small mini-batch

of data so that there is an explicit stochasticity in the parameter updates as shown in left
of Figure 2.5. The noisy behaviour is able to help the optimization to escape from a local
minimum and reach potentially a better solution.

Another type of gradient-based method is based on the use of Hessian, the second order
derivatives. It can be understood from the Taylor expansion of the objective function.

f(θ) ≈ f(θ0) + (θ − θ0)Tf ′(θ0) + 1
2(θ − θ0)Tf ′′(θ0)(θ − θ0) (2.7.3)

This type of method tries to establish a local quadratic approximation of the objective
function around the current parameter value θ0, as shown in right of Figure 2.5. Compared
with SGD, some second order methods require to compute Hessian, or at least to maintain
an approximation to it, which is costly. Furthermore, they do not work well when small
mini-batches are used, as in SGD.
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One desirable property of MLP, including both feed-forward and recurrent neural net-
works, is that they are universal approximators. The seminal paper from Stinchcombe
and White (1989) established that an MLP with one hidden layer and arbitrary squash-
ing function in the hidden layer, linear in the output layer, is capable of approximating
any measurable function to any desired degree of accuracy provided enough hidden units.
Therefore, changing the number of hidden units indicates a precision by which the function
is approximated.

Another desirable property of MLPs is its scalability. When the dimensionality of inputs
increases, the number of parameters, or the degree of freedom, only grows linearly. This
property stands up when MLPs are compared with non-parametric algorithms whose number
of degrees of freedom may need to grow exponentially with the number of inputs. However,
this property is obtained at the price of having to deal with a much harder optimization
problem and of an assumption on the function to be learned.

On the other hand, training neural networks faces two major difficulties. Firstly, neural
networks are highly flexible models and then tend to overfit quickly with insufficient data,
hence generalize poorly. To alleviate overfitting, different regularization techniques have
been used extensively. The most recent collection of them may be found in the textbook
Goodfellow et al. (2016). Secondly, training a deep model with many hidden layers has been
quite difficult in general. The main reason of this difficulty, as has been hypothesized by
many, is that the optimization problem that learning has to solve becomes harder and harder,
either due to bad local minima or ill-conditioning. The existence of saddle points and their
impact to optimization have be discussed extensively in Choromanska et al. (2015); Dauphin
et al. (2014). To make the optimization even harder, back-propagation may be problematic
in very deep neural networks, because as gradients are back-propagated through layers, the
error signal is multiplied by the Jacobian (the derivative of outputs w.r.t inputs) of the
hidden units layer by layer. Eventually, the error signal may become tiny at the lower layers
(Bengio et al., 1994; Pascanu et al., 2013). As a result, learning in the lower layers is more
difficult. There have been successful attempts towards training deep neural networks. For
example, Hinton et al. (2006b); Bengio et al. (2007); Vincent et al. (2010) suggested greedy
layer-wised unsupervised pre-training to initialize the parameters of a deep MLP. Glorot and
Bengio (2010) have proposed a new initialization equation for deep MLP. Weston et al. (2008)
uses semi-supervised embeddings to provide extra information to guide a deep MLP. From
a pure optimization point of view, carefully designed optimization methods (Martens, 2010;
Martens and Sutskever, 2011; Martens and Grosse, 2015; Grosse and Martens, 2016) have
been proved to work well on both feedforward and recurrent neural networks. Nonetheless,
the computation is demanding and remains a bottleneck in dealing with large datasets.
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2.7.2. Sampling in graphical models

Quite often, learning requires the ability to compute the expectation of a function of
interest with respect to some random variables. The random variables obey a very compli-
cated distribution so that the only way to compute the expectation is to use samples of those
random variables. This is the idea of the Monte Carlo method.

Ex[f(x)] =
∫
f(x)p(x)dx ≈ 1

N

N∑
i=1

f(xi) (2.7.4)

where one draws samples xi ∼ p(x). This is an unbiased estimator. Monte Carlo method is
used in the importance sampling technique

Ex∼p(x)[f(x)] =
∫
f(x)p(x)dx (2.7.5)

=
∫
f(x)p(x)

q(x)q(x)dx

= Ex∼q(x)[f(x)p(x)
q(x) ]

≈ 1
N

N∑
n=1

f(x)p(x)
q(x) (2.7.6)

Importance sampling provides a tool to compute expectations of f with respect to one
distribution by drawing samples from another distribution. This is an unbiased estimator.

2.7.2.1. Markov chain Monte Carlo

Importance sampling is less efficient when the dimensionality of the distribution is high.
In very high dimensional space, the variance of importance sampling will be too high, making
it impractical to use. Markov chain Monte Carlo (MCMC) methods are designed to solve this
problem. Given a probability distribution p(x), one designs a Markov chain whose stationary
distribution is p(x). Then sampling from p(x) amounts to running the Markov chain starting
at an arbitrary point x0. Designing a Markov chain requires carefully specifying its transition
matrix T whose entry is defined as T (xi|xj). T needs to satisfy the following conditions:

(1) Irreducibility. By using T , it is possible to reach any state i from any state j.
(2) Aperiodicity. It is impossible to revisit any state in every k > 1 time steps.
(3) Reversibility/Detailed balance, a sufficient but not necessary condition. p(xi)T (xj|xi) =

p(xj)T (xi|xj)
More specifically, in a discrete time homogeneous Markov chain with finite number of states,
irreducibility and aperiodicity together guarantee that the chain has a unique stationary
distribution π(x). Reversibility makes sure π(x) = p(x). In fact, by Perron-Fronbenius
theorem, π(x) is the eigenvector of T with eigenvalue 1.
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A generalization of Markov chains to an infinite number of states is possible. This is
particularly useful when π(x) is continuous. Besides the above 3 conditions, T has to satisfy
recurrence, meaning it is possible to revisit any state, preventing the chain from diverging
into infinity.

The Metropolis-Hastings algorithm provides a framework to sample from a complex dis-
tribution using Markov chains. At a step t with a sample x(t), the algorithm draws a sample
from a proposal distribution q(xt+1|xt) and accept xt+1 with the following probability

A(xt+1, xt) = min(1, p(x
t+1)q(xt|xt+1)

p(xt)q(xt+1|xt) ) (2.7.7)

In representation learning, MCMC has a great importance. Most MRF models, such as
RBMs, DBMs and DBNs require MCMC in the inner loop of learning.

27





Chapter 3

LEARNING VISUAL REPRESENTATIONS

3.1. The computer vision challenge
What is “computer vision” in the scope of this thesis? To answer this question, one

may be aware of a related field called “computer graphics”, where physical processes are
being studied in order to generate realistic pictures and movies. Computer vision refers to
the inverse process where higher level semantics, such as object’s location and identity, are
being computed from the visual inputs. It is sometimes easy to confuse “computer vision”
with the classical term “digital image processing” where much emphasis is put on obtaining,
transferring and storing images with substantial knowledge from signal processing.

Humans are remarkably adept at visual understanding while computers are far more
error-prone. In fact, a human is so good at it that the difficulty of the task is usually
underestimated. For instance in 1966, Marvin Minsky at MIT asked an undergraduate
student Gerald Jay Sussman to “spend a summer linking a camera to a computer and
describe what it saw” (Boden, 2006). And only recently in Krizhevsky et al. (2012b), the
computer managed to differentiate objects belonging to 1000 categories with a near-human
accuracy.

3.2. visual representations
It is more and more evident that the fundamental step of tackling any major computer

vision challenge such as segmentation, recognition and detection, is to come up with a
mathematical construct, often in the form of a scalar or a vector, to represent the object
of interest. In fact, the problem becomes much easier to solve if one could represent the
inputs in a way such that the direct mapping between the inputs and the outputs becomes
immediately apparent.

Finding such a good visual representation poses a fundamental challenge in computer
vision due to the complicated physical interaction among objects and their environment. As



a result, the appearance of an object is largely influenced by variations in viewpoint, illumi-
nation, scale, occlusion, background clutter, intra-class variations, and camera movements.
For instance, in figure 3.1, it is easy to distinguish the blue surgeon from the red clown by
representing them with only one scalar – the color. This representation, however, fails to
be invariant to the lighting change in the physical environment as any model based solely
on such a representation would mistakenly confuse fish (b) and (c) to be of different types.
Similarly, (e) would be very likely to require a different representation from (d) for the cat
to be successfully recognized from the background.

Furthermore, it is not only laborious but also difficult to program rules that are used
to extract representations. For instance, in Figure 3.1, it is not obvious to construct repre-
sentations that are reflective of emotions in (f) and (g), especially considering both images
contain extremely bright and dark pixel intensity.

(a) Blue surgeon fish (b) Clown fish (c) Clown fish

(d) Cat (e) Cat

(f) Cheerful (g) Sad

Fig. 3.1. A good representation is invariant to the physical interactions and
environmental changes such as (a) – (e). A good representation may not be
easily defined with handwritten rules such as (f) and (g).
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Therefore, the core of computer vision research lies upon the degree to which such a
universal challenge is addressed with respect to a wide range of applications. Admittedly,
the approach of designing representations that are tuned to a certain type of application
scales poorly with respect to the difficulty of computer vision tasks. A good representation
needs to be both computationally and statistically efficient.

To achieve this, traditional approaches rely heavily on domain expertise to hand-craft
representations that are typically localized and low-level. On the other hand, a more effective
approach is to learn such a semantically rich and high-level representation automatically from
raw inputs such as images and video frames. The latter is typically achieved by learning
with variants of neural networks with the help of carefully curated datasets. This PhD work
contributes directly to the second thread.

3.3. Traditional approaches
3.3.1. Image descriptors and encoding

The research in computer vision has produced a long history of crafting ingenious rep-
resentations in tackling challenging visual tasks. A brief history can be found in popular
textbooks such as Szeliski (2010); Forsyth and Ponce (2003) and more recently Prince (2012).
In the course of several decades of research, a commonly used pipeline has emerged and ma-

Fig. 3.2. Credit: http://www.learnopencv.com/. Classical computer vision
approach may be separated into several stages each of which has its particular
set of algorithms.

tured under various different application context. Such a “standard” pipeline is demonstrated
in Figure 3.2 with the important task of object recognition. Much effort has been devoted
to the feature extraction stage between preprocessing and learning. Viola and Jones (2001)
popularized the idea of applying simple and small detectors (such as HAAR wavelet) region
by region on the raw pixels in a sliding window fashion to detect faces. Following this idea,
Dalal and Triggs (2005) proposed HOG filters designed to compute pixel value gradients in
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the neighboring area and use the computed gradient map to represent pedestrians. To make
the computed feature invariant to geometric and photometric transformation, the map is
further evenly divided into small regions each of which is represented by its localized sum-
mary statistics in the format of a histogram. Histograms from different regions are further
concatenated to yield a representation of the entire image. Aggregation of summary from
different regions of an image has become a common theme in feature extraction. Among a
large family of techniques for visual feature extraction and description, the SIFT descriptor
in Lowe (1999) is among the most popular where additional heuristics are introduced to make
the final representation less susceptible to partial occlusion, uniform scaling, orientation and
illumination changes.

After feature extraction, the resulting representation is a concatenation of different num-
ber of local descriptors. For example, in SIFT, a local descriptor is typically a vector of
length 128, and the number of local descriptors varies from hundreds to thousands per im-
age. It is however highly desirable to represent each image by a vector of a fixed length to
facilitate the following stage where machine learning models are applied to perform higher-
level visual understanding tasks. To accomplish this, Fei-Fei and Perona (2005) borrow the
idea of “bag of words” representation of a document from natural language processing and
propose a “bag of visual words” for representing an image. The idea is illustrated in Figure
3.3.

Fig. 3.3. Credit: (Tsai, 2012). Bag of visual words representation for images.
Region-based descriptors are first clustered by k-means in (iii), followed by a
histogram where each bin is a cluster, the size of the bin being the number of
regional descriptors that fall within that cluster.

The final stage of the classical approach is composed of a learning module that operates
on the fixed-size vector. Such modules are usually a nonlinear model with limited model
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capacity as in Yang et al. (2009) or a linear model as in Wang et al. (2010). It is important
to note that the learning module does not learn the representation, but the mapping from
the representations to the targets.

3.3.2. Video descriptors and encoding

The classical approaches for video understanding follow a similar path as that for images.
Among descriptors designed specifically to capture spatio-temporal patterns, the optical
flow is among the most widely studied. Initially proposed by Horn and Schunck (1981);
Lucas et al. (1981) to capture movement of pixels across neighboring frames, it has been
improved over decades (Anandan, 1989; Sun et al., 2014). The current state-of-the-art action
recognition system relies heavily on neural networks trained on both raw pixels and the
optical flow as demonstrated in Simonyan and Zisserman (2014a); Ye et al. (2015); Wang
et al. (2015). In addition to optical flow, the work of Laptev (2005); Scovanner et al. (2007);
Willems et al. (2008) extends the core idea of SIFT to videos by computing spatial-temporal
interest points. The work of Klaser et al. (2008) extends HOF by computing pixel gradients in
its 3D neighborhood instead of 2D. By far, the best results on video understanding tasks are
still dominated by classical approaches such as dense trajectories in Wang et al. (2011); Wang
and Schmid (2013); Wang et al. (2015) combined with some variants of neural networks.

The vector is then summarized by k-means to represent the entire video. This is again
followed by a simple classifier to perform high-level video understanding tasks. The standard
k-means encoding used in both 2D and 3D classical pipeline has since been improved by more
advanced encoding techniques such as VLAD encoding in Jégou et al. (2010) and Fisher
vector encoding in Perronnin et al. (2010).

3.4. Learning-based approaches
3.4.1. Supervised learning of visual representation

The classical approach for understanding visual inputs typically incorporates some sim-
ple machine learning modules in its pipeline, such as the use of k-means for aggregating
local visual words and SVM for classifying visual words into higher-level concepts such as
the object’s identity and location, already illustrated by Figure 3.3 and Figure 3.2. Those
learning modules play critical roles in obtaining good performance. It is therefore not en-
tirely surprising that carefully extending learning into other traditional modules in such a
pipeline would further improve the performance. There has been plenty of evidence that
suggests this direction, especially in the realm of supervised learning with neural networks.
After the impressive object recognition results in Krizhevsky et al. (2012b), many challenging
problems in computer vision have been reexamined by incorporating neural networks that
are learnable. The results are outstanding.
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Convolutional neural networks have become the predominant model for object recognition
with more refined architectures such as Krizhevsky et al. (2012b); Szegedy et al. (2014);
Simonyan and Zisserman (2015); He et al. (2016). Similarly the collected work in object
detection in Sermanet et al. (2013); Girshick et al. (2014); Girshick (2015); Ren et al. (2015)
has overshadowed the conventional descriptor-based approaches. Models based on neural
networks share the same success in solving many other problems such as visual question
answering in Antol et al. (2015), semantic segmentation in Long et al. (2015); Ronneberger
et al. (2015); Milletari et al. (2016), visual captioning (Xu et al., 2015; Yao et al., 2015a),
scene recognition (Farabet et al., 2013; Zhou et al., 2014), action recognition (Simonyan and
Zisserman, 2014a; Ji et al., 2013). Chapter 5, 7 and 9 of this thesis also make contributions
in the supervised learning setup.

3.4.2. Unsupervised learning of visual representation

Unlike supervised learning where the primary goal is to engineer computer vision algo-
rithms to solve challenging tasks, the focus of unsupervised learning of visual representations
is more holistic, more far-reaching, and has been largely driven by perhaps one of the most
ambitious goals – understanding the visual functionality of the brain. A neural network in
this regard is the most natural choice to model the computational mechanism of the visual
cortex due to its massively parallel and distributed style to process information. A compre-
hensive view of neural networks and their connections with computational neuroscience is
beyond the scope of this thesis, but may be found in Dayan and Abbott (2003); Trappenberg
(2009); Sterratt et al. (2011).

Learning with linear and shallow neural networks. From a modelling point of
view, the last few decades have produced variants of neural networks that capture spatial
patterns in an unsupervised fashion. One fundamental idea for modelling natural images is
to represent them with a linear superposition of basic components. This is the case of neural
PCA in Baldi and Hornik (1989); Oja (1992) where the inputs are linearly transformed into
a subspace so that the resulting components are linearly independent. Similarly, neural ICA
algorithms in Karhunen et al. (1997); Hyvärinen and Oja (2000) find a new representation
of an input such that its components are as independent as possible. Such a process is re-
alized by linearly projecting inputs into a carefully learned basis. In Ranzato et al. (2007),
the idea of sparse coding (Olshausen and Field, 1996) is realized by using an auto-encoder
with regularization terms that encourage the sparsity in the linearly encoded representation.
Historically, PCA, ICA and sparse coding are solved by using heuristics other than neural
networks. It is however the marriage between neural networks and those classical princi-
ples that opened the possibility of extending the simple linear transformation used above
into nonlinear ones, which has proved to be a fundamental step in learning better visual
representations, as argued by Bengio et al. (2009); LeCun et al. (2015); Schmidhuber (2015).
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Learning with nonlinear and deep neural networks. Going beyond shallow and
linear models for unsupervised learning, neural networks share much of their properties with
directed graphical models such as Sigmoid Belief Networks in Saul et al. (1996), Variational
Auto-encoders in Kingma and Welling (2013), undirected graphical models such as Deep
Boltzmann Machines Salakhutdinov and Hinton (2009a) and Deep Belief Networks in Hinton
et al. (2006a). Compared with shallow and linear models, these models are typically more
difficult to train as training usually contains an inference component that is computationally
intractable and therefore requires approximations.

Recent trend. In the most recent years, the community has focused much of its at-
tention on developing deep and highly nonlinear models that either have a tractable log-
likelihood such as Deep Neural Autoregressive Density Estimator in Uria et al. (2013a), or
alternative estimators as in Generative Stochastic Networks in Bengio et al. (2014, 2013a).
Most recently, Generative Adversarial Networks (Goodfellow et al., 2014) have emerged as
an important principle to generate natural images as in Reed et al. (2016); Radford et al.
(2015), and videos of a few frames as in Vondrick et al. (2016). In addition, Recurrent Neural
Networks have found their broad application in generating both small images (Gregor et al.,
2015) and simple videos (Kalchbrenner et al., 2016; Srivastava et al., 2015a). A key compo-
nent in all these models is a deep neural network that is capable of capturing complicated
spatio-temporal correlation among visual inputs. Such a powerful component is trained by
standard backpropagation (LeCun et al., 2012). Compared with the classical approaches in
Section 5.2.3, neural networks are extremely flexible and powerful models that can be trained
to perform visual tasks. This, to some extent, reduces the amount of human intervention
and most importantly scales well across different types of tasks. It is particularly interesting
to see that over the years, other useful priors have emerged as new ways to learn visual
representations, including those that exploit the temporal smoothness prior and make frame
predictions in Mathieu et al. (2016); Lotter et al. (2017); Misra et al. (2016). Although not
directly trained to generate the entire video, these maximum log-likelihood alternatives find
their way in learning useful video representations. Chapter 14 discusses those most recent
developments at length.
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Chapter 4

PROLOGUE TO FIRST ARTICLE

4.1. Article Detail
Describing videos by exploiting temporal structure. Yao, Li and Torabi, Atousa

and Cho, Kyunghyun and Ballas, Nicolas and Pal, Christopher and Larochelle, Hugo and
Courville, Aaron. IEEE international conference on computer vision (ICCV), 2015.

Personal contribution. The making of the paper started with Dr. Torabi and I working
on separate video projects. The idea of applying the “soft-attention” on video frames became
obvious after the success of the image captioning model from Xu et al. (2015). Therefore
Prof. Courville, Dr. Ballas, Dr. Cho, Dr. Torabi and I all conceived the similar idea. After
Dr. Cho and I implemented it, I conducted experiments on both video captioning datasets
used in the paper. I wrote the initial draft with the help of Dr. Cho. The writing was
further improved drastically by everyone in the author list. In addition, Dr. Torabi made
a significant contribution to the development and training of the 3D Convolutional neural
networks, a model that provides frame-wise features to the attention-based LSTM.

4.2. Context
This work explores the possibility of generating natural language descriptions from videos,

with the description being a one-sentence English summary of the main content of a 10-
30 seconds video snippet. In addition, the progress in using recurrent neural networks
(RNNs) for image description has motivated the exploration of their application for video
description. However, while images are static, working with videos requires modeling their
dynamic temporal structure and then properly integrating that information into a natural
language description. In this context, we propose an approach that successfully takes into
account both the local and global temporal structure of videos to produce descriptions. First,
our approach incorporates a spatial temporal 3-D convolutional neural network (3-D CNN)
representation of the short temporal dynamics. The 3-D CNN representation is trained on
video action recognition tasks, so as to produce a representation that is tuned to human



motion and behavior. Second we propose a temporal attention mechanism that allows one
to go beyond local temporal modeling and learns to automatically select the most relevant
temporal segments given the text-generating RNN. Our approach exceeded the then state-
of-art for both BLEU and METEOR metrics on the Youtube2Text dataset. We also present
results on a new, larger and more challenging dataset of paired video and natural language
descriptions.

4.3. Contributions
This paper makes the following contributions in the context of bridging the gap of between

vision (in the form of videos) and language.
• It identifies two different types of temporal structure in videos, the local one and the
global one.
• It is the first paper to capture the local structure by using a 3D ConvNet that starts
from locally summarized descriptors instead of raw pixels to reduce the computational
complexity. All the previous work focused on training 3D ConvNet from raw pixels.
• It is the first paper to capture the global structure in videos by using soft-attention,
extending the previous work that applies mean-pooling on frames.
• By the time of this publication, this paper claimed the state-of-the-art results on
Youtube2Text, a widely used benchmark dataset for video captioning. And this
paper is among the first to include the result on the much more challenging Movie
Description dataset.
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Chapter 5

DESCRIBING VIDEOS BY EXPLOITING
TEMPORAL STRUCTURE

5.1. Introduction
The task of automatically describing videos containing rich and open-domain activities

poses an important challenges for computer vision and machine learning research. It also
has a variety of practical applications. For example, every minute, 100 hours of video are
uploaded to YouTube.1 However, if a video is poorly tagged, its utility is dramatically di-
minished (Morsillo et al., 2010). Automatic video description generation has the potential to
help improve indexing and search quality for online videos. In conjunction with speech syn-
thesis technology, annotating video with natural language descriptions also has the potential
to benefit the visually impaired.

While image description generation is already considered a very challenging task, the
automatic generation of video description carries additional difficulties. Simply dealing with
the sheer quantity of information contained in video data is one such challenge. Moreover,
video description involves generating a sentence to characterize a video clip lasting typically
5 to 10 seconds, or 120 to 240 frames. Often such clips contain complex interactions of actors
and objects that evolve over time. All together it amounts to a vast quantity of information,
and attempting to represent this information using a single, temporally collapsed feature
representation is likely to be prone to clutter, with temporally distinct events and objects
being potentially fused incoherently. It is therefore important that an automatic video
description generator exploit the temporal structure underlying video.

We argue that there are two categories of temporal structure present in video: (1) local
structure and (2) global structure. Local temporal structure refers to the fine-grained motion
information that characterizes punctuated actions such as “answering the telephone” or
“standing up”. Actions such as these are relatively localized in time, evolving over only a few
consecutive frames. On the other hand, when we refer to global temporal structure in video,
1https://www.youtube.com/yt/press/statistics.html accessed on 2015-02-06.
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A man is shooting a gun 

... ... 

Fig. 5.1. High-level visualization of our approach to video description gener-
ation. We incorporate models of both the local temporal dynamic (i.e. within
blocks of a few frames) of videos, as well as their global temporal structure.
The local structure is modeled using the temporal feature maps of a 3-D CNN,
while a temporal attention mechanism is used to combine information across
the entire video. For each generated word, the model can focus on different
temporal regions in the video. For simplicity, we highlight only the region
having the maximum attention above.

we refer to the sequence in which objects, actions, scenes and people, etc. appear in a video.
Video description may well be termed video summarization, because we typically look for
a single sentence to summarize what can be a rather elaborate sequence of events. Just as
good image descriptions often focus on the more salient parts of the image for description,
we argue that good video description systems should selectively focus on the most salient
features of a video sequence.

Recently, Venugopalan et al. (Venugopalan et al., 2015) used a so-called encoder–decoder
neural network framework (Cho et al., 2014) to automatically generate the description of a
video clip. They extracted appearance features from each frame of an input video clip using
a previously trained convolutional neural network (Krizhevsky et al., 2012b). The features
from all the frames, or subsampled frames, were then collapsed via simple averaging to result
in a single vector representation of the entire video clip. Due to this indiscriminate averaging
of all the frames, this approach risks ignoring much of the temporal structure underlying the
video clip. For instance, it is not possible to tell the order of the appearances of two objects
from the collapsed features.

In this paper, we introduce a temporal attention mechanism to exploit global temporal
structure. We also augment the appearance features with action features that encode local
temporal structure. Our action features are derived from a spatio-temporal convolutional
neural network (3-D CNN) (Tran et al., 2014; Karpathy et al., 2014; Ji et al., 2013). The
temporal attention mechanism is based on a recently proposed soft-alignment method (Bah-
danau et al., 2015) which was used successfully in the context of machine translation. While
generating a description, the temporal attention mechanism selectively focuses on a small
subset of frames, making it possible for the generator to describe only the objects and/or
activities in that subset (see Fig. 9.2 for the graphical illustration). Our 3-D CNN, on the
other hand, starts from both temporally and spatially local motion descriptors of video and
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hierarchically extracts more abstract action-related features. These features preserve and
emphasize important local structure embedded in video for use by the description generator.

We evaluate the effectiveness of the proposed mechanisms for exploiting temporal struc-
ture on the most widely used open-domain video description dataset, called the Youtube2Text
dataset (Chen and Dolan, 2011a), which consists of 1,970 video clips with multiple descrip-
tions per video. We also test the proposed approaches on a much larger, and more recently
proposed, dataset based on the descriptive video service (DVS) tracks in DVD movies (Torabi
et al., 2015), which contains 49,000 video clips.

Our work makes the following contributions: 1) We propose the use of a novel 3-D CNN-
RNN encoder-decoder architecture which captures local spatio-temporal information. We
find that despite the promising results generated by both prior work and our own here using
static frame CNN-RNN video description methods, our experiments suggest that it is indeed
important to exploit local temporal structure when generating a description of video. 2) We
propose the use of an attention mechanism within a CNN-RNN encoder-decoder framework
for video description and we demonstrate through our experiments that it allows features
obtained through the global analysis of static frames throughout the video to be used more
effectively for video description generation. Furthermore, 3) we observe that the improve-
ments brought by exploiting global and local temporal information are complimentary, with
the best performance achieved when both the temporal attention mechanism and the 3-D
CNN are used together.

5.2. Video Description Generation Using an Encoder–Decoder
Framework

In this section, we describe a general approach, based purely on neural networks to
generate video descriptions. This approach is based on the encoder-decoder framework (Cho
et al., 2014), which has been successfully used in machine translation (Sutskever et al., 2014;
Cho et al., 2014; Bahdanau et al., 2015) as well as image caption generation (Kiros et al.,
2014a; Donahue et al., 2014; Vinyals et al., 2014; Xu et al., 2015; Karpathy and Fei-Fei,
2014).

5.2.1. Encoder-Decoder Framework

The encoder-decoder framework consists of two neural networks; the encoder and the
decoder. The encoder network φ encodes the input x into a continuous-space representation
which may be a variable-sized set V = {v1, . . . ,vn} of continuous vectors:

V = {v1, . . . ,vn} = φ(x).
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The architecture choice for the encoder φ depends on the type of input. For example, in
the case of machine translation, it is natural to use a recurrent neural network (RNN) for
the encoder, since the input is a variable-length sequence of symbols (Sutskever et al., 2014;
Cho et al., 2014). With an image as input, a convolutional neural network (CNN) is another
good alternative (Xu et al., 2015).

The decoder network generates the corresponding output y from the encoder represen-
tation V . As was the case with the encoder, the decoder’s architecture must be chosen
according to the type of the output. When the output is a natural language sentence, which
is the case in automatic video description, an RNN is a method of choice.

The decoder RNN ψ runs sequentially over the output sequence. In brief, to generate an
output y, at each step t the RNN updates its internal state ht based on its previous internal
state ht−1 as well as the previous output yt−1 and the encoder representation V , and then
outputs a symbol yt:  yt

ht

 = ψ(ht−1, yt−1, V ) (5.2.1)

where for now we simply note as ψ the function updating the RNN’s internal state and
computing its output. The RNN is run recursively until the end-of-sequence symbol is
generated, i.e., yt = 〈eos〉.

In the remaining of this section, we detail choices for the encoder and decoder for a basic
automatic video description system, taken from (Venugopalan et al., 2015) and on which our
work builds.

5.2.2. Encoder: Convolutional Neural Network

Deep convolutional neural networks (CNNs) have recently been successful at large-scale
object recognition (Krizhevsky et al., 2012b; Szegedy et al., 2015). Beyond the object recog-
nition task itself, CNNs trained for object recognition have been found to be useful in a
variety of other computer vision tasks such as object localization and detection (see, e.g.,
(Sermanet et al., 2014)). This has opened a door to a flood of computer vision systems that
exploit representations from upper or intermediate layers of a CNN as generic high-level
features for vision. For instance, the activation of the last fully-connected layer can be used
as a fixed-size vector representation (Kiros et al., 2014a), or the feature map of the last
convolutional layer can be used as a set of spatial feature vectors (Xu et al., 2015).

In the case where the input is a video clip, an image-trained CNN can be used for each
frame separately, resulting in a single vector representation vi of the i-th frame.

This is the approach proposed by (Venugopalan et al., 2015), which used the convolutional
neural network from (Krizhevsky et al., 2012b). In our work here, we will also consider using
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the CNN from (Szegedy et al., 2015), which has demonstrated higher performance for object
recognition.

5.2.3. Decoder: Long Short-Term Memory Network

As discussed earlier, it is natural to use a recurrent neural network (RNN) as a decoder
when the output is a natural language sentence. This has been empirically confirmed in
the contexts of machine translation (Sutskever et al., 2014; Cho et al., 2014; Bahdanau
et al., 2015), image caption generation (Vinyals et al., 2014; Xu et al., 2015) and video
description generation in open (Venugopalan et al., 2015) and closed (Donahue et al., 2014)
domains. Among these recently successful applications of the RNN in natural language
generation, it is noticeable that most of them (Sutskever et al., 2014; Cho et al., 2014;
Bahdanau et al., 2015; Vinyals et al., 2014; Xu et al., 2015), if not all, used long short-
term memory (LSTM) units (Hochreiter and Schmidhuber, 1997b) or their variant, gated
recurrent units (GRU) (Cho et al., 2014). In this paper, we also use a variant of the LSTM
units, introduced in (Zaremba et al., 2014), as the decoder.

The LSTM decoder maintains an internal memory state ct in addition to the usual hidden
state ht of an RNN (see Eq. (5.2.1)). The hidden state ht is the memory state ct modulated
by an output gate:

ht = ot � ct,

where � is an element-wise multiplication. The output gate ot is computed by

ot = σ(WoE [yt−1] + Uoht−1 + Aoϕt(V ) + bo),

where σ is the element-wise logistic sigmoid function and ϕt is a time-dependent transforma-
tion function on the encoder features. Wo, Uo, Ao and bo are, in order, the weight matrices
for the input, the previous hidden state, the context from the encoder and the bias. E is a
word embedding matrix, and we denote by E [yt−1] an embedding vector of word yt−1.

The memory state ct is computed as a weighted sum between the previous memory state
ct−1 and the new memory content update c̃t:

ct = ft � ct−1 + it � c̃t,

where the coefficients – called forget and input gates respectively – are given by

ft = σ(WfE [yt−1] + Ufht−1 + Afϕt(V ) + bf ),

it = σ(WiE [yt−1] + Uiht−1 + Aiϕt(V ) + bi).
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The updated memory content c̃t also depends on the current input yt−1, previous hidden
state ht−1 and the features from the encoder representation ϕt(V ):

c̃t = tanh(WcE [yt−1] + Ucht−1 + Acϕt(V ) + bc).

Once the new hidden state ht is computed, a probability distribution over the set of
possible words is obtained using a single hidden layer neural network

pt = softmax(Up tanh(Wp[ht,ϕt(V ),E [yt−1]] + bp) + d), (5.2.2)

where Wp,Up,bp,d are the parameters of this network, [. . . ] denotes vector concatenation.
The softmax function allows us to interpret pt as the probabilities of the distribution p(yt |
y<t, V ) over words.

At a higher level, the LSTM decoder can be written down as
p(yt | y<t, V )

ht
ct

 = ψ(ht−1, ct−1, yt−1, V ). (5.2.3)

It is then trivial to generate a sentence from the LSTM decoder. For instance, one can
recursively evaluate ψ and sample from the returned p(yt | . . . ) until the sampled yt is the
end-of-sequence symbol. One can also approximately find the sentence with the highest
probability by using a simple beam search (Sutskever et al., 2014).

In (Venugopalan et al., 2015), Venugopalan et al. used this type of LSTM decoder for
automatic video description generation. However, in their work the feature transformation
function ϕt consisted in a simple averaging, i.e.,

ϕt(V ) = 1
n

n∑
i=1

vi, (5.2.4)

where the vi’s are the elements of the set V returned by the CNN encoder from Sec. 5.2.2.
This averaging effectively collapses all the frames, indiscriminate of their temporal relation-
ships, leading to the loss of temporal structure underlying the input video.

5.3. Exploiting Temporal Structure in Video Description Gen-
eration

In this section, we delve into the main contributions of this paper and propose an approach
for exploiting both the local and global temporal structure in automatic video description.

5.3.1. Exploiting Local Structure: A Spatio-Temporal Convolutional Neural
Net

We propose to model the local temporal structure of videos at the level of the temporal
features V = {v1, . . . ,vn} that are extracted by the encoder. Specifically, we propose to use
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Fig. 5.2. Illustration of the spatio-temporal convolutional neural network (3-D
CNN). This network is trained for activity recognition. Then, only the convolutional
layers are involved when generating video descriptions.

a spatio-temporal convolutional neural network (3-D CNN) which has recently been demon-
strated to capture well the temporal dynamics in video clips (Tran et al., 2014; Karpathy
et al., 2014).

We use a 3-D CNN to build the higher-level representations that preserve and summarize
the local motion descriptors of short frame sequences. This is done by first dividing the input
video clip into a 3-D spatio-temporal grid of 16×12×2 (width × height × timesteps) cuboids.
Each cuboid is represented by concatenating the histograms of oriented gradients, oriented
flow and motion boundary (HoG, HoF, MbH) (Dalal et al., 2006; Wang et al., 2009) with
33 bins. This transformation is done in order to make sure that local temporal structure
(motion features) are well extracted and to reduce the computation of the subsequence 3-D
CNN.

Our 3-D CNN architecture is composed of three 3-D convolutional layer, each followed by
rectified linear activations (ReLU) and local max-pooling. From the activation of the last 3-
D convolution+ReLU+pooling layer, which preserves the temporal arrangement of the input
video and abstracts the local motion features, we can obtain a set of temporal feature vectors
by max-pooling along the spatial dimensions (width and height) to get feature vectors that
each summarize the content over short frame sequences within the video. Finally, these
feature vectors are combined, by concatenation, with the image features extracted from
single frames taken at similar positions across the video. Fig. 5.2 illustrates the complete
architecture of the described 3-D CNN. Similarly to the object recognition trained CNN (see
Sec. 5.2.2), the 3-D CNN is pre-train on activity recognition datasets.
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Fig. 5.3. Illustration of the proposed temporal attention mechanism in the
LSTM decoder

5.3.2. Exploiting Global Structure: A Temporal Attention Mechanism

The 3-D CNN features of the previous section allows us to better represent short-duration
actions in a subset of consecutive frames. However, representing a complete video by aver-
aging these local temporal features as in Eq. 5.2.4 would jeopardize the model’s ability to
exploit the video’s global temporal structure.

Our approach to exploiting such non-local temporal structure is to let the decoder se-
lectively focus on only a small subset of frames at a time. By considering subsets of frames
in sequence, the model can exploit the temporal ordering of objects and actions across the
entire video clip and avoid conflating temporally disparate events. Our approach also has
the potential of allowing the model to focus on key elements of the video that may have
short duration. Methods that collapse the temporal structure risk overwhelming these short
duration elements.

Specifically, we propose to adapt the recently proposed soft attention mechanism from
(Bahdanau et al., 2015), which allows the decoder to weight each temporal feature vector
V = {v1, . . . ,vn}. This approach has been used successfully by Xu et al. (Xu et al., 2015)
for exploiting spatial structure underlying an image. Here, we thus adapt it to exploit the
temporal structure of video instead.

Instead of a simple averaging strategy (as shown in Eq. (5.2.4)), we take the dynamic
weighted sum of the temporal feature vectors such that

ϕt(V ) =
n∑
i=1

α
(t)
i vi,

where ∑n
i=1 α

(t)
i = 1 and α(t)

i ’s are computed at each time step t inside the LSTM decoder
(see Sec. 5.2.3). We refer to α(t)

i as the attention weights at time t.
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The attention weight α(t)
i reflects the relevance of the i-th temporal feature in the input

video given all the previously generated words, i.e., y1, . . . yt−1. Hence, we design a function
that takes as input the previous hidden state ht−1 of the LSTM decoder, which summarizes
all the previously generated words, and the feature vector of the i-th temporal feature and
returns the unnormalized relevance score e(t)

i :

e
(t)
i = w> tanh (Waht−1 + Uavi + ba) ,

where w, Wa, Ua and ba are the parameters that are estimated together with all the other
parameters of the encoder and decoder networks.

Once the relevance scores e(t)
i for all the frames i = 1, . . . ,n are computed, we normalize

them to obtain the α(t)
i ’s:

α
(t)
i = exp

{
e

(t)
i

}
/

n∑
j=1

exp
{
e

(t)
j

}
.

We refer to the attention mechanism as this whole process of computing the unnormalized
relevance scores and normalizing them to obtain the attention weights.

The attention mechanism allows the decoder to selectively focus on only a subset of frames
by increasing the attention weights of the corresponding temporal feature. However, we do
not explicitly force this type of selective attention to happen. Rather, this inclusion of the
attention mechanism enables the decoder to exploit the temporal structure, if there is useful
temporal structure in the data. Later in Sec. 5.5, we empirically show that this is indeed
the case. See Fig. 5.3 for the graphical illustration of the temporal attention mechanism.

5.4. Related Work
Video description generation has been investigated and studied in other work, such

as (Kojima et al., 2002; Barbu et al., 2012; Rohrbach et al., 2013). Most of these exam-
ples have, however, constrained the domain of videos as well as the activities and objects
embedded in the video clips. Furthermore, they tend to rely on hand-crafted visual repre-
sentations of the video, to which template-based or shallow statistical machine translation
approaches were applied. In contrast, the approach we take and propose in this paper aims
at open-domain video description generation with deep trainable models starting from low-
level video representations, including raw pixel intensities (see Sec. 5.2.2) and local motion
features (see Sec. 5.3.1).

In this sense, the approach we use here is more closely related to the recently introduced
static image caption generation approaches based mainly on neural networks (Kiros et al.,
2014a; Donahue et al., 2014; Vinyals et al., 2014; Xu et al., 2015; Karpathy and Fei-Fei,
2014). A neural approach to static image caption generation has recently been applied to
video description generation by Venugopalan et al. (Venugopalan et al., 2015). However,
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their direct adaptation of the underlying static image caption generation mechanism to the
videos is limited by the fact that the model tends to ignore the temporal structure of the
underlying video. Such structure has demonstrated to be helpful in the context of event and
action classification (Tang et al., 2012; Gaidon et al., 2013; Bojanowski et al., 2014), and
is explored in this paper. Other recent work (Rohrbach et al., 2015a) has explored the use
of DVS annotated video for video description research and has underscored the observation
that DVS descriptions are typically much more relevant and accurate descriptions of the
visual content of a video compared to movie scripts. They present results using both DVS
and script based annotations as well as cooking activities.

While other work has explored 3-D Deep Networks for video (Taylor et al., 2010; Ji et al.,
2013; Karpathy and Fei-Fei, 2014; Simonyan and Zisserman, 2014a) our particular approach
differs in a number of ways from prior work in that it is based on CNNs as opposed to other
3-D deep architectures and we focus on pre-training the model on a number of widely used
action recognition datasets. In contrast to other 3-D CNN formulations, the input to our
3-D CNN consists of features derived from a number of state of the art image descriptors.
Our model is also fully 3-D in that we model entire volumes across a video clip.

In this paper, we use a state-of-the-art static convolutional neural network (CNN) and a
novel spatio-temporal 3-D CNN to model input video clips. This way of modeling video using
feedforward convolutional neural networks, has become increasingly popular recently (Venu-
gopalan et al., 2015; Simonyan and Zisserman, 2014a; Tran et al., 2014). However, there
has also been a stream of research on using recurrent neural networks (RNN) for modeling
video clips. For instance, in (Srivastava et al., 2015a), Srivastava et al. propose to use
long short-term memory units to extract video features. Ranzato et al. in (Ranzato et al.,
2014) also models a video clip with an RNN, however, after vector-quantizing image patches
of the video clip. In contrast to other approaches such as (Donahue et al., 2014), which
have explored CNN-RNN coupled models for video description, here we use an attention
mechanism, use a 3-D CNN and focus on open-domain video description.

5.5. Experiments
We test the proposed approaches on two video-description corpora: Youtube2Text (Chen

and Dolan, 2011a) and DVS (Torabi et al., 2015). Implementations are available at https:
//github.com/yaoli/arctic-capgen-vid.

5.5.1. Datasets

5.5.1.1. Youtube2Text

The Youtube2Text video corpus (Chen and Dolan, 2011a) is well suited for training
and evaluating an automatic video description generation model. The dataset has 1,970
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video clips with multiple natural language descriptions for each video clip. In total, the
dataset consists of approximately 80,000 video / description pairs, with the vocabulary of
approximately 16,000 unique words. The dataset is open-domain and covers a wide range of
topics including sports, animals and music. Following (Venugopalan et al., 2015), we split
the dataset into a training set of 1,200 video clips, a validation set of 100 clips and a test set
consisting of the remaining clips.

5.5.1.2. DVS

The DVS dataset was recently introduced in (Torabi et al., 2015) with a much larger
number of video clips and accompanying descriptions than the existing video/description
corpora such as Youtube2Text. It contains video clips extracted from 92 DVD movies along
with semi-automatically transcribed descriptive video service (DVS) narrations. The dataset
consists of 49,000 video clips covering a wide variety of situations. We follow the standard
split of the dataset into a training set of 39,000 clips, a validation set of 5,000 clips and a
test set of 5,000 clips, as suggested by (Torabi et al., 2015).

5.5.2. Description Preprocessing

We preprocess the descriptions in both the Youtube2Text and DVS datasets with “word-
punct_tokenizer” from the NLTK toolbox.2. We did not do any other preprocessing such as
lowercasing and rare word elimination. After preprocessing, the numbers of unique words
were 15,903 for Youtube2Text and 17,609 for DVS Dataset.

5.5.3. Video Preprocessing

To reduce the computational and memory requirement, we only consider the first 240
frames of each video 3 For appearance features, (trained) 2-D GoogLeNet (Szegedy et al.,
2015) CNN is used to extract fixed-length representation (with the help of the popular
implementation in Caffe (Jia et al., 2014)). Features are extracted from the pool5/7x7_s1
layer. We select 26 equally-spaced frames out of the first 240 from each video and feed them
into the CNN to obtain a 1024 dimensional frame-wise feature vector. We also apply the
spatio-temporal 3-D CNN (trained as described in Sec. 5.5.4.2) in order to extract local
motion information4. When using 3-D CNN without temporal attention, we simply use
the 2500-dimensional activation of the last fully-connection layer. When we combine the
3-D CNN with the temporal attention mechanism, we leverage the last convolutional layer

2 http:/s/www.nltk.org/index.html
3 When the video clip has less than 240 frames, we pad the video with all-zero frames to make it into
240-frame long.
4 We perturb each video along three axes to form random crops by taking multiple 15 × 15 × 120 cuboids
out of the original 20 × 20 × 120 cuboids, and the final representation is the average of the representations
from these perturbed video clips.
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representation leading to 26 feature vectors of size 352. Those vector are contatenated with
the 2D CNN features resulting in 26 feature vectors with 1376 elements.

Tab. 5. I. Performance of different variants of the model on the Youtube2Text

Youtube2Text
Model BLEU METEOR CIDEr Perp.
Enc-Dec (Basic) 0.3869 0.2868 0.4478 33.09
+ Local (3-D CNN) 0.3875 0.2832 0.5087 33.42
+ Global (Temporal Attention) 0.4028 0.2900 0.4801 27.89
+ Local + Global 0.4192 0.2960 0.5167 27.55
Venugopalan et al. (Venugopalan et al., 2015) 0.3119 0.2687 - -
+ Extra Data (Flickr30k, COCO) 0.3329 0.2907 - -
Thomason et al. (Thomason et al., 2014) 0.1368 0.2390 - -

Tab. 5. II. Performance of different variants of the model on the DVS

DVS
Model BLEU METEOR CIDEr Perp.
Enc-Dec (Basic) 0.003 0.044 0.044 88.28
+ Local (3-D CNN) 0.004 0.051 0.050 84.41
+ Global (Temporal Attention) 0.003 0.040 0.047 66.63
+ Local + Global 0.007 0.057 0.061 65.44

5.5.4. Experimental Setup

5.5.4.1. Models

We test four different model variations for video description generation based on the
underlying encoder-decoder framework, with results presented in Table 5. I and Table 5. II.
Enc-Dec (Basic) denotes a baseline incorporating neither local nor global temporal structure.
Is it based on an encoder using the 2-D GoogLeNet CNN (Szegedy et al., 2015) as discussed
in Section 5.2.2 and the LSTM-based decoder outlined in Section 5.2.3. Enc-Dec + Local
incorporates local temporal structure via the integration of our proposed 3-D CNN features
(as outlined in Section 5.3.1) with the 2-D GoogLeNet CNN features as described above.
Enc-Dec + Global adds the temporal attention mechanism of Section 5.3.2. Finally, Enc-Dec
+ Local + Global incorporates both the 3-D CNN and the temporal attention mechanism
into the model.

All models otherwise use the same number of temporal features vi. These experiments
will allow us to investigate whether the contributions from the proposed approaches are
complimentary and can be combined to further improve performance.
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5.5.4.2. Training

For all video description generation models, we estimated the parameters by maximizing
the log-likelihood:

L(θ) = 1
N

N∑
n=1

tn∑
i=1

log p(yni | yn<i,xn,θ),

where there are N training video-description pairs (xn, yn), and each description yn is tn
words long.

We used Adadelta (Zeiler, 2012) with the gradient computed by the backpropagation
algorithm. We optimized the hyperparameters (e.g. number of LSTM units and the word
embedding dimensionality) using random search to maximize the log-probability of the val-
idation set. 5 Training continued until the validation log-probability stopped increasing for
5,000 updates. As mentioned earlier in Sec. 5.3.1, the 3-D CNN was trained on activity
recognition datasets. Due to space limitation, details regarding the training and evaluation
of the 3-D CNN on activity recognition datasets are provided in the Supplementary Material.

5.5.4.3. Evaluation

We report the performance of our proposed method using test set perplexity and three
model-free automatic evaluation metrics. These are BLEU (Papineni et al., 2002), ME-
TEOR (Denkowski and Lavie, 2014) and CIDEr (Vedantam et al., 2014). We use the eval-
uation script prepared and introduced in (Chen et al., 2015).

5.5.5. Quantitative Analysis

In the first block of Table 5. I and Table 5. II, we present the performance of the
four different variants of the model using all four metrics: BLEU, METEOR, CIDEr and
perplexity. Subsequent lines in the table give comparisons with prior work. The first three
rows (Enc-Dec (Basic), +Local and +Global), show that it is generally beneficial to exploit
some type of temporal structure underlying the video. Although this benefit is most evident
with perplexity (especially with the temporal attention mechanism exploiting global temporal
structure), we observe a similar trend with the other model-free metrics and across both
Youtube2Text and DVS datasets.

We observe, however, that the biggest gain can be achieved by letting the model exploit
both local and global temporal structure (the fourth row in Table 5. II and 5. I). We observed
this gain consistently across both datasets as well as using all four automatic evaluation
metrics.

5 Refer to the Supplementary Material for the selected hyperparameters.
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 +Local+Global:  A man and a woman are talking on the road

                    Ref:  A man and a woman ride a motorcycle

+Local+Global:  the girl grins at him
                   Ref:  SOMEONE and SOMEONE swap a look

+Local+Global:  Someone is frying a fish in a pot
             +Local:  Someone is frying something
           +Global:  The person is cooking
               Basic:  A man cooking its kitchen
                   Ref:  A woman is frying food

+Local+Global: as SOMEONE sits on the table,
                    SOMEONE shifts his gaze to SOMEONE
             +Local:  with a smile SOMEONE arrives
           +Global:  SOMEONE sits at a table
               Basic:  now, SOMEONE grins
                   Ref:  SOMEONE gaze at SOMEONE

Fig. 5.4. Four sample videos and their corresponding generated and ground-
truth descriptions from Youtube2Text (Left Column) and DVS (Right Col-
umn). The bar plot under each frame corresponds to the attention weight αti
for the frame when the corresponding word (color-coded) was generated. From
the top left panel, we can see that when the word “road” is about to be gen-
erated, the model focuses highly on the third frame where the road is clearly
visible. Similarly, on the bottom left panel, we can see that the model attends
to the second frame when it was about to generate the word “Someone”. The
bottom row includes alternate descriptions generated by the other model vari-
ations.

5.5.6. Qualitative Analysis

Although the model-free evaluation metrics such as the ones we used in this paper (BLEU,
METEOR, CIDEr) were designed to reflect the agreement level between reference and gen-
erated descriptions, it is not intuitively clear how well those numbers (see Table 5. II and
5. I) reflect the quality of the actual generated descriptions. Therefore, we present some of
the video clips and their corresponding descriptions, both generated and reference, from the
test set of each dataset. Unless otherwise labeled, the visualizations in this section are from
the best model which exploits both global and local temporal structure (the fourth row of
Table 5. II and 5. I).

In Fig. 5.4, two video clips from the test set of Youtube2Text are shown. We can clearly
see that the generated descriptions correspond well with the video clips. In Fig. 5.4, we show
also two sample video clips from the DVS dataset. Clearly, the model does not perform as
well on the DVS dataset as it did on Youtube2Text, which was already evident from the
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quantitative analysis in Sec. 5.5.5. However, we still observe that the model often focuses
correctly on a subset of frames according to the word to be generated. For instance, in the
left pane, when the model is about to generate the second “SOMEONE”, it focuses mostly
on the first frame. Also, on the right panel, the model correctly attends to the second frame
when the word “types” is about to be generated. As for the 3-D CNN local temporal features,
we see that they allowed to correctly identify the action as “frying”, as opposed to simply
“cooking”.

More samples of the video clips and the generated/reference descriptions can be found
in the Supplementary Material, including visualizations from the global temporal attention
model alone (see the third row in Table 5. I and Table 5. II).

5.6. Conclusion
In this work, we address the challenging problem of producing natural language descrip-

tions of videos. We identify and underscore the importance of capturing both local and
global temporal structure in addition to frame-wise appearance information. To this end,
we propose a novel 3-D convolutional neural network that is designed to capture local fine-
grained motion information from consecutive frames. In order to capture global temporal
structure, we propose the use of a temporal attentional mechanism that learns the ability to
focus on subsets of frames.

Finally, the two proposed approaches fit naturally together into an encoder-decoder neural
video caption generator.

We have empirically validated each approach on both Youtube2Text and DVS datasets
on four standard evaluation metrics. Experiments indicate that models using either approach
improve over the baseline model. Furthermore, combining the two approaches gives the best
performance. In fact, we achieved the state-of-the-art results on Youtube2Text with the
combination.

Given the challenging nature of the task, we hypothesize that the performance on the DVS
dataset could be significantly improved by incoporating another recently proposed dataset
(Rohrbach et al., 2015a) similar to the DVS data used here. In addition, we have some
preliminary experimental results that indicate that further performance gains are possible
by leveraging image caption generation datasets such as MS COCO (Chen et al., 2015) and
Flickr (Hodosh et al., 2013). We intend to more fully explore this direction in future work.
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Chapter 6

PROLOGUE TO SECOND ARTICLE

6.1. Article Detail
Oracle performance for visual captioning. Yao, Li and Ballas, Nicolas and Cho,

Kyunghyun and Smith, John R and Bengio, Yoshua. British Machine Vision Conference
(BMVC), 2015.

Personal contributions. The main idea of establishing the oracle performance was con-
ceived by me during my internship in IBM Watson Research. I wrote all the implementation
and most of the paper. Dr. Ballas suggested the experiments with corrupted atoms in the
experiment section. The writing of the paper received advice from everyone on the author
list.

6.2. Context
The work in Chapter 5, among others around the same time (see references in Section.

7.2.1), piqued the interest in the research community of video captioning. This work contin-
ues in this direction and study the broader concept of visual captioning that includes both
image and video captioning. It looks at the problem in a different angle and investigates the
following two hypotheses:

• The existing video captioning models perform well mainly due to the capacity of
modeling language.
• The performance of visual captioning models may be greatly improved by utilizing
better visual representations.

In fact, associating images and videos with a natural language description has attracted a
great amount of attention recently. The state-of-the-art results on some of the standard
datasets have been pushed into the regime where it has become more and more difficult
to make significant improvements. Instead of proposing new models, this work investigates
performances that an oracle can obtain. In order to disentangle the contribution of the
visual model from the language model, our oracle assumes that a high-quality visual concept



extractor is available and focuses only on the language part. We demonstrate the construction
of such oracles on MS-COCO, YouTube2Text and LSMDC (a combination of M-VAD and
MPII-MD). Surprisingly, despite the simplicity of the model and the training procedure, we
show that current state-of-the-art models fall short when being compared with the learned
oracle. Furthermore, it suggests the inability of current models in capturing important visual
concepts in captioning tasks.

6.3. Contributions
Before this publication, there had not been a systematic study of an empirical perfor-

mance upper bound on visual captioning systems. This work proposed to view any existing
system in two stages: visual atom (see definition in the paper) extraction from videos fol-
lowed by description generation from atoms. With this assumption, we are able to establish
an optimal performance by assuming the first stage is perfect. Such an oracle is used to
upper bound the current state of the art models. By comparing the performance with such
an oracle, one could quantitatively measure the effectiveness of any visual captioning system.
The experiments conducted in the paper further validate that both hypotheses are plausible.
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Chapter 7

ORACLE PERFORMANCE FOR VISUAL
CAPTIONING

7.1. Introduction
With standard datasets publicly available, such as COCO and Flickr (Lin et al., 2014;

Hodosh et al., 2013; Young, Lai, Hodosh, and Hockenmaier, Young et al.) in image caption-
ing, and YouTube2Text, MVAD and MPI-MD (Guadarrama et al., 2013; Torabi et al., 2015;
Rohrbach et al., 2015a) in video captioning, the field has been progressing in an astonishing
speed. For instance, the state-of-the-art results on COCO image captioning has been im-
proved rapidly from 0.17 to 0.31 in BLEU (Kiros et al., 2014b; Devlin et al., 2015; Donahue
et al., 2014; Vinyals et al., 2014; Xu et al., 2015; Mao et al., 2015; Karpathy and Fei-Fei,
2014; Bengio et al., 2015; Qi Wu et al., 2015). Similarly, the benchmark on YouTube2Text
has been repeatedly pushed from 0.31 to 0.50 in BLEU score (Rohrbach et al., 2013; Venu-
gopalan et al., 2015; Yao et al., 2015b; Venugopalan et al., 2015; Xu et al., 2015; Rohrbach
et al., 2015; Yu et al., 2015; Ballas et al., 2016).

While obtaining encouraging results, captioning approaches involve large networks, usu-
ally leveraging convolution network for the visual part and recurrent network for the language
side. It therefore results model with a certain complexity where the contribution of the dif-
ferent component is not clear.

Instead of proposing better models, the main objective of this work is to develop a method
that offers a deeper insight of the strength and the weakness of popular visual captioning
models. In particular, we propose a trainable oracle that disentangles the contribution of
the visual model from the language model.

To obtain such oracle, we follow the assumption that the image and video captioning task
may be solved with two steps (Rohrbach et al., 2013; Fang et al., 2015) . Consider the model
P (w|v) where v refers to usually high dimensional visual inputs, such as representations
of an image or a video, and w refers to a caption, usually a sentence of natural language
description. In order to work well, P (w|v) needs to form higher level visual concept, either



explicitly or implicitly, based on v in the first step, denoted as P (a|v), followed by a language
model that transforms visual concept into a legitimate sentence, denoted by P (w|a). a referes
to atoms that are visually perceivable from v.

The above assumption suggests an alternative way to build an oracle. In particular, we
assume the first step is close to perfect in the sense that visual concept (or hints) is observed
with almost 100% accuracy. And then we train the best language model conditioned on
hints to produce captions.

Using the proposed oracle, we compare the current state-of-the-art models against it,
which helps to quantify their capacity of visual modeling, a major weakness, apart from
the strong language modeling. In addition, when being applied on different datasets, the
oracle offers insight on the intrinsic difficulty and blessing of them, a general guideline when
designing new algorithms and developing new models. Finally, we also relax the assumption
to investigate the case where visual concept may not be realistically predicted with 100%
accuracy and demonstrate a quantity-accuracy trade-off in solving visual captioning tasks.

7.2. Related work
7.2.1. Visual captioning

The problem of image captioning has attracted a great amount of attention lately. Early
work focused on constructing linguistic templates or syntactic trees based on a set of concept
from visual inputs (Kuznetsova et al., 2012; Mitchell et al., 2012; Kulkarni et al., 2013).
Another popular approach is based on caption retrieval in the embedding space such as Kiros
et al. (2014b); Devlin et al. (2015). Most recently, the use of language models conditioned on
visual inputs have been widely studied in the work of Fang et al. (2015) where a maximum
entropy language model is used and in Donahue et al. (2014); Vinyals et al. (2014); Xu
et al. (2015); Mao et al. (2015); Karpathy and Fei-Fei (2014) where recurrent neural network
based models are built to generate natural language descriptions. The work of Devlin et al.
(2015) suggests to combine both types of language models. Furthermore, CIDEr (Vedantam
et al., 2014) was proposed as an alternative evaluation metric for image captioning and is
shown to be more advantageous compared with BLEU and METEOR. To further improve
the performance, Bengio et al. (2015) suggests a simple sampling algorithm during training,
which was one of the winning recipes for MSR-COCO Captioning challenge 1, and Jia et al.
(2015) suggests the use of extra semantic information to guide the language generation
process.

Similarly, video captioning has made substantial progress recently. Early models such as
Kojima et al. (2002); Barbu et al. (2012); Rohrbach et al. (2013) tend to focus on constrained
domains with limited appearance of activities and objects in videos. They also rely heavily
1http://mscoco.org
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on hand-crafted video features, followed by a template-based or shallow statistical machine
translation approaches to produce captions. Borrowing success from image captioning, re-
cent models such as Venugopalan et al. (2015); Donahue et al. (2014); Yao et al. (2015b);
Venugopalan et al. (2015); Xu et al. (2015); Rohrbach et al. (2015); Yu et al. (2015) and
most recently Ballas et al. (2016) have adopted a more general encoder-decoder approach
with end-to-end parameter tuning. Videos are input into a specific variant of encoding neural
networks to form a higher level visual summary, followed by a caption decoder by recurrent
neural networks. Training such type of models are possible with the availability of three
relatively large scale datasets, one collected from YouTube by Guadarrama et al. (2013),
the other two constructed based on Descriptive Video Service (DVS) on movies by Torabi
et al. (2015) and Rohrbach et al. (2015a). The latter two have recently been combined as
the official dataset for Large Scale Movie Description Challenge (LSMDC) 2.

7.2.2. Capturing higher-level visual concept

The idea of using intermediate visual concept to guide the caption generation has been
discussed in Qi Wu et al. (2015) in the context of image captioning and in Rohrbach et al.
(2015) for video captioning. Both work trained classifiers on a predefined set of visual
concepts, extracted from captions using heuristics from linguistics and natural language
processing. Our work resembles both of them in the sense that we also extract similar
constituents from captions. The purpose of this study, however, is different. By assuming
perfect classifiers on those visual atoms, we are able to establish the performance upper
bounds for a particular dataset. Note that a simple bound is suggested by Rohrbach et al.
(2015) where METEOR is measured on all the training captions against a particular test
caption. The largest score is picked as the upper bound. As a comparison, our approach
constructs a series of oracles that are trained to generate captions given different number
of visual hints. Therefore, such bounds are clear indication of models’ ability of capturing
concept within images and videos when performing caption generation, instead of the one
suggested by Rohrbach et al. (2015) that performs caption retrieval.

7.3. Oracle Model
The construction of the oracle is inspired by the observation that P (w|v) = ∑

a Pθ(w|a)P (a|v)
where w = {w1, . . . ,wt} denotes a caption containing a sequence of words having a length
t. v denotes the visual inputs such as an image or a video. a denotes visual concepts which
we call “atoms”. We have explicitly factorized the captioning model P (w|v) into two parts,
P (w|a), which we call the conditional language model given atoms, and P (a|v), which we
call conditional atom model given visual inputs. To establish the oracle, we assume that the

2https://goo.gl/2hJ4lw
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atom model is given, which amounts to treat P (a|v) as a Dirac delta function that assigns
all the probability mass to the observed atom a. In other words, P (w|v) = Pθ(w|a).

Therefore, with the fully observed a, the task of image and video captioning reduces
to the task of language modeling conditioned on atoms. This is arguably a much easier
task compared with the direct modeling of P (w|v), therefore a well-trained model could
be treated as a performance oracle of it. Information contained in a directly influences the
difficulty of modeling Pθ(w|a). For instance, if no atoms are available, Pθ(w|a) reduces to
unconditional language modeling, which could be considered as a lower bound of P (w|v).
By increasing the amount of information a carries, the modeling of Pθ(w|a) becomes more
and more straightforward.

7.3.1. Oracle Parameterization

Given a set of atoms a(k) that summarize the visual concept appearing in the visual
inputs v, this section describes the detailed parameterization of the model Pθ(w|a(k)) with
θ denoting the overall parameters. In particular, we adopt the commonly used encoder-
decoder framework (Cho et al., 2014) to model this conditional based on the following simple
factorization Pθ(w|a(k)) = ∏T

t=1 Pθ(wt|w<t,a(k)).
Recurrent neural networks (RNNs) are natural choices when outputs are identified as

sequences. We borrow the recent success from a variant of RNNs called Long-short term
memory networks (LSTMs) first introduced in Hochreiter and Schmidhuber (1997a), formu-
lated as the following

p(wt | w<t, a(k)))
ht
ct

 = ψ(ht−1, ct−1,wt−1, a(k)), (7.3.1)

where ht and ct represent the RNN state and memory of LSTMs at timestep t respectively.
Combined with the atom representation, Eq. (7.3.1) is implemented as following

ft = σ(WfEw [wt−1] + Ufht−1 + AfΦ(a(k)) + bf ),

it = σ(WiEw [wt−1] + Uiht−1 + AiΦ(a(k)) + bi),

ot = σ(WoEw [wt−1] + Uoht−1 + AoΦ(a(k)) + bo),

c̃t = tanh(WcEw [wt−1] + Ucht−1 + AcΦ(a(k)) + bc),

ct = ft � ct−1 + it � c̃t,

ht = ot � ct,

where Ew denotes the word embedding matrix, as apposed to the atom embedding matrix
Ea, W, U, A and b are parameters of the LSTM. With the LSTM’s state ht, the probability
of the next word in the sequence is pt = softmax(Up tanh(Wpht + bp) + d) with parameters

60



Up, Wp, bp and d. The overall training criterion of the oracle is

θ = arg max
θ

Uk(θ) = log
N∏
n=1

Pθ(w(n)|a(n,k)) =
N∑
n=1

T∑
t=1

logPθ(w(n)
t |w

(n)
<t , a(n,k)), (7.3.2)

given N training pairs (w(n), a(n,k)). θ represents parameters in the LSTM.

7.3.2. Atoms Construction

Each configuration of a may be associated with a different distribution Pθ(w|a), therefore
a different oracle model. We define configuration as an orderless collection of unique atoms.
That is, a(k) = {a1, . . . , ak} where k is the size of the bag and all items in the bag are different
from each other. Considering the particular problem of image and video captioning, atoms
are defined as words in captions that are most related to actions, entities, and attributes of
entities (in Figure 7.1). The reason of using these three particular choices of language com-
ponents as atoms is not an arbitrary decision. It is reasonable to consider these three types
among the most visually perceivable ones when human describes visual content in natural
language. We further verify this by conducting a human evaluation procedure to identify
“visual” atoms from this set and show that a dominant majority of them indeed match
human visual perception, detailed in Section 7.5.1. Being able to capture these important
concepts is considered as crucial in getting superior performance. Therefore, comparing the
performance of existing models against this oracle reveals their ability of capturing atoms
from visual inputs when P (a|v) is unknown.

A set of atoms a(k) is treated as “a bag of words”. As with the use of word embedding
matrix in neural language modeling (Bengio et al., 2003), the ith atom a(k)

i is used to
index the atom embedding matrix Ea[a(k)

i ] to obtain a vector representation of it. Then the
representation of the entire set of atoms is Φ(a(k)) = ∑k

i=1 Ea[a(k)
i ].

7.4. Contributing factors of the oracle
The formulation of Section 7.3 is generic, only relying on the assumption the two-step

visual captioning process, independent of the parameterization in Section 7.3.1. In practice,
however, one needs to take into account several contributing factors to the oracle.

Firstly, atoms, or visual concepts, may be defined as 1-gram words, 2-gram phrases and
so on. Arguably a mixture of N-gram representations has the potential to capture more
complicated correlations among visual concepts. For simplicity, this work uses only 1-gram
representations, detailed in Section 7.5.1. Secondly, the procedure used to extract atoms
needs to be reliable, extracting mainly visual concepts, leaving out non-visual concepts. To
ensure this, the procedure used in this work is verified with human evaluation, detailed in
7.5.1. Thirdly, the modeling capacity of the conditional language Pθ(w|a(k)) has a direct
influence on the obtained oracle. Section 7.3.1 has shown one example of many possible
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parameterizations. Lastly, the oracle may be sensitive to the training procedure and its
hyper-parameters (see Section 7.5.2).

While it is therefore important to keep in mind that proposed oracle conditions on the
above factors, quite surprisingly, however, with the simplest procedure and parameterization
we show in the experimental section that oracle serves their purpose reasonably well.

7.5. Experiments
We demonstrate the procedure of learning the oracle on three standard visual captioning

datasets. MS COCO (Lin et al., 2014) is the most commonly used benchmark dataset in
image captioning. It consists of 82,783 training and 40,504 validation images. each image
accompanied by 5 captions, all in one sentence. We follow the split used in Xu et al. (2015)
where a subset of 5,000 images are used as validation, and another subset of 5,000 images
are used for testing. YouTube2Text is the most commonly used benchmark dataset in
video captioning. It consists of 1,970 video clips, each accompanied with multiple captions.
Overall, there are 80,000 video and caption pairs. Following Yao et al. (2015b), it is split into
1,200 clips for training, 100 for validation and 670 for testing. Another two video captioning
datasets have been recently introduced in Torabi et al. (2015) and Rohrbach et al. (2015a).
Compared with YouTube2Text, they are both much larger in the number of video clips, most
of which are associated with one or two captions. Recently they are merge together for Large
Scale Movie Description Challenge (LSMDC). 3 We therefore name this particular dataset
LSMDC. The official splits contain 91,908 clips for training, 6,542 for validation and 10,053
for testing.

7.5.1. Atom extraction

Visual concepts in images or videos are summarized as atoms that are provided to the
caption language model. They are split into three categories: actions, entities, and attributes.
To identify these three classes, we utilize Stanford natural language parser 4 to automatically
extract them. After a caption is parsed, we apply simple heuristics based on the tags
produced by the parser, ignoring the phrase and sentence level tags 5: Use words tagged with
{“NN”, “NNP”, “NNPS” ,“NNS”, “PRP”} as entity atoms. Use words tagged with {“VB”,
“VBD”, “VBG”, “VBN”, “VBP”, “VBZ”} as action atoms. Use words tagged with {“JJ”,
“JJR”, “JJS”} as attribute atoms. After atoms are identified, they are lemmatized with
NLTK lemmatizer 6 to unify them to their original dictionary format 7. Figure 7.1 illustrates
some results. We extracted atoms for COCO, YouTube2Text and LSMDC. This gives 14,207
3https://goo.gl/2hJ4lw
4http://goo.gl/lSvPr
5complete list of tags: https://goo.gl/fU8zDd
6http://www.nltk.org/
7available at https://goo.gl/t7vtFj
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Fig. 7.1. Given ground truth captions, three categories of visual atoms (en-
tity, action and attribute) are automatically extracted using NLP Parser.
“NA” denotes the empty atom set.

entities, 4,736 actions and 8,671 attributes for COCO, 6,922 entities, 2,561 actions, 2,637
attributes for YouTube2Text, and 12,895 entities, 4,258 actions, 8550 attributes for LSMDC.
Note that although the total number of atoms of each categories may be large, atom frequency
varies. In addition, the language parser does not guarantee the perfect tags. Therefore, when
atoms are being used in training the oracle, we sort them according to their frequency and
make sure to use more frequent ones first to also give priority to atoms with larger coverage,
detailed in Section 7.5.2 below.

We conducted a simple human evaluation 8 to confirm that extracted atoms are indeed
predominantly visual. As it might be impractical to evaluate all the extracted atoms for all
three datasets, we focus on top 150 frequent atoms. This evaluation intends to match the
last column of Table 7. II where current state-of-the-art models have the equivalent capacity
of capturing perfectly less than 100 atoms from each of three categories. Subjects are asked
to cast their vote independently. The final decision of an atom being visual or not is made
by majority vote. Table 7. I shows the ratio of atoms flagged as visual by such procedure.

Tab. 7. I. Human evaluation of proportion of atoms that are voted as visual.
It is clear that extracted atoms from three categories contain dominant amount
of visual elements, hence verifying the procedure described in Section 7.3.2.
Another observation is that entities and actions tend to be more visual than
attributes according to human perception.

entities actions attributes
COCO 92% 85% 81%
YouTube2Text 95% 91% 72%
LSMDC 83% 87% 78%

8details available at https://goo.gl/t7vtFj
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7.5.2. Training

After the atoms are extracted, they are sorted according to the frequency they appear
in the dataset, with the most frequent one leading the sorted list. Taking first k items from
this list gives the top k most frequent ones, forming a bag of atoms denoted by a(k) where
k is the size of the bag. Conditioned on the atom bag, the oracle is maximized as in Equ
(7.3.2).

To form captions, we used a vocabulary of size 20k, 13k and 25k for COCO, YouTube2Text
and LSMDC respectively. For all three datasets, models were trained on training set with
different configuration of (1) atom embedding size, (2) word embedding size and (3) LSTM
state and memory size. To avoid overfitting we also experimented weight decay and Dropout
(Hinton et al., 2012b) to regularize the models with different size. In particular, we exper-
imented with random hyper-parameter search by Bergstra and Bengio (2012) with range
[128, 1024] on (1), (2) and (3). Similarly we performed random search on the weight decay
coefficient with a range of [10−6, 10−2], and whether or not to use dropout. Optimization was
performed by SGD, minibatch size 128, and with Adadelta (Zeiler, 2012) to automatically
adjust the per-parameter learning rate. Model selection was done on the standard validation
set, with an early stopping patience of 2,000 (early stop if no improvement made after 2,000
minibatch updates). We report the results on the test splits.

7.5.3. Interpretation

All three metrics – BLEU, METEOR and CIDER are computed with Microsoft COCO
Evaluation Server (Chen et al., 2015). Figure 7.2 summarizes the learned oracle with an
increasing number of k.

7.5.3.1. comparing oracle performance with existing models

We compare the current state-of-the-art models’ performance against the established
oracles in Figure 7.2. Table 7. II shows the comparison on three different datasets. With
Figure 7.2, one could easily associate a particular performance with the equivalent number of
atoms perfectly captured across all 3 atom categories, as illustrated in Table 7. II, the oracle
included in bold. It is somehow surprising that state-of-the-art models have performance
that is equivalent to capturing only a small amount of “ENT” and “ALL”. This experiment
highlights the shortcoming of the state-of-art visual models. By improving them, we could
close the performance gap that we currently have with the oracles.

7.5.3.2. quantify the diminishing return

As the number of atoms k in a(k) increases, one would expect the oracle to be improved
accordingly. It is however not yet clear the speed of such improvement. In other words, the
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Fig. 7.2. Learned oracle on COCO (left), YouTube2Text (middle) and
LSMDC (right). The number of atoms a(k) is varied on x-axis and oracles
are computed on y-axis on testsets. The first row shows the oracles on BLEU
and METEOR with 3k atoms, k from each of the three categories. The second
row shows the oracles when k atoms are selected individually for each cate-
gory. CIDEr is used for COCO and YouTube2Text as each test example is
associated with multiple ground truth captions, argued in (Vedantam et al.,
2014). For LSMDC, METEOR is used, as argued by Rohrbach et al. (2015).

gain in performance may not be proportional to the number of atoms given when generating
captions, due to atom frequencies and language modeling. Figure 7.2 quantifies this effect.
The oracle on all three datasets shows a significant gain at the beginning and diminishes
quickly as more and more atoms are used.

Row 2 of Figure 7.2 also highlights the difference among actions, entities and attributes
in generating captions. For all three datasets tested, entities played much more important
roles, even more so than action atoms in general. This is particularly true on LSMDC where
the gain of modeling attributes is much less than the other two categories.

Although visual atoms dominant the three atom categories shown in Section 7.5.1, as
they increase in number, more and more non-visual atoms may be included, such as “living”,
“try”, “find” and “free” which are relatively difficult to be associated with a particular part
of visual inputs. Excluding non-visual atoms in the conditional language model can further
tighten the oracle bound as less hints are provided to it. The major difficulty lies in the labor
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Tab. 7. II.
Measure semantic capacity of current state-of-the-art models. One could easily
map the reported metric to the number of visual atoms captured. This estab-
lishes an equivalence between a model, the proposed oracle and a model’s
semantic capacity. (“ENT” for entities. “ACT” for actions. “ATT” for at-
tributes. “ALL” for all three categories combined. “B1” for BLEU-1, “B4” for
BLEU-4. “M” for METEOR. “C” for CIDEr. Note that the CIDEr is between
0 and 10. The learned oracle is denoted in bold.

B1 B4 M C ENT ACT ATT ALL

COCO 0.74
0.80

0.31
0.35

0.26
0.30

0.94
1.4 ∼200 ∼2100 >4000 ∼ 50

YouTube2Text 0.815
0.88

0.499
0.58

0.326
0.40

0.658
1.2 ∼60 ∼500 >1900 ∼ 20

LSMDC N/A
0.45

N/A
0.12

0.07
0.22

N/A
N/A ∼40 ∼50 ∼4000 ∼10

of hand-separating visual atoms from non-visual ones as to the our best knowledge this is
difficult to automate with heuristics.

7.5.3.3. atom accuracy versus atom quantity

We have assumed that the atoms are given, or in other words, the prediction accuracy
of atoms is 100%. In reality, one would hardly expect to have a perfect atom classifier.
There is naturally a trade-off between number of atoms one would like to capture and the
prediction accuracy of it. Figure 7.3 quantifies this trade-off on COCO and LSMDC. It also
indicates the upper limit of performance given different level of atom prediction accuracy.
In particular, we have replaced a(k) by â(k)

r where r portion of a(k) are randomly selected
and replaced by other randomly picked atoms not appearing in a(k). The case of r = 0
corresponds to those shown in Figure 7.2. And the larger the ratio r, the worse the assumed
atom prediction is. The value of r is shown in the legend of Figure 7.3. According to
the figure, in order to improve the caption generation score, one would have two options,
either by keeping the number of atoms fixed while improving the atom prediction accuracy
or by keeping the accuracy while increasing the number of included atoms. As state-of-art
visual model already model around 1000 atoms, we hyphotesize that we could gain more in
improving the atoms accuracy rather than increase the number of atom detected by those
models.

7.5.3.4. intrinsic difficulties of particular datasets

Figure 7.2 also reveals the intrinsic properties of each dataset. In general, the bounds
on YouTube2Text are much higher than COCO, with LSMDC the lowest. For instance,
from the first column of the figure, taking 10 atoms respectively, BLUE-4 is around 0.15 for
COCO, 0.30 for YouTube2Text and less than 0.05 for LSMDC. With little visual information
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Fig. 7.3. Learned oracles with different atom precision (r in red) and atom
quantity (x-axis) on COCO (left) and LSMDC (right). The number of atoms
â(k)
r is varied on x-axis and oracles are computed on y-axis on testsets. CIDEr

is used for COCO and METEOR for LSMDC. It shows one could increase the
score by either improving P (a(k)|v) with a fixed k or increase k. It also shows
the maximal error bearable for different score.

to condition upon, a strong language model is required, which makes a dramatic difference
across three datasets. Therefore the oracle, when compared across different datasets, offer
an objective measure of difficulties of using them in the captioning task.

7.6. Discussion
This work formulates oracle performance for visual captioning. The oracle is constructed

with the assumption of decomposing visual captioning into two consecutive steps. We have
assumed the perfection of the first step where visual atoms are recognized, followed by the
second step where language models conditioned on visual atoms are trained to maximize the
probability of given captions. Such an empirical construction requires only automatic atom
parsing and the training of conditional language models, without extra labeling or costly
human evaluation.

Such an oracle enables us to gain insight on several important factors accounting for
both success and failure of the current state-of-the-art models. It further reveals model
independent properties on different datasets. We furthermore relax the assumption of prefect
atom prediction. This sheds light on a trade-off between atom accuracy and atom coverage,
providing guidance to future research in this direction. Importantly, our experimental results
suggest that more efforts are required in step one where visual inputs are converted into visual
concepts (atoms).
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Despite its effectiveness shown in the experiments, the empirical oracle is constructed
with the simplest atom extraction procedure and model parameterization in mind, which
makes such a construction in a sense a “conservative” oracle.
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Chapter 8

PROLOGUE TO THIRD ARTICLE

8.1. Article Detail
Delving deeper into convolutional networks for learning video representations

Ballas, Nicolas and Yao, Li and Pal, Chris and Courville, Aaron, International Conference
on Learning Representations (ICLR), 2016.

Personal contributions. In the early days, Dr. Ballas and I experimented the idea of
using a convolutional LSTM to generate low-resolution movies and were able to obtain
decent amount of success (better than results reported in Srivastava et al. (2015a) with the
bouncing MNIST, unpublished). This leads to his idea of applying a convolutional LSTM
to learn a better video representation. We designed two sets of experiments to demonstrate
the effectiveness of the proposed model. I coded, ran and wrote one of them – the part on
video captioning, outperforming the state-of-the-art models at the time of this publication.
The remaining part of the paper was mainly written by Dr. Ballas while Prof. Courville and
I contributed in the polish.

8.2. Context
In Chapter 5, a standard LSTM is used as a decoder to generate languages. Chapter 7

further proves that a strong language decoder indeed plays a critical role in the standard
encoder-decoder pipeline, perhaps so strong that it overshadows the ineffectiveness of a video
encoder.

In seeking more effective video encoders, this work proposed an approach to learn spatio-
temporal features in videos from intermediate visual representations we call “percepts” using
Gated-Recurrent-Unit Recurrent Networks (GRUs). Our method relies on percepts that are
extracted from all levels of a deep convolutional network trained on the large ImageNet
dataset. While high-level percepts contain highly discriminative information, they tend to
have a low-spatial resolution. Low-level percepts, on the other hand, preserve a higher spatial
resolution from which we can model finer motion patterns.



Using low-level percepts, however, can lead to high-dimensionality video representations.
To mitigate this effect and control the number of parameters, we introduce a variant of the
GRU model that leverages the convolution operations to enforce sparse connectivity of the
model units and share parameters across the input spatial locations.

We empirically validate our approach on both Human Action Recognition and Video Cap-
tioning tasks. In particular, we achieve results equivalent to state-of-art on the YouTube2Text
dataset using a simpler caption-decoder model and without extra 3D CNN features.

8.3. Contributions
This is the very first paper that trains a convolutional LSTM on videos. Previous work

(see the references in Section 9.4) focused solely on applying a standard LSTM with fully
connected layer on either raw pixels across frames or higher-level representations of them.
The convolutional prior makes sense in videos as action patterns tend to appear locally in
both spatial and temporal dimensions. In addition, as is true for all convolutional models,
the number of parameters is greatly reduced. The in-depth analysis of its computational
complexity is available in Section 9.3.1.
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Chapter 9

DELVING DEEPER INTO CONVOLUTIONAL
NETWORKS FOR LEARNING VIDEO

REPRESENTATIONS

9.1. Introduction
Video analysis and understanding represents a major challenge for computer vision and

machine learning research. While previous work has traditionally relied on hand-crafted
and task-specific representations (Wang et al., 2011; Sadanand and Corso, 2012), there is a
growing interest in designing general video representations that could help solve tasks in video
understanding such as human action recognition, video retrieval or video captionning (Tran
et al., 2014).

Two-dimensional Convolutional Neural Networks (CNN) have exhibited state-of-art per-
formance in still image tasks such as classification or detection (Simonyan and Zisserman,
2014c). However, such models discard temporal information that has been shown to provide
important cues in videos (Wang et al., 2011). On the other hand, recurrent neural networks
(RNN) have demonstrated the ability to understand temporal sequences in various learning
tasks such as speech recognition (Graves and Jaitly, 2014) or machine translation (Bah-
danau et al., 2014). Consequently, Recurrent Convolution Networks (RCN) (Srivastava
et al., 2015b; Donahue et al., 2014; Ng et al., 2015) that leverage both recurrence and con-
volution have recently been introduced for learning video representation. Such approaches
typically extract “visual percepts” by applying a 2D CNN on the video frames and then feed
the CNN activations to an RNN in order to characterize the video temporal variation.

Previous works on RCNs has tended to focus on high-level visual percepts extracted from
the 2D CNN top-layers. CNNs, however, hierarchically build-up spatial invariance through
pooling layers (LeCun et al., 1998; Simonyan and Zisserman, 2014c) as Figure 9.2 highlights.
While CNNs tends to discard local information in their top layers, frame-to-frame temporal
variation is known to be smooth. The motion of video patches tend to be restricted to a
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Fig. 9.1. Visualization of convolutional maps on successive frames in video.
As we go up in the CNN hierarchy, we observe that the convolutional maps
are more stable over time, and thus discard variation over short temporal
windows.

local neighborhood (Brox and Malik, 2011). For this reason, we argue that current RCN
architectures are not well suited for capturing fine motion information. Instead, they are
more likely focus on global appearance changes such as shot transitions. To address this issue,
we introduce a novel RCN architecture that applies an RNN not solely on the 2D CNN top-
layer but also on the intermediate convolutional layers. Convolutional layer activations, or
convolutional maps, preserve a finer spatial resolution of the input video from which local
spatio-temporal patterns are extracted.

Applying an RNN directly on intermediate convolutional maps, however, inevitably re-
sults in a drastic number of parameters characterizing the input-to-hidden transformation
due to the convolutional maps size. On the other hand, convolutional maps preserve the
frame spatial topology. We propose to leverage this topology by introducing sparsity and
locality in the RNN units to reduce the memory requirement. We extend the GRU-RNN
model (Cho et al., 2014) and replace the fully-connected RNN linear product operation with
a convolution. Our GRU-extension therefore encodes the locality and temporal smoothness
prior of videos directly in the model structure.

We evaluate our solution on UCF101 human action recognition from Soomro et al. (2012)
as well as the YouTube2text video captioning dataset from Chen and Dolan (2011b). Our
experiments show that leveraging “percepts” at multiple resolutions to model temporal vari-
ation improves performance over our baseline model with respective gains of 3.4% for action
recognition and 10% for video captioning.
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9.2. GRU: Gated Recurrent Unit Networks
In this section, we review Gated-Recurrent-Unit (GRU) networks which are a particular

type of RNN. An RNN model is applied to a sequence of inputs, which can have variable
lengths. It defines a recurrent hidden state whose activation at each time is dependent
on that of the previous time. Specifically, given a sequence X = (x1,x2, ...,xT ), the RNN
hidden state at time t is defined as ht = φ(ht−1,xt), where φ is a nonlinear activation
function. RNNs are known to be difficult to train due to the exploding or vanishing gradient
effect (Bengio et al., 1994). However, variants of RNNs such as Long Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997a) or Gated Recurrent Units (GRU) (Cho et al.,
2014) have empirically demonstrated their ability to model long-term temporal dependency
in various task such as machine translation or image/video caption generation. In this paper,
we will mainly focus on GRU networks as they have shown similar performance to LSTMs
but with a lower memory requirement (Chung et al., 2014).

GRU networks allow each recurrent unit to adaptively capture dependencies of different
time scales. The activation ht of the GRU is defined by the following equations:

zt = σ(Wzxt + Uzht−1), (9.2.1)

rt = σ(Wrxt + Urht−1), (9.2.2)

h̃t = tanh(Wxt + U(rt � ht−1), (9.2.3)

ht = (1− zt)ht−1 + zth̃t, (9.2.4)

where � is an element-wise multiplication. zt is an update gate that decides the degree
to which the unit updates its activation, or content. rt is a reset gate. σ is the sigmoid
function. When a unit rit is close to 0, the reset gate forgets the previously computed state,
and makes the unit act as if it is reading the first symbol of an input sequence. h̃t is a
candidate activation which is computed similarly to that of the traditional recurrent unit in
an RNN.

9.3. Delving Deeper into Convolutional Neural Networks
This section delves into the main contributions of this work. We aim at leveraging visual

percepts from different convolutional levels in order to capture temporal patterns that occur
at different spatial resolution.

Let’s consider (x1
t , ...,xL−1

t ,xLt )(t=1..T ), a set of 2D convolutional maps extracted from L

layers at different time steps in a video. We propose two alternative RCN architectures,
GRU-RCN, and Stacked-GRU-RCN (illustrated in Figure 9.2) that combines information
extracted from those convolutional maps.
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Fig. 9.2. High-level visualization of our model. Our approach leverages con-
volutional maps from different layers of a pretrained-convnet. Each map is
given as input to a convolutional GRU-RNN (hence GRU-RCN) at different
time-step. Bottom-up connections may be optionally added between RCN
layers to form Stack-GRU-RCN.

9.3.1. GRU-RCN

In the first RCN architecture, we propose to apply L RNNs independently on each con-
volutional map. We define L RNNs as φ1, ...,φL, such that hlt = φl(xlt,hlt−1). The hidden
representation of the final time step h1

T , ...,hLT are then fed to a classification layer in the
case of action recognition, or to a text-decoder RNN for caption generation.

To implement the RNN recurrent function φl, we propose to leverage Gated Recurrent
Units (Cho et al., 2014). GRUs were originally introduced for machine translation. They
model input to hidden-state and hidden to hidden transitions using fully connected units.
However, convolutional map inputs are 3D tensors (spatial dimension and input channels).
Applying a GRU directly can lead to a drastic number of parameters. Let N1, N2 and Ox be
the input convolutional map spatial size and number of channels. Applying a GRU directly
would require input-to-hidden parameters Wl, Wl

z and Wl
r to be of size N1×N2×Ox×Oh

where Oh is the dimensionality of the GRU hidden representation.
Fully-connected GRUs do not take advantage of the underlying structure of convolutional

maps. Indeed, convolutional maps are extracted from images that are composed of patterns
with strong local correlation which are repeated over different spatial locations. In addition,
videos have smooth temporal variation over time, i.e. motion associated with a given patch
in successive frames will be restricted in a local spatial neighborhood. We embed such a
prior in our model structure and replace the fully-connected units in GRU with convolution
operations. We therefore obtain recurrent units that have sparse connectivity and share their
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parameters across different input spatial locations:

zlt = σ(Wl
z ∗ xlt + Ul

z ∗ hlt−1), (9.3.1)

rlt = σ(Wl
r ∗ xlt + Ul

r ∗ hlt−1), (9.3.2)

h̃lt = tanh(Wl ∗ xlt + U ∗ (rlt � hlt−1), (9.3.3)

hlt = (1− zlt)hlt−1 + zlth̃lt, (9.3.4)

where ∗ denotes a convolution operation. In this formulation, Model parameters W,Wl
z,Wl

r

and Ul,Ul
z,Ul

r are 2D-convolutional kernels. Our model results in hidden recurrent repre-
sentation that preserves the spatial topology, hlt = (hlt(i, j)) where hlt(i, j)) is a feature vector
defined at the location (i, j). To ensure that the spatial size of the hidden representation
remains fixed over time, we use zero-padding in the recurrent convolutions.

Using convolution, parameters Wl, Wl
z and Wl

r have a size of k1 × k2 ×Ox ×Oh where
k1 × k2 is the convolutional kernel spatial size (usually 3 × 3), chosen to be significantly
lower than convolutional map size N1 × N2. The candidate hidden representation h̃t(i,j),
the activation gate zk(i,j) and the reset gate rk(i,j) are defined based on a local neigborhood
of size (k1× k2) at the location(i, j) in both the input data xt and the previous hidden-state
ht−1. In addition, the size of receptive field associated with hl(i,j)t increases in the previous
presentation hlt−1,hlt−2... as we go back further in time. Our model is therefore capable of
characterizing spatio-temporal patterns with high spatial variation in time.

A GRU-RCN layer applies 6 2D-convolutions at each time-step (2 per GRU gate and
2 for computing the candidate activation). If we assume for simplicity that the input-
to-hidden and hidden-to-hidden convolutions have the same kernel size and perserve the
input dimension, GRU-RCN requires O(3TN1N2k1k2(OxOh+OhOh)) multiplications. GRU-
RCN sparse connectivity therefore saves computation compared to a fully-connected RNN
that would require O(3TN1N2N1N2(OxOh+OhOh)) computations. Memorywise, GRU-RCN
needs to store the parameters for all 6 convolutions kernels leading to O(3k1k2(OxOh+OhOh))
parameters.

9.3.2. Stacked GRU-RCN:

In the second RCN architecture, we investigate the importance of bottom-up connec-
tion across RNNs. While GRU-RCN applies each layer-wise GRU-RNN in an independent
fashion, Stacked GRU-RCN preconditions each GRU-RNN on the output of the previous
GRU-RNN at the current time step: hlt = φl(hlt−1,hl−1

t ,xlt). The previous RNN hidden
representation is given as an extra-input to the GRU convolutional units:

zll = σ(Wl
z ∗ xlt + Wl

zl ∗ hl−1
t + Ul

z ∗ hlt−1), (9.3.5)

rlt = σ(Wl
r ∗ xlt + Wl

rl ∗ hl−1
t + Ul

rhlt−1), (9.3.6)
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h̃lt = tanh(Wl ∗ xlt + Ul ∗ (rt � hlt−1)), (9.3.7)

hlt = (1− zlt)hlt−1 + zlth̃lt, (9.3.8)

Adding this extra-connection brings more flexibility and gives the opportunity for the model
to leverage representations with different resolutions.

9.4. Related Work
Deep learning approaches have recently been used to learn video representations and have

produced state-of-art results (Karpathy et al., 2014; Simonyan and Zisserman, 2014b; Wang
et al., 2015; Tran et al., 2014). Karpathy et al. (2014); Tran et al. (2014) proposed to use
3D CNN learn a video representations, leveraging large training datasets such as the Sport
1 Million. However, unlike image classification (Simonyan and Zisserman, 2014c), CNNs did
not yield large improvement over these traditional methods (Lan et al., 2014) highlighting the
difficulty of learning video representations even with large training dataset. Simonyan and
Zisserman (2014b) introduced a two-stream framework where they train CNNs independently
on RGB and optical flow inputs. While the flow stream focuses only on motion information,
the RGB stream can leverage 2D CNN pre-trained on image datasets. Based on the Two
Stream representation, (Wang et al., 2015) extracted deep feature and conducted trajectory
constrained pooling to aggregate convolutional feature as video representations.

RNN models have also been used to encode temporal information for learning video
representations in conjonction with 2D CNNs. (Ng et al., 2015; Donahue et al., 2014) applied
an RNN on top of the the two-stream framework, while (Srivastava et al., 2015b) proposed,
in addition, to investigate the benefit of learning a video representation in an unsupervised
manner. Previous works on this topic has tended to focus only on high-level CNN “visual
percepts”. In contrast, our approach proposes to leverage visual “percepts” extracted from
different layers in the 2D-CNN.

Recently, (Shi et al., 2015) also proposed to leverage convolutional units inside an RNN
network. However, they focus on different task (now-casting) and a different RNN model
based on an LSTM. In addition, they applied their model directly on pixels. Here, we use
recurrent convolutional units on pre-trained CNN convolutional maps, to extract temporal
pattern from visual “percepts” with different spatial sizes.

9.5. Experimentation
This section presents an empirical evaluation of the proposed GRU-RCN and Stacked

GRU-RCN architectures. We conduct experimentations on two different tasks: human action
recognition and video caption generation.
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9.5.1. Action Recognition

We evaluate our approach on the UCF101 dataset (Soomro et al., 2012). This dataset
has 101 action classes spanning over 13320 YouTube videos clips. Videos composing the
dataset are subject to large camera motion, viewpoint change and cluttered backgrounds.
We report results on the dataset UCF101 first split, as this is most commonly used split
in the literature. To perform proper hyperparameter seach, we use the videos from the
UCF-Thumos validation split (Jiang et al., 2014) as the validation set.

9.5.1.1. Model Architecture

In this experiment, we consider the RGB and flow representations of videos as inputs.
We extract visual “percept” using VGG-16 CNNs that consider either RGB or flow inputs.
VGG-16 CNNs are pretrained on ImageNet (Simonyan and Zisserman, 2014c) and fine-tuned
on the UCF-101 dataset, following the protocol in Wang et al. (2015). We then extract the
convolution maps from pool2, pool3, pool4, pool5 layers and the fully-connected map from
layer fc-7 (which can be view as a feature map with a 1 × 1 spatial dimension). Those
features maps are given as inputs to our RCN models.

We design and evaluate three RCN architectures for action recognition. In the first
RCN architecture, GRU-RCN, we apply 5 convolutional GRU-RNNs independently on each
convolutional map. Each convolution in the GRU-RCN has zero-padded 3× 3 convolutions
that preserves the spatial dimension of the inputs . The number of channels of each respective
GRU-RNN hidden-representations are 64, 128, 256, 256, 512. After the RCN operation we
obtain 5 hidden-representations for each time step. We apply average pooling on the hidden-
representations of the last time-step to reduce their spatial dimension to 1× 1, and feed the
representations to 5 classifiers, composed by a linear layer with a softmax nonlineary. Each
classifier therefore focuses on only 1 hidden-representation extracted from the convolutional
map of a specific layer. The classifier outputs are then averaged to get the final decision. A
dropout ratio of 0.7 is applied on the input of each classifiers.

In the second RCN architecture, Stacked GRU-RCN, we investigate the usefulness of
bottom-up connections. Our stacked GRU-RCN uses the same base architecture as the
GRU-RCN, consisting of 5 convolutional GRU-RNNs having 64, 128, 256, 256 channels re-
spectively. However, each convolutional GRU-RNN is now preconditioned on the hidden-
representation that the GRU-RNN applied on the previous convolution-map outputs. We
apply max-pooling on the hidden representations between the GRU-RNN layers for the
compatibility of the spatial dimensions. As for the previous architecture, each GRU-RNN
hidden-representation at the last time step is pooled and then given as input to a classifier.

Finally, in our bi-directional GRU-RCN, we investigate the importance of reverse tempo-
ral information. Given convolutional maps extracted from one layer, we run the GRU-RCN
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twice, considering the inputs in both sequential and reverse temporal order. We then con-
catenate the last hidden-representations of the foward GRU-RCN and backward GRU-RCN,
and give the resulting vector to a classifier.

9.5.1.2. Model Training and Evaluation

We follow the training procedure introduced by the two-stream framework (Simonyan
and Zisserman, 2014b). At each iteration, a batch of 64 videos are sampled randomly from
the the training set. To perform scale-augmentation, we randomly sample the cropping width
and height from 256,224,192,168. The temporal cropping size is set to 10. We then resize
the cropped volume to 224× 224× 10. We estimate each model parameters by maximizing
the model log-likelihood:

L(θ) = 1
N

N∑
n=1

log p(yn | c(xn),θ),

where there are N training video-action pairs (xn, yn), c is a function that takes a crop
at random. We use Adam (Kingma and Ba, 2014) with the gradient computed by the
backpropagation algorithm. We perform early stopping and choose the parameters that
maximize the log-probability of the validation set.

We also follow the evaluation protocol of the two-stream framework (Simonyan and Zis-
serman, 2014b). At the test time, we sample 25 equally spaced video sub-volumes with a
temporal size of 10 frames. From each of these selected sub-volumes, we obtain 10 inputs
for our model, i.e. 4 corners, 1 center, and their horizontal flipping. The final pre- diction
score is obtained by averaging across the sampled sub-volumes and their cropped regions.

9.5.1.3. Results

We compare our approach with two different baselines, VGG-16 and VGG-16 RNN.
VGG-16 is the 2D spatial stream that is described in (Wang et al., 2015). We take the
VGG-16 model, pretrained on Image-Net and fine-tune it on the UCF-101 dataset. VGG-16
RNN baseline applied an RNN, using fully-connected gated-recurrent units, on top-of VGG-
16. It takes as input the VGG-16 fully-connected representation fc-7. Following GRU-RCN
top-layer, the VGG-16 RNN has hidden-representation dimensionality of 512.

The first column of Table 9. I focuses on RGB inputs. We first report results of different
GRU-RCN variants and compare them with the two baselines: VGG-16 and VGG-16 RNN.
Our GRU-RCN variants all outperform the baselines, showing the benefit of delving deeper
into a CNN in order to learn a video representation. We notice that VGG-16 RNN only
slightly improve over the VGG-16 baseline, 78.1 against 78.0. This result confirms that
CNN top-layer tends to discard temporal variation over short temporal windows. Stacked-
GRU RCN performs significantly lower than GRU-RCN and Bi-directional GRU-RCN. We
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Method RGB Flow
VGG-16 78.0 85.4

VGG-16 RNN 78.1 84.9
GRU-RCN 79.9 85.7

Stacked-GRU RCN 78.3 -
Bi-directional GRU-RCN 80.7 -

Two-Stream (Simonyan and Zisserman, 2014c) 72.8 81.2
Two-Stream + LSTM (Donahue et al., 2014) 71.1 76.9

Two-Stream + LSTM + Unsupervised (Srivastava et al., 2015b) 77.7 83.7
Improved Two-Stream (Wang et al., 2015) 79.8 85.7

C3D one network (Tran et al., 2014), 1 million videos as training 82.3 -
C3D ensemble (Tran et al., 2014), 1 million videos as training 85.2 -

Deep networks (Karpathy et al., 2014), 1 million videos as training 65.2 -
Tab. 9. I. Classification accuracy of different variants of the model on the
UCF101 split 1. We report the performance of previous works that learn
representation using only RGB information only.

argue that bottom-up connection, increasing the depth of the model, combined with the lack
of training data (UCF-101 is train set composed by only 9500 videos) make the Stacked-
GRU RCN learning difficult. The bi-directional GRU-RCN performs the best among the
GRU-RCN variant with an accuracy of 80.7, showing the advantage of modeling temporal
information in both sequential and reverse order. Bi-directional GRU-RCN obtains a gain
3.4% in term of performances, relatively to the baselines that focus only the VGG-16 top
layer.

Table 9. I also reports results from other state-of-art approaches using RGB inputs.
C3D (Tran et al., 2014) obtains the best performance on UCF-101 with 85.2. However,
it should be noted that C3D is trained over 1 million videos. Other approaches use only
the 9500 videos of UCF101 training set for learning temporal pattern. Our Bi-directional
GRU-RCN compare favorably with other Recurrent Convolution Network (second blocks),
confirming the benefit of using different CNN layers to model temporal variation.

Table 9. I also evaluates the GRU-RCN model applied flow inputs. VGG-16 RNN
baseline actually decreases the performance compared to the VGG-16 baseline. On the other
hand, GRU-RCN outperforms the VGG-16 baseline achieving 85.7 against 85.4. While the
improvement is less important than the RGB stream, it should be noted that the flow stream
of VGG-16 is applied on 10 consecutive flow inputs to extract visual “percepts”, and therefore
already captures some motion information.

Finally, we investigate the combination of the RGB and flow streams. Following (Wang
et al., 2015), we use a weighted linear combination of their prediction scores, where the weight
is set to 2 as for the flow stream net and 1 for the temporal stream. Fusion the VGG-16
model baseline achieve an accuracy of 89.1. Combining the RGB Bi-directional GRU-RCN
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with the flow GRU-RCN achieves a performance gain of 1.9% over baseline, reaching 90.8.
Our model is on part with (Wang et al., 2015) that obtain state-of-art results using both
RGB and flow streams which obtains 90.9.

9.5.2. Video Captioning

We also evaluate our representation on the video captioning task using YouTube2Text
video corpus (Chen and Dolan, 2011b). The dataset has 1,970 video clips with multiple
natural language descriptions for each video clip. The dataset is open-domain and covers a
wide range of topics such as sports, animals, music and movie clips. Following (Yao et al.,
2015a), we split the dataset into a training set of 1,200 video clips, a validation set of 100
clips and a test set consisting of the remaining clips.

9.5.2.1. Model Specifications

To perform video captioning, we use the so-called encoder-decoder framework (Cho et al.,
2014). In this framework the encoder maps input videos into abstract representations that
precondition a caption-generating decoder.

As for encoder, we compare both VGG-16 CNN and Bi-directional GRU-RCN. Both mod-
els have been fine-tuned on the UCF-101 dataset and therefore focus on detecting actions.
To extract an abstract representation from a video, we sample K equally-space segments.
When using the VGG-16 encoder, we provide the fc7 layer activations of the each segment’s
first frame as the input to the text-decoder. For the GRU-RCN, we apply our model on
the segment’s 10 first frames. We concatenate the GRU-RCN hidden-representation from
the last time step. The concatenated vector is given as the input to the text decoder. As
it has been shown that characterizing entities in addition of action is important for the
caption-generation task (Yao et al., 2015), we also use as encoder a CNN (Szegedy et al.,
2014), pretrained on ImageNet, that focuses on detecting static visual object categories.

As for the decoder, we use an LSTM text-generator with soft-attention on the video
temporal frames (Yao et al., 2015a).

9.5.2.2. Training

For all video captioning models, we estimated the parameters θ of the decoder by maxi-
mizing the log-likelihood:

L(θ) = 1
N

N∑
n=1

tn∑
i=1

log p(yni | yn<i,xn,θ),

where there are N training video-description pairs (xn, yn), and each description yn is tn
words long. We used Adadelta (Zeiler, 2012) We optimized the hyperparameters (e.g. num-
ber of LSTM units and the word embedding dimensionality, number of segment K) using
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YouTube2Text
Model model selection BLEU METEOR CIDEr
VGG-16 Encoder BLEU 0.3700 0.2640 0.4330
Bi-directional GRU-RCN Encoder BLEU 0.4100 0.2850 0.5010
GoogleNet Encoder BLEU 0.4128 0.2900 0.4804
GoogleNet + Bi-directional GRU-RCN Encoder BLEU 0.4963 0.3075 0.5937
GoogleNet + Bi-directional GRU-RCN Encoder NLL 0.4790 0.3114 0.6782
GoogleNet + Bi-directional GRU-RCN Encoder METEOR 0.4842 0.3170 0.6538
GoogleNet + Bi-directional GRU-RCN Encoder CIDEr 0.4326 0.3160 0.6801
GoogleNet + HRNE (Pan et al., 2015) - 0.436 0.321 -
VGG + p-RNN (Yu et al., 2015) - 0.443 0.311 -
VGG + C3D + p-RNN (Yu et al., 2015) - 0.499 0.326 -
Soft-attention (Yao et al., 2015a) - 0.4192 0.2960 0.5167
Venugopalan et al. (Venugopalan et al., 2015) - 0.3119 0.2687 -
+ Extra Data (Flickr30k, COCO) - 0.3329 0.2907 -
Thomason et al. (Thomason et al., 2014) - 0.1368 0.2390 -

Tab. 9. II. Performance of different variants of the model on YouTube2Text
for video captioning. Representations obtained with the proposed RCN ar-
chitecture combined with decoders from Yao et al. (2015a) offer a significant
performance boost, reaching the performance of the other state-of-the-art mod-
els.

random search (Bergstra and Bengio, 2012) to maximize the log-probability of the validation
set.

9.5.2.3. Results

Table 9. II reports the performance of our proposed method using three automatic
evaluation metrics. These are BLEU in Papineni et al. (2002), METEOR in Denkowski and
Lavie (2014) and CIDEr in Vedantam et al. (2014). We use the evaluation script prepared
and introduced in Chen et al. (2015). All models are early-stopped based on the negative-
log-likelihood (NLL) of the validation set. We then select the model that performs best on
the validation set according to the metric at consideration.

The first two lines of Table 9. II compare the performances of the VGG-16 and Bi-
directional GRU-RCN encoder. Results clearly show the superiority of the Bi-Directional
GRU-RCN Encoder as it outperforms the VGG-16 Encoder on all three metrics. In par-
ticular, GRU-RCN Encoder obtains a performance gain of 10% compared to the VGG-16
Encoder according to the BLEU metric. Combining our GRU-RCN Encoder that focuses on
action with a GoogleNet Encoder that captures visual entities further improve the perfor-
mances.

Our GoogleNet + Bi-directional GRU-RCN approach significantly outperforms Soft-
attention (Yao et al., 2015a) that relies on a GoogLeNet and cuboids-based 3D-CNN Encoder,
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in conjunction to a similar soft-attention decoder. This result indicates that our approach is
able to offer more effective representations. According to the BLEU metric, we also outper-
form other approaches using more complex decoder schemes such as spatial and temporal
attention decoder (Yu et al., 2015) or a hierarchical RNN decoder (Pan et al., 2015) Our
approach is on par with (Yu et al., 2015), without the need of using a C3D-encoder that
requires training on large-scale video dataset.

9.6. Conclusion
In this work, we address the challenging problem of learning discriminative and abstract

representations from videos. We identify and underscore the importance of modeling tempo-
ral variation from “visual percepts” at different spatial resolutions. While high-level percepts
contain highly discriminative information, they tend to have a low-spatial resolution. Low-
level percepts, on the other hand, preserve a higher spatial resolution from which we can
model finer motion patterns. We introduce a novel recurrent convolutional network archi-
tecture that leverages convolutional maps, from all levels of a deep convolutional network
trained on the ImageNet dataset, to take advantage of “percepts” from different spatial
resolutions.

We have empirically validated our approach on the Human Action Recognition and Video
Captioning tasks using the UCF-101 and YouTube2Text datasets. Experiments demonstrate
that leveraging “percepts” at multiple resolutions to model temporal variation improve over
our baseline model, with respective gain of 3.4% and 10% for the action recognition and video
captions tasks using RGB inputs. In particular, we achieve results comparable to state-of-art
on YouTube2Text using a simpler text-decoder model and without extra 3D CNN features.
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Chapter 10

PROLOGUE TO FOURTH ARTICLE

10.1. Article Detail
On the equivalence between deep nade and generative stochastic networks,

Yao, Li and Ozair, Sherjil and Cho, Kyunghyun and Bengio, Yoshua, European Conference
on Machine Learning (ECML), 2014.

Personal contributions. The idea of making a theoretical connection between GSNs
and NADEs was originally suggested by Prof. Bengio. The experiments are coded and
conducted by Sherjil and me, with me taking the lead role. The paper is written by Dr. Cho,
Prof. Bengio and me.

10.2. Context
Neural Autoregressive Distribution Estimators (NADEs) have recently been shown as

successful alternatives for modeling high dimensional multimodal distributions. One issue
associated with NADEs is that they rely on a particular order of factorization for P (x).
This issue has been recently addressed by a variant of NADE called Orderless NADEs and
its deeper version, Deep Orderless NADE. Orderless NADEs are trained based on a criterion
that stochastically maximizes P (x) with all possible orders of factorizations. Unfortunately,
ancestral sampling from deep NADE is very expensive, corresponding to running through a
neural net separately predicting each of the visible variables given some others. This work
makes a connection between this criterion and the training criterion for Generative Stochastic
Networks (GSNs). It shows that training NADEs in this way also trains a GSN, which defines
a Markov chain associated with the NADE model. Based on this connection, we show an
alternative way to sample from a trained Orderless NADE that allows to trade-off computing
time and quality of the samples: a 3 to 10-fold speedup (taking into account the waste due to
correlations between consecutive samples of the chain) can be obtained without noticeably
reducing the quality of the samples. This is achieved using a novel sampling procedure
for GSNs called annealed GSN sampling, similar to tempering methods that combines fast



mixing (obtained thanks to steps at high noise levels) with accurate samples (obtained thanks
to steps at low noise levels).

10.3. Contributions
This paper introduced a new view of the orderless NADE training procedure as a GSN

training procedure, which yields several interesting conclusions:
• The orderless NADE training procedure also trains a GSNmodel, where the transition
operator randomly selects a subset of input variables to be resampled given the others.
• Whereas orderless NADE models really represent an ensemble of conditionals that
are not all compatible, the GSN interpretation provides a coherent interpretation
of the estimated distribution through the stationary distribution of the associated
Markov chain.
• Whereas ancestral sampling in NADE is exact, it is very expensive for deep NADE
models, multiplying computing cost (of running once through the neural network to
make a prediction) by the number of visible variables. On the other hand, each step of
the associated GSN Markov chain only costs running once through the predictor, but
because each prediction is made in parallel for all the resampled variables, each such
step is also less accurate, unless very few variables are resampled. This introduces a
trade-off between accuracy and computation time that can be controlled. This was
validated experimentally.
• A novel sampling procedure for GSNs was introduced, called annealed GSN sampling,
which permits a better trade-off by combining high-noise steps with a sequence of
gradually lower noise steps, as shown experimentally.
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Chapter 11

ON THE EQUIVALENCE BETWEEN DEEP NADE
AND GENERATIVE STOCHASTIC NETWORK

11.1. Introduction
Unsupervised representation learning and deep learning have progressed rapidly in recent

years (Bengio et al., 2013). On one hand, supervised deep learning algorithms have achieved
great success. The authors of (Krizhevsky et al., 2012a), for instance, claimed the state-
of-the-art recognition performance in a challenging object recognition task using a deep
convolutional neural network. Despite the promise given by supervised deep learning, its
unsupervised counterpart is still facing several challenges (Bengio, 2013). A large proportion
of popular unsupervised deep learning models are based on either directed or undirected
graphical models with latent variables (Hinton and Salakhutdinov, 2006a; Hinton et al.,
2006b; Salakhutdinov and Hinton, 2009b). One problem of these unsupervised models is
that it is often intractable to compute the likelihood of a model exactly.

The Neural Autoregressive Distribution Estimator (NADE) was proposed in (Larochelle
and Murray, 2011a) to avoid this problem of computational intractability. It was inspired by
the early work in (Bengio and Bengio, 2000), which like NADE modeled a binary distribution
by decomposing it into a product of multiple conditional distributions of which each is
implemented by a neural network, with parameters, representations and computations shared
across all these networks. These kinds of models therefore implement a fully connected
directed graphical model, in which ancestral sampling of the joint distribution is simple
(but not necessarily efficient when the number of variables, e.g., pixel images, is large).
Consequently, unlike many other latent variable models, it is possible with such directed
graphical models to compute the exact probability of an observation tractably. NADEs have
since been extended to model distributions of continuous variables in (Uria et al., 2013b),
called a real-valued NADE (RNADE) which replaces a Bernoulli distribution with a mixture
of Gaussian distributions for each conditional probability (see ,e.g., (Bishop, 1994)). The
authors of (Uria et al., 2013a) proposes yet another variant of NADE, called a Deep NADE,



that uses a deep neural network to compute the conditional probability of each variable. In
order to make learning tractable, they proposed a modified training procedure that effectively
trains an ensemble of multiple NADEs.

Another thread of unsupervised deep learning is based on the family of autoencoders
(see, e.g., (Vincent et al., 2010)). The autoencoder has recently begun to be understood as a
density estimator (Alain and Bengio, 2013; Bengio et al., 2013b). These works suggest that
an autoencoder trained with some arbitrary noise in the input is able to learn the distribution
of either continuous or discrete random variables. This perspective on autoencoders has been
further extended to a generative stochastic network (GSN) proposed in (Bengio et al., 2014).

Unlike a more conventional approach of directly estimating the probability distribution
of data, a GSN aims to learn a transition probability of a Markov Chain Monte Carlo
(MCMC) sampler whose stationary distribution estimates the data generating distribution.
The authors of (Bengio et al., 2014) were able to show that it is possible to learn the
distribution of data with a GSN having a network structure inspired by a deep Boltzmann
machine (DBM) (Salakhutdinov and Hinton, 2009c) using this approach. Furthermore, a
recently proposed multi-prediction DBM (MP-DBM) (Goodfellow et al., 2013), which models
the joint distribution of data instance and its label, can be considered a special case of a
GSN and achieves state-of-the-art classification performance on several datasets.

In this paper, we find a close relationship between the deep NADE and the GSN. We
show that training a deep NADE with the order-agnostic (OA) training procedure (Uria
et al., 2013a) can be cast as GSN training. This equivalence allows us to have an alterna-
tive theoretical explanation of the OA training procedure. Also, this allows an alternative
sampling procedure for a deep NADE based on a MCMC method, rather than ancestral
sampling.

In Sec. 11.2.1 and Sec. 11.3, we describe both NADE and GSN in detail. Based on these
descriptions we establish the connection between the order-agnostic training procedure for
NADE and the training criterion of GSN in Sec. 11.4 and propose a novel sampling algorithm
for deep NADE. In Sec. 11.5, we introduce a novel sampling strategy for GSN called annealed
GSN sampling, which is inspired by tempering methods and does a good trade-off between
computing time and accuracy. We empirically investigate the effect of the proposed GSN
sampling procedure for deep NADE models in Sec. 11.6.

11.2. Deep NADE and Order-Agnostic Training
In this section we describe the deep NADE and its training criterion, closely following

(Uria et al., 2013a).
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11.2.1. NADE

NADE (Larochelle and Murray, 2011a) models a joint distribution p(x) where x ∈ RD.
D is the dimensionality of x. NADE factorizes p(x) into

p(x) =
D∏
d=1

p(xod|xo<d) (11.2.1)

where o is a predefined ordering of D indices. o<d denotes the first d − 1 indices of the
ordering o.

The NADE then models each factor in Eq. (11.2.1) with a neural network having a single
hidden layer H. That is,

p(xod = 1|xo<d) = σ(V.,odhd + bod),

where
hd = φ(W.,o<d + c).

V ∈ RH×D, b ∈ RD, W ∈ RH×D and c ∈ RH are the output weights, the output biases, the
input weights and the hidden biases, respectively. σ is a logistic sigmoid function, and φ can
be any nonlinear activation function.

To train such a model, one maximizes the log-likelihood function of the training set

θ∗ = arg max
θ

Lo(θ) = arg max
θ

1
N

N∑
n=1

D∑
d=1

log p(xnod |x
n
o<d
, o), (11.2.2)

where θ denotes all the parameters of the model.

11.2.2. Deep NADE

One issue with the original formulation of the NADE is that the ordering of variables
needs to be predefined and fixed. Potentially, this limits the inference capability of a trained
model such that when the model is asked to infer the conditional probability which is not one
of the factors in the predefined factorization (See Eq. (11.2.1)). For instance, a NADE trained
with D visible variables with an ordering (1,2, . . . , D), one cannot easily infer x2‖x1, xD

except by expensive (and intractable) marginalization over all the other variables.
Another issue is that it is not possible to build a deeper architecture for NADE with the

original formulation without losing a lot in efficiency. When there is only a single hidden
layer with H units in the neural network modeling each conditional probability of a NADE,
it is possible to share the parameters (the input weights and the hidden biases) to keep the
computational complexity linear with respect to the number of parameters, i.e., O(DH).
However, if there are more than one hidden layers, it is not possible to re-use computations
in the same way. In this case, the computational complexity is O(DH +DH2L) where L is
the number of hidden layers. Notice the extra D factor in front, compared to the number
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of parameters which is O(DH + H2L). This comes about because we cannot re-use the
computations performed after the first hidden layer for predicting the i-th variable, when
predicting the following ones. In the one-layer case, this sharing is possible because the
hidden units weighted sums needed when predicting the i + 1-th variable are the same as
the weighted sums needed when predicting the i-th variable, plus the scalar contributions
wki associated with the k-th hidden unit and the extra input xi that is now available when
predicting xi+1 but was not available when predicting xi.

To resolve those two issues, the authors of (Uria et al., 2013a) proposed the order-agnostic
(OA) training procedure that trains a factorial number of NADEs with shared parameters.
In this case, the following objective function is maximized, instead of Lo in Eq. (11.2.2):

L(θ) = Exn
D∑
d=1

Eo<dEod log p(xnod |x
n
o<d
, θ, o). (11.2.3)

This objective function is, however, intractable, since it involves the factorial number of
summations. Instead, in practice, when training, we use a stochastic approximation L̂ by
sampling an ordering o, the index of predicted variable d and a training sample xn at each
time:

L̂(θ) = D

D − d+ 1
∑
i/∈o<d

log p(xni |xno<d , θ, o). (11.2.4)

Computing L̂ is identical to a forward computation in a regular feedforward neural net-
work except for two differences. Firstly, according to the sampled ordering o, the input
variables of indices o>d are set to 0, and the identity of the zeroed indices is provided as
extra inputs (through a binary vector of length D). Secondly, the conditional probabilities
of only those variables of indices o>d are used to compute the objective function L̂.

This order-agnostic procedure solves the previously raised issues of the original NADE.
Since the model is optimized for all possible orderings, it does not suffer from being inefficient
at inferring any conditional probability. Furthermore, the lack of predefined ordering makes
it possible to use a single set of parameters for modeling all conditional distributions. Thus,
the computational cost of training a deep NADE with the OA procedure is linear with respect
to the number of parameters, regardless of the depth of each neural network.

From here on, we call a NADE trained with the OA procedure simply a deep NADE
to distinguish it from a NADE trained with a usual training algorithm other than the OA
procedure.

11.3. Generative Stochastic Networks
In (Bengio et al., 2013b, 2014) a new family of models called generative stochastic net-

works (GSN) was proposed, which tackles the problem of modeling a data distribution, p(x),
although without providing a tractable expression for it.
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The underlying idea is to learn a transition operator of a Markov Chain Monte Carlo
(MCMC) sampler that samples from the distribution p(x), instead of learning the whole
distribution directly. If we let p(x′ | x) be the transition operator, then we may rewrite it
by introducing a latent variable h into

p(x′ | x) =
∑
∀h
p(x′ | h)p(h | x). (11.3.1)

In other words, two separate conditional distributions p(x′ | h) and p(h | x) jointly define
the transition operator. In (Bengio et al., 2013b, 2014) it is argued that it is easier to learn
these simpler conditional distributions because they have less modes (they only consider
small changes from the previous state), meaning that the associated normalization constants
can be estimated more easily (either by an approximate parametrization, e.g., a single or
few component mixture, or by MCMC on a more powerful parametrization, which will have
less variance if the number of modes is small).

A special form of GSN also found with denoising auto-encoders predefines p(h | x) such
that it does not require learning from data. Then, we only learn p(x′ | h). This is the case
in (Bengio et al., 2013b), where they proposed to use a user-defined corruption process, such
as randomly masking out some variables with a fixed probability, for p(h | x). They, then,
estimated p(x′ | h) as a denoising autoencoder fθ, parameterized with θ, that reverses the
corruption process p(h | x) (Vincent et al., 2008b).

It was shown in (Bengio et al., 2013b) that if the denoising process fθ is a consistent
estimator of p(x′ | h), this leads to consistency of the Markov chain’s stationary distribution
as an estimator of the data generating distribution. This is under some conditions ensuring
the irreducibility, ergodicity and aperiodicity of the Markov chain, i.e., that it mixes. In other
words, training fθ to match p(x′ | h) is enough to learn implicitly the whole distribution
p(x), albeit indirectly, i.e., through the definition of a Markov chain transition operator. The
result from (Bengio et al., 2014) further suggests that it is possible to also parameterize the
corruption process p(h | x) and learn both p(h | x) and p(x′ | h) together.

From the qualitative observation on some of the learned transition operators of GSNs
(see, e.g., (Bengio et al., 2014)), it is clear that the learned transition operator quickly finds
a plausible mode in the whole distribution, even when the Markov chain was started from a
random configuration of x. This is because the GSN reconstruction criterion encourages the
learner to quickly move from low probability configurations to high-probability ones, i.e., to
burn-in quickly. This is in contrast to using a Gibbs sampler to generate samples from other
generative models that explicitly model the whole distribution p(x), which requires often
many more burn-in steps before the Markov chain finds a plausible mode of the distribution.
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11.4. Equivalence between deep NADE and GSN
Having described both deep NADE and GSN, we now establish the relationship, or even

equivalence, between them. In particular, we show in this section that the order-agnostic
(OA) training procedure for NADE is one special case of GSN learning.

We start from the stochastic approximation to the objective function of the OA training
procedure for deep NADE in Eq. (11.2.4). We notice that the sampled ordering o in the
objective function L̂ can be replaced with another random variable m ∈ {0, 1}D, where D
is the dimensionality of an observation x. The binary mask m is constructed such that

mi =

 1, if i ∈ o<d
0, otherwise

Then, we rewrite Eq. (11.2.4) by

L̂(θ) ∝
D∑
i=1

(1−mi) log p(xni |m� xn, θ,m)

=
D∑
i=1

log (mi + (1−mi)p(xni |m� xn, θ,m))

=
D∑
i=1

log
(
mi + (1−mi)p(xni | h(n), θ)

)
(11.4.1)

where mi is the i-th element of the binary mask m, and � is an element-wise multiplication.
We introduced a new variable h = [m,m� xn] ∈ R2D which is a concatenation of the
corrupted copy (some variables masked out) of xn and the sampled mask m.

It is now easy to see the connection between the objective function of the OA training
procedure in Eq. (11.4.1) to a GSN training criterion using a user-defined (not learned)
corruption process which we described in the earlier section.

In this case, the corruption process p(h | x) (Eq. (11.3.1)) is

p(h | x) = p([m,m� x] | x) =
D∏
i=1

k
D∏
j=1

δmjxj(hj+D), (11.4.2)

where k is a random number sampled uniformly between 0 and 1, and δµ(a) is a shifted
Dirac delta function which is 1 only when a = µ and 0 otherwise. This means that sampling
is done by first generating an uniformly random binary mask m and then taking m � x as
the corrupted version of x.

The conditional probability of x′ given h is

p(x′ | h) =
D∏
i=1

[miδxi(x′i) + (1−mi)p(x′i | ri(x�m | θ))] , (11.4.3)

where ri is a parametric function (neural network) that models the conditional probability.
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If we view the estimation of p(x′ | h) in Eq. (11.4.3) as a denoising autoencoder, one
effectively ignores each variable x′i with its mask mi set to 1, since the sample of x′i from
Eq. (11.4.3) is always xi due to δxi(x′i). A high-capacity auto-encoder could learn that when
mi = 1, it can just copy the i-th input to the i-th output. On the other hand, when mi is 0,
training this denoising autoencoder would maximize log p(x′i | ri(x�m | θ)), making it assign
high probability to the original xi given the non-missing inputs. Therefore, maximizing the
logarithm of p(x′ | h) in Eq. (11.4.3) is equivalent to maximizing L̂ in Eqs. (11.4.1) and
(11.2.4) up to a constant.

In essence, maximizing L̂ in Eq. (11.2.4) is equivalent to training a GSN with the condi-
tional distributions defined in Eqs. (11.4.2)–(11.4.3). Furthermore, the chain defined in this
way is ergodic as every state x has a non-zero probability at each step (x → x′), making
this GSN chain a valid MCMC sampler.

11.4.1. Alternative Sampling Method for NADE

Although the training procedure of the deep NADE introduced in (Uria et al., 2013a) is
order-agnostic, sampling from the deep NADE is not.

The authors of (Uria et al., 2013a) proposed an ancestral sampling method for a deep
NADE. Firstly, one randomly selects an ordering uniformly from all possible orderings. One
generates a sample of each variable from its conditional distribution following the selected
ordering. When D, H and L are respectively the dimensionality of the observation variable,
the number of hidden units in each hidden layer and the number of layers, the time complexity
of sampling a single sample using this ancestral approach is O(DLH2).

We propose here an alternative sampling strategy based on our observation of the equiva-
lence between the deep NADE and GSN. The new strategy is simply to alternating between
sampling from p(h | x) in Eq. (11.4.2) and p(x′ | h) in Eq. (11.4.3), which corresponds
to performing Markov Chain Monte Carlo (MCMC) sampling on p(x). The computational
complexity of a single step (x→ h→ x′) in this case is O(DH + LH2).

Unlike the original ancestral strategy, the proposed approach does not generate an exact
sample in a single step. Instead, one often needs to run the chain K steps until the exact,
independent sample from the stationary distribution of the chain is collected, which we call
burn-in. In other words, the new approach requires O(KDH + KLH2) to collect a single
sample in the worst case.1

If we assume thatH is not too larger thanD (H = O(D) orH = Θ(D)), which is an usual
practice, the time complexity of the ancestral approach is O(D3), and that of the proposed
GSN approach is O(KD2), where we further assume that L is a small constant. Effectively, if
the MCMC method used in the latter strategy requires only a small, controllable number K

1 Since it is a usual practice to collect every t-th samples from the same chain, where t << K, we often do
not need KN steps to collect N samples.
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of steps to generate a single exact, independent sample such that K � D, the new approach
is more efficient in collecting samples from a trained deep NADE. Importantly, as we have
already mentioned earlier, a GSN has been shown to learn a transition operator of an MCMC
method that requires only a small number of burn-in steps.

In the experiments, we investigate empirically whether this new sampling strategy is
computationally more efficient than the original ancestral approach in a realistic setting.

11.4.2. The GSN Chain Averages an Ensemble of Density Estimators

As discussed in (Uria et al., 2013a), maximizing L̂ in Eq. (11.2.3) can be considered
as training a factorial number of different NADEs with shared parameters. Each NADE
differs from each other by the choice of the ordering of variables and may assign a different
probability to the same observation.2 Based on this observation, it is suggested in (Uria
et al., 2013a) to use the average of the assigned probabilities by all these NADE, or a small
randomly chosen subset of them, as the actual probability.

This interpretation of seeing the deep NADE as an ensemble of multiple NADEs and
our earlier argument showing that the deep NADE training is special case of GSN training
naturally leads to a question: does the GSN Markov chain average an ensemble of den-
sity/distribution estimators?.

We claim that the answer is yes. From the equivalence we showed in this paper, it is
clear that a GSN trained with a criterion such as the NADE criterion learns an ensemble
of density/distribution estimators (in this case, masking noise with the reconstruction con-
ditional distribution in Eq. (11.4.3)). Furthermore, when one samples from the associated
GSN Markov chain, one is averaging the contributions associated with different orders. So,
although each of these conditionals (predicting a subset given another subset) may not be
consistent with a single joint distribution, the associated GSN Markov chain which com-
bines them randomly does define a clear joint distribution: the stationary distribution of
the Markov chain. Clearly, this stationary distribution is an ensemble average over all the
possible orderings.

11.5. Annealed GSN Sampling
With the above proposal for GSN-style sampling of a Deep NADE model, one can view

the average fraction p of input variables that are resampled at each step as a kind of noise
level, or the probability of resampling any particular visible variable xi. With uniform
sampling of subsets, we obtain p = 0.5, but both higher and lower values are possible.
When p = 1, all variables are resampled independently and the resulting samples are coming
from the marginal distributions of each variable, which would be a very poor rendering of
2 The fact that all ensembles share the exact same parameters makes it similar to the recently proposed
technique of dropout (Hinton et al., 2012a).
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Fig. 11.1. Independent samples generated by the ancestral sampling proce-
dure from the deep NADE.

the Deep NADE distribution, but would mix very well. With p as small as possible (or
more precisely, resampling only one randomly chosen variable given the others), we obtain
a Gibbs sampler associated with the Deep NADE distribution, which we know has the same
stationary distribution as Deep NADE itself. However, this would mix very slowly and would
not bring any computational gain over ancestral sampling in the Deep NADE model (in fact
it would be considerably worse because the correlation between consecutive samples would
reduce the usefulness of the Markov chain samples, compared to ancestral sampling that
provides i.i.d. samples). With intermediate values of p, we obtain a compromise between
the fast computation and the quality of samples.

However, an even better trade-off can be reached by adopting a form of annealed sampling
for GSNs, a general recipe for improving the compromise between accuracy of the sampling
distribution and mixing for GSNs. For this purpose we talk about a generic noise level,
although in this paper we refer to p, the probability of resampling any particular visible
variable.

The idea is inspired by annealing and tempering methods that have been useful for
undirected graphical models (Neal, 1994, 2001): before sampling from the low-noise regime,
we run the high-noise version of the transition operator and gradually reduce the noise level
over a sequence of steps. The steps taken at high noise allow to mix quickly while the steps
taken at low noise allow to burn-in near high probability samples. Therefore we consider an
approximation of the GSN transition operator which consists of the successive application of
a sequence of instances of the operator associated with gradually reduced noise levels, ending
at the target noise level. Conceptually, it is as if the overall Markov chain was composed,
for each of its steps, by a short chain of steps with gradually decreasing noise levels. By
making the annealing schedule have several steps at or near the target low noise level, and
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Fig. 11.2. The consecutive samples from the two independent GSN sampling
chains without any annealing strategy. Both chains started from uniformly
random configurations. Note the few spurious samples which can be avoided
with the annealing strategy (see Figure 11.3).

by controlling the lengths of these annealing runs, we can trade-off between accuracy of the
samples (improved by a longer annealing run length) and speed of computation.

In the experiments, we used the following annealing schedule:

pt = max(pmin, pmax − (t− 1) ∗ (pmax − pmin)/(α ∗ (T − 1)))

where pmax is the high noise level, pmin is the low (target) noise level, T is the length of the
annealing run, and α ≥ 1 controls which fraction of the run is spent in annealing vs doing
burn-in at the low noise level.

11.6. Experiments
11.6.1. Settings: Dataset and Model

We run experiments using the handwritten digits dataset (MNIST) which has 60,000
training samples and 10,000 test samples. Each sample has 784 dimensions, and we binarized
each variable by thresholding at 0.5. The training set is split into two so that the first set
of 50,000 samples is used to train a model and the other set of 10,000 samples is used for
validation.

Using MNIST we trained deep NADE with various architectures and sets of hyperpa-
rameters using the order-agnostic (OA) training procedure (see Sec. 11.2.2). The best deep
NADE model according to the validation performance has two hidden layers with size 2000
and was trained with a linearly decaying learning rate schedule (from 0.001 to 0) for 1000
epochs. We use this model to evaluate the two sampling strategies described and proposed
earlier in this paper.
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11.6.2. Qualitative Analysis

Fig. 11.1 shows a subset of 10,000 samples collected from the deep NADE using the con-
ventional ancestral sampling. The average log-probability of the samples is −70.36 according
to the deep NADE. As each sample by the ancestral sampling is exact and independent from
others, we use these samples and their log-probability as a baseline for assessing the proposed
GSN sampling procedure.

We first generate samples from the deep NADE using the GSN sampling procedure
without any annealing strategy. A sampling chain is initialized with a uniformly random
configuration, and a sample is collected at each step. The purpose of this sampling is to
empirically confirm that the GSN sampling does not require many steps for burn-in. We ran
two independent chains and visualize the initial 240 samples from each of them in Fig. 11.2,
which clearly demonstrates that the chain rapidly finds a plausible mode in only a few steps.

Although this visualization suggests a faster burn-in, one weakness is clearly visible from
these figures (Fig. 11.2. The chain generates many consecutive samples of a single digit
before it starts generating samples of another digit. That is, the samples are highly correlated
temporally, suggesting potentially slow convergence to the stationary distribution.

We then tried sampling from the deep NADE using the novel annealed GSN sampling
proposed in Sec. 11.5. Fig. 11.3 visualizes the collected, samples over the consecutive anneal-
ing runs. Compared to the samples generated using the ordinary GSN sampling method, the
chain clearly mixes well. One can hardly notice a case where a successive sample is a realiza-
tion of the same digit from the previous sample. Furthermore, the samples are qualitatively
comparable to those exact samples collected with the ancestral sampling (see Fig. 11.1).

In the following section, we further investigate the proposed annealed GSN sampling in
a more quantitative way, in comparison to the ancestral sampling.

11.6.3. Quantitative Results

We first evaluate the effect of using a user-defined noise level in p(h | x) (Eq. (11.4.2)).
We generated 1000 samples from GSN chains with five different noise levels; 0.1, 0.3, 0.4,
0.5 and 0.6. For each noise level, we ran 100 independent chains and collected every 200-th
sample from each chain. As a comparison, we also generated 1000 samples from a chain with
the proposed annealed GSN sampling with pmax = 0.9, pmin = 0.1 and α = 0.7.

We computed the log-probability of the set of samples collected from each chain with the
deep NADE to evaluate the quality of the samples. Tab. 11. I lists the log-probabilities of
the sets of samples, which clearly shows that as the noise level increases the quality of the
samples degrades. Importantly, none of the chains were able to generate samples from the
model that are close to those generated by the ancestral sampling. However, the annealed
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Fig. 11.3. Samples generated by the annealed GSN sampling procedure
for the same deep NADE model. Visually the quality is comparable to the
ancestral samples, and mixing is very fast. This is obtained with pmax = 0.9,
pmin = 0.1, α = 0.7 and T = 20.

GSN sampling was able to generate samples that are quantitatively as good as those from
the ancestral sampling.

Noise Log-Probability
0.1 -77.1
0.3 -78.93
0.4 -77.9
0.5 -81.1
0.6 -88.1

Annealed -69.72
Ancestral -70.36

Tab. 11. I. Log-probability of 1000
samples when anealing is not used. To
collect samples, 100 parallel chains are
run and 10 samples are taken from
each chain and combined together. The
noise level is fixed at a particular level
during the sampling. We also report
the best log-probability of samples gen-
erated with an annealed GSN sampling.

We also perform quantitative analysis to measure the computational gain when using the
GSN sampling procedure to generate samples. The speedup by using annealed GSN sampling
instead of ancestral sampling is shown in Figure 11.4. To compute the speedup factor, we
timed both the ancestral NADE sampling and GSN sampling on the same machine running
single process. NADE sampling takes 3.32 seconds per sample and GSN sampling takes 0.009
seconds. That means the time to get one sample in ancestral sampling can get 369 samples
in GSN sampling. Although the the direct speedup factor is 369, it must be discounted
because of the autocorrelation of successive samples in the GSN chain. Then we perform
different GSN sampling runs with different settings of α. Figure 11.4 shows the results with
different α. For each α, a GSN sampling starting at random is run and we collect one out of
every K samples till 1000 samples are collected. The effective sample size (Geyer, 1992) is
then estimated based on the sum of the autocorrelations in the autocorrelation factor. The
speedup factor is discounted accordingly.
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Fig. 11.4. The annealed GSN sampling procedure is compared against
NADE ancestral sampling, trading off the computational cost (computational
wrt to ancestral sampling on x-axis) against log-likelihood of the generated
samples (y-axis). The computational cost discards the effect of the Markov
chain autocorrelation by estimating the effective number of samples and in-
creasing the computational cost accordingly.

11.7. Conclusions
This paper introduced a new view of the orderless NADE training procedure as a GSN

training procedure, which yields several interesting conclusions:
• The orderless NADE training procedure also trains a GSNmodel, where the transition
operator randomly selects a subset of input variables to be resampled given the others.
• Whereas orderless NADE models really represent an ensemble of conditionals that
are not all compatible, the GSN interpretation provides a coherent interpretation
of the estimated distribution through the stationary distribution of the associated
Markov chain.
• Whereas ancestral sampling in NADE is exact, it is very expensive for deep NADE
models, multiplying computing cost (of running once through the neural network to
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make a prediction) by the number of visible variables. On the other hand, each step of
the associated GSN Markov chain only costs running once through the predictor, but
because each prediction is made in parallel for all the resampled variables, each such
step is also less accurate, unless very few variables are resampled. This introduces a
trade-off between accuracy and computation time that can be controlled. This was
validated experimentally.
• A novel sampling procedure for GSNs was introduced, called annealed GSN sampling,
which permits a better trade-off by combining high-noise steps with a sequence of
gradually lower noise steps, as shown experimentally.
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Chapter 12

PROLOGUE TO FIFTH ARTICLE

12.1. Article Detail
Iterative neural autoregressive distribution estimator nade-k, Raiko, Tapani and

Li, Yao and Cho, Kyunghyun and Bengio, Yoshua, Advances in neural information processing
systems (NIPS), 2014.

Personal contributions. Prof. Raiko visited the lab and proposed the idea of viewing
the NADE model as a special case of NADE-k where inference is performed with k steps
of iterations. I implemented all the codes and performed all the necessary experiments in
the paper. The early draft was written by me, and Prof. Raiko, Dr. Cho and Prof. Bengio
helped to drastically improve the writing. As the original idea came from Prof. Raiko and
he contributes the most in the final writing as well, he led the author list. It is however fair
to state that my contribution is equally significant.

12.2. Context
In a broader context, this work explores the problem of unsupervised learning of image

representations. Training of the neural autoregressive density estimator (NADE) can be
viewed as doing one step of probabilistic inference on missing values in data. We propose a
new model that extends this inference scheme to multiple steps, arguing that it is easier to
learn to improve a reconstruction in k steps rather than to learn to reconstruct in a single
inference step. The proposed model is an unsupervised building block for deep learning
that combines the desirable properties of NADE and multi-prediction training: (1) Its test
likelihood can be computed analytically, (2) it is easy to generate independent samples
from it, and (3) it uses an inference engine that is a superset of variational inference for
Boltzmann machines. The proposed NADE-k was competitive with the state-of-the-art in
density estimation on the two datasets tested.



12.3. Contributions
In this paper, we proposed a model called iterative neural autoregressive distribution esti-

mator (NADE-k) that extends the conventional neural autoregressive distribution estimator
(NADE) and its order-agnostic training procedure. The proposed NADE-k maintains the
tractability of the original NADE while we showed that it outperforms the original NADE
as well as similar, but intractable generative models such as restricted Boltzmann machines
and deep belief networks. Just like an iterative mean-field approximation in Boltzmann
machines, the proposed NADE-k performs multiple iterations through hidden layers and a
visible layer to infer the probability of the missing value, unlike the original NADE which
performs the inference of a missing value in a single iteration through hidden layers.

Our empirical results show that this approach of multiple iterations improves the perfor-
mance of a model that has the same number of parameters, compared to performing a single
iteration. This suggests that the inference method has significant effect on the efficiency of
utilizing the model parameters. Also, we were able to observe that the generative perfor-
mance of NADE can come close to more sophisticated models such as deep belief networks
in our approach.
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Chapter 13

ITERATIVE NEURAL AUTOREGRESSIVE
DISTRIBUTION ESTIMATOR (NADE-k)

13.1. Introduction
Traditional building blocks for deep learning have some unsatisfactory properties. Boltz-

mann machines are, for instance, difficult to train due to the intractability of computing
the statistics of the model distribution, which leads to the potentially high-variance MCMC
estimators during training (if there are many well-separated modes (Bengio et al., 2013)) and
the computationally intractable objective function. Autoencoders have a simpler objective
function (e.g., denoising reconstruction error (Vincent et al., 2010)), which can be used for
model selection but not for the important choice of the corruption function. On the other
hand, this paper follows up on the Neural Autoregressive Distribution Estimator (NADE,
Larochelle and Murray, 2011b), which specializes previous neural auto-regressive density es-
timators (Bengio and Bengio, 2000) and was recently extended (Uria et al., 2014) to deeper
architectures. It is appealing because both the training criterion (just log-likelihood) and
its gradient can be computed tractably and used for model selection, and the model can be
trained by stochastic gradient descent with backpropagation. However, it has been observed
that the performance of NADE has still room for improvement.

The idea of using missing value imputation as a training criterion has appeared in three
recent papers. This approach can be seen either as training an energy-based model to
impute missing values well (Brakel et al., 2013), as training a generative probabilistic model
to maximize a generalized pseudo-log-likelihood (Goodfellow et al., 2013), or as training a
denoising autoencoder with a masking corruption function (Uria et al., 2014). Recent work
on generative stochastic networks (GSNs), which include denoising auto-encoders as special
cases, justifies dependency networks (Heckerman et al., 2000) as well as generalized pseudo-
log-likelihood (Goodfellow et al., 2013), but have the disadvantage that sampling from the
trained “stochastic fill-in” model requires a Markov chain (repeatedly resampling some subset
of the values given the others). In all these cases, learning progresses by back-propagating



the imputation (reconstruction) error through inference steps of the model. This allows the
model to better cope with a potentially imperfect inference algorithm. This learning-to-cope
was introduced recently in 2011 by Stoyanov et al. (2011) and Domke (2011).

The NADE model involves an ordering over the components of the data vector. The core
of the model is the reconstruction of the next component given all the previous ones. In
this paper we reinterpret the reconstruction procedure as a single iteration in a variational
inference algorithm, and we propose a version where we use k iterations instead, inspired
by (Goodfellow et al., 2013; Brakel et al., 2013). We evaluate the proposed model on two
datasets and show that it outperforms the original NADE (Larochelle and Murray, 2011b)
as well as NADE trained with the order-agnostic training algorithm (Uria et al., 2014).

13.2. Proposed Method: NADE-k
We propose a probabilistic model called NADE-k for D-dimensional binary data vectors

x. We start by defining pθ for imputing missing values using a fully factorial conditional
distribution:

pθ(xmis | xobs) =
∏
i∈mis

pθ(xi | xobs), (13.2.1)

where the subscripts mis and obs denote missing and observed components of x. From the
conditional distribution pθ we compute the joint probability distribution over x given an
ordering o (a permutation of the integers from 1 to D) by

pθ(x | o) =
D∏
d=1

pθ(xod | xo<d), (13.2.2)

where o<d stands for indices o1 . . . od−1.
The model is trained to minimize the negative log-likelihood averaged over all possible

orderings o

L(θ) = Eo∈D! [Ex∈data [− log pθ(x | o)]] . (13.2.3)

using an unbiased, stochastic estimator of L(θ)

L̂(θ) = − D

D − d+ 1 log pθ(xo≥d | xo<d) (13.2.4)

by drawing o uniformly from all D! possible orderings and d uniformly from 1 . . . D (Uria
et al., 2014). Note that while the model definition in Eq. (13.2.2) is sequential in nature,
the training criterion (13.2.4) involves reconstruction of all the missing values in parallel. In
this way, training does not involve picking or following specific orders of indices.

In this paper, we define the conditional model pθ(xmis | xobs) using a deep feedforward
neural network with nk layers, where we use n weight matrices k times. This can also be
interpreted as running k successive inference steps with an n-layer neural network.
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Fig. 13.1. The choice of a structure for NADE-k is very flexible. The dark
filled halves indicate that a part of the input is observed and fixed to the
observed values during the iterations. Left: Basic structure corresponding to
Equations (13.2.6–13.2.7) with n = 2 and k = 2. Middle: Depth added as in
NADE by Uria et al. (2014) with n = 3 and k = 2. Right: Depth added as in
Multi-Prediction Deep Boltzmann Machine by Goodfellow et al. (2013) with
n = 2 and k = 3. The first two structures are used in the experiments.

The input to the network is

v〈0〉 = m� Ex∈data [x] + (1−m)� x (13.2.5)

where m is a binary mask vector indicating missing components with 1, and � is an element-
wise multiplication. Ex∈data [x] is an empirical mean of the observations. For simplicity, we
give equations for a simple structure with n = 2. See Fig. 13.1 (left) for the illustration of
this simple structure.

In this case, the activations of the layers at the t-th step are

h〈t〉 = φ(Wv〈t−1〉 + c) (13.2.6)

v〈t〉 = m� sigmoid(Vh〈t〉 + b) + (1−m)� x (13.2.7)

where φ is an element-wise nonlinearity, σ is a logistic sigmoid function, and the iteration
index t runs from 1 to k. The conditional probabilities of the variables (see Eq. (13.2.1)) are
read from the output v〈k〉 as

pθ(xi = 1 | xobs) = v
〈k〉
i . (13.2.8)

Fig. 13.2 shows examples of how v〈t〉 evolves over iterations, with the trained model.
The parameters θ = {W,V, c,b} can be learned by stochastic gradient descent to mini-

mize −L(θ) in Eq. (13.2.3), or its stochastic approximation −L̂(θ) in Eq. (13.2.4), with the
stochastic gradient computed by back-propagation.

Once the parameters θ are learned, we can define a mixture model by using a uniform
probability over a set of orderings O. We can compute the probability of a given vector x
as a mixture model

pmixt(x | θ, O) = 1
|O|

∑
o∈O

pθ(x | o) (13.2.9)
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Fig. 13.2. The inner working mechanism of NADE-k. The left most column
shows the data vectors x, the second column shows their masked version and
the subsequent columns show the reconstructions v〈0〉 . . .v〈10〉 (See
Eq. (13.2.7)).

with Eq. (13.2.2). We can draw independent samples from the mixture by first drawing an
ordering o and then sequentially drawing each variable using xod ∼ pθ(xod | xo<d). Further-
more, we can draw samples from the conditional p(xmis | xobs) easily by considering only
orderings where the observed indices appear before the missing ones.

Pretraining It is well known that training deep networks is difficult without pretraining,
and in our experiments, we train networks up to kn = 7× 3 = 21 layers. When pretraining,
we train the model to produce good reconstructions v〈t〉 at each step t = 1 . . . k. More
formally, in the pretraining phase, we replace Equations (13.2.4) and (13.2.8) by

L̂pre(θ) = − D

D − d+ 1
1
k

k∑
t=1

log
∏
i∈o≥d

p
〈t〉
θ (xi | xo<d) (13.2.10)

p
〈t〉
θ (xi = 1 | xobs) = v

〈t〉
i . (13.2.11)

13.2.1. Related Methods and Approaches

Order-agnostic NADE The proposed method follows closely the order-agnostic version
of NADE (Uria et al., 2014), which may be considered as the special case of NADE-k with
k = 1. On the other hand, NADE-k can be seen as a deep NADE with some specific weight
sharing (matrices W and V are reused for different depths) and gating in the activations of
some layers (See Equation (13.2.7)).

Additionally, Uria et al. (2014) found it crucial to give the mask m as an auxiliary input
to the network, and initialized missing values to zero instead of the empirical mean (See
Eq. (13.2.5)). Due to these differences, we call their approach NADE-mask. One should
note that NADE-mask has more parameters due to using the mask as a separate input to
the network, whereas NADE-k is roughly k times more expensive to compute.

Probabilistic Inference Let us consider the task of missing value imputation in a prob-
abilistic latent variable model. We get the conditional probability of interest by marginalizing
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out the latent variables from the posterior distribution:

p(xmis | xobs) =
∫

h
p(h,xmis | xobs)dh. (13.2.12)

Accessing the joint distribution p(h,xmis | xobs) directly is often harder than alternatively
updating h and xmis based on the conditional distributions p(h | xmis,xobs) and p(xmis | h).1

Variational inference is one of the representative examples that exploit this.
In variational inference, a factorial distribution q(h,xmis) = q(h)q(xmis) is iteratively

fitted to p(h,xmis | xobs) such that the KL-divergence between q and p

KL[q(h,xmis)||p(h,xmis | xobs)] = −
∫

h,xmis
q(h,xmis) log

[
p(h,xmis | xobs)

q(h,xmis)

]
dhdxmis

(13.2.13)

is minimized. The algorithm alternates between updating q(h) and q(xmis), while considering
the other one fixed.

As an example, let us consider a restricted Boltzmann machine (RBM) defined by

p(v,h) ∝ exp(b>v + c>h + h>Wv). (13.2.14)

We can fit an approximate posterior distribution parameterized as q(vi = 1) = v̄i and
q(hj = 1) = h̄j to the true posterior distribution by iteratively computing

h̄← σ(Wv̄ + c) (13.2.15)

v̄←m� sigmoid(W>h + b) + (1−m)� v. (13.2.16)

We notice the similarity to Eqs. (13.2.6)–(13.2.7): If we assume φ = sigmoid and V = W>,
the inference in the NADE-k is equivalent to performing k iterations of variational inference
on an RBM for the missing values (Peterson and Anderson, 1987). We can also get variational
inference on a deep Boltzmann machine (DBM) using the structure in Fig. 13.1 (right).

Multi-Prediction Deep Boltzmann Machine Goodfellow et al. (2013) and Brakel
et al. (2013) use backpropagation through variational inference steps to train a deep Boltz-
mann machine. This is very similar to our work, except that they approach the problem
from the view of maximizing the generalized pseudo-likelihood (Huang and Ogata, 2002).
Also, the deep Boltzmann machine lacks the tractable probabilistic interpretation similar
to NADE-k (See Eq. (13.2.2)) that would allow to compute a probability or to generate
independent samples without resorting to a Markov chain. Also, our approach is somewhat
more flexible in the choice of model structures, as can be seen in Fig. 13.1. For instance, in
the proposed NADE-k, encoding and decoding weights do not have to be shared and any
type of nonlinear activations, other than a logistic sigmoid function, can be used.

1 We make a typical assumption that observations are mutually independent given the latent variables.
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Product and Mixture of Experts One could ask what would happen if we would
define an ensemble likelihood along the line of the training criterion in Eq. (13.2.3). That is,

− log pprod(x | θ) ∝ Eo∈D! [− log p(x | θ, o)] . (13.2.17)

Maximizing this ensemble likelihood directly will correspond to training a product-of-experts
model (Hinton, 2000). However, this requires us to evaluate the intractable normalization
constant during training as well as in the inference, making the model not tractable anymore.

On the other hand, we may consider using the log-probability of a sample under the
mixture-of-experts model as the training criterion

− log pmixt(x | θ) = − logEo∈D! [p(x | θ, o)] . (13.2.18)

This criterion resembles clustering, where individual models may specialize in only a fraction
of the data. In this case, however, the simple estimator such as in Eq. (13.2.4) would not be
available.

13.3. Experiments
We study the proposed model with two datasets: binarized MNIST handwritten digits

and Caltech 101 silhouettes.
We train NADE-k with one or two hidden layers (n = 2 and n = 3, see Fig. 13.1, left and

middle) with a hyperbolic tangent as the activation function φ(·). We use stochastic gradient
descent on the training set with a minibatch size fixed to 100. We use AdaDelta (Zeiler,
2012) to adaptively choose a learning rate for each parameter update on-the-fly. We use the
validation set for early-stopping and to select the hyperparameters. With the best model on
the validation set, we report the log-probability computed on the test set. We have made
our implementation available2.

13.3.1. MNIST

We closely followed the procedure used by Uria et al. (2014), including the split of the
dataset into 50,000 training samples, 10,000 validation samples and 10,000 test samples. We
used the same version where the data has been binarized by sampling.

We used a fixed width of 500 units per hidden layer. The number of steps k was selected
among {1, 2, 4, 5, 7}. According to our preliminary experiments, we found that no separate
regularization was needed when using a single hidden layer, but in case of two hidden layers,
we used weight decay with the regularization constant in the interval [e−5, e−2]. Each model
was pretrained for 1000 epochs and fine-tuned for 1000 epochs in the case of one hidden layer
and 2000 epochs in the case of two.

2git@github.com:yaoli/nade_k.git
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Model Log-Prob. Model Log-Prob.
NADE 1HL(fixed order) -88.86 RBM (500h, CD-25) ≈ -86.34
NADE 1HL -99.37 DBN (500h+2000h) ≈ -84.55
NADE 2HL -95.33 DARN (500h) ≈ -84.71
NADE-mask 1HL -92.17 DARN (500h, adaNoise) ≈ -84.13
NADE-mask 2HL -89.17 NADE-5 1HL -90.02
NADE-mask 4HL -89.60 NADE-5 2HL -87.14
EoNADE-mask 1HL(128 Ords) -87.71 EoNADE-5 1HL(128 Ords) -86.23
EoNADE-mask 2HL(128 Ords) -85.10 EoNADE-5 2HL(128 Ords) -84.68

Tab. 13. I. Results obtained on MNIST using various models and number
of hidden layers (1HL or 2HL). “Ords” is short for “orderings”. These are
the average log-probabilities of the test set. EoNADE refers to the ensemble
probability (See Eq. (13.2.9)). From here on, in all figures and tables we use
“HL” to denote the number of hidden layers and “h” for the number of hidden
units.

For both NADE-k with one and two hidden layers, the validation performance was best
with k = 5. The regularization constant was chosen to be 0.00122 for the two-hidden-layer
model.

Results We report in Table 13. I the mean of the test log-probabilities averaged over
randomly selected orderings. We also show the experimental results by others from (Uria
et al., 2014; Gregor et al., 2014). We denote the model proposed in (Uria et al., 2014) as a
NADE-mask.

From Table 13. I, it is clear that NADE-k outperforms the corresponding NADE-mask
both with the individual orderings and ensembles over orderings using both 1 or 2 hidden
layers. NADE-k with two hidden layers achieved the generative performance comparable to
that of the deep belief network (DBN) with two hidden layers.

Fig. 13.3 shows training curves for some of the models. We can see that the NADE-1
does not perform as well as NADE-mask. This confirms that in the case of k = 1, the
auxiliary mask input is indeed useful. Also, we can note that the performance of NADE-5
is still improving at the end of the preallocated 2000 epochs, further suggesting that it may
be possible to obtain a better performance simply by training longer.

Fig. 13.4 (a) shows the effect of the number of iterations k during training. Already
with k = 2, we can see that the NADE-k outperforms its corresponding NADE-mask. The
performance increases until k = 5. We believe the worse performance of k = 7 is due to the
well known training difficulty of a deep neural network, considering that NADE-7 with two
hidden layers effectively is a deep neural network with 21 layers.
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Fig. 13.3. NADE-k with k steps of variational inference helps to reduce the
training cost (a) and to generalize better (b). NADE-mask performs better
than NADE-1 without masks both in training and test.
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Fig. 13.4. (a) The generalization performance of different NADE-k models
trained with different k. (b) The generalization performance of NADE-5 2h,
trained with k=5, but with various k in test time.

At inference time, we found that it is important to use the exact k that one used to train
the model. As can be seen from Fig. 13.4 (b), the assigned probability increases up to the
k, but starts decreasing as the number of iterations goes over the k. 3

3In the future, one could explore possibilities for helping better converge beyond step k, for instance by using
costs based on reconstructions at k − 1 and k even in the fine-tuning phase.
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13.3.1.1. Qualitative Analysis

In Fig. 13.2, we present how each iteration t = 1 . . . k improves the corrupted input (v〈t〉

from Eq. (13.2.5)). We also investigate what happens with test-time k being larger than the
training k = 5. We can see that in all cases, the iteration – which is a fixed point update –
seems to converge to a point that is in most cases close to the ground-truth sample. Fig. 13.4
(b) shows however that the generalization performance drops after k = 5 when training with
k = 5. From Fig. 13.2, we can see that the reconstruction continues to be sharper even after
k = 5, which seems to be the underlying reason for this phenomenon.

From the samples generated from the trained NADE-5 with two hidden layers shown
in Fig. 13.5 (a), we can see that the model is able to generate digits. Furthermore, the
filters learned by the model show that it has learned parts of digits such as pen strokes (See
Fig. 13.6).

13.3.1.2. Variability over Orderings

In Section 13.2, we argued that we can perform any inference task p(xmis | xobs) easily
and efficiently by restricting the set of orderings O in Eq. (13.2.9) to ones where xobs is before
xmis. For this to work well, we should investigate how much the different orderings vary.

To measure the variability over orderings, we computed the variance of log p(x | o) for
128 randomly chosen orderings o with the trained NADE-k’s and NADE-mask with a single
hidden layer. For comparison, we computed the variance of log p(x | o) over the 10,000 test
samples.

log p(x | o) Eo,x [·]
√
Ex Varo [·]

√
Eo Varx [·]

NADE-mask 1HL -92.17 3.5 23.5
NADE-5 1HL -90.02 3.1 24.2
NADE-5 2HL -87.14 2.4 22.7

Tab. 13.
II. The
variance of
log p(x | o)
over order-
ings o and
over test
samples x.

In Table 13. II, the variability over the orderings is clearly much smaller than that over
the samples. Furthermore, the variability over orderings tends to decrease with the better
models.

13.3.2. Caltech-101 silhouettes

We also evaluate the proposed NADE-k on Caltech-101 Silhouettes (Marlin et al., 2010),
using the standard split of 4100 training samples, 2264 validation samples and 2307 test
samples. We demonstrate the advantage of NADE-k compared with NADE-mask under
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(a) MNIST (b) Caltech-101 Silhouettes

Fig. 13.5. Samples generated from NADE-k trained on (a) MNIST and (b)
Caltech-101 Silhouettes.

(a) (b)

Fig. 13.6. Filters learned from NADE-5 2HL. (a) A random subset of the
encodering filters. (b) A random subset of the decoding filters.

the constraint that they have a matching number of parameters. In particular, we compare
NADE-k with 1000 hidden units with NADE-mask with 670 hiddens. We also compare
NADE-k with 4000 hidden units with NADE-mask with 2670 hiddens.

We optimized the hyper-parameter k ∈ {1,2, . . . ,10} in the case of NADE-k. In both
NADE-k and NADE-mask, we experimented without regularizations, with weight decays, or
with dropout. Unlike the previous experiments, we did not use the pretraining scheme (See
Eq. (13.2.10)).

As we can see from Table 13. III, NADE-k outperforms the NADE-mask regardless
of the number of parameters. In addition, NADE-2 with 1000 hidden units matches the
performance of an RBM with the same number of parameters. Futhermore, NADE-5 has
outperformed the previous best result obtained with the RBMs in (Cho et al., 2013), achiev-
ing the state-of-art result on this dataset. We can see from the samples generated by the
NADE-k shown in Fig. 13.5 (b) that the model has learned the data well.

13.4. Conclusions and Discussion
In this paper, we proposed a model called iterative neural autoregressive distribution esti-

mator (NADE-k) that extends the conventional neural autoregressive distribution estimator
(NADE) and its order-agnostic training procedure. The proposed NADE-k maintains the
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Tab. 13. III. Average log-probabilities of test samples of Caltech-101 Silhou-
ettes. (?) The results are from Cho et al. (2013). The terms in the parenthesis
indicate the number of hidden units, the total number of parameters (M for
million), and the L2 regularization coefficient. NADE-mask 670h achieves the
best performance without any regularizations.

Model Test LL Model Test LL
RBM?

(2000h, 1.57M)
-108.98 RBM ?

(4000h, 3.14M)
-107.78

NADE-mask
(670h, 1.58M)

-112.51 NADE-mask
(2670h, 6.28M, L2=0.00106)

-110.95

NADE-2
(1000h, 1.57M, L2=0.0054)

-108.81 NADE-5
(4000h, 6.28M, L2=0.0068)

-107.28

tractability of the original NADE while we showed that it outperforms the original NADE
as well as similar, but intractable generative models such as restricted Boltzmann machines
and deep belief networks.

The proposed extension is inspired from the variational inference in probabilistic models
such as restricted Boltzmann machines (RBM) and deep Boltzmann machines (DBM). Just
like an iterative mean-field approximation in Boltzmann machines, the proposed NADE-k
performs multiple iterations through hidden layers and a visible layer to infer the probability
of the missing value, unlike the original NADE which performs the inference of a missing
value in a single iteration through hidden layers.

Our empirical results show that this approach of multiple iterations improves the perfor-
mance of a model that has the same number of parameters, compared to performing a single
iteration. This suggests that the inference method has significant effect on the efficiency of
utilizing the model parameters. Also, we were able to observe that the generative perfor-
mance of NADE can come close to more sophisticated models such as deep belief networks
in our approach.

In the future, more in-depth analysis of the proposed NADE-k is needed. For instance,
a relationship between NADE-k and the related models such as the RBM need to be both
theoretically and empirically studied. The computational speed of the method could be
improved both in training (by using better optimization algorithms. See, e.g., (Pascanu
and Bengio, 2014)) and in testing (e.g. by handling the components in chunks rather than
fully sequentially). The computational efficiency of sampling for NADE-k can be further
improved based on the recent work of Yao et al. (2014) where an annealed Markov chain
may be used to efficiently generate samples from the trained ensemble. Another promising
idea to improve the model performance further is to let the model adjust its own confidence
based on d. For instance, in the top right corner of Fig. 13.2, we see a case with lots of
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missing values values (low d), where the model is too confident about the reconstructed digit
8 instead of the correct digit 2.
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Chapter 14

RECENT DEVELOPMENT IN LEARNING VISUAL
REPRESENTATIONS

14.1. Learning image representations
The success of supervised learning hinges on the availability of a large labelled dataset.

When such a condition is not satisfied, one resorts to the use of unsupervised learning to
obtain image representations. The idea of training a deep and directed generative model have
prevailed over the years. This includes the work in Chapter 11 and Chapter 13. Generative
Adversarial Networks (GAN) introduced in Goodfellow et al. (2014) suggests training such
type of models with a minmax optimization procedure. This clever approach avoids the
difficulty of maximizing the log-likelihood directly on pixels but instead utilizes a classifier
to differentiate real and synthesized images. A close relative to GAN is Generative Moment
Matching proposed in (Li et al., 2015) where the MaximumMean Discrepancy (Gretton et al.,
2012) is used in place of the standard minmax criteria. Recently, (Arjovsky and Bottou, 2017)
provides theoretical analysis of the problems including instability and saturation that arise
when training GANs.

On the other hand, Variational Autoencoders (VAEs) (see Section 2.6.2) proposed in
Kingma and Welling (2013) have remained an active research area through the years with
several noticeable contributions. Gregor et al. (2015) drastically improved the generative
performance on MNIST, a commonly used benchmark for generative models since 2006. The
work of Kingma et al. (2016) suggests the use a non-factorized distribution to approximate
the true posterior instead of the commonly used diagonal Gaussian. Theis et al. (2017); Ballé
et al. (2016) use VAEs to compress images. One particular interesting work is Higgins et al.
(2017) where VAEs are used as the model for learning early visual concept, highlighting a
connection to the findings in neuroscience.

Unlike VAEs where samples are generated entirely at once, NADEs, including both the
deep and shallow ones mentioned in Chapter 11 and Chapter 13 rely on a predefined ordering
when generating samples. Such a sequential aspect is the direct result of the chain rule of



factorization of the joint probability of inputs. Recently, instead of parameterizing it with
NADEs, PixelCNNs (Oord et al., 2016; Salimans et al., 2017) parameterize it with LSTMs
(section 2.4) that models the details of images well. The current state-of-the-art performance
on binarized MNIST (a popular benchmark among generative models) is claimed by Gulra-
jani et al. (2017) where VAEs and PixelCNNs are combined together to learn a meaningful
latent representations while capturing large strcutures in images.

Unlike VAEs where the log-probability of a deep directed generative models (such as
VAEs) is typically intractable due to the marginalization of latent variables. Nonlinear
Indepedent Component Estimations (NICEs) from Dinh et al. (2014, 2017) utilize a bijective
encoder that results a model that enables exact and tractable log-likelihood, inference and
sampling.

Models described above, including GANs, VAEs, NADEs, PixelRNNs and NICEs have
their pros and cons. For instance, GANs are able to generate by far sharpest images but do
not explicitly define a likelihood function and training such models could also be challenging
due to the unstable training dynamics. VAEs have formally defined likelihood function
and are efficient in generating samples but they tend to be slightly blurry. PixelRNNs and
NADEs have tractable likelihood function but the generation is inefficient. NICEs have both
a tractable likelihood function and an efficient generating process, yet the capacity of such
models are limited. The future will undoubtedly see development in generative models that
are both statistically and computationally more efficient.

14.2. Learning video representations
The work of Chapter 5, Chapter 7 and Chapter 9 belongs to the exciting field of learning

video representations. There are many ways to achieve this. The dominant approach by far
has been the use of supervised learning. Action recognition is perhaps the most representative
and the most studied in this category. Despite its dominance in image applications, neural
networks have yet to enjoy the equal success in video applications. The reasons are many-
folded. Firstly, a labelled video dataset is hard to obtain. Among the largest ones the number
of examples range from tens of thousands (Soomro et al., 2012; Kuehne et al., 2013; Fabian
Caba Heilbron and Niebles, 2015) to hundreds of thousands (Torabi et al., 2015; Rohrbach
et al., 2015b). To this end, there has been significant effort in the community recently to
collect large datasets with good quality. The most noticiable is Abu-El-Haija et al. (2016)
where 8 million YouTube videos are collected and labelled for the general purpose of video
understanding.

A good representation can be learned with a direct supervised signal. But convolutional
and recurrent neural networks that are so popular in handling 2D signal become compu-
tationally prohibitive as one example of a short video typically contains 50 to 100 frames.
The issue of insufficient training examples only compounds the problem. This motivates
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the work in Chapter 5 where a 3DConvNet is trained from local statistics instead of pixels
(such as in Tran et al. (2015) and Karpathy et al. (2014)) to reduce the computational com-
plexity. Another popular and successful alternative is to adopt a two-stream approach as in
Wang et al. (2015); Ye et al. (2015); Simonyan and Zisserman (2014a); Feichtenhofer et al.
(2016) where one 2DConvNet is trained on single frames to capture spatial patterns and the
other one trained on pre-computed Optical Flows to explicitly model temporal correlations.
This family of model currently claims the state-of-the-art in action recognition among all
learning-based approaches.

A good representation may also be learned with an unsupervised signal. Srivastava et al.
(2015a) predicts past and future frames given the current ones to learned representations
that capture both spatial and temporal correlations. Such an LSTM model is improved in
Chapter 9 where recurrent neural networks are made convolutional. Similarly Oh et al. (2015)
use deconvolution to predict next frames in Atari games. Goroshin et al. (2015) encourage
temporal coherence in addition to making frame predictions. Mathieu et al. (2016) make
the important observation that the commonly used mean square error in frame prediction
is prone to produce blurry results, and propose alternative training criteria to sharpen it.
Instead of predicting frames, Finn et al. (2016) explicitly models the transformation between
frames in a confined environment. The most recent work for frame prediction is Lotter et al.
(2017) where the prediction error is fed back into the model for correction, inspired by
findings in neuroscience. Villegas et al. (2017) also predicts future frames but proposes
to decompose motion and content. Bazzani et al. (2017) combines both 3DConvNets and
LSTMs with visual attention (similar to those used in Chapter 5) to predict visual saliency,
and the learned representation improves action recognition on UCF101. Temporal coherence
can be further exploited by predicting the ordering such as the work in Misra et al. (2016).

115





Chapter 15

CONCLUSION

It has been nearly 5 years since the revolutionary work of Krizhevsky et al. (2012b) where a
deep neural network was trained with supervision on fast GPUs. It has been a decade since
the dawn of deep learning in 2006 (Hinton and Salakhutdinov, 2006b) where a deep autoen-
coder was trained layer by layer with restricted Boltzmann machines. And it has been nearly
75 years since the first mathematical model of a neuron was proposed in McCulloch and Pitts
(1943b). Nowadays we have developed computers that are capable of accomplishing amazing
things such as identifying objects, driving vehicles and playing games. None of this would
have been possible without representing visual percepts in a mathematical format readable
by computers. There has been ample evidence that the most efficient way of obtaining such
a representation is through learning.

This work contributes in this direction. In particular, the second half of this thesis is
devoted to studying models that learn to represent images with unsupervised learning. The
first half is devoted to studying those that learn to represent videos with supervised learning.
While supervised neural networks have matured over the years, unsupervised models have
advanced relatively slowly as it is much more challenging to build unsupervised models that
are statistical and computational efficient, and such a grand challenge arguably aligns with
our understanding of the working mechanism of the brain.

The future will likely to see great scientific advancement in unsupervised learning in both
images and videos. This could be achieved by both a deeper understanding of visual percep-
tion in the brain and an efficient computational model that mimics it. Faster hardware, such
as GPUs being used today is certainly an indispensable part of a computational revolution
that is yet to come.
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