
Université de Montréal

Feedforward deep architectures for classification and synthesis

par David Warde-Farley

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée à la Faculté des arts et des sciences
en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en informatique

août, 2017

c� David Warde-Farley, 2017.

Résumé

Cette thèse par article présente plusieurs contributions au domaine de l’ap-
prentissage de représentations profondes, avec des applications aux problèmes de
classification et de synthèse d’images naturelles. Plus spécifiquement, cette thèse
présente plusieurs nouvelles techniques pour la construction et l’entrâınement de
réseaux neuronaux profonds, ainsi qu’une étude empirique de la technique de «dro-
pout», une des approches de régularisation les plus populaires des dernières années.

Le premier article présente une nouvelle fonction d’activation linéaire par mor-
ceau, appellée «maxout», qui permet à chaque unité cachée d’un réseau de neurones
d’apprendre sa propre fonction d’activation convexe. Nous démontrons une perfor-
mance améliorée sur plusieurs tâches d’évaluation du domaine de reconnaissance
d’objets, et nous examinons empiriquement les sources de cette amélioration, y
compris une meilleure synergie avec la méthode de régularisation «dropout» ré-
cemment proposée.

Le second article poursuit l’examen de la technique «dropout». Nous nous
concentrons sur les réseaux avec fonctions d’activation rectifiées linéaires (ReLU)
et répondons empiriquement à plusieurs questions concernant l’e�cacité remar-
quable de «dropout» en tant que régularisateur, incluant les questions portant sur
la méthode rapide de rééchelonnement au temps de l’évaluation et la moyenne
géométrique que cette méthode approxime, l’interprétation d’ensemble comparée
aux ensembles traditionnels, et l’importance d’employer des critères similaires au
«bagging» pour l’optimisation.

Le troisième article s’intéresse à un problème pratique de l’application à l’échelle
industrielle de réseaux neuronaux profonds au problème de reconnaissance d’objets
avec plusieurs étiquettes, nommément l’amélioration de la capacité d’un modèle à
discriminer entre des étiquettes fréquemment confondues. Nous résolvons le pro-
blème en employant la prédiction du réseau pour construire une partition de l’es-
pace des étiquettes et ajoutons au réseau des sous-composantes dédiées à chaque
sous-ensemble de la partition.

Finalement, le quatrième article s’attaque au problème de l’entrâınement de
modèles génératifs implicites sur des images naturelles en suivant le paradigme
des réseaux génératifs adversariaux (GAN) récemment proposé. Nous présentons
une procédure d’entrâınement améliorée employant un auto-encodeur débruitant,
entrâıné dans un espace de caractéristiques abstrait appris par le discriminateur,
pour guider le générateur à apprendre un encodage qui s’aligne de plus près aux
données. Nous évaluons le modèle avec le score «Inception» récemment proposé.

ii

Mots-clés: apprentissage de représentations profondes, apprentisage machine,
réseau de neurones, apprentisage supervisé, apprentissage non-supervisé, dropout,
fonction d’activation, réseau convolutionel, reconnaissance d’objets, synthèse d’images

iii

Summary

This thesis by articles makes several contributions to the field of deep learning,
with applications to both classification and synthesis of natural images. Specifically,
we introduce several new techniques for the construction and training of deep feed-
forward networks, and present an empirical investigation into dropout, one of the
most popular regularization strategies of the last several years.

In the first article, we present a novel piece-wise linear parameterization of
neural networks, maxout, which allows each hidden unit of a neural network to
e↵ectively learn its own convex activation function. We demonstrate improvements
on several object recognition benchmarks, and empirically investigate the source
of these improvements, including an improved synergy with the recently proposed
dropout regularization method.

In the second article, we further interrogate the dropout algorithm in particular.
Focusing on networks of the popular rectified linear units (ReLU), we empirically
examine several questions regarding dropout’s remarkable e↵ectiveness as a regu-
larizer, including questions surrounding the fast test-time rescaling trick and the
geometric mean it approximates, interpretations as an ensemble as compared with
traditional ensembles, and the importance of using a bagging-like criterion for op-
timization.

In the third article, we address a practical problem in industrial-scale application
of deep networks for multi-label object recognition, namely improving an existing
model’s ability to discriminate between frequently confused classes. We accomplish
this by using the network’s own predictions to inform a partitioning of the label
space, and augment the network with dedicated discriminative capacity addressing
each of the partitions.

Finally, in the fourth article, we tackle the problem of fitting implicit generative
models of open domain collections of natural images using the recently introduced
Generative Adversarial Networks (GAN) paradigm. We introduce an augmented
training procedure which employs a denoising autoencoder, trained in a high-level
feature space learned by the discriminator, to guide the generator towards feature
encodings which more closely resemble the data. We quantitatively evaluate our
findings using the recently proposed Inception score.

Keywords: neural network, machine learning, deep learning, supervised learning,
unsupervised learning, dropout, generative adversarial network, activation func-
tion, convolutional network, object recognition, image synthesis

iv

Contents

Résumé . ii

Summary . iv

Contents . v

List of Figures . viii

List of Tables . ix

1 Background . 1
1.0.1 Parametric and non-parametric learning 2
1.0.2 Parameters and hyperparameters 3

1.1 Formalizing learning . 3
1.2 Probabilistic graphical models . 6

1.2.1 Directed models and explaining away 8
1.3 Neural Networks . 11

1.3.1 Supervised learning . 11
1.3.2 Encoding domain knowledge 14
1.3.3 Unsupervised learning . 15

2 Prologue to First Article . 19
2.1 Article Details . 19
2.2 Context . 19
2.3 Contributions . 20
2.4 Recent Developments . 20

3 Maxout Networks . 21
3.1 Introduction . 21
3.2 Review of dropout . 22
3.3 Description of maxout . 23
3.4 Maxout is a universal approximator 25
3.5 Benchmark results . 27

3.5.1 MNIST . 27
3.5.2 CIFAR-10 . 28

v

3.5.3 CIFAR-100 . 29
3.5.4 Street View House Numbers 30

3.6 Comparison to rectifiers . 32
3.7 Model averaging . 32
3.8 Optimization . 33

3.8.1 Optimization experiments 34
3.8.2 Saturation . 34
3.8.3 Lower layer gradients and bagging 35

3.9 Conclusion . 36

4 Prologue to Second Article . 42
4.1 Article Details . 42
4.2 Context . 42
4.3 Contributions . 42
4.4 Recent Developments . 43

5 An Empirical Analysis of Dropout in Piecewise Linear Networks 44
5.1 Introduction . 44
5.2 Review of dropout . 46

5.2.1 Dropout as bagging . 47
5.2.2 Approximate model averaging 47

5.3 Experimental setup . 48
5.4 Weight scaling versus Monte Carlo or exact model averaging 50
5.5 Geometric mean versus arithmetic mean 50
5.6 Dropout ensembles versus untied weights 52
5.7 Dropout bagging versus dropout boosting 55
5.8 Conclusion . 57

6 Prologue to Third Article . 59
6.1 Article Details . 59
6.2 Context . 59
6.3 Contributions . 60
6.4 Recent Developments . 60

7 Self-Informed Neural Network Structure Learning 61
7.1 Introduction . 61
7.2 Methods . 62
7.3 Related work . 63
7.4 Experiments . 64
7.5 Results . 65

7.5.1 Label clusters recovered . 65
7.5.2 Test set performance improvements 65

vi

7.6 Conclusions & Future Work . 67

8 Adversarial Networks . 68
8.1 Adversarial networks in theory and practice 69
8.2 Generator collapses . 71
8.3 Sample fidelity and learning the objective function 71
8.4 Extensions and refinements . 72
8.5 Hybrid models . 74
8.6 Beyond generative modeling . 74
8.7 Discussion . 75

9 Prologue to Fourth Article . 77
9.1 Article Details . 77
9.2 Context . 77
9.3 Contributions . 78
9.4 Recent Developments . 78

10 Improving Generative Adversarial Networks with Denoising Fea-
ture Matching . 80
10.1 Introduction . 80
10.2 Background . 81

10.2.1 Generative adversarial networks 81
10.2.2 Challenges and Limitations of GANs 82

10.3 Improving Unsupervised GAN Training On Diverse Datasets 84
10.3.1 E↵ect of � . 85

10.4 Related work . 86
10.5 Experiments . 89

10.5.1 CIFAR-10 . 90
10.5.2 STL-10 . 91
10.5.3 ImageNet . 91

10.6 Discussion and Future Directions 92

11Discussion . 95

References . 98

vii

List of Figures

1.1 An example of a directed graphical model 7
1.2 General form of a directed latent variable model 9
1.3 The Bayes-ball algorithm for conditional independence testing. . . . 10
1.4 Polar coordinates vs. Cartesian coordinates 11
1.5 Penalized autoencoders and denoising autoencoders 16

3.1 Using maxout to implement pre-existing activation functions 24
3.2 The activations of maxout units are not sparse. 24
3.3 Universal approximator network . 25
3.4 Example maxout filters . 26
3.5 CIFAR-10 learning curves . 30
3.6 Comparison to rectifier networks . 37
3.7 Monte Carlo classification . 38
3.8 KL divergence from Monte Carlo predictions 39
3.9 Optimization of deep models . 40
3.10 Avoidance of “dead units” . 41

5.1 Exhaustive enumeration of masks vs. weight-scaling 51
5.2 Comparison of arithmetic vs. geometric means over masks 52
5.3 Comparing dropout to untied-weight dropout ensembles 54
5.4 Dropout and dropout boosting vs. SGD 57

7.1 Illustration of the network augmentation process 63
7.2 Evaluation of the trained model on ImageNet classification 66

10.1 CIFAR-10 samples . 90
10.2 STL-10 samples . 92
10.3 ILSVRC-2012 32 ⇥ 32 samples . 93

viii

List of Tables

3.1 Permutation invariant MNIST classification 27
3.2 Convolutional MNIST classification 28
3.3 CIFAR-10 classification . 29
3.4 CIFAR-100 classification . 31
3.5 SVHN classification . 31

7.1 Examples of discovered label-space clusters 65
7.2 Augmented network mAP and computational footprint 66

10.1 Inception scores for generative models of CIFAR-10 91
10.2 Inception scores for generative models of STL-10 91
10.3 Inception scores for models of ILSVRC 2012 at 32 ⇥ 32 92

ix

List of Abbreviations

ALI Adversarially Learned Inference

CNN Convolutional Neural Network

DBM Deep Boltzmann Machine

GAN Generative Adversarial Network

GPU Graphics Processing Unit

i.i.d. Independent and Identically Distributed

ILSVRC ImageNet Large-Scale Visual Recognition Challenge

KL Kullback-Leibler (divergence)

LAPGAN Laplacian Pyramid Generative Adversarial Network

mAP Mean Average Precision

MLP Multi-Layer Perceptron

MP-DBM Multi-Prediction Deep Boltzmann Machine

NCE Noise-Contrastive Estimation

PWL Piecewise Linear

RGB Red, Green, Blue

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

SVHN Street View House Numbers

SVM Support Vector Machine

VAE Variational Auto-Encoder

ZCA Zero-phase Components Analysis

x

Acknowledgments

Much of the credit for my reaching this point is due to my mother, Joan Warde-
Farley, and my father, the late Bernard Leo Farley.

My mother has been a constant source of support throughout this degree and
the two preceding it, and guided us adeptly through the passing of my father in
2005. Among other traits, I have inherited her unmatched stubbornness: having
surreptitiously overheard her expressing doubt in my seriousness about pursuing
a PhD in Montreal, I knew for certain that I had to carry it forward. Her early
incredulity of course gave way to a deluge of financial, logistical, emotional and
moral support, as I always knew it would.

My father taught me a great deal during the two decades we shared, including
the value of honesty, humility, perseverance, and clarity of purpose. I remain but
an imperfect student of his ways. I trust that he would view the first doctorate on
his side of the family as a compelling alternative to the career as a concert pianist
that he once envisioned for me.

I would like to earnestly thank my doctoral advisor, Yoshua Bengio, for his
encouragement, enthusiasm, patience, and guidance, for granting me the great
pleasure of joining MILA (née LISA), and for being the organizing force thereof.
It has been an immense honour to witness firsthand the lab’s transformation into
the deep learning juggernaut that it is today. I’d also like to extend a special thanks
to Aaron Courville, with whom I interacted a great deal in the early days of my
studies, and with whom I co-authored several of the articles presented herein, and
to Vincent Dumoulin for his assistance in translating the summary of this thesis.

I have had the enormous fortune to benefit from many brilliant teachers and
mentors even before my arrival in Montreal. In particular, I’d like to particularly
thank Quaid Morris, my MSc supervisor, from whom I learned a great deal about
being a scientist, and who encouraged me to pursue my interests even where they
diverged from his own; the late Sam Roweis, whose contagious enthusiasm was
matched only by the incredible depth and breadth of his scholarship, may he rest
in peace; and Geo↵rey Hinton, scientific renegade extraordinaire, who originally
ignited my interest in machine learning and neural networks.

Part of this work was undertaken at Google in Mountain View, California. I’d
like to thank everyone with whom I interacted during both of my internships, on
the Brain team and the Image Understanding team respectively, and in particular
my hosts, Rajat Monga and Drago Anguelov, as well as Andrew Rabinovich with
whom I worked closely during the summer of 2014.

I am grateful to all the members of MILA, past and present, with whom I have
interacted. Many of the lab’s members became good friends outside of the context
of the lab. I would in particular like to thank Ian Goodfellow, Guillaume Desjardins,
Razvan Pascanu, Mehdi Mirza, Laurent Dinh, Vincent Dumoulin, Mathieu Ger-
main, Li Yao, Yann Dauphin, Bart van Merriënboer and Yaroslav Ganin for their

xi

extralaboratory camaraderie. I am delighted to be reunited with numerous MILA
colleagues in my new position at DeepMind.

Certain individuals have gone beyond mere friendship and played pivotal roles
in my years in Montreal, and may be unaware just how deeply certain small acts
have shaped my life for the better. In that vein, I owe a particular debt of gratitude
to each of James Bergstra and Dumitru Erhan.

All of the work in these pages is built upon open source scientific software, a
noble cause to which I have done my best to contribute (sometimes at the expense
of more pressing pursuits, in the finest of graduate school traditions). I would
like to thank in particular all of the contributors to NumPy, SciPy, Matplotlib
and IPython. I would especially like to thank the Theano core development team
(notably Frédéric Bastien, Pascal Lamblin, Arnaud Bergeron) for all of their hard
work on a tool that played an integral role in much of this research, as well as Ian
Goodfellow, Vincent Dumoulin, Matt Grimes and others for their contributions
to Pylearn2 alongside my own. It has also been a great pleasure to collaborate
with Bart van Merriënboer, Dzmitry Bahdanau, Vincent Dumoulin, and Dmitriy
Serdyuk on the Blocks and Fuel packages, which restored sanity to my research
workflow.

I would like to graciously acknowledge financial support from Ubisoft, D-Wave
Systems, the Canada Research Chairs, NSERC, CIFAR, and the Université de
Montréal. I’d also like to thank Enthought Inc. for sponsoring my attendance of
SciPy 2008 through 2012.

Last but not least, I’d like to thank my fiancée, Johanna, for her love and
support, and Sheldon for his life-enriching a↵ection and mischief.

xii

1 Background

Machine learning is the study of artificial systems that can adapt or learn from

data presented to them. In the seminal work of Valiant (1984), the definition of

learning adopted is somewhat open-ended, but appropriate given the topics covered

herein: “a program for performing a task has been acquired by learning if it has

been acquired by any means other than explicit programming”. Machine learning,

in its various guises, has established itself as a near-ubiquitous tool in science and

engineering, easing the development and deployment of automated systems for

tasks where explicitly articulated “recipes” are di�cult (or e↵ectively impossible, a

priori) to construct. Insofar as any agent considered intelligent ought to be able

(and should frequently find it useful) to adapt its behaviour in light of observation

and experience, the study of machine learning is an essential element in the pursuit

of artificial intelligence.

The academic study of machine learning is commonly broken down into three

main areas. Supervised learning deals with the discovery of input-output mappings

for some task of interest given correct or approximately correct examples of said

mapping. The setting in which a system predicts one of a fixed number of discrete

labels given an input signal (such as predicting, from physiological measurements,

the presence or absence of a disease) is commonly referred to as classification,

whereas prediction involving well-ordered numerical targets (a company’s stock

price, for example) is known as regression. Unsupervised learning is an umbrella

term for any procedure that operates on only “input”, typically procedures that

attempt to uncover some type of structure in the distribution of input signals.

Prominent examples of unsupervised learning include clustering, where data points

are grouped into one of many discrete groups; decomposition of a signal into (usually

additive) parts, subject to some set of constraints (this can be thought of as a

kind of “cause” discovery); and density estimation, whereby the learner attempts

to identify a parameterization of the probability distribution from which the data

is drawn. Note that these categories of unsupervised learning are not mutually

1

exclusive: many density estimation methods have a decomposition or clustering

interpretation, and vice-versa. Finally, reinforcement learning concerns systems

that implement a policy mapping sequences of stimuli (i.e. the state of the “world”,

as experienced by an autonomous agent) to actions; however, an examination of

this paradigm lies beyond the scope of this thesis.

1.0.1 Parametric and non-parametric learning

Orthogonal to the question of whether a method is supervised or unsupervised

is the distinction between parametric and nonparametric methods. Though the

boundary is defined di↵erently by some authors, we adopt the following conven-

tion: parametric methods can be characterized as those that represent a solution in

terms of a finite set of numerical parameters; crucially, the size of this set remains

fixed throughout learning and is independent of the amount of training data. By

contrast, a non-parametric method is one in which the complexity of the hypothe-

sized solution is adaptive to the complexity of the task or the amount of available

training data. The canonical non-parametric method is a “nearest neighbour” clas-

sifier, where classification proceeds by comparing a test example to every example

seen during training, and predicting the label corresponding to the training example

most similar to the test example (e.g., in terms of Euclidean distance). “Learning”

then corresponds to simply storing the training set. Non-parametric methods are

powerful in that they can often perform impressively while making very few (or

very broad) inductive assumptions, but this flexibility often comes at the cost of

computational complexity in both space and time – in the case of naively imple-

mented nearest neighbour classification, both the amount of memory or disk space

required (to store the training set) and the amount of computation required to

classify a new point scales linearly with the size of the training set.

The methods considered in the remainder of this thesis are parametric in the

sense that any instance considered in isolation obeys our conventions for a paramet-

ric method, with a number of parameters determined a priori and remaining fixed

during training (though the method described in chapter 7 invokes two phases of

such training). However, one property which all of these methods share is that the

number of learnable parameters that describe the data distribution is e↵ectively a

free parameter, and can always be made larger in response to the availability of

2

greater amounts of training data. Furthermore, it is common to optimize over pos-

sible sizes of the parameter set in an automated “outer loop” by considering many

instances in the same family and choosing the one that performs best (accord-

ing to some criterion) on data not used during training. The combined selection

and learning procedure is thus e↵ectively non-parametric, by means of exploring a

family of parametric learners.

1.0.2 Parameters and hyperparameters

In the machine learning literature, the term parameter is typically reserved for

quantities that are adapted during the course of learning. However, the vast major-

ity of machine learning methods will have one or more hyperparameters that must

be specified beforehand, such as the number of basis functions or latent variables,

or the step size of a numerical optimization procedure. For many methods, correct

selection of the relevant hyperparameters is crucial to obtaining good performance.

1.1 Formalizing learning

The learning task, whether supervised or unsupervised, can be formalized as

follows: suppose the possible inputs to our machine lie in a domain D and are

distributed throughout a space S such that D ✓ S, according to a probability

distribution pD. Given a hypothesis space P (i.e., the space which contains all

possible settings of the learnable parameters), and a loss function L : P ⇥ D ! R
that describes, in some way, the performance of the learning machine on a given

data example, learning seeks to identify parameters ✓? 2 P such that

✓

? = argmin
✓

Z

D
L(✓,v)pD(v)dv (1.1)

i.e., ✓? minimizes the expected loss with respect to all valid inputs v to the learning

machine. In the supervised case, D is the set of all corresponding input-output pairs

(x,y), and an intuitive choice for the loss function in the case of classification, with

the learner parameterizing a function f

✓

that outputs a predicted label:

3

L
sup

(✓, (x,y)) =

(
0, if f

✓

(x) = y

1, otherwise
(1.2)

known as the zero-one misclassification loss. i In an unsupervised setting, targets

are omitted and the choice of loss function may involve a task such as reconstructing

the input from an encoded form, a denoising criterion (Vincent et al., 2008), or a

likelihood term deriving from a probabilistic model.

It is quite common in both supervised and unsupervised settings to adopt as the

loss function the negative of the logarithm of a (parameterized) probability den-

sity, that either captures the conditional distribution of the desired outputs given

the inputs (in the supervised setting) or the probability distribution of the inputs

themselves in the (usually high-dimensional) space in which they are embedded (in

the unsupervised setting). For instance, logistic regression is a supervised classifi-

cation method which models the conditional distribution of targets in {0, 1} as a

monotonic function of a linear combination of inputs x 2 Rd,

p

✓

(y|x) = �(wTx+ b)y(1 � �(wTx+ b))(1�y) (1.3)

where ✓ = {w, b} are adjustable parameters, and � : R ! [0, 1] is the logistic

sigmoid function:

�(x) =
1

1 + e

�x

(1.4)

The loss function corresponding to logistic regression for (x, y) for y 2 {0, 1} is

then given by

� log p
✓

(y|x) = �y log �(wTx+ b) � (1 � y) log(1 � �(wTx+ b)) (1.5)

More generally, if ✓ parameterizes a probability model p
✓

such that p
✓

(x) > 0

for every x 2 D, and we define L(✓,x) = � log p
✓

(x), then L is known as the cross-

i. As this loss is non-smooth, it is often desirable to use smoother proxies for the raw misclas-
sification error.

4

entropy between the true data distribution p

D

and the model distribution p

✓

, which

is closely related i to theKullback-Leibler divergence, a commonly employed measure

of the di↵erence between two probability distributions (Kullback and Leibler, 1951).

In most settings, the minimization in (1.1) is impossible to perform exactly, as

we only have access to a finite subset of an extremely large or possibly infinite D.

Instead, we must be content to optimize a proxy for this loss on a finite training

set v(1)

,v(2)

, . . . ,v(N). It is most often assumed that each point in this training set

is sampled independently from the same distribution pD, and that the examples

seen after learning is complete (at “test time”) will be drawn according to the

same distribution, i.e. that the data is independent and identically distributed, and

thus the proxy loss most often chosen can be thought of as a simple Monte Carlo

approximation to the expectation above:

✓

? u ✓̂

? = argmin
✓

1

N

NX

i=1

L(✓,v(i)) (1.6)

The assumption that each point in the training set is drawn independently from

an identical distribution (i.i.d.) means that their joint probability of being drawn

is, by the third of Kolmogorov’s axioms of probability, merely the product of their

corresponding marginal probabilities, i.e. pD(x(1)

,x(2)

, . . . ,x(N)) =
Q

N

i=1

pD(x(i)).

Adopting the same assumption for a probabilistic model p
✓

and taking the loss

function as L(✓,v) = � log p
✓

(v), minimizing the average empirical loss above is

equivalent to maximizing the joint probability of the observations. The sum in (1.6)

is commonly known as the log likelihood of the training set (with the corresponding

product of probabilities being known simply as the likelihood). The optimization

problem posed in (1.6) is thus known as maximum likelihood estimation ii, and is

perhaps the most popular and successful approach to machine learning. With the

i.i.d. assumptions, it can be proven that maximum likelihood estimation is con-

sistent if the training set is drawn i.i.d. from a distribution p

?

✓

within some para-

metric family of distributions P . Then the distribution p

ˆ

✓

? obtained by maximum

likelihood estimation on a finite training set will converge, in terms of decreasing

i. i.e. equal up to an additive constant, the negative entropy of the true data distribution
H(pD) =

R
D pD(x) log pD(x)dx

ii. The 1
N is of course optional and does not change the solution, but is often useful to include,

e.g. to compare across di↵erent sizes of training sets.

5

Kullback-Leibler divergence, to p

?

✓

as the amount of training data increases. The

central concern of machine learning is that of favourable performance on data not

encountered during training, i.e. of generalizing beyond the training set; in this

light, consistency is certainly a desirable property.

Note that maximum likelihood, while popular, is far from unique in this re-

spect. Other consistent approaches to parameter estimation have been explored,

often expressly to address shortcomings of maximum likelihood in certain settings.

Optimizing a lower bound on an intractable log likelihood (Saul and Jordan, 1996)

is one popular technique, whereas other procedures do not optimize the log like-

lihood even in this indirect fashion (Hyvärinen, 2005; Gutmann and Hyvarinen,

2010). In chapter 8, we will introduce another parameter estimation procedure of

the latter type.

Optimization of the model parameters with respect to the loss can be performed

(presuming that the loss is smooth and di↵erentiable almost everywhere) by any

number of (usually gradient-based) numerical optimization techniques. Of particu-

lar import for the methods discussed here are methods based on stochastic gradient

descent, a generalization of simple steepest descent minimization (which adjust the

parameters in the direction of the negative gradient). The key idea behind stochas-

tic gradient descent is that, as the term to be minimized in (1.6) is an expectation

computed over the training set, the gradient can be approximated by an average

over N

0
<< N terms in the sum, or even a single term. For very large datasets,

stochastic gradient descent can allow learning to progress much more rapidly than

so-called batch methods which compute the exact cost and its exact gradient by ex-

haustively summing over the training set. Stochastic gradient descent also admits

the possibility of online learning in which data arrives in a continuous, possibly

evolving stream.

1.2 Probabilistic graphical models

For machine learning procedures with probabilistic semantics, the language of

graphical models has become a standard way of describing these semantics. Briefly,

nodes (vertices) of a graph represent random variables and edges denote (possible)

6

a

b

c

d

e

f

Figure 1.1 – A directed graphical model for the family of models whose joint probability distri-
bution factorize as p(a, b, c, d, e, f) = p(a)p(b|a)p(c|a)p(d|b, c)p(e|c, d)p(f |b, e). The variable f is
observed.

conditional dependence relationships between them. By analogy with the conven-

tional definition of independent random variables, two random variables a and b

are said to be conditionally independent given a random variable c, if and only if

p(a, b|c) = p(a|c)p(b|c). (1.7)

Note that two random variables can be marginally dependent and conditionally

independent given a third observed random variable, and vice versa.

In printed form, shaded nodes in a graphical model typically represent observed

quantities, while unshaded nodes represent unobserved or latent quantities. Most

applications of graphical models in machine learning involve such latent variables,

which may or may not have semantics corresponding to some physical reality. Such

latent variables sometimes represent real but unobserved quantities, such as the true

underlying quantity that has been measured and corrupted by a noisy sensor, or

may otherwise more generally modulate or explain structured interactions between

observed quantities.

7

1.2.1 Directed models and explaining away

Directed graphical models (also frequently known as Bayesian networks or

Bayes nets) characterize a factorization of the joint probability density function

into a product of normalized probability density (or mass, in the discrete case)

functions, where a node x

i

without parents (i.e., no incoming directed edges) con-

tributes a marginal density p(x
i

), and a node x

i

with parents x
⇡(i)

contributes a

conditional distribution p(x
j

|⇡(x
j

)), and so the joint distribution described by a

directed, acyclic graph takes the form

p(x
1

, x

2

, . . . , x

K

) =
KY

i=1

p(x
i

|⇡(x
i

)) (1.8)

where ⇡(x
i

) is the set of parents of node x
i

, and we abuse notation to let p(x
i

|{}) =
p(x

i

). The graph semantics denote only dependence of one random variable on

another and say nothing of the particular functional form, and thus parent-child

relationships can be relatively arbitrary: in the case of a single discrete child node

x

c

with a single discrete parent x
p

, one could imagine a 2-dimensional table T of

values with rows enumerating states {d
1

, d

2

, . . . , d

P

} of the parent and columns

enumerating states {c
1

, c

2

, . . . , c

M

} of the child, the values of the table representing

the conditional probability of the child state given the parent state, i.e. T

ji

=

P (x
c

= c

j

|x
p

= d

i

), with columns of the table summing to 1. More generally, if the

child’s probability density or mass function takes a specific parametric form, the

value of a parent might serve as a parameter – for example a Beta-distributed parent

might serve as the p (probability of“success”, or heads in a coin flip) parameter for a

Bernoulli-distributed child node. A discrete parent variable might index into a list

(or lists) of parameters for a child variable. For example, a mixture of Gaussians

can be written as a directed graphical model involving two nodes: a discrete random

variable c with parameters ↵ = (↵
1

,↵

2

, . . . ,↵

K

)T such that
P

k

↵

k

= 1, i and an

observation vector x that is parameterized byK vectors in Rd

µ

1

, µ

2

, . . . , µ

K

, andK

positive-definite matrices in Rd⇥d, ⌃
1

,⌃
2

, . . . ,⌃
K

. Given an (observed, or sampled)

value c

0 for c (and treating the states of c as integers for notational convenience,

i. Technically we require only K � 1 parameters, since the last is fully determined by the sum
constraint.

8

Figure 1.2 – A directed latent variable model. Each node may represent scalar or vector random
variables; the rules of conditional independence described in Figure 1.3 ensure that the semantics
are the same in either case, as long as there is a bipartite separation between observed and
unobserved variables.

even though they are merely distinct states with no inherent order), then x is

distributed as N (µ
c

0
,⌃

c

0), the multivariate Gaussian distribution with mean µ

c

0

and covariance ⌃
c

0 . Thus the realized value of the random variable c acts as an

index into a list of mean parameters and a list of covariance parameters for its child

node. The mixture of Gaussians is an instance of what we shall term a directed

latent variable model, one of the most commonly studied structures in probabilistic

machine learning, its general form depicted in Figure 1.2.

Conditional independence in directed models is easly described through the sim-

ple Bayes ball algorithm of (Shachter, 1998). The algorithm supposes a simulated

ball to be bouncing from node to node on the graph; if the ball cannot reach one

node x

i

from another node x

j

given the rules of the simulation, then the two are

conditionally independent given the observed quantities. The rules are as follows:

in all situations except one, the ball bounces o↵ of observed (shaded) nodes (back

in the direction it came) and passes through unobserved (unshaded) variables. The

exception arises when two unobserved variables are jointly parents of a third vari-

able (a collider); in this case, the rules are reversed: an observed third variable

allows the ball to pass, whereas an unobserved third variable blocks it.

The situation described above, i.e. conditional coupling of two marginally in-

dependent parent random variables through an observed collider node, is known

as explaining away (Pearl, 1988), and is an important concept in probabilistic

reasoning. From a probabilistic modeling perspective, it is necessary for represent-

ing many realistic scenarios – an illuminated “check engine” light may mean that

the car’s engine needs to be serviced or that the fault sensor is misbehaving, but

9

Figure 1.3 – An illustration of the Bayes-ball algorithm. Observed nodes block the flow of
conditional dependence except in the case of “explaining away” on the far right.

given the observed evidence, these two causes o↵er competing explanations that

are unlikely to both be true. From a computational perspective, explaining away

(especially with discrete latent variables) often complicates inference, the charac-

terization of the posterior distribution of unobserved variables given the observed

variables, accomplished by means of Bayes’ rule:

p(x
latent

|x
observed

) =
p(x

latent

)p(x
observed

|x
latent

)

p(x
observed

)
(1.9)

=
p(x

latent

)p(x
observed

|x
latent

)R
xlatent

p(x
latent

)p(x
observed

|x
latent

)
(1.10)

Inference is a useful operation in its own right but also a critical component of

several procedures for parameter estimation (Dempster et al., 1977). The di�culty

arises when the denominator in (1.10) is intractable – for example, when the latent

state is discrete and combinatorial. Intractable posterior distributions can be dealt

with approximately, however, either by sampling or via deterministic variational

approximations to the posterior distribution (Saul and Jordan, 1996).

10

Figure 1.4 – Illustration of how changing representations can simplify a supervised learning
problem. Here, a polar coordinates transform makes the problem linearly separable.

1.3 Neural Networks

1.3.1 Supervised learning

In supervised learning scenarios, specific representation of the input data em-

ployed can have a profound impact on successful generalization. Much of the work

involved in practical applications of machine learning amounts to the manual de-

sign of features, deterministic functions of the raw input designed such that the

o↵-the-shelf supervised learning algorithm can easily interrogate the structure of

the problem. In particular, methods based on a linear combination of input features

such as logistic regression or the linear support vector machine (Cortes and Vapnik,

1995) have the desirable property that their loss functions are convex : importantly,

there is one global minimum, and its approximate location can be determined by a

variety of techniques from the convex optimization literature. In many real-world

scenarios, however, linear decision boundaries are insu�ciently flexible: a linear

classifier cannot even learn the exclusive-OR function, as no linear decision bound-

ary can be drawn between the examples corresponding to the “true” (1) output

and the “false” output. Another example is shown in Figure 1.4, whereby a simple

change of variables (to polar coordinates) makes an otherwise more challenging

classification problem linearly separable in the new space.

One relatively successful attempt to address this problem is via the “kernel

11

trick” (Aizerman et al., 1964): the solution to the optimization of the support

vector machine’s loss function is expressable in terms of inner products between

training examples (Boser et al., 1992), and these inner products can be replaced

with any kernel function satisfying mild conditions while retaining the convexity of

the loss function. Kernel functions can be chosen such that they correspond to inner

products in higher-dimensional spaces, or even infinite-dimensional Hilbert space,

in which there exists a suitable linear decision boundary. It has been argued by

Bengio and LeCun (2007) that the generalization capabilities of SVMs, especially

when used in tandem with so-called “universal” kernels, is of a limited and local

(in feature-space) character, and that richer mappings are necessary for nonlocal

generalization. Kernelized SVMs are non-parametric in the sense that they depend

on storing the support vectors, those training examples that lie on the margin

adjacent to the decision boundary; for complicated classification problems this can

lead to high computational complexity at test time, as well as a relatively large

memory footprint.

Alternatively, multi-layer perceptrons (Rumelhart et al., 1986), also known as

feed-forward neural networks o↵er a richer parametric approach, with one or more

layers of nonlinear basis functions conventionally known as hidden units that are

linearly combined in the output layer. For example, a multi-layer perceptron for

binary classification with a single layer of hidden units could be parameterized as

h(x) = s(V x+ c) (1.11)

o(x) = �(wT
h(x) + b) (1.12)

where V , w, c and b are learnable parameters, and s is some elementwise nonlinear-

ity. The output of the hidden units h(x) is a learned, nonlinear transformation of

the raw input, which can be adapted by gradient descent to the classification task

at hand. Replacing �(wTx+ b) with o(x) in (1.3) and (1.5) gives us a more flexible

extension of logistic regression that can be trained by gradient descent on the same

loss function (1.5). Gradients on w and b are unchanged from standard logistic

regression, while gradients on V and c (and, in general, the lower-layer parameters

of any multilayer perceptron) are e�ciently computable via the backpropagation al-

gorithm (Rumelhart et al., 1986). Where simpler methods traditionally relied upon

handcrafted features – fixed, hand-engineered transformations of the raw input –

12

neural networks o↵er the attractive possibility of learning to extract features using

the hidden units of the network.

While such networks, even with a single layer of hidden units, are provably uni-

versal approximators (Hornik et al., 1989) (i.e., with enough hidden units they can

approximate, to an arbitrary degree of accuracy, any continuous function on com-

pact subsets of Rn) this power comes at an additional cost. In gaining expressivity,

the convexity of the loss function is sacrificed; identification of a global optimum of

the loss function is no longer guaranteed. While a single layer of hidden units may

be su�cient to approximate any input-output mapping arbitrarily well, this may

come at the cost of representational (and hence statistical) e�ciency (see Bengio

and LeCun (2007) for detailed arguments to this e↵ect). Multiple hidden layers

can demonstrably lead to more e�cient parameterizations (Bengio, 2009), but con-

ventional numerical optimizers, until recently, notoriously failed to e↵ectively train

networks with more than one or two hidden layers (Glorot and Bengio, 2010).

The recent wave of success in training deep neural networks is attributable to

several factors. Recent work has yielded a better understanding of factors such as

initialization and gradient acceleration methods (Sutskever et al., 2013) which play

a crucial role in optimization. Recent years have seen the replacement of sigmoidal

nonlinearities (namely the logistic and hyperbolic tangent functions) with non-

saturating nonlinearities; Jarrett et al. (2009) first investigated several rectification

nonlinearities in convolutional object recognition architectures, focusing on the

absolute value rectification, while Nair and Hinton (2010) showed that the half-wave

rectifier max(0, x), which they dubbed the Rectified Linear Unit (ReLU), could be

fruitfully applied within the context of restricted Boltzmann machines. Glorot et al.

(2011) showed that rectified linear units could be used to train very deep multilayer

perceptrons without need of sophisticated initializations based on unsupervised

pre-training. Piecewise linear activation functions, including rectifiers, give rise

to networks which are piecewise a�ne functions, through which gradient signal

propagates much more readily (see chapter 3 for an extended exploration of this

topic). Finally, the availability of large amounts of data, and the use of commodity

graphics processing units for the rapid training of these computationally intensive

networks (Raina et al., 2009) has allowed practitioners to identify regimes of high

performance that were previously obscured by small sample sizes and prohibitive

training times.

13

1.3.2 Encoding domain knowledge

We have thus far considered learning systems which operate on training cases

which are arbitrary vectors in Rn and pay no heed to structured relationships

between elements of these vectors. However, many signals of interest are highly

structured, with elements having a natural topology in space or in time. A 32⇥ 32

pixel RGB image can be represented as a vector in R3072 and processed by any

algorithm that is agnostic to the fact that it is dealing with pixels, but this neglects

readily available domain knowledge about the structure of the problem. Just as

machine learning practitioners often engineer discriminative features of the input

based on domain knowledge, so can one infuse domain knowledge into learnable

feature extraction systems.

One way of introducing domain knowledge in a neural network is by restricting

the connectivity pattern, or receptive field, of individual hidden units. Another

way is to force di↵erent hidden units, operating on di↵erent inputs, to share the

same parameters – that is, to process di↵erent inputs in exactly the same fashion.

Taken together, these strategies form the bedrock of the most successful class of

neural networks to date.

Convolutional neural networks

In the case of images, it is reasonable to assume that primitive features useful for

classification, such as edges or corners, will have a spatially local character. A layer

of hidden units whose individual connectivity patterns tile the image with small,

overlapping receptive fields will thus force the network to learn features which are

localized in space; the early processing layers of the mammalian visual system are

known to have a similar structure (Hubel and Wiesel, 1959).

The locally-connected regime described above would grant each locally con-

nected hidden unit its own, independent weights. However, a useful property of

images is that semantics are often preserved across translations in space; a bird is

still a bird no matter if it appears perched on a window sill or on a tree branch.

One can thus gain statistical e�ciency by replicating the same weights across all

spatial locations, allowing the network to detect a given, spatially localized pattern

no matter where it appears. It is straightforward to show that the gradient of the

surrogate loss with respect to the shared weights of these spatially replicated units

14

is simply the sum of the gradients with respect to each of its instantiations.

A spatially replicated linear transformation on local pixel neighbourhoods is

precisely equivalent to a discrete, 2-dimensional convolution i, a common primitive

in image processing algorithms. Convolutional neural networks (LeCun, 1989; Le-

Cun et al., 1998) incorporate these insights by replacing multiplication by weight

matrices in neural networks with a linear transformation based on 2-dimensional

convolutions. More precisely, some subset of a image’s M input channels are con-

volved with 2-dimensional filters, and the results summed together; this is repeated

N times, yielding N outputs from a total of N ⇥ M learnable 2-dimensional fil-

ters. For each pixel in each of the N output planes, a plane-specific scalar bias is

added, and a nonlinearity is applied. The resulting planes are known as feature

maps. Convolutional neural networks repeat this structure, often interleaved with

a spatial decimation operation such as taking the average or maximum value in a

given neighbourhood (average pooling or max pooling, respectively), though more

recently simple subsampling has become a popular alternative (Springenberg et al.,

2015). If a discrete convolution is immediately followed by a fixed subsampling, the

composed operation can be computationally streamlined by never computing the

outputs of the convolution which will be immediately discarded. The composed

operation is often referred to as strided convolution. ii

Convolutional layers involve some subtleties with respect to the treatment of

image borders, particularly when“transposing”the convolution for the computation

of gradients. We refer the reader to Dumoulin and Visin (2016) for a thorough

treatment of the subject as it applies to neural networks in practice.

1.3.3 Unsupervised learning

We now turn our attention to the problem of performing unsupervised learning

using neural networks.

Most modern methods for unsupervised deep learning have a straightforward

i. Equivalent up to a horizontal and vertical reversal of the weights, which is inconsequential
if these weights are being fit to data rather than given a priori.

ii. N.B.: While the gradient of a convolution is always expressible as another convolution
with a di↵erent treatment of the image border, the gradient of this combined operation is not

expressible as a convolution, but rather a spatial dilation via the insertion of zeros, followed by
a convolution. This “strided convolution-transpose”, “fractionally strided convolution”, or “up-
convolution” operation is often used in image generation architectures, such as those employed in
chapter 10.

15

Reconstruction Error Reconstruction ErrorPenalty

C
or

ru
pt

io
n

LossLoss

+

Figure 1.5 – A schematic diagram of a penalized autoencoder (left) and a denoising autoencoder
(right).

interpretation in terms of probabilistic graphical models. While much of the early

work on deep unsupervised learning relied heavily upon the machinery of undirected

graphical models (Hinton et al., 2006; Hinton and Salakhutdinov, 2006; Salakhut-

dinov and Hinton, 2009), more recent work bridging deep neural networks and

probabilistic models has focused on directed latent variable models (Gregor et al.,

2014; Mnih and Gregor, 2014; Rezende et al., 2014; Kingma and Welling, 2014;

Goodfellow et al., 2014; Dinh et al., 2016) and fully-observed, auto-regressive mod-

els (Larochelle and Murray, 2011; Germain et al., 2015; Oord et al., 2016).

In the interest of conciseness, we review only the concepts necessary to elucidate

the contributions of this thesis. We review the venerable autoencoder, a determin-

istic model which nonetheless underpins many modern probabilistically oriented

techniques, and the denoising autoencoder, which admits an unconventional prob-

abilistic interpretation. We further discuss generative adversarial networks (Good-

fellow et al., 2014) in chapter 8.

16

Autoencoders

An autoencoder is a deterministic feed-forward neural network, i.e. akin to a

multilayer perceptron, that is trained to reproduce its input in the output layer

(rather than predict some target or response value). A simple single-layer autoen-

coder might be parameterized as an encoder function h and a decoder function

g

h(x) = s(Wx+ b) (1.13)

g(x) = t(Vx+ c) (1.14)

where s and t are elementwise activation functions and trained such that g(h(x)) u
x using a loss function appropriate for the domain of the inputs (and activation

functions). In the case real-valued inputs with an assumption of independent Gaus-

sian noise, squared Euclidean distance (“mean squared error”) between the input

and the output vector is a reasonable choice; in the case of pseudo-binary inputs

in [0, 1]D and t(·) = �(·), a reasonable choice may be the cross-entropy (discussed

in 1.1) when treating the inputs and outputs as the parameters of independent

Bernoulli distributions. Autoencoders are closely related to Principal Components

Analysis, an unsupervised dimensionality reduction method (Jolli↵e, 1986): in par-

ticular, an autoencoder is equivalent to PCA when trained with mean squared error,

a number of hidden units K less than the number of input dimensions D, and s

and t equal to the identity function (Baldi and Hornik, 1989). The columns of W

will span the same subspace as the first K principal components, but will not form

an orthonormal set.

In early work, authors focused on the case of fewer hidden units than input

variables (Bourlard and Kamp, 1988), and a single hidden layer – autoencoders

with many layers of nonlinear hidden units were traditionally considered di�cult

to train, though layerwise pre-training with RBMs (Hinton and Salakhutdinov,

2006) and more sophisticated optimization strategies (Martens, 2010) have yielded

successes in training deep autoencoders with a “bottleneck”.

In modern approaches, the over-complete (more hidden units than input di-

mensions) setting is often preferred, but additional constraints or penalties are

necessary in order to prevent trivial solutions: with more hidden units than feature

17

dimensions, there may be arbitrarily many mappings that reconstruct the input

perfectly but fail to capture any interesting structure.

Denoising autoencoders

Vincent et al. (2008) proposed an alternate method of constraining the repre-

sentation: corrupt each training example according to some noise process, and train

the denoising autoencoder to reconstruct the original example from its corrupted

counterpart. The same work showed that stacking these modules yields perfor-

mance competitive with deep belief networks (Hinton et al., 2006), while Vincent

(2011) showed a theoretical connection between single hidden layer denoising au-

toencoders (trained with a squared error loss) and restricted Boltzmann machines

trained with an alternative to maximum likelihood called score matching (Hyväri-

nen, 2005). Bengio et al. (2013) expanded upon this connection, proposing an

interpretation of denoising autoencoders as generative models. This interpretation

applies to arbitrary architectures and any loss function interpretable as a negative

log likelihood.

18

2 Prologue to First Article

2.1 Article Details

Maxout networks. Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza,

Aaron Courville, and Yoshua Bengio. Proceedings of the 30th International Con-

ference on Machine Learning (ICML ’13), pp. 1319-1327.

Personal Contribution. Ian Goodfellow and I jointly undertook engineering

work (wrapping of the cuda-convnet library for use with Theano) for the imple-

mentation of the large scale experiments. I proposed and implemented many of

the probative experiments in sections 6 through 8, and performed the majority of

the benchmark experiments on CIFAR10/CIFAR100. I co-wrote the manuscript

with the other authors.

2.2 Context

A turning point in the adoption of deep learning methods came in 2012, when

a convolutional neural network won the ImageNet Large Scale Visual Recognition

Challenge (Krizhevsky et al., 2012). Two important components in the design of

this network were the use of rectified linear activations (Jarrett et al., 2009; Nair

and Hinton, 2010; Glorot et al., 2011) and the dropout method (Hinton et al.,

2012) for regularization. Observations that dropout regularization appeared to

be most e↵ective when used in conjunction with rectified linear activations led to

the question of whether other piece-wise a�ne parameterizations would o↵er yet

greater synergy with dropout.

19

2.3 Contributions

Maxout units o↵er a novel alternative to traditional elementwise activations,

removing the saturating property of rectified linear units. We show that networks

of maxout units improve upon several important classification benchmarks, and

conduct extensive experiments to explain the improved performance.

2.4 Recent Developments

As of this writing, the manuscript has accrued over 800 citations. Maxout units

have been successfully leveraged in a variety of applications of neural networks, in-

cluding automatic speech recognition (Swietojanski et al., 2014; Zhang et al., 2014),

automated speaker verification (Variani et al., 2014), whale call detection (Smirnov,

2013), face recognition (Schro↵ et al., 2015), visual person reidentification (Li et al.,

2014), house number transcription from photographs (Goodfellow et al., 2014), and

brain tumour segmentation (Havaei et al., 2017).

20

3Maxout Networks

3.1 Introduction

Dropout (Hinton et al., 2012) provides an inexpensive and simple means of

both training a large ensemble of models that share parameters and approximately

averaging together these models’ predictions. Dropout applied to multilayer per-

ceptrons and deep convolutional networks has improved the state of the art on

tasks ranging from audio classification to very large scale object recognition (Hin-

ton et al., 2012; Krizhevsky et al., 2012). While dropout is known to work well in

practice, it has not previously been demonstrated to actually perform model aver-

aging for deep architectures i . Dropout is generally viewed as an indiscriminately

applicable tool that reliably yields a modest improvement in performance when

applied to almost any model.

We argue that rather than using dropout as a slight performance enhancement

applied to arbitrary models, the best performance may be obtained by directly de-

signing a model that enhances dropout’s abilities as a model averaging technique.

Training using dropout di↵ers significantly from previous approaches such as ordi-

nary stochastic gradient descent. Dropout is most e↵ective when taking relatively

large steps in parameter space. In this regime, each update can be seen as mak-

ing a significant update to a di↵erent model on a di↵erent subset of the training

set. The ideal operating regime for dropout is when the overall training procedure

resembles training an ensemble with bagging under parameter sharing constraints.

This di↵ers radically from the ideal stochastic gradient operating regime in which a

single model makes steady progress via small steps. Another consideration is that

dropout model averaging is only an approximation when applied to deep models.

Explicitly designing models to minimize this approximation error may thus enhance

dropout’s performance as well.

i. Between submission and publication of this paper, we have learned that Srivastava (2013)
performed experiments on this subject similar to ours.

21

We propose a simple model that we call maxout that has beneficial character-

istics both for optimization and model averaging with dropout. We use this model

in conjunction with dropout to set the state of the art on four benchmark datasets
i .

3.2 Review of dropout

Dropout is a technique that can be applied to deterministic feed-forward archi-

tectures that predict an output y given input vector v. These architectures contain

a series of hidden layers h = {h(1)

, . . . , h

(L)}. Dropout trains an ensemble of models

consisting of the set of all models that contain a subset of the variables in both v

and h. The same set of parameters ✓ is used to parameterize a family of distri-

butions p(y | v; ✓, µ) where µ 2 M is a binary mask determining which variables

to include in the model. On each presentation of a training example, we train

a di↵erent sub-model by following the gradient of log p(y | v; ✓, µ) for a di↵erent

randomly sampled µ. For many parameterizations of p (such as most multilayer

perceptrons) the instantiation of di↵erent sub-models p(y | v; ✓, µ) can be obtained

by elementwise multiplication of v and h with the mask µ. Dropout training is

similar to bagging (Breiman, 1994), where many di↵erent models are trained on

di↵erent subsets of the data. Dropout training di↵ers from bagging in that each

model is trained for only one step and all of the models share parameters. For

this training procedure to behave as if it is training an ensemble rather than a

single model, each update must have a large e↵ect, so that it makes the sub-model

induced by that µ fit the current input v well.

The functional form becomes important when it comes time for the ensem-

ble to make a prediction by averaging together all the sub-models’ predictions.

Most prior work on bagging averages with the arithmetic mean, but it is not

obvious how to do so with the exponentially many models trained by dropout.

Fortunately, some model families yield an inexpensive geometric mean. When

p(y | v; ✓) = softmax(v>
W+b), the predictive distribution defined by renormalizing

the geometric mean of p(y | v; ✓, µ) over M is simply given by softmax(v>
W/2+b).

i. Code and hyperparameters available at http://www-etud.iro.umontreal.ca/~goodfeli/
maxout.html

22

In other words, the average prediction of exponentially many sub-models can be

computed simply by running the full model with the weights divided by 2. This

result holds exactly in the case of a single layer softmax model. Previous work on

dropout applies the same scheme in deeper architectures, such as multilayer per-

ceptrons, where the W/2 method is only an approximation to the geometric mean.

The approximation has not been characterized mathematically, but performs well

in practice.

3.3 Description of maxout

The maxout model is simply a feed-forward achitecture, such as a multilayer

perceptron or deep convolutional neural network, that uses a new type of activation

function: the maxout unit. Given an input x 2 Rd (x may be v, or may be a hidden

layer’s state), a maxout hidden layer implements the function

h

i

(x) = max
j2[1,k]

z

ij

where z
ij

= x

>
W···ij + b

ij

, and W 2 Rd⇥m⇥k and b 2 Rm⇥k are learned parameters.

In a convolutional network, a maxout feature map can be constructed by taking the

maximum across k a�ne feature maps (i.e., pool across channels, in addition spatial

locations). When training with dropout, we perform the elementwise multiplication

with the dropout mask immediately prior to the multiplication by the weights in

all cases–we do not drop inputs to the max operator. A single maxout unit can

be interpreted as making a piecewise linear approximation to an arbitrary convex

function. Maxout networks learn not just the relationship between hidden units,

but also the activation function of each hidden unit. See Fig. 3.1 for a graphical

depiction of how this works.

Maxout abandons many of the mainstays of traditional activation function de-

sign. The representation it produces is not sparse at all (see Fig. 3.2), though

the gradient is highly sparse and dropout will artificially sparsify the e↵ective rep-

resentation during training. While maxout may learn to saturate on one side or

the other this is a measure zero event (so it is almost never bounded from above).

While a significant proportion of parameter space corresponds to the function being

23

x

h
i
(x

)

Rectifier

x

h
i
(x

)

Absolute value

x

h
i
(x

)

Quadratic

Figure 3.1 – Graphical depiction of how the maxout activation function can implement the
rectified linear, absolute value rectifier, and approximate the quadratic activation function. This
diagram is 2D and only shows how maxout behaves with a 1D input, but in multiple dimensions
a maxout unit can approximate arbitrary convex functions.

bounded from below, maxout is not constrained to learn to be bounded at all. Max-

out is locally linear almost everywhere, while many popular activation functions

have signficant curvature. Given all of these departures from standard practice,

it may seem surprising that maxout activation functions work at all, but we find

that they are very robust and easy to train with dropout, and achieve excellent

performance.

-4 -2 0 2 4 6
Activation

0
5

10
15
20
25
30
35

#
of

oc
cu

rr
en

ce
s

Histogram of maxout responses

Figure 3.2 – The activations of maxout units are not sparse.

24

3.4 Maxout is a universal approximator

h2h1

g

z2,·z1,·

v

W1 = 1 W2 = �1

Figure 3.3 – An MLP containing two maxout units can arbitrarily approximate any continuous
function. The weights in the final layer can set g to be the di↵erence of h1 and h2. If z1 and z2

are allowed to have arbitrarily high cardinality, h1 and h2 can approximate any convex function.
g can thus approximate any continuous function due to being a di↵erence of approximations of
arbitrary convex functions.

A standard MLP with enough hidden units is a universal approximator. Simi-

larly, maxout networks are universal approximators. Provided that each individual

maxout unit may have arbitrarily many a�ne components, we show that a maxout

model with just two hidden units can approximate, arbitrarily well, any continuous

function of v 2 Rn. A diagram illustrating the basic idea of the proof is presented

in Fig. 3.3.

Consider the continuous piecewise linear (PWL) function g(v) consisting of k

locally a�ne regions on Rn.

Proposition 3.4.1. (From Theorem 2.1 in Wang (2004)) For any positive integers

m and n, there exist two groups of n+1-dimensional real-valued parameter vectors

[W
1j

, b

1j

], j 2 [1, k] and [W
2j

, b

2j

], j 2 [1, k] such that:

g(v) = h

1

(v) � h

2

(v) (3.1)

That is, any continuous PWL function can be expressed as a di↵erence of two

convex PWL functions. The proof is given in Wang (2004).

Proposition 3.4.2. From the Stone-Weierstrass approximation theorem, let C be

a compact domain C ⇢ Rn, f : C ! R be a continuous function, and ✏ > 0 be any

25

positive real number. Then there exists a continuous PWL function g, (depending

upon ✏), such that for all v 2 C, |f(v) � g(v)| < ✏.

Theorem 3.4.3. Universal approximator theorem. Any continuous function f can

be approximated arbitrarily well on a compact domain C ⇢ Rn by a maxout network

with two maxout hidden units.

Sketch of Proof By Proposition 3.4.2, any continuous function can be approxi-

mated arbitrarily well (up to ✏), by a piecewise linear function. We now note that

the representation of piecewise linear functions given in Proposition 3.4.1 exactly

matches a maxout network with two hidden units h
1

(v) and h

2

(v), with su�ciently

large k to achieve the desired degree of approximation ✏. Combining these, we

conclude that a two hidden unit maxout network can approximate any continuous

function f(v) arbitrarily well on the compact domain C. In general as ✏ ! 0, we

have k ! 1.

Figure 3.4 – Example filters learned by a maxout MLP trained with dropout on MNIST. Each
row contains the filters whose responses are pooled to form a maxout unit.

26

Table 3.1 – Test set misclassification rates for the best methods on the permutation invariant
MNIST dataset. Only methods that are regularized by modeling the input distribution outper-
form the maxout MLP.

Method Test error

Rectifier MLP +
dropout (Srivastava,
2013)

1.05%

DBM (Salakhutdinov and
Hinton, 2009)

0.95%

Maxout MLP + dropout 0.94%

MP-DBM (Goodfellow
et al., 2013)

0.88%

Deep Convex Network
(Yu and Deng, 2011)

0.83%

Manifold Tangent Clas-
sifier (Rifai et al., 2011)

0.81%

DBM + dropout (Hinton
et al., 2012)

0.79%

3.5 Benchmark results

We evaluated the maxout model on four benchmark datasets and set the state

of the art on all of them.

3.5.1 MNIST

The MNIST (LeCun et al., 1998) dataset consists of 28 ⇥ 28 pixel greyscale

images of handwritten digits 0-9, with 60,000 training and 10,000 test examples.

For the permutation invariant version of the MNIST task, only methods unaware

of the 2D structure of the data are permitted. For this task, we trained a model

consisting of two densely connected maxout layers followed by a softmax layer. We

regularized the model with dropout and by imposing a constraint on the norm of

each weight vector, as in (Srebro and Shraibman, 2005). Apart from the maxout

units, this is the same architecture used by Hinton et al. (2012). We selected the

hyperparameters by minimizing the error on a validation set consisting of the last

10,000 training examples. To make use of the full training set, we recorded the

27

Table 3.2 – Test set misclassification rates for the best methods on the general MNIST dataset,
excluding methods that augment the training data.

Method Test error

2-layer CNN+2-layer NN
(Jarrett et al., 2009)

0.53%

Stochastic pooling
Zeiler and Fergus (2013)

0.47%

Conv. maxout + dropout 0.45%

value of the log likelihood on the first 50,000 examples at the point of minimal

validation error. We then continued training on the full 60,000 example training

set until the validation set log likelihood matched this number. We obtained a

test set error of 0.94%, which is the best result we are aware of that does not use

unsupervised pretraining. We summarize the best published results on permutation

invariant MNIST in Table 3.1.

We also considered the MNIST dataset without the permutation invariance

restriction. In this case, we used three convolutional maxout hidden layers (with

spatial max pooling on top of the maxout layers) followed by a densely connected

softmax layer. We were able to rapidly explore hyperparameter space thanks to

the extremely fast GPU convolution library developed by Krizhevsky et al. (2012).

We obtained a test set error rate of 0.45%, which sets a new state of the art in

this category. (It is possible to get better results on MNIST by augmenting the

dataset with transformations of the standard set of images (Ciresan et al., 2010).)

A summary of the best methods on the general MNIST dataset is provided in Table

3.2.

3.5.2 CIFAR-10

The CIFAR-10 dataset (Krizhevsky and Hinton, 2009) consists of 32 ⇥ 32 color

images drawn from 10 classes split into 50,000 train and 10,000 test images. We

preprocess the data using global contrast normalization and ZCA whitening.

We follow a similar procedure as with the MNIST dataset, with one change.

On MNIST, we find the best number of training epochs in terms of validation set

error, then record the training set log likelihood and continue training using the

entire training set until the validation set log likelihood has reached this value. On

28

Table 3.3 – Test set misclassification rates for the best methods on the CIFAR-10 dataset.

Method Test error

Stochastic pooling
Zeiler and Fergus (2013)

15.13%

CNN + Spearmint Snoek
et al. (2012)

14.98%

Conv. maxout + dropout 11.68 %

CNN + Spearmint +
data augmentation Snoek
et al. (2012)

9.50 %

Conv. maxout + dropout

+ data augmentation

9.38 %

CIFAR-10, continuing training in this fashion is infeasible because the final value

of the learning rate is very small and the validation set error is very high. Training

until the validation set likelihood matches the cross-validated value of the training

likelihood would thus take prohibitively long. Instead, we retrain the model from

scratch, and stop when the new likelihood matches the old one.

Our best model consists of three convolutional maxout layers, a fully connected

maxout layer, and a fully connected softmax layer. Using this approach we obtain

a test set error of 11.68%, which improves upon the state of the art by over two

percentage points. (If we do not train on the validation set, we obtain a test

set error of 13.2%, which also improves over the previous state of the art.) If

we additionally augment the data with translations and horizontal reflections, we

obtain the absolute state of the art on this task at 9.35% error. In this case, the

likelihood during the retrain never reaches the likelihood from the validation run,

so we retrain for the same number of epochs as the validation run. A summary of

the best CIFAR-10 methods is provided in Table 3.3.

3.5.3 CIFAR-100

The CIFAR-100 (Krizhevsky and Hinton, 2009) dataset is the same size and

format as the CIFAR-10 dataset, but contains 100 classes, with only one tenth as

many labeled examples per class. Due to lack of time we did not extensively cross-

29

0.0 0.2 0.4 0.6 0.8 1.0 1.2

examples ⇥10

7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
rr

or
CIFAR-10 validation error with and without droput

Dropout/Validation
No dropout/Validation
Dropout/Train
No dropout/Train

Figure 3.5 – When training maxout, the improvement in validation set error that results from
using dropout is dramatic. Here we find a greater than 25% reduction in our validation set error
on CIFAR-10.

validate hyperparameters on CIFAR-100 but simply applied hyperparameters we

found to work well on CIFAR-10. We obtained a test set error of 38.57%, which is

state of the art. If we do not retrain using the entire training set, we obtain a test

set error of 41.48%, which also surpasses the current state of the art. A summary

of the best methods on CIFAR-100 is provided in Table 3.4.

3.5.4 Street View House Numbers

The SVHN (Netzer et al., 2011) dataset consists of color images of house num-

bers collected by Google Street View. The dataset comes in two formats. We

consider the second format, in which each image is of size 32 ⇥ 32 and the task is

to classify the digit in the center of the image. Additional digits may appear beside

it but must be ignored. There are 73,257 digits in the training set, 26,032 digits in

the test set and 531,131 additional, somewhat less di�cult examples, to use as an

30

Table 3.4 – Test set misclassification rates for the best methods on the CIFAR-100 dataset.

Method Test error

Learned pooling (Mali-
nowski and Fritz, 2013)

43.71%

Stochastic poolingZeiler
and Fergus (2013)

42.51%

Conv. maxout + dropout 38.57%

Table 3.5 – Test set misclassification rates for the best methods on the SVHN dataset.

Method Test error

Sermanet et al. (2012) 4.90%

Stochastic pooling
Zeiler and Fergus (2013)

2.80 %

Rectifiers + dropout
Srivastava (2013)

2.78 %

Rectifiers + dropout +
synthetic translation
Srivastava (2013)

2.68 %

Conv. maxout + dropout 2.47 %

extra training set. Following Sermanet et al. (2012), to build a validation set, we

select 400 samples per class from the training set and 200 samples per class from

the extra set. The remaining digits of the train and extra sets are used for training.

For SVHN, we did not train on the validation set at all. We used it only to

find the best hyperparameters. We applied local contrast normalization prepro-

cessing the same way as Zeiler and Fergus (2013). Otherwise, we followed the same

approach as on MNIST. Our best model consists of three convolutional maxout

hidden layers and a densely connected maxout layer followed by a densely con-

nected softmax layer. We obtained a test set error rate of 2.47%, which sets the

state of the art. A summary of comparable methods is provided in Table 3.5.

31

3.6 Comparison to rectifiers

One obvious question about our results is whether we obtained them by im-

proved preprocessing or larger models, rather than by the use of maxout. For

MNIST we used no preprocessing, and for SVHN, we use the same preprocessing

as Zeiler and Fergus (2013). However on the CIFAR datasets we did use a new

form of preprocessing. We therefore compare maxout to rectifiers run with the

same processing and a variety of model sizes on this dataset.

By running a large cross-validation experiment (see Fig. 3.6) we found that

maxout o↵ers a clear improvement over rectifiers. We also found that our pre-

processing and size of models improves rectifiers and dropout beyond the previous

state of the art result. Cross-channel pooling is a method for reducing the size of

state and number of parameters needed to have a given number of filters in the

model. Performance seems to correlate well with the number of filters for maxout

but with the number of output units for rectifiers–i.e, rectifier units do not benefit

much from cross-channel pooling. Rectifier units do best without cross-channel

pooling but with the same number of filters, meaning that the size of the state

and the number of parameters must be about k times higher for rectifiers to obtain

generalization performance approaching that of maxout.

3.7 Model averaging

Having demonstrated that maxout networks are e↵ective models, we now ana-

lyze the reasons for their success. We first identify reasons that maxout is highly

compatible with dropout’s approximate model averaging technique.

The intuitive justification for averaging sub-models by dividing the weights

by 2 given by (Hinton et al., 2012) is that this does exact model averaging for

a single layer model, softmax regression. To this characterization, we add the

observation that the model averaging remains exact if the model is extended to

multiple linear layers. While this has the same representational power as a single

layer, the expression of the weights as a product of several matrices could have

a di↵erent inductive bias. More importantly, it indicates that dropout does exact

model averaging in deeper architectures provided that they are locally linear among

32

the space of inputs to each layer that are visited by applying di↵erent dropout

masks.

We argue that dropout training encourages maxout units to have large linear

regions around inputs that appear in the training data. Because each sub-model

must make a good prediction of the output, each unit should learn to have roughly

the same activation regardless of which inputs are dropped. In a maxout network

with arbitrarily selected parameters, varying the dropout mask will often move

the e↵ective inputs far enough to escape the local region surrounding the clean

inputs in which the hidden units are linear, i.e., changing the dropout mask could

frequently change which piece of the piecewise function an input is mapped to.

Maxout trained with dropout may have the identity of the maximal filter in each

unit change relatively rarely as the dropout mask changes. Networks of linear

operations and max(·) may learn to exploit dropout’s approximate model averaging

technique well.

Many popular activation functions have significant curvature nearly everywhere.

These observations suggest that the approximate model averaging of dropout will

not be as accurate for networks incorporating such activation functions. To test

this, we compared the best maxout model trained on MNIST with dropout to a

hyperbolic tangent network trained on MNIST with dropout. We sampled several

subsets of each model and compared the geometric mean of these sampled mod-

els’ predictions to the prediction made using the dropout technique of dividing the

weights by 2. We found evidence that dropout is indeed performing model averag-

ing, even in multilayer networks, and that it is more accurate in the case of maxout.

See Fig. 3.7 and Fig. 3.8 for details.

3.8 Optimization

The second key reason that maxout performs well is that it improves the bagging

style training phase of dropout. Note that the arguments in section 3.7 motivating

the use of maxout also apply equally to rectified linear units (Salinas and Abbott,

1996; Hahnloser, 1998; Glorot et al., 2011). The only di↵erence between maxout

and max pooling over a set of rectified linear units is that maxout does not include

a 0 in the max. Superficially, this seems to be a small di↵erence, but we find that

33

including this constant 0 is very harmful to optimization in the context of dropout.

For instance, on MNIST our best validation set error with an MLP is 1.04%. If we

include a 0 in the max, this rises to over 1.2%. We argue that, when trained with

dropout, maxout is easier to optimize than rectified linear units with cross-channel

pooling.

3.8.1 Optimization experiments

To verify that maxout yields better optimization performance than max pooled

rectified linear units when training with dropout, we carried out two experiments.

First, we stressed the optimization capabilities of the training algorithm by training

a small (two hidden convolutional layers with k = 2 and sixteen kernels) model on

the large (600,000 example) SVHN dataset. When training with rectifier units the

training error gets stuck at 7.3%. If we train instead with maxout units, we obtain

5.1% training error. As another optimization stress test, we tried training very

deep and narrow models on MNIST, and found that maxout copes better with

increasing depth than pooled rectifiers. See Fig. 3.9 for details.

3.8.2 Saturation

Optimization proceeds very di↵erently when using dropout than when using

ordinary stochastic gradient descent. SGD usually works best with a small learn-

ing rate that results in a smoothly decreasing objective function, while dropout

works best with a large learning rate, resulting in a constantly fluctuating objec-

tive function. Dropout rapidly explores many di↵erent directions and rejects the

ones that worsen performance, while SGD moves slowly and steadily in the most

promising direction. We find empirically that these di↵erent operating regimes

result in di↵erent outcomes for rectifier units. When training with SGD, we find

that the rectifier units saturate at 0 less than 5% of the time. When training with

dropout, we initialize the units to sature rarely but training gradually increases

their saturation rate to 60%. Because the 0 in the max(0, z) activation function is

a constant, this blocks the gradient from flowing through the unit. In the absence of

gradient through the unit, it is di�cult for training to change this unit to become

active again. Maxout does not su↵er from this problem because gradient always

flows through every maxout unit–even when a maxout unit is 0, this 0 is a function

34

of the parameters and may be adjusted. Units that take on negative activations

may be steered to become positive again later. Fig. 3.10 illustrates how active

rectifier units become inactive at a greater rate than inactive units become active

when training with dropout, but maxout units, which are always active, transition

between positive and negative activations at about equal rates in each direction.

We hypothesize that the high proportion of zeros and the di�culty of escaping

them impairs the optimization performance of rectifiers relative to maxout.

To test this hypothesis, we trained two MLPs on MNIST, both with two hidden

layers and 1200 filters per layer pooled in groups of 5. When we include a constant

0 in the max pooling, the resulting trained model fails to make use of 17.6% of

the filters in the second layer and 39.2% of the filters in the second layer. A small

minority of the filters usually took on the maximal value in the pool, and the rest

of the time the maximal value was a constant 0. Maxout, on the other hand, used

all but 2 of the 2400 filters in the network. Each filter in each maxout unit in the

network was maximal for some training example. All filters had been utilised and

tuned.

3.8.3 Lower layer gradients and bagging

To behave di↵erently from SGD, dropout requires the gradient to change notice-

ably as the choice of which units to drop changes. If the gradient is approximately

constant with respect to the dropout mask, then dropout simplifies to SGD training.

We tested the hypothesis that rectifier networks su↵er from diminished gradient

flow to the lower layers of the network by monitoring the variance with respect to

dropout masks for fixed data during training of two di↵erent MLPs on MNIST.

The variance of the gradient on the output weights was 1.4 times larger for maxout

on an average training step, while the variance on the gradient of the first layer

weights was 3.4 times larger for maxout than for rectifiers. Combined with our

previous result showing that maxout allows training deeper networks, this greater

variance suggests that maxout better propagates varying information downward

to the lower layers and helps dropout training to better resemble bagging for the

lower-layer parameters. Rectifier networks, with more of their gradient lost to sat-

uration, presumably cause dropout training to resemble regular SGD toward the

bottom of the network.

35

3.9 Conclusion

We have proposed a new activation function called maxout that is particularly

well suited for training with dropout, and for which we have proven a universal

approximation theorem. We have shown empirical evidence that dropout attains

a good approximation to model averaging in deep models. We have shown that

maxout exploits this model averaging behavior because the approximation is more

accurate for maxout units than for tanh units. We have demonstrated that opti-

mization behaves very di↵erently in the context of dropout than in the pure SGD

case. By designing the maxout gradient to avoid pitfalls such as failing to use

many of a model’s filters, we are able to train deeper networks than is possible

using rectifier units. We have also shown that maxout propagates variations in

the gradient due to di↵erent choices of dropout masks to the lowest layers of a

network, ensuring that every parameter in the model can enjoy the full benefit of

dropout and more faithfully emulate bagging training. The state of the art per-

formance of our approach on five di↵erent benchmark tasks motivates the design

of further models that are explicitly intended to perform well when combined with

inexpensive approximations to model averaging.

Acknowledgements

The authors would like to thank the developers of Theano (Bergstra et al.,

2010; Bastien et al., 2012), in particular Frédéric Bastien and Pascal Lamblin for

their assistance with infrastructure development and performance optimization.

We would also like to thank Yann Dauphin for helpful discussions.

36

0 100 200 300 400 500 600 700 800

training epochs

0.125

0.130

0.135

0.140

0.145

0.150

0.155

0.160

va
lid

at
io

n
se

te
rr

or
fo

rb
es

te
xp

er
im

en
t

Comparison of large rectifier networks to maxout

Maxout
Rectifier, no channel pooling
Rectifier + channel pooling
Large rectifier, no channel pooling

Figure 3.6 – We cross-validated the momentum and learning rate for four architectures of
model: 1) Medium-sized maxout network. 2) Rectifier network with cross-channel pooling, and
exactly the same number of parameters and units as the maxout network. 3) Rectifier network
without cross-channel pooling, and the same number of units as the maxout network (thus fewer
parameters). 4) Rectifier network without cross-channel pooling, but with k times as many units
as the maxout network. Because making layer i have k times more outputs increases the number
of inputs to layer i + 1, this network has roughly k times more parameters than the maxout
network, and requires significantly more memory and runtime. We sampled 10 learning rate
and momentum schedules and random seeds for dropout, then ran each configuration for all 4
architectures. Each curve terminates after failing to improve the validation error in the last 100
epochs.

37

10

0
10

1
10

2
10

3

samples

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

Te
st

er
ro

r

Model averaging: MNIST classification

Sampling, maxout
Sampling, tanh
W/2, maxout
W/2, tanh

Figure 3.7 – The error rate of the prediction obtained by sampling several sub-models and
taking the geometric mean of their predictions approaches the error rate of the prediction made by
dividing the weights by 2. However, the divided weights still obtain the best test error, suggesting
that dropout is a good approximation to averaging over a very large number of models. Note
that the correspondence is more clear in the case of maxout.

38

10

0
10

1
10

2
10

3

samples

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

K
L

di
ve

rg
en

ce

KL divergence between model averaging strategies

Maxout
Tanh

Figure 3.8 – The KL divergence between the distribution predicted using the dropout technique
of dividing the weights by 2 and the distribution obtained by taking the geometric mean of the
predictions of several sampled models decreases as the number of samples increases. This suggests
that dropout does indeed do model averaging, even for deep networks. The approximation is more
accurate for maxout units than for tanh units.

39

1 2 3 4 5 6 7

layers

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

E
rr

or

MNIST classification error versus network depth

Maxout test error
Rectifier test error
Maxout train error
Rectifier train error

Figure 3.9 – We trained a series of models with increasing depth on MNIST. Each layer contains
only 80 units (k=5) to make fitting the training set di�cult. Maxout optimization degrades
gracefully with depth but pooled rectifier units worsen noticeably at 6 layers and dramatically at
7.

40

20 30 40 50 60 70 80 90 100

epochs

0.00

0.05

0.10

0.15

0.20

0.25

P
ro

po
rti

on
of

si
gn

th
at

sw
itc

he
s

th
is

ep
oc

h

Training set h0 activation sign switches/epoch

Maxout: pos�neg
Maxout: neg�pos
Pooled rect: pos�zero
Pooled rect: zero�pos

Figure 3.10 – During dropout training, rectifier units transition from positive to 0 activation
more frequently than they make the opposite transition, resulting a preponderence of 0 activations.
Maxout units freely move between positive and negative signs at roughly equal rates.

41

4 Prologue to Second Article

4.1 Article Details

An empirical analysis of dropout in piecewise linear networks. David

Warde-Farley, Ian Goodfellow, Aaron Courville, and Yoshua Bengio. Proceedings

of the Second International Conference on Learning Representatios (ICLR ’14).

Personal Contribution.

I conceived of all of the experiments in this chapter, either alone or in collabo-

ration with my co-authors. I devised the probe tasks, and ran all experiments. Ian

Goodfellow and I wrote the manuscript.

4.2 Context

After its introduction, dropout (Hinton et al., 2012) was becoming a popular

method for regularizing neural networks but was very poorly understood. Many

theories competed to explain its remarkable e�cacy, and questions remained about

the weight-scaling heuristic used at test time. The authors put forth an explanation

in terms of an exponentially large ensemble of networks which share parameters,

though this had not been well scrutinized in light of simpler explanations.

4.3 Contributions

In this work we consider and empirically investigate several questions surround-

ing dropout regularization as it applies to feed-forward networks of rectified linear

units, the most popular choice at the time. We perform exhaustive experiments in

42

a variety of simplified conditions in order to gain insights into the use of the geo-

metric mean rather than the arithmetic mean, the accuracy of the weight-scaling

approximation to the geometric mean, the regularizing e↵ects of parameter shar-

ing, and the choice of optimizing the log likelihood of individual ensemble members

rather than that of the ensemble itself.

4.4 Recent Developments

Dropout continues to be a popular choice for regularization, especially where

neural networks are applied to small amounts of labeled data. More recent tech-

niques such as batch normalization (Io↵e and Szegedy, 2015) and residual connec-

tions (He et al., 2016) appear to have regularizing e↵ects, which limit the gains

available through the additional use of dropout. Continuing work on ensemble

methods for neural networks, Hinton et al. (2015) introduced distillation, a form

of model compression (Buciluǎ et al., 2006) which trains a single network to mimic

the outputs of an ensemble of independently trained networks, deriving the benefits

of ensembles while limiting computational expense at test time.

43

5
An Empirical Analysis of

Dropout in Piecewise Linear

Networks

5.1 Introduction

Dropout (Hinton et al., 2012) has recently garnered much attention as a novel

regularization strategy for neural networks involving the use of structured mask-

ing noise during stochastic gradient-based optimization. Dropout training can be

viewed as a form of ensemble learning similar to bagging (Breiman, 1994) on an en-

semble of size exponential in the number of hidden units and input features, where

all members of the ensemble share subsets of their parameters. Combining the

predictions of this enormous ensemble would ordinarily be prohibitively expensive,

but a scaling of the weights admits an approximate computation of the geometric

mean of the ensemble predictions.

Dropout has been a crucial ingredient in the winning solution to several high-

profile competitions, notably in visual object recognition (Krizhevsky et al., 2012)

as well as the Merck Molecular Activity Challenge and the Adzuna Job Salary Pre-

diction competition. It has also inspired work on activation function design (Good-

fellow et al., 2013) as well as extensions to the basic dropout technique (Wan et al.,

2013; Wang and Manning, 2013) and similar fast approximate model averaging

methods (Zeiler and Fergus, 2013).

Several authors have recently investigated the mechanism by which dropout

achieves its regularization e↵ect in linear models (Baldi and Sadowski, 2013; Wang

and Manning, 2013; Wager et al., 2013), as well as linear and sigmoidal hidden

units (Baldi and Sadowski, 2013). However, many of the recent empirical successes

of dropout, and feed forward neural networks more generally, have utilised piecewise

linear activation functions (Jarrett et al., 2009; Glorot et al., 2011; Goodfellow et al.,

2013; Zeiler et al., 2013). In this work, we empirically study dropout in rectified

linear networks, employing the recently popular hidden unit activation function

f(x) = max(0, x), known as the rectified linear unit or ReLU activation (Jarrett

44

et al., 2009; Nair and Hinton, 2010; Glorot et al., 2011). Specifically, we attempt

to address the following questions, as they pertain to networks of rectified linear

units:

— How accurate is the “weight scaling trick”? How does the use of this approx-

imation impact classification performance?

— Is the geometric mean (approximated by the“weight scaling trick”) a suitable

replacement for the arithmetic mean, more often employed with ensemble

methods?

— What is the role of parameter sharing between ensemble members in dropout,

as compared with a conventional ensemble of models with independent pa-

rameters?

— Can dropout be adequately explained as regularization via the addition of

noise, without appeals to model averaging?

We begin by expanding upon previous work which investigated the quality of

dropout’s approximate ensemble prediction by comparing against Monte Carlo es-

timates of the correct geometric average (Srivastava, 2013; Goodfellow et al., 2013).

Here, we compare against the true average, in networks of size small enough that

the exact computation is tractable. We find, by exhaustive enumeration of all sub-

networks in these small cases, that the weight scaling approximation is a remarkably

and somewhat surprisingly accurate surrogate for the true geometric mean.

Next, we consider the importance of the geometric mean itself. Traditionally,

bagged ensembles produce an averaged prediction via the arithmetic mean, but

the weight scaling trick employed with dropout provides an e�cient approxima-

tion only for the geometric mean. While, as noted by (Baldi and Sadowski, 2013),

the di↵erence between the two can be bounded (Cartwright and Field, 1978), it

is not immediately obvious what e↵ect this source of error will have on classifi-

cation performance in practice. We therefore investigate this question empirically

and conclude that the geometric mean is indeed a suitable replacement for the

arithmetic mean in the context of a dropout-trained ensemble.

The questions raised thus far pertain primarily to the approximate model av-

eraging performed at test time, but dropout training also raises some important

questions. At each update, the dropout learning rule follows the same gradient

that true bagging training would follow. However, in the case of traditional bag-

ging, all members of the ensemble would have independent parameters. In the

45

case of dropout training, all of the models share subsets of their parameters. It is

unclear how much this coordination serves to regularize the eventual ensemble. It

is also not clear whether the most important e↵ect is that dropout performs model

averaging, or that dropout encourages each individual unit to work well in a variety

of contexts.

To investigate this question, we train a set of independent models on resam-

plings (with replacement) of the training data, as in traditional bagging. Each

ensemble member is trained with a single randomly sampled dropout mask fixed

throughout all steps of training. We combine these independently trained networks

into ensembles of varying size, and compare the ensembles’ performance with that

of a single network of identical size, trained instead with dropout. We find evi-

dence to support the claim that the weight sharing taking place in the context of

dropout (between members of the implicit ensemble) plays an important role in

further regularizing the ensemble.

Finally, we investigate an alternative criterion for training the exponentially

large shared-parameter ensemble invoked by dropout. Rather than performing

stochastic gradient descent on a randomly selected sub-network in a manner simi-

lar to bagging, we consider a biased estimator of the gradient of the geometrically

averaged ensemble log likelihood (i.e. the gradient of the model being approxi-

mately evaluated at test-time), with the particular estimator bearing a resemblance

to boosting (Schapire, 1990). We find that this new criterion, employing masking

noise with the exact same distribution as is employed by dropout, yields no dis-

cernible robustness gains over networks trained with ordinary stochastic gradient

descent.

5.2 Review of dropout

Dropout is an ensemble learning and prediction technique that can be applied to

deterministic feed-forward architectures that predict a target y given input vector v.

These architectures contain a series of hidden layers h = {h(1)

, . . . , h

(L)}. Dropout
trains an ensemble of models consisting of the set of all models that contain a

subset of the variables in both v and h. The same set of parameters ✓ is used to

parameterize a family of distributions p(y | v; ✓, µ) where µ 2 M is a binary mask

46

vector determining which variables to include in the model, e.g., for a given µ, each

input unit and each hidden unit is set to zero if the corresponding element of µ

is 0. On each presentation of a training example, we train a di↵erent sub-network

by following the gradient of log p(y | v; ✓, µ) for a di↵erent randomly sampled

µ. For many parameterizations of p (such as most multilayer perceptrons) the

instantiation of di↵erent sub-networks p(y | v; ✓, µ) can be obtained by elementwise

multiplication of v and h with the mask µ.

5.2.1 Dropout as bagging

Dropout training is similar to bagging (Breiman, 1994) and related ensemble

methods (Opitz and Maclin, 1999). Bagging is an ensemble learning technique in

which a set of models are trained on di↵erent subsets of the same dataset. At test

time, the predictions of each of the models are averaged together. The ensemble

predictions formed by voting in this manner tend to generalize better than the

predictions of the individual models.

Dropout training di↵ers from bagging in three ways:

1. All of the models share parameters. This means that they are no longer

really trained on separate subsets of the dataset, and much of what we

know about bagging may not apply.

2. Training stops when the ensemble starts to overfit. There is no guarantee

that the individual models will be trained to convergence. In fact, typically,

the vast majority of sub-networks are never trained for even one gradient

step.

3. Because there are too many models to average together explicitly, dropout

averages them together with a fast approximation. This approximation is

to the geometric mean, rather than the arithmetic mean.

5.2.2 Approximate model averaging

The functional form of the model becomes important when it comes time for

the ensemble to make a prediction by averaging together all the sub-networks’

predictions. When p(y | v; ✓) = softmax(vT

W + b), the predictive distribution

defined by renormalizing the geometric mean of p(y | v; ✓, µ) over M is simply

47

given by softmax(vT

W/2+ b). This is also true for sigmoid output units, which are

special cases of the softmax. This result holds exactly in the case of a single layer

softmax model (Hinton et al., 2012) or an MLP with no non-linearity applied to each

unit (Goodfellow et al., 2013). Previous work on dropout applies the same scheme in

deep architectures with hidden units that have nonlinearities, such as rectified linear

units, where the W/2 method is only an approximation to the geometric mean.

The approximation has been characterized mathematically for linear and sigmoid

networks (Baldi and Sadowski, 2013; Wager et al., 2013), but seems to perform

especially well in practice for nonlinear networks with piecewise linear activation

functions (Srivastava, 2013; Goodfellow et al., 2013). We speculate that piecewise

linear activation functions allow for an extremely faithful approximation of the

model averaging (a claim we empirically verify for rectified linear unit networks

in Section 5.4), which in turn boosts generalization performance; the observation

of Srivastava (2013) that dropout leads to sparser networks may also play a role

(given the ReLU activation’s ability to take on a value of exactly zero), although

Goodfellow et al. (2013) derived significant benefits from dropout using a non-

saturating nonlinearity.

5.3 Experimental setup

Our initial investigations employed rectifier networks with 2 hidden layers and

10 hidden units per layer, and a single logistic sigmoid output unit. We applied this

class of networks to six binary classification problems derived from popular multi-

class benchmarks, simplified in this fashion in order to allow for much simpler

architectures to e↵ectively solve the task, as well as a synthetic task of our own

design.

Specifically, we chose four binary sub-tasks from the MNIST handwritten digit

database (LeCun et al., 1998). Our training sets consisted of all occurrences of two

digit classes (1 vs. 7, 1 vs. 8, 0 vs. 8, and 2 vs. 3) within the first 50,000 examples

of the MNIST training set, with the occurrences from the last 10,000 examples held

back as a validation set. We used the corresponding occurrences from the o�cial

MNIST test set for evaluating test error.

48

We also chose two binary sub-tasks from the CoverType dataset of the UCI

Machine Learning Repository, specifically discriminating classes 1 and 2 (Spruce-Fir

vs. Lodgepole Pine) and classes 3 and 4 (Ponderosa Pine vs. Cottonwood/Willow).

This task represents a very di↵erent domain than the first two datasets, but one

where neural network approaches have nonetheless seen success (see e.g. Rifai

et al. (2011)). i

The final task is a synthetic task in two dimensions: inputs lie in (�1, 1) ⇥
(�1, 1) ⇢ R2, and the domain is divided into two regions of equal area: the diamond

with corners (1, 0), (0, 1), (�1, 0), (0,�1) and the union of the outlying triangles.

In order to keep the synthetic task moderately challenging, the training set size was

restricted to 100 points sampled uniformly at random. An additional 500 points

were sampled for a validation set and another 1000 as a test set.

In order to keep the mask enumeration tractable in the case of the larger input

dimension tasks, we chose to apply dropout in the hidden layers only. This has the

added benefit of simplifying the ensemble computation: though dropout is typically

applied in the input layer, inclusion probabilities higher than 0.5 are employed

(e.g. 0.8 in Hinton et al. (2012); Krizhevsky et al. (2012)), making it necessary to

unevenly weight the terms in the average.

Following the general protocol of Goodfellow et al. (2013), we chose hyperpa-

rameters by random search (Bergstra and Bengio, 2012) over learning rate and

momentum (initial values and decrease/increase schedules, respectively), as well as

mini-batch size. We performed early stopping on the validation set, terminating

when a lower validation error had not been observed for 100 epochs; when training

with dropout, the figure of merit for early stopping was the validation error using

the weight-scaled predictions.

We pursued these simplified tasks using small networks in order to perform anal-

yses that involve exhaustive enumeration of the implied ensemble, complementary

to Monte Carlo analyses performed on larger networks in the existing literature.

In Sections 5.6 and 5.7, more realistic sizes of networks are employed on the full

MNIST classification task.

i. Unlike Rifai et al. (2011), we train and evaluate on the records of each class from the data
split advertised in the original dataset description. This makes the task much more challenging
and many methods prone to overfitting.

49

5.4 Weight scaling versus Monte Carlo or exact

model averaging

Srivastava (2013); Goodfellow et al. (2013) previously investigated the fidelity of

the weight scaling approximation in the context of rectifier networks and maxout

networks, respectively, through the use of a Monte Carlo approximation to the

true model average. By concerning ourselves with small networks where exhaustive

enumeration is possible, we were able to avoid the e↵ect of additional variance due

to the Monte-Carlo average and compute the exact geometric mean over all possible

dropout sub-networks.

On each of the 7 tasks, we randomly sampled 50 sets of hyperparameters and

trained 50 networks with dropout. We then computed, for each point in the test

set for each task, the activities of the network corresponding to each of the 220

possible dropout masks. We then geometrically averaged their predictions (by

arithmetically averaging all values of the input to the sigmoid output unit) and

computed the geometric average prediction for each point in the test set. Finally,

we compared the misclassification rate using these predictions to that obtained

using the approximate, weight-scaled predictions.

The results are shown in Figure 5.1, where each point represents a di↵er-

ent hyperparameter configuration. The overall result is that the approximation

yields a network that performs remarkably and surprisingly similarly. We sta-

tistically tested the fidelity of the approximation via the Wilcoxon signed-rank

test (Wilcoxon, 1945), a nonparametric paired sample test similar to the paired

t-test, applying a Bonferroni correction (Abdi, 2007) for multiple hypotheses (i.e.

dividing the null rejection threshold ↵ by the number of tests performed). At

↵ = 0.01, no significant di↵erences were observed for any of the seven tasks.

5.5 Geometric mean versus arithmetic mean

Though the inexpensive computation of an approximate geometric mean was

noted in (Hinton et al., 2012), little has been said of the choice of the geomet-

ric mean. Ensemble methods in the literature often employ an arithmetic mean

50

Figure 5.1 – Comparison of test error obtained with an exhaustive computation of the geometric
mean (x-axis) and the weight-scaling approximation (y-axis). Each point represents a network
trained with di↵erent hyperparameters.

for model averaging. It is thus natural to pose the question as to whether the

choice of the geometric mean has an impact on the generalization capabilities of

the ensemble. Computing the exact arithmetic mean prediction carries a similar

computational cost to exact computation of the geometric mean prediction.

Using the same networks trained in Section 5.4, we combined the forward-

propagated predictions of all 220 models using the arithmetic mean. In Figure 5.2,

we plot the test error using the (exact) arithmetic mean prediction against that

obtained using the (exact) geometric mean prediction. We find that across all

seven tasks, the geometric mean is a reasonable proxy for the arithmetic mean,

with relative error rarely exceeding 20% except for the synthetic task. In absolute

terms, the discrepancy between the test error achieved by the geometric mean and

the arithmetic mean never exceeded 0.75% for any of the tasks. Importantly, we

find no evidence of a systematic bias in favour of the arithmetic mean.

51

Figure 5.2 – Comparison of test error obtained with an exhaustive computation of the arithmetic
mean (x-axis) geometric mean (y-axis). Each point represents a network trained with di↵erent
hyperparameters.

5.6 Dropout ensembles versus untied weights

We now turn from our investigation of the characteristics of inference in dropout-

trained networks to an investigation of the training procedure. For the remainder

of the experiments discussed, we trained networks of a more realistic size and ca-

pacity on the full multiclass MNIST problem. Once again, we employed two layers

of rectified linear units. In addition to dropout, we utilised norm constraint reg-

ularization on the incoming weights to each hidden unit (Srebro and Shraibman,

2005; Srivastava, 2013). We again performed random search over hyperparameter

values, now including in our search the initial ranges of weights, the number of

hidden units in each of two layers, and the maximum weight vector norms of each

layer.

Dropout training can be viewed as performing bagging on an ensemble that is of

52

size exponential in the number of hidden units, where each member of the ensemble

shares parameters with other members of the ensemble. Because each gradient step

is taken on a di↵erent mini-batch of training data, each sub-network can be seen to

be trained on a di↵erent resampling of the training set, as in traditional bagging.

Furthermore, while each step is taken with respect to the log likelihood of a single

ensemble member, the e↵ect of the weight update is applied to all members of the

ensemble simultaneously. i We investigate the role of this complex weight-sharing

scheme by training an ensemble of independent networks on resamplings of the

training data, each with a single dropout mask fixed in place throughout training.

We first performed a hyperparameter search by sampling 50 hyperparameter

configurations and choosing the network with the lowest validation error. The best

of these networks obtains a test error of 1.06%, matching results reported by Srivas-

tava (2013). We then trained 600 models initialized with di↵erent random seeds, on

di↵erent resamplings (with replacement) of the training set, as in traditional bag-

ging. Instead of applying dropout during training (and thus applying a di↵erent

mask at each gradient step), we sampled one dropout mask per ensemble member

and held it fixed throughout training and at test time. In order to facilitate a fairer

comparison while still matching the capacity (on average) of individual ensemble

members, we fixed the number of hidden units in each layer (2, 834 in layer 1, 3, 219

in layer 2) to be equal to the layer dimensions in the best performing dropout net-

work. However, we then re-ran random search over the remaining hyperparameters

without dropout, once again sampling 50 configurations, in order to determine the

hyperparameters for the fixed-mask ensemble members. ii

The resulting networks thus have architectures sampled from the same distribu-

tion as the sub-networks trained during the best run of dropout training, but each

network’s parameters are independent of all other networks. This ensemble neces-

sarily comes at considerably higher computational expense than a single network

trained with dropout. Note that each member of the ensemble was individually

early-stopped.

i. At least, all members of the ensemble that share any parameters with the sub-network just
updated. There certainly exist pairs of ensemble members whose parameter sets are disjoint.

ii. The motivation for this protocol was to control for layer size while noting that the optimal
hyperparameters for training individual members of the untied ensemble may be substantially
di↵erent the optimal hyperparameters for training with dropout, and might more closely resemble
the optimal hyperparameters for training a network without dropout and without any mask.

53

We evaluated test error for ensembles of these networks, combining their pre-

dictions (with the dropout mask used during training still fixed in place at test

time) via the geometric mean, as is approximately done in the context of dropout.

Our results for various sizes of ensemble are shown in Figure 5.3. Our results

Figure 5.3 – Average test error on MNIST for varying sizes of untied-weight ensembles. 600
networks were trained to convergence, each with a single randomly sampled dropout mask fixed
in place throughout. These networks’ pre-softmax activations were then averaged to produce
predictions for varying sizes of ensembles. For each size n, b600/nc disjoint subsets were combined
in this fashion, and the test error mean and standard deviation over ensembles is shown here.

suggest that while bagging an ensemble of dropped-out networks improves gener-

alization performance over the single network of equivalent size trained with SGD,

the gains from larger ensembles appear to quickly diminish, and dropout nonethe-

less performs considerably better. This suggests that parameter sharing amongst

subnetworks in the dropout ensemble plays a significant role in regularizing the

resulting network. These results do rely on relatively small ensembles, however,

with the same hyperparameters used for each ensemble member; it remains unclear

how to e�ciently optimize hyperparameters for the individual members of a large

ensemble so as to facilitate an even fairer comparison (this highlights a general

issue with the high cost of training ensembles of neural networks, that dropout

conveniently sidesteps).

54

5.7 Dropout bagging versus dropout boosting

Other algorithms such as denoising autoencoders (Vincent et al., 2010) are moti-

vated by the idea that models trained with noise are robust to slight transformations

of their inputs. Previous work has drawn connections between noise and regular-

ization penalties (Bishop, 1995); similar connections in the case of dropout have

recently been noted (Baldi and Sadowski, 2013; Wager et al., 2013). It is natural

to question whether dropout can be wholly characterized in terms of learned noise

robustness, and whether the model-averaging perspective is necessary or fruitful.

In order to investigate this question we propose an algorithm that injects exactly

the same noise as dropout. For this test to be e↵ective, we require an algorithm

that can successfully minimize training error, and obtain acceptable generalization

performance. It needs to perform at least as well as standard maximum likelihood;

otherwise all we have done is designed a pathological algorithm that fails to train.

We therefore introduce dropout boosting. The objective function for each (sub-

network, example) pair in dropout boosting is the likelihood of the data according

to the ensemble; however, only the parameters of the current sub-network may

be updated for each example. Ordinary dropout performs bagging by maximizing

the likelihood of the correct target for the current example under the current sub-

network, whereas dropout boosting takes into account the contributions of other

sub-networks, in a manner reminiscent of boosting.

The objective function for dropout is 1

2

|M|

P
µ2M log p(y | v; ✓, µ). For dropout

boosting, assume each mask µ has a separate set of parameters ✓
µ

(though in reality

these parameters are tied, as in conventional dropout). The dropout boosting

objective function is then given by log p
ensemble

(y | v; ✓), where

p

ensemble

(y | v; ✓) = 1

Z

p̃(y | v; ✓)

Z =
X

y

0

p̃(y0 | v; ✓)

p̃(y | v; ✓) = 2|M|

sY

µ2M

p(y | v; ✓
µ

).

The boosting learning rule is to select one model and update its parameters given

all of the other models. In conventional boosting, these other models have already

55

been trained to convergence. In dropout boosting, the other models actually share

parameters with the network being trained at any given step, and initially the other

models have not been trained at all. The learning rule is to select a sub-network

indexed by µ and follow the ensemble gradient r
✓µ log pensemble

(y | v; ✓), i.e.

�✓

µ

/ 1

2|M|

r

✓µ log p(y | v; ✓
µ

, µ) +
X

y

0

p

ensemble

(y0 | v)r
✓µ log p(y

0 | v; ✓
µ

, µ)

!
.

Rather than using the boosting-like algorithm, one could obtain a generic

Monte-Carlo procedure for maximizing the log likelihood of the ensemble by aver-

aging together the gradient for multiple values of µ, and optionally using a di↵erent

µ for the term in the left and the term on the right. Empirically, we obtained the

best results in the special case of boosting, where the term on the left uses the

same µ as the term on the right – that is, both terms of the gradient apply updates

only to one member of the ensemble, even though the criterion being optimized is

global.

Note that the intractable p

ensemble

still appears in the learning rule. To imple-

ment the training algorithm e�ciently, we can approximate the ensemble predic-

tions using the weight scaling approximation. This introduces further bias into the

estimator, but our findings in Section 5.4 suggest that the approximation error is

small.

Note that dropout boosting employs exactly the same noise as regular dropout

uses to perform bagging. Indeed, the first term of the dropout boosting update

is simply the update utilized by dropout. The second term is the gradient of the

log likelihood of the same randomly chosen sub-network (i.e. same dropout mask)

but substituting the true targets with the approximately-averaged ensemble pre-

diction. Training proceeds in the same fashion as dropout, where one randomly

selected sub-network (from the same distribution over masks) is updated, but ac-

cording to a more globally aware criterion. If the mask application is viewed merely

as the addition of noise, both criteria employ identical noise, as the selection pro-

cedure and random distribution over masks is identical. Dropout boosting should

thus perform similarly to conventional dropout if learned noise robustness is the

important ingredient.

If we instead take the view that this is a large ensemble of complex learners

56

whose likelihood is being jointly optimized, we would expect that employing a

criterion more similar to boosting than bagging would perform more poorly. As

boosting maximizes the likelihood of the ensemble, it would perhaps be prone to

overfitting in this setting, as the ensemble is very large and the learners are not

particularly weak.

Figure 5.4 – Comparison of dropout (left) and dropout boosting (right) to stochastic gradient
descent with matched hyperparameters.

Starting with the 50 models trained in Section 5.6, we employed the same hy-

perparameters to train a matched set of 50 networks with dropout boosting, and

another with plain stochastic gradient descent. In Figure 5.4, we plot the rel-

ative performance of dropout and dropout boosting compared to a model with

the same hyperparameters trained with SGD. While dropout unsurprisingly shows

a very consistent edge, dropout boosting performs, on average, little better than

stochastic gradient descent. The Wilcoxon signed-rank test similarly failed to find a

significant di↵erence between dropout boosting and SGD (p > 0.7). While several

outliers approach very good performance (perhaps owing to the added stochas-

ticity), dropout boosting is, on average, no better and often slightly worse than

maximum likelihood training, in stark contrast with dropout’s systematic advan-

tage in generalization performance.

5.8 Conclusion

We investigated several questions related to the e�cacy of dropout, focusing

on the specific case of the popular rectified linear nonlinearity for hidden units.

We showed that the weight-scaling approximation is a remarkably accurate proxy

57

for the usually intractable geometric mean over all possible sub-networks, and that

the geometric mean (and thus its weight-scaled surrogate) compares favourably to

the traditionally popular arithmetic mean in terms of classification performance.

We demonstrated that weight-sharing between members of the implicit dropout

ensemble appears to have a significant regularization e↵ect, by comparing to anal-

ogously trained ensembles of the same form that did not share parameters. Finally,

we demonstrated that simply adding noise, even noise with identical characteristics

to the noise applied during dropout training, is not su�cient to obtain the bene-

fits of dropout, by introducing dropout boosting, a training procedure utilising the

same masking noise as conventional dropout, which successfully trains networks but

loses dropout’s benefits, instead performing roughly as well as ordinary stochastic

gradient descent.

Our results suggest that dropout is an extremely e↵ective ensemble learning

method, paired with a clever approximate inference scheme that is remarkably ac-

curate in the case of rectified linear networks. Further research is necessary to shed

more light on the model averaging interpretation of dropout. Hinton et al. (2012)

noted that dropout forces each hidden unit to perform computation that is useful

in a wide variety of contexts. Our results with a sizeable ensemble of independent

bagged models seem to lend support to this view, though our experiments were

limited to ensembles of several hundred networks at most, tiny in comparison with

the weight-sharing ensemble invoked by dropout. The relative importance of the

astronomically large ensemble versus the learned “mixability” of hidden units re-

mains an open question. Another interesting direction involves methods that are

able to e�ciently, approximately average over di↵erent classes of model that share

parameters in some manner, rather than merely averaging over members of the

same model class.

Acknowledgments

The authors would like to acknowledge the e↵orts of the many developers of

Theano (Bergstra et al., 2010; Bastien et al., 2012), pylearn2 (Goodfellow et al.,

2013) which were utilised in experiments. We would also like to thank NSERC,

Compute Canada, and Calcul Québec for providing computational resources. Ian

Goodfellow is supported by the 2013 Google Fellowship in Deep Learning.

58

6 Prologue to Third Article

6.1 Article Details

Self-informed neural network structure learning. D. Warde-Farley, A.

Rabinovich, D. Anguelov. Proceedings of the 30th International Conference on

Learning Representations (ICLR ’15), Workshop Track.

Personal Contribution. The idea for training a convolutional network classifier

with dedicated capacity informed by structure imposed on the label space is pri-

marily attributable to Andrew Rabinovich. The idea of the specific variant that

involved preserving “generalist” capacity in the final portion of the network was

my own. I implemented the procedure in Google’s asynchronous distributed neural

networks platform DistBelief (Dean et al., 2012). I trained all of the augmented

models reported in this work, and wrote the manuscript. Andrew Rabinovich

provided his implementation of the spectral clustering method, and evaluated the

resultant models on the ImageNet benchmark. I devised the control experiment.

6.2 Context

At the time that I interned with the Image Understanding team at Google in

the summer of 2014, they had recently adopted the Inception (Szegedy et al., 2015)

family of convolutional network image classifiers for use in the Photo Search prod-

uct. These classifiers would process user-stored photos and annotate them with

metadata about object classes detected in each, in order that users may search

their photos via textual queries. The Inception architecture was quite exotic, and

carefully tuned to the point that it was very di�cult to improve upon: most mod-

ifications to the architecture were deleterious. Furthermore, these classifiers were

59

trained using asynchronous stochastic gradient descent for months, making it com-

putationally costly to experimentally iterate; most training of hypothesized im-

provements proceeded from the checkpointed parameters of a similar, previously

trained architecture. It was clear that improvements ought to be possible, as certain

confusions were systematic.

6.3 Contributions

The contribution of this work is that of one successful attempt at addressing

the problem of improving upon a high-performing neural network architecture by

carefully augmenting it with pathways dedicated to groups of labels that are more

frequently confused by the unaugmented architecture.

6.4 Recent Developments

As of this writing, design of new neural network architectures remains more of

an art than a science. Progress has been made in understanding the unreasonable

e↵ectiveness of the popular Inception architecture (Szegedy et al., 2015), while

recent work (He et al., 2016) has reintroduced the idea of “shortcut” or “skip-layer”

connections (Schraudolph, 1998) into modern convolutional networks and allowing

for the training of networks hundreds of layers deep. Key to the success of these

residual networks, or ResNets, is batch normalization (Io↵e and Szegedy, 2015), a

training acceleration technique introduced shortly after this work was completed.

Finally, very recent work (Zoph et al., 2017) has taken the first steps towards

automated discovery of superior convolutional architectures.

60

7 Self-Informed Neural

Network Structure Learning

7.1 Introduction

In the context of large scale visual recognition, it is not uncommon for state-

of-the-art convolutional networks to be trained for days or weeks before conver-

gence (Krizhevsky et al., 2012; Sermanet et al., 2014; Szegedy et al., 2015). Per-

forming exhaustive architecture search is quite challenging and computationally ex-

pensive. Furthermore, once a satisfactory architecture has been discovered, it can

be extremely di�cult to improve upon; small changes to the architecture more often

decrease performance than improve it. In architectures containing fully-connected

layers, naively increasing the dimensionality of such layers increases the number of

parameters between them quadratically, increasing both the computational work-

load and the tendency towards overfitting.

In settings where the domain of interest comprises thousands of classes, im-

proving performance on specific subdomains can prove challenging, as the jointly

learned features that succeed on the overall task on average may not be su�cient

for correctly identifying the “long tail” of classes, or for making fine-grained dis-

tinctions between very similar entities. Side information in the form of metadata

– for example, from Freebase (Bollacker et al., 2008) – often only roughly corre-

sponds to the kind of similarity that would make correct classification challenging.

In the context of object classification, visually similar entities may belong to vastly

di↵erent high-level categories (e.g. a sporting activity and the equipment used to

perform it), whereas two entities in the same high-level semantic category may bear

little resemblance to one another visually.

A traditional approach to building increasingly accurate classifiers is to average

the predictions of a large ensemble. In the case of neural networks, a common

approach is to add more layers or making existing layers significantly larger, pos-

sibly with additional regularization. These strategies present a significant problem

61

in runtime-sensitive production environments, where a classifier must be rapidly

evaluated in a matter of milliseconds to comply with service-level agreements. It is

therefore often desirable to increase a classifier’s capacity in a way that significantly

improves performance while minimally impacting the computational resources re-

quired to evaluate the classifier; however, it is not immediately obvious how to

satisfy these two competing objectives.

We present a method for judiciously adding capacity to a trained neural network

using the network’s own predictions on held-out data to inform the augmentation

of the network’s structure. We demonstrate the e�cacy of this method by using

it to significantly improve upon the performance of a state-of-the-art industrial

object recognition pipeline based on Szegedy et al. (2015) with less than 3% extra

computational overhead.

7.2 Methods

Given a trained network, we evaluate the network on a held out dataset in order

to compute a confusion matrix. We then apply spectral clustering (Chung, 1997)

to generate a partitioning of the possible labels.

We augment the trained network’s structure by adding additional stacks of fully

connected layers, connected in parallel with the pre-existing stack of fully-connected

layers. The output of each “auxiliary head” is connected by a weight matrix only

to a subset of the output units, corresponding to the label clusters discovered by

spectral clustering.

We train the augmented network by initializing the pre-existing portions of the

network (minus the classifier layer’s weights and biases) to the parameters of the

original network, and by randomly initializing the remaining portions. We train

holding the pre-existing weights and biases fixed, learning only the hidden layer

weights for the new portions and retraining the classifier layer’s weights. This

allows for training to focus on making good use of the auxiliary capacity rather

than adapting the pre-initialized weights to compensate for the presence of the

new hidden units. Note that it is also possible to fine-tune the whole network after

training the augmented section, though we did not perform such fine-tuning in the

experiments described below.

62

Low-level features

Generalist

Low-level features

GeneralistSpecialistSpecialist Specialist Specialist

Figure 7.1 – A schematic of the augmentation process. Left: the original network. Right: the
network after augmentation.

7.3 Related work

Our method can be seen as similar in spirit to the mixture of experts approach

of Jacobs et al. (1991). Rather than jointly learning a gating function as well as

experts to be gated, we employ as a starting point a strong generalist network,

whose outputs then inform decisions about which specialist networks to deploy for

di↵erent subsets of classes. Our specialists also do not train with the original data

as input but rather a higher-level feature representation output by the original

network’s convolutional layers.

Recent work on distillation (Hinton et al., 2014), building on earlier work termed

model compression (Buciluǎ et al., 2006), emphasizes the idea that a great deal of

valuable information can be gleaned from the non-maximal predictions of neural

network classifiers. Distillation makes use of the averaged overall predictions of

several expensive-to-evaluate neural networks as “soft targets” in order to train a

single network to both predict the correct label and mimic the overall predictions

of the ensemble as closely as possible. As in Hinton et al. (2014), we use the predic-

tions of the model itself, however we use this knowledge in the pursuit of carefully

adding capacity to a single, already trained network, rather than mimicking the

performance of many networks with one. Our approach is arguably complementary,

and could conceivably be applied after distilling an ensemble into a single mimic

network in order to further improve fine-grained performance.

63

7.4 Experiments

Our base model consists of the same convolutional Inception architecture em-

ployed in GoogLeNet (Szegedy et al., 2015), plus two fully connected hidden layers

of 4,096 rectified linear (ReLU) units each. Our output layer consists of logistic

units, one per class.

We evaluated the trained network on 9 million images not used during training.

Let

g

j

(x) =

8
<

:
1, if example x has ground truth annotation for class j

0, otherwise
(7.1)

M

i,K

(x) =

8
<

:
1, if model M ’s top K predicted labels on example x includes class i

0, otherwise

(7.2)

We compute the following matrix on the hold-out set S:

A = [a
ij

]; a

ij

= E
x2S

[M
i,K

(x) · g
j

(x)] (7.3)

using K = 100. We use the seemingly large value of K = 100 in order to recover

annotations for a large fraction of possible classes on at least one example in the

hold-out set. We term the detection of class i in the context of ground truth class

j a confusion of i with j; the (i, j)th entry of this matrix thus encodes the fraction

of the time class i is “confused” with class j on the hold-out set.

We also experimented with the matrix

A = [a
ij

]; a

ij

= E
x2S

[M
i,K

(x) · M
j,K

(x)] (7.4)

wherein we eschew the use of ground truth and only look at co-detections, again

with K = 100.

We symmetrize either matrix as B = A

T
A, and apply spectral clustering using

B as our similarity matrix, following the formulation of Ng et al. (2002). In all of

our experiments, our specialist sub-networks consisted of two layers of 512 ReLUs

each.

We evaluate our method on an expanded version of the JFT dataset described

64

in Hinton et al. (2014), an internal Google dataset with a training set of approxi-

mately 100 million images spanning 17,000 classes.

7.5 Results

7.5.1 Label clusters recovered

In Table 7.1, we observe that spectral clustering on the matrix B was able to

successfully recover clusters consisting of visually similar entities.

Runway, Handshake, Douglas dc-3, Tarmac, Boeing, Air show,

Interceptor, Hospital ship, Coast guard, Republic p-47 thunderbolt,

Sikorsky sh-3 sea king, Boeing 737, Mcdonnell douglas dc-10, Air force,

Boeing 757, Boeing 717, Hovercraft, Lockheed ac-130, McDonnell Douglas, Travel,

Aircraft engine, Flight, Yawl, Lockheed c-5 galaxy, Cockpit, Bomber,

Lockheed p-3 orion, Avro lancaster, Jet aircraft. . .

Pickled food, Grilled food, North african cuisine, Vinegret, Woku, Lasagne,

Lard, Meringue, Peanut butter and jelly sandwich, Sparkling wine, Salting,

Raclette, Mussel, Galliformes, Chemical compound, Succotash, Cucurbita,

Alcoholic beverage, Bento, Osechi, Okonomiyaki, Nabemono, Miso soup, Dango,

Onigiri, Tempura, Mochi, Soba, Shiitake, Indian cuisine, Andhra food,

Foie gras, Krill, Sour cream, Saumagen, Compote. . .

Lingonberry, Rooibos, Persimmon, Rutabaga, Banana family, Ensete, Apple,

Viola, Shamrock, Walnut, Beech, Poppy, Kimjongilia, Chicory, Bay leaf,

Melon, Grain, Juniper, Spruce, Fir, Birch family, Hawthorn, Guava,

Gooseberry, Tick, Pouchong, Bonsai, Caraway, Fennel, Sea anemone, Maple sugar,

Boysenberry, Mustard and cabbage family, Pond, Moss, Daikon, Wild ginger,

Groundcover, Holly, Viburnum lentago, Ivy family, Mustard seed. . .

Table 7.1 – Examples of partial sets of labels grouped together by performing spectral clustering
on the base network’s confusions, based on the 100 top scoring predictions. The first row appears
aviation-related, the second focusing on mainly food, and the third broadly concerned with plant-
related entities.

7.5.2 Test set performance improvements

We evaluate on a balanced test set with the same number of classes per image.

For each of the confusion and co-detection cases, we compare against a network with

identical capacity and topology (i.e. same number of labels per cluster) with labels

randomly permuted, in order to assess the importance of the particular partitioning

discovered while carefully controlling for the number of parameters being learned.

65

Description mAP @ top 50 # Multiply-Adds Extra Computation

Base network 36.80% 1.52B 1.000⇥
Base + 6 heads, confusions 39.41% 1.56B 1.026⇥
Base + 6 heads, randomized 32.97% ” ”

Base + 13 heads, co-detections 38.07% 1.60B 1.053⇥
Base + 13 heads, randomized 32.13% ” ”

Table 7.2 – Summary of the performance of augmented networks and the extra computation
time incurred.

While both methods improve upon the base network, the use of ground truth

appears to provide a significant edge. Our best performing network, with 6 spe-

cialist heads, increases the number of multiply-adds required for evaluation from

1.52 billion to 1.56 billion, a modest increase of 2.6%.

We also provide, in Figure 7.2, an evaluation of our best performing JFT net-

work against the ImageNet 1,000-class test set, on the subset of JFT classes that

can be mapped to classes from the ImageNet task (approximately 660 classes).

These results are thus not directly comparable to results obtained on the ImageNet

training set; a more direct comparison is left to follow-up work.

Figure 7.2 – A preliminary evaluation of our trained network on the subset of classes in JFT
that are mappable to the 1,000-class ImageNet classification task.

66

7.6 Conclusions & Future Work

We have presented a simple and general method for improving upon trained

neural network classifiers by carefully adding capacity to groups of output classes

that the trained model itself considers similar. While we demonstrate results on a

computer vision task, this is not an assumption underlying the approach, and we

plan to extend it to other domains in follow-up work.

In these experiments we have allocated a fixed extra capacity to each label

group, regardless of the number of labels in that group. Further investigation is

needed into strategies for the allocation of capacity to each label group. Seemingly

relevant factors include both the cardinality of each group and the amount of

training data available for the labels contained therein; however, the di�culty of

the discrimination task does not necessarily scale with either of these.

In the case of the particular convolutional network we have described, it is not

obvious that the best place to connect these auxiliary stacks of hidden layers is

following the last convolutional layer. Most of the capacity, and therefore arguably

most of the discriminative knowledge in the network, is contained in the fully con-

nected layers, and appealing to this part of the network for augmentation purposes

seems natural. Nonetheless, it is possible that one or more layers of group-specific

convolutional feature maps could be beneficial as well. Note that the augmentation

procedure could also theoretically be applied more than once, and not necessarily in

the same location. Each subsequent clustering and retraining step could potentially

identify a complementary division of the label space, capturing new information.

Finally, this can be seen as a small step towards the “conditional computation”

envisioned by Bengio (2013), wherein relevant pathways of a large network are con-

ditionally activated based on task relevance. Here we have focused on the relatively

large gains to be had with computationally inexpensive, targeted augmentations.

Similar strategies could pave the way towards networks with much higher capacity

specialists that are only evaluated when necessary.

67

8 Adversarial Networks

In this chapter, we review the recently introduced generative adversarial net-

work (GAN) paradigm (Goodfellow et al., 2014). A modified and extended version

of this text was published in Warde-Farley and Goodfellow (2016).

Generative adversarial networks phrase the problem of estimating a generative

model in terms of a sample generation process G : Rd ! Rn, which takes as its

argument a random variate z ⇠ p(z); p(z) is often chosen from some simple family

such as an isotropic Gaussian distribution, or a uniform distribution on [�1, 1]d.

G(·) is a machine parameterized by ⇥
G

which learns to map a sample from the base

distribution p(z) to a corresponding sample from an implicitly defined distribution

p

g

(x). The combined procedure of drawing a sample z from p(z) and applying G

to z is referred to as the generator.

In contrast with many existing generative modeling frameworks, GANs may

be trained without an explicit algebraic representation of p
model

(x), tractable or

otherwise. The GAN framework is compatible with some models that explicitly

define a probability distribution—any directed graphical model whose sampling

process is compatible with stochastic back-propagation (Williams, 1992; Kingma

and Welling, 2014; Rezende et al., 2014) may be used as a GAN generator—but

the framework does not require explicit specification of any conditional or marginal

distributions, only the sample generation process. In frameworks based on explicit

specification of probabilities it is typical to maximize the empirical expectation of

log p
model

(x), applying Monte Carlo or variational approximations if faced with in-

tractable terms (often in the form of a normalizing constant). Instead, GANs are

trained to match the data distribution indirectly with the help of a discriminator,

i.e. a binary classifier D : Rn ! [0, 1], parameterized by ⇥
D

, whose output rep-

resents a calibrated probability estimate that a given example was sampled from

p

data

(x). The conditional log likelihood of the discriminator, on a balanced dataset

of real and synthetic examples, is (in the usual fashion) maximized with respect to

the parameters of D, but simultaneously minimized with respect to the parameters

68

of G.

8.1 Adversarial networks in theory and practice

The joint training procedure for the generator G and the discriminator D can be

viewed as a two-player, continuous minimax game with a certain value function. In

their introduction of the GAN framework, Goodfellow et al. (2014) proved that the

GAN training criterion has a unique global optimum in the space of distributions

represented by G and D, wherein the distribution sampled by the generator exactly

matches that of the data generating process, and the discriminator D is completely

unable to distinguish real data from synthetic. It can also be proved, under certain

assumptions, that the game converges to this optimum if G is improved at every

round and D is chosen to be the ideal discriminator between p

g

(x) and p

data

(x),

i.e. D?(x) = p

data

(x)/(p
data

(x) + p

g

(x)).

Goodfellow (2014) advanced the theoretical understanding of the GAN training

criterion and its relationship to other distinguishability-based learning criteria. In

particular, noise-contrastive estimation (NCE) (Gutmann and Hyvarinen, 2010)

can be viewed as a variant of the GAN criterion wherein the generator is fixed, and

the discriminator is a generatively parameterized classifier that learns an explicit

model of p(x) as a side e↵ect of discriminative training, while a variant of noise con-

trastive estimation employing (a copy of) the learned generative model is shown to

be equivalent, in expectation, to maximum likelihood. Perhaps most importantly,

Goodfellow (2014) noted a subtlety of theoretical results outlined above, pointing

out that they are significantly weakened by the setting in which GANs are typically

optimized in practice.

Optimization of the generator and discriminator necessarily takes place in the

space of parameterized families of functions, and the cost surface in the space

of these parameters may have symmetries and other pathologies that imply non-

uniqueness of the optima as well as practical di�culties locating them. One does

not typically have analytical access to p

g

(x) and certainly not to p

data

(x), and

must attempt to infer the optimal discriminator from data and samples. It is often

prohibitively expensive to fully optimize the parameters of D after every change

in the parameters of G – therefore, in practice, one settles for a parameter update

69

aimed at improving D, such as one or more stochastic gradient steps. This means

that the generator’s role in the minimax game of minimizing with respect to p

g

(x)

given a maximum of the value function with respect to D, is instead minimizing a

lower bound on the correct objective. It is not at all clear whether the minimization

of this lower bound improves the quantity of interest or simply loosens the bound.

Note that Goodfellow et al. (2014) optimize a slightly di↵erent criterion than

described above. Let D(x) = p (x is data | x), the discriminator’s estimate that a

given sample x comes from the data. Rather than minimize

E
z⇠p(z)

log (1 � D(G(z)))

(a term that already appears in the training criterion for the discriminator) with

respect to the parameters of G, one can instead maximize E
z⇠p(z)

log (D(G(z)));

this criterion was found to work better in practice. The motivation for this lies

in the fact that early in training, when G is producing samples that look nothing

at all like data, the discriminator D can quickly learn to distinguish the two and

log (1 � D(G(z))) can quickly saturate to zero. The derivative of the per-sample

objective contains a factor of (1 � D(G(z)))�1, thus scaling the gradients which

G receives via backpropagation to have very small magnitude. Pushing upward

on logD(G(z)) yields a multiplicative factor of D(G(z))�1 instead, resulting in

gradients with a more favourably scaled magnitude if D(G(z)) is small.

As G andD are both parameterized learners, the balance between the respective

modeling capacities (and e↵ective capacities during learning) can have a profound

e↵ect on the learning dynamics and the success of generative learning. In particu-

lar, the discriminator must be su�ciently flexible to reliably model the di↵erence

between the data distribution and the generated distribution, as the latter grad-

ually tends towards reproducing the statistical structure of the former. At the

same time, the discriminator must not become too e↵ective too quickly, or else the

gradients it provides the generator will be uninformative: no small change in the

generated sample will move it significantly closer to the discriminator’s decision

boundary.

70

8.2 Generator collapses

Note that in theory, a perfectly optimal discriminator could exploit any subtle

mismatch between p

data

(x) and p

g

(x) to give itself a better-than-chance ability to

correctly distinguish real and synthetic examples; the generator could then use the

gradients obtained from this optimal discriminator to correct its misallocations of

probability mass. In practice, when using richly parameterized neural networks for

generation and discrimination, the objective functions used to train the generator

are non-convex and (due to the dependence between the learning tasks for the

generator and the discriminator) highly nonstationary; it is impractical and even

theoretically intractable to globally optimize the discriminator prior to each change

in the generator. A failure mode for the training criterion therefore manifests when

the generator learns to place too much probability mass on a subregion of the

data distribution. In the most extreme cases, a generator could elect to place all

of its mass on a single point, perfectly reproducing a single training example. A

well-trained discriminator can quickly learn to exploit this and confidently classify

every other point in the training set correctly. This presents a problem for generator

learning, in that the gradients the generator receives are entirely with respect to a

single synthetic example, most local perturbations of which will result in gradients

that point back towards the singularity. To date, strategies to mitigate this type

of failure are an active area of research. Radford et al. (2015) noted that the

judicious use of batch normalization (Io↵e and Szegedy, 2015) appears, empirically,

to prevent these kinds of collapses to a large degree.

8.3 Sample fidelity and learning the objective

function

Machine learning problems are classically posed in terms of an objective function

that is a fixed function of the parameters given a training set, often the log likelihood

of training data under some parametric model. Viewed from the perspective of the

generator G, the GAN training procedure does not involve a single, fixed objective

function: G’s objective is defined at any moment by the discriminator D, the

71

parameters of which are being continually adapted to both the data and to the

current state of G. This can be considered a learned objective function, whereby

the objective function for G is automatically adapted to the data distribution being

estimated. The inductive bias for G is characterized by the family of functions

from which D is chosen: G is optimized so as to elude detection via any statistical

di↵erence between p

g

and p

data

that D can learn to detect.

It is this property that is arguably responsible for the perceived visual quality of

generated samples of GANs trained on natural images. Models trained via objec-

tive functions involving reconstruction terms, such as the variational autoencoder

(Kingma and Welling, 2014; Rezende et al., 2014), implicitly commit to a static

definition of sample plausibility. In the case of conditionally Gaussian likelihood,

this takes the form of mean squared error, which is a particularly poor perceptual

metric for natural image pixel intensities: it considers all perturbations of a given

magnitude equivalent, without regard for the fact that changes in luminance which

blur out sharp edges decrease the plausibility of the sample as a natural image

much more than minor shifts in chroma across the entire image. While one popu-

lar approach in the case of models of natural images, and in many other domains,

is to design the static objective so as to mitigate the mismatch between training

criterion and the statistical properties of the domain, the solution o↵ered by GANs

is in some sense more universal: train D to detect and exploit any di↵erence it can

between the distributions of samples and real data, train G to outwit this new dis-

criminator, and repeat. This often results in generated samples that more closely

match human conceptions of saliency.

8.4 Extensions and refinements

Since the initial introduction of generative adversarial networks, the framework

has been extended in several notable directions. Many of these rely on a straight-

forward extension to the conditional setting, where the generator and discriminator

receive additional contextual inputs, first explored by Mirza and Osindero (2014).

For example, in the aforementioned work, the authors train a class-conditional gen-

erator on the MNIST handwritten digits by feeding the network an additional input

consisting of a “one-hot” vector indicating the desired class. The discriminator is

72

fed the generated or real image as well as the class label (the assigned label if the

image is real, the desired label if the image is generated). Through training, the

discriminator learns that in the presence of a given class label, the image should

resemble instances of that class from the training data. Likewise, in order to suc-

ceed at fooling the discriminator, the generator must learn to use the class label

input to inform the characteristics of its generated sample.

In pursuit of more realistic models of natural images, Denton et al. (2015)

introduced a hierarchical model, dubbed LAPGAN, which interleaved conditional

GAN generators with spatial upsampling in a Laplacian pyramid (Burt et al.,

1983). The first generator, either class-conditional or traditional, is trained to

generate a small thumbnail image. A fixed upsampling and blurring is performed

and a second conditional generator, conditioned on the newly upsampled image,

is trained to reproduce the di↵erence between the image at the current resolution

and the upsampled thumbnail. This process is iterated, with subsequent conditional

generators predicting residuals at ever higher resolutions.

Also in the space of natural image generation, Radford et al. (2015) leveraged re-

cent advances in the design and training of discriminative convolutional networks to

successfully train a single adversarial pair to generated realistic images of relatively

high resolution. These generator networks employ “fractionally strided convolu-

tions”, otherwise recognizable as the transpose operation of “valid”-mode strided

convolution commonly used when backpropagating gradients through a strided con-

volutional layer, to learn their own upsampling operations. The authors identify

a set of architectural constraints on the generator and discriminator which allow

for relatively stable training, including the elimination of downsampling in favour

of strided convolution in the discriminator the use of the bounded tanh function

at the generator output layer, careful application of batch normalization (Io↵e and

Szegedy, 2015) and the use of rectified linear units (Jarrett et al., 2009; Glorot et al.,

2011) and leaky rectified linear units (Maas et al., 2013) throughout the generator

and discriminator, respectively. Inspired by recent work on word embeddings (e.g.

Mikolov et al. (2013)), the authors also interrogate the latent representations, i.e.

samples from p(z), and find that they obey surprising arithmetic properties when

trained on a dataset of faces.

73

8.5 Hybrid models

A recent body of work has examined the combination of the adversarial network

training criterion with other formalisms, notably autoencoders. Larsen et al. (2015)

combine a GAN with a variational autoencoder (VAE) (Kingma and Welling, 2014;

Rezende et al., 2014), dispensing with the VAE’s reconstruction error term in favor

of an squared error expressed in the space of the discriminator’s hidden layers,

combining the resulting modified VAE objective with the usual GAN objective.

Makhzani et al. (2015) employs an adversarial cost as a regularizer on the hidden

layer representation of a conventional autoencoder, forcing the aggregate posterior

distribution of the hidden layer to match a particular synthetic distribution. This

formulation closely resembles the VAE. The VAE maximizes a lower bound on

the log-likelihood that includes both a reconstruction term and terms regularizing

the variational posterior to resemble the model’s prior distribution over the latent

variables. The adversarial autoencoder removes the regularization term and uses

the adversarial game to enforce the desired conditions.

The adversarial network paradigm has also been extended in the direction of

supervised and semi-supervised learning. Springenberg (2016) generalizes the con-

vention adversarial network setting to employ a categorical (softmax) output layer

in the discriminator. The discriminator and generator compete to shape the entropy

of this distribution while respecting constraints on its marginal distribution, and

an optional likelihood term can add semantics to this output layer if class labels are

available. Sutskever et al. (2015) propose an unsupervised criterion designed ex-

pressly with the intent of improving performance on downstream supervised tasks

in settings where the space of possible outputs is large, and it is easy to obtain

independent examples from both the input and output domains. The proposed su-

pervised mapping is adversarially trained to have an output distribution resembling

the distribution of independent output domain examples.

8.6 Beyond generative modeling

Generative adversarial networks were originally introduced in order to provide

a means of performing generative modeling. The idea has since proven to be more

74

general. Adversarial pairs of networks may in fact be used for a broad range of

tasks.

Two recent methods have shown that the adversarial framework can be used

to impose desired properties on the features extracted by a neural network. The

feature extractor can be thought of as analogous to the generator in the GAN

framework. A second network, analogous to the discriminator, then tries to obtain

some forbidden information from the extracted features. The feature extractor is

then trained to learn features that are both useful for some original task, such as

classification, and that yield little information to the second network. Ganin and

Lempitsky (2015) use this approach for domain adaptation. The second network

attempts to predict which domain the input was drawn from. When the feature

extractor is trained to fool this network, it is forced to learn features that are

invariant to the choice of input domain. Edwards and Storkey (2015) use a similar

technique to learn representations that do not contain private information. In this

case, the second network attempts to recover the private information from the

representation. This approach could be used to remove prejudice from a decision

making process. For example, if a machine learning model is used to make hiring

decisions, it should not use protected information such as the race or gender of

applicants. If the machine learning model is trained on the decisions made by

human hiring managers, and if the previous hiring managers made biased decisions,

the machine learning model could discover other features of the candidates that

are correlated with their race or gender. By applying the method of Edwards and

Storkey (2015), the machine learning model is encouraged to remove features that

have a statistical relationship with the protected information, ideally leading to

more fair decisions.

8.7 Discussion

The staggering gains in many application areas brought by the introduction of

deep neural networks have inspired much excitement and widespread adoption. In

addition to remarkable success tackling di�cult supervised classification tasks, it is

often the case that even misclassifications the errors made by state-of-the-art neural

networks appear to be quite reasonable (as remarked, for example, by Krizhevsky

75

et al. (2012)). The existence of adversarial examples as a problem plaguing a

wide variety of model families suggests surprising deficits both in the degree to

which these models understand their tasks, and to which human practitioners truly

understand their models. Research into such phenomena can yield immediate gains

in robustness and resistance to attack for neural networks deployed in commercial

and industrial systems, as well as guide research into new model classes which

naturally resist such perturbation through a deeper comprehension of the learning

task.

Simultaneously, the adversarial perspective can be fruitfully leveraged for tasks

other than simple supervised learning. While the focus of generative modeling in

the past has often been on models that directly optimize likelihood, many appli-

cation domains express a need for realistic synthesis, including the generation of

speech waveforms, image and video inpainting and super-resolution, the procedural

generation of video game assets, and forward prediction in model-based reinforce-

ment learning. Recent work (Theis et al., 2015) suggests that these goals may be

at odds with this likelihood-centric paradigm. Generative adversarial networks and

their extensions provide one avenue attack on these di�cult synthesis problems with

an intuitively appealing approach: to learn to generate convincingly, aim to fool a

motivated adversary. An important avenue for future research concerns the quanti-

tative evaluation of generative models intended for synthesis; particular desiderata

include generic, widely applicable evaluation procedures which nonetheless can be

made to respect domain-specific notions of similarity and verisimilitude.

76

9 Prologue to Fourth Article

9.1 Article Details

Improving generative adversarial networks with denoising feature

matching. David Warde-Farley and Yoshua Bengio. Proceedings of the 4th Inter-

national Conference on Learning Representations (ICLR ’17).

Personal Contribution.

I conceived of the method, did all implementation and ran all experiments. I

wrote the majority of the manuscript, with assistance from Yoshua Bengio.

9.2 Context

Generative adversarial networks had, by 2016, become arguably the most pop-

ular area of research in unsupervised machine learning, but their shortcomings,

evident to us when first preparing the work in Goodfellow et al. (2014), seemed

nearly as pronounced. Instabilities in training, in particular pathologies such as

“mode collapse”, were commonplace. The lack of access to an explicit density

made objective, quantitative evaluation di�cult and virtually absent from the lit-

erature. GANs were capable of synthesizing compelling images from relatively

narrow domains such as photographs of human faces or bedroom scenes, but failed

to reproduce “object-like” patterns when trained on more diverse collections.

The work in this chapter was directly precipitated by Salimans et al. (2016),

which introduced a collection of heuristics which could synthesize compellingly

when trained on diverse collections of natural images, but their success relied upon

making use of class labels when training the discriminator, an unsatisfactory propo-

sition from the perspective of unsupervised learning research. The same work intro-

duced a heuristic, quantitative measure of sample quality known as the Inception

77

score, which correlates well with human judgements of sample quality and diversity,

a welcome contribution in an area of research that was growing increasingly reliant

on subjective, qualitative evaluation. i

9.3 Contributions

This work introduces a technique that augments the training criterion of gen-

erative adversarial networks with an additional training signal based on the recon-

structions of a denoising auto-encoder trained in the feature embedding learned as a

side e↵ect of discriminator training. We demonstrate that the method qualitatively

succeeds in reproducing object categories, and quantitatively rivals the method in

Salimans et al. (2016) in terms of Inception score.

9.4 Recent Developments

As of this writing, denoising feature matching is still the method with the

best reported Inception score on CIFAR10, although results in the literature have

qualitatively improved a great deal.

Perhaps the most notable development since this article was published is the

introduction of Wasserstein GANs (Arjovsky et al., 2017), which aim to alleviate

certain theoretical shortcomings of the original formulation, observed in Arjovsky

and Bottou (2017). The crude strategy in Arjovsky et al. (2017) of bounding

the Lipschitz constant of the discriminator by clipping the absolute value of each

weight was followed relatively soon by Gulrajani et al. (2017), who introduced a

gradient penalty formulation towards the same end. Interestingly, another recently

proposed method (Kodali et al., 2017) re-derives the gradient penalty, evaluated at

a di↵erent set of points, from a game theoretic perspective, on top of the original

GAN formulation. This suggests that gradient penalties may prove an important

i. The original GAN manuscript evaluated log likelihoods estimates using a method based
on Parzen density estimation (Breuleux et al., 2011), but the community’s consensus is that this
method is unreliable in high-dimensional spaces; see Theis et al. (2015) and the quantitative
analysis in Wu et al. (2017).

78

ingredient going forward, independent of the underlying adversarial game or other

objective function in use.

Also notable is the work of Wu et al. (2017), who introduced a protocol based on

annealed importance sampling (Neal, 2001) for evaluating lower bounds on the test

log likelihood. While this technique is well known in the field of Bayesian statistics,

they demonstrated a successful application to the family of“decoder-based”models,

i.e. directed models where the conditional likelihood is parameterized by a neural

network. They predictably showed that variational autoencoders (Kingma and

Welling, 2014) outperform GANs (trained in the conventional fashion) in terms of

test log likelihood, but also that the gap between the train and test log likelihood for

the GANs they evaluated was relatively small, suggesting that overfitting (at least

on simple datasets such as MNIST) was perhaps less of a problem than commonly

believed.

79

10
Improving Generative

Adversarial Networks with

Denoising Feature Matching

10.1 Introduction

Generative adversarial networks (Goodfellow et al., 2014) (GANs) have become

well known for their strength at realistic image synthesis. The objective function for

the generative network is an implicit function of a learned discriminator network,

estimated in parallel with the generator, which aims to tell apart real data from

synthesized. Ideally, the discriminator learns to capture distinguishing features of

real data, which the generator learns to imitate, and the process iterates until real

data and synthesized data are indistinguishable.

In practice, GANs are well known for being quite challenging to train e↵ectively.

The relative model capacities of the generator and discriminator must be carefully

balanced in order for the generator to e↵ectively learn. Compounding the problem

is the lack of an unambiguous and computable convergence criterion. Nevertheless,

particularly when trained on image collections from relatively narrow domains such

as bedroom scenes (Yu et al., 2015) and human faces (Liu et al., 2015), GANs have

been shown to produce very compelling results.

For diverse image collections comprising a wider variety of the visual world,

the results have generally been less impressive. For example, samples from models

trained on ImageNet (Russakovsky et al., 2014) roughly match the local and global

statistics of natural images but yield few recognizable objects. Recent work (Sali-

mans et al., 2016) has sought to address this problem by training the discriminator

in a semi-supervised fashion, granting the discriminator’s internal representations

knowledge of the class structure of (some fraction of) the training data it is pre-

sented. This technique markedly increases sample quality, but is unsatisfying from

the perspective of GANs as a tool for unsupervised learning.

We propose to augment the generator’s training criterion with a second train-

ing objective which guides the generator towards samples more like those in the

80

training set by explicitly modeling the data density in addition to the adversarial

discriminator. Rather than deploy a second computationally expensive convolu-

tional network for this task, the additional objective is computed in the space of

features learned by the discriminator. In that space, we train a denoising auto-

encoder, a family of models which is known to estimate the energy gradient of

the data on which it is trained. We evaluate the denoising auto-encoder on sam-

ples drawn from the generator, and use the “denoised” features as targets – nearby

feature configurations which are more likely than those of the generated sample,

according to the distribution estimated by the denoiser.

We show that this yields generators which consistently produce recognizable

objects on the CIFAR-10 dataset without the use of label information as in Salimans

et al. (2016). The criterion appears to improve stability and possesses a degree of

natural robustness to the well known “collapse” pathology. We further investigate

the criterion’s performance on two larger and more diverse collections of images,

and validate our qualitative observations quantitatively with the Inception score

proposed in Salimans et al. (2016).

10.2 Background

10.2.1 Generative adversarial networks

The generative adversarial networks paradigm (Goodfellow et al., 2014) esti-

mates generative samplers by means of a training procedure which pits a generator

G against a discriminator D. D is trained to tell apart training examples from

samples produced by G, while G is trained to increase the probability of its sam-

ples being incorrectly classified as data. In the original formulation, the training

procedure defines a continuous minimax game

argmin
G

argmax
D

E
x⇠D logD(x) + E

z⇠p(z)

log (1 � D (G(z))) (10.1)

where D is a data distribution on Rn, D is a function that maps Rn to the unit

interval, and G is a function that maps a noise vector z 2 Rm, drawn from a simple

81

distribution p(z), to the ambient space of the training data, Rn. The idealized al-

gorithm can be shown to converge and to minimize the Jensen-Shannon divergence

between the data generating distribution and the distribution parameterized by G.

Goodfellow et al. (2014) found that in practice, minimizing (10.1) with respect

to the parameters of G proved di�cult, and elected instead to optimize an alternate

objective,

argmax
G

E
z⇠p(z)

logD (G(z)) (10.2)

at the same time as D is optimized as above. logD(G(z)) yields more favourably

scaled per-sample gradients for G when D confidently identifies a sample as coun-

terfeit, avoiding the vanishing gradients arising in that case with the � log(1 �
D(G(z))) objective.

Subsequent authors have investigated applications and extensions of GANs; for

a review of this body of literature, see Warde-Farley and Goodfellow (2016). Of

particular note for our purposes is Radford et al. (2015), who provide a set of

general guidelines for the successful training of generative adversarial networks,

and Salimans et al. (2016), who build upon these techniques with a number of

useful heuristics and explore a variant in which the discriminator D is trained to

correctly classify labeled training data, resulting in gradients with respect to the

discriminator evidently containing a great deal of information relevant to generating

“object-like” samples.

10.2.2 Challenges and Limitations of GANs

While Goodfellow et al. (2014) provides a theoretical basis for the GAN cri-

terion, the theory relies on certain assumptions that are not satisfied in practice.

Proofs demonstrate convergence of the GAN criterion in the unconstrained space of

arbitrary functions; in practice, finitely parameterized families of functions such as

neural networks are employed. As a consequence, the “inner loop” of the idealized

algorithm – maximizing (10.1) with respect to (the parameters of) D, is infeasible

to perform exactly, and in practice only one or a few gradient steps stand in for

this maximization. This results in a de facto criterion for G which minimizes a

lower bound on the correct objective (Goodfellow, 2014).

A commonly observed failure mode is that of full or partial collapse, where G

82

maps a large fraction of probable regions under p(z) to only a few, low-volume

regions of Rn; in the case of images, this manifests as the appearance of many

near-duplicate images in independent draws from G, as well as a lower diversity of

samples and modes than what is observed in the dataset. As G and D are typically

trained via mini-batch stochastic gradient descent, several authors have proposed

heuristics that penalize such duplication within each mini-batch (Salimans et al.,

2016; Zhao et al., 2016).

GANs represent a departure from traditional probabilistic models based on

maximum likelihood and its approximations in that they parameterize a sampler

directly and lack a closed form for the likelihood. This makes objective, quantitative

evaluation di�cult. While previous results in the literature have reported approx-

imate likelihoods based on Parzen window estimates, Theis et al. (2015) has con-

vincingly argued that these estimates can be quite misleading for high-dimensional

data. In this work, we adopt the Inception score proposed by Salimans et al. (2016),

which uses a reference Inception convolutional neural network (Szegedy et al., 2015)

to compute

I({x}N

1

) = exp (E [D
KL

(p(y|x)kp(y)])) (10.3)

where p(y|x) is provided by the output of the Inception network and p(y) =
R
x

p(x)p(y|x)dx u 1

N

P
p(y|x

i

). Note that this score can be made larger by a

low-entropy per-sample posterior (i.e. the Inception network classifies a given sam-

ple with greater certainty) as well as a higher entropy aggregate posterior (i.e. the

Inception network identifies a wide variety of classes among the samples presented

to it). Salimans et al. (2016) found this score correlated well with human evalu-

ations of samplers trained on CIFAR-10; we therefore employ the Inception score

here as a quantitative measure of visual fidelity of the samples, following the previ-

ous work’s protocol of evaluating the average Inception score over 10 independent

groups of 5,000 samples each. Error estimates correspond to standard deviations,

in keeping with previously reported results.

83

10.3 Improving Unsupervised GAN Training

On Diverse Datasets

In this work, we focus on the apparent di�culty of training GANs to produce

“object-like” samples when trained on diverse collections of natural images. While

Salimans et al. (2016) make progress on this problem by employing labeled data

and training the discriminator, here we aim to make progress on the unsupervised

case. Nevertheless, our methods would be readily applicable to supervised, semi-

supervised or (with slight modifications) conditional setting.

We begin from the slightly subtle observation that in realistic manifestations of

the GAN training procedure, the discriminator’s (negative) gradient with respect

to a sample points in a direction of (infinitesimal) local improvement with respect

to the discriminator’s estimate of the sample being data; it does not necessarily

point in the direction of a draw from the data distribution. Indeed, the litera-

ture is replete with instances of gradient descent with respect to the input of a

classification model, particularly wide-domain natural image classifiers, producing

ghostly approximations to a particular class exemplar (Le et al., 2012; Erhan et al.,

2009; Yosinski et al., 2015) when this procedure is carried out without additional

guidance, to say nothing of the problems posed by adversarial examples (Szegedy

et al., 2014; Goodfellow et al., 2014) and fooling examples (Nguyen et al., 2015).

While the gradient of the loss function defined by the discriminator may be a

source of information mostly relevant to very local improvements, the discriminator

itself is a potentially valuable source of compact descriptors of the training data.

Many authors have noted the remarkable versatility of high-level features learned

by convolutional networks (Donahue et al., 2014; Yosinski et al., 2014) and the

degree to which high-level semantics can be reconstructed from even the deepest

layers of a network (Dosovitskiy and Brox, 2016). Although non-stationary, the

distribution of the high-level activations of the discriminator when evaluated on

data is ripe for exploitation as an additional source of knowledge about salient

aspects of the data distribution.

We propose in this work to track this distribution with a denoising auto-encoder

r(·) trained on the discriminator’s hidden states h, when evaluated on training

data. Alain and Bengio (2014) showed that a denoising auto-encoder trained on

data from a distribution q(h) estimates via r(h) � h the gradient of the true log-

84

density, @ log q(h)

@h

. Hence, if we train the denoising auto-encoder on the transformed

training data h = �(x) with x ⇠ D, then r(�(x0))��(x0) with x0 = G(z) indicates

in which direction x0 should be changed in order to make h = �(x0) more like those

features seen with the data. Minimizing ||r(�(x0)) � �(x0)||2 with respect to x0

would thus push x0 towards higher probability configurations according to the data

distribution in the feature space �(x). We thus evaluate the discriminator features

�(x), and the denoising auto-encoder, on samples from the generator, and treat

the denoiser’s output reconstruction as a fixed target for the generator. We refer

to this procedure as denoising feature matching, and employ it as a learning signal

for the generator in addition to the traditional GAN generator objective.

Formally, let G be the generator parameterized by ✓

G

, and D = d � � be

our discriminator composing feature extractor �(·) : Rn ! Rk and a classifier

d(·) : Rk ! [0, 1]. Let C(·) : Rk ! Rk be a corruption function to be applied at the

input of the denoising auto-encoder when it is trained to denoise. The parameters

of the discriminator D, comprising the parameters of both d and �, is trained as

in Goodfellow et al. (2014), while the generator is trained according to

argmin
✓G

E
z⇠p(z)

⇥
�

denoise

k�(G(z)) � r(�(G(z)))k|2 � �

adv

logD(G(z))
⇤

(10.4)

where r(G(z)) is treated as constant with respect to gradient computations. Si-

multaneously, the denoiser r(·) is trained according to the objective

argmin
✓r

E
x⇠Dk�(x) � r(C(�(x)))k2 (10.5)

10.3.1 E↵ect of �

The theory surrounding denoising auto-encoders applies when estimating a de-

noising function from a data distribution p(x). Here, we propose to estimate the

denoising auto-encoder in the space of discriminator features, giving rise to a dis-

tribution q(�(x)). A natural question is what e↵ect this has on the gradient being

backpropagated. This is di�cult to analyze in general, as for most choices the

mapping � will not be invertible, though it is instructive to examine the invertible

case. Assuming an invertible � : Rn ! Rn, let J = @�(x)

@x

be the Jacobian of �, and

q(�(x)) = p(x)|J |. By the inverse function theorem, J is also invertible (and is

in fact the Jacobian of the inverse ��1). Applying the chain rule and re-arranging

85

terms, taking advantage of the invertibility of J , we arrive at a straightforward

relationship between the score of q and the score of p:

@ log q(�(x))

@�(x)
=
@ log [p(x) |J |]

@�(x)
(10.6)

=
@ log p(x)

@�(x)
+

@ log
���@�(x)

@x

���
@�(x)

(10.7)

=

✓
@ log p(x)

@x
+

@ log |J |
@x

◆
J

�1 (10.8)

where

@ log |J |
@x

k

= Tr

✓
J

�1

dJ

dx

k

◆
(10.9)

and dJ

dxk
is a matrix of scalar derivatives of elements of J with respect to x

k

. Thus,

we see that the gradient backpropagated to the generator in an ideal setting is the

gradient of the data distribution p(x) along with an additive term which accounts

for the changes in the rate of volume expansion/contraction in � locally around x.

In practice, � is not invertible, but the added benefit of the denoiser-targeted gra-

dient appears to reduce underfitting to the modes of p in the generator, irrespective

of any distortions � may introduce.

10.4 Related work

Denoising feature matching was originally inspired by feature matching intro-

duced by Salimans et al. (2016) as an alternative training criterion for GAN gen-

erators, namely (in our notation)

argmin
✓G

��kE
x⇠D [�(x)] � E

z⇠p(z)

[�(G(z))] k
��2 (10.10)

Feature matching is equivalent to linear maximum mean discrepancy (Gretton

et al., 2006), employing linear first moment matching in the space of discrimi-

nator features �(·) rather than the more familiar kernelized formulation. When

86

performed on features in the penultimate layer, Salimans et al. (2016) found that

the feature matching criterion was useful for the purpose of improving results on

semi-supervised classification, using classification of samples from the generator

as a sophisticated form of data augmentation. Feature matching was, however,

less successful at producing samples with high visual fidelity. This is somewhat

unsurprising given that the criterion is insensitive to higher-order statistics of the

respective feature distributions. Indeed, a degenerate G which deterministically

reproduces a single sample m̂ such that �(m̂) = E
x2D�(x) trivially minimizes

(10.10); in practice the joint training dynamics of D and G do not appear to yield

such degenerate solutions.

Rather than aiming to merely reduce linear separability between data and sam-

ples in the feature space defined by �(·), denoising feature matching selects a more

probable (according to the feature distribution implied by the data, as captured

by the denoiser) feature space target for each sample produced by G and regresses

G towards it. While an early loss of entropy in G could result in the generator

locking on to one or a few attractors in the denoiser’s energy landscape, we observe

that this does not happen when used in conjunction with the traditional GAN

objective, and in fact that the combination of the two objectives is notably robust

to the collapses often observed in GAN training, even without taking additional

measures to prevent them.

This work also draws inspiration from Alain and Bengio (2014), which showed

that a suitably trained denoiser learns an operator which locally maps a sample to-

wards regions of high probability under the data distribution. They further showed

that a suitably trained i reconstruction function r(·) behaves such that

r(x) � x / @ log p(x)

@x
(10.11)

That is, r(x) � x estimates the score of the data generating distribution, up to

a multiplicative constant. Our use of denoising auto-encoders necessarily departs

from idealized conditions in that the denoiser is estimated online from an ever-

changing distribution of features.

Several approaches to GAN-like models have cast the problem in terms of learn-

i. In the limit of infinite training data, with isotropic Gaussian noise of some standard devia-
tion �.

87

ing an energy function. Kim and Bengio (2016) extends GANs by modeling the

data distribution simultaneously with an energy function parameterized by a deep

neural network (playing the role of the discriminator) and the traditional genera-

tor, carrying out learning with a learning rule resembling that of the Boltzmann

machine (Ackley et al., 1985), where the “negative phase” gradient is estimated

from samples from the generator. The energy-based GAN formulation of Zhao

et al. (2016) resembles our work in their use of an auto-encoder which is trained

to faithfully reconstruct (in our case, a corrupted, function of) the training data.

The energy-based GAN replaces the discriminator with an auto-encoder, which is

trained to assign low energy (L
2

reconstruction error) to training data and higher

energy to samples fromG. To discourage generator collapses, a“pull-away term”pe-

nalizes the normalized dot product in a feature space defined by the auto-encoder’s

internal representation. In this work, we preserve the discriminator, trained in

the usual discriminative fashion, and in fact preserve the traditional generator loss,

instead augmenting it with a source of complementary information provided by tar-

gets obtained from the denoiser. The energy-based GAN can be viewed as training

the generator to seek fixed points of the autoencoding function (i.e. by backpropa-

gating through the decoder and encoder in order to decrease reconstruction error),

whereas we treat the output of r(·) as constant with respect to the optimization

as in Lee et al. (2015). That is to say, rather than using backpropagation to steer

the dynamics of the autoencoder, we instead employ our denoising autoencoder to

augment the gradient information obtained by ordinary backpropagation.

Closest to our own approach, concurrent work on model-based super-resolution

by Sønderby et al. (2016) trains a denoising auto-encoder on high-resolution ground

truth and evaluates it on synthesized super-resolution images, using the di↵erence

between the original synthesized image and the denoiser’s output as an additional

training signal for refining the output of the super-resolution network. Both Søn-

derby et al. (2016) and our own work are motivated by the results of Alain and

Bengio (2014) discussed above. Aside from addressing a di↵erent application area,

our denoiser is learned on-the-fly from a high-level feature representation which is

itself learned.

88

10.5 Experiments

We evaluate denoising feature matching on learning synthesis models from three

datasets of increasing diversity and size: CIFAR-10, STL-10, and ImageNet. Al-

though several authors have described GAN-based image synthesis models operat-

ing at 128 ⇥ 128 (Salimans et al., 2016; Zhao et al., 2016) and 256 ⇥ 256 (Zhao

et al., 2016) resolution, we carry out our investigations at relatively low resolu-

tions, both for computational ease and because we believe that the problem of

unconditional modeling of diverse image collections is not well solved even at low

resolutions; making progress in this regime is likely to yield insights that apply to

the higher-resolution case.

In all experiments, we employ isotropic Gaussian corruption noise with � =

1. Although we experimented with annealing � towards 0 (as also performed in

Sønderby et al. (2016)), an annealing schedule which consistently outperformed

fixed noise remained elusive. We experimented with convolutional denoisers, but

our best results to date were obtained with deep, fully-connected denoisers using

the ReLU nonlinearity on the penultimate layer of the discriminator. The number

of hidden units was fixed to the same value in all denoiser layers, and the procedure

is apparently robust to this hyperparameter choice, as long as it is greater than or

equal to the input dimensionality.

Our generator and discriminator architectures follow the methods outlined in

Radford et al. (2015). Accordingly, batch normalization (Io↵e and Szegedy, 2015)

was used in the generator and discriminator in the same manner as Radford et al.

(2015), and in all layers of the denoiser except the output layer. In particular, as in

Radford et al. (2015), we separately batch normalize data and generator samples for

the discriminator and denoiser with respect to each source’s statistics. We calculate

updates with respect to all losses with the parameters of all three networks fixed,

and update all parameters simultaneously.

All networks were trained with the Adam optimizer (Kingma and Ba, 2014)

with a learning rate of 10�4 and �

1

= 0.5. The Adam optimizer is scale invariant,

and so it su�ces to e.g. tune �

denoise

and fix �

adv

to 1. In our experiments, we

set �
denoise

to 0.03/n
h

, where n
h

is the number of discriminator hidden units fed as

input to the denoiser; this division decouples the scale of the first term of (10.4)

from the dimensionality of the representation used, reducing the need to adjust this

89

hyperparameter simply because we altered the architecture of the discriminator.

10.5.1 CIFAR-10

CIFAR-10 (Krizhevsky and Hinton, 2009) is a small, well-studied dataset con-

sisting of 50,000 32 ⇥ 32 pixel RGB training images and 10,000 test images from

10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

Samples from our model trained on CIFAR-10 are shown in Figure 10.1, and

Inception scores for several methods, including those reported in Salimans et al.

(2016) and scores computed from samples generated from a model presented in

Dumoulin et al. (2016), are presented in Table 10.1. We achieve a mean Incep-

tion score of 7.72, falling slightly short of Salimans et al. (2016), which employed

a supervised discriminator network (the same work reports a score of 4.36 ± .04

when labels are omitted from their training procedure). Qualitatively, the samples

include recognizable cars, boats and various animals. The best performing gener-

ator network consisted of the 32 ⇥ 32 ImageNet architecture from Radford et al.

(2015) with half the number of parameters at each layer, and less than 40% of the

parameters of the CIFAR-10 generator presented in Salimans et al. (2016).

Figure 10.1 – Samples generated from a model trained with denoising feature matching on
CIFAR10.

90

Real data?

Semi-supervised Unsupervised

Improved GAN (Salimans et al)? ALI (Dumoulin et al)† Ours

11.24 ± .12 8.09 ± .07 5.34 ± 0.05 7.72 ± 0.13

Table 10.1 – Inception scores for models of CIFAR-10. ? as reported in Salimans et al. (2016);
semi-supervised † computed from samples drawn using author-provided model parameters and
implementation.

10.5.2 STL-10

STL-10 (Coates et al., 2011) is a dataset consisting of a small labeled set and

larger (100,000) unlabeled set of 96⇥96 RGB images. The unlabeled set is a subset

of ImageNet that is more diverse than CIFAR-10 (or the labeled set of STL-10),

but less diverse than full ImageNet. We downsample by a factor of 2 on each

dimension and train our networks at 48 ⇥ 48. Inception scores for our model and

a baseline, consisting of the same architecture trained without denoising feature

matching (both trained for 50 epochs), are shown in Table 10.2. Samples are

displayed in Figure 10.2.

Real data Ours GAN Baseline

26.08 ± .26 8.51 ± 0.13 7.84 ± .07

Table 10.2 – Inception scores for models of the unlabeled set of STL-10.

10.5.3 ImageNet

The ImageNet database (Russakovsky et al., 2014) is a large-scale database of

natural images. We train on the designated training set of the most widely used re-

lease, the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC2012),

consisting of a highly unbalanced split among 1,000 object classes. We preprocess

the dataset as rescaled central crops following the procedure of Krizhevsky et al.

(2012), except at 32 ⇥ 32 resolution to facilitate comparison with Radford et al.

(2015).

ImageNet poses a particular challenge for unsupervised GANs due to its high

level of diversity and class skew. With a generator and discriminator architecture

identical to that used for the same dataset in Radford et al. (2015), we achieve

91

Figure 10.2 – Samples from a model trained with denoising feature matching on the unlabeled
portion of the STL-10 dataset.

a higher Inception score using denoising feature matching, using denoiser with 10

hidden layers of 2,048 rectified linear units each. Both fall far short of the score

assigned to real data at this resolution; there is still plenty of room for improvement.

Samples are displayed in Figure 10.3.

Real data Radford et al? Ours

25.78 ± .47 8.83 ± 0.14 9.18 ± .13

Table 10.3 – Inception scores for models of ILSVRC 2012 at 32 ⇥ 32 resolution. ? computed
from samples drawn using author-provided model parameters and implementation.

10.6 Discussion and Future Directions

We have shown that training a denoising model on high-level discriminator ac-

tivations in a GAN, and using the denoiser to propose high-level feature targets for

the generator, can usefully improve GAN image models. Higher Inception scores,

as well as visual inspection, suggest that the procedure captures class-specific fea-

tures of the training data in a manner superior to the original adversarial objective

92

Figure 10.3 – Samples from our model of ILSVRC2012 at 32 ⇥ 32 resolution.

alone. That being said, we do not believe we are yet making optimal use of the

paradigm. The non-stationarity of the feature distribution on which the denoiser

is trained could be limiting the ability of the denoiser to obtain a good fit, and the

information backpropagated to the generator is always slightly stale. Steps to re-

duce this non-stationarity may be fruitful; we experimented briefly with historical

averaging as explored in Salimans et al. (2016) but did not observe a clear benefit

thus far. Structured denoisers, including denoisers that learn an energy function

for multiple hidden layers at once, could conceivably aid in obtaining a better fit.

Learning a partially stochastic transition operator rather than a deterministic de-

noiser could conceivably capture interesting multimodalities that are “blurred” by

a unimodal denoising function.

Our method is orthogonal and could conceivably be used in combination with

several other GAN extensions. For example, methods incorporating an encoder

component (Donahue et al., 2016; Dumoulin et al., 2016), various existing condi-

tional architectures (Mirza and Osindero, 2014; Denton et al., 2015; Reed et al.,

2016), or the semi-supervised variant employed in Salimans et al. (2016), could all

be trained with an additional denoising feature matching objective.

We have proposed a useful heuristic, but a better theoretical grounding regard-

ing how GANs are trained in practice is a necessary direction for future work,

93

including grounded criteria for assessing mode coverage and mass misassignment,

and principled criteria for assessing convergence or performing early stopping.

Acknowledgments

We thank Ian Goodfellow, Laurent Dinh, Yaroslav Ganin and Kyle Kastner for

helpful discussions. We thank Vincent Dumoulin and Ishmael Belghazi for making

available code and model parameters used in comparison to ALI, as well as Alec

Radford for making available the code and model parameters for his ImageNet

model. We would like to thank Antonia Creswell and Hiroyuki Yamazaki for point-

ing out an error in the initial version of this manuscript, and anonymous reviewers

for valuable feedback. We thank the University of Montreal and Compute Canada

for the computational resources used for this investigation, as well as the authors of

Theano (Al-Rfou et al., 2016), Blocks and Fuel (van Merriënboer et al., 2015). We

thank CIFAR, NSERC, Google, Samsung and Canada Research Chairs for funding.

94

11 Discussion

This thesis has touched on many aspects of the training and deployment of

feed-forward neural networks. We introduced maxout, a generalization of previous

piecewise-linear activations and the first example of a per-unit “learned activation

function”. We experimentally investigated the popular dropout procedure for regu-

larization and shed light on certain questions surrounding its e�cacy. We proposed

an e↵ective strategy for augmenting a trained neural network classifier to improve

its accuracy by adding capacity specifically designed to alleviate errors between

frequently confused classes. Finally, we devised a hybrid training criterion for gen-

erative adversarial networks which improves their ability, measured qualitatively

and quantitatively via the Inception score, to match the target distribution when

trained on diverse collections of images. It is notable that each of the contributions

addresses topics related to either overfitting or underfitting; issues surrounding

optimization of these networks, and in particular certain phenomena related to

generalization (Zhang et al., 2016), remain poorly understood in general, especially

with regard to the nascent body of literature surrounding adversarial networks.

Maxout has made a lasting mark on the deep learning literature, inspiring many

e↵orts at adaptive activation function design (Agostinelli et al., 2014; Clevert et al.,

2015; Jin et al., 2016), though ReLU and its variants persist as the most popular

choice among practitioners. Maxout remains a useful tool for augmenting the

capacity of one layer of a neural network without altering the representation size

fed to subsequent layers. In practice, little benefit has been observed for pool

sizes greater than 2 for convolutional layers, and pool sizes greater than 5 for fully

connected layers. More sophisticated strategies for combatting under-utilization of

this capacity, including replacing or augmenting the (extremely simple) competition

mechanism employed by maxout, may yet yield further improvements.

Dropout regularization continues to play an important role in applications of

neural networks. While dropout proved an important ingredient in the work of

Krizhevsky et al. (2012), which established convolutional neural networks as the

95

tool of choice in computer vision, it has fallen out of use in recent years, as tools such

as batch normalization (Io↵e and Szegedy, 2015) and improved architectures such

as residual networks (He et al., 2016) have improved generalization performance

with a decreased need for explicit regularization.

The networks discussed in chapter 7 represented one step in the direction of task-

adapted network architectures. While achieving their goal of improving fine-grained

classification of a highly specialized architecture at minimal additional overhead,

they did not leverage any form of conditional computation (Bengio et al., 2013).

Previous attempts at large-scale gated architectures had su↵ered from a“cold start”

problem, making it di�cult to make good decisions about which modules to apply

while simultaneously encouraging both an equitable distribution of responsibility

and pathway-specific specialization. Very recently, large, “hard” mixtures of ex-

perts (Jacobs et al., 1991) have been successfully trained, both for large scale image

classifiers (Gross et al., 2017) and as components in large, convolutional models for

text processing (Shazeer et al., 2017). Principles for e↵ectively training large con-

ditional computation models are an important research direction for scaling deep

learning towards general-purpose artificially intelligent agents.

Adversarial networks continue to be a growing area of research, but many fun-

damental questions remain unanswered. The single greatest challenge, in the opin-

ion of this author, is tractable, broadly applicable evaluation methods for implicit

generative models. The Inception score used in chapter 10, the only quantitative

measure on which published results existed at the time, is unfortunately ill suited

to detecting many kinds of pathologies: the entropy of the categorical distribu-

tion over classes is a poor proxy for assessing image quality (or resemblance to

the class predicted by the maximal output), as it is well known that deep neu-

ral network classifier can be made to respond confidently to images that are well

out of domain with respect to their training (Nguyen et al., 2015) and that even

where realistic images are concerned, the predicted class label can be influenced by

human-imperceptible perturbations (Szegedy et al., 2014; Goodfellow et al., 2014).

Importantly, the Inception score makes no direct comparison with the statistics

of held-out test data (or indeed, any real data at all, except very indirectly via the

classifier’s training data). The Fréchet Inception distance proposed in Heusel et al.

(2017) improves upon this somewhat by measuring the Fréchet between high-level

features of the Inception network extracted from real data and samples, but it is

96

unclear to what extent applying this measure to held out data could reliably detect

overfitting. To date, the only proposed method capable of detecting misallocation

of density or overfitting to the training set is the AIS procedure outlined in Wu

et al. (2017); in practice, this procedure requires considerable computational re-

sources, making it impractical for large test sets and high-dimensional generated

distributions. Methods which ease this evaluative burden, perhaps via principled

combination of adversarial learning with other inductive principles (Rosca et al.,

2017; Hu et al., 2017), could contribute greatly to the increased adoption and com-

modification of GAN-based methods.

97

Bibliography

Abdi, H. (2007). Bonferroni and Sidak corrections for multiple comparisons. Sage.

Ackley, D. H., G. E. Hinton, and T. J. Sejnowski (1985). A learning algorithm for

boltzmann machines. Cognitive science 9 (1), 147–169.

Agostinelli, F., M. Ho↵man, P. Sadowski, and P. Baldi (2014). Learning activation

functions to improve deep neural networks. arXiv preprint arXiv:1412.6830 .

Aizerman, M. A., E. M. Braverman, and L. I. Rozonoer (1964). Theoretical foun-

dations of the potential function method in pattern recognition learning. Au-

tomation and Remote Control 25, 821–837.

Al-Rfou, R., G. Alain, A. Almahairi, and et al. (2016). Theano: A python frame-

work for fast computation of mathematical expressions. CoRR abs/1605.02688.

Alain, G. and Y. Bengio (2014). What regularized auto-encoders learn from

the data-generating distribution. Journal of Machine Learning Research 15 (1),

3563–3593.

Arjovsky, M. and L. Bottou (2017). Towards principled methods for training gen-

erative adversarial networks. arXiv preprint arXiv:1701.04862 .

Arjovsky, M., S. Chintala, and L. Bottou (2017). Wasserstein gan. arXiv preprint

arXiv:1701.07875 .

Baldi, P. and K. Hornik (1989). Neural networks and principal component analysis:

Learning from examples without local minima. 2, 53–58.

Baldi, P. and P. J. Sadowski (2013). Understanding dropout. In Advances in Neural

Information Processing Systems 26, pp. 2814–2822.

98

Bastien, F., P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow, A. Bergeron,

N. Bouchard, and Y. Bengio (2012). Theano: new features and speed improve-

ments. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop.

Bengio, Y. (2009). Learning deep architectures for AI. 2 (1), 1–127.

Bengio, Y. (2013). Deep learning of representations: Looking forward. In Statistical

Language and Speech Processing, pp. 1–37. Springer.

Bengio, Y. and Y. LeCun (2007). Scaling learning algorithms towards AI. In

L. Bottou, O. Chapelle, D. DeCoste, and J. Weston (Eds.), Large Scale Kernel

Machines. MIT Press.

Bengio, Y., N. Léonard, and A. Courville (2013, August). Estimating or propa-

gating gradients through stochastic neurons for conditional computation. ArXiv

e-prints abs/1308.3432.

Bengio, Y., L. Yao, G. Alain, and P. Vincent (2013). Generalized denoising auto-

encoders as generative models. In C. J. C. Burges, L. Bottou, M. Welling,

Z. Ghahramani, and K. Q. Weinberger (Eds.), Advances in Neural Information

Processing Systems 26, pp. 899–907. Curran Associates, Inc.

Bergstra, J. and Y. Bengio (2012). Random search for hyper-parameter optimiza-

tion. J. Machine Learning Res. 13, 281–305.

Bergstra, J., O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins,

J. Turian, D. Warde-Farley, and Y. Bengio (2010, June). Theano: a CPU and

GPU math expression compiler. In Proceedings of the Python for Scientific Com-

puting Conference (SciPy). Oral Presentation.

Bishop, C. M. (1995). Training with noise is equivalent to Tikhonov regularization.

Neural Computation 7 (1), 108–116.

Bollacker, K., C. Evans, P. Paritosh, T. Sturge, and J. Taylor (2008). Freebase:

a collaboratively created graph database for structuring human knowledge. In

Proceedings of the 2008 ACM SIGMOD international conference on Management

of data, pp. 1247–1250. ACM.

99

Boser, B. E., I. M. Guyon, and V. N. Vapnik (1992). A training algorithm for

optimal margin classifiers. In COLT ’92: Proceedings of the fifth annual workshop

on Computational learning theory, New York, NY, USA, pp. 144–152. ACM.

Bourlard, H. and Y. Kamp (1988). Auto-association by multilayer perceptrons and

singular value decomposition. 59, 291–294.

Breiman, L. (1994). Bagging predictors. Machine Learning 24 (2), 123–140.

Breuleux, O., Y. Bengio, and P. Vincent (2011, August). Quickly generating rep-

resentative samples from an RBM-derived process. Neural Computation 23 (8),

2053–2073.

Buciluǎ, C., R. Caruana, and A. Niculescu-Mizil (2006). Model compression. In

Proceedings of the 12th ACM SIGKDD international conference on Knowledge

discovery and data mining, pp. 535–541. ACM.

Burt, P. J., Edward, and E. H. Adelson (1983). The laplacian pyramid as a compact

image code. IEEE Transactions on Communications 31, 532–540.

Cartwright, D. I. and M. J. Field (1978). A refinement of the arithmetic mean-

geometric mean inequality. Proceedings of the American Mathematical Soci-

ety 71 (1), pp. 36–38.

Chung, F. R. (1997). Spectral graph theory, Volume 92. American Mathematical

Soc.

Ciresan, D. C., U. Meier, L. M. Gambardella, and J. Schmidhuber (2010). Deep

big simple neural nets for handwritten digit recognition. Neural Computation 22,

1–14.

Clevert, D.-A., T. Unterthiner, and S. Hochreiter (2015). Fast and accurate

deep network learning by exponential linear units (elus). arXiv preprint

arXiv:1511.07289 .

Coates, A., H. Lee, and A. Y. Ng (2011). An analysis of single-layer networks

in unsupervised feature learning. In Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics (AISTATS 2011).

100

Cortes, C. and V. Vapnik (1995). Support vector networks. Machine Learning 20,

273–297.

Dean, J., G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, M. Ranzato,

A. Senior, P. Tucker, K. Yang, and A. Y. Ng (2012). Large scale distributed deep

networks. In NIPS’2012.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum-likelihood from

incomplete data via the EM algorithm. Journal of Royal Statistical Society B 39,

1–38.

Denton, E. L., S. Chintala, R. Fergus, et al. (2015). Deep generative image mod-

els using a laplacian pyramid of adversarial networks. In Advances in neural

information processing systems, pp. 1486–1494.

Dinh, L., J. Sohl-Dickstein, and S. Bengio (2016). Density estimation using real

nvp. arXiv preprint arXiv:1605.08803 .

Donahue, J., Y. Jia, O. Vinyals, J. Ho↵man, N. Zhang, E. Tzeng, and T. Dar-

rell (2014). Decaf: A deep convolutional activation feature for generic visual

recognition. In ICML, pp. 647–655.

Donahue, J., P. Krähenbühl, and T. Darrell (2016). Adversarial feature learning.

arXiv preprint arXiv:1605.09782 .

Dosovitskiy, A. and T. Brox (2016, June). Inverting visual representations with

convolutional networks. In The IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR).

Dumoulin, V., I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropietro,

and A. Courville (2016). Adversarially learned inference. arXiv preprint

arXiv:1606.00704 .

Dumoulin, V. and F. Visin (2016). A guide to convolution arithmetic for deep

learning. arXiv preprint arXiv:1603.07285 .

Edwards, H. and A. J. Storkey (2015). Censoring representations with an adversary.

CoRR abs/1511.05897.

101

Erhan, D., Y. Bengio, A. Courville, and P. Vincent (2009). Visualizing higher-layer

features of a deep network. University of Montreal 1341.

Ganin, Y. and V. Lempitsky (2015). Unsupervised domain adaptation by back-

propagation. In ICML’2015.

Germain, M., K. Gregor, I. Murray, and H. Larochelle (2015). Made: Masked

autoencoder for distribution estimation. arXiv preprint arXiv:1502.03509 .

Glorot, X. and Y. Bengio (2010, May). Understanding the di�culty of training deep

feedforward neural networks. In JMLR W&CP: Proceedings of the Thirteenth In-

ternational Conference on Artificial Intelligence and Statistics (AISTATS 2010),

Volume 9, pp. 249–256.

Glorot, X., A. Bordes, and Y. Bengio (2011, April). Deep sparse rectifier neural net-

works. In JMLR W&CP: Proceedings of the Fourteenth International Conference

on Artificial Intelligence and Statistics (AISTATS 2011).

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio (2014). Generative adversarial nets. In Z. Ghahra-

mani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.),

Advances in Neural Information Processing Systems 27, pp. 2672–2680. Curran

Associates, Inc.

Goodfellow, I. J. (2014). On distinguishability criteria for estimating generative

models. In International Conference on Learning Representations, Workshops

Track.

Goodfellow, I. J., Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet (2014). Multi-digit

number recognition from Street View imagery using deep convolutional neural

networks. In International Conference on Learning Representations.

Goodfellow, I. J., M. Mirza, A. Courville, and Y. Bengio (2013, December). Multi-

prediction deep Boltzmann machines. In Advances in Neural Information Pro-

cessing Systems 26 (NIPS’13). NIPS Foundation (http://books.nips.cc).

Goodfellow, I. J., J. Shlens, and C. Szegedy (2014). Explaining and harnessing

adversarial examples. CoRR abs/1412.6572.

102

Goodfellow, I. J., D. Warde-Farley, P. Lamblin, V. Dumoulin, M. Mirza, R. Pas-

canu, J. Bergstra, F. Bastien, and Y. Bengio (2013). Pylearn2: a machine learn-

ing research library. arXiv preprint arXiv:1308.4214 .

Goodfellow, I. J., D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio (2013).

Maxout networks. In S. Dasgupta and D. McAllester (Eds.), Proceedings of the

30th International Conference on Machine Learning (ICML’13), pp. 1319–1327.

ACM.

Gregor, K., I. Danihelka, A. Mnih, C. Blundell, and D. Wierstra (2014). Deep

autoregressive networks. In International Conference on Machine Learning

(ICML’2014).

Gretton, A., K. M. Borgwardt, M. Rasch, B. Schölkopf, and A. J. Smola (2006). A

kernel method for the two-sample-problem. In Advances in neural information

processing systems, pp. 513–520.

Gross, S., M. Ranzato, and A. Szlam (2017). Hard mixtures of experts for large

scale weakly supervised vision. arXiv preprint arXiv:1704.06363 .

Gulrajani, I., F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville (2017).

Improved training of wasserstein gans. arXiv preprint arXiv:1704.00028 .

Gutmann, M. and A. Hyvarinen (2010). Noise-contrastive estimation: A new esti-

mation principle for unnormalized statistical models.

Hahnloser, R. H. R. (1998). On the piecewise analysis of networks of linear threshold

neurons. Neural Networks 11 (4), 691–697.

Havaei, M., A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal,

P.-M. Jodoin, and H. Larochelle (2017). Brain tumor segmentation with deep

neural networks. Medical image analysis 35, 18–31.

He, K., X. Zhang, S. Ren, and J. Sun (2016). Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pat-

tern recognition, pp. 770–778.

Heusel, M., H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer, and S. Hochre-

iter (2017). Gans trained by a two time-scale update rule converge to a nash

equilibrium. arXiv preprint arXiv:1706.08500 .

103

Hinton, G., O. Vinyals, and J. Dean (2015). Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531 .

Hinton, G. E., S. Osindero, and Y. Teh (2006). A fast learning algorithm for deep

belief nets. Neural Computation 18, 1527–1554.

Hinton, G. E. and R. Salakhutdinov (2006, July). Reducing the dimensionality of

data with neural networks. Science 313 (5786), 504–507.

Hinton, G. E., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov

(2012). Improving neural networks by preventing co-adaptation of feature detec-

tors. Technical report, arXiv:1207.0580.

Hinton, G. E., O. Vinyals, and J. Dean (2014). Distilling the knowledge in a neural

network. In NIPS 2014 Deep Learning Workshop.

Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer feedforward networks

are universal approximators. 2, 359–366.

Hu, Z., Z. Yang, R. Salakhutdinov, and E. P. Xing (2017). On unifying deep

generative models. arXiv preprint arXiv:1706.00550 .

Hubel, D. H. and T. N. Wiesel (1959). Receptive fields of single neurons in the

cat’s striate cortex. Journal of Physiology 148, 574–591.

Hyvärinen, A. (2005). Estimation of non-normalized statistical models using score

matching. 6, 695–709.

Io↵e, S. and C. Szegedy (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 .

Jacobs, R. A., M. I. Jordan, S. J. Nowlan, and G. E. Hinton (1991). Adaptive

mixtures of local experts. Neural computation 3 (1), 79–87.

Jarrett, K., K. Kavukcuoglu, M. Ranzato, and Y. LeCun (2009). What is the best

multi-stage architecture for object recognition? In Proc. International Confer-

ence on Computer Vision (ICCV’09), pp. 2146–2153. IEEE.

Jin, X., C. Xu, J. Feng, Y. Wei, J. Xiong, and S. Yan (2016). Deep learning with

s-shaped rectified linear activation units.

104

Jolli↵e, I. T. (1986). Principal Component Analysis. New York: Springer-Verlag.

Kim, T. and Y. Bengio (2016). Deep directed generative models with energy-based

probability estimation. arXiv preprint arXiv:1606.03439 .

Kingma, D. and J. Ba (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980 .

Kingma, D. P. and M. Welling (2014). Auto-encoding variational bayes. In Pro-

ceedings of the International Conference on Learning Representations (ICLR).

Kodali, N., J. Abernethy, J. Hays, and Z. Kira (2017). How to train your dragan.

arXiv preprint arXiv:1705.07215 .

Krizhevsky, A. and G. Hinton (2009). Learning multiple layers of features from

tiny images. Technical report, University of Toronto.

Krizhevsky, A., I. Sutskever, and G. Hinton (2012). ImageNet classification with

deep convolutional neural networks. In Advances in Neural Information Process-

ing Systems 25 (NIPS’2012).

Kullback, S. and R. A. Leibler (1951). On information and su�ciency. Annals of

Mathematical Statistics 22, 49–86.

Larochelle, H. and I. Murray (2011). The Neural Autoregressive Distribution Es-

timator. In Proceedings of the Fourteenth International Conference on Artificial

Intelligence and Statistics (AISTATS’2011), Volume 15 of JMLR: W&CP.

Larsen, A. B. L., S. K. Sønderby, and O. Winther (2015). Autoencoding beyond

pixels using a learned similarity metric. CoRR abs/1512.09300.

Le, Q., M. Ranzato, R. Monga, M. Devin, G. Corrado, K. Chen, J. Dean, and A. Ng

(2012). Building high-level features using large scale unsupervised learning. In

ICML’2012.

LeCun, Y. (1989). Generalization and network design strategies. In Connectionism

in Perspective. Elsevier Publishers.

105

LeCun, Y., L. Bottou, Y. Bengio, and P. Ha↵ner (1998, November). Gradient-based

learning applied to document recognition. Proceedings of the IEEE 86 (11), 2278–

2324.

Lee, D.-H., S. Zhang, A. Fischer, and Y. Bengio (2015). Di↵erence target prop-

agation. In Joint European Conference on Machine Learning and Knowledge

Discovery in Databases, pp. 498–515. Springer.

Li, W., R. Zhao, T. Xiao, and X. Wang (2014). Deepreid: Deep filter pairing neural

network for person re-identification. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 152–159.

Liu, Z., P. Luo, X. Wang, and X. Tang (2015). Deep learning face attributes in the

wild. In Proceedings of International Conference on Computer Vision (ICCV).

Maas, A. L., A. Y. Hannun, and A. Y. Ng (2013). Rectifier nonlinearities improve

neural network acoustic models. In ICML Workshop on Deep Learning for Audio,

Speech, and Language Processing.

Makhzani, A., J. Shlens, N. Jaitly, and I. J. Goodfellow (2015). Adversarial au-

toencoders. CoRR abs/1511.05644.

Malinowski, M. and M. Fritz (2013). Learnable pooling regions for image classi-

fication. In International Conference on Learning Representations: Workshop

track.

Martens, J. (2010, June). Deep learning via Hessian-free optimization. pp. 735–742.

Mikolov, T., K. Chen, G. Corrado, and J. Dean (2013). E�cient estimation of

word representations in vector space. In International Conference on Learning

Representations: Workshops Track.

Mirza, M. and S. Osindero (2014). Conditional generative adversarial nets. arXiv

preprint arXiv:1411.1784 .

Mnih, A. and K. Gregor (2014). Neural variational inference and learning in belief

networks. In ICML’2014.

Nair, V. and G. E. Hinton (2010). Rectified linear units improve restricted Boltz-

mann machines. pp. 807–814.

106

Neal, R. M. (2001, April). Annealed importance sampling. Statistics and Comput-

ing 11 (2), 125–139.

Netzer, Y., T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng (2011). Reading

digits in natural images with unsupervised feature learning. Deep Learning and

Unsupervised Feature Learning Workshop, NIPS.

Ng, A. Y., M. I. Jordan, and Y. Weiss (2002). On spectral clustering: analysis and

an algorithm. Cambridge, MA. MIT Press.

Nguyen, A., J. Yosinski, and J. Clune (2015). Deep neural networks are easily

fooled: High confidence predictions for unrecognizable images. In 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 427–436.

IEEE.

Oord, A. v. d., N. Kalchbrenner, and K. Kavukcuoglu (2016). Pixel recurrent neural

networks. arXiv preprint arXiv:1601.06759 .

Opitz, D. and R. Maclin (1999). Popular ensemble methods: An empirical study.

Journal of Artificial Intelligence Research 11, 169–âĂŞ198.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plau-

sible Inference. Morgan Kaufmann.

Radford, A., L. Metz, and S. Chintala (2015). Unsupervised representation learn-

ing with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434 .

Raina, R., A. Madhavan, and A. Y. Ng (2009). Large-scale deep unsupervised

learning using graphics processors. New York, NY, USA, pp. 873–880.

Reed, S. E., Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee (2016).

Generative adversarial text to image synthesis. CoRR abs/1605.05396.

Rezende, D. J., S. Mohamed, and D. Wierstra (2014). Stochastic backpropagation

and approximate inference in deep generative models. In ICML’2014.

Rifai, S., Y. Dauphin, P. Vincent, Y. Bengio, and X. Muller (2011). The manifold

tangent classifier. In NIPS’2011. Student paper award.

107

Rosca, M., B. Lakshminarayanan, D. Warde-Farley, and S. Mohamed (2017). Vari-

ational approaches for auto-encoding generative adversarial networks. arXiv

preprint arXiv:1706.04987 .

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). Learning representa-

tions by back-propagating errors. Nature 323, 533–536.

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei (2014). Ima-

geNet Large Scale Visual Recognition Challenge.

Salakhutdinov, R. and G. Hinton (2009). Deep Boltzmann machines. In Proceedings

of the Twelfth International Conference on Artificial Intelligence and Statistics

(AISTATS 2009), Volume 8.

Salimans, T., I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen

(2016). Improved techniques for training gans. CoRR abs/1606.03498.

Salinas, E. and L. F. Abbott (1996, October). A model of multiplicative neural

responses in parietal cortex. Proc Natl Acad Sci U S A 93 (21), 11956–11961.

Saul, L. K. and M. I. Jordan (1996). Exploiting tractable substructures in in-

tractable networks. MIT Press, Cambridge, MA.

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning 5 (2),

197–227.

Schraudolph, N. N. (1998). Centering neural network gradient factors. In G. B.

Orr and K.-R. Muller (Eds.), Neural Networks: Tricks of the Trade, pp. 548–548.

Springer.

Schro↵, F., D. Kalenichenko, and J. Philbin (2015). Facenet: A unified embedding

for face recognition and clustering. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 815–823.

Sermanet, P., S. Chintala, and Y. LeCun (2012). Convolutional neural networks

applied to house numbers digit classification. In International Conference on

Pattern Recognition (ICPR 2012).

108

Sermanet, P., D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun (2014,

April). Overfeat: Integrated recognition, localization and detection using con-

volutional networks. In International Conference on Learning Representations

(ICLR2014). CBLS.

Shachter, R. D. (1998). Bayes-ball: The rational pastime (for determining irrele-

vance and requisite information in belief networks and influence diagrams). pp.

480–487.

Shazeer, N., A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean

(2017). Outrageously large neural networks: The sparsely-gated mixture-of-

experts layer. arXiv preprint arXiv:1701.06538 .

Smirnov, E. (2013). North atlantic right whale call detection with convolutional

neural networks.

Snoek, J., H. Larochelle, and R. P. Adams (2012). Practical bayesian optimization

of machine learning algorithms. In Neural Information Processing Systems.

Sønderby, C. K., J. Caballero, L. Theis, W. Shi, and F. Huszár (2016). Amortised

map inference for image super-resolution. arXiv preprint arXiv:1610.04490 .

Springenberg, J. T. (2016). Unsupervised and semi-supervised learning with cate-

gorical generative adversarial networks. In International Conference on Learning

Representations.

Springenberg, J. T., A. Dosovitskiy, T. Brox, and M. Riedmiller (2015). Striving

for simplicity: The all convolutional net. In ICLR.

Srebro, N. and A. Shraibman (2005). Rank, trace-norm and max-norm. In Proceed-

ings of the 18th Annual Conference on Learning Theory, pp. 545–560. Springer-

Verlag.

Srivastava, N. (2013). Improving neural networks with dropout. Master’s thesis,

U. Toronto.

Sutskever, I., R. Józefowicz, K. Gregor, D. J. Rezende, T. Lillicrap, and O. Vinyals

(2015). Towards principled unsupervised learning. CoRR abs/1511.06440.

109

Sutskever, I., J. Martens, G. Dahl, and G. Hinton (2013). On the importance of

initialization and momentum in deep learning. In ICML.

Swietojanski, P., J. Li, and J.-T. Huang (2014). Investigation of maxout networks

for speech recognition. In Acoustics, Speech and Signal Processing (ICASSP),

2014 IEEE International Conference on, pp. 7649–7653. IEEE.

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich (2015). Going deeper with convolutions. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.

1–9.

Szegedy, C., V. Vanhoucke, S. Io↵e, J. Shlens, and Z. Wojna (2015, December).

Rethinking the Inception Architecture for Computer Vision. ArXiv e-prints .

Szegedy, C., W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and

R. Fergus (2014). Intriguing properties of neural networks. ICLR abs/1312.6199.

Theis, L., A. v. d. Oord, and M. Bethge (2015). A note on the evaluation of

generative models. arXiv preprint arXiv:1511.01844 .

Valiant, L. G. (1984). A theory of the learnable. Communications of the

ACM 27 (11), 1134–1142.

van Merriënboer, B., D. Bahdanau, V. Dumoulin, D. Serdyuk, D. Warde-Farley,

J. Chorowski, and Y. Bengio (2015). Blocks and fuel: Frameworks for deep

learning. CoRR abs/1506.00619.

Variani, E., X. Lei, E. McDermott, I. L. Moreno, and J. Gonzalez-Dominguez

(2014). Deep neural networks for small footprint text-dependent speaker ver-

ification. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE

International Conference on, pp. 4052–4056. IEEE.

Vincent, P. (2011, July). A connection between score matching and denoising

autoencoders. Neural Computation 23 (7), 1661–1674.

Vincent, P., H. Larochelle, Y. Bengio, and P.-A. Manzagol (2008). Extracting and

composing robust features with denoising autoencoders. In W. W. Cohen, A. Mc-

Callum, and S. T. Roweis (Eds.), Proceedings of the Twenty-fifth International

Conference on Machine Learning (ICML’08), pp. 1096–1103. ACM.

110

Vincent, P., H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol (2010, De-

cember). Stacked denoising autoencoders: Learning useful representations in

a deep network with a local denoising criterion. Journal of Machine Learning

Research 11, 3371–3408.

Wager, S., S. Wang, and P. Liang (2013). Dropout training as adaptive regulariza-

tion. In Advances in Neural Information Processing Systems 26, pp. 351–359.

Wan, L., M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus (2013). Regularization of

neural networks using dropconnect. In ICML’2013.

Wang, S. (2004). General constructive representations for continuous piecewise-

linear functions. IEEE Trans. Circuits Systems 51 (9), 1889–1896.

Wang, S. and C. Manning (2013). Fast dropout training. In ICML’2013.

Warde-Farley, D. and Y. Bengio (2017). Improving generative adversarial networks

with denoising feature matching. In ICLR 2017.

Warde-Farley, D. and I. Goodfellow (2016). Adversarial perturbations of deep neu-

ral networks. In T. Hazan, G. Papandreou, and D. Tarlow (Eds.), Perturbation,

Optimization and Statistics, Chapter 11, pp. 311–339. Cambridge: MIT Press.

Warde-Farley, D., I. Goodfellow, A. Courville, and Y. Bengio (2014). An empirical

analysis of dropout in piecewise linear networks. In ICLR 2014.

Warde-Farley, D., A. Rabinovich, and D. Anguelov (2015). Self-informed neural

network structure learning. In ICLR 2015, Workshop Track.

Wilcoxon, F. (1945, December). ”individual comparisons by ranking methods. Bio-

metrics Bulletin 1 (6), 80–83.

Williams, R. J. (1992). Simple statistical gradient-following algorithms connection-

ist reinforcement learning. Machine Learning 8, 229–256.

Wu, Y., Y. Burda, R. Salakhutdinov, and R. Grosse (2017). On the quantitative

analysis of decoder-based generative models. In International Conference on

Learning Representatios.

111

Yosinski, J., J. Clune, Y. Bengio, and H. Lipson (2014). How transferable are

features in deep neural networks? In Advances in neural information processing

systems, pp. 3320–3328.

Yosinski, J., J. Clune, A. Nguyen, T. Fuchs, and H. Lipson (2015). Understanding

neural networks through deep visualization. arXiv preprint arXiv:1506.06579 .

Yu, D. and L. Deng (2011). Deep convex net: A scalable architecture for speech

pattern classification. In INTERSPEECH, pp. 2285–2288.

Yu, F., Y. Zhang, S. Song, A. Se↵, and J. Xiao (2015). LSUN: construction

of a large-scale image dataset using deep learning with humans in the loop.

CoRR abs/1506.03365.

Zeiler, M. D. and R. Fergus (2013). Stochastic pooling for regularization of deep

convolutional neural networks. In International Conference on Learning Repre-

sentations.

Zeiler, M. D., M. Ranzato, R. Monga, M. Mao, K. Yang, Q. Le, P. Nguyen, A. Se-

nior, V. Vanhoucke, J. Dean, and G. E. Hinton (2013). On rectified linear units

for speech processing. In ICASSP 2013.

Zhang, C., S. Bengio, M. Hardt, B. Recht, and O. Vinyals (2016). Un-

derstanding deep learning requires rethinking generalization. arXiv preprint

arXiv:1611.03530 .

Zhang, X., J. Trmal, D. Povey, and S. Khudanpur (2014). Improving deep neural

network acoustic models using generalized maxout networks. In Acoustics, Speech

and Signal Processing (ICASSP), 2014 IEEE International Conference on, pp.

215–219. IEEE.

Zhao, J., M. Mathieu, and Y. LeCun (2016). Energy-based generative adversarial

network. arXiv preprint arXiv:1609.03126 .

Zoph, B., V. Vasudevan, J. Shlens, and Q. V. Le (2017). Learning transferable

architectures for scalable image recognition. arXiv preprint arXiv:1707.07012 .

112

