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Résumé 

Les propriétés des composites dentaires ont été nettement améliorées depuis leur 

invention, mais la compréhension de la physique qui guide leurs propriétés est toujours obscure. 

L’objectif de cette thèse est de découvrir les tendances et relations qui régissent l’effet des agents 

de remplissage sur les propriétés du composite qui en résulte.  

La photocalorimétrie (pDSC) a déjà été utilisée pour mesurer le degré de conversion des 

résines dentaires, mais les paramètres de mesure n’ont jamais été adéquatement définis. En 

utilisant des variations systématiques dans la séquence d’analyse, la température, la masse 

d’échantillon, l’intensité lumineuse ou la composition atmosphérique, un protocole optimisé a 

été établi pour obtenir des résultats fiables et reproductibles. 

Une série de composites dentaires a ensuite été formulée avec de la silice sphérique à 

basse dispersité de tailles gradées de 75 à 1000 nanomètres à différents taux de chargement. La 

viscosité de ces composites avant la polymérisation a été mesurée et utilisée pour améliorer le 

modèle classique Krieger-Dougherty de viscosité des suspensions de façon à ce qu’il inclue 

l’aire de surface des particules en plus du taux de chargement. Ce model étendu (EKD) a aussi 

été utilisé pour calculer la conversion du composite. C’est le premier modèle unifié qui permet 

de calculer la viscosité et la conversion des composites en utilisant seulement la taille des agents 

de remplissage et la composition de la résine. 

Le chargement maximal et les propriétés mécaniques de ces mêmes composites ont aussi 

été étudiées. Bien que le chargement maximal fonctionnel varie selon la taille des particules, la 

force flexurale ultime des composites dépend seulement du taux de chargement des particules et 

non de leur taille. D’autres tests avec ces composites ont démontré que la taille des particules est 

directement liée à la transparence des matériaux, ainsi l’opacité augmente avec la taille des 

particules. 

Cet œuvre avance les limites de la compréhension des matériaux dentaires. Le nouveau 

protocole de pDSC permet des mesures plus fiables de conversion et le model EKD nous permet 

de prédire plus précisément les propriétés des composites par leurs composantes seules. Les 

règles établies dans cette thèse peuvent donc être utilisées pour concevoir des composites avec 

les propriétés désirées de viscosité avant polymérisation, de conversion, de propriétés 

mécaniques et de transparence. 
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Abstract 

The properties of dental resin composites have improved significantly since their 

inception, but the fundamental physics behind their properties remain to be explained or modeled 

comprehensively. The aim of this thesis is therefore to study the fundamental trends and 

relationships between the filler particles constituting these materials and the resulting properties.  

Photocalorimetry (pDSC) methods have been used previously to measure the degree of 

conversion in dental resins, but the measurement parameters have never been adequately 

assessed. Through systematic variations of the analysis sequence, sample mass, temperature, 

light intensity, and atmospheric composition, an optimized protocol was established to yield 

reliable and reproducible results. 

A series of dental composites was then formulated with spherical silica particles of 

graded sizes from 75 to 1000 nanometers at different loading levels. The viscosity of these 

composites before polymerization was measured and used to expand the classic Krieger-

Dougherty suspension viscosity model to account for filler surface area in addition to filler 

loading. This extended model (EKD) was also used to model composite conversion, resulting in 

the first unified model of composite viscosity and conversion using only filler size and resin 

composition.  

The maximum loading and post-cure mechanical properties of these same composites 

were also examined. Although the maximum functional filler loading varied according to the 

filler size, the ultimate flexural strength of the materials depended only on the filler loading. 

Further tests with these composites showed that filler size was directly responsible for 

transparency of the materials, with opacity increasing as a function of filler size. 

This work pushes the boundaries of understanding in dental composites. The newly 

established protocol for pDSC measurements yields more reliable conversion data, and the EKD 

model allows for more accurate predictions of dental composite properties directly from their 

component parts. The guidelines established here can now be used to design new composites 

with the desired properties of viscosity, conversion, mechanical strength, and transparency. 

Keywords: photocalorimetry, pDSC technique, viscosity, loading, spherical silica, surface area, 

transparency, formulations, guidance, technical understanding. 
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Foreword 

Most of my academic career thus far has been a transition from one philosophical 

extreme of science to another, going from fully fundamental research in membrane protein 

topology to highly applied research in dental composites. Part of my initial attraction to material 

chemistry was that although it remains research in chemistry - the science of matter - it was 

decidedly applicable and could directly be used to make new products for any purpose. Truly, 

one need only look around the house to see all the advances in the last century that have allowed 

plastics to become omnipresent. Even previously domain specific words such as carbon fiber and 

polypropylene have become part of the mainstream language.  

 Many a chemistry thesis has lingered on a library shelf, unread due to its complexity and 

lack of accessibility to the general public. However, a large majority of North Americans have 

had an experience with dental fillings, having lived the moment of bright blue illumination while 

dental professionals tinker in their mouths. For this reason, dental composites are a topic that is 

accessible to everyone. Beyond their direct experience with these materials, their accessibility 

comes from their simplicity: a liquid resin with some solid particles in it; a concept that anyone 

can grasp. This thesis strives to explain how such a simple mix results in the complex properties 

that are observed and exploited for the treatment of cavities. 

Whether you are a seasoned chemist or simply someone with an interest in what dentists 

are putting into your teeth, I hope that this thesis will give you an idea of the state of the art in 

dental resin composites and the current understanding of their composition and function. 

 



 

Chapter 1 - Introduction 

Dental caries are a world-wide health problem. A Health Canada survey from 2007-

2009 revealed that 95% of Canadians adults have a history of cavities (1), totalling 12.5 

B$ in expenses in 2013 (2). These problems have been a concern for people for a very long 

time. While tooth decay was rare in pre-agricultural society, the development of farming, 

circa 10,000 BCE, led to an increase in the frequency of decay in teeth to upwards of 10% of 

the population (3). Dentistry evolved soon after, with evidence of dental drilling as far back 

as 12000 BCE (4-6). Even more intriguingly, a 2012 study (7) discovered evidence that even 

as far back as 6500 BCE, honeybee wax was used as a dental filling. Moving forward in 

time, there is anecdotal evidence indicating that dental amalgam was used as early as 618 CE 

in the Tang Dynasty (8-9), using alloys of tin and silver. However, only by the 16th or 19th 

century did the more modern mercury-containing version of dental amalgams appear, 

alongside other metals like tin, gold, and even lead and thorium. 

1.1  Dental Restorations 

Dental restorations today have developed significantly since their infancy in the 

Neolithic period, and encompass a wide range of materials including metals, polymers, 

ceramics, and composites. The materials used for these restorations are separated into 

indirect and direct restorations.  

Indirect restorations include inlays or onlays, crowns, bridges, and veneers. These 

restorations are fabricated in a dental laboratory, and then are cemented or otherwise 

permanently bonded to the teeth to restore appearance or function. Recent advances in 

computer aided design and computer aided manufacturing (CAD-CAM) has allowed many of 

these traditionally slow-process restorations to become more convenient, if more expensive 

(10-11).  

1.2  Direct Dental Restorative Materials 

Direct restorations consist of materials that start out as soft and pliable substances that 

can be shaped as desired or used to fill gaps, and are subsequently hardened to their final 

properties. Several types of materials exist within this category, the most prominent of which 

are metal alloys, glass ionomer cements, and resin composites. 
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1.2.1  Dental Metal Alloys 

Historically, the material of choice for this type of restoration has been amalgam. 

This mercury alloy consists of a 4:6 mix of mercury and other metals, a mix of silver, tin, 

zinc, and copper (12). These come in a capsule in separate phases that are mixed to obtain a 

paste that hardens over 2.5-4.5 minutes. Amalgam restorations have a very long history of 

use, as mentioned previously, and their performance has also historically been very good, 

with a mean survival time of 11.4 years (13).  

Amalgams are used for occlusal and proximal restorations, including the occlusal 

surfaces (the tooth’s mastication surface), where the forces are the strongest (14). The main 

reason for these particular clinical indications are that amalgam restorations do not bind to 

the tooth surface; all their retention is mechanical. The main drawbacks associated with 

amalgam fillings are their poor aesthetic quality due to the metallic finish of the material, in 

addition to the darker finish that results from the oxidation of the amalgam. Furthermore, 

there have been recent health concerns about the presence of mercury in these products, 

though most authorities in dental materials maintain that these materials are safe and release 

negligible amounts of mercury (15-16). 

1.2.2  Glass Ionomeric Restoratives 

Glass ionomer cements are composed of separate fluoroaluminosilicate glass particles 

and water soluble polymers or copolymers of carboxylic acids. The setting reaction that 

occurs upon mixing these two components involves dissolution and then coordination of the 

glass particles with the acidic polymers, resulting in a highly cross-linked network (Figure 

1.1). This setting reaction advances sufficiently in 4-6 minutes for stiffness; however, it takes 

approximately 24 hours for it to be complete. In order to improve their mechanical properties 

and shorten the setting time, ionomers can be combined with methacrylate resins for a dual 

cure free radical/coordination setting mechanism. 

Due to their calcium-coordination properties, these materials exhibit strong adhesion 

to tooth tissue, and therefore do not require additional adhesive preparation; they are 

indicated for use as cements and luting agents. Furthermore, the fluoride release in the setting 

reaction is very useful for restorations in high carie-risk areas. The biggest drawback of these 

materials, however, is that their mechanical properties are not sufficient for high stress 

restoration areas, such as those where amalgam and resin composites can be used. These 
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materials are therefore mostly used for side restorations and for restoring primary (children’s) 

teeth. 

 

  

Figure 1.1 - Setting reaction for glass ionomers from (17). 

1.3  Dental Resin Composites 

The main alternative to dental amalgam for high stress restorations comes in the form 

of dental resin composites. These materials are sometimes called “white fillings”, and are 

often confused with ceramics (which are an entirely other class of fully inorganic materials). 

These composites are made from a mix of inorganic particles (fillers) and a resin matrix that 

can be polymerized once in place. This class of dental materials was initially developed in 

the 1960s by Raphael Bowen, using vinyl-modified vitreous silica particles and a resin 

composed of bisphenol A glycerolate dimethacrylate (Bis-GMA, Figure 1.2), methyl 

methacrylate, and tetraethylene glycol dimethacrylate, with benzoyl peroxide and 4,N,N-

trimethylaniline as radical initiator and co-initiator, respectively (18). These materials were 

separated into powder and liquid, with the initiation starting upon mixing of the two. 

Despite the advancements, the general formulation for these materials has remained 

similar throughout their development: they are composed of a mix of resin monomers, 
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including initiators and co-initiators, and surface modified filler particles. Though some 

composites still exist at a two-part mix for self-curing (thermal curing) materials, most of 

them now use blue light-initiated curing reactions, where no mixing is required. 

1.3.1  Common Resin Monomers 

Most of the resin monomers that are in use today remain similar to the original Bis-

GMA and tetraethylene glycol dimethacrylate monomers; the two most frequently used ones 

today being Bis-GMA and triethylene glycol dimethacrylate (TEGDMA, Figure 1.2). Bis-

GMA-based resins produce good mechanical and polymerization performance, but due to the 

very high inherent viscosity of Bis-GMA, it must be diluted with a more liquid monomer, 

hence the use of TEGDMA. To remedy the high viscosity of Bis-GMA, many derivatives 

have been developed, mainly modifying the glycidyl hydroxyl group to dramatically reduce 

the resin viscosity (19-25).  

 

 

Figure 1.2 – Monomers commonly used for dental composites. Bisphenol A glycerolate 

dimethacrylate (Bis-GMA) is often diluted with triethylene glycol dimethacrylate 

(TEGDMA). Bis-GMA is is often replaced with diurethane dimethacrylate (UDMA) due to 

its high viscosity. 

Another strategy to circumvent the viscosity problem of Bis-GMA was the 

development of a class of urethane methacrylates (UDMA, Figure 1.2). These compounds 

bare a mostly linear aliphatic chain, including some carbamate bonds, hence the ‘urethane’ 
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nomenclature. These compounds exhibit lower viscosity than Bis-GMA, though higher than 

that of TEGDMA, resulting in properties intermediate between the two.  

1.3.2  State of the Art in Resin Monomers 

While the majority of resins that are being used still resemble Bis-GMA and 

TEGDMA, there has been extensive work on developing alternatives to these compounds, 

due to the high shrinkage of methacrylate monomers (26-27) and toxicity of Bis-GMA and 

TEGDMA resins (28-30). Some of the more radically different monomers include a 

‘silorane’ class of cyclic monomers (Figure 1.3A) that were meant to revolutionize the dental 

industry, but ultimately fell short in their mission due to lack of market adoption (31). 

Another class of materials that has emerged are the natural product-based resins, using 

isosorbides (Figure 1.3B)(32-33), or even bile acids (Figure 1.3C)(34-36); these products 

showed promising properties for sustainable and lower toxicity monomers. Aside from these, 

there have not been any true leaps in the advancement of these resins; this led the US 

National Institute of Health call for proposals with a 2.8 M$ grant for new longer-lasting 

dental materials in 2013, which was awarded to several groups that have made significant 

progress in this area (37).  

Most of the work directed at increasing the lifetime of these materials seeks to move 

away from methacrylate chemistry, and their water-sensitive ester bonds. In turn, several new 

types of chemistries are being explored: thiol-ene radical reactions (38-42); base-catalyzed 

thiol-vinyl Michael-addition reactions (43-45); alkyne-azide cycloaddition with copper 

catalysis; epoxide-acrylate interpenetrating networks (46-48); and higher stability 

methacrylamide monomers (49). Thiol-ene radical polymerization monomers (Figure 1.4A) 

have shown some very promising results, with similar mechanical properties to traditional 

methacrylate monomers (42), albeit with slower polymerization kinetics (41). Photobase-

catalyzed thiol alkene Michael addition (Figure 1.4B) served as an alternative to radical thiol 

reactions, but the kinetics are even slower than the former (44, 50). Epoxide-acrylate 

interpenetrating networks (Figure 1.4C) show that they can achieve properties that are 

similar, although their performance is ultimately inferior to the current dental material 

technologies. Finally, the use of acrylamides has been studied as methacrylate resins cross-

linkers for their theoretically longer life span (due to the increased hydrolytic stability). 

These studies have shown that they do not significantly compromise composite strength, 



6 

 

however showed slower kinetics (49). These new resin chemistries show promise for more 

resilient resins in the future, but presently are still behind in terms of performance relative to 

the traditional composites. 

 

 

Figure 1.3 - Experimental Monomers A) 3M's silorane resins; B) Isosorbide dimethacrylate, 

sugar-based monomer; and C) ethylene glycol cholate tetramethacrylate, based on bile acids. 

There have also been monomer developments in the use of stress-relaxing monomers, 

where a reversible addition-fragmentation chain transfer (RAFT) capability is included in the 

monomer to relieve stresses over time (51). These are mainly designed to reduce shrinkage 

stress that is caused by polymerization contraction of these materials. This type of monomer 

is currently used by 3M’s Filtek Bulk Fill restoratives that are currently available on the 

market, but are still being actively studied and optimized in the literature (43, 51-53). 

Finally, Antonucci et al previously investigated the use of quaternary ammonium 

monomers as antibacterial agents that had promising results, including increased conversion 

with the charged monomers (54). More recent work at 3M suggested that ionic liquid 

methacrylate monomers are capable of reducing the oxygen inhibition layer that forms on the 

surface of methacrylate polymerization reactions (55), presumably due to the low gas 

solubility in these materials. Further work including such monomers may become more 

commonplace if their properties turn out to be useful. 
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Figure 1.4 - Alternate chemistries used for new dental composites: A) Thiol-ene radical 

reactions, B) Thiol-Michael addition reactions, C) epoxide-acrylate interpenetrating networks 

with dual reaction chemistry. 

1.3.3  Filler Particles 

The inorganic filler particles that are used in dental resin composites are typically 

silicates, which range from simple silicon dioxide to alkaline silicates (e.g. barium glass) and 

blends with other oxides (e.g. aluminium oxide or zirconium dioxide). There have been many 

variations around the chemical compositions of these fillers, but most of the advancements in 

filler technologies have revolved around particle size (31) and morphology (56). 

Despite the large amount of literature examining the commercial materials, due to the 

large number of possible filler variations in composition, morphology, size, and size 

distribution, there is still a gap in the understanding of the direct effect of these variables on 

the final properties of these materials. Wang et al (57) and Habib et al  (Chapter 5) have been 

pushing the fundamental understanding of these material effects through theoretical and 

systematic experimental studies. Through theoretical understanding of filler packing (58), 

and empirical understanding of the resulting mechanical properties of these highly loaded 

composite materials (59), the existing particles can be used to obtain superior mechanical and 

optical properties. 



8 

 

In an effort to obtain properties similar to both resin and fillers, Stansbury and others 

have been working on fillers termed ‘nanogels’. These particles are pre-polymers that are 

synthesized by solution synthesis, and are then included into the composite mix along with 

resin and traditional filler particles (60-66). Composites formulated with these nanogels 

showed similar mechanical properties to normal composites, but exhibited up to 23% 

decrease in volumetric shrinkage (60). This improvement suggests that such materials would 

have a much lower failure rate due to marginal leakage (59). 

1.3.4  Shortcomings of Dental Resin Composites 

While these materials are the most used direct dental restoratives in North America, 

they still suffer from several shortcomings. The main pitfalls of these materials are their 

polymerization shrinkage, their fracture toughness, their pre-polymerization viscosity, and 

their biocompatibility. 

Though it has improved significantly over time, the polymerization shrinkage of the 

materials remains its greatest flaw. This contraction can cause marginal separation and 

leakage, and ultimately the failure of the restoration, either due to detachment or to secondary 

caries. 

The low fracture toughness of dental composites can amplify defects in the 

restorations, such that small damage can perpetuate and ultimately cause the failure of the 

material. The nature of the surrounding dental hard tissue requires materials with very high 

moduli; such materials are then very brittle, and prone to fracture. Therefore, a challenge 

remains to produce these very stiff materials, while increasing their toughness to reduce their 

tendency to crack. 

The mechanical properties of the composites are closely related to their filler loading. 

Their loading, however, is limited by the viscosity of the material before polymerization. 

Therefore, by finding ways to decrease the viscosity of the pastes before polymerization, a 

higher loading could be achieved, leading to superior mechanical performance. 

The biocompatibility of the composites has historically not been a significant 

problem, however, several studies examining the most common resins have shown that these 

have pronounced cytotoxicity effects (28-30). In turn, several natural product-based 

alternative resin monomers have been proposed, but as of yet, to our knowledge, none of 

these has been used commercially. 
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1.4  Objectives of this Work 

These novel resins with alternate chemistries (1.3.2) are being designed to address the 

problems of shrinkage, toxicity, and stability in dental composites to bring these materials to 

the next level of performance. Both the resins and fillers are designed to increase the 

material’s fracture toughness, minimize its shrinkage, increase its durability, and improve its 

biocompatibility. Since composites are heterogeneous blends though, their properties emerge 

from not only the component parts, but also from the interactions and synergy between them. 

However, the number of possible formulations is virtually unlimited, and so a fundamental 

understanding is necessary to narrow the parameter space to optimize them. Despite the large 

body of research documenting the properties of most of the commercially available 

composites and the effect of formulation changes in experimental composites, there has not 

been a consensus as to the relationships underlying these properties and processes. Therefore, 

most of the work in the field thus far lacks models with sufficient predictive power to have 

any real usefulness in designing better composites. 

The main objective of this thesis was to systematically assess different formulations 

in order to understand the factors contributing to the properties of the composite pastes and 

polymerized composite materials. To this end, it was necessary to develop a more precise 

characterization method for composite conversion. This method and many more were then 

used to evaluate the influence of filler particle size on the initial and final properties of the 

dental resin composites. 

1.5  Scope and Structure of the Present Work 

This thesis consists of six chapters including an introduction and a conclusion. All of 

the work presented here was performed by the author of the thesis under the supervision of 

professor Julian X.X. Zhu. 

Chapter 2 is a review on the fillers that have been explored in the use of dental resin 

composites, both experimental and commercial. Existing fillers types were reviewed and the 

properties of the resulting composites are described, both in the context of dental composites 

and in the broader context of industrial composite blends. (Eric Habib, Ruili Wang, Yazi 

Wang, Meifang Zhu, and X. X. Zhu, Inorganic Fillers for Dental Resin Composites: Present 

and Future, ACS Biomaterials Science & Engineering 2016, 2 (1), 1-11. The sections on 
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particle clusters and HAP were written by Ruili Wang and Yazi Wang, respectively, the rest 

was written by Eric Habib, manuscript revision was done by X.X. Zhu and Meifang Zhu.) 

Chapter 3 describes the optimization of a photocalorimetric method for the 

measurement of photopolymerization reactions. Variations in mass, light intensity, 

temperature, protocol, and nitrogen purge time affected the polymerization kinetics, 

temperature, as well as the overall conversion. This work was accepted as a research article 

on December 1, 2017 (Eric Habib, X.X. Zhu, Photo-calorimetry Method Optimization for the 

Study of Light-initiated Radical Polymerization of Dental Resins, Polymer. The experimental 

design, all the experimental work and writing was done by Eric Habib, manuscript revision 

was done by X.X. Zhu.) 

Chapter 4 explores the rheological behaviour of unpolymerized polymer pastes and 

their degree of conversion using composites with spherical silica fillers of graded sizes. The 

well-established Krieger-Dougherty model for composite viscosity was extended to account 

for the effect of filler surface area to accurately model paste viscosity. The final conversion 

of the materials was linearly related to the logarithm of viscosity and thus the filler surface 

area, allowing accurate modeling of both composite viscosity and conversion with different 

loading levels and filler sizes. This work was submitted for publication on October 11, 2017 

(Eric Habib, Ruili Wang, X.X. Zhu, Correlation of Resin Viscosity and Monomer 

Conversion to Filler Particle Size in Dental Composites, Dental Materials. Experimental 

design and performance as well as writing were done by Eric Habib, Ruili Wang provided 

some samples for testing and manuscript revision, revision was also done by X.X. Zhu). 

Chapter 5 describes experimental work that explores the link between the size and 

loading of the filler particles, and the mechanical properties and transparency properties of 

the resulting composites. The results show that the size of the filler particles has little 

influence on the mechanical properties of the resulting composites, however, the loading is 

limited by the composites’ increasing viscosity. Finally, smaller particles result in a higher 

transparency of composites. This work has been published as a research article (Eric Habib, 

Ruili Wang, X.X. Zhu, Monodisperse silica-filled composite restoratives mechanical and 

light transmission properties, Dental Materials, 33 (3), 2017, Pages 280-287. Experimental 

design and performance as well as writing were done by Eric Habib, Ruili Wang provided 

some samples for testing and manuscript revision, revision was also done by X.X. Zhu). 
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Chapter 6 is an overall summary of the work in this thesis and presents further work 

that could be performed in the same vein. 
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Chapter 2 -  Inorganic Fillers for Dental Resin Composites - 

Present and Future* 

Abstract 

Dental resins represent an important family of biomaterials that have been evolving in 

response to the needs in biocompatibility and mechanical properties. They are composite 

materials consisting of mostly inorganic fillers and additives bound together with a polymer 

matrix. A large number of fillers in a variety of forms (spheroidal, fibrous, porous, etc.) along 

with other additives have been studied to enhance the performance of the composites. Silane 

derivatives are attached as coupling agents to the fillers to improve their interfacial 

properties. A review of the literature on dental composite fillers seems to suggest that each of 

the fillers tested presents its own strengths and weaknesses, and often combinations of these 

yield resin composites with the desired balance of properties. Additives such as nanotubes, 

whiskers, fibers, and nanoclusters have been shown to enhance the properties of these hybrid 

materials, and their use in small fractions may enhance the overall performance of the dental 

resin materials. 
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2.1  Introduction 

Dental resin-based composites (RBCs) for both direct and indirect dental restorations 

have been in use for the last 50 years. Their advantageous aesthetic and biocompatibility 

properties have allowed them to gain prevalence, and gradually replace the mercury-

containing dental amalgams that had previously been the standard of care for this type of 

restoration. While the toxicity of amalgam is still a topic of debate (1-5), many countries are 

reducing the use of mercury or even banning mercury-containing products outright (6-7), and 

so dental RBCs remain the main focus of current dental material research. 

Dental RBCs are a mix of two major components: the resin matrix, which contains 

the monomers, photopolymerization initiators, accelerators, inhibitors, and tint compounds; 

and the inorganic filler particles that confer most of the mechanical properties observed in the 

final material in addition to the optical and radiopacity properties required for the composite. 

To enhance the binding of the filler particles, silane derivatives are covalently attached onto 

the inorganic fillers as coupling agents.  

The monomers that have been used most frequently for this type of dental restorative 

have been bisphenol A glycerolate dimethacrylate (BisGMA), triethylene glycol 

dimethacrylate (TEGDMA), and urethane dimethacrylate (UDMA). Many derivatives of 

these monomers have been developed to improve upon specific properties (8-10). Several 

new classes of monomers are being explored to replace the bisphenol A-containing BisGMA, 

among which are oxiranes (11-13), bile acid derivatives (14-15), dendrimers (16-17), 

isosorbides (18-19), and more (20-22). In addition to these methacrylate monomers, alternate 

polymerization chemistries have been proposed, and in some cases commercialized (23-24). 

More thorough reviews concerning the resin monomers can be found in the literature (25-27). 

While the commercially-used monomers have remained largely unchanged, the most 

significant changes in dental RBCs have been in the type, size, and distribution of the 

inorganic fillers. The effects of size, shape, and size distribution of different fillers have been 

investigated quite thoroughly, such that spherical particles in multimodal size distributions 

generally showed superior mechanical properties (28-39). This review will instead focus on 

the chemical composition of fillers in dental RBCs and how they affect the final RBC 

material. Many articles have covered the clinical performance of these composite restoratives 
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(40-41); this review focuses mainly on their material properties which are essential to 

determine their performance over time. 

This review first describes the main filler types as classified by their chemical 

composition, followed by a section on filler additives, which are used in small fractions, 

including the surface silanization agents. 

2.2  Filler Types 

2.2.1  Silica 

The first filler to be used for dental RBCs was silicon dioxide (Table 2.1), termed 

silica, or quartz when in its crystalline state. It can be considered the basis for many of the 

other types of fillers as the glass fillers are also silicates, but also include other elements. This 

material has been studied extensively including its syntheses and modifications, and is 

widely available at low cost (42-52). 

 

Table 2.1 - Filler types and their elemental compositions 

Filler Type Examples Chemical Composition 

Oxides 
Silica, alumina, titania, 

zirconia 

MxOy 

Alkaline silicate glass 
Barium glass, strontium 

glass 

MxOySiO2 

Biomimetic filler Hydroxyapatite Ca5(PO4)3OH 

Organic-inorganic hybrids ORMOCERs SiO2-polymer 

M = metal or metalloid, x = 1-2, y = 2-3. 

 

In its first iterations, silica fillers were made through a top-down approach by milling 

quartz, that resulted in coarse, irregularly-shaped particles (Figure 2.1A)(53). While this 

process produced good strength and modulus values, the size and shape of the particles 

caused problems of high roughness and low wear resistance in the final materials (54). 

Today, top-down synthesis has largely been replaced with bottom-up solution particle 

synthesis and pyrogenic particle synthesis (Figure 2.1B). The most commonly used solution 

synthesis method called the “Stöber process” produces monodisperse solid particles of well-
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defined size and spherical shape (55-56). This method can produce particles from 5 nm up to 

several microns. The spherical particle shape also has lower surface roughness when 

compared to milled quartz, while retaining a high strength. Alternately, silica pyrogenesis 

involves superheating of silicon tetrachloride or quartz sand to generate nano-sized particles 

and particle aggregates. Pyrogenic or fumed silica gives easier access to very small-sized 

particles than solution synthesis, in the 5-50 nm range, but also leads to particle 

agglomeration, which may be considered as an inconvenience or an advantage (see section 

3.2 Particle Clusters). In terms of optical properties, silica has a refractive index of 1.46 (57), 

which puts it slightly below that of the traditional BisGMA-TEGDMA resin mix, making it 

slightly more opaque than some of the other fillers described below in such a resin system. 

Regardless of the synthesis method, due to its advantageous properties and ease of use, silica 

has been widely used in dental composites and is still the subject of much research in 

composites for many applications. 

 

 

Figure 2.1 - SEM of (a) Irregular inorganic filler particles in microhybrid composite Esthet X, and 

(b) spherical filler in EsteliteΣ. Figure adapted from (58). 

 

2.2.2  Alkaline glasses 

Alkaline glasses are used in many of the currently available commercial composites 

including many of the leading products such as Tetric EvoCeram (Ivoclar Vivadent, 

Liechtenstein), Grandio (Voco, Germany), Esthet-X (Dentsply Caulk, USA), and Herculite 
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XRV (Kerr, USA) (see Table 2.2 for more examples). This class of fillers encompasses many 

different filler compositions. The material is composed primarily of silicon dioxide, but also 

includes a fraction of alkaline oxides such as barium oxide (BaO) and strontium oxide (SrO), 

which integrate into the silica network, disrupting the structure (Table 2.1). The resulting 

hardness of the material will be lower than that of pure silica, having a hardness of 5 on the 

Mohs scale, rather than 7 for silica (59). Due to this reduction in hardness, tests have shown 

that while the wear rate for this material is comparable to that of silica, for large particle 

sizes, it produces less wear on antagonist surfaces (59-60). In addition to the reduction in 

hardness, research has shown that over time, glass particles leach ions in aqueous solutions, 

losing their dopant salts in addition to the constituent silicic acid itself whose loss also occurs 

for silica (60-62). The main advantage of this material, however, is that due to the integration 

of heavier elements into the filler, the X-Ray radiopacity of the material is greatly increased, 

eliminating the need to add a separate radiopacity agent such as ytterbium or yttrium fluoride 

(63). Many types of alkaline glasses have been used including barium borosilicates, barium 

aluminosilicates, barium aluminum borosilicates, and strontium silicates. The refractive 

index of these materials can vary greatly due to the variation of dopant types and 

concentrations, but these glasses generally have higher refractive indices than silica, coming 

much closer to that of traditional resin matrix mixes, resulting in more transparent 

composites. Thus, while the particle hardness is lower and small amounts of the material may 

leech into aqueous solutions, the mechanical properties for wear, strength, and modulus are 

comparable to that of silica, and the optical properties are superior in most cases, as reflected 

by its widespread use in commercial materials. 

2.2.3  Other Glasses 

Other glasses have also been tested in dental materials, often integrating other oxides 

such as calcium, sodium, or phosphorus oxides. Some of the specific formulations attempted 

are termed bioactive glass. These were originally designed for bone replacement, but were 

also tested as fillers for RBCs. In bone repair, these are used to provide a temporary structure 

which adheres strongly to bone, and then dissolves, which in turn stimulates the re-growth of 

bone tissue (64). In the context of dental materials, their mechanical properties appear equal 

or worse than other types of fillers (65-66), though most papers about them focus on 

bioactivity and cytotoxicity rather than mechanical performance. Beyond bioactive glass, the 
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composition of glasses is extremely variable, and it is therefore possible to tune them for 

more advantageous properties, but due to the inclusion of ionic species into the matrix, the 

water-sorption and solubility of the resulting composites generally suffer when compared to 

ordinary silica, often leading to inferior mechanical properties. Such fillers may otherwise be 

of further use to regenerate the natural tooth structures rather than simply replacing damaged 

structures. 

2.2.4  Other Metal Oxides 

While silicon dioxide is the most extensively explored filler, many other metal oxides 

have also been studied for use as fillers including aluminum oxide (Al2O3) (67), titanium 

dioxide (TiO2) (68-70), zinc oxide (ZnO), and zirconium oxide (ZrO2). While alumina, 

titania, and zinc oxide have not seen very much use commercially (Table 2.2), many of the 

commercially available composites from 3M ESPE in particular contain significant amounts 

of zirconia filler and hybrid zirconia-silica fillers. There is little literature directly comparing 

zirconia with other filler types, but reports suggest that the high hardness of zirconia can lead 

to greater antagonist wear and fatigue wear (71-72). The synthesis of these materials is 

analogous to that of silica, in that metal alkoxides are hydrolyzed slowly to generate solid 

particles. In addition to the increased radiopacity of both ZnO and ZrO2 due to their higher 

atomic numbers, similarly to glasses, they also exhibit different optical properties from other 

fillers, due to their higher refractive indices (2.00 and 2.16, respectively) (73-76). Silicate 

particles with varying fractions of Al2O3 or BaO have also been used to tune the refractive 

index of the particles from 1.46 to 1.55, to match that of the resin (n≈1.5) to obtain a more 

transparent composite (77-78). 

In addition to the use of other pure or binary metal oxide mixtures, several mineral 

crystals have been attempted as reinforcements to conventional fillers including mica (79-

80), feldspar, and leucite (81-82). These minerals were generally used in crystalline form and 

were shown to have higher wear and strength properties than traditional silica fillers. Despite 

their apparent superiority, concerns have been raised that particles made from less habitual 

compositions should be tested more extensively to ensure similar results to the known silica 

fillers, particularly with regards to the brittle nature of these materials, a property that is not 

regulated by the ISO standards (83-84). Thus particles of alternate compositions are still 
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being explored for various reasons, but thorough testing must be performed before any can 

be adopted as a true replacement. 

2.2.5  Hydroxyapatite 

Hydroxyapatite (HA, Ca5(PO4)3OH), the main component of enamel and dentin, has 

also been explored as a dental filler. Its content in enamel is approximately 96% by weight 

(85), and 70% by weight in dentin (86). HA shows high bioactivity, which reduces the 

occurrence of secondary caries (87-88). Spheroidal particulate HA was studied as dental 

filler in RBCs. The size of HA particles had a significant effect on the mechanical properties 

of composites. RBCs containing only HA nanoparticles as filler were found to be unsuitable 

for practical application due to their extremely high solubility in water and poor mechanical 

properties (89). However, when mixed with HA microparticles, these nanoparticles can 

increase the total filler loading to yield improved mechanical properties (89-91). Other 

shapes of HA such as whiskers and nanofibers were of interest for composite development. 

The high aspect ratio filler reinforced dental RBCs showed better mechanical properties than 

those reinforced with spheroidal HA (92-96). Recently, a novel urchin-like hydroxyapatite 

(UHA, Figure 2.2a) was prepared through microwave irradiation and was applied as a dental 

filler. UHA was embedded in resin matrix, and displayed strong interfacial adhesion. 

Compared with unfilled resin matrix, the addition of silanized UHA significantly improved 

the flexural strength, flexural modulus, compressive strength, and Vickers microhardness. 

Furthermore, when used in combination with silica nanoparticles, UHA increased the 

flexural strength, flexural modulus, and compressive strength by 50, 40, and 13%, 

respectively (97). The main disadvantage of HA, however, remains its higher refractive index 

than resin matrix (n=1.65 versus 1.5 for the resin). The mismatch of refractive index could 

result in a decrease of monomer conversion and depth of cure (89, 98). Despite this 

shortcoming, dental RBCs containing HA filler are promising bioactive restoration materials. 
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Figure 2.2 - SEM image of (a) urchin-like hydroxyapatite (UHA) particles, synthesized by 

microwave hydrothermal HA synthesis, and (b) hydroxyapatite whiskers (99). 

 

2.2.6  Organic-Inorganic Hybrids 

In order to improve overall composite properties, many research groups have tried 

attaching organic components to inorganic particles. One approach was using silane-

modified polymers as seeds for the initial growth of silica particles. This type of filler was 

first developed and patented at Fraunhofer Silicate Research Institute and was later patented 

under the name ORMOCER™, for organically modified ceramics (100). These materials 

were shown to have improved surface wetting properties and compressive strength compared 

with ordinary surface-modified silica (101). Their adhesion to dentin and enamel was also 

found to be superior (102). In addition, materials containing these ORMOCERs were 

compared with a microhybrid composite and displayed increased surface roughness, but 

superior hardness (103). Moszner et al evaluated the flexural strength and modulus of these 

materials, and found that although these properties were equal to those of traditional fillers, 

their double bond conversion was lower (36, 104). Finally, work by Muh et al (105) made 

fillers using the same concept in combination with traditional BisGMA monomers. This 

composite mix yielded lower shrinkage (0.8-2.2%) than other commercially available 

composites (2-3%). 

While traditional silane modification of particles only covers the surface, covalent 

core-shell type modifications have recently been made to increase the interfacial binding 

between the particles and the resin. Liu et al (88) used this approach to synthesize 

crosslinked brush-modified HA particles to examine its effect on mechanical properties, but 

saw no significant improvements. 
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2.2.7  Other Fillers 

Over time many materials have been tested for use as fillers and it is beyond the 

scope of this review to cover them all. Most notably, in 2002, Jandt et al (106) tried novel 

compositions of filler, adding titanium nanoparticles as well as Ag-Sn-Cu particles to assess 

their effect on mechanical properties as well as radiodensity, citing the routine use of these 

metals in posterior restorations. They found that the addition of these particles increased 

diametral tensile strength, fracture toughness, as well as radiopacity. Due to its advantageous 

mechanical properties, but adverse aesthetic properties, they suggested the possibility of its 

use in core materials as an alternative to the currently used materials. 

2.2.8  Prepolymerized Composite Particles 

In order to minimize the overall shrinkage of the composites upon 

photopolymerization while maintaining the advantageous properties of both large and small 

particles, an alternate filler preconditioning method has also been used. This method involved 

the mixing and pre-polymerization of resin and filler before integration into the final 

composite. This type of preparation can be considered a sub-class of micro-filled composites. 

This treatment can be applied to any type of filler, making it a method rather than a filler type 

as described. With this pre-polymerization, the viscosity of the unpolymerized paste is lower 

than that of traditional microfilled composites, allowing higher filler loading and superior 

workability prior to polymerization. In terms of performance, this method has also been 

shown to reduce the tendency to stain (107), increase the fracture toughness (108), and 

reduce the shrinkage (109). In addition, since the resin matrix can be different for the pre-

polymers and the final composite, by varying the composition of the resin matrix of the 

prepolymer, the mechanical properties can be tuned to obtain a superior final material (110). 

Despite the advantages of this technique, some of their properties remain inferior to some of 

the competing hybrid materials in terms of yield strength (111). Regardless, this type of 

material is the subject of many patents (112-114), and remains a very useful method in the 

arsenal of methods for reinforcing RBCs (Table 2.2). 

2.2.9  Porous Fillers 

Fillers are most frequently used as solid particles, but porous particles have also been 

explored. These are meant to improve the bonding between the filler and the resin matrix 
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through mechanical retention in the irregular pores of the filler. These fillers have been made 

from many of the previously mentioned types including silica (115-116), glasses (82, 117), 

alumina (118-119), as well as other minerals (120). Thus porous versions of many fillers are 

being explored for potential improvement of existing properties. While the work on this filler 

type is ongoing, literature has shown improvements in modulus (82, 115), strength (82, 120), 

and fracture toughness (116). In addition to the mechanical improvements, the porous 

structures have been proposed as a method of producing bioactivity, releasing compounds 

from the pores over time (119). 

Table 2.2 - Examples of Commercial Products Using Specified Filler Types (39) 

Type of Filler * Example Products Using Filler ** 

Silica Voco Admira, Bisco micronew, Ivoclar Vivadent Artemis,  

Alkaline Glass Ivoclar Vivadent Artemis, Kuraray Noritake Dental Clearfil 

Majesty 

Other Glasses Voco Admira, Shofu Beautifil II,  Dentsply Ceram X 

Other Metal Oxides Tokuyama Estelite Σ, Shofu Beautifil II, 3M ESPE Filtek 

Supreme 

Prepolymerized Filler Kuraray Noritake Dental Clearfil Majesty, Kerr Premise 

 

* Hydroxyapatite not included due to the lack of literature on its use in commercial 

composites 

** Not an exhaustive list, and only representative examples are shown 

 

2.3  Filler Additives 

2.3.1  Fibers, Nanotubes, and Whiskers 

Due to the wide use of fiber-reinforced polymers in many other industry-specific 

composites, this class of materials has also been explored for use in dental composites. While 

the chemical composition of this type of filler has varied widely, they are primarily 

distinguished by the differences in their morphology and aspect ratio. Fibers have a very high 

aspect ratio (20 to 500)(121) and are often flexible; nanotubes also have a high aspect ratio 

but have a hollow center; and whiskers have the lowest aspect ratio of the three and are 
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usually rigid. Addition of these higher aspect ratio fillers has been shown to improve the 

mechanical properties of the material. The mechanisms by which this occurs include 

whisker/fiber pinning and pullout, crack deflection, and bridging. Since more extensive 

reviews on the topic have been written recently (122-123), we present here a general 

description and previously explored use of some of these materials. 

 

 

Figure 2.3 - Electron micrographs of different types of filler additives used to reinforce dental 

composites: (a) SEM of glass fiber-reinforced composite (124), (b) SEM of silicon carbide whisker-

reinforced composite (125), and (c) TEM of single-walled carbon nanotube-reinforced composite 

(126). 

 

The most widely used fibers in dental composites have been glass fibers. The choice 

of glass was logical, given the nearly identical chemical composition and refractive index to 

the existing silica filler, as well as its extensive use for many other applications in addition to 

its low cost. While micron-sized fibers were shown to decrease the material properties, nano-

sized electrospun fibers were generally found to improve composite properties when used in 

small fractions with spheroidal silica particulate filler. Flexural strength, modulus, and work 

of fracture were increased by as much as 77%, 29%, and 66%, respectively (124, 127). An 

alternative to ordinary fibers was attempted by Ruddell (128), where they used resin-filled 

impregnated fused-fiber filler blocks as dental restorative fillers. When blended with a 

traditional particulate composite, these composites showed improvements in mechanical 

properties, though it was difficult to completely wet the fused-fiber blocks with the resin, 

leading to voids and heterogeneity in the final material. 

Polymeric fibers of many different types were also tried to improve the overall 

properties of the composites. These were often made by electrospinning, and include 
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poly(vinyl acetate) fibers (129), polyethylene and aramid fibers (130), and nylon 6 fibers 

(131). The addition of fibers was generally beneficial to the mechanical properties of the 

composites, as long as they were only added in small fractions (< 5 wt%) due to problems 

with aggregation and void creation upon the addition of larger amounts.  

Several different kinds of nanotubes have also been explored as reinforcements of 

dental RBCs. The best known of these were carbon nanotubes. Zhang et al(126) were able to 

oxidize single-walled carbon nanotubes, electrostatically bind silanized methacrylate groups 

onto their surface. When small fractions of these were blended into a commercial composite, 

the flexural strength was increased from 115 to 142 MPa, a 23% increase. There has also 

been work using random or aligned fibers made from electrospun nylon-6/multiwalled 

carbon nanotubes as reinforcement (132). They found that incorporating 0.5 wt% nanotubes 

into these nylon mats increased the strength performance of the composite. Finally, two-

walled halloysite nanotubes were also used to reinforce unfilled and glass-filled dental 

composites. Chen et al (133) found that the addition 1-2.5 wt% of halloysite nanotubes 

yielded only a slightly higher flexural strength, but almost doubled the work of fracture of 

these composites. Therefore, nanotubes yielded very similar results as fibers, where a small 

percentage was generally favorable to the mechanical properties. 

More rigid whiskers were also attempted. These whiskers ranged from metal oxides 

to ceramics and carbides. Some of these are mentioned above (see sections Other Metal , and 

Hydroxyapatite). Other types of whiskers include zinc oxide (134), zirconia/silica (135), 

silicon nitride (136), and silicon carbide (137). A series of papers was published by Xu et al 

examining the influence of different parameters using either plain whiskers, or whiskers 

fused with silica nanoparticles (125, 136, 138-139). These silica-fused whiskers showed 33% 

decrease in wear depth compared to the control. Furthermore, the evaluations of flexural 

strength also showed an almost two-fold improvement over the control composites. With the 

exception of hardness, these additives significantly improved the mechanical properties. 

Many authors concluded that the optimal fraction of fiber loading is low (1-5 wt%), 

since at low concentrations, the number of fibers is sufficient to bridge cracks and prevent 

further damage, whereas at high concentrations, the difficulty in fully dispersing the additives 

and their agglomeration may cause defects in the materials. 
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2.3.2  Particle Clusters 

The size of the silica particles has always been a point of concern: larger sizes 

allowed higher filler loading, while smaller particles produced superior wear properties 

(140). While the use of hybrids bridged this gap, an alternate strategy was developed to get 

the best of both worlds. With a similar objective as porous fillers (2.2.9 Porous Fillers), with 

the aim of developing RBCs with excellent strength and esthetics, a novel filler called 

“nanocluster” was first introduced in FiltekTM Supreme Universal Restorative (3M ESPE, St. 

Paul, MN, USA) in 2003. Nanoclusters can be defined as an association of individually 

dispersed nanoparticles such as SiO2 and ZrO2 and their agglomerations, which are be 

fabricated by self-assembly methods (141), spray-drying techniques (142), aerosol-assisted 

technology (143), calcination processes (144), and coupling reactions (145-146). Among all 

these synthetic routes, only the last two methods have been applied to dental RBCs, due to 

their ease and high yield of nanocluster fillers (144-146). Contrary to prepolymerized fillers, 

these clustering methods contain no resin to bind the particles together, but instead rely on 

direct bonding between them, resulting in a large, porous, but covalently bonded particle 

assembly. 

The manufacturers of FiltekTM Supreme Universal Restorative have suggested that the 

employed nanoclusters were fabricated by the calcination using a bottom-up approach. The 

obtained nanofilled RBCs exhibited superior esthetics and polish retention similar to those of 

microfilled composite, while maintaining a physical-mechanical performance comparable to 

hybrid RBCs, which could be applied for both anterior and posterior restorations (144). 

Curtis et al assessed mechanical properties of commercial microhybrid (Filtek Z250), 

microfill (Filtek Z100 and Heliomolar), nanohybrid (Grandio and Grandio Flow), and 

nanofilled (FiltekTM Supreme in Body and Translucent shades, FSB and FST) composites, 

and found that composites reinforced with the nanocluster system showed distinctly superior 

performance. For cyclic pre-loading of 20 N, the Weibull modulus of both FSB and FST 

were increased by 42 and 182 %, respectively, over control samples without pre-cyclic load. 

This increase can be ascribed to the improved damage resistance due to the infiltration of 

silane coupling agents into the interstices of the nanoclusters, and subsequent reinforcement 

with the resin matrix (147-149). Instead of using aqueous colloidal SiO2 sols to synthesize 

SiO2 nanoparticles (144), Atai et al used amorphous fumed SiO2 (~12 nm, Aerosil® 200) to 
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form porous clusters through the sintering process at 1300 °C. They prepared the 

corresponding composite named Sintered nano, and compared its mechanical properties and 

surface roughness with an experimental composite Microfiller reinforced with micron-sized 

glass fillers (average particle size: 2-5 μm) and commercial Filtek Supreme® Translucent 

(FST) mentioned above (150). It was found that the flexural modulus and fracture toughness 

of Sintered nano were statistically higher than the other two composites (p<0.05, ANOVA 

and Tukey HSD tests), which could be ascribed to the mechanical interlocking formed 

between the resin matrix and the sintered fillers (115, 150). The sintered nanocomposite and 

FST also exhibited a smoother surface finish after a toothbrush abrasion test compared to the 

microfilled composite, due to the introduction of nano-scale filler particles. 

 

 

Figure 2.4 - Silica nanoclusters synthesized of 3-8 µm using chemical crosslinking reactions as in 

reference 1 with a primary particle size of approximately 70 nm. 

 

Recently, Wang et al introduced SiO2 nanoclusters through a coupling reaction 

between amine and epoxide functionalized silica nanoparticles at room temperature, and 

constructed bimodal silica nanostructures comprising of SiO2 nanoparticles and nanoclusters. 

Among all RBCs, the maximum filler loading of SiO2 nanoclusters alone was only 60 wt%, 

due to its wide size distribution (0.07~2.70 μm), but was increased to 70 wt% with the 

additional use of SiO2 nanoparticles. When added at the optimal weight ratio at 70% loading, 

20% of which were nanoclusters, the flexural strength, flexural modulus, compressive 
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strength, and wear volume were improved by 28, 48, 42 and 38%, respectively, when 

compared to nanoclusters alone, which was mainly due to the increased filler packing density 

and the reduced inter-particle spacing (145-146). Based on these results, it seems likely that 

the physical-mechanical properties of the optimized composite could be further increased by 

also utilizing smaller silica particles directly, or by including these as building blocks for 

nanoclusters. The introduction and further exploration of particle nanostructures might 

provide more insight into the design and fabrication of RBCs for clinical use.  

2.3.3  POSS 

An interesting offshoot of silica that has emerged recently is polyhedral oligomeric 

silsesquioxanes (POSS). POSS is made from a minimally sized, caged silicon dioxide 

functionalized with organic groups on the corners (Figure 2.5). Being a liquid, POSS can be 

used as a replacement for resin matrix rather than the solid filler. Fong et al (151) explored 

this use of POSS methacrylate as a partial or total replacement of the BisGMA monomer and 

showed that at the optimal ratio (10 wt% of the resin), it improved the flexural strength of the 

final composite by 20 %. Additional work with these compounds not only confirmed that a 

small fraction of POSS improved the mechanical properties, but also caused a significant 

decrease in polymerization shrinkage from 3.53 to 2.18% (152). Therefore this work showed 

that such a monomer is promising (74), but further studies are necessary to establish a more 

quantitative link between its inclusion and the improved material properties. 

 

 

Figure 2.5 - Structure of POSS-Methacrylate, used as a partial replacement for the resin matrix 

monomer. 
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2.3.4  Silane Coupling Agents 

The filler composition and morphology have a significant impact on the properties of 

the final composite, but the coupling agents determine the interfacial properties. A wide 

variety of silane coupling agents has been tested to enhance the interfacial interactions 

between the resin matrix and the filler particles. The original paper citing the advent of dental 

RBCs used vinyltrimethoxysilane (Figure 2.6a) (53). After further studies, γ-

methacryloxypropyl trimethoxysilane (γ-MPS, Figure 2.6b) was adopted as the industry 

standard coupling agent. Many more studies have examined other parameters of silane 

coupling agents such as fraction functionalization (153-154), type of silanization agent (155-

156), and hyperbranched methacrylate surface functionalization (Figure 2.6c) (17). These 

papers mostly examined the influence of all these variables on the mechanical properties of 

the final materials, but also thoroughly evaluated the effects on water sorption, solubility, and 

swelling. While there is some conflicting information as to the true influence of the coupling 

agent on the final properties of the materials (157-158), γ-MPS remains the most widely 

used. Wilson et al showed that decreasing methacrylate density while maintaining surface 

hydrophobicity marginally increased the flexural strength of the material, and more 

importantly reduced the viscosity of the unpolymerized material (156). In addition, Ye's 

work also showed that using a hyper-branched coupling agent significantly reduced the 

shrinkage stress (17), suggesting that new modifications of this type could further improve 

dental materials' properties for clinical use. 

In addition to varying methacrylate surface density, using different types of alkenes, 

or even growing polymer brushes; the most promising recent trend has been the use of mixed 

polymerization chemistry, combining the traditional methacrylate free-radical polymerization 

with the so-called click chemistry using the radical-initiated thiol-ene reaction, though this 

approach has mostly been explored for the modification of monomers, rather than fillers (23-

24). While there is still much work to do with this method, its advantageous properties may 

lead to their wider exploration as a promising alternative method for dental composite 

polymerization. 
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Figure 2.6 - Organic silanes to modify the inorganic particle surface: (a) the originally used 

trimethoxyvinyl silane, (b) the most commonly used γ-methacryloyl propyltrimethoxysilane (γ-MPS), 

and (c) a hyperbranched multimethacrylate ligand for reduced shrinkage stress (17). 

 

2.4  Conclusions and Perspectives 

The main challenges for fillers in RBCs remain the same as those for the composites 

themselves. The primary cause of failure is the development secondary caries, thought to be 

indirectly caused by polymerization shrinkage (159), and restoration breaks due to fracture; 

both of these remain the main issues to overcome (160). While the monomer can be said to 

be directly responsible for the volumetric shrinkage of the materials, some filler technologies 

such as POSS addition have been shown to decrease the volumetric shrinkage, and therefore 

could be used to aid in minimizing this problem.  

The greatest obstacle in composites that is directly caused by the fillers, however, is 

the overall opacity of the material. Aside from purely esthetic considerations, the difficulty in 

perfectly matching the refractive indices of the resin and the filler prevents the curing light 

from fully penetrating the restoration, thus multiple increments are needed for a full cure (in 

addition to shrinkage concerns). In recent years, “bulk fill” restoratives have made great 

strides in the use of non-incremental curing (161-164). These composites allow non-

incremental curing due to high transparency and low shrinkage. Therefore the main solution 

so far has been the reduction of filler particle size to reduce light scattering. Smaller particles, 

however, cause problems of their own. The most promising results for refractive index 

matching so far have been in the use of chemical hybrid fillers specifically designed for such 

a purpose (See 2.2.4 Other Metal Oxides). 
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The mechanical properties of many of the commercially available composites are 

already far superior to those required by the ISO standards for mechanical properties (84), 

but many of the additives discussed were shown to further improve these properties. Beyond 

the standards, many properties such as wear resistance and fracture toughness have a 

significant influence on the material performance that should be assigned a greater 

importance in order to produce materials that have better resistance and longer functional life 

spans. 

The aim of dental RBCs is to restore teeth to their original working shape and shade. 

While the true regeneration of enamel under clinical conditions has not been achieved due to 

its highly complex structure, the ideal solution would be to simply rebuild it, or at least a 

framework that can be transformed into it. Some preliminary work by Fan (165-166) has 

shown promise for the eventual development of enamel regeneration. This may become an 

interesting research objective in this field, though still distant for now. 

Despite a few key properties to improve upon, there is no clear unified direction of 

research for dental fillers (167). New types of reinforcements are being explored; new types 

of surface modifications are being attempted. The only clear trend is the use of increasingly 

small particles to favor advantageous optical and polishing properties. In addition, fillers are 

currently being developed with more sophisticated functionality such as antibacterial 

compound release and bioactivity such as remineralization and fluoride release (168-169). 

Composites with these functions will likely be commercialized in the near future. 

A final consideration for dental RBCs is that due to the staggering number of 

possibilities for both filler and resin matrix, most investigations have focused on the effect of 

single components on these complex mixtures, assuming there was no change in the 

interaction between the two. The future of RBC fillers will likely continue as begun by 

ORMOCERs™ where the line between monomer and filler is no longer so stark, and specific 

interactions between the resin matrix and the filler are optimized for superior overall RBC 

properties. The drive for innovation will bring about a new generation of dental fillers and 

composites that will respond to the rapid and growing need for new biomaterials that are 

safe, strong, and easy to use. 

Since their advent, a great variety of different fillers have been developed and tested. 

The difficulty in using these materials remains that it is impossible to directly compare all the 
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materials available simply due to the large number of possible compositions and 

combinations. Most of the fillers offer distinct advantages and inconveniences, and so can be 

used in specific applications that play to their strengths. Despite their current shortcomings, 

much of the research discussed above highlights ways in which one can improve the current 

commercially-used fillers. In concert with the development of more sophisticated monomers 

and resin systems, the lifespan of current dental products is expected to increase, and only by 

using optimized combination of all these available methods will one be able to achieve a 

truly great dental RBC. 
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Chapter 3 -  Photocalorimetry Method Optimization for the 

Study of Light-initiated Radical Polymerizations* 

Abstract 

The properties of the dental resin composites have been studied extensively with 

several different methods including infrared and Raman spectroscopy, volume dilatometry, 

and mechanical analyses. Photo-calorimetry has also been used to measure the kinetics and 

extent of polymerization, but many of the variables associated with this technique remain to 

be fully defined and tested to enable quick and reproducible measurements under clinically 

relevant conditions. We have systematically varied the sample mass, light intensity, 

temperature, nitrogen purge time, and examined their effects on the monomer conversion and 

polymerization kinetics with the aim to optimize and standardize the photo-DSC method for 

the study of dental resins. A post-cure isothermal baseline at 37 °C yielded reproducible 

results. This systematic study detailing the effects of several variables of photo-calorimetry 

allows its direct use as a standard method to study polymerization kinetics and monomer 

conversion of dental resins and other photo-curable materials. 
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3.1  Introduction 

In the last decades, progress in polymer research has led to a variety of products that 

are used in advanced technology as well as daily life. A sub-category of medically related 

polymers is resins that can be cured by light in situ. Of particular interest are dental resin 

composites for which their bulk polymerization is photo-initiated in the mouth and must take 

place quickly. These materials have been studied extensively on a case-by-case basis, 

particularly for commercially available composites, but the fundamental understanding of 

these materials and their properties remains lacking. The challenge in this area of research is 

to make the experimental conditions for the measurements relevant to dental clinical practice, 

making the results obtained pertinent to the comparison of existing materials and the 

formulation of new and improved dental composites. The optimization and standardization of 

the characterization methods by a systematic examination of the variables involved will 

facilitate the development of new materials and the comparison of their performance. 

The degree of conversion during the polymerization of these resins is considered to 

be an important indicator for these materials due to its correlation to several other important 

characteristics [1, 2] such as mechanical performance [3-5], shrinkage [6], and post-cure 

monomer leaching [7]. In dental resin composites, the degree of conversion is typically 

measured by the use of FTIR, near IR or Raman spectroscopy to follow the band of the 

methacrylate carbon-carbon double bonds. While these methods boast a high spatial 

resolution, they have limited temporal resolution due to the longer acquisition time necessary 

to obtain a sufficiently high signal-to-noise ratio. Conversely, calorimetry has very low 

spatial resolution, but very high temporal resolution, which permits users to follow reaction 

progress with very high time accuracy. Furthermore, spectroscopic measurements always 

follow band intensities relative to the starting sample (monomers), whereas the study of the 

polymerization process and of the product formed may provide more pertinent and/or 

complimentary information of the dental resins. 

Differential scanning calorimetry (DSC) is a common technique used in the study of 

polymer materials and polymerization processes. DSC equipped with additional light 

irradiation (photo-DSC or pDSC) operates on similar principles as conventional DSC to 

measure the enthalpy of reaction, relying on accurate measurements of the polymerization 

reaction exotherms. Dental resins are photo-polymerized in situ in clinical procedures, which 
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makes pDSC an ideal technique to directly study the polymerization process of such 

materials. The polymerization conditions can be varied and the heat of reaction can be 

determined easily and accurately. While a number of reports appeared in the literature on the 

use of this technique for the study of dental resins, there has been a lack of details on the 

experimental design and the choice of suitable measurement parameters of pDSC to obtain 

useful and reproducible results. The experimental procedure and data processing need to be 

optimized to monitor photo-activated reactions such as the photo-polymerization of the 

dental resins, which generally proceed rapidly at ambient temperatures and ideally to 

completion with conditions mimicking the constrained oral environment. It is essential to 

systematically assess the parameters involved in such measurements to produce reliable, 

reproducible, and comparable results. 

The objective of this investigation is to optimize the parameters for the pDSC 

measurement of the photo-polymerization of dental composites. This was done by 

establishing a link between the analysis sequence, sample mass, temperature, light intensity, 

nitrogen purge time; and the double bond conversion and kinetics of the resin 

polymerization. These parameters were studied and optimized to obtain accurate and 

clinically relevant data on the kinetics and conversion for the polymerization of dental resins 

and composites. 

 

3.2  Experimental 

3.2.1  Materials  

Bisphenol A glycerolate dimethacrylate (Bis-GMA), triethylene glycol 

dimethacrylate (TEGDMA), and camphorquinone (CQ) were purchased from Sigma-Aldrich. 

Ethyl 4-N,N-dimethylaminobenzoate (EDMAB) was purchased from Alfa Aesar 

(Tewksbury, MA, USA). TEGDMA contains 80-120 ppm 4-methoxyphenol as an inhibitor, 

as purchased. 

3.2.2  Resin Blending 

The resins were left to warm to room temperature. CQ (50 mg) and EDMAB (50 mg) 

were dissolved in TEGDMA (3 g) with magnetic stirring at 30 °C for 10 minutes. BisGMA 

(7 g) was added into this solution and mixed by spatula, then mixed with a magnetic stirrer 
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until homogeneous (about 30 minutes) at 30 °C. The blended resin was stored in aluminium 

foil-covered vials at 4 °C. 

3.2.3  Composite Formulation and Blending 

Composites were formulated using the resin above, and filled with 60 wt% spherical 

silica nanoparticles with a size of 980 nm, whose synthesis and characterization were 

previously described (8). They were homogeneously blended using a three roll mill (Exact 

50i TRM, Norderstedt, Germany). 

3.2.4  Calorimetry 

A Q2000 differential scanning calorimeter with a modified photo-calorimetry 

accessory (TA Instruments, New Castle, DE, USA) was used with an Omnicure s2000 light 

source with a 200 W mercury lamp (Excelitas Technologies Corp, Waltham, MA, USA) and 

a 400-500 nm band pass filter. The photo-calorimetry accessory had to be modified (Figure S 

3.1) due to its unstable baseline from inadequate light guide positioning and fixation. Several 

set screws and adjustment mechanisms were added in the upper and lower light guide 

brackets to ensure the stability of the light guide’s position. Furthermore, the light guides 

themselves were modified to allow them to be placed closer to the samples cells for higher 

light intensity. 

Fig. 3.1 describes the detailed protocol used with the instrument. Each measurement 

was repeated in quadruplicate. The conversion (%) was calculated with the following 

equation: 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 =  
∆𝐻

𝐷𝐵∗𝐸
 ×100%    (3.1) 

where ΔH is the area under the curve measured by photo-calorimetry (J/g), DB is the number 

of moles of double bonds per gram of composite (mol/g), and E is the standard enthalpy 

change for the polymerization of methacrylate groups (56,902.4 J/mol) (9). All calorimetry 

figures are shown with exotherms up (positive). 

To assess the effect of oxygen inhibition on the pDSC measurements, a second 

protocol was used (Fig. 3.1 dashed boxes) where air was purged over the sample for 5 

minutes first. The sample was then purged with nitrogen for different durations (0 to 15 

minutes) to assess the effect of the oxygen content of the atmosphere on the resin 

polymerization. 



55 

 

 

Fig. 3.1. pDSC protocols used for standardized measurements (solid boxes), and for oxygen 

inhibition tests (dashed boxes). 

3.2.5  Light Intensity Measurements 

The light intensity was measured using the DSC calorimeter. The nominal light 

intensity was as measured from the DSC cells with aluminum pans containing 5 mg of 

carbon black completely coating the surface, which was considered an ideal black body. The 

light intensity in the calorimeter was measured at different levels, as set from the light source 

in percentage points of full capacity. The maximum intensity of radiance with the 400-500 

nm filter (Figure S 3.2) was measured to be 980 mW/cm2, and the source percentage power 

indeed corresponded to a linear change in energy density (Figure S 3.2). This method of light 

intensity measurement has the advantage of measuring the precise luminal output that the 

sample is exposed to, as opposed to a radiometer reading that measures the lamp’s output 

under conditions different from that of the polymerization reaction. This eliminates variations 

in distance from the light source, since the distance becomes fixed, to sub-millimeter 

precision. This is much more precise than freehand curing protocols where changing the 
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surface distance from 2 to 4 mm can result in a four-fold decrease in light flux, since 

luminance follows an inverse-squares law (10). 

3.2.6  Statistical Analysis 

Statistical significance was established using one-sided student t-test. Error bars 

represent standard deviations. 

 

3.3  Results and Discussion 

Accurate pDSC conversion measurements rely on measurements of polymerization 

enthalpy. Antonucci et al. (9) previously examined the reaction enthalpies for the 

polymerization of several methacrylates and obtained a consistent value of 56,902 J/mol 

methacrylate, regardless of the substitution groups. Using the integral of the heat flow 

obtained by pDSC, the degree of conversion can then be calculated using the known 

methacrylate density of the material. 

Several parameters were altered systematically in pDSC measurements of kinetics 

and conversion to evaluate their influence on the measured values, baseline quality, and 

overall accuracy. 

3.3.1  Analysis Sequence 

The sequence used in photo-calorimetry analysis has a strong influence on the 

measured value, mainly in due to the quality and stability of the baseline. DSC measurements 

typically involve quantifying the difference in heat flow between the sample and reference 

cells, knowing that the mass of the pans is effectively identical; the exotherm of empty pan 

serves as a baseline for the measurement, which is then subtracted from the sample pan’s 

exotherm. In photo-calorimetry, however, since the resin-filled and empty pans absorb 

different amounts of light, this leads to significant differences in heat flow even with equal 

irradiance. This problem was previously solved by recording a second post-cure exotherm 

with the same sample. This ‘asynchronous baseline’ can then be subtracted from the initial 

run, resulting in an exotherm that shows only the contributions from the heat of 

polymerization (8, 11-12). Although asynchronous baselines seem to be the norm for the 

most accurate results, two types of calculated baselines are also compared: a flat baseline, 

where the light intensity is assumed to be constant in time once on, and an exponential decay 
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baseline that accounts for the lamp’s onset time. As shown in Fig. 3.2, the flat calculated 

baseline results in similar values to the asynchronous one, but has larger errors. The 

exponential decay baseline results in a closer fit to the measured asynchronous baseline, but 

also has a large inter-sample variability. Therefore, the calculated baselines yield similar 

values to the measured asynchronous baseline, but yielded lower accuracy for the results. 

Calculated baselines may be used as a time-saving measure, but in the end, asynchronously 

measured baselines provide the most reproducible and accurate measurements, and were used 

in this work. 
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Fig. 3.2. Baseline exotherms, after polymerization was already completed, showing the 

measured asynchronous baseline (solid) and calculated flat baseline (dots), and calculated 

exponential decay baselines (dashes).  

In terms of measurement protocols, while clinical conditions for composite 

polymerization have no active temperature control, the surrounding tooth tissue and saliva 

act to dissipate some of the heat released upon polymerization. This typically results in 

increases of 3-8 °C in the surrounding pulp tissue upon polymerization (13-14), which also 

affects polymerization kinetics and the degree of polymerization.  To reflect this heat 

dissipation effect, the default measurement protocol used isothermal measurements, where 

the temperature was set to remained constant throughout the experiments. Other procedures 

were attempted to regulate the temperature to the desired set point, but led to unstable and 

unrepeatable baselines with large errors (Figure S 3.3). The isothermal protocol (Fig. 3.1) 

was thus used to obtain the most reproducible measurements. 
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3.3.2  Temperature Variations 

In free radical polymerizations, individual chain growth occurs very rapidly once 

initiated (15). The increasing molecular weight causes a commensurate increase in viscosity, 

resulting in the gel effect (or Trommsdorff effect); the termination rate decreases due to 

lower chain mobility and results in an increase in the polymerization rate as the reaction 

progresses. Due to the exothermic nature of the polymerization reaction, the increase in 

temperature also leads to an increased rate of polymerization which will itself lead to more a 

more rapid heat release. This phenomenon is referred as rate auto-acceleration, which is 

sometimes confounded with the gel effect. These two effects (gel and auto-acceleration) 

interact: the increase in temperature decreases the viscosity of the solution, which delays the 

gel point to higher conversion values (1).  

The most clinically significant temperature for photo-calorimetric analysis of curing 

in the context of dental materials is 37 °C. Aside from the effects noted above, the 

temperature is expected to affect the rate of reaction as described by the Arrhenius equation, 

resulting in theoretical differences of up to 48% in the rate constants for reactions at 25 °C 

and 37 °C (see Supporting Information calculations). Furthermore, analogously to the effect 

of light intensity (see Section 3.4), a higher rate of reaction is expected to result in increased 

conversion values. 

To measure the effect of the initial temperature on the extent and kinetics of 

polymerization, the photo-polymerization experiments were performed at initial temperatures 

of 25, 30 or 37 °C. These changes led to variations of the peak and equilibrium temperatures 

reached while the lamp was turned on, but the change was constant with respect to the initial 

temperature (Figure S 3.4A). 

The maximum rate of polymerization exhibited a small increase with temperature 

from 25 to 30 °C, but not from 30 to 37 °C (Figure S 3.4B). The Arrhenius equation, however, 

predicted larger differences (See Supporting Information Calculations); the smaller changes 

were most likely due to the interference of the other factors affecting the reaction rate, such 

as network formation and changes in the properties of the medium. Previous work by 

Calheiros (16) suggests that the differences are more pronounced if the photo-polymerization 

is done for shorter time periods, rather than going to completion. Kinetics of bulk 
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polymerizations have been extensively studied, but still lack a definitive model (17). In the 

end, small temperature changes had little effect on the kinetics or the degree of conversion. 

The final conversion of the materials was slightly lower at 25 °C (62 ± 2%) than at 

either 30 °C (68 ± 5%) or 37 °C (67 ± 3%); the difference between the latter two was not 

statistically significant (p = 0.77). While such differences in temperature (5-12 °C increase) 

were expected to cause larger changes in conversion as reported by Cook et al. (18), the 

measured changes were quite small (Fig. 3.3A), likely due to the small size of the differences 

relative to the error in the measurement. 
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Fig. 3.3. Monomer conversion variations with (A) changes in equilibrium temperature, and 

(B) changes in nitrogen gas purge time for a 10 mg sample. 

3.3.3  Mass Variations 

The mass of the sample can also have a significant effect on the pDSC measurements. 

Larger masses should yield more precise conversion values, minimizing instrumental and 

weighing errors. However, large masses may also cause heat transfer delays resulting in 

significant heat flow signal distortion. Additionally, since the sample pan must remain open 

to allow light exposure, heat dissipation from the top may become a significant problem, 
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reducing the apparent enthalpy. Large masses can cause light intensity gradients due to 

sample thickness. Calculations show that even if the DSC pan is filled to the top, only 11.8% 

of the light is absorbed by the sample, including light reflected from the bottom of the pan 

(see Supporting Information, calculations). Therefore, for the masses observed, we can 

approximate that the light exposure on the sample is uniform. These combined factors 

suggest that for the best DSC measurement precision, small sample masses are optimal, with 

recommended masses for conventional DSC of 2-5 mg (19). In typical fillings for caried 

teeth, however, restorations have much larger masses (50-100 mg) (20-21). Therefore, larger 

masses would better reflect the clinical reality, while smaller masses would yield more 

accurate results with this measuring method.  

Masses of 1 to 50 mg were used to evaluate their influence on the temperature 

increase, the conversion, kinetics, and baseline stability. While the system theoretically 

maintained a temperature of 37 °C, the temperature increased to a peak due to the light 

exposure and polymerization reaction, and then tapered off. The measured equilibrium 

temperature varied little with sample mass, but the peak temperature was significantly higher 

(p < 0.01) for the two largest samples (25 and 50 mg) than for the smaller ones (1 and 5 mg, 

Fig. 3.4A). Both the peak temperature and equilibrium temperature eventually leveled off 

with increasing sample mass. This is most likely due to competition between larger total 

exotherm in the sample due to a larger mass, and more efficient heat transfer due to a steeper 

temperature gradient. Furthermore, since the polymerization process is exothermic, a sample 

containing 60 wt% inorganic fillers would release 60% less heat than the pure resin without 

fillers, resulting in a smaller increment in temperature. For example, the polymerization of 

70:30 wt% BisGMA:TEGDMA resin results in a 199 J/g exotherm at 73% conversion, but 

the same resin loaded with 60 wt% silica filler results in 83 J/g exotherm at 76% conversion, 

or 42% that of the resin alone. Therefore, the heat release is proportional to the mass of the 

monomers in the composites. 

In terms of the polymerization kinetics, the apparent maximum polymerization rate 

varied linearly with sample mass with strong correlation (Fig. 3.4B), and the time at which 

this maximum is reached (maximum polymerization time) varies exponentially with the 

sample mass. Both were modeled with high correlation coefficient values. Examination of 

the polymerization exotherms (Fig. 3.4D) suggests that the changes in the apparent maximum 
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polymerization rate and time may be measurement artifacts caused by the longer average 

distance to the measurement cell with samples of larger mass and volume. The heat transfer 

rate to the cell and to the surrounding air is a function of surface area, which itself increases 

more slowly than mass (area/volume ∝  𝑙−1, where l is a length dimension), therefore 

apparent decreases in energy are expected with larger samples masses.  

Despite significant changes in the polymerization kinetics, the variation of final 

measured conversion for 5, 10, and 25 mg samples was very small, within error, but the 50 

mg sample had a significantly lower apparent conversion value (Fig. 3.4C), most likely due 

to heat loss from the top of the sample. Fig. 3.4D inset shows that up to 10 mg sample size, 

the baseline distortion is minimal; 25 and 50 mg samples show significant distortion since 

larger sample mass leads to smaller surface/volume ratios (surface area/volume ∝ 𝑙−1, where 

l is a length dimension). This confirms that masses of less than 25 mg are required for the 

most accurate conversion measurements. 
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Fig. 3.4. Photo-polymerizations of 70:30 

wt% ratio BisGMA:TEGDMA resin at 

37 °C with a light intensity of 740 

mW/cm2. The effect of sample mass on 

(A) temperature upon polymerization, 

(B) maximum polymerization rate and 

the time to reach this rate, (C) apparent 

overall conversion, and (D) signal 

intensity and (inset) overall peak 

distortion that is observed with 

increasing mass. 
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3.3.4  Light Intensity Variations 

According to previous studies, the light intensity (IL) of the polymerization lamp 

determines the initiation rate, which then affects the rate of polymerization (Rp) 

proportionally to the square root of the light intensity (22-23): 

𝑅𝑝 = 𝑘𝑝 [𝑀]√
𝐼𝐿∗𝜙[𝐼]

2𝑘𝑡
    (3.2) 

where kp and kt are the propagation and termination rate constants, [M] and [I] are the 

monomer and initiators concentrations, respectively, φ is the photo-initiator efficiency, and 

IL is the light intensity. Therefore, at constant [M] and [I], 

𝑅𝑝 = 𝑎√𝐼𝐿     (3.3) 

𝑎 =  
𝑘𝑝[𝑀]√𝜙[𝐼]

√2𝑘𝑡
     (3.4) 

Literature in dental materials has shown that increased light intensity leads to higher 

double bond conversions (10, 23-26). Leprince (27) explained this behaviour with the 

initiation kinetics: a higher light intensity leads to a higher concentration of active radicals, 

leading to an increased termination rate. This results in localized polymer growth centers, 

which more slowly increase the solution viscosity than polymers synthesized at lower 

initiation rates where an extended network forms throughout the resin (25). This lower 

viscosity leads to lower auto-acceleration resulting in a higher overall conversion. Lu et al. 

(28) had a similar explanation, suggesting it was due to a temporary increase in the apparent 

free volume during the polymerization with a speed spike in the initial reaction that allowed 

the reaction to progress further, similarly to supercooling before freezing upon a rapid 

temperature drop. 

Light intensity in clinical situations usually varies between 400 and 1200 mW/cm2 for 

wavelengths of 390-520 nm (29). A stable baseline is critical to obtain accurate results in 

pDSC. The Omnicure lamp is equipped with ‘closed feedback loop’ technology that monitors 

the light level and maintains stable levels. While this light source produces a very stable 

output in the long term, it tends to slightly overshoot when being turned on, proportionally to 

the light intensity. Otherwise, the heat flow from the lamp can be regarded as a constant 

intensity function. 
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To evaluate the effect of different light intensities, a test series was performed with 

order of magnitude variations in light intensity within the limits of the lamp used. The 

samples were illuminated until the sample was fully cured (5-15 minutes, depending on light 

intensity, to insure a complete reaction despite clinical relevance). At lower light intensities 

(1-5%), the background subtraction was much more accurate, leading to higher 

reproducibility; but these are less representative of clinical conditions for dental resins. 

The sudden temperature increase (jump) upon light exposure was much smaller at 

lower intensities, following a square root relationship (Fig. 3.5A); the equilibrium 

temperature followed the same type of function. There were significant changes in the 

polymerization kinetics, consistent with changes in the rate of initiation due to changes in 

light intensity (Fig. 3.5B). The polymerization rate followed the theoretical relationship (22-

23), in proportion to the square root of light intensity (Eqs. 3.2 and 3.3). The values obtained 

allow us to calculate the ratio of the propagation and termination rates of the reaction 

(kp/√kt), yielding 0.43, which allows the prediction of maximum reaction rate at any light 

intensity, monomer and initiator concentration. The time of maximum polymerization (Fig. 

3.5B) was modeled as a log function of light intensity. The overall curve shape remains 

similar (Fig. 3.5D) regardless of the light intensity, indicating that any intensity should 

provide accurate data. 

Finally, there were large variations in the overall degree of polymerization (Fig. 3.5C) 

measured at different IL: lower IL resulted in lower conversion values. Lower starting light 

intensities for curing have been suggested for reducing shrinkage stress in dental resins, but 

were also previously shown to concurrently reduce overall conversion (30). Although there 

has been a large body of research examining alternate curing protocols to reduce shrinkage 

(24-25, 30), the standard protocol remains high intensity light for short periods (400-1200 

mW/cm2, 15-30 s), and so despite a somewhat lower accuracy, high light intensity for a short 

period of time remains the most representative clinically relevant measurement for dental 

resins, and results in the highest conversion values. 
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Fig. 3.5. The effect of light intensity 

on (A) temperature upon 

polymerization, (B) polymerization 

rate and the time to the peak rate, (C) 

apparent overall conversion, and (D) 

rate of polymerization and (inset) 

conversion kinetics, shown as a 

percentage of final conversion for 

each sample to better compare the 

curve shape at different light 

intensities. 

  



66 

 

The amount of photo-initiator added in the composite may have a similar effect as the 

light intensity on polymerization kinetics and overall conversion. Since numerous previous 

studies have examined the effect of changes in the type and concentrations of the initiators 

(31-41), their effects are not evaluated in this study. 

 

3.3.5  Nitrogen Purge Time Variations 

Finally, the oxygen inhibition that occurs at the interface with the atmosphere can 

also affect conversion measurements. Oxygen diffuses into the resin and interferes with 

polymerization by reacting with the propagating chains, effectively terminating the reaction. 

With common resins, these layers will be around 25 µm thickness (42). Most measurements 

should not be affected by this layer since the inhibited layer volume accounts for less than 

3% of the total sample volume (considering the sample size and layer thickness). 

To evaluate this effect experimentally, air was flowed over the sample, and 

subsequently nitrogen gas purge time was varied, to reduce atmospheric oxygen 

concentration during polymerization, since most of the inhibition was shown to be due to 

active gas diffusion upon polymerization (42). No significant difference was observed at 

different nitrogen purge times for a 10 mg resin sample (Fig. 3.3B); the changes are small 

and within the error of the measurements. If there is a need to observe these differences by 

photo-calorimetry, smaller samples should lead to an increase in sensitivity, as a larger 

fraction of the resin would be inhibited. We conclude that oxygen inhibition had little effect 

on these measurements. 

 

3.4  Conclusion 

We have optimized of the parameters of pDSC for the reliable measurement of the 

degree of conversion and polymerization kinetics of dental resins. The protocol developed 

can also be applied in general to photo-polymerizations and other photo-reactions involving 

enthalpy changes that can be measured. The most reliable pDSC measurements were done 

using a post-cure isothermal baseline at 37 °C, close to the conditions during curing in the 

mouth in clinical situations. The optimal sample size was found to be 10 mg, which was the 

largest size without signal distortion. The light intensity should be set close to the clinical 
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level, since all the light intensities tested yielded consistent results with different conversion 

values. Finally, for a 10 mg sample, the nitrogen purge time had no effect on the conversion 

measurements. This systematic study optimized the use of pDSC for conversion 

measurements for dental resin composite applications, allowing the direct application of this 

method in further studies to examine the effects of size and loading of micro- and nano-

particles of inorganic fillers. The standardized use of this method will allow comparisons 

between different studies that may otherwise have been incomparable due to differences in 

the measurement parameters used. 

 

3.5  Supplementary Information 

 

Figure S 3.1 - Photocalorimetry accessory modifications. A) – Original accessory as 

purchased. B) – Modified accessory: 4 set screws (small, orange) were added to stabilize the 

light guide brackets, 2 for each one; the Grub screws holding the light guides to the brackets 

were changed for normal screws (blue); 3 screws were added to hold the entire light guide 

assembly to the base. The light guides themselves were also modified to allow lower 

positioning. 
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Figure S 3.2 - A) Heat flow measured from light irradiation only. Carbon black values were 

obtained by solvent evaporation of 5 mg of carbon black suspended in acetone, bare cell 

measurements were from the photocalorimetry cell with nothing more, empty pan 

measurements were performed with an empty aluminium DSC pan. B) Emission spectrum of 

the lamp used with 400-500 nm filter. 
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Figure S 3.3 - Exotherms measured with different measurement procedures. (dashed) The 

exotherm using a ‘jump’ step showed significant distortion, undershooting and subsequently 

overshooting the more stable (solid) ‘isothermal’ measurement. 
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Figure S 3.4 - A) Temperature jump upon polymerization at different set temperatures. B) 

Variations of maximum rate as a function of the set temperature as measured (squares). 

While a rise occurred from 25-30 °C, no change occurred from 30-37 °C, contrary to the 

behaviour predicted by the Arrhenius equation (triangles). * indicates a statistically 

significant difference. 

3.5.1  Calculations 

3.5.1a  Calculations for the predicted change in reaction rate with temperature 

According to Arrhenius equation: 

AE

RTk A e


   

where k is the rate constant, EA is the reaction activation energy (J.mol-1), R is the gas 

constant 8.314 J K-1 mol-1, and T is the absolute temperature, therefore: 

 

𝑘2

𝑘1
=  𝑒

−
𝐸𝐴
𝑅

∙(
1
𝑇1

−
1
𝑇2

) 
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EA for this reaction can be approximated to 25.1 × 103 J.mol-1, which is the value for methyl 

methacrylate (18). The calculated rate constant increase is 18% from 25 to 30 °C is, 25% 

from 30 to 37 °C, and 48% from 25 to 37 °C. 

3.5.1b  Absorbed light calculations for resin in DSC pans 

Pan depth = 1.6 mm 

Path length with reflection = 3.2 mm 

Camphorquinone extinction coefficient: ε468 nm = 46 cm-1.L.mol-1 (31) 

Camphorquinone concentration: 0.5 % = 3.5 × 10-3 mol.L-1 

According to the Beer-Lambert law: 

𝐴 =  𝜀 ∙ 𝑐 ∙ 𝑙 

where ε is the extinction coefficient (L.mol-1cm-1), c is the concentration (mol.L-1) 

and l is the path length (cm), therefore absorbance is 0.0515, transmittance is = 88.8% , and 

the fraction of light absorbed is 11.2%. 
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Chapter 4 -  Correlation of Resin Viscosity and Monomer 

Conversion to Filler Particle Size in Dental Composites 

Abstract 

Objective. The viscosity of dental resin composites is important in their formulation and 

clinical use; it depends on the filler particle size and loading. We intend to study the viscosity 

and conversion of composites made of low dispersity spherical silica fillers. 

Methods. Experimental dental resin composites were formulated using low dispersity 

spherical silica particles of graded sizes (75, 150, 500, 350, 500, 1000 nm) at several loading 

levels with resins based on Bis-GMA and UDMA. Their rheological properties and double 

bond conversion were measured with a rheometer and differential scanning calorimeter, 

respectively. 

Results. The complex viscosity of the unpolymerized pastes can be fit to an extended 

Krieger-Dougherty equation that includes an adjustment factor to account for filler particle 

surface area. This relationship is also extended to estimate the degree of conversion, where 

the calculated or experimental viscosity is used to predict the resulting conversion.  

Significance. The enhanced understanding of the relationship of filler size, composite 

viscosity, and monomer conversion will allow improved accuracy in the prediction of the 

properties of dental resin composite formulations to obtain ideal viscosity for their clinical 

use and a high degree of conversion. 
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4.1  Introduction 

Dental resin composites have experienced a significant rise in usage since their 

advent in the 1960s. These composites are made from a photopolymerizable resin matrix 

(including initiator, co-initiator and inhibitors) mixed with surface-modified inorganic fillers. 

Most of the organic resin monomers in these products are based on the commercially 

available bisphenol A glycerolate dimethacrylate (BisGMA), diurethane dimethacrylate 

(UDMA), and triethylene glycol dimethacrylate (TEGDMA). The inorganic fillers used in 

commercial dental restoratives are generally silicates, most commonly silica or alkaline 

glasses (1). Many companies produce composites, and a large body of literature exists 

studying their mechanical properties and conversion values (2-3). The rheological properties 

and ease of polymerization are significant factors affecting the clinical use of these materials, 

but very few studies have systematically examined the effect of filler particles on composite 

viscosity, and its relationship to the dental monomer conversion. 

The viscosity of these materials is important for commercial formulations since it 

determines their ease of use for repairing caries, which is a weak point of resin composite 

materials (4). The viscosity is also well known to affect the degree of polymerization and 

reaction kinetics in free radical polymerizations due to the reduced chain mobility and lower 

termination rate at higher viscosities (5). The effect of resin monomer composition on 

viscosity has been explored exhaustively (6-7). While the viscosity if suspensions at low 

loading is described by the Krieger-Dougherty model (8), viscosity increases due to the 

addition of filler particles in dental composites is not as well characterized, particularly for 

the high loading levels where particle-particle interactions become more important. To the 

best of our knowledge, no previous work has explored narrow dispersity fillers of different 

sizes with the same morphology to clearly define this thickening effect. 

 The degree of conversion in dental composites is related to their mechanical 

properties such as diametral tensile strength and flexural strength (9-10). Most of the work so 

far has examined the conversion of resin matrix alone (7, 11), and the effect of different 

monomer compositions on the conversion and viscosity. Turssi et al (12) found that filler size 

and morphology did not affect conversion except when the size corresponded to the 

photopolymerization wavelength, where lower conversion values were observed. Otherwise, 

the filler loading has been shown to decrease polymerization shrinkage and increase 
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mechanical properties after polymerization (13-14). Others have examined the degree of 

conversion of different commercial formulations for which the complete composition was 

not known (15-16), providing limited assistance in establishing fundamental rules for 

composite design. 

The detailed formulations of commercial dental composites remain proprietary to the 

manufacturers, therefore the full effect of filler particles on composite properties before and 

after polymerization has not yet been established under controlled conditions. There remains 

a lack of fundamental understanding of the factors influencing the mechanical, chemical, and 

optical properties of the composites. We intend to establish a relationship between the size of 

the filler particles and the viscosity of dental composites, and in turn, the effect on the 

monomer conversion during photopolymerization.  

4.2  Experimental  

4.2.1  Materials 

Tetraethyl orthosilicate (TEOS) was purchased from Alfa Aesar (Ward Hill, MA, 

USA). Anhydrous ethanol and ammonium hydroxide (35%) were purchased from Fisher 

Scientific (Waltham, MA, USA), 3-methacryloyltrimethoxypropylsilane (3-MPS), BisGMA, 

UDMA, and TEGDMA were purchased from VWR (Mont-Royal, QC, Canada); 

camphorquinone (CQ) and ethyldimethylaminobenzoate (EDMAB) were purchased from 

Sigma-Aldrich (Oakville, ON, Canada). All reagents were used without further purification. 

Room temperature is defined as 23 °C in this work. 

4.2.2  Methods 

4.2.2a  Synthesis of monodisperse silica particles and characterisation 

The silica particles with sizes of 75, 150, 350, 500, 1000 nm were synthesized by 

using the Stöber method (17) as described in our previous work (18). The sizes indicated in 

figures and tables refer to the particle diameters measured by laser diffraction (Horiba 

LA960, Japan), and scanning electron microscopy (JEOL FE-SEM, JSM-7400F, Japan) for 

the specific batches of particles that were used and not the nominal sizes. 

Thermogravimetric analysis (TGA 2950 from TA Instruments, DE, USA) was used to 

measure the extent of silane surface modification. The temperature was increased to 120 °C 
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for 10 minutes to eliminate adsorbed water, and then a 20 °C.min-1 ramp until 800°C was 

then used to obtain the extent of silane modification. 

The surface area of the particles was calculated from first principles using sphere area 

and volume equations, and confirmed with previous BET measurements (19), adjusted for 

the particle size. The equation is derived from the ratio of surface area in relation to volume 

and density: 
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where S is the specific surface area (m2.g-1) of the fillers, Asphere and Vsphere are the surface 

area and volume of a sphere,  is the mass fraction of the fillers,  is the density of fused 

silica (2.2106 g.m-3 (20)), and d is the particle diameter (m).  

4.2.2b  Resin and Composite Preparation 

70:30 weight ratio BisGMA-TEGDMA (7B3T) and UDMA-TEGDMA (7U3T) resins 

were each blended by first dissolving 0.5 wt% CQ and 0.5 wt% EDMAB in TEGDMA (as a 

fraction of total resin weight) at room temperature, then adding the main monomer (either 

BisGMA or UDMA), mixing manually and then with a magnetic stirrer at 35°C (approx. 30 

min) to obtain a homogeneous mixture. The resulting resin was then mixed with the indicated 

amount of filler particles (30, 50, 60, or 70 wt%) by spatula, and then homogenized using a 

three-roll mill (Exact 50i TRM, Norderstedt, Germany). Only the composites used for 

conversion measurements contained initiator (CQ) and co-initiator (EDMAB). 

4.2.2c  Rheological Studies 

The rheology measurements were performed using an AR-2000 shear rheometer (TA 

Instruments) with 20 mm parallel steel disk and plate geometry with a gap size of 200 µm for 

60 wt% loading and 1000 µm for 70 wt% loading. The composite pastes were put in place 

and trimmed using a spatula. The measurements were performed with a dynamic oscillatory 

shear test, at a constant frequency of 1 Hz, and time series at constant stress (10 Pa) where 

thixotropic behavior was observed. Each measurement was repeated three times, with a 

recovery period between each run to allow full recovery (<1 %/h change). The complex 

viscosity defines the internal friction of a material under oscillatory shearing stresses; the 
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values shown are the magnitude of the complex viscosity vector (|*|), hereby referred to 

simply as ‘complex viscosity’: 
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where  is the oscillatory stress, 𝛾̇ is the shear rate, and  is the phase angle. The values were 

those obtained at minimum stable measured stress values (10-50 Pa). The temperature was 

regulated using an attached water recirculator with a thermoelectric cooler set to 23.0 or 

32.5 °C. 

4.2.2d  Determination of Monomer Conversion and Polymerization Rates  

The extent of monomer polymerization was evaluated by photocalorimetry (pDSC), 

on a TA Q2000 differential scanning calorimeter equipped with a modified photocalorimetry 

accessory (21), with an Omnicure S2000 light source with a 400-500 nm filter, under a 

nitrogen purge flow. The light intensity was adjusted to 885 mW/cm2 using a cell containing 

carbon black. The method began with equilibration at 37 °C, and a one-minute isothermal 

segment to establish a baseline. The lamp was then turned on for three minutes, such that the 

temperature was kept constant during the exposure, and a final one minute isothermal 

segment for an end baseline. A second run was then immediately performed with the 

polymerized sample to obtain a flat baseline. The conversion was calculated with the 

following equation: 
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where Conv is the conversion, ΔH and ΔHMA are the area under the curve measured by 

photocalorimetry (J/g) and the standard methacrylate polymerization enthalpy (56,902.4 

J/mol) (22), respectively, nMA is the number of moles per gram of methacrylate double bonds 

in the composite sample (mol/g), mfiller and mmono are the masses of filler and monomer, 

respectively, fsilane is the mass fraction of silane (as measured by TGA), Msilane and Mmono are 

the molecular weights of 3-MPS (127.16 g/mol), and of the monomer, respectively. The sum 

is taken for all the resin monomers included in the blend. 

The maximum rates were measured as the point with the largest heat flow of the 

polymerization exotherm, and converted to molar values with Equation 4.6; the gel point 

was the time at the inflection point, taken as the maximum of the derivative of heat flow with 

respect to time. 

4.2.2e  Statistical Analyses 

Statistical significance was determined with pairwise comparisons using student’s t-

test with a 95% confidence interval. 

4.3  Results and Discussion 

Spherical silica particles of different sizes were synthesized by the use of the Stöber 

method. Their sizes were measured to be 70 to 980 nm by laser diffraction and scanning 

electron microscopy, and had dispersity values of 1.02 or less. Composites were then 

prepared with these particles and used to measure the pre-polymerization viscosity at 

different shear stress values and temperatures, and then to measure their polymerization 

kinetics and monomer conversions through the previously established photocalorimetry 

method (21). 

4.3.1  Viscosity 

4.3.1a  Unfilled Resins 

The viscosity of filled composites is important since it affects the ease of use in dental 

clinics, and the overall performance of the material, mainly due to the maximum filler 

loading. The complex viscosity of a material represents its resistance to flow under 

oscillatory shearing conditions and is obtained from both elastic and loss moduli (Equations 

4.2-4.5). This value was measured for the monomers separately and for the resin blends 

(Table 4.3). Our results are consistent with previous studies, with Bis-GMA reportedly 
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having a viscosity of 100-1000 Pa.s, UDMA having a viscosity of 10-50 Pa.s, and TEGDMA 

having a viscosity just below 0.1 Pa.s (6). UDMA also displayed limited shear thinning 

(Figure 4.1A). When blended with TEGDMA in a 7:3 ratio, both BisGMA and UDMA 

blends have similar viscosities, with the UDMA blend being slightly more fluid; they had 

similar values to previously reported results: 0.76 Pa.s for 2:1 Bis-GMA:TEGDMA (7), and 

0.27 Pa.s for 6U4T (23).  

Table 4.3 - Viscosity of pure monomers and blends 

  Complex Viscosity (Pa.s) 

Monomer(s) 25°C 37°C 

Bis-GMA 206.50 22.43 

UDMA 12.58 6.47 

TEGDMA 0.10 0.10 

7B3T 0.83 0.32 

7U3T 0.29 0.18 

 

4.3.1b  Viscosity of Composites with Fillers 

Studies in the literature are rare on the rheology of filled composites. Results on 

commercial composites were sometimes contradictory. For example, one study found that 

there was a correlation between filler loading and viscosity (3), and another study did not 

(24), likely due to the lack of complete composition information for these commercial 

formulations as well as the complex nature of the formulations. Previous rheology work with 

well-defined experimental composites with variations in filler size qualitatively showed 

exponential increases in viscosity with loading; and that this increase was more pronounced 

for smaller particles (25-27) without further quantitative descriptions.  

As expected, the composites exhibited varying shear thinning, thickening, and 

thixotropic behaviours (Figure 4.1). The change in viscosity as well as the recovery time 

varied according to filler size and loading, such that the relaxation time was related to the 

suspension viscosity. This behaviour is complex, and requires further studies to define more 

clearly. For this reason, the values indicated were taken after the samples were allowed to 

relax (Figure 4.1B), resulting in higher viscosity values. Due to the shearing during syringe 
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extrusion and short application time, the clinically-observed viscosity may be lower than that 

reported here. More generally, thinning and thickening behaviours are thought to be caused 

by the breakup of particle clusters as the shear stress becomes greater than the capillary and 

attractive forces that hold them together (8, 25, 28-29). 
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Figure 4.1 – (A) Variation of complex viscosity as a function of oscillatory stress, showing 

the shear thinning behavior of unfilled UDMA and 7U3T resins, and (B) variation of 

complex viscosity over time for 7B3T resin loaded with 60 wt% 185 nm filler particles. At 

constant low stress, the composites relax back to their maximum viscosity. Smaller filler 

particles and lower temperatures exhibited longer relaxation times. 

Rheology tests with composites filled with spherical silica particles of graded sizes 

show that the complex viscosity of the materials at minimal stress has a strong dependence 

on the filler size (Figure 4.2). This effect has been qualitatively (but not quantitatively) 

described previously (25-26, 30-31). The 75 nm particle-filled composites at 60 wt% loading 
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had viscosity values of 31,000 to 44,000 Pa.s, larger filler sizes had exponentially lower 

viscosity values, following the filler size. The values obtained for the 70 wt% loaded 

composites were 102,000 Pa.s. for the 360 nm fillers, which was higher than those of the 60 

wt% composites with 75 nm particles; again, an exponential decrease was observed for the 

larger particles. Therefore, both loading and surface area had a significant effect on 

composite viscosity. 

4.3.1c  Extended Krieger-Dougherty Model 

For suspensions of hard spheres, the Krieger-Dougherty (KD) model relates the 

viscosity of suspensions to their loading and ‘intrinsic viscosity’, a variable related to a 

particle’s contribution to solution viscosity from its shape (32-33). The KD model is derived 

from first principles, examining the mechanics of particle-particle interactions and clustering 

under shearing stresses, with particle-cluster equilibria (8, 34): 
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where  and c are the viscosities of the composite and the continuous (resin) phase, 

respectively; φ and 𝜑𝑀 are the actual and maximum volume loading fractions, respectively, 

and [] is the intrinsic viscosity (2.5 for spherical particles, and larger values for higher 

aspect ratios (8, 33-35)). This model considers the viscosity to be independent of particle 

size, and to only be dependent on the filler loading and the continuous phase viscosity. As 

stated above, studies with dental composites have shown, however, that the viscosity of these 

materials does indeed have a dependence on particle size. The viscosity of composites with 

smaller fillers was shown to be higher, regardless of their morphology (25-26, 30-31).  

Modeling the above data with the KD equation with the known loading, maximum 

loading (72 wt% (18)), and resin viscosity as constants, yields constant viscosity values 

(dotted lines in Figure 4.2), but back calculations show that the exponential factor may be 

adjusted to obtain more accurate predictions. This adjustment factor is found to be linearly 

dependent on the filler surface area, most likely due to the influence of surface-resin 

interactions in the macroscopic viscosity. Thus, we have added a correction factor to the KD 

model leading to an extended KD model: 
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where C is a constant (g.m-2), specific for a given resin-filler system, and S is the specific 

surface area (m2.g-1) of the filler particles as defined in Equation 4.1. The value of C may 

depend on the interactions between the continuous phase and the fillers surface, such that 

stronger interactions would result in larger values, and consequently larger viscosity 

differences with larger filler surface area. For the composites tested, a global fit using 

measurements at both temperatures (23.0 and 32.5°C) and two loading levels (60 and 70 

wt%) resulted in a general C value of 0.55 g.m-2 for the 7B3T resin and 3-MPS surface 

functionalization.  

 

Figure 4.2 – Variation of complex viscosity with filler particle size for 7B3T-based 

composites at 60 wt% filler loading (43 vol%, circles) and 70 wt% (54 vol%, squares) and 

their extended KD equation fitting (dashed lines 32.5°C, solid lines 23°C). The fits yield C 

values of 0.55 for both temperatures, with the main difference being the continuous phase 

viscosity (fit to 2.3 and 4.1 Pa.s. for 23 and 32.5°C, respectively). The standard KD equation 

with the same parameters predicts equal viscosity for all filler sizes (KD, dotted lines). 

The extended KD model developed here yielded accurate estimates for both loading 

values tested. Non-linear regressions of the viscosity data also obtained a maximum filler 

loading value of 72 wt%, confirming the previously measured value (18). Using the C values 

obtained from the fits, the extended model now allows more precise calculations than the 

standard KD model, even when approaching the situation of maximum loading. 
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4.3.1d  Effect of Temperature on Viscosity 

The effect of temperature on the viscosity of the composites is described by the 

Arrhenius equation (36-38), and has already been observed with some commercial 

composites (3): 
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where  is the liquid viscosity, A is a constant, EA is the activations energy, R is the gas 

constant (8.314 JK-1mol-1), and T is the absolute temperature. Figure 4.3 shows that the 

composites exhibit thinning with increasing temperature. Although there are differences, the 

changes in A and EA values in this temperature range are not statistically significant. 

Therefore, no clear conclusion can be drawn regarding the effect of temperature. 
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Figure 4.3 –The variation of complex viscosity with temperature for dental composites 

(7B3T, 60 wt% loading) with different filler sizes (diamonds, 75 nm; triangles, 150 nm; 

circles, 500 nm; squares, 1000 nm). There was no clear trend for different filler particles. 

Despite the large difference in composite paste viscosity, previous work has shown 

that at identical loading, particle sizehas no effect on the mechanical properties of the 

composites after polymerization (2, 14, 18). In combination with the present work, this 

reinforces the conventional wisdom that larger particles produce better composites, not 

because of their superior mechanical performance at identical loading, but due to superior 

user-friendliness of lower viscosity pastes, particularly with hybrid fillers (19). 
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4.3.2  Polymerization Kinetics 

In free radical polymerizations without added fillers, increasing viscosity during a 

polymerization slows polymer chain movement, lowers the termination rate, and increases 

the rate of the polymerization; this is known as the gel effect or Trommsdorf effect (5). This 

phenomenon is amplified in the case of bulk polymerizations where no solvent is present to 

allow chain mobility. The implication is that, for a given system, higher viscosity monomers 

polymerize faster, generally leading to an earlier gel point, and lower overall conversion 

(partially explaining higher conversion values for TEGDMA resins). Dental resin composites 

are heterogeneous systems where the viscosity increases are due to surface interactions with 

a solid phase in addition to monomer viscosity. Therefore, it is not known if the changes in 

polymerization kinetics due to monomer viscosity observed in solution polymerizations 

extend to viscosity increases caused by filler particles in a heterogeneous mixture. 

The maximum polymerization rates of the monomers were measured with pDSC 

from the maximum value of the polymerization exotherm. The rate was adversely affected by 

the resin viscosity, such that higher viscosity (Table 4.1) led to slower kinetics (Figure 

4.4A). TEGDMA shows a two-step rate change, where the beginning of the exotherm 

appears as a typical solution polymerization, but auto-acceleration eventually takes over, 

leading to a second, higher maximum rate (Figure 4.5). For the blended resins, 7B3T had a 

lower polymerization rate than 7U3T (Figure 4.4A), which is consistent with the viscosity 

trend of the individual monomers.  
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Figure 4.4 - Maximum polymerization 

rate measured by pDSC for (A) unfilled 

resins with increasing viscosity from left to 

right, and (B) for composites-loaded 60 

and 70 wt% fillers of different sizes, and 

(C) the gel point for the same composites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The polymerization kinetics of the composites were expected to exhibit an effect similar to 

auto-acceleration due to the viscosity increase caused by the filler particles. However, the 

pDSC polymerization rate measurements showed that the opposite occurred, where the 

smaller particle-filled composites with higher viscosity resulted in lower polymerization rates 

(Figure 4.4B). This is more akin to the effect observed with the monomer viscosity, and 
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suggests that the auto-acceleration is not a factor in the polymerization of these 

heterogeneous composite systems. Despite an almost two-fold rate increase between the 

smallest and largest particles, however, the measured gel point was not significantly changed 

(Figure 4.4C). Therefore, the viscosity increase due to filler slows the polymerization rate, 

but the gel point is reached simultaneously for all composites, regardless of their viscosity. 
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Figure 4.5 - Polymerization exotherm for TEGDMA at 37°C. A two-peak polymerization 

shows the typical slowing first, then autoacceleration due to the gel effect. 

 

4.3.3  Monomer Conversion 

The polymerization conversion was evaluated with pDSC to assess the effect of paste 

viscosity on extent of monomer conversion. Double bond conversion has been investigated 

quite thoroughly in the past for different resin matrices (7, 11, 13). The values obtained in 

this study (Figure 4.6A) agree with previous results for the commonly used resin matrices: 

The value obtained for TEGDMA was 88.5±2.6% compared to 83.6±3.1% previously (39), 

77.3±1.7% for 7U3T is within error of 79±1% (23), as is the value of 72.6±0.5% for 7B3T 

compared to 72±1% (23). Figure 4.6A shows that the more liquid resins resulted in higher 

conversion values.  

The double bond conversion of the filled composites showed a significant variation 

with the size of the filler used, as well as the filler loading (Figure 4.6B-D). The conversion 

values obtained showed a linear trend with respect to the log of viscosity: 
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 0 log *Conv Conv B    (4.11) 

where Conv and Conv0 are the conversion for the final composite material and for resin 

alone, respectively, B is an empirical ‘resin constant’, and |*| is the complex viscosity 

(Equation 4.5), either calculated with Equation 4.9 or measured. This empirical equation 

allows the conversion to be fit either from the measured viscosity, or from the surface area of 

the particles, though higher loading tends to yield less accurate results (Figure 4.6D). The 

two resins tested have similar B constants for the conversion (B = 6.9 ± 0.5), but at 70 wt% 

filler loading, the B constant has a higher value (B = 11.7 ± 0.8) for both resins, indicating 

deviations near maximum loading. These errors at higher loading are further amplified due to 

the conversion value calculation (Equation 4.7) that uses the measured amount of silane 

modification, where multilayers can skew the results since only the outermost layer is 

available for polymerization. All samples in Figure 4.6D show a sharp decrease in the 

conversion at higher loading. The extended KD model allows a more accurate calculation of 

the conversion of the composites at all the loading levels tested. 
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Figure 4.6 -  Variation of double bond 

conversion for (A) unfilled resins, and 

according to filler size for (B) 7B3T-based 

composites, and (C) 7U3T-based composites, 

and (D) 7B3T composites at different filler 

loading levels. All composites yield a B value 

of 6.7. 
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Photopolymerizations at high light intensity and high initiation rates are known to 

form localized nanogel particles before complete crosslinking, which is thought to be the 

reason for higher conversion values with higher light intensities (6, 21, 40). We hypothesize 

that composites filled with smaller particles have lower polymerization rates and conversion 

values because of their smaller interparticle spacing, which limits the size of the nanogel 

particles (Figure 4.4.7). This constriction leads to a lower local monomer concentration, 

resulting in a lower polymerization rate and conversion. Since the propagation reaction 

occurs very rapidly, the observed gel point remains the same. 

 

Figure 4.4.7 – Model for nanogel formation during composite polymerization. The larger 

gaps between the larger particles allow larger nanogel particles to form, whereas the smaller 

particles may constrict the growth of the nanogels, lowering the maximum polymerization 

rate and conversion. 

The shrinkage stress data previously obtained by Satterthwaite et al (41) can be re-

examined by the use of the equations developed here, considering the composition of these 

composites. The loading and size of their fillers, and the C value found here were used to 

establish a linear relationship between their measured shrinkage stress and the predicted 

conversion of those composites (Figure 4.8). Though further studies would be necessary to 

confirm this relationship, this suggests that filler size, composite viscosity, conversion, and 

shrinkage stress are all related. 
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Figure 4.8 - The shrinkage stress measured by Satterthwaite et al (41) is linearly correlated 

to the conversion predicted by equation 4.9 and 4.11 extended KD (R2 = 0.811). While there 

is a correlation between shrinkage stress and particle size, the change is mainly due to 

changes in conversion. 

4.4  Conclusions 

This work demonstrates that the viscosity of the composites and their double bond 

conversion can be estimated or even predicted, knowing the surface area of the filler particles 

used in the formulation. We have extended the KD model to allow accurate calculations of 

both viscosity and conversion with variations of filler loading, size, and resin matrix. This 

extended KD equation allows the optimization of composite properties and provides precise 

guidelines for the composition of the dental composites to obtain the desired characteristics. 

Moreover, the kinetics of polymerization are slowed with higher viscosity resins and 

composites. Coupled with our previous study examining the mechanical properties of the 

cured composites (18), the results of this work will allow users to optimize the viscosity 

properties of the composite pastes, as well as the mechanical properties of the resulting cured 

materials. Further studies may examine the validity of this relationship for irregular and 

multimodal fillers. 
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Chapter 5 -  Monodisperse silica-filled composite restoratives 

mechanical and light transmission properties* 

Abstract 

Objectives. The aim of this study was to formulate resin-based composites using 

spherical silica particulate fillers with graded size (75, 150, 350, 500, and 1000 nm), and to 

evaluate the influence of their size and loading on the mechanical and light transmission 

properties of the resulting material. 

Methods. A series of five spherical silica fillers were synthesized, and then 

formulated with BisGMA/TEGDMA or UDMA/TEGDMA resins. These were then tested for 

maximum filler loading, flexural strength and modulus, as well as transparency and depth of 

cure. 

Results. Low dispersity spherical silica particles of 75, 150, 350, 500, and 1000 nm 

were synthesized. Maximum loading was 70 wt% for the three largest filler particles, and 

decreased for the smaller sizes, where UDMA-based resins allowed slightly higher loading. 

When maximally loaded, the largest particle sizes produced the highest flexural properties. 

However, when using the same loading (60 wt%), all filler sized produced similar flexural 

strengths and moduli. The transparency and depth of cure were increased as the filler size 

decreased. 

 Significance. While hybrid filler particles are the norm in commercial materials, by 

studying and understanding the influence of individual components on the material 

properties, we can finely tune the properties of the materials as desired. 

 

 

 

 

 

 

 

 

* Published as a research article: Eric Habib, Ruili Wang, X.X. Zhu, Dental Materials, 33 (3), 2017, 280-287. 
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5.1  Introduction 

Dental resin composites have been slowly replacing the mercury containing dental 

amalgams since 1960s, due mainly to their superior aesthetic properties (1). Since their 

advent, a large body of research coming from both academia and industry has explored a 

variety of resin monomers as well as inorganic fillers. However, much of this research has 

remained proprietary. 

The fillers used for dental composites have historically mostly been silicates, ranging 

from silicon dioxide to bioactive glass. Other types have also been used, such as 

hydroxyapatite, and polymer nanogels (2-4); recent reviews have described these fillers in 

great detail (5-6). Rather than examining the effect of different chemical compositions, this 

work strives to describe the effect of filler loading, size, and morphology on the mechanical 

and optical properties of the final composites. 

The most commonly seen morphologies of filler particles are spheroidal and irregular, 

though a few others have also been explored (7-8). Spheroidal filler particles are synthesized 

by solution synthesis in a bottom-up approach, such that small particles are seeded and grow 

slowly to the desired size, as seen in the oft-used Stöber process, resulting in very low 

dispersity (9-10). Irregular particles are often made using a top-down approach, by milling 

the desired material, and passing it through sieves to obtain the desired size. These usually 

exhibit a high dispersity as well as a large variability in the particle shape. 

With regards to the properties conferred by these fillers, there have been mixed 

results in the literature. Most of the work that has been done evaluating these properties used 

commercial composites whose compositions are variable, and often not fully known, making 

it difficult to derive meaningful trends. Nonetheless, some work with commercial composites 

has shown that spheroidal fillers can accommodate higher loading, leading to superior 

mechanical properties (11). Furthermore, while spherical fillers exhibit similar wear 

performance as irregular ones, they maintain superior gloss and smoothness in the process 

(12). 

Few articles have examined the effect of filler morphologies on composite properties 

while keeping other parameters constant. Satterthwaite et al examined the effect of 

spheroidal and irregular fillers on shrinkage stress and strain, and found that spheroidal fillers 

had lower values for both, hypothesizing that the difference was due to the higher surface 
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area of irregular particles (13-14). The same group found that larger filler particles led to 

increased void volumes within the composites (15). Furthermore, Marghalani found that 

surface roughness was significantly lower for monodisperse spheroidal fillers than for 

irregular or multimodal fillers (16). Finally, Turssi et al examined the wear resistance and 

conversion, where their findings revealed that smaller particulate fillers result in lower wear 

volume, but also lower conversion values (17). 

In terms of the optical characteristics of materials, a few papers examined commercial 

composites (18-19), while others examined the optical properties resulting from experimental 

composite formulations (20-23). Many of these examined samples of differing thickness, 

obtaining exponential decay with thickness as predicted by the Beer-Lambert law for 

translucency. Furthermore, for the tested silica filler, Azzopardi found a direct correlation 

between BisGMA content and translucency (20). The chemical composition of the filler (21) 

as well as the loading and size (22-23) were also shown to play a role in the final 

translucency. 

The objective of this work is to establish the relationship between the size and loading 

of low dispersity silica filler and the mechanical and optical properties of the resulting 

composites. The hypothesis is that larger filler particles produce superior mechanical 

properties at the detriment of translucency, and in turn, depth of cure. 

5.2  Materials and Methods 

Tetraethyl orthosilicate (TEOS) was purchased from Alfa Aesar (Haverhill, MA, 

USA), 3-methacryloyltrimethoxypropylsilane (γ-MPS), bisphenol A glycerolate 

dimethacrylate (BisGMA), and triethylene glycol dimethacrylate (TEGDMA) were 

purchased from VWR (Radnor, PA, USA); camphorquinone (CQ) and 

ethyldimethylaminobenzoate (EDMAB) were obtained from Sigma-Aldrich (St. Louis, MO, 

USA); ammonium hydroxide (35%) and anhydrous ethanol were obtained from Fisher 

Scientific (Waltham, MA, USA). All reagents were used without further purification. The 

dental lamp used was a Kerr Demetron Optilux 500; its intensity was measured at 740 

mW/cm2 with the lamp’s integrated radiometer. Room temperature is defined as 23 °C. 
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5.2.1  Synthesis of Monodisperse Silica Particles  

Silica particles with graded size were synthesized using the Stöber method. Ethanol, 

water, and ammonium hydroxide were mixed together and equilibrated to the desired 

temperature. TEOS was then added either in one portion, or at the rate specified in Table 5.1. 

Once the reaction was complete (8 hours after last addition), surface modification 

(silanization) was done with 1.0 mL γ-MPS per 10 mL TEOS that was added directly to the 

solution with magnetic agitation for 16 h. Centrifugation was then performed at 12,000 × G 

for 20 minutes, followed by resuspension in ethanol. This process was repeated 3 times. 

After the final centrifugation step, the residual solvent was evaporated at 80 °C, and the 

particles were dried under vacuum at 115 °C for 24 h. 

 

 

Table 5.1- Reaction conditions for monodisperse silica particles of varying size. 

Target 

Size (nm) 

Ethanol 

(ml) 

NH4OH 

(ml) 

Water 

(ml) 

TEOS 

(ml) 

Additional 

TEOS (ml) 

Addition 

Rate (ml/h) 

Yield 

(g) 

Average 

Size (nm) 

75 250 16.5 0 40   13.7 77 

150 250 5 25 15   4.2 148 

350* 250 5 25 15   4.3 360 

500 250 25 40 45 33** 8.3 32.0 488 

1000 250 25 40 15.5 31 1 13.4 932 

* Solution was cooled in an ice bath to 3 °C for the initial addition of TEOS and warmed 

naturally to room temperature 

** TEOS was dissolved in 383 ml of anhydrous ethanol 

5.2.2  Particle Characterization 

The size of silica particles was characterized using laser diffraction (Horiba Laser 

Particle Sizer LA-950) in water or dynamic light scattering (Malvern Zetasizer) in ethanol, 

using an aliquot taken from the solution before centrifugation. In addition, scanning electron 

microscopy (JEOL JSM-7400F FE-SEM, Japan) was used to confirm the particle size, 

dispersity, and morphology, using a 5 kV accelerating voltage and 20 µA. 
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Thermogravimetric (TA TGA 2950 thermogravimetric analyzer, DE, USA) analysis was 

used, under an air atmosphere, at 20 °C/min to measure the extent of silane surface 

modification. 

5.2.3  Composite Blending 

The resins were prepared by first dissolving CQ and EDMAB (final concentration of 

0.5 wt% of the final resin each) in the TEGDMA resin by mechanical stirring. BisGMA or 

UDMA was then added to the mix, stirred by hand, and then stirred mechanically at 35 °C 

for 30 min. The final ratio of BisGMA or UDMA to TEGDMA was 70:30 by weight. 

The composites were then blended by coarsely mixing the filler and resin by hand, 

and then completing the mix with the three roll mill (Exakt 50i TRM, Norderstedt, Germany) 

until a homogenous material was obtained. 

5.2.4  Mechanical Properties 

To evaluate the maximum loading of the composites, the dry filler was slowly added 

to the liquid resin and mixed by hand, before blending with a three roll mill. There were two 

criteria that were used to measure the maximum loading: 1) when the composite was no 

longer cohesive and broke apart, it was considered to be overloaded, and the value before the 

last addition was used as the maximum filler loading, or 2) when the viscosity became so 

high that the samples could no longer be processed, they were also considered to be 

overloaded for all functional purposes. This test was done in duplicate.  In the case of high 

viscosity, it is not the true maximum loading for the particles, so all references to ‘maximum 

loading’ refer to the functional maximum loading found here. 

Composite bars were made using split stainless steel bar molds of 2 mm x 2 mm x 25 

mm sandwiched between two 0.5 mm thick glass slides. They were polymerized with the 

lamp mentioned above for 20 s (3 times to cover the whole bar) and then 7 s from the other 

side (3 times again).  The flexural strength and modulus of these specimens were measured in 

quadruplicate on a universal mechanical analyzer (Instron 5565, USA), according to ISO-

4049. 

5.2.5  Optical Properties 

Composite disks were added into a stainless steel disk molds of 5 mm diameter and 

0.5 mm thickness covered by 0.5 mm glass slides, and polymerized for 30 s using a dental 
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lamp. The transmission of light through the disks was measured on a UV/Vis spectrometer 

(Flame USB 2000, LS-1 tungsten halogen lamp, Ocean Optics Inc., USA) by transmission 

with a custom-machined brass holder for the glass fiber light guides. Each sample was 

measured three times at random points and then averaged. 

The refractive indices of the resins were measured with a handheld digital 

refractometer (Reichert AR200, NY, USA) 

5.2.6  Polymerization Conversion and Depth of Cure Measurements 

The extent of monomer polymerization was evaluated by Raman spectroscopy 

(Renishaw Invia confocal microscope, 785 nm laser, 600 line/mm grating, Gloucestershire, 

UK). For general conversion measurements, 10-20 mg of composite paste was placed on 

aluminum foil and measured (spectrum centered at 1500 cm-1), then polymerized under a 

dental lamp for 20 s, and measured again. The extent of polymerization was calculated with 

the following equations (24): 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 1 −
𝐶1638×𝑈1608

𝐶1608×𝑈1638
    (5.1) 

where C1638 and C1608 are the areas under the curve for the cured sample for the bands 

centered at 1638 cm-1 and 1608 cm-1, respectively, and U1638 and U1608 the analogous 

measurements before curing. These bands were used for BisGMA-containing composites with 

an aromatic C=C band at 1608 cm-1, and 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 =  1 −
𝐶1638×𝑈1725

𝐶1725×𝑈1638
    (5.2) 

for the UDMA-based composites without the aromatic band, using the C=O band at 1725 cm-

1 (25). 

For depth of cure measurements, the composite paste was put into a split cylindrical 

mold (diameter of 4 mm, depth of 10 mm or 30 mm, where necessary), and polymerized for 

20 s. The sample was then de-molded, and excess paste was allowed to leak off (if 

applicable). The sample was then placed horizontally on the Raman spectrometer and a 

conversion map was made to evaluate the degree of cure by depth (1 point per 0.1 mm depth, 

2 × 5 s scan). A separate sample of uncured resin was used as a reference. Subsequently, all 

of the soft paste from these samples was removed by gentle scraping, and the sample depth 

was measured with a micrometer (26). The depth of cure as measured by Raman 
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spectroscopy was the average of two measurements. Mechanical depth of cure measurements 

was the average of three samples. 

5.2.7  Statistical Analysis 

The statistical significance was compared using one-way ANOVA analysis with the 

Tukey method within a 95% confidence interval. 

5.3  Results 

The low dispersity spheroidal silica fillers were obtained using the Stöber method and 

were tuned to have sizes of 75, 150, 360, 500, and 1000 nm. These were silanized in situ with 

an excess of γ-methacryloyl propoxysilane to allow covalent bonding between filler and 

resin, and then centrifuged and rinsed before the degree of substitution was evaluated by 

thermogravimetric analysis. The particles showed low overall size dispersity, as measured by 

both laser light diffraction and scanning electron microscopy (Figure 5.1, Figure S 5.1). 

These particles were then used to formulate dental composites using two commonly 

used resins: BisGMA/TEGDMA (7B3T) and UDMA/TEGDMA (7U3T). Several 

experimental series were performed, with varying filler size, and filler loading. 

The smallest particles (75 and 150 nm) had the lowest maximum filler loads (Figure 

5.2A) for both resins due to a high viscosity that prevented the mixer from blending in higher 

amounts of filler. The 360, 500, and 1000 nm particles all had a maximum loading of 70 

wt%, but showed decreasing viscosity with increasing size (data not shown). Despite the 

lower viscosity, attempts to load the 1000 nm filler an additional 2% (to 72 wt%) proved too 

much, and resulted in the paste turning into a coarse powder. The 7U3T resin allowed more 

filler to be incorporated when using the two smallest fillers due to its inherently lower 

viscosity compared to the 7B3T resin, but displayed the same plateau for the larger particles. 
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Nominal Particle Size (nm) Mean Size ± SD (nm)a Median (nm)a 

75 77 ± 10 76 

150 152 ± 30 151 

360 367 ± 51 368 

500 488 ± 53 485 

1000 930 ± 66 932 

a Values obtained by laser light diffraction 

Figure 5.1 – FE-SEM images (left to right, 75, 150, 360, 500, 1000 nm particles) and size 

measurements of the silica particles prepared by the Stöber method. 

The composites were blended and formed into bars to measure the flexural properties 

of these materials. Mechanical tests were performed in two groups: Group 1:  The 

composites were all loaded equally at 60 wt%; and Group 2: the composites were maximally 

loaded, as indicated in Figure 5.2A. For Group 1, when loading was held constant at 60 wt%, 

there was no statistically significant difference in the flexural strength between the different 

filler sizes (Figure 5.2B). While there were some differences between the measured moduli, 

there was no clear trend. For Group 2, as expected, there is an increasing trend in both 

strength and modulus with increasing filler size (Figure 5.3A, C), though the increases in 

strength are not significant beyond the jump observed from 75 nm to 150 nm filler. 

Furthermore, when grouping all of the composites with similar loading (Figure 5.3B, 

D), there is a significant increase in the mechanical properties with loading. This confirms 

the notion that larger filler fractions impart superior mechanical properties to the resulting 

material. 
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Figure 5.2 - A) Maximum filler loading of 7B3T (square, dashed line) and 7U3T (circle, 

solid line) based composites with different filler sizes, based on duplicate tests, B) Flexural 

strength and C) Flexural modulus at constant 60 wt% loading using 7B3T resin. Each test 

was performed in quadruplicate. Letters indicate statistically similar groups. 

In terms of the influence of the resin matrix, the 7B3T composites showed marginally 

higher flexural strength values in comparison with 7U3T composites, but the difference was 

not statistically significant. The flexural moduli of these composites, however, were 

markedly higher with the 7B3T resin (CI: 0.95) for filler sizes of 360, 500, and 1000 nm. 
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Figure 5.3 - Flexural properties of BisGMA-based (solid line, squares; empty bars) and 

UDMA-based (dashed line, circles; hatched line bars) composites by particle size at 

maximum loading (A,C), and by filler loading for all sizes (B, D). A and B show flexural 

strength, and C and D show flexural modulus. Each point in A and C represents 

quadruplicate measurements, each bar in B and D represents an average of 8 to 12 points. * 

indicated statistical significance at CI > 0.95 

The translucency properties of the composites were evaluated in two ways: 

transmittance and depth of cure. The latter was evaluated both by the traditional mechanical 

method and Raman spectroscopy, measuring the degree of conversion at increasing depth. 

As seen in Figure 5.4, the transmittance of the composites showed that the smaller 

particles had a much higher transmittance than the larger ones, where the 75 and 150 nm 

particles showed some wavelength dependence. For the fillers of 360 nm in diameter or 

larger, the transmittance was too low to measure accurately enough to reach a meaningful 

conclusion. 
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Figure 5.4 – A) Pictures of the 0.5 mm thick disks by filler size; B) transmittance 

measurements of the 75 nm and 150 nm filled disks.  

Accordingly, the depth of cure showed a reciprocal relationship with filler size as 

shown in Figure 5.5A. The depth of cure dropped dramatically after the 75 nm filler, and 

remained at approximately the same level for the rest of the fillers. Filler loading had little 

effect of the depth of cure once filler was added after the initial addition (30 wt% in this 

case). 

Both of the resins showed the same trend, but 7U3T had a markedly higher depth of 

cure. In order to account for the difference between the resins, the refractive indices of the 

7B3T and 7U3T resins were measured to be 1.52 and 1.48, respectively, such that the 

UDMA resin more closely matches that of the silica filler (1.46) (27). 

Furthermore, comparing the depth of cure as measured by mechanical means or by 

Raman spectroscopy (Figure 5.5A) shows that the values obtained were almost identical, 

such that the small difference can be attributed to the difference in measurement geometry 
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(side measurement for Raman spectroscopy versus center measurement for mechanical 

method).  
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Figure 5.5 - A) Depth of cure of the composites according to their filler particle size at 60 

wt% filler loading. Full symbols, mechanical measurements; empty symbols, Raman 

measurements. B) Depth of cure with varying filler loading using 7B3T based composites 

5.4  Discussion 

The maximum loading of the composites using particles of different sizes appears to 

be a function of two concurring phenomena: particle packing, and composite viscosity. When 

considering the packing of identical spherical particle, previous work and simulations have 

shown that the maximum theoretical packing is 74 vol% (28), however computer simulations 

and experimental results show that the maximum packing is closer to 64 vol% (29), 

depending on the system. The three largest particle sizes (360, 500, and 1000 nm) having a 

maximum loading of 70 wt% (~53.6 vol%) suggest that this is the upper limit for packing in 
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these composites, indicating a form of random loose packing (53.6-63.4 vol%)  (30). This 

packing mode is consistent since excess resin is required to maintain the malleability of the 

unpolymerized composite pastes, where higher packing would likely render the composite 

friable. 

The previously mentioned packing considerations set a hard limit on the packing of 

low dispersity spherical fillers, but as the particle size decreases, the effective filler surface 

area increases, leading to increased interactions between the filler and the resin. Such 

interactions then manifest macroscopically as higher viscosities (31-32). In turn, despite the 

smaller particles having the same theoretical packing limit as the large particles, the viscosity 

of the paste increases to a degree that renders such high loading impractical. For smaller 

particles (75 and 150 nm, in this case), the loading is therefore limited by the viscosity. 

Furthermore, when examining the differences between the 7B3T and 7U3T resins, the 

viscosity of the base resin clearly has an influence of the material viscosity, allowing the 

more fluid 7U3T resin to have a higher loading, though other resin-filler compatibility factors 

may be in play (32). 

In terms of the mechanical properties, previous literature hypothesized that lower 

loading led to inferior mechanical strength (17, 33-34), but it had not been shown for fillers 

of identical composition and morphology. Results show that higher loading does indeed 

significantly increase both flexural strength and modulus (Figure 5.3). Such a phenomenon 

could be explained by the number of inter-particle contacts that serve to transmit and diffuse 

forces across the material; rather than the stress being concentrated at a specific point where 

it is more likely to break, that stress is transmitted and dispersed to many nearby particles 

through their physical contact. Lower loading would result in fewer interparticle contacts, 

and so lower yield stress. 

Tests using different filler sizes with identical loading fractions show that the flexural 

strength does not differ significantly among filler sizes (Figure 5.2B-C), thus confirming the 

hypothesis, and agreeing with previous work on the topic (35). The observed variance in 

flexural modulus shows no clear trend, and is most likely due to bubble entrapment while 

polymerizing the composites. When maximum filler loading is used, however, larger particle 

sizes produce composites with superior flexural strength and modulus (Figure 5.3). 

Therefore, while conventional wisdom in dental materials is correct in that larger particles 
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result in mechanically stronger composites, this is purely due to the maximum allowable 

loading, and is not directly related to the filler size. 

The translucency and depth curing properties of these materials were inversely 

affected by the particle size, such that smaller particles produced much higher depths of cure 

and transparencies (Figure 5.5A). This was expected due to the decreased light scattering and 

reflection that is exhibited by smaller particles. The biggest drop in depth of cure occurs 

between 75 and 150 nm, which corresponds to the Rayleigh scattering limit of the 

polymerization light’s wavelength (400-600 nm). The UDMA-based composites also clearly 

show a greater depth of cure than the BisGMA-based composite. This is most likely due to 

the refractive index difference between the resin and the filler particles. Reflection and 

refraction effects that lead to turbidity or opacity in these composites are governed by the 

refractive index (36). If using fused silica for the value of the filler, it has a value of 1.46, 

leading to a difference of 0.06 with the BisGMA-based resin, but only 0.02 with the UDMA-

based resin. This difference, however small, results in a far superior depth of cure with the 

UDMA-based resin (Figure 5.5). Therefore, the smallest particles produce the highest depth 

of cure, particularly when matched with refractive index matched resins. 

Furthermore, in order to evaluate the influence of filler loading on depth of cure, 

particles of 1000, 360, and 75 nm in diameter were tested at different loading levels, which 

had no significant effect on the depth of cure. This follows scattering theory, such that once 

the particle concentration is high enough to exhibit multiple scattering, the scattering 

contribution no longer changes significantly, and the transmission of light and depth of cure 

remain mostly constant (Figure 5.5B). 

When comparing the depth of cure as measured by the conventional spatula scraping 

method and the Raman spectroscopy, the results are very well matched (Figure 5.5A). Due to 

the exponential nature of light penetration, the conversion drops fairly rapidly when 

approaching the uncured bottom edge. For that reason, the conversion seems to change very 

little up to the full depth of cure of a given sample. The small divergence that is observed 

between the Raman and scraping measurements is simply due to the conical shape of the 

samples, where the depth of cure is higher in the middle than on the sides. These results 

indicate that the spatula method, while somewhat less accurate due to its inherent variability, 

can serve as a close approximation of the value measured by other means. 
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5.5  Conclusion 

Low dispersity silica filler particles were synthesized, characterized, and tested in the 

formulation of dental composites with two monomer systems. Within the limitations of this 

study, with the use of monodisperse spherical silica fillers, the largest particles (350-1000 

nm) produced superior flexural properties, as hypothesized, but only due to the superior 

loading permitted by their lower surface area. Conversely, smaller particles produced more 

transparent composites, which have a correspondingly higher depth of cure, particularly 

below the Rayleigh scattering limit (~ 100 nm in this case). Furthermore, the composites 

formulated with the BisGMA-based resin were stronger than the UDMA-based resin, but had 

inferior depths of cure. This study will allow a better understanding of how detailed filler 

compositions affect the properties of the final materials. A systematic understanding will 

further allow us to precisely tune the composite properties as desired. Studies on the 

influence of filler size on polymerization kinetics will allow us to further deepen our 

understanding of composite viscosity beyond that of maximum loading. 

5.6  Supplementary Information 

 

Figure S 5.1 - Laser diffraction data for the size distributions of the spheroidal silica fillers. 
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Chapter 6 -  Conclusions and Future Work 

6.1  General Conclusions 

The objective of this thesis was to improve the photocalorimetry method and better 

define how the different parts of dental resin composites affect the final properties of the 

material both before and after polymerization. The studies contained herein demonstrate that 

through systematic variation of the parameters involved, the role of each piece of these 

complex blends can be isolated to better understand the rules that determine their properties. 

The technique and models developed here will greatly accelerate the development and 

characterization of dental resin composites, at least partially bypassing the lengthy trial and 

error processes that are typically required to obtain clinically relevant composites. 

6.1.1  Reliable Method for Photocalorimetric Measurements of Resin Curing 

The variables involved in the photocalorimetry method were varied to assess their 

effect on the measurements, and on their reliability and repeatability. By observing the trends 

in the measured polymerization rate and final conversion with respect to protocol, 

temperature, mass, light intensity, and atmosphere, we were able to establish a robust and 

error-resistant protocol to allow us a better understanding of the photopolymerization 

processes being studied. Some variables, such as light intensity, followed the expected 

relationships with regards to polymerization kinetics. Others, such as mass, were not as 

straightforward, further justifying the need for such a study. This study will serve as a basis 

for all future work using photocalorimetry to ensure that they are reproducible and reliable, 

and will ensure consistency between studies. 

6.1.2  Accurate Modeling of Composite Paste Viscosity and Conversion 

Due to the complexity of commercial formulations, despite many studies examining 

their properties, very few previous studies have been able to establish anything more than 

qualitative causal relationships between each parameter and its effect. These studies involved 

either commercial materials whose full composition is not known, or had too few samples to 

be able to adequately portray the effect of the changes. In this thesis, spherical silica filler 

particles were synthesized with well-defined morphology and size, and were used to 

formulate experimental composites to systematically relate filler size and loading parameters 

to the resultant properties in the final materials. Our composites formulated with low 
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dispersity spherical silica particles of graded size (75 to 1000 nm) showed that the viscosity 

of these materials can be modeled and predicted using an extended version of the classic 

Krieger-Dougherty model. This modified model uses filler surface area in addition to loading 

to accurately predict the viscosity of these suspensions at different loading levels. The 

viscosity can in turn be used to model the conversion of composites, given an empirical resin 

constant and the conversion for resin alone; it was shown to be directly related to the 

logarithm of suspension viscosity. Furthermore, data and compositions from other work with 

shrinkage stress suggest that this shrinkage can also be predicted using this same EKD 

model. While this work was performed on BisGMA and UDMA resin blends, the fact that 

both yielded similar results suggests that only dramatic changes in molecular size or 

properties would affect this relationship. The model should therefore be applicable to a wide 

range of compositions. 

6.1.3  Mechanical and Optical Properties of Cured Composites from Filler Size 

The same formulations with spherical silica particles of graded sizes from the 

previous section were also used to evaluate the final mechanical and optical properties of 

these composites according to the filler size and loading. The filler loading was found to be 

the principal parameter that affects the mechanical properties of the composites, increasing 

strength with loading. While the smallest filler size (75 nm) had decreased mechanical 

performance compared to the larger sizes, when equally loaded, all others were within error, 

suggesting that filler size does not significantly influence mechanical performance of the 

composites. However, smaller particles have lower functional filler loading values due to 

their higher viscosity, resulting in poorer mechanical performance. Furthermore, as expected, 

very small filler particles were found to produce transparent composites, in particular for 

those of less than 150 nm, where Mie scattering is less prominent. Though this study was 

done in the context of dental composites, it can also be applied to other highly loaded 

polymer composites to design more refined formulations, yielding transparent and 

mechanically resistant materials. 

6.1.4  Overall Conclusion 

This thesis serves to advance the understanding of dental resin composite 

formulations for the design of new and better materials. Though the chemistry had advanced 
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significantly for these materials, this thesis now brings a much-needed understanding to the 

design of composites formulations. The filler has long been known to affect the rheological 

properties of the composites before polymerization and some of the properties after, however 

this relationship has now been better defined. Through the methodological optimizations 

developed herein, further research can more easily be performed with confidence in the 

integrity of the data obtained. Using standardized and well characterized methods, the 

relationships uncovered here now allow better predictions of composite properties at the 

design stage, saving time in material synthesis and formulation. 

6.2  Perspectives 

The work performed in the context of this thesis reached meaningful and useful 

conclusions, but also led to many more questions. The filler particles used in dental materials 

have so many parameters that the permutations are virtually endless, but the following are 

projects that would logically continue the work presented here. 

6.2.1  High Dispersity and Multimodal Filler Particles 

The work performed in chapters 4 and 5 was done with low dispersity silica particles 

for simplicity, and to eliminate morphology and dispersity as variables, however further 

studies should be done to see how both affect the relationships that were uncovered here. 

Dispersity is well known to affect particle packing, such that higher dispersity leads to denser 

packing, resulting in a higher maximum particle loading (1). As described in chapter 4, a 

higher maximum loading would result in lower viscosity pastes and in turn, theoretically, 

higher conversion values. Thus by using particles with the same average size, but different 

dispersities, it may be possible to develop an effective model of maximum loading for these 

highly loaded suspensions. 

The next logical step to verify the applicability of the EKD model is to see if it still 

applies to multimodal filler distributions. Like dispersity, multimodality should allow higher 

maximum loading, decreasing the viscosity of the suspensions, and increasing conversion. 

The greatest difficulty to this application is that maximum filler loading is more difficult to 

define with multimodal fillers, though theoretical calculations may be applied for comparison 

purposes (2-3). Otherwise the maximum loading can be determined experimentally. 

Furthermore, since highly loaded composites have very high viscosity, this property becomes 
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very challenging to measure using traditional rheology methods; it would most likely be 

necessary to resort to Mooney viscosity (4) or other methods traditionally reserved for soft 

solids, such as compressive or tensile moduli, to adequately characterize highly loaded 

composites. 

The final extension would be to use irregular particle morphologies. These would 

require surface area measurements (such as BET tests), since surface area cannot be 

calculated from first principles. This type of fillers is well known to have high maximum 

loading values, due both to their high dispersity and their superior packability. Once a valid 

model is obtained for high dispersity monomodal fillers, then it can be expanded to 

multimodal fillers, and finally to irregular particles.  

6.2.2  Variations in Interfacial Energy and Reactivity 

Another direct extension of the work in chapter 4 is to vary the surface 

functionalization of the filler particles to see the effect on both viscosity and conversion. 

Previous studies have shown that adding a fraction of octyltrimethoxysilane (OTMS) to the 

usual 3-MPS can mildly improve conversion in composites (5). The modification of surface 

properties will change the interfacial energy, which partly determines the viscosity of the 

paste (c parameter in the EKD model) and in turn the conversion of the composites. 

Qualitative experiments over the course of this thesis have demonstrated that composites 

filled with particles modified with OTMS in addition to 3-MPS have lower viscosities than 

those functionalized only with 3-MPS. Like the variations in resin monomers, this is 

expected to result in lower viscosity values. Although the work performed in chapter 4 

directly related viscosity and conversion, in this case the interfacial reactivity would be lower 

due to the lower surface concentrations of γ-MPS. This change in methacrylate density may 

affect the relationship that was established with fillers functionalized only with γ-MPS. Thus, 

there would be a competition between the lower viscosity and lower methacrylate density, 

however, since the surface methacrylates account for only a small portion of the available 

groups, it would most likely still result in a higher conversion value due to the lower 

viscosity. 

Polymer nanogel particles (see section 1.3.3) that were previously shown to reduce 

shrinkage stress would also make an interesting extension to the models developed here. 

Since these are structurally similar in composition to the resin monomers themselves, their 
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contributions to viscosity and conversion may result in much more favorable values. These 

should have dramatically lower interaction energies, resulting in smaller viscosity changes 

with the addition of filler particles. This may also be helpful in explaining some of Liu et al’s 

observations regarding decreased shrinkage stress when adding nanogel particles to 

composite formulations (6). 

6.2.3  Cellulose Nanocrystals as Ionomer Cement Components 

Cellulose nanocrystals (CNCs) have seen increasing interest in the recent years for 

their very high mechanical properties, and biological origin. CNCs are obtained from the acid 

hydrolysis of cellulose fibers, resulting in only the small crystalline domains, where their 

dimensions depend on the source of cellulose initially used (wood, bacterial, plant). The most 

common protocol for producing CNCs involves hydrolysis using concentrated sulfuric acid, 

which leaves the surfaces of the nanocrystals with sulfate half-esters (O-SO3
-), and 

counterion. 

Due to their surface charge, CNCs are difficult to integrate into hydrophobic polymer 

matrices, such as those of dental resin composites. However, this ion coordination property 

could be exploited to integrate them into glass ionomer cements (see p.2). By placing the 

desired counterion on the surface of cellulose nanocrystals, their integration into glass 

ionomer cements should allow curing of the materials, and also bond the CNCs into the 

polymer matrix, conveying increased toughness and strength to the final material, thanks to 

their mechanical properties and high aspect ratio. Initial tests would evaluate whether a small 

percentage of nanocrystals have a positive influence, and could also test higher ratios, 

possibly replacing the alkaline glasses that are traditionally used as fillers in these materials. 
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Appendices 

Glossary 

Brunauer-Emmett-Teller (BET) theory: a model of gas adsorption to solid surfaces, allowing 

measurements of surface area and surface porosity of solids. 

Buccal surface: side of the teeth on the outside (in contact with the cheek). 

Composite: Two phase blend made up of a continuous resin phase, and a discrete filler or 

reinforcement phase. 

Compressive stress: force exerted on axially on a cylinder of material. 

Conversion: fraction of double bonds that have reacted when the polymerization reaction occurs. 

Diametral stress: force exerted diametrally (on the round side) on a cylinder of material. 

Dispersity: size distribution of the material in question, defined as the particles weight average, 

divided by the size average. High dispersity materials will have a wider range of sizes, while 

low dispersity materials are all of very similar sizes. A value of 1 corresponds to particles that 

are all exactly the same size. 

Filler: see reinforcement.  

Flexural modulus: initial slope of the stress-strain graph in flexural stress tests, indicates stiffness 

of the material 

Flexural strength: force exerted at the breaking point in flexural stress testing, indicates how 

much force the material can resist before breaking. 

Flexural stress: stress exerted in three-point bending geometry, combining compressive and 

tensile forces. 

  

Lingual surface: inner surface of the teeth, (potentially) in contact with the tongue. 
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Marginal separation or leakage: separation between the dental restoration and the containing 

dental hard tissue. This gap can cause leakage, where bacteria can grow and cause restoration 

failure. 

Monomodal: particles sizes are distributed around a single average or median value, usually in a 

Gaussian-like distribution. 

 

 

Multimodal: particle sizes are distributed over several main values, with several peak 

distributions. 

 

 

Occlusal surface: upper side of the tooth (for lower teeth) and lower side of the tooth (for upper 

teeth) where the jaw exerts most stress to masticate food 

Radiopacity: opacity to X-rays, usually compared to an equivalent thickness of aluminum. 

Reinforcement: solid particles added to a continuous (liquid) phase to convey improved 

mechanical performance to the resulting composite. 

Resin: blend of monomers, radical initiators, and polymerization inhibitors that constitute the 

liquid phase of the composite. 

Rheology: measurement of shear viscosity at different levels of stress by rotating two plates 

against one another. 

Shrinkage, volumetric: volume reduction that occurs upon polymerization in free radical 

polymerizations 

Shrinkage stress: force that is exercised upon the surrounding surfaces when volumetric 

shrinkage occurs. 
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