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Summary
Comprendre ce qu’il y a dans une image est l’enjeu primaire de la vision par

ordinateur. Depuis 2012, les réseaux de neurones se sont imposés comme le modèle
de facto pour de nombreuses applications d’apprentissage automatique. Inspirés
par les récents travaux en traduction automatique et en détection d’objet, cette
thèse s’intéresse aux modèles capables de décrire le contenu d’une image et explore
comment la notion d’attention peut être parametrisée par des réseaux de neurones
et utilisée pour la description d’image.

Cette thèse presente un reseau de neurones base sur l’attention qui peut décrire
le contenu d’images, et explique comment apprendre ce modèle de facon détermi-
nistique par backpropagation ou de facon stochastique avec de l’inférence varia-
tionnelle ou de l’apprentissage par renforcement.

Etonnamment, nous montrons que le modèle apprend automatiquement a concen-
trer son attention sur les objets correspondant aux mots dans la phrase prédite.
Cette notion d’attention obtient l’état de l’art sur trois benchmarks: Flickr9k, Fli-
ckr30k and MS COCO.
Mots-clés: reseaux de neurones, generation de description, apprentissage profond,
apprentissage de representations, apprentissage supervise, inference variationelle,
apprentissage par renforcement, attention, modelisation de donnees sequentielles
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Summary
Understanding the content of images is arguably the primary goal of computer

vision. Beyond merely saying what is in an image, one test of a system’s unders-
tanding of an image is its ability to describe the contents of an image in natural
language (a task we will refer to in this thesis as “image captioning”).

Since 2012, neural networks have exploded as the defacto modelling tool for
many important applications in machine learning. Inspired by recent work in ma-
chine translation and object detection, this thesis explores such models that can
describe the content of images. In addition, it explores how the notion of “atten-
tion” can be both parameterized by neural networks and usefully employed for
image captioning.

More technically, this thesis presents a single attention based neural network
that can describe images. It describes how to train such models in a purely deter-
ministic manner using standard backpropagation and stochastically by considering
techniques used in variational inference and reinforcement learning. Surprisingly,
we show through visualization how the model is able to automatically learn an
intuitive gaze of salient objects corresponding to words in the output sequence. We
validate the use of an attention based approach with state-of-the-art performance
three benchmark datasets: Flickr9k, Flickr30k and MS COCO.
Keywords: neural networks, caption generation, deep learning, representation
learning, supervised learning, variational inference, reinforcement learning, atten-
tion, sequence modelling
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1 Introduction

1.1 Why machine learning is a good idea

A vast majority of computing is devoted to the study of computational“recipes”.

Given some input, the goal is to determine what sequence of computations steps

will consistently produce the required output. Whether it is determining what res-

taurant is closest to you, or what book to recommend online, an important caveat

is that such a program will have to be able to run efficiently on a real computer. As

a result, a lot of computer science is devoted to understanding when such efficient

recipes exist and when they can be applied.

While a vast majority of the remarkable applications of computing we interact

with operate on this simple principle, a natural question is what can be done

when no efficient recipe is known. Surprisingly, many of the problems that fall into

this category are ones that humans take for granted such as the ability to quickly

comprehend a visual scene or pick out a friend’s voice in a crowd. Clearly, these

are abilities that we would expect smart computers to have. The question then

becomes figuring out what strategies we can employ when, given an input, there is

no simple way to determine the desired output ?

The core idea of machine learning is to instead take an alternative approach.

Rather than trying to provide a model with its own recipe, it attempts instead to

provide a “learning” algorithm for how a computer can derive its own algorithmic

solution. This approach not only has the appeal of being intrinsically more scalable,

it also allows the computer to learn it’s own understanding of the data (i.e., salient

features or “representations”).

In the last few years, the dominant approach that has come to the forefront of

machine learning has been to use “deep neural networks”. As the name suggests,

the technique very loosely refers to human inspired “neurons”. Unlike simple linear

models with are not very expressive, neural networks can be thought of as highly

1



Figure 1.1 – A illustration of a single hidden unit. The input is a vector x = {x1, x2, ..., xd}
which is transformed by a weight vector w = {w1, w2, ..., wd} and bias b. (Figure from Hugo
Larochelle’s course on deep learning)

nonlinear models, capable of learning progressively more abstract representations

of high dimensional data. Recent years have seen an explosion of interest in these

techniques due to their widespread successes in a variety of disparate domains

(vision, speech, natural language processing, etc.). In this thesis, we will focus on the

particular problem of image caption generation which is the problem of providing a

descriptive sentence for an image. To this end, this thesis will tie together advances

in recurrent neural networks, machine translation, reinforcement learning and in

particular, by explicitly modeling the process of human attention, take inspiration

from the way humans solve image captioning

1.2 Introduction to Neural Networks

1.2.1 Notation

In the sections to follow, scalar values (e.g. x, y, z) will be written in lower case

italic font. Vectors (e.g., those residing in Rn) will be written in bold lower case

font (e.g x,y, z). Matrices (Rn×m) will be written in bold upper case roman font

(e.g E,U,W). An element-wise product (also known as the Hadamard Product or

Schur Product) will be denoted with the following �. All quantities are real valued

unless noted otherwise.
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Figure 1.2 – A neural net is composed for a number of hidden layers that transform the input
distribution to the output through a progressive series of computations. In the above image, each
node is a single scalar value representing a unit of the hidden layer. Each edge is a single scalar
weight transforming the values of the precedenting layer.

1.2.2 FeedForward Models

The basic idea of neural networks is that it is possible to construct a very

nonlinear function approximator that has parameters which can be tuned by gra-

dient descent. Perhaps the simplest and most widely used architecture of a neural

network is a feedforward network. Feedforward neural networks have made huge

advances in a broad range of important applications, most notably, speech recogni-

tion and image classification Dahl et al. (2012); Krizhevsky et al. (2012). Formally,

it is composed of l layers of a weight matrix Wi, bias bi, and a nonlinear activa-

tion function f : Rn 7→ Rn applied element-wise. Common non-linearities include

tanh(x) = e2x−1
e2x+1

, σ = 1
1+e−x , or rectified linear units (ReLu = max(0, x)).

Algorithm 1 feedforward network

1: Given an input example x

2: Set z1 = x

3: for i = 1 . . . l do

4: hi = f(Wiz1 + bi)

5: zi+1 = hi

6: end for

7: Return output zl

From this, we can make two important observations. First, the input-output

relationship we can model is constrained by the topological connections between

3



Figure 1.3 – The Mark I Perceptron machine created at the Cornell Aeronautical Laboratory
was the first physical implementation of the perceptron algorithms. Using visible features on a
patchboard, it allowed the model to adaptively learn different combinations of weights via arrays
of potentiometers.(Source: Cornell Library)

the“neurons”, and second that the relationships are encoded in the weights matrices

which progressively transform the data. These weights are typically initially set with

random values and adjusted by learning algorithms to improve the performance

although it is also possible to use weights from a previous task.

Despite recent resurgence of interest, neural networks are a remarkably old idea,

with the first analysis dating back to work by McCulloch and Pitts (1943) who first

tried to understand how a simplified model of a neuron could implement certain

logical circuits. This work was followed by seminal work on the perceptron algo-

rithm at the Cornell Aeronautical Laboratory by Frank Rosenblatt (Rosenblatt,

1957), which introduced a simple learning rule to train signal layer neural networks

referred to as Perceptron models. The promise of self-learning circuits prompted a

great deal of enthusiasm. In 1958, the New York Times reported that “[the percep-

tron is ]the embryo of an electronic computer that [the American Navy]expects will

be able to walk, talk, see, write, reproduce itself and be conscious of its existence”

(Olazaran, 1996).
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It was proved however that such models could only recognize linearly sepa-

rable patterns, and in a well-known book by Marvin Minsky and Seymour Papert

(Minsky and Papert, 1969), it was proved that such models could not learn a XOR

function, no matter how much data or computation it was given. The perceived

limitations of Perceptron model led to a sharp decline of neural network related re-

search. This almost decade long hiatus in major interest (and funding) is sometimes

refered to as the “AI Winter”. It was not until the mid-1980s when David Rumel-

hart, along with Geoffrey Hinton and Ronald Williams, showed that multi-layer

neural networks could be trained effectively with “backpropagation” (Rumelhart

et al., 1986).

The term “deep” is meant to refer to the fact that the network was composed

of more than one hidden layer. A major benefit of this variant of network over

perceptron models is the fact that it can be proved that every continuous function,

mapping compact real valued intervals to other real valued intervals of outputs

could be approximated with arbitrary precision by a multi-layer sigmoid neural

network. This finding (Cybenko, 1988), often referred to as the universal approxi-

mation theorem, gives no hints however as to how to set or adjust the weights of

the networks, nor does it say anything about how the topology of the networks

should be constrained. The study of these questions is in some sense the essence of

modern day deep learning research.

1.2.3 Supervised Learning with Backpropagation

One of the major historical breakthroughs was the the discovery that ‘back-

propagation”, which can be seen as an application of the chain rule, could provides

a simple, efficient and sufficient recipe for learning the weights of a “deep” neu-

ral network. While there is long standing controversy over who “invented” back-

propagation, the demonstration by Rumelhart et al. (Rumelhart et al., 1986) that

it could effectively train multi-layer neural networks undoubtedly was a major ca-

talyst for subsequent research in training neural networks with backpropagation.

Concretely, backpropagation relies upon the chain rule from calculus and use

backward differentiation. In order to learn a supervised mapping x → y (where

xinRi and yinRm), we define a scalar loss function L(zl,y) which is a function of

the groundtruth y ∈ Rm. Next we compute the gradients with respect to parame-

5



ters Wi, bi for i = 1, . . . , l. We can use the chain rule described below to compute

the gradient direction to follow.

Algorithm 2 Backpropagation

1: Given differentiable loss function ∂L(zl,y)
∂zl

2: for i = l . . . 2 do

3: ∂hi = f ′(hi) · ∂zi

4: ∂zi−1 = WT
i−1∂hi

5: ∂bi = ∂hi

6: ∂Wi−1 = ∂xiz
T
i−1

7: end for

8: Return output [∂W1, ∂b1 . . . , ∂Wl, ∂bl]

Given the gradient information returned by Algorithm 2, it becomes possible

to take a step on the weights Wi,bi for i = 1, . . . , l in the direction that approxi-

mately minimizes the error. In recent years however, machine learning research has

had to increasingly focus on large scale learning problems with datasets that can

have billions of training cases. In this setting, computing the gradient for the en-

tire dataset becomes computationally expensive. Instead, stochastic approximation

techniques belonging to the class of Robbins-Monro algorithms Robbins and Monro

(1951) are typically used. These “stochastic” gradient descent algorithms process

a mini-batch of data at every iteration. These model parameters are updated by

taking noisy gradient steps estimated by randomly sampled mini-batches. These

methods rapidly improve the efficiency of gradient descent methods and form the

basis of many of the modern adaptive learning rate algorithms that are used in the

vast majority of applications (Tieleman and Hinton, 2012; Kingma and Ba, 2014).

1.3 Modeling Sequences with Recurrent Models

When considering variable length data, one of the weaknesses of feedforward

networks is the necessity to fix the dimension of the input (x) a priori. This re-

quirement can be a significant weakness when modeling naturally variable length

sequences such as sentences, audio, or video (i.e. a time series (x1,x2, . . .xT )). The
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Figure 1.4 – An unrolled RNN for T = 4 timesteps (Figure from Chris Olahs’s blog on deep
learning Olah (2015))

importance of modeling such relationships is clear in natural language processing.

Consider the following sentence:“In Montreal, people speak ”. Modeling the tem-

poral information between the first part of the sentence can help us make complex

prediction. In fact, depending on the reader’s own biological neural network, the

answer could have been either “French”, “English” or maybe even “Québécois”.

The pervasive need for modeling this type of data motivates what is known

as recurrent neural networks (RNNs), which are neural network architectures that

incorporate temporal structure to model sequences. Intuitively, they can be unders-

tood as a structure that maintains an internal “hidden” representation over time

and at every time step decides how to incorporate new data points and produce

output.

1.3.1 “Vanilla” Recurrence

The simplest variant of recurrent neural network consists of a hidden state ht ∈
Rh for t = 1, . . . , T and a series of weights matricies and biases (Whx,Whh,Who,bh,bo)

which is shared across time. The role of the weight matricies/biases is to control the

interaction between the input, output and previous hidden state so as to propagate

information forward and produce the desired outputs. Surprisingly, such models,

while conceptually simple, are in fact provably turing complete (Siegelmann and

Sontag, 1995).
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Algorithm 3 Recurrent Neural Networks

1: Given input sequence (x1, . . . ,xt)

2: Given weights [Whx,Whh,Who,bh,bo] and initial hidden state h0

3: for t = 1 . . . T do

4: at = Whxxt + Whhht−1 + bh

5: ht = f(at)

6: ot = Whoht + bo

7: end for

Suppose we are given a sequence of inputs xt of length T. If we restrict ourself

to a vocabulary (i.e., the set of possible values that xt can take) of size K, we can

represent it with a K dimensional vector where only the k-th entry is 1. Then, by

the chain rule of probability we can represent Pr(xt+1|ot) as the following.

Pr(xkt+1 = 1|ot) =
exp okt∑K

k′=1 exp
(
ok
′
t

) (1.1)

Note we have assumed here that ot is also of dimension K, but if not we can

linearly project it with matrix Wox. Next we can define a loss over the parameters

of the neural network with the maximum likelihood objective.

L(x) = −
T∑
t=1

log Pr(xt+1|ot) (1.2)

= −
T∑
t=1

log o
xt+1

t (1.3)

The gradient of this has an intuitive form.

∂L(x)

∂okt
= okt − δk,xt+1 (1.4)

Using gradient descent, all the parameters of the model can be optimized jointly

using mini-batch gradient descent. At test time, we can decode from the model

either by sampling from the probability distribution defined by the model. Alter-

natively, we can try to find the probable sequence through approximate inference

methods such as beam search.

8



Here, we have very subtly introduced a practical challange. Namely, we have

assumed that we can put all the tokens in the universe of what we are modeling

into a dictionary of vocabulary size K. Choosing this K correctly has strong prac-

tical implications, as having a large value of K will cause lead to a large memory

requirement while selecting a small number will limit the number of tokens being

modelled (Mnih and Hinton, 2009; Jean et al., 2014; Morin and Bengio, 2005).

1.3.2 Long Term Dependencies and LSTMs

One issue with learning recurrent models is the phenomena often referred to

as “the difficulty of learning long-term dependencies”. Informally speaking, in a

learning setting where there exist large time delays between inputs and outputs, it

is difficult to determine which inputs/decisions ultimately led to positive or negative

outcomes.

Hochreiter (1991) formally showed that in typical deep or recurrent networks,

backpropagated error gradients would either shrink exponentially in the number of

layers or explodes. Similarly, considering a dynamical system that used attractor

states as memory to store information, Bengio et al. (1993) showed that for such

systems, either the memory would not be robust to noise or would have gradients

that would go to zero as the time horizon increased to infinity.

This realization motivated the investigation into variants of recurrent models

employing gating units with a form of persistent memory which prevented frequent

read and writes. While these type of models do not completely solve the problem of

long term credit assignment, they make credit assignment possible over sufficiently

long scales to perform many applications. In fact, almost all the practical successes

of recurrent models come from the family of gated recurrent models. The earliest

and still most popular form of gated recurrent neural network are “long-short term

memory” cells, which were introduced by Hochreiter & Schmidhuber (Hochreiter

and Schmidhuber, 1997).

The key idea behind LSTMs that it preserves a memory state ct which it gets

selectively written to. Intuitively, at every step and input and forget gate are compu-

ted with sigmoidal nonlinearities (i.e being bound between zero and one to represent

maximum ‘forgetting’ and ‘input’) which are used to gate the amount written and

forgotten from the cell. Next, the output gate is computed which determines which
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Figure 1.5 – An illustration of an LSTM cell, where xt is the input, it is the “input” gate, ot
is the “output” gate, ct is the “memory cell”, ft is the “forget” gate and finally, ht is the output
of the cell. The subscript t refers to an individual time step. The above diagram is drawn with
the common peep-hole connections where the input and forget gate are also conditioned on the
previous cell memory and the output gate is conditioned on the current cell memory.

part of the output should get written. In equation form, this looks like the following:

it = σ(WiExt + Uiht−1 + bi),

ft = σ(WfExt + Ufht−1 + bf ),

ct = ft � ct−1 + it � tanh(WcExt + Ucht−1 + bc),

ot = σ(WoExt + Uoht−1 + bo),

ht = ot � tanh(ct).

where tanh denotes the the hyperbolic tangent function tanh(x) = e2x−1
e2x+1

.

1.3.3 Some inspirational notes on human attention

Typically in most of computer vision, every part of the image is treated the

same. No part of the image gets “extra” computation. In some ways, this is a

sensible default approach because the task of determining which part of an image

deserves “extra” computation is itself a challenging problem.

One curious aspect of the way humans deal with visual problems is the notion

of “attention”. When given an image, our eyes pick out key points, scanning the

image focusing on the most “salient” aspects. In this thesis, we would like to take
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some inspiration from how human’s do a visual task, and in this section discuss

some modelling cues we can take human attention.

conjunction search tasks. Koch and Ullman [18] then
proposed a feed-forward model to combine these features
and introduced the concept of a saliency map which is a
topographic map that represents conspicuousness of scene
locations. They also introduced a winner-take-all neural
network that selects the most salient location and employs an
inhibition of return mechanism to allow the focus of attention
to shift to the next most salient location. Several systems were
then created implementing related models which could
process digital images [15], [16], [17]. The first complete
implementation and verification of the Koch and Ullman
model was proposed by Itti et al. [14] (see Fig. 2) and was
applied to synthetic as well as natural scenes. Since then, there
has been increasing interest in the field. Various approaches
with different assumptions for attention modeling have been
proposed and have been evaluated against different datasets.
In the following sections, we present a unified conceptual
framework in which we describe the advantages and
disadvantages of each model against one another. We give
the reader insight into the current state of the art in attention
modeling and identify open problems and issues still facing
researchers.

The main concerns in modeling attention are how, when,
and why we select behaviorally relevant image regions. Due
to these factors, several definitions and computational
perspectives are available. A general approach is to take
inspiration from the anatomy and functionality of the early
human visual system, which is highly evolved to solve these
problems (e.g., [14], [15], [16], [191]). Alternatively, some
studies have hypothesized what function visual attention
may serve and have formulated it in a computational
framework. For instance, it has been claimed that visual
attention is attracted to the most informative [144], the most
surprising scene regions [145], or those regions that
maximize reward regarding a task [109].

1.3 Empirical Foundations

Attentional models have commonly been validated against
eye movements of human observers. Eye movements convey
important information regarding cognitive processes such as
reading, visual search, and scene perception. As such, they
often are treated as a proxy for shifts of attention. For

instance, in scene perception and visual search, when the
stimulus is more cluttered, fixations become longer and
saccades become shorter [19]. The difficulty of the task
(e.g., reading for comprehension versus reading for gist, or
searching for a person in a scene versus looking at the scene
for a memory test) obviously influences eye movement
behavior [19]. Although both attention and eye movement
prediction models are often validated against eye data, there
are slight differences in scope, approaches, stimuli, and level
of detail. Models for eye movement prediction (saccade
programming) try to understand mathematical and theore-
tical underpinnings of attention. Some examples include
search processes (e.g., optimal search theory [20]), informa-
tion maximization models [21], Mr. Chips: an ideal-observer
model of reading [25], EMMA (Eye Movements and Move-
ment of Attention) model [139], HMM model for controlling
eye movements [26], and constrained random walk model
[175]). To that end, they usually use simple controlled
stimuli, while on the other hand, attention models utilize a
combination of heuristics, cognitive, and neural evidence,
and tools from machine learning and computer vision to
explain eye movements in both simple and complex scenes.
Attention models are also often concerned with practical
applicability. Reviewing all movement prediction models is
beyond the scope of this paper. The interested reader is
referred to [22], [23], [127] for eye movement studies and [24]
for a breadth-first survey of eye tracking applications.

Note that eye movements do not always tell the whole
story and there are other metrics which can be used for
model evaluation. For example, accuracy in correctly
reporting a change in an image (i.e., search-blindness [5])
or predicting what attention grabbing items one will
remember show important aspects of attention which are
missed by sole analysis of eye movements. Many attention
models in visual search have also been tested by accurately
estimating reaction times (RT) (e.g., RT/setsize slopes in
pop-out and conjunction search tasks [224], [191]).

1.4 Applications

In this paper, we focus on describing the attention models
themselves. There are, however, many technological applica-
tions of these models which have been developed over the
years and which have further increased interest in attention
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Fig. 2. Neuromorphic Vision C++ Toolkit (iNVT) developed at iLab, USC,
http://ilab.usc.edu/toolkit/. A saccade is targeted to the location that is
different from its surroundings in several features. In this frame from a
video, attention is strongly driven by motion saliency.

Fig. 1. Taxonomy of visual attention studies. Ellipses with solid borders
illustrate our scope in this paper.

Figure 1.6 – An example of the importance of bottom up image features for saliency. In this video
game, the importance of the agent causes attention to be focused consistently on the character
regardless of circumstance. (Figure from Itti and Koch (2001))

1) Attention is a sequential decision making process

One of the main observations we can make is that attention is a sequential

procedure. Namely, when we glance over an image, we make a series of gazes which

are determined by what we have already seen. In particular, on the right of Figure

1.7, we see a toyish example of exactly what a human would not do.

2) Spatial Focus

In trying to recognize that the image is in fact a 2, it is extremely unnatural

to follow the pattern in the image. Instead, focus is given in a way much closer to

Figure 1.8. Another note then is that attention has a spatial focus, whereby certain

regions of the image are more in focus than other portions (sometimes referred

to as foveation). This weights the contribution of individual regions with pertinent

information (the contours of the digit in this example), more than other areas which

are less relevant (e.g. the empty background).

3) Top Down and Bottom Up Models

Unsurprisingly, attention is bottom up in the sense that it relies heavily on the

stimulus in the image Itti and Koch (2001). It is also top down in the sense that

it heavily relies on the task at hand. A classical example of this is the study of the

unexpected visitor Yarbus (1967), which is an early psychological experiment on

the effect of a specified task on the eye movements of a human. As can be seen in
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Fig. 1.9, in each of the scenes a different task is given with results in a different

series of saccades being produced.

Figure 1.7 – A cartoon illustration of a sequence of glances that one might take to classify this
digit as a ‘2’. Clearly something smarter can be done than doing a raster-like scan (Figure from
Hugo Larochelle)

1
2

3
1 2 3

Figure 1.8 – A illustration of the process of foveation. Instead of scanning each part of the
image, at each glimpse, salient features of the digit are extracted (Figure from Hugo Larochelle)

12



Attentional mechanisms  at  work… 

Scan Paths 
Figure 1.9 – “The Unexpected Visitor”: a classical psychological study tracking the eye mo-
vements of a scene. Clearly as the task changes the gaze changes, indicating that the attention
process is top down.

1.4 Helpful tricks for training neural networks

It is hard to overstate the importance of the small details that make neural

networks work. For a long time, the consensus was that neural network models

were difficult to optimize because of the problem of local minima and their highly

nonlinear behaviour. This, coupled with a lack of understanding of deep networks

from a theoretical perspective historically has led many researchers to abandon

neural networks in favor of better understood models with theoretical guarantees

such as support vector machines. From around 2006, there was a revival of interest

in deep learning research largely due to advanced made from “pre-training” Hinton

and Salakhutdinov (2006), but eventually, it was discovered this was not necessary

with enough labeled data or even careful initialization. Many other tricks, such

as the use of adaptive learning rates and regularization techniques such as dro-

pout1.4.3 and batch normalization have significantly improved the reliability and

performance of deep neural networks.
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Thus, this thesis would be in some sense incomplete without some notes on

practical tricks for training neural networks. Simple differences such as choice of

initialization can drastically change a larger experimental picture. Often, these

differences are more critical than the improvement proposed in any given paper.

While not meant to be exhaustive, this section covers a collection of these useful

tricks which were used in this paper.

1.4.1 Initialization

While pre-training as a technique has a long history of being helpful for trai-

ning deep neural networks, for most moderately sized datasets, it is sufficient to

start with the right random initialization. A major pitfall would be to initialize

the weights of a network to be all zeros. As it turns out, such a model would have

the same output for every neuron and thus the same gradient update. Thus, to

break this symmetry, it is important to have the model initialized to small random

numbers (small to avoid saturating zones of common non-linearities to which res-

trict gradient flow). Typically, this is done by sampling from a normal distribution

W ∼ N(0, σ2) where σ is chosen to be on the order of less than 10−1.

There has been work analysing the moments (i.e. mean/variance) of randomly

initialized feedforward networks for sigmoid/tanh activation Glorot and Bengio

(2010) and ReLu activations He et al. (2015). The most popular initialization stra-

tegies are from these two preceeding papers. Either with the ‘Glorot Initialization’

for tanh/sigmoid activations σ2 = 2
nin+nout

(where ninandnout are the number of

units in the input layer and next layer respectively or σ2 = 2
n

(where n is the

number of units in the layer) for ReLU activations.

1.4.2 Adaptive Learning Rate Algorithms

When using gradient based optimization methods, it is often important to

choose a sufficiently small learning (aka step size) to ensure stability. One intuitive

way to see this is that the gradient information only gives a local direction to im-

prove an objective and does not take into account any of the potential curvature

which exists for complicated non-convex functions.

While a number of methods have been developed to account for second order

information Martens (2010). These methods typically take more time to compute
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Algorithm 4 Adam, pseudocode from the original paper. g2t indicates the element-
wise square gt� gt. Good default settings for the tested machine learning problems
are α = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8. All operations on vectors are
element-wise. With βt1 and βt2 we denote β1 and β2 to the power t.

Require: α: Stepsize
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector
m0 ← 0 (Initialize 1st moment vector)
v0 ← 0 (Initialize 2nd moment vector)
t← 0 (Initialize timestep)
while θt not converged do
t← t+ 1
gt ← ∇θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate)
vt ← β2 · vt−1 + (1− β2) · g2t (Update biased second raw moment estimate)
m̂t ← mt/(1− βt1) (Compute bias-corrected first moment estimate)
v̂t ← vt/(1− βt2) (Compute bias-corrected second raw moment estimate)
θt ← θt−1 − α · m̂t/(

√
v̂t + ε) (Update parameters)

end while
return θt (Resulting parameters)

and are tricky to implement in practice. This has motivated the development of

adaptive learning rate algorithms to estimate curvature using only first order infor-

mation. For example, the popular Adam/RMSProp optimizer use running averages

of the second movements of the gradient information which is an approximation of

the diagonal of the Fisher Information matrix Pascanu and Bengio (2013).

Well tuned SGD methods with momentum can often perform comparably with

such adaptive learning rate methods Wilson et al. (2017). Methods such as Adam/RM-

SProp have remained popular like batchnorm however because of their general

robustness across problems.

1.4.3 Dropout

Dropout is a popular technique for regularizing deep neural networks. The im-

plementation of dropout is quite simple. During training, each hidden unit in the

network is randomly dropped (masked to be zero). During testing time, to account

for the fact that the model was trained with not all the units available at each
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time, the output of each hidden unit is rescaled to account for the fact that units

were not always present. The main hyper-parameter here is the probability that

each unit is “dropped”. To illustrate, if each unit was dropped with probability 0.5,

then at test time all the outputs are halved. This quite surprising regularization

method was presented without real mathematical justification, but was shown to

be empirically effective. One of the intuitions as to why dropout works was given in

the original paper Srivastava et al. (2014). Simply put, because each unit was not

always available during training, it prevented each unit from relying on other units,

which was referred to in the original paper Srivastava et al. (2014) as co-adaption.

Since the original paper, due to the success of dropout as a regularizer, numerous

explanations have been put forth to explain the success of dropout due to it being

a scale invariant regularizer Wang and Manning (2013) or as an implicit Bayesian

method (Gal and Ghahramani, 2016).

Figure 1.10 – Dropout illustration (Figure illustrating the process of dropout. Left: a fully
connected network, Right: after dropout where with probability p, a node in a layer is dropped.
This dropping operation is performed for every mini-batch Srivastava et al. (2014))
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2 Prologue to the Article

Show, Attend and Tell: Neural Image Caption Generation with Vi-

sual Attention. Kelvin Xu, Jimmy Lei Ba, Jamie Ryan Kiros, Kyunghyun Cho,

Aaron Courville, Ruslan Salakhutdinov, Richard Zemel, Yoshua Bengio. Procee-

dings of the 32nd International Conference on Machine Learning (ICML), 2015.

Personal Contribution: The idea to apply attention based models developed in

machine translations to image captioning came from Jamie (Ryan) Kiros. I perfor-

med the majority of the experimental work with guidance from Kyunghyun Cho

and Jamie Kiros. Jamie Kiros helped most in placing this work in the context of

previous work in image captioning/multimodal learning. The hard-attention expe-

riments were performed by Jimmy Lei Ba building upon the original code we wrote.

I did the majority of the paper writing in preparation for publication, with valuable

input from my advisors Prof. Yoshua Bengio, Prof. Aaron Courville, Prof. Ruslan

Salakhutdinov, and Prof. Richard Zemel.

The underlying work of this thesis made use of the Theano library (Berg-

stra et al., 2010; Bastien et al., 2012) to which we (the authors) and many others

in the community owe a great debt. We also acknowledge the support of the follo-

wing organizations for research funding and computing support: NSERC, Samsung,

NVIDIA, Calcul Québec, Compute Canada, the Canada Research Chairs and CI-

FAR. The authors would also like to thank Nitish Srivastava for assistance with his

ConvNet package as well as preparing the Oxford convolutional network and Relu

Patrascu for helping with numerous infrastructure-related problems.
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3

Show, Attend and Tell:
Neural Image Caption
Generation with Visual
Attention

3.1 Introduction

Automatically generating captions for an image is a task close to the heart

of scene understanding — one of the primary goals of computer vision. Not only

must caption generation models be able to solve the computer vision challenges of

determining what objects are in an image, but they must also be powerful enough to

capture and express their relationships in natural language. For this reason, caption

generation has long been seen as a difficult problem. It amounts to mimicking the

remarkable human ability to compress huge amounts of salient visual information

into descriptive language and is thus an important challenge for machine learning

and AI research.

Yet despite the difficult nature of this task, there has been a recent surge of

research interest in attacking the image caption generation problem. Aided by ad-

vances in training deep neural networks (Krizhevsky et al., 2012) and the availabi-

lity of large classification datasets (Russakovsky et al., 2014), recent work has signi-

ficantly improved the quality of caption generation using a combination of convolu-

tional neural networks (convnets) to obtain vectorial representation of images and

recurrent neural networks to decode those representations into natural language

sentences (see Sec. 3.2). One of the most curious facets of the human visual system

is the presence of attention (Rensink, 2000; Corbetta and Shulman, 2002). Rather

than compress an entire image into a static representation, attention allows for

salient features to dynamically come to the forefront as needed. This is especially

important when there is a lot of clutter in an image. Using representations (such

as those from the very top layer of a convnet) that distill information in images to

the most salient objects is one effective solution that has been widely adopted in

previous work. Unfortunately, this has one potential drawback of losing informa-

tion which could be useful for richer, more descriptive captions. Using lower-level
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Figure 3.1 – Our model learns a words/image alignment. The visualized attentional maps (3)
are explained in Sections 3.3.1 & 3.5.4
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representation such as features from lower layers of a convolutional network can

help preserve this information. However working with these features necessitates

a powerful mechanism to steer the model to information important to the task at

hand, and we show how learning to attend at different locations in order to generate

a caption can achieve that. We present two variants: a “hard” stochastic attention

mechanism and a “soft” deterministic attention mechanism. We also show how one

advantage of including attention is the insight gained by approximately visualizing

what the model “sees”. Encouraged by recent advances in caption generation and

inspired by recent successes in employing attention in machine translation (Bah-

danau et al., 2014) and object recognition (Ba et al., 2014; Mnih et al., 2014), we

investigate models that can attend to salient part of an image while generating its

caption.

The contributions of this paper are the following:

— We introduce two attention-based image caption generators under a com-

mon framework (Sec. 3.3.1): 1) a “soft” deterministic attention mechanism

trainable by standard back-propagation methods and 2) a “hard” stochastic

attention mechanism trainable by maximizing an approximate variational

lower bound or equivalently by REINFORCE (Williams, 1992).

— We show how we can gain insight and interpret the results of this framework

by visualizing “where” and “what” the attention focused on (see Sec. 3.5.4.)

— Finally, we quantitatively validate the usefulness of attention in caption ge-

neration with state-of-the-art performance (Sec. 3.5.3) on three benchmark

datasets: Flickr8k (Hodosh et al., 2013), Flickr30k (Young et al., 2014) and

the MS COCO dataset (Lin et al., 2014).
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3.2 Related Work

In this section we provide relevant background on previous work on image cap-

tion generation and attention. Recently, several methods have been proposed for

generating image descriptions. Many of these methods are based on recurrent neural

networks and inspired by the successful use of sequence-to-sequence training with

neural networks for machine translation (Cho et al., 2014; Bahdanau et al., 2014;

Sutskever et al., 2014; Kalchbrenner and Blunsom, 2013). The encoder-decoder

framework (Cho et al., 2014) of machine translation is well suited, because it is

analogous to “translating” an image to a sentence.

The first approach to using neural networks for caption generation was proposed

by Kiros et al. (2014) who used a multimodal log-bilinear model that was biased by

features from the image. This work was later followed by Kiros et al. (2014) whose

method was designed to explicitly allow for a natural way of doing both ranking and

generation. Mao et al. (2014) used a similar approach to generation but replaced a

feedforward neural language model with a recurrent one. Both Vinyals et al. (2014)

and Donahue et al. (2014) used recurrent neural networks (RNN) based on long

short-term memory (LSTM) units (Hochreiter and Schmidhuber, 1997) for their

models. Unlike Kiros et al. (2014) and Mao et al. (2014) whose models see the

image at each time step of the output word sequence, Vinyals et al. (2014) only

showed the image to the RNN at the beginning. Along with images, Donahue et al.

(2014) and Yao et al. (2015) also applied LSTMs to videos, allowing their model

to generate video descriptions.

Most of these works represent images as a single feature vector from the top

layer of a pre-trained convolutional network. Karpathy and Li (2014) instead pro-

posed to learn a joint embedding space for ranking and generation whose model

learns to score sentence and image similarity as a function of R-CNN object detec-

tions with outputs of a bidirectional RNN. Fang et al. (2014) proposed a three-step

pipeline for generation by incorporating object detections. Their models first learn

detectors for several visual concepts based on a multi-instance learning framework.

A language model trained on captions was then applied to the detector outputs,

followed by rescoring from a joint image-text embedding space. Unlike these mo-

dels, our proposed attention framework does not explicitly use object detectors

but instead learns alignments from scratch. This allows our model to go beyond
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“objectness” and learn to attend to more flexible abstract concepts.

Prior to the use of neural networks for generating captions, two main approaches

were dominant. The first involved generating caption templates which were filled

in based on the results of object detections and attribute discovery (Kulkarni et al.

(2013), Li et al. (2011), Yang et al. (2011), Mitchell et al. (2012), Elliott and Kel-

ler (2013)). The second approach was based on first retrieving similar captioned

images from a large database then modifying these retrieved captions to fit the

query (Kuznetsova et al., 2012, 2014). These approaches typically involved an in-

termediate “generalization” step to remove the specifics of a caption that are only

relevant to the retrieved image, such as the name of a city. Both of these approaches

have since fallen out of favour to the now dominant neural network methods.

There has been a long line of previous work incorporating the idea of attention

into neural networks. Some that share the same spirit as our work include Larochelle

and Hinton (2010); Denil et al. (2012); Tang et al. (2014) and more recently Gregor

et al. (2015). In particular however, our work directly extends the work of Bahdanau

et al. (2014); Mnih et al. (2014); Ba et al. (2014); Graves (2013).

3.3 Image Caption Generation with Attention

Mechanism

3.3.1 Model Details

In this section, we describe the two variants of our attention-based model by

first describing their common framework. The key difference is the definition of the

φ function which we describe in detail in Sec. 3.4. See Fig. 3.1 for the graphical

illustration of the proposed model.

We denote vectors with bold font and matrices with capital letters. In our

description below, we suppress bias terms for readability.
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Figure 3.2 – A LSTM cell, lines with bolded squares imply projections with a learnt weight
vector. Each cell learns how to weigh its input components (input gate), while learning how to
modulate that contribution to the memory (input modulator). It also learns weights which erase
the memory cell (forget gate), and weights which control how this memory should be emitted
(output gate).
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Encoder: Convolutional Features

Our model takes a single raw image and generates a caption y encoded as a

sequence of 1-of-K encoded words.

y = {y1, . . . ,yC} , yi ∈ RK

where K is the size of the vocabulary and C is the length of the caption.

We use a convolutional neural network in order to extract a set of feature vectors

which we refer to as annotation vectors. The extractor produces L vectors, each of

which is a D-dimensional representation corresponding to a part of the image.

a = {a1, . . . , aL} , ai ∈ RD

In order to obtain a correspondence between the feature vectors and portions of the

2-D image, we extract features from a lower convolutional layer unlike previous work

which instead used a fully connected layer. This allows the decoder to selectively

focus on certain parts of an image by weighting a subset of all the feature vectors.
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Decoder: Long Short-Term Memory Network

We use a long short-term memory (LSTM) network (Hochreiter and Schmid-

huber, 1997) that produces a caption by generating one word at every time step

conditioned on a context vector, the previous hidden state and the previously ge-

nerated words. Our implementation of LSTMs, shown in Fig. 3.2, closely follows

the one used in Zaremba et al. (2014):

it = σ(WiEyt−1 + Uiht−1 + Ziẑt + bi),

ft = σ(WfEyt−1 + Ufht−1 + Zf ẑt + bf ),

ct = ftct−1 + it tanh(WcEyt−1 + Ucht−1 + Zcẑt + bc),

ot = σ(WoEyt−1 + Uoht−1 + Zoẑt + bo),

ht = ot tanh(ct).

Here, it, ft, ct, ot, ht are the input, forget, memory, output and hidden state of

the LSTM respectively. W•, U•, Z• and b• are learned weight matricies and biases.

E ∈ Rm×K is an embedding matrix. Let m and n denote the embedding and LSTM

dimensionality respectively and σ be the logistic sigmoid activation.

In simple terms, the context vector ẑt is a dynamic representation of the relevant

part of the image input at time t. We define a mechanism φ that computes ẑt from

the annotation vectors ai, i = 1, . . . , L corresponding to the features extracted at

different image locations. For each location i, the mechanism generates a positive

weight αi which can be interpreted either as the probability that location i is the

right place to focus for producing the next word (stochastic attention mechanism),

or as the relative importance to give to location i in blending the ai’s together

(deterministic attention mechanism). The weight αi of each annotation vector ai

is computed by an attention model fatt for which we use a multilayer perceptron

which is conditioned on the previous hidden state ht−1. To emphasize, we note that

the hidden state varies as the output RNN advances in its output sequence: “where”

the network looks next depends on the sequence of words that has already been
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generated.

eti =fatt(ai,ht−1)

αti =
exp(eti)∑L
k=1 exp(etk)

.

Once the weights (which sum to one) are computed, the context vector ẑt is com-

puted by

ẑt = φ ({ai} , {αi}) , (3.1)

where φ is a function that returns a single vector given the set of annotation vectors

and their corresponding weights. The details of the φ function are discussed in

Sec. 3.4.

The initial memory state and hidden state of the LSTM are predicted by an

average of the annotation vectors fed through two separate MLPs (init,c and init,h):

c0 = finit,c

(
1

L

L∑
i

ai

)
, h0 = finit,h

(
1

L

L∑
i

ai

)

In this work, we use a deep output layer (Pascanu et al., 2014) to compute the

output word probability. Its input are cues from the image (the context vector),

the previously generated word, and the decoder state (ht).

p(yt|a,yt−11 ) ∝ exp(Lo(Eyt−1 + Lhht + Lzẑt)), (3.2)

where Lo ∈ RK×m, Lh ∈ Rm×n, Lz ∈ Rm×D, and E are learned parameters initiali-

zed randomly.

3.4 Learning Stochastic “Hard” vs

Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for the attention model

fatt: stochastic attention and deterministic attention.
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Figure 3.3 – Visualization of the attention for each generated word. The rough visualizations
obtained by upsampling the attention weights and smoothing. (top)“soft” and (bottom) “hard”
attention (note that both models generated the same captions in this example).

3.4.1 Stochastic “Hard” Attention

We represent the location variable st as the spatial index where the model

decides to focus when generating the t-th word. st,i is an indicator one-hot variable

which is set to 1 if the i-th location (out of L) is the one used to extract visual

features. By treating the attention locations as intermediate latent variables, we

can assign a multinoulli distribution parametrized by {αi}, and view ẑt as a random

variable:

p(st,i = 1 | sj<t, a) = αt,i (3.3)

ẑt =
∑
i

st,iai. (3.4)

We define a new objective function Ls that is a variational lower bound on the

marginal log-likelihood log p(y | a) of observing the sequence of words y given

image features a. Similar to work in generative deep generative modeling (Kingma

and Welling, 2014; Rezende et al., 2014), the learning algorithm for the parameters

W of the models can be derived by directly optimizing

Ls =
∑
s

p(s | a) log p(y | s, a)

≤ log
∑
s

p(s | a)p(y | s, a)

= log p(y | a), (3.5)
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following its gradient

∂Ls
∂W

=
∑
s

p(s | a)

[
∂ log p(y | s, a)

∂W
+ log p(y | s, a)

∂ log p(s | a)

∂W

]
. (3.6)

We approximate this gradient of Ls by a Monte Carlo method such that

∂Ls
∂W

≈ 1

N

N∑
n=1

[
∂ log p(y | s̃n, a)

∂W
+ log p(y | s̃n, a)

∂ log p(s̃n | a)

∂W

]
, (3.7)

where s̃n = (sn1 , s
n
2 , . . .) is a sequence of sampled attention locations. We sample

the location snt from a multinouilli distribution defined by Eq. (3.3):

s̃nt ∼ MultinoulliL({αni }).

We reduce the variance of this estimator with the moving average baseline

technique (Weaver and Tao, 2001). Upon seeing the k-th mini-batch, the moving

average baseline is estimated as an accumulated sum of the previous log likelihoods

with exponential decay:

bk = 0.9× bk−1 + 0.1× log p(y | s̃k, a)

To further reduce the estimator variance, the gradient of the entropy H[s] of the

multinouilli distribution is added to the RHS of Eq. (3.7).

The final learning rule for the model is then

∂Ls
∂W

≈ 1

N

N∑
n=1

[
∂ log p(y | s̃n, a)

∂W
+

λr(log p(y | s̃n, a)− b)∂ log p(s̃n | a)

∂W
+ λe

∂H[s̃n]

∂W

]
where, λr and λe are two hyper-parameters set by cross-validation. As pointed out

and used by Ba et al. (2014) and Mnih et al. (2014), this formulation is equivalent to

the REINFORCE learning rule (Williams, 1992), where the reward for the attention

choosing a sequence of actions is a real value proportional to the log likelihood of

the target sentence under the sampled attention trajectory.

In order to further improve the robustness of this learning rule, with probability
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0.5 for a given image, we set the sampled attention location s̃ to its expected value

α (equivalent to the deterministic attention in Sec. 3.4.2).

3.4.2 Deterministic “Soft” Attention

Learning stochastic attention requires sampling st (the attention location) each

time, instead we can take the expectation of the context vector ẑt directly,

Ep(st|a)[ẑt] =
L∑
i=1

αt,iai (3.8)

and formulate a deterministic attention model by computing a soft attention weigh-

ted annotation vector φ ({ai} , {αi}) =
∑L

i αiai as proposed by Bahdanau et al.

(2014). This corresponds to computing a soft α weighted context as input. The

whole model is smooth and differentiable under the deterministic attention, so

learning end-to-end is trivial by using standard back-propagation.

Learning the deterministic attention can also be understood as approximately

optimizing the marginal likelihood in Eq. (3.5) under the attention location random

variable st from Sec. 3.4.1. The hidden activation of LSTM ht is a linear projection

of the stochastic context vector ẑt followed by tanh non-linearity. To the first-order

Taylor approximation, the expected value Ep(st|a)[ht] is equivalent to computing ht

using a single forward computation with the expected context vector Ep(st|a)[ẑt].
Let us denote by nt,i as n in Eq. (3.2) with ẑt set to ai. Then, we can write

the normalized weighted geometric mean (NWGM) of the softmax of k-th word

prediction as

NWGM[p(yt = k | a)] =

∏
i exp(nt,k,i)

p(st,i=1|a)∑
j

∏
i exp(nt,j,i)p(st,i=1|a)

=
exp(Ep(st|a)[nt,k])∑
j exp(Ep(st|a)[nt,j])

This implies that the NWGM of the word prediction can be well approximated by

using the expected context vector E [ẑt], instead of the sampled context vector ai.

Furthermore, from the result by Baldi and Sadowski (2014), the NWGM in

Eq. (3.9) which can be computed by a single feedforward computation approxi-

mates the expectation E[p(yt = k | a)] of the output over all possible attention
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locations induced by random variable st. This suggests that the proposed deter-

ministic attention model approximately maximizes the marginal likelihood over all

possible attention locations.

Doubly Stochastic Attention

In training the deterministic version of our model, we introduce a form of doubly

stochastic regularization that encourages the model to pay equal attention to every

part of the image. Whereas the attention at every point in time sums to 1 by

construction (i.e.
∑

i αti = 1), the attention
∑

i αti is not constrained in any way.

This makes it possible for the decoder to ignore some parts of the input image. In

order to alleviate this, we encourage
∑

t αti ≈ τ where τ ≥ L
D

. In our experiments,

we observed that this penalty quantitatively improves overall performance and that

this qualitatively leads to more descriptive captions.

Additionally, the soft attention model predicts a gating scalar β from previous

hidden state ht−1 at each time step t, such that, φ ({ai} , {αi}) = β
∑L

i αiai, where

βt = σ(fβ(ht−1)). This gating variable lets the decoder decide whether to put more

emphasis on language modeling or on the context at each time step. Qualitatively,

we observe that the gating variable is larger than the decoder describes an object

in the image.

Table 3.1 – BLEU-1,2,3,4/METEOR metrics compared to other methods, † indicates a different
split, (—) indicates an unknown metric, ◦ indicates the authors kindly provided missing metrics
by personal communication, Σ indicates an ensemble, a indicates using AlexNet

BLEU
Dataset Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR

Flickr8k

Google NIC(Vinyals et al., 2014)†Σ

Log Bilinear (Kiros et al., 2014)◦

Soft-Attention
Hard-Attention

63
65.6
67
67

41
42.4
44.8
45.7

27
27.7
29.9
31.4

—
17.7
19.5
21.3

—
17.31
18.93
20.30

Flickr30k

Google NIC†◦Σ

Log Bilinear
Soft-Attention
Hard-Attention

66.3
60.0
66.7
66.9

42.3
38
43.4
43.9

27.7
25.4
28.8
29.6

18.3
17.1
19.1
19.9

—
16.88
18.49
18.46

COCO

CMU/MS Research (Chen and Zitnick, 2014)a

MS Research (Fang et al., 2014)†a

BRNN (Karpathy and Li, 2014)◦

Google NIC†◦Σ

Log Bilinear◦

Soft-Attention
Hard-Attention

—
—
64.2
66.6
70.8
70.7
71.8

—
—
45.1
46.1
48.9
49.2
50.4

—
—
30.4
32.9
34.4
34.4
35.7

—
—
20.3
24.6
24.3
24.3
25.0

20.41
20.71
—
—

20.03
23.90
23.04

The soft attention model is trained end-to-end by minimizing the following

28



penalized negative log-likelihood:

Ld = − log(p(y|a)) + λ
L∑
i

(1−
C∑
t

αti)
2, (3.9)

where we simply fixed τ to 1.

3.4.3 Training Procedure

Both variants of our attention model were trained with stochastic gradient des-

cent using adaptive learning rates. For the Flickr8k dataset, we found that RM-

SProp (Tieleman and Hinton, 2012) worked best, while for Flickr30k/MS COCO

dataset we for the recently proposed Adam algorithm (Kingma and Ba, 2014) to

be quite effective.

To create the annotations ai used by our decoder, we used the Oxford VGGnet

(Simonyan and Zisserman, 2014) pre-trained on ImageNet without finetuning. In

our experiments we use the 14×14×512 feature map of the fourth convolutional

layer before max pooling. This means our decoder operates on the flattened 196

× 512 (i.e L×D) encoding. In principle however, any encoding function could be

used. In addition, with enough data, the encoder could also be trained from scratch

(or fine-tune) with the rest of the model.

As our implementation requires time proportional to the length of the longest

sentence per update, we found training on a random group of captions to be compu-

tationally wasteful. To mitigate this problem, in preprocessing we build a dictionary

mapping the length of a sentence to the corresponding subset of captions. Then,

during training we randomly sample a given length and retrieve a mini-batch of

size 64 of that length. We found that this greatly improved convergence speed with

no noticeable diminishment in performance. On our largest dataset (MS COCO),

our soft attention model took less than 3 days to train on an NVIDIA Titan Black

GPU.

In addition to dropout (Srivastava et al., 2014), the only other regularization

strategy we used was early stopping on BLEU score. We observed a breakdown in

correlation between the validation set log-likelihood and BLEU in the later stages

of training during our experiments. Since BLEU is the most commonly reported

metric, we used BLEU on our validation set for model selection.
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In our experiments with soft attention, we used Whetlab 1 (Snoek et al., 2012,

2014) in our Flickr8k experiments. Some of the intuitions we gained from hyperpa-

rameter regions it explored were especially important in our Flickr30k and COCO

experiments.

We make our code for these models publicly available to encourage future re-

search in this area 2.

Figure 3.4 – Examples of attending to the correct object (white indicates the attended regions,
underlines indicated the corresponding word)

3.5 Experiments

We describe our experimental methodology and quantitative results which va-

lidate the effectiveness of our model for caption generation.

3.5.1 Data

We report results on the widely-used Flickr8k and Flickr30k dataset as well as

the more recenly introduced MS COCO dataset. Each image in the Flickr8k/30k

dataset have 5 reference captions. In preprocessing our COCO dataset, we maintai-

ned a the same number of references between our datasets by discarding caption in

excess of 5. We applied only basic tokenization to MS COCO so that it is consistent

1. https://www.whetlab.com/

2. https://github.com/kelvinxu/arctic-captions
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with the tokenization present in Flickr8k and Flickr30k. For all our experiments,

we used a fixed vocabulary size of 10,000.

Results for our attention-based architecture are reported in Table 3.1. We report

results with the frequently used BLEU metric 3 which is the standard in image

caption generation research. We report BLEU 4 from 1 to 4 without a brevity

penalty. There has been, however, criticism of BLEU, so we report another common

metric METEOR (Denkowski and Lavie, 2014) and compare whenever possible.

Figure 3.5 – Examples of mistakes where we can use attention to gain intuition into what the
model saw.

3.5.2 Evaluation Procedures

A few challenges exist for comparison, which we explain here. The first challenge

is a difference in choice of convolutional feature extractor. For identical decoder ar-

chitectures, using a more recent architectures such as GoogLeNet (Szegedy et al.,

2014) or Oxford VGG (Simonyan and Zisserman, 2014) can give a boost in per-

formance over using the AlexNet (Krizhevsky et al., 2012). In our evaluation, we

compare directly only with results which use the comparable GoogLeNet/Oxford

3. We verified that our BLEU evaluation code matches the authors of Vinyals et al. (2014),
Karpathy and Li (2014) and Kiros et al. (2014). For fairness, we only compare against results for
which we have verified that our BLEU evaluation code is the same.

4. BLEU-n is the geometric average of the n-gram precision. For instance, BLEU-1 is the
unigram precision, and BLEU-2 is the geometric average of the unigram and bigram precision.
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VGG features, but for METEOR comparison we include some results that use

AlexNet.

The second challenge is a single model versus ensemble comparison. While other

methods have reported performance boosts by using ensembling, in our results we

report a single model performance.

Finally, there is a challenge due to differences between dataset splits. In our

reported results, we use the pre-defined splits of Flickr8k. However, for the Flickr30k

and COCO datasets is the lack of standardized splits for which results are reported.

As a result, we report the results with the publicly available splits 5 used in previous

work (Karpathy and Li, 2014). We note, however, that the differences in splits do

not make a substantial difference in overall performance.

3.5.3 Quantitative Analysis

In Table 3.1, we provide a summary of the experiment validating the quan-

titative effectiveness of attention. We obtain state of the art performance on the

Flickr8k, Flickr30k and MS COCO. In addition, we note that in our experiments

we are able to significantly improve the state-of-the-art performance METEOR

on MS COCO. We speculate that this is connected to some of the regularization

techniques we used (see Sec. 3.4.2) and our lower-level representation.

3.5.4 Qualitative Analysis: Learning to attend

By visualizing the attention learned by the model, we are able to add an extra

layer of interpretability to the output of the model (see Fig. 3.1). Similar sys-

tems have relied on object detection systems to produce candidate alignment tar-

gets (Karpathy and Li, 2014). Our approach is much more flexible, since the model

can attend to “non-object” salient regions.

The 19-layer OxfordNet uses stacks of 3x3 filters meaning the only time the

feature maps decrease in size are due to the max pooling layers. The input image

is resized so that the shortest side is 256-dimensional with preserved aspect ra-

tio. The input to the convolutional network is the center-cropped 224x224 image.

Consequently, with four max pooling layers, we get an output dimension of the

top convolutional layer of 14x14. Thus in order to visualize the attention weights

5. http://cs.stanford.edu/people/karpathy/deepimagesent/
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for the soft model, we upsample the weights by a factor of 24 = 16 and apply a

Gaussian filter to emulate the large receptive field size.

As we can see in Figs. 3.3 and 3.4, the model learns alignments that agree very

strongly with human intuition. Especially from the examples of mistakes in Fig. 3.5,

we see that it is possible to exploit such visualizations to get an intuition as to why

those mistakes were made. We provide a more extensive list of visualizations as the

supplementary materials for the reader.

3.6 Conclusion

We propose an attention based approach that gives state of the art performance

on three benchmark datasets using the BLEU and METEOR metric. We also show

how the learned attention can be exploited to give more interpretability into the

models generation process, and demonstrate that the learned alignments correspond

very well to human intuition. We hope that the results of this paper will encourage

future work in using visual attention. We also expect that the modularity of the

encoder-decoder approach combined with attention to have useful applications in

other domains.
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4 Epilogue

In this work, we proposed an attention based approach for image captioning

which we validated with three benchmark datasets using the BLEU and METEOR

metric. We also showed how the learned attention can be exploited to give more

interpretability into the model’s generation process, and demonstrate that the lear-

ned alignments correspond very well to human intuition.

Since the work done in this thesis, recurrent neural networks have continued to

be the dominant approach for image captioning. Different groups have continued to

improve the performance of captioning systems, innovating either the architecture

used or the training algorithm of the model.

Figure 4.1 – Figure from Lu et al. (2016). in their approach, they provide skip connections by
which the generation can be done without using the image features. This intuitively makes sense
for generating words which do not have a visual meaning (e.g, ’to’, ’a’, ’etc’)

You et al. (2016) explored conditioning the caption generation procedure with

attributes obtained by either clustering or through prediction (see Figure 4.2). Yang

et al. (2016) future augmented the attention based framework by introducing a

series of ‘reviewer’ steps which produced a soft-attention weighted ‘thought’ vector

that was used to condition the decoder. Finally, Lu et al. (2016) introduced a variant
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of the attention model presented here which essentially provides a skip connection

from the decoder which can bypass the image input. Their variant removed the

need to attend when generating ‘stop words’ which have no visual basis.

In general, improved vision encodings improve performance regardless decoder

architecture. Along this line, Jin et al. (2015) used selective search with a convolu-

tional network classifier to filter salient regions before inputting it into a captioning

model with attention. This work was followed by Anderson et al. (2017), which used

the ‘Faster R-CNN’ feature extractor to give more expressive features. This work

can also be thought of a ‘hard attention’ model where the regions are selected by

the ‘Faster R-CNN model’.

Figure 4.2 – Figure from You et al. (2016). In their approach, they combine RNN based gene-
ration of captions using both image features and attention over semantic concepts extracted from
the training set.

Captioning and other sequence generation tasks have also since been improved

by methods that better optimize the underlying objective. Log-likelihood has no

known relationship to many of the metrics used in captioning. Early work on this

included MIXER Ranzato et al. (2015), which merged log-likelihood training with a

REINFORCE objective on the underlying metric in a curriculum fashion. This work

was followed by work with actor-critic style training Bahdanau et al. (2016) which

different in that it used a learned Q-function for more dense credit assignment.
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Finally, Rennie et al. (2017) proposed a ‘self-critical’ REINFORCE style objective,

where the reward was essentially baselined by the models’ own greedy decoding.

Figure 4.3 – figure from Anderson et al. (2017). in their approach, they combine rnn based
generation of captions with the faster r-cnn framework which consists of a region proposal step
followed by a feature extraction step. attention is done over the different proposed regions which
allows for intuitive visualization
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