
Université de Montréal

Deep Learning for Video Modelling

par
Olivier Mastropietro

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté à la Faculté des études supérieures
en vue de l’obtention du grade de Mâıtre ès sciences (M.Sc.)

en informatique

Août, 2017

c©Olivier Mastropietro

Résumé

Ce mémoire de mâıtrise présente une exploration des modèles génératifs dans le
contexte de la vidéo. Ceci a demandé une étude approfondie des problèmes encourus
par les chercheurs dans cette branche de la vision par ordinateur. Ce mémoire
établi deux axes problématiques, celui venant des données et celui des modèles.

Concernant les données, les méthodes accomplissant l’état-de-l’art dans ce do-
maine sont appliqués sur des bases de données qui potentiellement sous représentent
les défis existant dans les vidéos de tous les jours. Ainsi, il est possible que
l’innovation évolue ultimement vers des cul-de-sacs et une nouvelle bases de données
est suggérées afin de résoudre ce problème.

Quant aux modèles, la génération de vidéos est à la frontière des applications
des procéssus génératifs. C’est un champs de recherche encore très ouvert aux
découvertes de tailles car non seulement est-il devant des obstacles d’ingénieries, tant
aux niveaux logiciels que physiques, mais il se trouve à être un véritable casse-tête.
En apprentissage profond, la modélisation d’images statiques entre présentement
dans une phase plus mature, mais qu’en est-il pour des séquences d’images et de
leurs générations? De très récents modèles ont réussi d’impressionnantes générations
image par image et exhibent de longues séquences sans dégradation rapide de la
qualité visuelle. En analysant ceux-ci, ce mémoire propose le modèle feature flow
comme un choix raisonnable à considérer pour cette tâche et espère convaincre
pourquoi.

La génération comme sujet d’étude elle-même a fait également l’objet d’une
attention particulière à travers ce mémoire. Il augmente le déjà populaire generative
adversarial networks avec un mécanisme d’inférence, adversarially learned inference.
Cette version améliorée excelle aux mêmes tâches que son prédécesseur tout en
offrant une représentation abstraite des données grâce au mécanisme d’inférence. Il
y a espoir lors de travaux futures d’exhiber tout son potentiel, l’élevant comme un
choix de modèle important.

Mots clés: réseaux de neurones, apprentissage machine, appren-
tissage profond, intelligence artificielle, vision par ordinateur, vidéos,
modèles génératifs.

1

Abstract

This thesis presents an exploration of generative models in the context of video
generation. It focuses on an investigation of the problems faced by researchers
when working on this branch of computer vision. It is argued throughout this
thesis that video suffers from two main issues, namely on the data side and on the
model side.

Data-wise, current state-of-the-art models in this field are applied on datasets
that can potentially misrepresent the true challenges with real videos and pushes
model innovations in corners that could be dead ends on this task. A new dataset
is proposed in light of this situation that tries to fix these problems.

Model-wise, video generation is on the very frontier of generative applications.
It represents an area still very open for breakthrough since not only is it faced with
engineering, hardware and software obstacles, it also offers a real puzzle for models.
If deep learning modelling for static images is entering a more mature phase, how
does one transition to a sequence of images and moreover generate them? Very
recent models have yielded impressive next frame generations and are able to show
long sequences of frames that do not rapidly degrade. This thesis proposes the
feature flow model as a natural choice to consider when doing this task and hope
to reasonably argue as to why.

Generation as an object of study itself has also been given attention throughout
this thesis. It augments the already popular generative adversarial networks with an
inference mechanism, adversarially learned inference. This upgraded version excels
at the same tasks than its predecessor while offering an abstract representation
of its data through the inference procedure. There is hope for a display of its full
potential in future works setting it as a strong model choice.

Keywords: neural networks, machine learning, deep learning, artifi-
cial intelligence, computer vision, videos, generative models.

2

Acknowledgements

I would like to thank many people who have made this thesis, and more broadly
the master’s degree, a real attainable goal.

First, my parents for without their continual support and their value in education
I would not be here.

Next, the Montreal institute for learning algorithms where I had the chance to
do this master’s degree. A particular thanks to Vincent Dumoulin from whom I
discovered the field of artificial intelligence and deep learning and my supervisor
Aaron Courville who gave a chance to this random physicist showing up at his
door.

A special thanks goes to the Theano staff that made possible the implementations
of all the models that somehow always had scan doing something weird. Pascal
Lamblin has especially been patient from my never really programmed start to
RNN tweaking transition.

I have met many people at MILA, but four people really made this trip worth-
while. Faruk Ahmed for helping me bother the old main lab, César Laurent for the
many 1pm coffee break, Ishmael Belghazi for taking my mind off coding reminding
me of the wonders of mathematics and finally, my mentor Nicolas Ballas whom
had to put up with my countless questions.

Lastly, to my trout fisherman friends. Even if the universe is deterministic or
stochastic, if my free will is but a comfortable illusion and moral values somehow
always end up being a human invention, they make life colourful and my motivation
to go forward only grows from our endless discussions and interactions.

3

List of Figures

2.1 Fully connected network. This picture shows a neural net with an
input vector of 2 dimensions, 4 neurons in the hidden layer and 3
neurons as output. This illustrates a very simple case where the
hidden neurons could be doing a sigmoid activation and the final
neurons could be a softmax function that outputs a probability
distribution for example. Note that this cannot be categorized as
deep, it would need at least another hidden layer! 17

2.2 1 dimensional convolutional network. Its graph looks very much
like a fully connected layer but with only local interactions and
parameters sharing in the output. This is illustrated with different
arrow colours, each triplet of arrows are the same parameters being
applied successively. In practice, the terminology of this CNN would
be: 1 channel, 1 feature map, kernel size of 3, strides of 1 and padding
of 0. More kernels could be slid on the same input to increase the
number of feature maps. 20

2.3 2 × 2 maximum pooling window with 2 × 2 strides and zero padding.
The resulting output is downsampled by 4. 21

2.4 Compact graph of a recurrent neural network (left) and unfolded
(right). The compact version uses a loop with a square to indicate
a recurrence connection. Note that arrows here are not individual
parameters as was the case in previous graphs. They actually display
the full matrix multiplication (and optional bias vector addition),
ex.: the arrow from xt to ht represents ht = f(W>xt) where f is the
activation function. Such a graph is usually called a computation
graph to distinguish them from ones displaying the insides of a
specific neural network. 22

2.5 Computation graph of the long short-term memory cell. Black boxes
indicate recurrences, bold arrows full parameters applications (see
Figure 2.4) and dashed arrows computation flow. The vector h is
the final output. 26

4

2.6 1D deconvolution for input vector of 3 dimensions, output vector
of 5, and kernel of size 2. The dashed circles are zeroes inserted
between the values of the input. Like a regular convolution, each
couple of arrows is to represent the same parameters being applied
everytime. The net result is a higher dimensional output. 28

3.1 Hypothetical adversarial example. Uniform noise is added to the
image completely throwing off the class label. This example would
actually still work even if the corruption to the image was smaller
and imperceptible to human eyes. 34

4.1 The adversarially learned inference (ALI) game. 39

4.2 Samples and reconstructions on the SVHN dataset. For the recon-
structions, odd columns are original samples from the validation set
and even columns are corresponding reconstructions (e.g., second
column contains reconstructions of the first column’s validation set
samples). 45

4.3 Samples and reconstructions on the CelebA dataset. For the recon-
structions, odd columns are original samples from the validation set
and even columns are corresponding reconstructions. 45

4.4 Samples and reconstructions on the CIFAR10 dataset. For the
reconstructions, odd columns are original samples from the validation
set and even columns are corresponding reconstructions. 46

4.5 Samples and reconstructions on the Tiny ImageNet dataset. For the
reconstructions, odd columns are original samples from the validation
set and even columns are corresponding reconstructions. 46

4.6 Latent space interpolations on the CelebA validation set. Left and
right columns correspond to the original pairs x1 and x2, and the
columns in between correspond to the decoding of latent representa-
tions interpolated linearly from z1 to z2. Unlike other adversarial
approaches like DCGAN [Radford et al., 2016], ALI allows one to
interpolate between actual data points. 47

5

4.7 Conditional generation sequence. We sample a single fixed latent
code z. Each row has a subset of attributes that are held constant
across columns. The attributes are male, attractive, young for row I;
male, attractive, older for row II; female, attractive, young for row
III; female, attractive, older for Row IV. Attributes are then varied
uniformly over rows across all columns in the following sequence:
(b) black hair; (c) brown hair; (d) blond hair; (e) black hair, wavy
hair; (f) blond hair, bangs; (g) blond hair, receding hairline; (h)
blond hair, balding; (i) black hair, smiling; (j) black hair, smiling,
mouth slightly open; (k) black hair, smiling, mouth slightly open,
eyeglasses; (l) black hair, smiling, mouth slightly open, eyeglasses,
wearing hat. 50

4.8 Comparison of (a) ALI, (b) GAN with an encoder learned to recon-
struct latent samples (c) GAN with an encoder learned through ALI,
(d) variational autoencoder (VAE) on a 2D toy dataset. The ALI
model in (a) does a much better job of covering the latent space
(second row) and producing good samples than the two GAN models
(b, c) augmented with an inference mechanism. 52

6.1 The Composite Model for three timesteps, using three LSTM parametrized
as the encoder θ1 with hidden states h, the future decoder θ3 with
hidden states h′ and the past decoder θ2 with hidden states h′′. True
inputs are noted from x and predicted/reconstructed ones from x̃.
This also shows the optional conditioning represented as the dashed
circles. The first hidden states of both decoders is the copied latent
representation learned by the encoder. 63

6.2 Figure 3 of Xue et al. [2016] with permission from the authors. . . . 65

6.3 Encoder (left) and decoder (right) for RALI with a sequence of zt
for a video. The subscript 2 : t− 1 denotes that this graph shows in
total T time step. Note that in practice, the network will be deep
and have multiple stages of hidden state h and h′. 69

6.4 Encoder (left) and decoder (right) for RALI. with a single z for
a video. The subscript 2 : t − 1 denotes that this graph shows in
total T time step. The z on the decoder side can be fed to the
first recurrence in many ways. It can be copied for all time step,
only drives the first the first h′1 or be transformed for example. Our
best experiment was done by using a MLP that parametrized these
connections (shared parameters across time). Note that in practice,
the network will be deep and have multiple stages of hidden state h
and h′. 70

6

6.5 RALI samples, time goes forward from left to right, novel sampling
is done at each row. The last row is to show that the decoder was
unable to structure properly its latent space. This failed generation
would happen 10% of the time. 71

6.6 Computation graph of feature flow’s generator for one frame pre-
diction. The subscript h denotes the hidden state. It is not a
requirement to precondition the flow field on the current frame but
it has been observed to help. In practice, the recurrences seem to
be contributing the most at E1

h and D1
h. 73

6.7 Illustration of a κ = 3 feature flow predictions at location (i, j). For
clarity, only two set of patches around (i, j) are shown, there is in
reality 9 patches contributing to the predicted fixel for such value
of κ. Each colour represents a distribution of how the fixel at the
center of each arrow can flow out. For example, this is achieved
with D1(z) computing 9 values at each locations and sending them
through a softmax . These 9 values are then multiplied by the fixels
at frame t− 1 to give their respective flow patches. This is how, in
this two-patches-shown example, that location (i, j) receives additive
contribution from dark blue arrow of patch centered at (i, j− 1) and
dark yellow arrow of patch centered at (i, j + 1). In reality with
3× 3 patches, there would be 9 arrows of different colours (counting
the arrow pointing on itself) contributing to final fixel prediction at
location (i, j). 74

6.8 Feature flow samples, time goes forward from left to right, novel
next frame is done at each row. The first frame is from the dataset
and the last four are generations. Motion is correct (except for only
half of it for the third row) on all samples. 75

6.9 Best feature flow (teacher forcing) samples, time goes forward from
left to right, novel next frame is done at each row. The first two
frames are from the dataset and the last five are generations. In
reality, the generator was in closed loop for 5 frames. Notice that the
motion in every case is correct. Even so that on the fourth row, it
thought the shadow was a person and it made it move alongside the
actual profile of the person showing up. We can see from the second
and third row that the crisp details of the appearance degrade quickly. 76

7

6.10 Feature flow’s training learning curves with accuracies with respect
to epochs. Train/valid data accuracy are the accuracies of the
discriminator on the data from the training/validation set. Train
sample accuracy is the accuracy of the discriminator on the samples
from the generator (there is no concept of training/validation set
for generated samples. The unstable regime is shown above and the
overfitting one below. 78

8

List of Tables

4.1 SVHN test set missclassification rate 48

4.2 CIFAR10 test set missclassification rate for semi-supervised learning
using different numbers of trained labelled examples. For ALI, error
bars correspond to 3 times the standard deviation. 49

5.1 State-of-the-art progress for activity recognition on the two com-
mon benchmarks UCF101 (average on 3 splits) and HMDB sorted
increasingly for the third column’s scores. The accuracies are in %.
UCF101’s results are split between the first column that displays
scores without using additional features such as OF and the second
which is using all the heavy artillery the authors could think of.
Note that almost none of these papers show scores for their models
without pretraining, usually done on Sports1M. * is to denote that
these scores were computed only using split 1 of UCF101. † is to
emphasize models built on top of two-streams. ‡ is to remind that
this model is only with hand-crafted feature so there is no differences
between its two column’s scores. 57

5.2 Classification error rate of various models on training and validation
set of Dynamics dataset. Errors are in %. 60

9

List of Abbreviations

The list of abbreviations is ordered as they appear in the text.

MILA Montreal institute for learning algorithms
CNN Convolutional neural network

Conv3D 3D convolutional neural network
RNN Recurrent neural network

LSTM Long-short term memory network
ConvLSTM Convolutional long-short term memory network

PGM Probabilistic graphical models
NADE Neural autoregressive distribution estimation

PixelRNN Pixel recurrent neural network
PixelVAE Pixel variational autoencoder

MCMC Markov chain monte carlo
KL Kullback-Leibler divergence

VAE Variational autoencoder
GAN Generative adversarial networks
JSD Jensen-Shannon divergence

SOTA State-of-the-art
ALI Adversarially learned inference

SVHN Street view house numbers
CelebA Large-scale CelebFaces Attributes

InfoGAN Information maximizing GAN
BiGAN Bidirectional GAN

SVM Support vector machine
KTH Kungliga Tekniska Högskolan dataset

UCF101 University of Central Florida 101 action categories dataset
HMDB Human motion database

ILSVRC ImageNet large scale visual recognition challenge
MNIST Modified national institute of standards and technology dataset

OF Optical flow
iDT Improved dense trajectory

TDD Trajectory-pooled deep-convolutional descriptor
TSN Temporal segment networks

10

KVMF Key volume mining deep framework
GRU-RCN Gated recurrent unit recurrent convolution networks

LTC Long-term temporal convolutions
DrNet Disentangled representations network
CDNA Convolutional dynamic neural advection
RALI Recurrent adversarially learned inference

FF Feature flow

11

Contents

1 Introduction 15

2 Deep Learning 16

2.1 Introduction . 16

2.1.1 Simple network . 16

2.1.2 Black boxes . 18

2.2 Convolutional neural network . 19

2.2.1 Convolution . 19

2.2.2 Pooling . 20

2.2.3 Inductive bias . 21

2.3 Recurrent neural network . 22

2.3.1 Long short-term memory network 24

2.3.2 Convolutional LSTM . 25

2.4 Autoencoders . 27

2.4.1 Upsampling . 28

3 Generative Models 29

3.1 Autoregressive networks . 29

3.2 Variational autoencoders . 31

3.2.1 Kullback-Leibler divergence 31

12

3.2.2 Learning a variational bayes latent space 32

3.3 Generative adversarial networks . 34

3.3.1 Adversarial game . 35

3.3.2 Advantages and disadvantages 36

4 Adversarially learned inference 38

4.0 Prologue to the paper . 38

4.1 Introduction . 39

4.2 Adversarially learned inference . 39

4.2.1 Relation to GAN . 41

4.2.2 Alternative approaches to feedforward inference in GANs . . 41

4.2.3 Generator value function . 42

4.2.4 Discriminator optimality . 43

4.2.5 Relationship with the Jensen-Shannon divergence 43

4.2.6 Invertibility . 43

4.3 Related Work . 44

4.4 Experimental results . 44

4.4.1 Samples and Reconstructions 45

4.4.2 Latent space interpolations 47

4.4.3 Semi-supervised learning . 47

4.4.4 Conditional Generation . 49

4.4.5 Importance of learning inference jointly with generation . . . 49

4.5 Conclusion . 51

5 Video Discrimination 53

5.1 Activity recognition . 53

13

5.1.1 Problems . 53

5.1.2 Solutions . 55

5.2 Dynamics dataset . 57

5.2.1 Design . 58

5.2.2 Preliminary results . 59

6 Video Generation 62

6.1 Current models . 62

6.1.1 Unsupervised LSTM . 62

6.1.2 Multi-scale . 64

6.1.3 Foreground vs background 65

6.1.4 Disentangled representations 66

6.1.5 Forward pixel prediction . 68

6.2 Recurrent adversarially learned inference 69

6.2.1 Results . 69

6.3 Feature flow . 71

6.3.1 Inductive bias . 71

6.3.2 Model . 72

6.3.3 Samples . 74

6.3.4 FF for discrimination . 77

6.4 Future work . 79

7 Conclusion 81

14

Chapter 1

Introduction

This thesis will present the results of a master’s degree worth of research into the
area of deep learning, a sub-field of machine learning itself a sub-field of artificial
intelligence. The focus of this research is the study of video modelling as a broad
topic. There is a dip in using deep learning methods for the task of activity
recognition, but the strong emphasis is on using generative type of models. There
is also an inquiry on the nature of these types of models themselves.

This document is divided as follow: It begins with a short introduction to
set the stage with the many parts of deep learning that were used throughout
the thesis. It proceeds to the generative modelling landscape presenting its main
inhabitants and their various strong and weak attributes. From this field, it then
presents a conference paper in which I am a co-author addressing some of these
points. It finishes with two chapters discussing my foray into videos, first on the
discriminative side and lastly on the generative side. Both sides are accompanied
first with a review of existing work and followed next with proposed solutions to
remaining unsolved problems.

This thesis assumes as a starting point a certain knowledge in machine learning
with its core concepts and their mathematical backgrounds.

All graphs, figures and tables were done by myself unless mentioned otherwise
where clear attributions are provided.

It is written in the “companionate we” where it will return only briefly on a
few occasions into first-person.

15

Chapter 2

Deep Learning

This chapter will introduce the building blocks of deep learning used throughout
the thesis. It is not meant to be a comprehensive detailed tour of the different core
pieces used in the various models presented later. For in-depth explanation of the
theory behind the field, we kindly refer the avid reader to the Deep Learning book
[Goodfellow, Bengio, and Courville, 2016].

In order not to overwhelm the presentation with citations and since all materials
ahead is inspired by the textbook, we will not cite all the original sources of the
following work, unless not referenced in the book.

2.1 Introduction

Deep learning at the core is the act of stacking layers of neurons that propagate
successive function’s output as input for a function above, all the way up from data
as initial input to an arbitrary final output. An equation simply written as:

y = fI(fI−1(...f2(f1(x))...)) (2.1)

summarizes surprisingly well the application of a deep neural network for output
tensor y, a depth of I different fi functions and input tensor x.

2.1.1 Simple network

The most simple network is the fully connected one shown in Figure 2.1. Such
graphs are useful for a mental picture of what is going on. Each circle is a neuron,

16

except for the very first layer where they are better understood as values for each
dimension of the input. Each arrow represents a learnable parameter of the network
also known as a weight w.

Figure 2.1: Fully connected network. This picture shows a neural net with an
input vector of 2 dimensions, 4 neurons in the hidden layer and 3 neurons as
output. This illustrates a very simple case where the hidden neurons could be
doing a sigmoid activation and the final neurons could be a softmax function
that outputs a probability distribution for example. Note that this cannot be
categorized as deep, it would need at least another hidden layer!

A neuron, in this very artificial scenario, is simply an elementwise application
of a function to the incoming values. There is usually a bias term b that is added
at each neuron. All the weights can be easily condensed in a matrix W where
each column is for all parameters leading to a neuron. More formally, assuming an
input vector x, a weight matrix W, a bias vector b and an elementwise function’s
application f (called activation function) at depth i, a single layer’s processing can
be written as

h = fi(W
>x + b) (2.2)

So deep is achieved by using multiple layers and the most simple deep architec-
ture is called a multilayer perceptron. It can be represented simply by stacking
multiple hidden layers between input and output layers. The final output neurons
are doing the trick here. Indeed, it is used to represent multiple different math-
ematical objects depending on the task. Using sigmoid output function gives a
probability distribution, softmax for multiclassification, relu for a positive only
output... so on and so forth.

A fully connected layer is backed by a powerful property called the universal

17

function approximator theorem. This theorem states, under mild assumptions
regarding the activation function, that any continuous function on compact subsets
of Rn can be approximated given the appropriate parameters. The main drawback
is that it doesn’t offer guidance onto what values these parameters should take or
on how to algorthmicaly learn them.

2.1.2 Black boxes

We have seen deep but what is learning? Learning is done by the algorithm known
as backpropagation. Backpropagation means nothing more than the application of
the chain rule of derivatives on an error function (loss) L(y) on Equation 2.1. The
exact form of L will be defined by a task on a dataset. Each layer fi is parametrized
by a set of K parameters θi and each parameter θik is learned by differentiating
the loss with respect to its value and updating it accordingly

θ̂ik ← θik − η ∂L(y)/∂θik (2.3)

for new value θ̂ik, current value θik and scalar η.

The problem of learning then becomes one of minimization of an error function
by gradient descent. Optimization is a very active field of research and has a wealth
of literature that will not be dwelt upon, it will be used as a black box throughout
this thesis.

A second very important black box that will also not be covered in detail in
this text is regularization. Regularization is, to quote section 5.2.2 from the Deep
Learning book, “any modification we make to a learning algorithm that is intended
to reduce its generalization error but not its training error.” In other words, it can
be thought of as modifying the belief in a model so it does not depend only on the
training data. This will be done by applying some prior or constraints on it for the
sake of its ability to generalize. Many different strategies exist to achieve this and
as optimization, it is another bubbling area of research.

We will go over one example so it is easier to understand the concept. An early
regularization technique, before the rise of deep learning, consisted in parameters
constraint. It is done by extending the training objective:

L̂(y,θ) = L(y) + αΩ(θ) (2.4)

for scalar α controlling the strength of the regularization term Ω. The two
constraints usually used are L2: Ω(θ) = 1

2
‖W‖22 and L1: Ω(θ) = ‖W‖1 =

∑
i |wi|

commonly known as weight decay. Note that this is done only on the weights W

18

and not on the whole parameter set θ. Weight decay has many interpretations. L2

can be seen on an optimization point of view as keeping the parameters contributing
the most to the gradients while reducing the value of others. L1 will tend to create
a network with more sparse activation which can be a desirable property. Both,
if the weight decay pushes the values down to zero, can also act as keeping the
activations in their linear regime and prevent vanishing gradient (with a sigmoid
for example).

2.2 Convolutional neural network

Even though the all-mighty universal function approximation theorem backs all
neural networks, the theorem never specifies the amount of neurons needed to
express the data-generating function one is trying to model. Without infinite
data and infinite training time, most of the game is played by imposing priors or
inductive biases on the neural network architectures or how it processes information
from the data. One great success of this design incentive was the invention of
convolutional neural network (CNN).

2.2.1 Convolution

CNN changes Equation 2.2 for

h = fi(W
> ∗ x + b) (2.5)

where ∗ is the convolution operator. The convolution operator is mathematically
defined for continuous real values t and kernel w as:

s(t) = (x ∗ w)(t)

=

∫
x(a)w(t− a)da

=
∞∑

a=−∞

x(a)w(t− a)

= (w ∗ x)(t) =
∞∑

a=−∞

x(t− a)w(a)

The third line is the discretization of the second line and the fourth is the
commutative property. When working with images, the last line can be expanded

19

to its most widely used implementation and application in standard neural network
software library:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (2.6)

There are two finite sums because we now apply a discrete convolution on a
two-dimensional input, namely an image of finite pixels height and width. The
learnable parameters linking Equation 2.6 with W of Equation 2.5 are the kernel
values K(m,n). Notice the + instead of −, this subtle sign switch is referred as
kernel flipping. The function of Equation 2.6 is technically called cross-correlation,
but since K is learned, it has no impact whether we flip the kernel or not and by
historical convention we shall keep writing the word convolution.

The output S(i, j) is called the feature map and there are usually multiple
kernels of small size applied to the input to create a stack of feature maps. Important
technical terms that will keep showing up are: strides, represent the overlap in
the kernel application or sliding pattern, padding, arbitrary border values that are
added to input this way controlling the output size and channels, an additional
input’s dimension along height and width1. See Figure 2.2 for a 1D example.

Figure 2.2: 1 dimensional convolutional network. Its graph looks very much like
a fully connected layer but with only local interactions and parameters sharing in
the output. This is illustrated with different arrow colours, each triplet of arrows
are the same parameters being applied successively. In practice, the terminology
of this CNN would be: 1 channel, 1 feature map, kernel size of 3, strides of 1
and padding of 0. More kernels could be slid on the same input to increase the
number of feature maps.

2.2.2 Pooling

A convolutional neural network typically uses the convolution operator in conjunc-
tion with a pooling operation. Pooling is a function which returns a statistic of its
input. Many different statistics can be chosen, but the two most common are max

1Channel is easily understood with an example. For a colour image, the colour values are
specified in the 3 channels (RGB).

20

and average pooling. The key is to apply pooling in small windows on the input
just the kernels are in convolution. This enforces the learned representation to be
approximately invariant to small translations. This is an interesting property, as
invariance to local translation forces the model to care whether some feature is
present rather than have a pixel perfect location of where it is.

Figure 2.3: 2 × 2 maximum pooling window with 2 × 2 strides and zero padding.
The resulting output is downsampled by 4.

A convolutional network with convolution and/or pooling also has the effect of
downsampling the input. Downsampling is an important mechanism that eases
computation in practice. First, it makes it possible to treat a variable sized
input, which a fully connected layer is unable to cope with. Second, it reduces
computational complexity because the next layer receives a smaller input. Not
only does it hold these practical benefits, it also displays a desirable modelling
property. We can view downsampling as compressing information (not in the strict
information theory definition) and forcing the model to discard non-relevant bits.

Finally, convolution and pooling operations can be trivially generalized to more
dimensions, 3D convolutional neural networks (Conv3D) will be particularly of
interests in chapter 5 and chapter 6.

2.2.3 Inductive bias

The power behind CNN can be explained with the concept of prior probability
distribution over the parameters of a network. Applying such a prior over the
weights of a network constrains the values of the weights to what we think they
should be before even training on any data. Any kind of neural network can be
viewed as a fully connected one and any straying from this basic architecture can
be interpreted as using some kind of prior over its parameters. In that sense, a
convolutional architecture introduces a prior over the weights of a layer. It enforces
all the connections of a neuron to be zero except for a small region around it.

Overall, this induces a bias in the architecture to distribute the information
processing in a tight, locally spatially, organized structure. It works amazingly well

21

when working with natural images where a reasonable assumption behind them is
that every pixels are only correlated to the ones in their spatial neighbourhood.
A crucial insight that has been shown is that using an architecture of successive
convolution and pooling layers results in a network that learns more and more
abstract features when going up in the hierarchy. Layers very close to the pixels
will become edges detectors where the ones near the last classification layers will
encode more abstract concepts such as face or tree.

2.3 Recurrent neural network

Recurrent neural networks (RNN) are another form of architecture, fine tuned for
sequence modelling. RNN extend Equation 2.2 to:

ht = fi(W
>xt + U>ht−1 + b) (2.7)

where the input is now part of a sequence {x1,x2, ...,xT} of T tensors. The
parameter set θ now contains the weight matrix U which learns the relationship
with previously computed state ht−1. In most cases there is also an additional
learned parameter h0 to complete the recurrence. See Figure 2.4 for an illustration.

x

h

o

W

U

W

xtxt−1 xt+1

ht−1 ht ht+1ht−2 ht+2

ot−1 ot ot+1

W W W

U U U U

Figure 2.4: Compact graph of a recurrent neural network (left) and unfolded
(right). The compact version uses a loop with a square to indicate a recurrence
connection. Note that arrows here are not individual parameters as was the
case in previous graphs. They actually display the full matrix multiplication
(and optional bias vector addition), ex.: the arrow from xt to ht represents
ht = f(W>xt) where f is the activation function. Such a graph is usually called
a computation graph to distinguish them from ones displaying the insides of a
specific neural network.

Observe that parameter sharing is happening across the sequence, W and U
are reused every time. This assures the model doesn’t concentrate its efforts on

22

learning each timestep separately and instead finds the correct functions through
time.

Recurrent neural networks add another property to their arsenal as they are
proven to be Turing complete, i. e. they can represent any function computed by
a Turing machine. Their parameters are trained using backpropagation through
time, a three word concept which again only means using the chain rule of calculus.
Every step is dependant of the previous one and the derivatives from the loss to the
very first input can all be deterministically and unambiguously computed. Note
that it would be a whole different story if a circular dependence was involved in
Figure 2.4 (right).

RNN exhibit a very large freedom into their architectural design’s choice. Three
major patterns that will be used in chapter 5 and beyond are to be kept in mind:

1. Producing an output at each time step, as in Figure 2.4

2. Producing an output at each time step and having it feeding back as the
recurrence instead of the hidden to hidden connection.

3. Producing a single output after processing the entire sequence (optionally
doing 2) as well).

Pattern 2 is useful when RNNs are asked to process their own output as a
sequence. Next frame generation investigated in chapter 6 will do exactly that.
Let’s consider a simplified version:

The network generates a video starting from one frame of the data, generating
the next one and then using it as input for the next generation until a chosen
amount of steps is done. Be wary that this example in practice will be deep and
will actually be using a mixture of 1 and 2.

Teacher forcing may be a valuable procedure for training when recurrent
connections from the output feed back as input. This technique is to simply use
the true input instead of the output of the network as the feedback connection.
In our example, the RNN would generate the next frame again by starting from
one in the data. But instead of giving this generated frame as input for the next
step, it takes the next true frame from the data. You can then train every output
with a loss on every true target, as well reusing the true input which in effect is
bootstrapping the network so it doesn’t stray into hopeless parameter landscape
early in training. The major disadvantage of this method is if the RNN will later
be used in an open-loop fashion. This mode is when it stops using the ground
truth but reuses its output as input. With time, this can lead to very different
input the network was used to see. Its output will stray more and more from the
data and can reinforce the accumulation of errors. This problem can in practice be
reduced by training the network in both teaching forcing and open-loop modes.

23

Classification is an example when one needs the design change proposed by 3).
The recurrent neural network then computes a summary of the whole sequence
which is the final single output. This is usually taken by a classification layer to
produce the class prediction.

There are a myriad of other architectural specifications corresponding to various
different needs, whether RNN are used for input/output sequences of same length,
variable lengths, fixed but unequal length, unknown length, etc. They all have
solutions making RNN a very solid and general tool for sequence modelling.

2.3.1 Long short-term memory network

There is, however, one great challenge facing recurrent neural networks, namely
learning long-term dependencies. Here we will essentially rehash the analysis done
in the textbook, it is a short one that provides the reader with a simplified but
accurate view of the problem.

Stripping away all terms not involving recurrence of Equation 2.7 yields:

ht = U>ht−1 (2.8)

ht = (Ut)>h0 (2.9)

Assuming U admits an eigendecomposition of the form

U = QΛQ> (2.10)

and further requiring Q to be orthogonal simplifies the recurrence to

ht = Q>ΛtQh0 (2.11)

Notice the eigenvalues Λ being raised to the power of t. This will induce an
explosion from eigenvalues of magnitude greater than one or, on the opposite, a
decay from ones of magnitude less than one. The vanishing and exploding gradient
problem is a constant issue clouding over RNN and has been a case for major
studies ever since its discovery in the early 90s. One key element in the recent rise
of deep learning and its success can be traced back to breakthroughs on how to
make RNN properly work. There have been many attempts at solutions and as of
today the most effective practical solution has been to use gated RNN based on
gated recurrent unit. The long short-term memory (LSTM) network is one of the
variants most wildly employed and is the one that shall be discussed here.

24

First, we need to cover the concept of leaky and gated units. Leaky units are
based around the idea of having paths on which the product of derivatives is close
to one. This can be achieved by having units with linear self-connections and
weightings close to one on these connections. An example is accumulating a running
average a of value v such as at ← αat−1 + (1− α)vt, here the α parameter act as a
linear self-connection from a to its previous values. Depending on α, the running
average can keep or discard information through time. Leaky units are units with
self-connection displaying such behaviour and gated units are a generalization of
this idea.

A gated unit is a self-connection that is learned at each timestep, it grants the
network the ability to decide whether it wants to accumulate or forget information
depending on where it is reading the input sequence. With this in mind, the
dynamical system captured by the LSTM is illustrated on Figure 2.5 and described
by the following set of equations:

ft = σ(W>
f xt + U>f ht−1 + bf) (2.12)

it = σ(W>
i xt + U>i ht−1 + bi) (2.13)

ot = σ(W>
o xt + U>o ht−1 + bo) (2.14)

ct = ft � ct−1 + it � tanh(W>
c xt + U>c ht−1 + bc) (2.15)

ht = ot � tanh(ct) (2.16)

f is the forget gate, i the input gate, o output gate and the couple c and h
are the cell and hidden states respectively (all these gates are vectors). σ is the
sigmoid activation function and � denotes the elementwise product. The forget
gate controls what to remember in the self-loop of cell state c, the input gate takes
care of gating the input to the self-loop while the output gate does the same at the
output of the cell state self-loop. They are all conditioned on the current input xt
and past hidden state ht−1. Together, these gates control the flow of information
modulating the hidden state ht.

2.3.2 Convolutional LSTM

Next, we shall make a slight modification to LSTM creating the convolutional
version of the long short-term memory network [Shi et al., 2015] (ConvLSTM).
As was the case in going from the fully connected to the CNN, the changes in
the equations are only in going from the matrix multiplication to the convolution
operator.

25

x

tanh

�

i

f o

+ �

ctanh

�

h LSTM

Figure 2.5: Computation graph of the long short-term memory cell. Black boxes
indicate recurrences, bold arrows full parameters applications (see Figure 2.4)
and dashed arrows computation flow. The vector h is the final output.

ft = σ(W>
f ∗ xt + U>f ∗ ht−1 + bf)

it = σ(W>
i ∗ xt + U>i ∗ ht−1 + bi)

ot = σ(W>
o ∗ xt + U>o ∗ ht−1 + bo)

ct = ft � ct−1 + it � tanh(W>
c ∗ xt + U>c ∗ ht−1 + bc)

ht = ot � tanh(ct)

Where now everything besides the parameters are tensors (2 dimensional if used
with images). Most of what can be said about CNN and RNN can be ported to a
ConvLSTM making it an interesting choice when dealing with sequences of images.

26

2.4 Autoencoders

The final deep learning building block to be presented is a little bit more exotic
and quite important for generative models, it is the autoencoder.

Autoencoders are usually decomposed into two sub-models, an encoder which
maps the input to a code z = e(x) and a decoder that tries to reconstruct the
input from the code x̂ = d(z). An important aspect in this kind of setting is to
not have perfect reconstructions in the sense that x = x̂ for all x in the dataset.
Basically, if the autoencoder learns to simply copy the data perfectly it will not
learn anything insightful about it. This is why innovation with regards to this class
of models has concentrated on this aspect and is being driven by finding ways to
constrain their ability in copying the input.

Typically they are trained with a loss of the form L(x, d(e(x))) like a mean
squared error between the input and the reconstruction for example. However,
given enough capacity this doesn’t prevent the autoencoder to learn an identity
mapping. Therefore, strategies to prevent pure copying will focus on different
losses:

L(x, d(e(x))) + Ω(z) (2.17)

L(x, d(e(x))) + Ω(z,x) (2.18)

L(x, d(e(x̃))) (2.19)

The first one is adding a regularizer to the latent code z, forcing it to be
sparse for example. The second line is extending the penalty to the inputs such
as penalizing the derivatives of h with respect to x. Contractive autoencoder
implement this regularizing term. The last line belongs to the class of denoising
autoencoder. x̃ means a corrupted version of the input, the task then for the
autoencoder is to try to remove the corruption in the input.

Autoencoders are not restricted to deterministic mappings. They can be
generalized to stochastic functions pe(z|x) and pd(x|z).

Doing so, we can now think in term of log-likelihood. The same way the classical
classification setup is to learn the probability distribution p(y|x) where y is the
vector of targets, we can train the decoder to optimize on log pd(x|z) where x from
the dataset are taken as the targets. The encoder can be optimized on log pe(z|x)
with a prior on the probability distribution governing the latent code p(z).

27

2.4.1 Upsampling

Autoencoders have been made convolutional as well granting them the same bonuses
that bring convolutional networks. This raises a fundamental issue in computer
vision, upsampling. Upsampling is characterized by going from lower resolutions
to higher and many techniques exist in order to fill the new pixels being created
in the process. Since this projects the input in a higher space, it is a non trivial
problem to devise solutions that will be efficient and preserve the visual appeal
and consistency of the image.

Autoencoders make heavy use of this procedure when upsampling from the
latent space and going back into the data space. We would like to be able to learn
in a deep learning way on how to proceed. The case of a fully connected layer is
very simple. Recall Equation 2.2, there can be any relative difference in the number
of dimensions between x and h. Every neuron in the input has a connection to
every neuron in the output. This simplicity does not carry over with CNN because
we would like to keep their property of locally structuring computation. For this
purpose, transposed convolutions, or deconvolution [Zeiler et al., 2010], have been
proposed as a general way to do so. The idea is to treat the process as a convolution,
but expand the input with zeroes. See Figure 2.6 for a 1D visualization.

Figure 2.6: 1D deconvolution for input vector of 3 dimensions, output vector of
5, and kernel of size 2. The dashed circles are zeroes inserted between the values
of the input. Like a regular convolution, each couple of arrows is to represent the
same parameters being applied everytime. The net result is a higher dimensional
output.

Some modern architectures will favor using bilinear upsampling instead of
deconvolution. They insert convolution layers tuned so they do not alter the
dimensions between these upsampling layers in order to perform learning. Wojna
et al. [2017] is a recent overview of the different possibilities for the decoder and
they experimentally show that this choice can have an important consequence
depending on the task.

28

Chapter 3

Generative Models

There are two broad classes of models gathering presently most of the deep learning
fuss. We already have implicitly discussed the discriminative class in chapter 2
through classification examples. These models are ones that deal with the challenge
of learning relevant features of the data in order to identify, classify and/or discrim-
inate on them. In recent years another class, generative models, have distinguished
themselves as a strong choice for learning structures in the data through the process
of generation. The reasoning is quite simple: If a model can generate indistinguish-
able data from the real one it is studying then it must have understood something
meaningful about its distribution. Generative models operate in the unsupervised
learning regime most of the time which is a clear advantage over discriminative
models whom are usually relying on supervised learning and additional information.

Deep learning and generative models taps greatly into the field of probabilistic
graphical model. Without stating it, we have already bumped into graph theory in
the last chapter and we will not go more in depth in that very large topic. Koller
and Friedman [2009] is a solid textbook on the matter and we refer it for this
chapter and for readers interested in working out the inner gears of PGM.

In this chapter we will cover three types of generative models that have risen
among the ranks: autoregressive networks, variational autoencoders and generative
adversarial networks. The last two will give birth to chapter 4 and the very last
one is the backbone of chapter 6.

3.1 Autoregressive networks

The goal we seek is for a sampling mechanism correctly modelling the data distri-
bution p(x). We have already brushed up the concept of having a latent space z
which makes this wish possible in section 2.4 by ways of the conditional distribution

29

p(x|z). When doing this, an immediate issue arises in computing the marginal
p(x) =

∫
p(x|z)p(z)dz which is more often than not intractable without restrictive

assumptions on the latent’s code prior p(z) and the conditional. These problems
will be investigated in the next two sections.

Autoregressive networks exploit instead the fundamental factorial property of
any D-dimensional probability distribution:

p(x) =
D∏
d=1

p(xod|xo<d) (3.1)

where the index o is to underline that the exact order of the x factorization
doesn’t matter. xo<d describes the subvector along the d− 1 dimensions of ordering
o. The clever observation to be distilled from Equation 3.1 is that it can be
treated in a sequential fashion starting from p(xo1|xo<1) working your way up to
p(xod |xo<d−1

) hence yielding the complete p(x). Neural autoregressive distribution
estimation [Uria et al., 2016] (NADE) were among the first ones to use neural
networks on Equation 3.1 with success at generation (compared to before neural
methods that were employed like restricted boltzman machines). NADE and
autoregressive networks’s training is by the standard minibatch stochastic gradient
descent on the negative log-likelihood,

1

N

N∑
n=1

− log p(xn) =
1

N

N∑
n=1

d∑
d=1

− log p(xnod |x
n
o<d

) (3.2)

for N data points in the minibatch.

Recall that we presented a tailor made neural network when playing with
sequences. Naturally then, pixel recurrent neural network [Oord et al., 2016]
(PixelRNN) proposed to model the sequence of conditionals using LSTM. This
way, PixelRNN achieved the most breathtaking image generation of its time.
Unfortunately, this was accomplished by paying high computational price, indeed
sampling from autoregressive networks is slow by definition. Casting the problem
in this manner requires sequential sampling making PixelRNN’s sampling pixel by
pixel in order to generate an image. Nevertheless, such impressive results secured
a spot for autoregressive networks as competitive models for ones not minding the
hardware burden.

Efforts have been made to bridge this framework with latent space models and
try to profit from both potentials such as the PixelVAE [Gulrajani et al., 2017b].
We shall now need some theoretical background in order to make some sense of
this latent business.

30

3.2 Variational autoencoders

Let’s come back to the intractable data marginal likelihood when switching to a
latent code model pmodel(x, z) such as autoencoders:

p(x) =

∫
p(x|z)p(z)dz

We first need to introduce some notation: We shall write true distributions, like
the data p(x), the latent code prior p(z), the true data posterior p(x|z) and the
true code posterior p(z|x) without subscript. The distributions we will approximate
them with and try to learn will be written with their parameters subscript, pθ(x|z)
and qφ(z|x).

This integral does not generally admits a close form. It could be possible to
get one using p(z|x) = p(x|z)p(z)/p(x) if we had very particular forms of p(x|z)
and p(z), but p(x|z) and p(z|x) are usually taken for granted to be intractable
and we are interested in solutions free from further assumptions. We could also
draw samples from p(z|x) by skipping the normalization factor p(x) and then
approximate the integral by sample averages by ways of MCMC. This suffers from
scalability problems with large dataset where deep learning has the potential to
shine. This is the motivation behind going for a variational approach and using
approximate distributions pθ and qφ.

3.2.1 Kullback-Leibler divergence

What makes distributions good approximation of one another? Answering this
question begs the need for a notion of similarity. Thus our story begins with the
Kullback-Leibler divergence.

DKL(P ||Q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx

The KL is a measure of the relative entropy of probability distribution P with
respect to Q. Another interpretation from coding theory tells us that this will
extract the expected number of extra bits needed to code the members of P using
the code incoming from Q.

We can now try to approximate the true p(z|x) with qφ using the KL:

31

DKL(qφ(z|x)||p(z|x)) =

∫
qφ(z|x) log

qφ(z|x)

p(z|x)
dz

=

∫
qφ(z|x) log

qφ(z|x)p(x)

p(x, z)
dz

= Ez∼qφ(z|x)[log qφ(z|x)− log p(x, z)] + log p(x)

(3.3)

Isolating the log-likelihood of the data,

log p(x) = DKL(qφ(z|x)||p(z|x))− Ez∼qφ(z|x)[log qφ(z|x) + log p(x, z)]

But the KL cannot be negative DKL ≥ 0,

log p(x) ≥ Ez∼qφ(z|x)[log p(x, z)− log qφ(z|x)] = L[qφ] (3.4)

Equation 3.4 is known as the evidence lower bound. This inequality allows us
to bypass the unknown normalization p(x). Manipulating it a little bit more by
factorizing the joint with our data posterior approximation p(x, z) = pθ(x|z)p(z),
we get

L[qφ] = Ez∼qφ(z|x)[log pθ(x|z)p(z)− log qφ(z|x)]

= Ez∼qφ(z|x)[log pθ(x|z)− log
qφ(z|x)

p(z)
]

= Ez∼qφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)||p(z))

(3.5)

This last equation is the final piece of the puzzle assembling our second generative
model, the variational autoencoder [Kingma and Welling, 2013] (VAE).

3.2.2 Learning a variational bayes latent space

In the previous subsection we used a variational bayes method. Mathematically,
L[qφ] is a functional (a function mapping a function to a real scalar) and we did
what is called variational inference in order to find the approximating posterior
(bayes).

Let’s throw neural networks in the mix. We will take our classical stochastic
autoencoder with an encoder qφ(z|x) and a decoder pθ(x|z) parametrizing the two

32

distributions. Remember that we want to be able to sample from our model fairly
easily so it can be used as generation, for this we shall now make the required
assumptions and approximate everything as Gaussian. It might appear odd because
it was argued since the beginning that we wanted a constraints free solution. Sadly
Equation 3.5 did not make any jump to tractability, it was solved this way in
essence for easier optimization as we shall soon appreciate. The details of our
approximations are as follow:

• prior: p(z) = N (z; 0, I)

• encoder: qφ(z|x) = N (z;µφ(x),σ2
φ(x)I)

• decoder: pθ(x|z) = N (x;µθ(z), I)

Where N is the Gaussian distribution with average µ and standard deviation σ.
Neural networks parametrized by φ and θ will fully describe both Gaussian. There is
one technicality in our way, how can backpropagation work and train these networks,
both imply stochastic processes? There is a trick known as the reparametrization
trick [Kingma, 2013, Bengio et al., 2014, 2013] that keeps everything differentiable
through stochastic units in neural networks. They propose to reparametrize z such
that:

z = µ+ σ � ε, ε ∼ N (0, I) (3.6)

This way, the encoder can deterministically parametrized its Gaussian with
µφ and σφ which can be learned through gradient descent and stochasticity is
relegated to the injected noise ε. The prior’s assumption served two purposes. The
obvious one is that sampling from this simple Gaussian is trivial, the second one is
that the KL can be solved analytically. From appendix B of the VAE paper we
find that for two Gaussian:

DKL(qφ(z|x)||p(z)) =
1

2

J∑
j=1

(1 + log(σ2
j)− µ2

j − σ2
j)

where the sum along J is for the dimensions of µ and σ.

As for the decoder we do not need to apply Equation 3.6 because it is implicitly
embedded in the loss. Indeed, the decoder’s objective is E[log pθ(x|z)] and it can
be shown that training this with mean squared error is equivalent to optimize on a
log-likelihood of a Gaussian with unit standard deviation.

Grouping these terms will give us the final loss for training a VAE:

33

L(x) =
1

2

J∑
j=1

(1 + log(σ2
j)− µ2

j − σ2
j) + ||x̂− x||2 (3.7)

where x̂ is a sample from pθ(x|z).

Variational autoencoders’ wonders are many, they are somewhat easy to train
and provide us with efficient inference and sampling mechanisms. By inference
we mean the path x→ z which can be taught, if learned right, of a powerful way
to abstract the data and manipulate it. The drawback is that their samples tend
to be blurry and of less quality compared with both models from past and next
subsections. It has been suggested that this is explained by the issue of maximum
likelihood training paradigm combined with conditional independence assumption
on the output given the latent variables [Theis et al., 2016]. The last model of this
chapter will take a departure from this paradigm.

3.3 Generative adversarial networks

Neural networks have been shown to be very unreliable against adversarial examples
[Szegedy et al., 2014]. Adversarial examples stem from the concept of robustness
to noise which neural networks are not very good at. A striking example can be
seen on Figure 3.1.

Figure 3.1: Hypothetical adversarial example. Uniform noise is added to the
image completely throwing off the class label. This example would actually still
work even if the corruption to the image was smaller and imperceptible to human
eyes.

The good news is that this can be steered to our gain and generative adversarial
networks [Goodfellow et al., 2014] (GAN) have been proposed as an impressive
type of generative models based on the adversarial idea. The GAN training is
conceptually simple: a network called the discriminator is asked to classify whether
it receives a true data point x or a fake one x̃. This would be trivially easy if not for
the fact that x̃ is produced by another neural network, the generator, with mission

34

to fool the discriminator. Both network play a game, the generator constantly on
the toes of the discriminator with net result on strengthening their respective tasks.

3.3.1 Adversarial game

Formally, for a data distribution p(x), prior probability distribution p(z), discrimi-
nator’s function D(x) and generator’s function G(z), GAN implements a two-player
minmax game with value function V (G,D):

min
G

max
D

V (G,D) = Ex∼p(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))] (3.8)

It is easy to see that at the early iterations of the game it won’t be hard for the
discriminator to tell its inputs apart since the generator will most likely produce
garbage. log(1−D(G(z))) will saturate and the gradient for G will be too weak.
For this reason, Equation 3.8 is modified to optimize

max
G

max
D

V ′(G,D) = Ex∼p(x)[logD(x)] + Ez∼p(z)[log(D(G(z)))] (3.9)

instead. Goodfellow et al. [2014] have shown that at optimality (and the
usual “enough” parameters assumption) the GAN algorithm will converge to
pdata(x) = pg(x) where pg is the implicit probability distribution over the data
obtained with G. Therefore, the generator will at optimality of the game model
perfectly the data distribution.

By careful inspection (see paper for mathematical proof) it is not too hard to
realize that the optimal discriminator happening when pdata(x) = pg(x) can only
output 0.5, D∗G(x) = 1

2
where D∗G denotes optimality for a fixed G. We can convince

ourselves that this is the case with this light argument: The two distributions it
receives in input are equal, and nothing can be learned to distinguish them so the
discriminator will only at best flip a coin when asked to classify them apart. At
this point, it can be shown then that the cost value for G is

C(G) = − log(4) + 2 · JSD(pdata||pg) (3.10)

where JSD is the Jensen-Shannon divergence, the symmetrical version of the
KL: JSD(Q||P) = 1

2
KL(Q||A) + 1

2
KL(P ||A) for A = 1

2
(Q+ P).

35

3.3.2 Advantages and disadvantages

On one hand, generative adversarial networks do not require the hardware power-
house of autoregressive networks to generate impressive samples outmatching the
visual quality of variational autoencoders when both are applied to images in a
convolutional architectural fashion [Radford et al., 2016, Larsen et al., 2016]. As
was experimentally conjectured in Theis et al. [2016], it could be an attribute of
the shift from the maximum likelihood paradigm in training the generator with
Equation 3.10 instead.

This can be glimpsed by inspection of the KL properties since maximizing the
likelihood between our unknown data distribution and generated one is equivalent
to minimizing KL(pdata||pg). If pdata(x) > pg(x) then x has higher probability
coming from the data and the generator “drops” probability mass of these points.
In this case, if pg(x) → 0 then KL → ∞ and the generator pays an extremely
high cost for dropping part of the data. At the opposite, if pdata(x) < pg(x) then x
has high probability to come from the generator’s distribution and this happens
when the generator outputs samples that do not look real. Here when pdata(x)→ 0
then KL → 0 and the generator is not penalized for generating unreal samples.
Therefore, one can imagine that since the GAN’s generator is optimized on the
JSD of Equation 3.10 then it is acting on a sort of optimal middle ground of the
two cost regimes of the KL described above.

They are also as straightforward to sample from as VAE since the sampling
procedure is similarly done with a deterministic function on a prior x̃ = G(p(z))
normally taken to be Gaussian or other simple distributions.

Another interesting result is that GAN have shed light on a surprisingly efficient
path for semi-supervised learning when Salimans et al. [2016] grabbed this task’
state-of-the-art (SOTA) at the time on many popular deep learning datasets.
No hard explanation currently exists, but one could conjecture2 that this is an
undercover form of transfer learning. The discriminator starts by learning on an
easier problem, whether two points are from the same distribution, and then reuse
this knowledge on the harder problem of discriminating among classes.

On the other hand, the game behind generative adversarial networks is notori-
ously unstable and demands constant babysitting from the user. That is because
the core reason behind failure modes in training, relative capacity between the
discriminator and the generator (and to some extent the discriminator’s ability
to model the data as well), is very hard to estimate other than by trial and error.
If one neural network overpower the other, training will usually end in failure.
Arjovsky and Bottou [2017] is a recent effort towards explaining this instability.
They have proven what was originally experienced by Goodfellow et al. [2014], the

2Conjecture attributed to Ishmael Belghazi following discussions on semi-supervised learning
and yet unpublished work.

36

original cost function Equation 3.8 will give vanishing gradients to the generator.
This can be seen in corollary 2.1 of the paper:

lim
||D−D∗||

∇θEz∼p(z)[log(1−D(Gθ(z)))] = 0

They have also derived in theorem 2.5 what does the expectation of the default
practical version of the value function V ′ of Equation 3.9 gradient is:

Ez∼p(z)[−∇θ logD∗(Gθ(z))|θ=θ0] = ∇θ[KL(pg||pdata)− 2 · JSD(pg||pdata)]|θ=θ0

They argue that first because JSD is in the opposite sign, it will push for
the distributions to be different. Second, the KL here is the reversed (in term
of its arguments’ positions) of the maximum likelihood. It will do in this form
the opposite of what was written above, it will pay an extremely high cost for
generating out of distribution samples and a low one for dropping part of the data
distribution, which is what is observed in practice.

Furthermore, the value function’s scalar of Equation 3.8 has no reasonable
interpretation. Unlike in a classification scenario where the user needs only to take
care of the training error vs the validation one, monitoring its quantity is of almost
no importance with regards to outputting data matching samples and the solution
is to periodically assess their quality by eye.

Model-wise, GAN lack an inference mechanism and cannot manipulate the data
on an easier abstract space which is one of the most interesting property of latent
space model like VAE and many efforts have aimed to bridge the gap recently
[Larsen et al., 2016, Lamb et al., 2016, Dosovitskiy and Brox, 2016]. This particular
point will be the motivation behind next chapter.

In any case, generative adversarial networks have become immensely popular
due to the quality of their results they can generate if trained correctly. Among the
explosion of papers [Mao et al., 2017, Arjovsky et al., 2017, Gulrajani et al., 2017a],
to name a few, have offered insight on fixes to the practical issues mentioned above.
Finding a metric that when optimized correlates with sample quality is particularly
a golden graal.

37

Chapter 4

Adversarially learned inference

4.0 Prologue to the paper

This chapter presents joint work with Vincent Dumoulin3, Ishmael Belghazi3, Ben
Poole4, Alex Lamb3, Martin Arjovsky5 and Aaron Courville36 published at the
5th International Conference on Learning Representations (ICLR 2017) [Dumoulin
et al., 2017].

It has been integrated to this thesis subject to few modifications with permission
from the authors. The modifications are mostly to accommodate the paper into
this document. Doing so, the abstract and appendix have been taken off and the
introduction has been trimmed down since it contained materials already presented
in chapter 3. Everything else is as is.

Note that keeping with the spirit of minimal changes has the effect of a slight
notation desynchronization with the rest of the thesis. The other chapters do
actually take notation conventions close to this paper so it is not dramatic enough
but it is good to keep this in mind. The formatting and general visual appeal also
changed due to the whims of LATEX’s compilation in another environment.

My contribution in this publication are concentrated in section 4.4 where I have
done part of the CelebA experiments and mostly subsection 4.4.3.

3MILA, Université de Montréal
4Neural Dynamics and Computation Lab, Stanford
5New York University
6CIFAR fellow

38

x ∼ q(x)

ẑ ∼ q(z | x)

D(x, z)

x̃ ∼ p(x | z)

z ∼ p(z)

G
z
(x

) G
x
(z

)

(x, ẑ) (x̃, z)

Figure 4.1: The adversarially learned inference (ALI) game.

4.1 Introduction

In this paper, we propose a novel approach to integrate efficient inference within the
GAN framework. Our approach, called Adversarially Learned Inference (ALI), casts
the learning of both an inference machine (or encoder) and a deep directed generative
model (or decoder) in an GAN-like adversarial framework. A discriminator is trained
to discriminate joint samples of the data and the corresponding latent variable
from the encoder (or approximate posterior) from joint samples from the decoder
while in opposition, the encoder and the decoder are trained together to fool the
discriminator. Not only are we asking the discriminator to distinguish synthetic
samples from real data, but we are requiring it to distinguish between two joint
distributions over the data space and the latent variables.

With experiments on the Street View House Numbers (SVHN) dataset [Netzer
et al., 2011], the CIFAR-10 object recognition dataset [Krizhevsky and Hinton,
2009], the CelebA face dataset [Liu et al., 2015] and a downsampled version of the
ImageNet dataset [Russakovsky et al., 2015], we show qualitatively that we maintain
the high sample fidelity associated with the GAN framework, while gaining the
ability to perform efficient inference. We show that the learned representation is
useful for auxiliary tasks by achieving results competitive with the state-of-the-art
on the semi-supervised SVHN and CIFAR10 tasks.

4.2 Adversarially learned inference

Consider the two following probability distributions over x and z:

• the encoder joint distribution q(x, z) = q(x)q(z | x),

• the decoder joint distribution p(x, z) = p(z)p(x | z).

These two distributions have marginals that are known to us: the encoder marginal
q(x) is the empirical data distribution and the decoder marginal p(z) is usually

39

defined to be a simple, factorized distribution, such as the standard Normal
distribution p(z) = N (0, I). As such, the generative process between q(x, z) and
p(x, z) is reversed.

ALI’s objective is to match the two joint distributions. If this is achieved,
then we are ensured that all marginals match and all conditional distributions also
match. In particular, we are assured that the conditional q(z | x) matches the
posterior p(z | x).

In order to match the joint distributions, an adversarial game is played. Joint
pairs (x, z) are drawn either from q(x, z) or p(x, z), and a discriminator network
learns to discriminate between the two, while the encoder and decoder networks
are trained to fool the discriminator.

The value function describing the game is given by:

min
G

max
D

V (D,G) = Eq(x)[log(D(x, Gz(x)))] + Ep(z)[log(1−D(Gx(z), z))]

=

∫∫
q(x)q(z | x) log(D(x, z))dxdz

+

∫∫
p(z)p(x | z) log(1−D(x, z))dxdz.

(4.1)

An attractive property of adversarial approaches is that they do not require
that the conditional densities can be computed; they only require that they can be
sampled from in a way that allows gradient backpropagation. In the case of ALI,
this means that gradients should propagate from the discriminator network to the
encoder and decoder networks.

This can be done using the the reparametrization trick [Kingma, 2013, Bengio
et al., 2014, 2013]. Instead of sampling directly from the desired distribution,
the random variable is computed as a deterministic transformation of some noise
such that its distribution is the desired distribution. For instance, if q(z | x) =
N (µ(x), σ2(x)I), one can draw samples by computing

z = µ(x) + σ(x)� ε, ε ∼ N (0, I). (4.2)

More generally, one can employ a change of variable of the form

v = f(u, ε) (4.3)

where ε is some random source of noise.

The discriminator is trained to distinguish between samples from the encoder
(x, ẑ) ∼ q(x, z) and samples from the decoder (x̃, z) ∼ p(x, z). The generator is
trained to fool the discriminator, i.e., to generate x, z pairs from q(x, z) or p(x, z)

40

Algorithm 1 The ALI training procedure.

θg, θd ← initialize network parameters
repeat
x(1), . . . ,x(M) ∼ q(x) . Draw M samples from the dataset and the prior
z(1), . . . ,z(M) ∼ p(z)
ẑ(i) ∼ q(z | x = x(i)), i = 1, . . . ,M . Sample from the conditionals
x̃(j) ∼ p(x | z = z(j)), j = 1, . . . ,M

ρ
(i)
q ← D(x(i), ẑ(i)), i = 1, . . . ,M . Compute discriminator predictions

ρ
(j)
p ← D(x̃(j), z(j)), j = 1, . . . ,M

Ld ← − 1
M

∑M
i=1 log(ρ

(i)
q)− 1

M

∑M
j=1 log(1− ρ(j)p) . Compute discriminator

loss
Lg ← − 1

M

∑M
i=1 log(1− ρ(i)q)− 1

M

∑M
j=1 log(ρ

(j)
p) . Compute generator loss

θd ← θd −∇θdLd . Gradient update on discriminator network
θg ← θg −∇θgLg . Gradient update on generator networks

until convergence

that are indistinguishable one from another. See Figure 4.1 for a diagram of the
adversarial game and Algorithm 1 for an algorithmic description of the procedure.

In such a setting, and under the assumption of an optimal discriminator, the
generator minimizes the Jensen-Shannon divergence [Lin, 1991] between q(x, z)
and p(x, z). This can be shown using the same proof sketch as in the original GAN
paper [Goodfellow et al., 2014].

4.2.1 Relation to GAN

ALI bears close resemblance to GAN, but it differs from it in the two following
ways:

• The generator has two components: the encoder, Gz(x), which maps data
samples x to z-space, and the decoder Gx(z), which maps samples from the
prior p(z) (a source of noise) to the input space.

• The discriminator is trained to distinguish between joint pairs (x, ẑ = Gx(x))
and (x̃ = Gx(z), z), as opposed to marginal samples x ∼ q(x) and x̃ ∼ p(x).

4.2.2 Alternative approaches to feedforward inference in
GANs

The ALI training procedure is not the only way one could learn a feedforward
inference network in a GAN setting.

41

In recent work, Chen et al. [2016] introduce a model called InfoGAN which
minimizes the mutual information between a subset c of the latent code and x
through the use of an auxiliary distribution Q(c | x). However, this does not
correspond to full inference on z, as only the value for c is inferred. Additionally,
InfoGAN requires that Q(c | x) is a tractable approximate posterior that can be
sampled from and evaluated. ALI only requires that inference networks can be
sampled from, allowing it to represent arbitrarily complex posterior distributions.

One could learn the inverse mapping from GAN samples: this corresponds to
learning an encoder to reconstruct z, i.e. finding an encoder such that Ez∼p(z)[‖z−
Gz(Gx(z))‖22] ≈ 0. We are not aware of any work that reports results for this
approach. This resembles the InfoGAN learning procedure but with a fixed
generative model and a factorial Gaussian posterior with a fixed diagonal variance.

Alternatively, one could decompose training into two phases. In the first phase,
a GAN is trained normally. In the second phase, the GAN’s decoder is frozen and
an encoder is trained following the ALI procedure (i.e., a discriminator taking both
x and z as input is introduced). We call this post-hoc learned inference. In this
setting, the encoder and the decoder cannot interact together during training and
the encoder must work with whatever the decoder has learned during GAN training.
Post-hoc learned inference may be suboptimal if this interaction is beneficial to
modelling the data distribution.

4.2.3 Generator value function

As with GANs, when ALI’s discriminator gets too far ahead, its generator may have
a hard time minimizing the value function in Equation 4.1. If the discriminator’s
output is sigmoidal, then the gradient of the value function with respect to the
discriminator’s output vanishes to zero as the output saturates.

As a workaround, the generator is trained to maximize

V ′(D,G) = Eq(x)[log(1−D(x, Gz(x)))] + Ep(z)[log(D(Gx(z), z))] (4.4)

which has the same fixed points but whose gradient is stronger when the discrimi-
nator’s output saturates.

The adversarial game does not require an analytical expression for the joint
distributions. This means we can introduce variable changes without having to
know the explicit distribution over the new variable. For instance, sampling from
p(z) could be done by sampling ε ∼ N (0, I) and passing it through an arbitrary
differentiable function z = f(ε).

However, gradient propagation into the encoder and decoder networks relies
on the reparametrization trick, which means that ALI is not directly applicable to
either applications with discrete data or to models with discrete latent variables.

42

4.2.4 Discriminator optimality

Proposition 1. Given a fixed generator G, the optimal discriminator is given by

D∗(x, z) =
q(x, z)

q(x, z) + p(x, z)
. (4.5)

Proof. For a fixed generator G, the complete data value function is

V (D,G) = Ex,z∼q(x,z)[log(D(x, z))] + Ex,z∼p(x,z)[log(1−D(x, z))]. (4.6)

The result follows by the concavity of the log and the simplified Euler-Lagrange
equation first order conditions on (x, z)→ D(x, z).

4.2.5 Relationship with the Jensen-Shannon divergence

Proposition 2. Under an optimal discriminator D∗, the generator minimizes
the Jensen-Shanon divergence which attains its minimum if and only if q(x, z) =
p(x, z).

Proof. The proof is a straightforward extension of the proof in Goodfellow et al.
[2014].

4.2.6 Invertibility

Proposition 3. Assuming optimal discriminator D and generator G. If the
encoder Gx is deterministic, then Gx = G−1z and Gz = G−1x almost everywhere.

Sketch of proof. Consider the event Rε = {x : ‖x− (Gx ◦Gz)(x))‖ > ε} for some
positive ε. This set can be seen as a section of the (x, z) space over the elements z
such that z = Gz(x). The generator being optimal, the probabilities of Rε under
p(x, z) and q(x, z) are equal. Now p(x | z) = δx−Gx(z), where δ is the Dirac delta
distribution. This is enough to show that there are no x satisfying the event Rε

and thus Gx = G−1z almost everywhere. By symmetry, the same argument can be
applied to show that Gz = G−1x .
The complete proof is given in [Donahue et al., 2017], in which the authors
independently examine the same model structure under the name Bidirectional
GAN (BiGAN).

43

4.3 Related Work

Other recent papers explore hybrid approaches to generative modelling. One such
approach is to relax the probabilistic interpretation of the VAE model by replacing
either the KL-divergence term or the reconstruction term with variants that have
better properties. The adversarial autoencoder model [Makhzani et al., 2016]
replaces the KL-divergence term with a discriminator that is trained to distinguish
between approximate posterior and prior samples, which provides a more flexible
approach to matching the marginal q(z) and the prior. Other papers explore
replacing the reconstruction term with either GANs or auxiliary networks. Larsen
et al. [2016] collapse the decoder of a VAE and the generator of a GAN into one
network in order to supplement the reconstruction loss with a learned similarity
metric. Lamb et al. [2016] use the hidden layers of a pre-trained classifier as
auxiliary reconstruction losses to help the VAE focus on higher-level details when
reconstructing. Dosovitskiy and Brox [2016] combine both ideas into a unified loss
function.

ALI’s approach is also reminiscent of the adversarial autoencoder model, which
employs a GAN to distinguish between samples from the approximate posterior
distribution q(z | x) and prior samples. However, unlike adversarial autoencoders,
no explicit reconstruction loss is being optimized in ALI, and the discriminator
receives joint pairs of samples (x, z) rather than marginal z samples.

Independent work by Donahue et al. [2017] proposes the same model under the
name Bidirectional GAN (BiGAN), in which the authors emphasize the learned
features’ usefulness for auxiliary supervised and semi-supervised tasks. The main
difference in terms of experimental setting is that they use a deterministic q(z | x)
network, whereas we use a stochastic network. In our experience, this does not
make a big difference when x is a deterministic function of z as the stochastic
inference networks tend to become deterministic as training progresses. When using
stochastic mappings from z to x, the additional flexibility of stochastic posteriors
is critical.

4.4 Experimental results

We applied ALI to four different datasets, namely CIFAR10 [Krizhevsky and Hinton,
2009], SVHN [Netzer et al., 2011], CelebA [Liu et al., 2015] and a center-cropped,
64× 64 version of the ImageNet dataset [Russakovsky et al., 2015].7

Transposed convolutions are used in Gx(z). This operation corresponds to

7The code for all experiments can be found at https://github.com/IshmaelBelghazi/ALI.
Readers can also consult the accompanying website at https://ishmaelbelghazi.github.io/
ALI.

44

https://github.com/IshmaelBelghazi/ALI
https://ishmaelbelghazi.github.io/ALI
https://ishmaelbelghazi.github.io/ALI

the transpose of the matrix representation of a convolution, i.e., the gradient of
the convolution with respect to its inputs. For more details about transposed
convolutions and related operations, see Dumoulin and Visin [2016], Shi et al.
[2016], Odena et al. [2016].

(a) SVHN samples. (b) SVHN reconstructions.

Figure 4.2: Samples and reconstructions on the SVHN dataset. For the re-
constructions, odd columns are original samples from the validation set and
even columns are corresponding reconstructions (e.g., second column contains
reconstructions of the first column’s validation set samples).

(a) CelebA samples. (b) CelebA reconstructions.

Figure 4.3: Samples and reconstructions on the CelebA dataset. For the
reconstructions, odd columns are original samples from the validation set and
even columns are corresponding reconstructions.

4.4.1 Samples and Reconstructions

For each dataset, samples are presented (Figures 4.2a, 4.3a 4.4a and 4.5a). They
exhibit the same image fidelity as samples from other adversarially-trained models.

We also qualitatively evaluate the fit between the conditional distribution
q(z | x) and the posterior distribution p(z | x) by sampling ẑ ∼ q(z | x) and

45

(a) CIFAR10 samples. (b) CIFAR10 reconstructions.

Figure 4.4: Samples and reconstructions on the CIFAR10 dataset. For the
reconstructions, odd columns are original samples from the validation set and
even columns are corresponding reconstructions.

(a) Tiny ImageNet samples. (b) Tiny ImageNet reconstructions.

Figure 4.5: Samples and reconstructions on the Tiny ImageNet dataset. For
the reconstructions, odd columns are original samples from the validation set
and even columns are corresponding reconstructions.

x̂ ∼ p(x | z = ẑ) (Figures 4.2b, 4.3b, 4.4b and 4.5b). This corresponds to
reconstructing the input in a VAE setting. Note that the ALI training objective
does not involve an explicit reconstruction loss.

We observe that reconstructions are not always faithful reproductions of the
inputs. They retain the same crispness and quality characteristic to adversarially-
trained models, but oftentimes make mistakes in capturing exact object placement,
colour, style and (in extreme cases) object identity. The extent to which recon-
structions deviate from the inputs varies between datasets: on CIFAR10, which
arguably constitutes a more complex input distribution, the model exhibits less
faithful reconstructions. This leads us to believe that poor reconstructions are a
sign of underfitting.

This failure mode represents an interesting departure from the blurriness char-

46

Figure 4.6: Latent space interpolations on the CelebA validation set. Left and
right columns correspond to the original pairs x1 and x2, and the columns in
between correspond to the decoding of latent representations interpolated linearly
from z1 to z2. Unlike other adversarial approaches like DCGAN [Radford et al.,
2016], ALI allows one to interpolate between actual data points.

acteristic to the typical VAE setup. We conjecture that in the underfitting regime,
the latent variable representation learned by ALI is potentially more invariant to
less interesting factors of variation in the input and do not devote model capacity
to capturing these factors.

4.4.2 Latent space interpolations

As a sanity check for overfitting, we look at latent space interpolations between
validation set examples (Figure 4.6). We sample pairs of validation set examples x1

and x2 and project them into z1 and z2 by sampling from the encoder. We then
linearly interpolate between z1 and z2 and pass the intermediary points through
the decoder to plot the input-space interpolations.

We observe smooth transitions between pairs of examples, and intermediary
images remain believable. This is an indicator that ALI is not concentrating its
probability mass exclusively around training examples, but rather has learned
latent features that generalize well.

4.4.3 Semi-supervised learning

We investigate the usefulness of the latent representation learned by ALI through
semi-supervised benchmarks on SVHN and CIFAR10.

We first compare with GAN on SVHN by following the procedure outlined in
Radford et al. [2016]. We train an L2-SVM on the learned representations of a
model trained on SVHN. The last three hidden layers of the encoder as well as
its output are concatenated to form a 8960-dimensional feature vector. A 10,000

47

example held-out validation set is taken from the training set and is used for
model selection. The SVM is trained on 1000 examples taken at random from the
remainder of the training set. The test error rate is measured for 100 different
SVMs trained on different random 1000-example training sets, and the average
error rate is measured along with its standard deviation.

Using ALI’s inference network as opposed to the discriminator to extract
features, we achieve a missclassification rate that is roughly 3.00±0.50% lower than
reported in Radford et al. [2016] (Table 4.1), which suggests that ALI’s inference
mechanism is beneficial to the semi-supervised learning task.

We then investigate ALI’s performance when label information is taken into
account during training. We adapt the discriminative model proposed in Salimans
et al. [2016]. The discriminator takes x and z as input and outputs a distribution
over K + 1 classes, where K is the number of categories. When label information
is available for q(x, z) samples, the discriminator is expected to predict the label.
When no label information is available, the discriminator is expected to predict
K + 1 for p(x, z) samples and k ∈ {1, . . . , K} for q(x, z) samples.

Interestingly, Salimans et al. [2016] found that they required an alternative
training strategy for the generator where it tries to match first-order statistics in
the discriminator’s intermediate activations with respect to the data distribution
(they refer to this as feature matching). We found that ALI did not require feature
matching to obtain comparable results. We achieve results competitive with the
state-of-the-art, as shown in Tables 4.1 and 4.2. Table 4.2 shows that ALI offers
a modest improvement over Salimans et al. [2016], more specifically for 1000 and
2000 labelled examples.

Table 4.1: SVHN test set missclassification rate

.

Model Missclassification rate

VAE (M1 + M2) [Kingma et al., 2014] 36.02
SWWAE with dropout [Zhao et al., 2016] 23.56
DCGAN + L2-SVM [Radford et al., 2016] 22.18
SDGM [Maaløe et al., 2016] 16.61

GAN (feature matching) [Salimans et al., 2016] 8.11± 1.3
ALI (ours, L2-SVM) 19.14± 0.50
ALI (ours, no feature matching) 7.42± 0.65

We are still investigating the differences between ALI and GAN with respect to
feature matching, but we conjecture that the latent representation learned by ALI
is better untangled with respect to the classification task and that it generalizes
better.

48

Table 4.2: CIFAR10 test set missclassification rate for semi-supervised learning
using different numbers of trained labelled examples. For ALI, error bars
correspond to 3 times the standard deviation.

Number of labelled examples 1000 2000 4000 8000
Model Missclassification rate

Ladder network [Rasmus et al., 2015] 20.40
CatGAN [Springenberg, 2016] 19.58

GAN (feature matching) [Salimans et al., 2016] 21.83± 2.01 19.61± 2.09 18.63± 2.32 17.72± 1.82
ALI (ours, no feature matching) 19.98± 0.89 19.09± 0.44 17.99± 1.62 17.05± 1.49

4.4.4 Conditional Generation

We extend ALI to match a conditional distribution. Let y represent a fully observed
conditioning variable. In this setting, the value function reads

min
G

max
D

V (D,G) = Eq(x) p(y)[log(D(x, Gz(x,y),y))]

+ Ep(z) p(y)[log(1−D(Gx(z,y), z,y))]
(4.7)

We apply the conditional version of ALI to CelebA using the dataset’s 40 binary
attributes. The attributes are linearly embedded in the encoder, decoder and
discriminator. We observe how a single element of the latent space z changes with
respect to variations in the attributes vector y. Conditional samples are shown in
Figure 4.7.

4.4.5 Importance of learning inference jointly with gener-
ation

To highlight the role of the inference network during learning, we performed an
experiment on a toy dataset for which q(x) is a 2D Gaussian mixture with 25
mixture components laid out on a grid. The covariance matrices and centroids
have been chosen such that the distribution exhibits lots of modes separated by
large low-probability regions, which makes it a decently hard task despite the 2D
nature of the dataset.

We trained ALI and GAN on 100,000 q(x) samples. The decoder and discrimi-
nator architectures are identical between ALI and GAN (except for the input of
the discriminator, which receives the concatenation of x and z in the ALI case).
Each model was trained 10 times using Adam [Kingma and Ba, 2014] with random
learning rate and β1 values, and the weights were initialized by drawing from a
Gaussian distribution with a random standard deviation.

49

Figure 4.7: Conditional generation sequence. We sample a single fixed latent
code z. Each row has a subset of attributes that are held constant across columns.
The attributes are male, attractive, young for row I; male, attractive, older for
row II; female, attractive, young for row III; female, attractive, older for Row
IV. Attributes are then varied uniformly over rows across all columns in the
following sequence: (b) black hair; (c) brown hair; (d) blond hair; (e) black hair,
wavy hair; (f) blond hair, bangs; (g) blond hair, receding hairline; (h) blond
hair, balding; (i) black hair, smiling; (j) black hair, smiling, mouth slightly open;
(k) black hair, smiling, mouth slightly open, eyeglasses; (l) black hair, smiling,
mouth slightly open, eyeglasses, wearing hat.

We measured the extent to which the trained models covered all 25 modes by
drawing 10,000 samples from their p(x) distribution and assigning each sample to
a q(x) mixture component according to the mixture responsibilities. We defined
a dropped mode as one that wasnt assigned to any sample. Using this definition,
we found that ALI models covered 13.4± 5.8 modes on average (min: 8, max: 25)
while GAN models covered 10.4± 9.2 modes on average (min: 1, max: 22).

We then selected the best-covering ALI and GAN models, and the GAN model
was augmented with an encoder using the learned inverse mapping and post-hoc
learned inference procedures outlined in subsection 4.2.2. The encoders learned
for GAN inference have the same architecture as ALIs encoder. We also trained a
VAE with the same encoder-decoder architecture as ALI to outline the qualitative
differences between ALI and VAE models.

We then compared each models inference capabilities by reconstructing 10,000
held-out samples from q(x). Figure 4.8 summarizes the experiment. We observe
the following:

• The ALI encoder models a marginal distribution q(z) that matches p(z)
fairly well (row 2, column a). The learned representation does a decent job
at clustering and organizing the different mixture components.

• The GAN generator (row 5, columns b-c) has more trouble reaching all
the modes than the ALI generator (row 5, column a), even over 10 runs of

50

hyperparameter search.

• Learning an inverse mapping from GAN samples does not work very well:
the encoder has trouble covering the prior marginally and the way it clusters
mixture components is not very well organized (row 2, column b). As discussed
in subsection 4.2.2, reconstructions suffer from the generator dropping modes.

• Learning inference post-hoc doesn’t work as well as training the encoder and
the decoder jointly. As had been hinted at in subsection 4.2.2, it appears
that adversarial training benefits from learning inference at training time in
terms of mode coverage. This also negatively impacts how the latent space is
organized (row 2, column c). However, it appears to be better at matching
q(z) and p(z) than when inference is learned through inverse mapping from
GAN samples.

• Due to the nature of the loss function being optimized, the VAE model covers
all modes easily (row 5, column d) and excels at reconstructing data samples
(row 3, column d). However, they have a much more pronounced tendency to
smear out their probability density (row 5, column d) and leave “holes” in
q(z) (row 2, column d). Note however that recent approaches such as Inverse
Autoregressive Flow [Kingma et al., 2016] may be used to improve on this,
at the cost of a more complex mathematical framework.

In summary, this experiment provides evidence that adversarial training benefits
from learning an inference mechanism jointly with the decoder. Furthermore, it
shows that our proposed approach for learning inference in an adversarial setting
is superior to the other approaches investigated.

4.5 Conclusion

We introduced the adversarially learned inference (ALI) model, which jointly learns
a generation network and an inference network using an adversarial process. The
model learns mutually coherent inference and generation networks, as exhibited
by its reconstructions. The induced latent variable mapping is shown to be useful,
achieving results competitive with the state-of-the-art on the semi-supervised SVHN
and CIFAR10 tasks.

Acknowledgements

The authors would like to acknowledge the support of the following agencies
for research funding and computing support: NSERC, Calcul Québec, Compute
Canada. We would also like to thank the developers of Theano [Bergstra et al.,

51

2010, Bastien et al., 2012, Theano Development Team, 2016], Blocks and Fuel
[van Merriënboer et al., 2015], which were used extensively for the paper. Finally,
we would like to thank Yoshua Bengio, David Warde-Farley, Yaroslav Ganin and
Laurent Dinh for their valuable feedback.

Figure 4.8: Comparison of (a) ALI, (b) GAN with an encoder learned to
reconstruct latent samples (c) GAN with an encoder learned through ALI, (d)
variational autoencoder (VAE) on a 2D toy dataset. The ALI model in (a)
does a much better job of covering the latent space (second row) and producing
good samples than the two GAN models (b, c) augmented with an inference
mechanism.

52

Chapter 5

Video Discrimination

The last two chapters will cover my work into the part of computer vision dealing
with videos. We will start by looking at discriminative modelling in videos and
next chapter will move on to generation.

Note that there are many more tasks than activity recognition that possibly
fall into the discrimination category. Video question and answering or video to
text are examples of other tasks.

5.1 Activity recognition

Activity recognition is a classification task applied to videos. More specifically,
models are asked to recognize human activity by making semantic associations from
series of frames. Depending on the datasets used, the activities range from simple
jump, walking or running to complex ones such as soccer or playing instrument.
One of the earliest dataset created for this task is the KTH dataset [Schuldt
et al., 2004] consisting of 6 different actions and 100 videos per action. Common
benchmarks today are usually done on UCF101 [Soomro et al., 2013] and HMDB
[Kuehne et al., 2011] datasets.

5.1.1 Problems

Even before going into the temporal domain, computer vision on static images
is a hard problem in its own right. This can be observe from the ever increasing
accuracies of the ImageNet Large Scale Visual Recognition Challenge. ILSVRC
is one of the biggest yearly competition in the computer vision community since
2010. Models compete in image classification and object detection contests on an

53

extremely large dataset. The training set for classification in 2014 contained 1.28
millions images divided in 1000 classes. The best error rates have been steadily
decreasing ever since, from 28.2% missclassification in 2010 to 3.57% in 2015.
Interestingly, they have discontinued since 2015 the image classification task from
ILSVRC, but other challenges have remained. All in all, it shows that models still
have room for improvements with regards to image tasks.

This is to be kept in mind while moving on the topic at hand, challenges in
activity recognition. These are twofold: models and datasets. First of all, videos
burden the learning not only with the same needs as images, but with the addition of
a plethora of temporal information. Novel concepts only encountered in videos are
for example camera motion, objects coming or leaving the scene or shot transitions.
Non-smooth changes like two people talking in a scene and the camera’s point of
view alternating between the two speakers for example. What’s more, throwing
vision and time together imposes direct constraints on computational resources
like memory and processing time and limits the exploration of models with current
hardware.

Second, the current datasets available can add unwanted problems themselves to
the task. Some contain too few examples to really leverage deep learning methods,
for example KTH with 100 videos per class and 6 classes. Even the popular ones
like UCF101, 101 actions categories and 13320 videos and HMDB, 51 classes and
6766 total examples, are not in a well better-off regime.

Moreover, they can be too simple and suffer from the fact that the class can
be picked up with very few or no temporal information. UCF101 is particularly
afflicted by this condition where more often than not, the classes can be found by
a good pretrained vision model on a large image dataset (ImageNet) applied on a
single or very few frames.

A fair counter argument could be raised: maybe that is the nature of activity
recognition. It is fair to say that there are examples where this is not the case
such as identifying different dance styles. They can be categorized regardless of
the settings into which they are executed and the various objects the people could
be wearing. Even for soccer or swimming, positively the former one is strongly
associated with a soccer ball. Such object will be picked up from a single frame,
but soccer could easily be played indoors and it is unclear whether the best models
would generalize even to soccer in an indoor gym.

Other datasets, such as Sports1M [Karpathy et al., 2014] or DeepMind’s Kinetics
[Kay et al., 2017] are big but noisy. Acquiring data and having clean labels is a costly
enterprise. These large datasets have been assembling data in semi-automated
ways which have yielded somewhat unsatisfying results so far. They can contain
many examples which do not or almost not show their label making them hard to
process. The video community unfortunately doesn’t have access to the equivalent
of the MNIST dataset.

54

5.1.2 Solutions

Recent solutions to activity recognition have mostly focused on how to feed and
modify convolutional networks. All results reviewed here are summarized in
Table 5.1 at the end of this section.

There is still a strong emphasis on using hand-crafted features such as STIP,
Fisher vector and optical flow (OF). Wang and Schmid [2013a] is the model that
will set the stage, only relying on hand-crafted features which they name improved
dense trajectory (iDT). iDT is actually not a hand-crafted feature in itself, it is a
name for the process of computing multiple video descriptors (HOG, HOF and/or
MBH) along an optical flow trajectory and aggregating them in their particular
way. Their method is quite involved and we will not discuss on how to perform
training in a purely hand-crafted features setup (one could say it is also against
the deep learning spirit). The only thing to know is that after combining all these
features they use SVM as the final classifier. Be that as it may, we need at least
to introduce optical flow because of its heavy use in almost all models presented
below.

Optical flow is easily understood as a set of displacement vector fields dt between
pairs of consecutive frames t and t+ 1. There are two components, dxt , d

y
t , per pixel

location for optical flow on an image following each pixel’s motion across frames.

The two-streams model [Simonyan and Zisserman, 2014] was proposed as a
strong choice for activity recognition and was extended with the temporal segment
network [Wang et al., 2016] which holds the current SOTA on UCF101 and HMDB.
The idea behind two-streams is very simple:

Consider one video example being described by a sequence of K frames X =
{x1,x2, ...,xk} and a sequence of J hand-crafted features Y = {y1,y2, ...,yj}
computed from X. Be wary that J does not necessarily equal K as in the case for
optical flow (J = K−1). OF will be used as Y for it was found in their paper to give
the highest scores with two-streams. We now need two convolutional networks fθ,
gφ parametrized by θ and φ respectively and with both a final softmax layer giving
a classification score as output. One stream is on a random static frame xi ∼ X
and the second stream takes a random subset L (L = 10 was found sufficient)
Ŷ = {ŷ1, ŷ2, ..., ŷl} ∼ Y as input. The final result is the average classification score
from fθ(xi) and gφ(Ŷ)8.

As simple as it is, this model grabbed the state-of-the-art in 2014 on par with
the pure hand-crafted features and has set its standard ever since. In this paper and
all subsequent ones using two-streams, fθ(xi) is called the spatial CNN and gφ(Ŷ)
is called the temporal CNN. fθ is usually pretrained on the ILSVRC dataset and

8The implementation detail of two-streams for giving a sequence to a CNN is done simply by
stacking all the Ŷ on the channel axis instead.

55

gains a massive boost in performance with 72.8% accuracy compared with 52.3%
when trained from scratch on UCF101. gφ alone achieves 81.2% and together,
they end up with 88.0% classification accuracy. This suggests the presence of the
potential problem mentioned earlier: it is not a model which tries to learn explicitly
or need much of temporal information (it only uses 10 frames for OF) considering
all the pretrained spatial network is doing. This might well be explained by the
fact that there is not enough temporal dependencies for classification in UCF101.
Another argument along this line is the small 0.6% gain by coupling two-streams
with LSTM [Ng et al., 2015].

A year later, trajectory-pooled deep-convolutional descriptor [Wang et al., 2015]
(TDD) took the idea even further. They trained a two-streams model and used
its convolutional features, any intermediate stack of feature maps by any of the
convolutional layers, as input to the feature extraction mechanism of iDT. This
approach is a departure from neural network end-to-end learning as it makes heavily
use of different modules on top of optical flow to produce an accuracy of 91.5%.

Finally in 2016, the temporal segment networks (TSN) model was proposed
and improved the state-of-the-art to 94.2% (best as of writing). It used only the
original two-streams idea and removed the non end-to-end features enhancement of
TDD. TSN use two-streams multiple times on the same video by sampling various
shorter subsets of clips and finally averaging all the results. As it can be observed,
none of these models treat time with a fully learnable framework and rely very
indirectly to this dimension through hand-crafted features. This idea saw another
iteration with key volume mining deep framework [Zhu et al., 2016] (KVMF) where
the fundamental differences with TSN appear to be very thin. KVMF propose
to sample multiple cubes of 3D spatio-temporal subset of a video and train these
inputs in a two-streams fashion. Their method for sampling these 3D cubes seems
to be their differentiating factor.

There are other models that do not use a two-streams framework and try a
more direct approach to time modelling which are worth mentioning. Unsupervised
LSTM [Srivastava et al., 2015], GRU-RCN [Ballas et al., 2016], Convolutional 3D
network [Tran et al., 2015] and long-term temporal convolutions [Varol et al., 2017]
(LTC).

Unsupervised LSTM is an autoencoder approach using LSTM to first train
the encoder/decoder pair to predict the future and reconstruct the past and then
transfer the unsupervised knowledge onto activity recognition. They were able to
almost match SOTA of their time with a score of 84.3%. More details of this model
will be given on subsection 6.1.1.

GRU-RCN, which are gated recurrent unit9 upgraded to use convolution, have
shown SOTA matching results (when published) without the framework of two-

9GRU have not been presented in chapter 2 but we can think of them as being very close
sisters to LSTM.

56

streams (it does use optical flow and pretraining). They achieved 85.7% accuracy
on UCF101. With unsupervised LSTM, they are in the line of hope for sequences
RNN-like approaches to this task.

Convolutional 3D networks presents itself as a strong alternative for UCF101,
with 85.2% accuracy (using a SVM as a classifier) and 90.4% adding iDT. An
interesting aspect of this model is the net result of Conv3D, they compress the
time dimension. There is no reason so far indicating that this compressing cannot
be done on the time axis like it is done on the spatial one as well. A potential
drawback however is if the same interpretation happening in 2D space applies in
3D. There is evidence that lower layers near pixel space in CNN become edges
detectors. If this holds in 3D, it implies a great waste of capacity for detection
in time since everything not moving will create edges in this dimension. A clear
advantage of this method resides in its practicability. Convolutional operators
have robust implementation in current hardware offering unbeatable computational
performance. LTC is in all theoretical aspects the same as Tran et al. [2015] with
longer sequences as input for their Conv3D.

Models UCF101-RGB UCF101 HMDB

Two-Streams spatial CNN [Simonyan and Zisserman, 2014] 72.8* 72.8* 40.5
Two-Streams temporal CNN [Simonyan and Zisserman, 2014] — 81.2* 54.6
Unsupervised LSTM [Srivastava et al., 2015] 75.8 84.3 74
GRU-RCN [Ballas et al., 2016] 80.7* 85.7* —
iDT‡ [Wang and Schmid, 2013a,b] 85.9 85.9 57.2
Two-Streams [Simonyan and Zisserman, 2014] — 88.0 59.4
Two-Streams + LSTM† [Ng et al., 2015] — 88.6 —
Conv3D [Tran et al., 2015] 85.2 90.4 —
TDD† [Wang et al., 2015] — 91.5 65.9
LTC [Varol et al., 2017] 82.4 92.7 67.2
KVMF† [Zhu et al., 2016] — 93.1 63.3
TSN† [Wang et al., 2016] — 94.2 69.4

Table 5.1: State-of-the-art progress for activity recognition on the two common
benchmarks UCF101 (average on 3 splits) and HMDB sorted increasingly for
the third column’s scores. The accuracies are in %. UCF101’s results are split
between the first column that displays scores without using additional features
such as OF and the second which is using all the heavy artillery the authors could
think of. Note that almost none of these papers show scores for their models
without pretraining, usually done on Sports1M. * is to denote that these scores
were computed only using split 1 of UCF101. † is to emphasize models built on
top of two-streams. ‡ is to remind that this model is only with hand-crafted
feature so there is no differences between its two column’s scores.

5.2 Dynamics dataset

The issues discussed in last section motivated the search for a new dataset. This
section will present unreleased work that was done with Jakub Sygnowski while he

57

was an intern during winter and spring semesters 2017 at MILA. The contributions
are equal with respect to building the dataset while the preliminary results were
done by myself.

5.2.1 Design

With the previously discussed problems of activity recognition in mind, we identified
the following conditions for the design of a new dataset:

1. Strong temporal dependence

2. Low spatial dependence

3. Easy to process

4. Plentiful

Condition 1 penalizes any solution that does not try to model time directly
and gain almost half the accuracy score by looking at a single frame. The second
condition will mitigate trained ImageNet model and emphasize even more the first
one. This is not arguing that there is something wrong in pretraining. Quite the
opposite, almost everything learnable in an image in reality should be transferable
to video and models should not learn to see every time. The goal here is for a toy
task that disentangles learning in video from the appearance and concentrate only
in the time relationships. The last two conditions are really there to have deep
learning kick in. Past a fuzzy threshold, enough data should make deep learning
techniques take off and win over hand-crafted features.

One could argue that the second condition enforces a constraint that is absent
from activity recognition. Spotting a soccer ball or a hockey stick is a static
image-like feature that instantly yields the class that is being sought. Interestingly,
it is an open question as to how much content can be taken off from soccer for a
human to stop associating the class. This is inherent to the concept of semantics
and for more complicated classes raises valid philosophical considerations beyond
the scope of this text. Nevertheless, the low spatial dependence constraint might
indeed create a gap of transferability with activity recognition but remains well
grounded in the problem of video.

From these considerations the choice satisfying all four conditions becomes this
question: What is a relatively easy task that humans can do which requires them to
watch for a few seconds and where only a snapshot has no information in it? Also,
what would be a new dataset in video that could emulate the success in research
development like MNIST brought to images.

58

Physical dynamics are one possible options. An interesting fact in its own right
is that we have very limited precision when doing this task ourselves. Without pen,
paper, mathematics and physics we would have not gone really far compared to
what is achieved today. However, it is still possible for humans to output correct
predictions in simple physical scenario with a minimum of concentration. We
choose this task for our dataset.

We simulated simple physical dynamics using Bullet Physics SDK, a real-time
collision detection and multi-physics simulator. In its current state, which is subject
to changes in the future, the dataset contains 10 classes made by composition of
three different path and speed types plus an additional rotation class:

1. Path type:

(a) Linear

(b) Sinusoidal

(c) Hypocloidal

2. Speed type:

(a) Constant

(b) Accelerating

(c) Bouncing

3. Rotation

The full set of motion classes is given by the set product of the path set and
speed set plus rotation, so technically it can be broken down into 7 simpler classes.
The appearance of the objects used for movements are randomized in shape, colour
and size. The texture of the background is randomized as well. The dataset is
separated as follow: 5000 examples per class in the training set, 500 ex./cl. for
validation set and 500 ex./cl. for test set.

5.2.2 Preliminary results

Table Table 5.2 shows the preliminary results of different models that were tried
on this task. All models were only trained one or two times and there were
no hyperparameter search or fine-tuning. The two-streams model was trained
precomputing optical flow from the dataset. The relation network is a model
inspired on Santoro et al. [2017] that is explained in subsection 6.3.4. I also took
the test on a subset of the validation set containing only 10 examples per class.

The implementation of all models tried to follow the same pattern to make
them as comparable as possible. Since they all involve downsampling the image

59

input up to a 1× 1 representation for classification, all their convolutions pattern
are somewhat the same except for two-streams. Since this one is applied directly
on precomputed optical flows of 10 time step, it had more memory to spare. We
adapted a VGG-like [Simonyan and Zisserman, 2015] architecture meaning two
half padded 3× 3 convolutions of stride 1× 1 followed by a pooling operation. A
fully connected layer sits at the end for classification.

All other models use half padded 3× 3 convolution with stride 2× 2 resulting in
downsampling both image dimensions by 2 after each layer. This could well be too
aggressive, but it is the unfortunate compromise with current available hardware.

Conv3D follows the same pattern but with different kernel size for the time
dimension. It is bigger at the beginning for bigger compression early on and it
decreases with depth. A fully connected layer takes at the end a concatenation of
all remaining timesteps there is to produce a classification score.

The ConvLSTM10 model applies two convolutional LSTM late in the stack (far
from pixel space representation where it is very memory intensive). One of them is
always at the end and its last timestep outputs what is taken by the fully connected
for classification.

Conv3D + ConvLSTM is a merge of these two architectures.

Models Train Valid
Two-Streams 90 88
RelationNetwork 0.2 74
ConvLSTM 0.2 72
Conv3D 0.3 40
Conv3D + ConvLSTM 0.3 36
Myself (subset of valid) 8

Table 5.2: Classification error rate of various models on training and validation
set of Dynamics dataset. Errors are in %.

The first striking result from this table is the inability of two-streams to train,
it is stuck in an underfitting regime. It is to be noted that this model is actually
only the temporal network so there is technically only one stream. We can view
this model basically as a CNN applied to an image where all its channels are
optical flows (this way of feeding the OF is straight from the paper). For sake of
completeness, the real two-streams was tried, with the added spatial net, and it
yielded the same score.

10In practice deep ConvLSTM network are never only composed of ConvLSTM for each layer
in the stack, the strain on computational resources builds up too fast. A reasonable network with
today’s resources (1 computer) for, say 64x64 images, would use 2-3 ConvLSTM depending on
the aggressivity of the downsampling policy and they will be closer to the output rather than
being near the full sized input. The other layers would normally be regular 2D-CNN treating
time as an independent axis.

60

Since these results are very early, we let the doubt persists as of writing and do
not formally cast two-streams as a failure on this task. A more solid stance would
require the optical flow to be submitted to a thorough quality check, pretrain it on
ILSVRC and a hyperparameter search should be done (as with all other models).

Nevertheless, two things are worth mentioning even in such an early stage.
Clearly taking time into account is important by the fact that Conv3D has a 32%
lower missclassification. This dataset never displays two static frames since the
object is always in motion, this could in effect kill the edge hypothesis weakness
discussed earlier and draw all the potential of this model. Also, it is a mystery
that the ConvLSTM is not able to generalize much by itself but is actually helping
when mixed with Conv3D. This suggests that first a compression of space-time for
the inputs in the early layers then followed by a recurrent modelling at the features
levels can make for a good combination.

If this is the real winning model for this dataset and if it can transfer to activity
recognition or other video tasks is left as future work.

61

Chapter 6

Video Generation

The final chapter’s content is built on all previous chapters. The first section is
dedicated to current models in video generation and the following ones present
unpublished work done with tremendous help from Nicolas Ballas and Jakub
Sygnowski during my master at MILA.

Video generation can be broadly divided into two level of difficulties. The “easy”
one, next frame prediction, concerns itself with learning how to output a frame
based on the previous ones. Almost all models considered in section 6.1 are in this
category. The hard one is to come up with a whole video at once like generating a
whole sequence of frames showing gardening out of a representation of the word.
As we can see, this distinction is about the amount of available information relative
to what is asked to be generated. To the best of our knowledge, only Vondrick et al.
[2016] presented in subsection 6.1.3 has published somewhat reasonable results on
this topic.

One final note before diving into the chapter, as the reader might have noticed,
it is getting hard to keep strict formality while drawing the graphs. The models
here are huge stacks of usually multiple components. We hope the context will
convey enough information to understand the general picture of the models when
a graph is shown.

6.1 Current models

6.1.1 Unsupervised LSTM

We have already seen Srivastava et al. [2015] in chapter 5 for activity recognition
but the first experiments of their paper were actually on generation. It is worth
going a little bit into details since in essence, a lot of models using RNN are built

62

on variants or with modified parts of such architecture. Many models will start
by casting their solution in an autoencoder like framework, first an encoder will
downsample the video in a recursive fashion and second a decoder-like path will
bring it back to its original size. All the design challenges are on how to handle
the recurrences. The major motivation behind encoding and then employing a
recurrence is because of the high dimensionality of pixel space. It is going to blow
out of proportions, regarding parameters and/or computational requirements, when
working on a sequence of pixels.

Srivastava et al. [2015] proposes to perform generation with a global set of three
parameters’ set θ1,θ2,θ3 where θk is the set of all LSTM parameters. Their method
is to use three LSTM, one encoder that will produced only a single output, the
learned video representation, and two decoders. One decoder will try to reconstruct
the input and the second decoder will try to do future prediction. They call this
the Composite LSTM and it is illustrated on Figure 6.1.

x2x1 x3

h1 h2 h3

x̃4 x̃5 x̃6

h3 h′1 h′2

h3 h′′1 h′′2

x̃3 x̃2 x̃1

x4 x5

x3 x2θ1 θ1

θ3 θ3

θ2 θ2

copy

copy

Figure 6.1: The Composite Model for three timesteps, using three LSTM
parametrized as the encoder θ1 with hidden states h, the future decoder θ3 with
hidden states h′ and the past decoder θ2 with hidden states h′′. True inputs
are noted from x and predicted/reconstructed ones from x̃. This also shows the
optional conditioning represented as the dashed circles. The first hidden states
of both decoders is the copied latent representation learned by the encoder.

They explore the conditional and unconditional modes for the decoder, i. e.

63

whether giving access to the previous frame to the decoder or only the encoder’s
representation. There is an interesting trade-off happening between the two modes
of training. On one hand, it makes no sense to use it if there is no multiple modes
in the target distribution. Such is the case for the reconstruction path which is
unimodal in its target space. There is also the case for long-range dependencies. It
will be easier to focus on the short-range correlations and the long-range gradient
will be small if there is preconditioning on the previous frames. On the other hand,
the future prediction path is very multimodal in its target space, not everything
needed to predict the future is ever observed in the input.

They obtain reasonable results on moving MNIST (the version of MNIST where
multiple digits are moving around the scene) and inconclusive generations for a
more complicated dataset. The results suffer from the blurry autoencoder affliction.

The original paper introducing convolutional LSTM in subsection 2.3.2 extended
this idea for their experiments. They achieved similar results with the benefit of
having less parameters from the convolutional switch.

6.1.2 Multi-scale

Xue et al. [2016] and Mathieu et al. [2016] instead opt for a multi-scale approach.
Both papers are harder to compare since they use different datasets to experiment
on and different losses, the former is using a VAE-based training while the later a
GAN. However they share two common ideas: a departure from a RNN framework
for only convolutional networks and to process the video in a multi-scale like way.

The choice to drop RNN seems unconvincing. We find it hard to imagine the
CNN holding all in its parameters the static pixels understanding and also their
time-wise relationships. We suspect this is why they do not show more than 1
or 2 frames prediction in their papers. The observations of chapter 3 though are
encountered again, VAE samples tend to be blurry whereas the adversarial loss
gives us clear looking predictions.

The multi-scale processing differs among both papers. Mathieu et al. [2016]
frames multi-scale this way: Let ŷkt+1 be the frame to predict at scale k, Xk =
{xk1, ...,xkt } the video sequence at scale k to use as input and uk the upscaling
function from k − 1 to k. The final output is defined recursively with network Gθ

ŷkt+1 = uk(ŷ
k−1
t+1) +Gθ(x

k
0, ...,x

k
t , uk(ŷ

k−1
t+1))

The goal here is to work at many different scales to produce a final prediction
which seems like a good idea but unfortunately isn’t investigated further. The
paper pretrains on Sports1M and do not say if it learns the function u to go from

64

bigger and bigger scale nor how does it downscale the frames. For these reasons, it
is quite hard to tell the reach of this form of multi-scaling.

Xue et al. [2016] take a more classical autoencoder approach and their objective
is to reproduce the motion. There is an issue already being raised here as they hard
code motions to be the difference in pixel space between two frames. L2 measure
between two frames is a poor proxy for motion as would argue optical flow papers
from last chapter (think of camera motion). Their method is as follow:

They use multiple encoders at different pixel scale to create a multi-scale stack
of feature maps. They put the VAE-like path with motion as input and a very large
output. The particular thing here is that they use this output as kernel values for
convolving the stack of multi-scale feature maps, they name this cross convolution.
They finally recombine everything with another decoder neural network to try to
match the motion. See Figure 6.2 for a clearer picture of what is going on.

Figure 6.2: Figure 3 of Xue et al. [2016] with permission from the authors.

This idea is interesting as they have a lot of freedom in the network for learning
and also they try to understand what is motion. A limitation is inherently in their
first assumption of the hard coded description of motion. The generated motion in
their resulting experiments evidently get blurred as the byproduct of VAE training.

6.1.3 Foreground vs background

The term two-streams resurfaces again with Vondrick et al. [2016] but is not to be
confused with the one we’ve already seen. This time, this paper decides to split
the modelling in two, one foreground stream and one background stream all in a
GAN-like setup.

Noise sampled from the simple prior climbs two towers, the background CNN
tower and the Conv3D foreground tower which splits at some point on the up-

65

sampling path into another Conv3D arm called the mask, all together forming
generator G:

G(z) = m� f + (1−m)� b

for low-dimensional latent code z ∈ Rd, 2D image b and space-time cuboid m
and f . Doing so, object dynamics is learned through the interaction between m
and f with the static background b. The obvious limitation of this model is the
static background, without modifications this will never be able to model camera
motion. Apart from this though, the idea is very promising since the whole object’s
evolution is learned and more than only the motion. What is meant here is that it
tries to model the inherent and one of the biggest challenge to video, a 3D world
projected on a 2D screen. For example, this network can potentially hold in its
parameters a person turning on itself, hands, arms and legs all rotating and going
in and out of the pixel space representation from frame to frame.

The generated videos are definitely not there yet, but they are still impressive
with regards of a whole sequence generation out of pure random noise. Lastly, their
paper turns their GAN into a conditional GAN with a single image as conditioning.
This has the nice property of taking the foreground tower into a next frame
prediction machine. The model never really generates the “correct” future, but
still shows a certain degree of plausibility.

They are able to bypass the blow-up of working with sequences of pixels since
they use Conv3D. This however could be possible culprit in the loss of sample
quality. Indeed they need to upsample time and they do so following the exact
same logic of upsampling layers in CNN which is unclear if it is a good idea.

6.1.4 Disentangled representations

As of writing, the best KTH next frame generation were achieved by Denton
and Birodkar [2017] and by an impressive margin, their model can generate very
far ahead in time with few early accumulation of errors. Let’s go through their
“disentangled representations network” (DrNet).

DrNet describe a non-GAN adversarial training in an encoder/decoder setup.
DrNet’s main contribution is to enforce a factorization between time-invariant
(content) and time-evolving (pose) features and give full learning over this to the
network. Those features then can be extracted with the decoder and reconstruct
frames. It is best understood by going through the pieces of the proposed training
objective L:

66

L = Lrec(Ec, Ep, D) + αLsim(Ec) + β(Ladv(Ep) + Ladv(C))

with hyper-parameter α and β and model pieces content encoder Ec, pose
encoder Ep, decoder D and scene discriminator network C. The reconstruction
loss is pretty standard

Lrec(Ec, Ep, D) = ||D(Ec(xt), Ep(xt+k))− xt+k||22

Notice that Ep takes the future xt+k from frame xt offseted in time by k. The
similarity loss will enforce the content to be time-invariant

Lsim(Ec) = ||Ec(xt)− Ec(xt+k)||22

Ladv is the bulk of Denton and Birodkar [2017]’s contribution. This loss will
impose the assumption that objects’s semantics do not change within a video but
do between different videos11. This adversarial game (differs from a GAN) is played
between a discriminator that will try to classify pair of pose features as coming
from the same video Ep(x

i
t), Ep(x

i
t+k) or not Ep(x

i
t), Ep(x

j
t+k) and the pose encoder

that will try to fool said discriminator by wanting to maximize its entropy.

Ladv(C) = log(C(Ep(x
i
t), Ep(x

i
t+k))) + log(1− C(Ep(x

i
t), Ep(x

j
t+k)))

Ladv(Ep) =
1

2
log(C(Ep(x

i
t), Ep(x

i
t+k))) +

1

2
log(1− C(Ep(x

i
t), Ep(x

i
t+k)))

They conjecture without going further into mathematics that at optimality this
will yield the desired separation whereas the pose features won’t carry any content
information about objects.

They have, as others before, moved training into feature space and a strong point
for their model is that they built in time-invariance/variance into their training
setup. This gives it full freedom to construct features which will interact well, in
line with Vondrick et al. [2016] but without the foreground vs background strict
constraint. DrNet’s results does show that the content encoder capture semantics,
such as colours and objects’ type (like a red chair), and the pose encoder can rotate
them.

This enables them as well the possibility to do next frame prediction. After
training their encoder/decoder, they further train a LSTM taking in input the
content and pose features from a single image and then output pose features. They

11Ex.: A red chair does not become a blue sky.

67

recursively use them with the same content features through time to generate the
video. They backprop on the LSTM with a L2 loss between its pose and the pose
encoder’s (taken as ground truth, remember the encoders were already trained and
are fixed here). At test time, they get content and pose features from the LSTM
and run it. They generate this way hands-down the best KTH samples with an
amazingly simple model, only a traditional convolutional autoencoder coupled with
a LSTM.

A weak point against DrNet is that content can change through a video. Content
will normally appear and disappear, it does not happen in KTH but UCF101 is
full of those examples. Also, camera motion is a type of content and pose changing
simultaneously and renders such clean factorization invalid.

6.1.5 Forward pixel prediction

The final model we will cover in this section is the convolutional dynamic neural
advection (CDNA) from Finn et al. [2016]. Their idea is to predict motion of each
pixel from a frame at t as being a local change with respect to this pixel at t−1. In
other words, a pixel will not teleport itself at a random location. Going from frame
to frame, it should move smoothly and locally from its location. They also further
make the assumptions that a group of pixels can actually move together. Pixels of
the same objects should move as a group. More formally, for transformation kernel
m̂ of spatial size κ, previous image xt−1 and predicted image yt at each pixel (i, j)

yt[i, j] =
∑

k∈(−κ,κ)

∑
l∈(−κ,κ)

m̂[k, l]xt−1[i− k, j − l] (6.1)

Since objects do not all subscribe to the same motion pattern, they cast the
problem instead as predicting a discrete distribution of C {m̂c} over each pixel.
Doing so, they learn a 3D mask Ξ which is passed through a softmax layer on the
c axis. They further expands y to actually be a tensor in three dimensions with
an additional channel axis onto which each m̂c applications are stored. The final
prediction is ŷt =

∑
c yt[c]� Ξc. They also include a background mask where they

allow the model to copy each pixel directly from the previous frame and grant it
the ability to fill a previously occluded pixel which might need a novel generation.

Finn et al. [2016] argue that their model’s benefits are two-fold: first, every
predicted motions m̂c can be reused for multiple pixels and second, it forces the
model to hold object centric representations without further supervision. They show
in their experiments that indeed, CDNA learn to mask out blobs of pixels, objects,
moving in consistent directions. Practically, they use a very heavy architecture of
multiple ConvLSTM to produce all the components of CDNA.

68

6.2 Recurrent adversarially learned inference

In this section, we tried to upgrade ALI of chapter 4 to a recurrent version: recurrent
adversarially learned inference (RALI). A reason behind such an enterprise lies in
the promise of the abstract latent space. We do not need further convincing that
videos are big bulky objects to work with. An encoded abstract space offers the
many advantages of being able to compress, manipulate and do inference (a better
space to operate on for activity recognition for example). We only tried RALI for
the hard problem of generating a whole video.

Many variations of Figure 4.1 can be made when going recurrent and x is
now fixed as a sequence of images. It moves most design choices to be on how to
structure z and of course G’s and D’s respective architectures. Let’s start with the
generator.

x2:t−1x1 xt

h1 h2:t−1 ht

ẑ1 ẑ2:t−1 ẑt

z2:t−1z1 zt

h′1 h′2:t−1 h′t

x̃1 x̃2:t−1 x̃t

Figure 6.3: Encoder (left) and decoder (right) for RALI with a sequence of zt
for a video. The subscript 2 : t− 1 denotes that this graph shows in total T time
step. Note that in practice, the network will be deep and have multiple stages of
hidden state h and h′.

Figure 6.3 depicts the scenario when the latent space is taken to be recurrent.
Figure 6.4 pictures the case when z is taken to be one vector. Both generators are
deep ConvLSTM network. As for the discriminator, in all cases its design will look
closely to the encoder of Figure 6.4 (left) but rather with a single scalar output for
the class fake/real instead of a vector.

6.2.1 Results

All experiments were made on downsampled KTH (64 × 64). Most would be
qualified as failures except one where we can at least see a resemblance of the
dataset, see Figure 6.5.

The setup described by Figure 6.4 fared better at generations rather than having

69

x2:t−1x1 xt

ht h2:t−1 ht

ẑ

z

h′2:t−1h′1 h′t

x̃1 x̃2:t−1 x̃t

Figure 6.4: Encoder (left) and decoder (right) for RALI. with a single z for a
video. The subscript 2 : t− 1 denotes that this graph shows in total T time step.
The z on the decoder side can be fed to the first recurrence in many ways. It can
be copied for all time step, only drives the first the first h′1 or be transformed
for example. Our best experiment was done by using a MLP that parametrized
these connections (shared parameters across time). Note that in practice, the
network will be deep and have multiple stages of hidden state h and h′.

a sequence of z. This level of separation among the global failures is reasonable.
Indeed, there is a lot of entropy coming in when trying to inject noise at every
timestep. Of course both latent structures can be seen as natural assumptions.
The former would take into account that the random changes in every frame is well
suited for a sequence of random numbers while the latter will convince us that you
can encode all a video as a theme in one single vector. A sequence of z this way
though has the weakness that it fails to capture one strong video observation: much
of a frame comes from the past one. That being said, it puts enormous pressure on
trying to model new noise every time. For a simple dataset such as KTH, it seems
reasonable that a lower entropy model wins. Unfortunately, we did so by using
a MLP for the mapping from the latent vector to the whole sequence. This has
the regrettable consequence to fix in advance the number of timesteps that will be
generated.

There are a few origins for the failure modes of this model:

1. KTH has not enough data

2. GAN instability

3. ALI instability

4. RNN instability

5. All of the above

Obviously, the fifth reason will be the answer of choice. This is not meant to
convey that fundamentally RALI is a bad choice for video generation, it is rather a

70

claim for attention to underlying sub-problems. The first is true in the sense that
we have empirically observed overfitting on all trials of our discriminator, however,
the DrNet model proved us that decent frame generation on KTH is possible with
neural networks. It is important to note that the theoretical literature, and the
practical solutions it spawned, on GAN addressing the second point were not
available at the time (this field is fast). Even if they were, ALI’s instability is still
not to rule out and it has not been investigated as much as GAN. The instability
contest does not have a clear winner so far. chapter 2 went over RNN issues, but
the real point is that recurrent GAN is still an open question on how to deal with
properly. There have been problems trying to make the recurrent extension take
off in many other applications and this is an important concern that will follow us
in the next sections.

Figure 6.5: RALI samples, time goes forward from left to right, novel sampling
is done at each row. The last row is to show that the decoder was unable to
structure properly its latent space. This failed generation would happen 10% of
the time.

6.3 Feature flow

Finally, we will conclude this thesis with a promising, yet incomplete, model. The
reader will have observed that optical flow came again and again in the winning
models reviewed in chapter 5. Also, section 6.1 should have thought us the benefits
of working in feature space instead of trying to ram through pixel space and the
robustness of the autoencoder framework. We propose to combine these ideas in
what we call the feature flow (FF) model.

6.3.1 Inductive bias

Before going through the inner gears of feature flow, we would like to go over a
motivation that we believe should be driving research in videos and that should

71

have made itself apparent throughout chapter 5 and chapter 6: An inductive bias
seems to be missing in models of spatio-temporal data. Recall how the switch in
chapter 2 from fully connected network to convolutional network resulted in an
extremely powerful prior induced over the parameters. It granted neural networks
in its wake incredible leverage over any locally focused tasks. We argue that this is
still lacking in the video network landscape.

Of course, research on images did not come to an end with CNN as was
appreciated from the ever increasing ILSVRC classification scores which gave birth
to the VGG architecture and its successor Residual Network [He et al., 2016].
Nonetheless, it seems fair to suspect that video is not yet in the phase of building
on top of a core piece. ConvLSTM and Conv3D have given some results although
they are clearly not the end of the story and as themselves have not proven to be
deal breakers (in the sense that they are to be used in every subsequent successful
architectures, like CNN are).

An argument against this claim resides in the “absence of proper video dataset”
argument as was discussed in chapter 5. This is true and is a plaguing issue of the
field. We conjecture that more clean data will only partially solve video.

It is with this in mind that feature flow has been designed, to embed an inductive
bias into how a neural network process information from one frame to the next.

6.3.2 Model

Feature flow F implements a process very close to Equation 6.1 but operates in
feature space. The idea is to have a neural network produce a flow field that is
local to each fixel12. The field describes how fixels move from t − 1 to t. The
generative model will be set up as a GAN. The generator consists of two downscaling
ConvLSTM encoders E1, E2 and two upscaling decoders D1, D2. The encoders will
encode xt−1 at two scales, one scale to use as fixels and the other to precondition the
flow field. The decoders are two upscaling ConvLSTM that will decode a random
latent variable z to produce the flow field and from feature flow’s application decode
to generate x̃t. The model’s graph is shown in Figure 6.7. More formally, given
these encoder/decoder functions, feature flow operator F , a latent low-dimensional
vector13 zt ∼ N (0, I), frame x̃t is predicted from frame xt−1:

x̃t = D2(F [E1(xt−1), D
1(zt, E

2(E1(xt−1)))]) (6.2)

Note that this equation was abstracted from the possible hidden states the
encoders/decoders could have, it will be important in practice how to manage the

12A fixel is the equivalent of pixel in feature space, it is a location (i, j) on a 2D grid.
13The subscript t on z is to emphasize that the latent vector is resampled at every timestep.

72

recurrences.

xt−1

E1
h

E2
h

F D1
h

D2
h

x̃t

zt

Figure 6.6: Computation graph of feature flow’s generator for one frame
prediction. The subscript h denotes the hidden state. It is not a requirement to
precondition the flow field on the current frame but it has been observed to help.
In practice, the recurrences seem to be contributing the most at E1

h and D1
h.

Now we need to define the operation F . For computational and implementation
considerations, we assume that all fixels’s channels are following the same flow field,
meaning we apply the same transformation across the channel axis. At first glance,
the equation for one fixel’s transformation E1

ht−1
[i, j] looks similar in essence to

Equation 6.1:

F(E1(xt−1), D
1(zt, E

2(E1(xt−1))) = h̃t

h̃t[i, j] =
∑

k∈(−ξ,ξ)

∑
l∈(−ξ,ξ)

D1
ht [i− k, j − l, (k + ξ)κ+ l + ξ]E1

ht−1
[i− k, j − l] (6.3)

where κ = 2n+ 1, n ∈ N+, ξ = bκ
2
c and square brackets signifies indexing. Note

that D1
h is indexed as a volume. An important contrast with m̂ of CDNA is that

they learn a distribution for a motion patch κ × κ which in their case apply on
every neighbour pixels of the past frame going in to the predicted pixel of current
frame. We do learn a distribution over a patch, but it is for each fixel of the past
frame going out. Refer to Figure 6.7 for a visual explanation.

Something is worth mentioning with such a model. A fixel’s displacement on its
feature map does not necessarily translate into direct pixel motion. Anything can
potentially be encoded in the feature maps depending at which scale it is. Thus, a
group of fixels flowing in a local direction in feature space could possibly represent
objects that were occluded reappearing in pixel space for example. A weak point

73

Figure 6.7: Illustration of a κ = 3 feature flow predictions at location (i, j).
For clarity, only two set of patches around (i, j) are shown, there is in reality
9 patches contributing to the predicted fixel for such value of κ. Each colour
represents a distribution of how the fixel at the center of each arrow can flow out.
For example, this is achieved with D1(z) computing 9 values at each locations
and sending them through a softmax . These 9 values are then multiplied by the
fixels at frame t− 1 to give their respective flow patches. This is how, in this
two-patches-shown example, that location (i, j) receives additive contribution
from dark blue arrow of patch centered at (i, j − 1) and dark yellow arrow of
patch centered at (i, j+1). In reality with 3×3 patches, there would be 9 arrows
of different colours (counting the arrow pointing on itself) contributing to final
fixel prediction at location (i, j).

against this model is that this approach will put a lot of pressure in the decoder’s
parameters to compensate the flow induced changes into an image representation
that makes sense.

6.3.3 Samples

All experiments were done on KTH at full 120× 120 resolution. All parts of the
generator of Figure 6.7 were CNN with aggressive downsampling policy to reduce
computation and memory usage. Only two ConvLSTM replaced CNN right before
the application of F on both sides of the graph. So one ConvLSTM produced the
fixel grid to be “flowed” by the flow field, output of the other ConvLSTM. This
gave more consistent global motion (as perceived by a human inspecting decoded
pixel space) in practice than having only CNN everywhere and no recurrence. As
per standard GAN-like training, optimization was done with the Adam algorithm
[Kingma and Ba, 2014] and since the publication of Salimans et al. [2016], batch
normalization [Ioffe and Szegedy, 2015, Cooijmans et al., 2017] on the generator
and weight normalization [Salimans and Kingma, 2016] on the discriminator.

The discriminator’s architecture is a regular CNN stack with two or three
ConvLSTM far from full resolution.

A key aspect of FF is at which downscaled version of the frames F is applied.
We empirically found that 30× 30 gave the best results. It is interesting to note the
sub-optimality happening at a sort of skewed middle-ground between full 120× 120

74

pixel space and final 1 × 1 fully abstract space14. Too close to pixel space and
not only does it lose the computational advantages of working at lower resolution,
but it suffers from the many more variability possible as it becomes a real motion
prediction mechanism. On the contrary, too close to the most abstract space can
result in a too tricky changes of features for the whole decoder upsampling chain
to cope with or in trying to move potentially learned time-invariant features.

We trained in a curriculum learning fashion meaning we progressively add
timesteps as the training goes on. This last trick interacts weirdly with the GAN
framework and is inconclusive in its ability to help or harm training.

Figure 6.8: Feature flow samples, time goes forward from left to right, novel
next frame is done at each row. The first frame is from the dataset and the last
four are generations. Motion is correct (except for only half of it for the third
row) on all samples.

As we can observe from the frame generation, the motion is correct (in the
sense of possible motion in KTH) but the appearance is unimpressive. The pixel
space degrade almost on the first generated frame. What is worse, the model has a
hard time finding the coherant time-invariant structures and can split the body of
a person in half.

It might be too small to see in the samples of Figure 6.8 but there was one
appearant thing on all of them, the background was unstable. This is one suspect of
the weak point discussed earlier, since all fixels are moving according to a generated

14Someone untanned to convolutional network training would raise an eyebrow here, there is
nothing left at 1× 1! CNN compensate their loss of 2D local grid by expanding more and more
the channel axis. A practical example could be a starting RGB image 120× 120× 3 going to a
final scale 1× 1× 512 before classification.

75

fields, there could be no concept of background or repeated pixels from frame to
frame. It has to be learned by the decoders to zero out most of the motion and
this put much pressure on them. That being said, we added to the generator the
capacity to learn a past frame mask so it could decide to straight up copy pixels
from the previous frame if it wished. It is unsatisfaying with regards of reallly
learning time-invariant/variant features, it does seem like a hack and is in pixel
space, but it did take care of the noisy background.

The best results were obtained by adding a few tricks and taking inspiration
from chapter 5. We modified the training to be done in close/open loop mode
where instead of only preconditioning on the first frame, we apply L2 loss for a
few generated frames on the generator reusing the grand truth (closed) and then
letting it generate based on its past generations (open). On the discriminator’s
side this implies that it will see more frames and can extract more information
from longer sequences.

We modified the discriminator’s architecture to be like the best model of the
Dynamics dataset results. The discriminator became a merge of Conv3D and
ConvLSTM.

Figure 6.9: Best feature flow (teacher forcing) samples, time goes forward from
left to right, novel next frame is done at each row. The first two frames are from
the dataset and the last five are generations. In reality, the generator was in
closed loop for 5 frames. Notice that the motion in every case is correct. Even
so that on the fourth row, it thought the shadow was a person and it made it
move alongside the actual profile of the person showing up. We can see from the
second and third row that the crisp details of the appearance degrade quickly.

The instability issues that were encountered with RALI can be appreciated on

76

Figure 6.10. This figure show two common regimes that were happening during
training, the below figure shows the overfitting of the discriminator and the above
figure shows instability. Stability is defined in terms of training accuracy and
sample quality. Samples would usually be very bad in between the plateaus of hte
training accuracies. These were eventually solved with better architectures and
hyperparameters with model iterations after the samples from Figure 6.8.

Overfitting is harder to explain than in a pure classification setting. We can
expect that over time the features learned by the generator through the gradient
of the discriminator would lose some kind of quality. If the discriminator cannot
distinguish data it has not been trained on, it is not looking well that it is able to
do so on the training set with such a strong margin.

6.3.4 FF for discrimination

We experimented with the idea of having the feature flow concept on a discriminative
stage as well. Not only could it help the discriminator, but any discriminative task
such as activity recognition could potentially benefit.

If F takes as arguments one frame of fixels and one flow field and maps them
to the next frame’s fixels, then we would like F−1 to give us the flow field between
two successive frames.

ft = F−1(E(xt−1), E(xt)) (6.4)

for flow field ft between successive frames xt−1,xt and some encoding function E.
If the idea is anything decent, we would hope that these flow fields provide better
discriminative features to the discriminator trickling down to better generation.

There are many ways to implement the inverse of feature flow. We investigated
two methods, viewing it as cross-correlation or learning it ala Relation Network
[Santoro et al., 2017].

Cross-correlation is a signal processing method to estimate the similarity between
two signals relative to a translation. We have already seen cross-correlation at
Equation 2.6 when discovering CNN, it is indeed the operation they are built on
top of. Remember that for a patch of flow field κ× κ there are κ2 values around
a single location that needs to be found. Our full flow field f will again be a 3D
volume with length κ2 for the channel axis. For a choice of encoding function E,
κ, location (i, j) and offset (k, l), k, l ∈ [−ξ, ξ], a single value of the flow field is
computed as follow:

77

Figure 6.10: Feature flow’s training learning curves with accuracies with respect
to epochs. Train/valid data accuracy are the accuracies of the discriminator on
the data from the training/validation set. Train sample accuracy is the accuracy
of the discriminator on the samples from the generator (there is no concept of
training/validation set for generated samples. The unstable regime is shown
above and the overfitting one below.

78

ft[i, j, (k+ξ)κ+l+ξ] =
∑

m∈(−ξ,ξ)

∑
n∈(−ξ,ξ)

E(xt−1)[i+k+m, j+l+n]E(xt)[i+k+m, j+l+n]

(6.5)

The whole patch of flow field at location (i, j) is computed by rolling over all
the possible values of (k, l) and computing a cross-correlation every time. Usually,
the downsampled frame will be a volume with a channel axis. To mirror feature
flow on the generator’s side, we again assume that it is independent across this
axis and all flow fields are the same.

The relation network method is to have a neural net actually compute the
relation between the fixels of successive frames. With the same formality as
Equation 6.5 and a neural network rnθ parametrized by θ, a single value of the
flow field will then be computed such that

ft[i, j, (k + ξ)κ+ l + ξ] = rnθ(E(xt−1)[i+ k, j + l], E(xt)[i+ k, j + l])

where again rolling over all (k, l) will complete f at location (i, j). rnθ will
typically be a small MLP. This approach is difficult to implement in practice
without parallelizing the many calls to the MLP. Even then, the generation results
were not on par with the simpler cross-correlation and with its lack of success on
the Dynamics dataset at Table 5.2, we decided not to push on this idea any further.

We will not show results for this method since no generation were convincingly
better. In opposition, there were not strikingly worst and consequently, we believe
that in the spirit of having an embedded inductive bias in the network it still
requires further exploration.

6.4 Future work

The results of subsection 6.3.3 and subsection 6.3.4 were a good start but have
yet to make it to the finish line. What is remarkable is that the motion in image
space in most cases is the actual true motion displayed by KTH. What is terribly
missing is the finishing touch, the crisp and image-like look that DrNet was able
to generate. This seems to suggest that we need a way to factorize even more
time-invariant and time evolving features with FF.

Feature flow has still a few directions where it could be enhanced. The channel
independent application for example might be untrue. Or sampling at every
timestep z could have given the model too much entropy to deal with. Also, the

79

results tend to point to the fact that the pixel space decoder might have too much
pressure on its parameters to reorganized the flows. Either the networks handling
the flows are making too much error (we do not have blocks of motions like in
CDNA, that is also a possible avenue to improvement) and the decoders need to
recover from them, or this is simply asking too much for the decoders.

It is unlikely that these results have been negative enough to undermine the
arguments of subsection 6.3.1 and abort the quest for an inductive bias. On the
contrary, they are annoyingly close to offer a viable route to generation. It is to
note that the potential of FF is many since it is not framework specific, a VAE, or
even if ever seeing the light RALI, could use it.

Finally, there is the unmentioned but very present sub-problem in this task, the
GAN-RNN interaction. It is hard in reality to have a clear cut marker of what part
of the model is the culprit since this issue can be behind every generation. This
is a promising and need to be taken road to glory, not only for this feature flow
setup, but any GAN-RNN, and by extension RALI, based models.

We did try to use new GAN technologies briefly overviewed in section 3.3 but
it did not came with a noticable boost in performances or stability. We suspect
the GAN-RNN version may obey different dynamics and could be another reason
behind the behaviors observed in Figure 6.10.

80

Chapter 7

Conclusion

Throughout this thesis, we have mainly treaded on the path of modelling videos with
one of the most alive branches of artificial intelligence. We started by assembling
the required deep learning knowledge necessary and then made our first stop into
generative models. Generative models have been the focus, be it theoretical or
application, of this thesis.

On theoretical grounds, we built on generative adversarial networks and varia-
tional autoencoders by proposing the adversarially learned inference model. Doing
so, we offered a mix of the strongest traits of both frameworks, a latent space and
the adversarial training. With adversarial training came the realistic results and
with the abstract representation a powerful mechanism to manipulate them. As
ALI has shown to be able to do anything that the pieces it is built upon are capable
of, we believe future work will further reveal its potential.

On application grounds, we have applied generative models to videos. It is
actually unfair to categorize all this work by “application”. In truth, as we have
argued there are concepts, which could be considered more under a theoretical
light, lacking in the understanding of video modelling.

We first took a sidestep on the discriminative side of things. Taking an activity
recognition lens, we have looked at a double faced issue coming from the datasets
and the models that are being tried on them. For this reason, we designed a new
dataset in hopes of narrowing down problems that will give rise to solutions with
reach to the whole video field.

But data is not the end of the story and we continued our model investigation
through generation. More precisely in the context of next frame generation, this
brought us the feature flow model. We introduced the idea of encoding changes from
frame to frame into changes in feature space. Generation is done by moving around
in this learned abstract space and then decoding back to real human appreciable
sequence of images. This model has shown promises and is yet to be fully complete.

81

Even then though, the video generation landscape, and fairly to say video at
large, is still in its infancy and many challenges are looming ahead. There is one
point onto which all models have been criticized which is camera motion. It is in
our opinion one very interesting and hard phenomena to model and almost nothing
presented in this chapter, or in the deep learning computer vision community as
a matter of fact, can so far hope to alone solve this problem. Be it live camera
feed coming in from a walking robot or random real life videos being uploaded on
servers, any decent deep learning model wishing to understand this medium will
have to offer a robust solution for this.

82

Bibliography

Martin Arjovsky and Lon Bottou. Towards principled methods for training genera-
tive adversarial networks. In Proceedings of the 5th International Conference on
Learning Representations (ICLR), 2017.

Martin Arjovsky, Soumith Chintala, and Lon Bottou. Wasserstein GAN. CoRR,
2017.

Nicolas Ballas, Li Yao, Chris Pal, and Aaron Courville. Delving deeper into
convolutional networks for learning video representations. In Proceedings of the
4th International Conference on Learning Representations (ICLR), 2016.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian Goodfellow,
Arnaud Bergeron, Nicolas Bouchard, David Warde-Farley, and Yoshua Bengio.
Theano: new features and speed improvements. CoRR, 2012.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating
gradients through stochastic neurons for conditional computation. CoRR, 2013.

Yoshua Bengio, Eric Thibodeau-Laufer, Guillaume Alain, and Jason Yosinski. Deep
generative stochastic networks trainable by backprop. In Proceedings of the 31st
International Conference on Machine Learning, 2014.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pas-
canu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua
Bengio. Theano: a cpu and gpu math expression compiler. In Proceedings of the
Python for scientific computing conference (SciPy), volume 4, page 3. Austin,
TX, 2010.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel. InfoGAN: Interpretable representation learning by information maximiz-
ing generative adversarial nets. In Advances in Neural Information Processing
Systems 29. Curran Associates, Inc., 2016.

Tim Cooijmans, Nicolas Ballas, César Laurent, Çağlar Gülçehre, and Aaron
Courville. Recurrent batch normalization. In Proceedings of the 5th International
Conference on Learning Representations (ICLR), 2017.

83

Emily L Denton and vighnesh Birodkar. Unsupervised learning of disentangled
representations from video. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems 30, pages 4417–4426. Curran Associates, Inc.,
2017.

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning.
In Proceedings of the 5th International Conference on Learning Representations
(ICLR), 2017.

Alexey Dosovitskiy and Thomas Brox. Generating images with perceptual similarity
metrics based on deep networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems 29, pages 658–666. Curran Associates, Inc., 2016.

Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep
learning. CoRR, 2016.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb,
Martin Arjovsky, and Aaron Courville. Adversarially learned inference. In
Proceedings of the 5th International Conference on Learning Representations
(ICLR), 2017.

Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for
physical interaction through video prediction. In Advances in Neural Information
Processing Systems 29. Curran Associates, Inc., 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial
networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 27,
pages 2672–2680. Curran Associates, Inc., 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron
Courville. Improved training of wasserstein GANs. In Advances in Neural
Information Processing Systems 30. Curran Associates, Inc., 2017a.

Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taiga, Francesco Visin,
David Vazquez, and Aaron Courville. PixelVAE: A latent variable model for
natural images. In Proceedings of the 5th International Conference on Learning
Representations (ICLR), 2017b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

84

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Proceedings of the 32nd
International Conference on Machine Learning, 2015.

Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. Large-scale video classification with convolutional neural
networks. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra
Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa
Suleyman, and Andrew Zisserman. The kinetics human action video dataset.
CoRR, 2017.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In Proceedings of the 2nd International Conference on Learning Representations
(ICLR), 2014.

Diederik P Kingma. Fast gradient-based inference with continuous latent variable
models in auxiliary form. In Proceedings of the 30th International Conference on
Machine Learning, 2013.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In
Proceedings of the 1st International Conference on Learning Representations
(ICLR), 2013.

Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling.
Semi-supervised learning with deep generative models. In Advances in Neural
Information Processing Systems 27, pages 3581–3589. Curran Associates, Inc.,
2014.

Diederik P Kingma, Tim Salimans, and Max Welling. Improving variational
inference with inverse autoregressive flow. In Advances in Neural Information
Processing Systems 29. Curran Associates, Inc., 2016.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and
Techniques - Adaptive Computation and Machine Learning. The MIT Press, 2009.
ISBN 0-262-01319-3 978-0-262-01319-2.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from
tiny images, 2009.

H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: a large video
database for human motion recognition. In Proceedings of the International
Conference on Computer Vision (ICCV), 2011.

Alex Lamb, Vincent Dumoulin, and Aaron Courville. Discriminative regularization
for generative models. CoRR, 2016.

85

Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, and Ole Winther. Autoen-
coding beyond pixels using a learned similarity metric. In Proceedings of the
33rd International Conference on Machine Learning, 2016.

Jianhua Lin. Divergence measures based on the shannon entropy. Information
Theory, IEEE Transactions on, 37(1):145–151, 1991.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face
attributes in the wild. In Proceedings of the International Conference on Computer
Vision (ICCV), pages 3730–3738, 2015.

Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther.
Auxiliary deep generative models. In Proceedings of the 33rd International
Conference on Machine Learning, 2016.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian Goodfellow. Adver-
sarial autoencoders. In ICLR Workshop, 2016.

Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, Zhen Wang, and
Stephen Paul Smolley. Least squares generative adversarial networks. In Pro-
ceedings of the International Conference on Computer Vision (ICCV), 2017.

Michael Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video
prediction beyond mean square error. In Proceedings of the 4th International
Conference on Learning Representations (ICLR), 2016.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y
Ng. Reading digits in natural images with unsupervised feature learning. In NIPS
workshop on deep learning and unsupervised feature learning, page 4. Curran
Associates, Inc., 2011.

Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol
Vinyals, Rajat Monga, and George Toderici. Beyond short snippets: Deep
networks for video classification. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checker-
board artifacts. http://distill.pub/2016/deconv-checkerboard/, 2016.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent
neural networks. In Proceedings of the 33rd International Conference on Machine
Learning, 2016.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. In Proceedings
of the 4th International Conference on Learning Representations (ICLR), 2016.

Antti Rasmus, Harri Valpola, Mikko Honkala, Mathias Berglund, and Tapani
Raiko. Semi-supervised learning with ladder network. In Advances in Neural
Information Processing Systems 28. Curran Associates, Inc., 2015.

86

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. International Journal of
Computer Vision, 115(3):211–252, 2015.

Tim Salimans and Diederik P. Kingma. Weight normalization: A simple reparame-
terization to accelerate training of deep neural networks. In Advances in Neural
Information Processing Systems 29. Curran Associates, Inc., 2016.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
Xi Chen, and Xi Chen. Improved techniques for training gans. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in
Neural Information Processing Systems 29, pages 2234–2242. Curran Associates,
Inc., 2016.

Adam Santoro, David Raposo, David G. T. Barrett, Mateusz Malinowski, Razvan
Pascanu, Peter Battaglia, and Timothy Lillicrap. A simple neural network
module for relational reasoning. CoRR, 2017.

Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human actions: A
local SVM approach. In Proceedings of the Pattern Recognition, 17th International
Conference on (ICPR’04) Volume 3 - Volume 03, ICPR ’04, pages 32–36. IEEE
Computer Society, 2004. ISBN 0-7695-2128-2. doi: 10.1109/ICPR.2004.747.

Wenzhe Shi, Jose Caballero, Lucas Theis, Ferenc Huszar, Andrew Aitken, Christian
Ledig, and Zehan Wang. Is the deconvolution layer the same as a convolutional
layer? CoRR, 2016.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, and
Wang-chun Woo. Convolutional LSTM network: A machine learning approach
for precipitation nowcasting. In Advances in Neural Information Processing
Systems 28. Curran Associates, Inc., 2015.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. In Proceedings of the 3rd International Conference on Learning
Representations (ICLR), 2015.

Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for
action recognition in videos. In Advances in Neural Information Processing
Systems 27, pages 568–576. Curran Associates, Inc., 2014.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A dataset of
101 human actions classes from videos in the wild. In ICCV Workshop, 2013.

Jost Tobias Springenberg. Unsupervised and semi-supervised learning with cate-
gorical generative adversarial networks. In Proceedings of the 4th International
Conference on Learning Representations (ICLR), 2016.

87

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised
learning of video representations using LSTMs. In Proceedings of the 32nd
International Conference on Machine Learning, 2015.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In
Proceedings of the 2nd International Conference on Learning Representations
(ICLR), volume abs/1312.6199, 2014.

Theano Development Team. Theano: A Python framework for fast computation of
mathematical expressions. CoRR, 2016.

Lucas Theis, Aron van den Oord, and Matthias Bethge. A note on the evaluation
of generative models. In Proceedings of the 4th International Conference on
Learning Representations (ICLR), 2016.

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
Learning spatiotemporal features with 3d convolutional networks. In Proceedings
of the International Conference on Computer Vision (ICCV), 2015.

Benigno Uria, Marc-Alexandre Ct, Karol Gregor, Iain Murray, and Hugo Larochelle.
Neural autoregressive distribution estimation. CoRR, 2016.

Bart van Merriënboer, Dzmitry Bahdanau, Vincent Dumoulin, Dmitriy Serdyuk,
David Warde-Farley, Jan Chorowski, and Yoshua Bengio. Blocks and fuel:
Frameworks for deep learning. CoRR, 2015.

Gl Varol, Ivan Laptev, and Cordelia Schmid. Long-term temporal convolutions
for action recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2017.

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with
scene dynamics. In Advances in Neural Information Processing Systems 29.
Curran Associates, Inc., 2016.

Heng Wang and Cordelia Schmid. Action recognition with improved trajectories.
In The IEEE International Conference on Computer Vision (ICCV), 2013a.

Heng Wang and Cordelia Schmid. Lear-inria submission for the thumos workshop.
In ICCV workshop on action recognition with a large number of classes, volume 2,
page 8, 2013b.

Limin Wang, Yu Qiao, and Xiaoou Tang. Action recognition with trajectory-pooled
deep-convolutional descriptors. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4305–4314, 2015.

Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and
Luc Van Gool. Temporal segment networks: Towards good practices for deep
action recognition. In Proceedings of the European Conference on Computer
Vision, 2016.

88

Zbigniew Wojna, Vittorio Ferrari, Sergio Guadarrama, Nathan Silberman, Liang-
Chieh Chen, Alireza Fathi, and Jasper Uijlings. The devil is in the decoder.
CoRR, 2017.

Tianfan Xue, Jiajun Wu, Katherine Bouman, and Bill Freeman. Visual dynamics:
Probabilistic future frame synthesis via cross convolutional networks. In Advances
in Neural Information Processing Systems 29, pages 91–99. Curran Associates,
Inc., 2016.

Matthew D. Zeiler, Dilip Krishnan, Graham W. Taylor, and Rob Fergus. Deconvo-
lutional networks. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2528–2535, 2010.

Junbo Zhao, Michael Mathieu, Ross Goroshin, and Yann Lecun. Stacked what-
where auto-encoders. In ICLR Workshop, 2016.

Wangjiang Zhu, Jie Hu, Gang Sun, Xudong Cao, and Yu Qiao. A key volume
mining deep framework for action recognition. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

89

	Introduction
	Deep Learning
	Introduction
	Simple network
	Black boxes

	Convolutional neural network
	Convolution
	Pooling
	Inductive bias

	Recurrent neural network
	Long short-term memory network
	Convolutional LSTM

	Autoencoders
	Upsampling

	Generative Models
	Autoregressive networks
	Variational autoencoders
	Kullback-Leibler divergence
	Learning a variational bayes latent space

	Generative adversarial networks
	Adversarial game
	Advantages and disadvantages

	Adversarially learned inference
	Prologue to the paper
	Introduction
	Adversarially learned inference
	Relation to GAN
	Alternative approaches to feedforward inference in GANs
	Generator value function
	Discriminator optimality
	Relationship with the Jensen-Shannon divergence
	Invertibility

	Related Work
	Experimental results
	Samples and Reconstructions
	Latent space interpolations
	Semi-supervised learning
	Conditional Generation
	Importance of learning inference jointly with generation

	Conclusion

	Video Discrimination
	Activity recognition
	Problems
	Solutions

	Dynamics dataset
	Design
	Preliminary results

	Video Generation
	Current models
	Unsupervised LSTM
	Multi-scale
	Foreground vs background
	Disentangled representations
	Forward pixel prediction

	Recurrent adversarially learned inference
	Results

	Feature flow
	Inductive bias
	Model
	Samples
	FF for discrimination

	Future work

	Conclusion

