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Abstract 

The purpose of our study was to examine the probability of observing false positives in non-

simulated data using the dual-criteria methods. We extracted data from published studies to 

produce a series of 16,927 datasets and then assessed the proportion of false positives for various 

phase lengths. Our results indicate that collecting at least 3 data points in the first phase (Phase 

A) and at least 5 data points in the second phase (Phase B) is generally sufficient to produce 

acceptable levels of false positives.  

Keywords: data analysis, dual-criteria method, false positive, single-case designs, type I error 
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Using the Dual-Criteria Methods to Supplement Visual Inspection:  

An Analysis of Nonsimulated Data 

In their seminal paper, Baer, Wolf, and Risley (1968) included the analytic dimension as 

one of the defining features of the science of applied behavior analysis. This dimension involves 

producing a convincing demonstration that an independent variable (e.g., treatment), and not 

some other confounding variable, is generating a behavior change. Behavior analysts have 

widely adopted the use of single-case experimental designs to analyze the effects of their 

treatments in both research and practice. Although visual inspection remains the norm in the 

analysis of single-case experimental designs (e.g., Bourret & Pietras, 2014; Fahmie & Hanley, 

2008), researchers have shown that interrater agreement between visual analysts is not always 

strong (Ninci, Vannest, Willson, & Zhang, 2015). 

To address this issue, Fisher, Kelley, and Lomas (2003) developed the dual-criteria (DC) 

and conservative dual-criteria (CDC) methods, which involve using structured criteria to 

supplement visual analysis of AB, reversal, and multiple baseline designs. Specifically, the DC 

method involves (a) tracing a continuation of the mean and trend lines from the first phase onto 

the second phase, (b) counting the number of points that fall above or below both lines in the 

second phase, and (c) comparing this number of points with a cut-off value based on the 

binomial distribution. The CDC method is the same except that the mean and trend lines are 

raised or lowered by 0.25 standard deviations. Using simulated data, Fisher et al. showed that 

both methods were generally adequate to supplement visual analysis of single-case graphs. 

Although the DC method was more powerful, the CDC method generally produced more 

acceptable proportions of false positives (α < .05).   
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One limitation of the previous study is that simulated datasets may not fully capture 

patterns of behavior typically encountered in applied work. The randomness may not perfectly 

mimic the effects of confounding variables already present in the environment such as events 

occurring outside treatment sessions, physiological and environmental motivating operations, 

and maturation. Thus, we sought to extend Fisher et al.’s study by examining the probability of a 

false positive result when the DC and CDC methods were used to interpret data extracted from 

published studies.  

Method 

 Previously published datasets that include extended baseline phases (i.e., more than six 

data points) provide a unique opportunity to examine the probability of false positives in 

nonsimulated data. As no independent variable is introduced, changes observed during extended 

baseline phases should be the result of uncontrolled extraneous variables similar to those that 

both researchers and practitioners may encounter when implementing single-case experimental 

designs. To estimate the probability of observing false positives we conducted the following 

steps: (a) we first extracted extended baseline datasets from previously published studies for 

analysis, (b) we then divided the baseline data into two phases of various lengths, and (c) we 

finally applied the DC and CDC methods to examine the probability of concluding that there was 

a change despite the lack of introduction of a treatment.  

Article Selection  

 To identify graphs for data extraction, we hand searched the 2013 and 2014 volumes of 

Journal of Applied Behavior Analysis, Behavior Modification, Behavioral Interventions, and 

Journal of Positive Behavior Interventions. We selected these journals because the first two had 

been identified in a review by Shadish and Sullivan (2011) as amongst those that publish the 
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most single-case experiments, and the last two were similarly identified in a subsequent review 

by Smith (2012). The second and third authors identified articles that contained at least one 

single-case graph meeting the following criteria: The initial phase of the graph had to be a 

baseline condition and include at least six data points prior to the introduction of the independent 

variable. We excluded multielement graphs because we wanted to avoid carryover effects 

functioning as a confounding variable in our analyses. Moreover, we excluded graphs for which 

all baseline data points had the same value, as it was theoretically impossible to observe false 

positives in these cases, which could have biased our results. In total, 73 articles contained at 

least one graph meeting the aforementioned inclusion and exclusion criteria.   

Data Extraction 

 For each article, we extracted the baseline data points of the initial phase for all graphs 

meeting the inclusion criteria. For multiple baseline graphs, we also extracted data from the 

initial baseline phase of the second and subsequent tiers when carryover effects were unlikely 

(e.g., multiple baseline across participants in different environments). To extract the data, a 

research assistant loaded each graph in Plot Digitizer (version 2.6.6; Huwaldt, 2015), a free 

software designed to automatically extract data points from graphs. If the baseline phase had 

more than 20 data points, we collected only the first 20, the highest number per graph that our 

analysis template could accommodate. The extraction program provided the location of each data 

point on the x-axis and y-axis. We extracted the data from 295 graphs in total. 

Data Preparation  

  We entered the data from each graph in a spreadsheet, which split the data into two 

phases of various lengths. We programmed the spreadsheet to generate data series containing 

between six and 12 data points. For example, if an original baseline phase contained eight data 
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points, the template produced three six-point data series (points 1–6, points 2–7, and points 3–8), 

two 7-point data series (points 1–7 and points 2–8), and one 8-point data series (points 1–8). To 

create our final datasets for analysis, we instructed the spreadsheet to place a phase change line 

at every possible location in each data series as long as there were no fewer than three points and 

no more than six points on either side. Using the same example as above, the phase change line 

for the eight-point data series could be placed at three locations to produce three datasets: 

between points 3 and 4, between points 4 and 5, and between points 5 and 6. The data always 

remained in the same order as the original; only the length of each phase and the location of the 

phase line changed. This manipulation allowed us to examine whether an observer who started 

their observation at multiple points in time could conclude that there was a change in behavior 

even though no independent variable had been introduced. Our data preparation yielded a total of 

16,927 distinct datasets.  

Data Analysis  

We applied the DC and CDC methods to each dataset (Fisher et al., 2003). For the DC 

method, our template computed the mean line and the least squares regression trend line for the 

first phase (Phase A). A dataset was positive when all points of the second phase (Phase B) fell 

below (if the purpose of the treatment was to reduce the behavior) or above (if the purpose was 

to increase the behavior) the continuation of both lines. As an example, assume that a graph had 

six baseline data points (1–6), that the purpose of the treatment was to reduce the behavior, and 

that we placed a phase change in the middle (between points 3 and 4). The template computed 

the mean for points 1 to 3 (mean line) and forecast the three subsequent points based on the least 

squares regressions line of points 1 to 3 (continuation of trend line). In this case, an outcome was 
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positive when all the original points 4 to 6 fell below the mean and below three corresponding 

points predicted by the trend line.  

The CDC method was similar except that mean and trend values were raised or lowered 

in the direction of the desired change by 0.25 standard deviation. If all points of Phase B fell 

below or above both lines in the expected direction of the change, the template rated the outcome 

of the dataset as positive. Because the datasets contained only baseline data, these changes were 

most likely the result of extraneous variables. We then computed the proportion of false positives 

for each length of Phase A and Phase B (up to 6 points) as well as the 95% confidence interval. 

To calculate the proportion of false positives (also known as the alpha level for type I error rate), 

we divided the number datasets for which the DC or CDC method was positive by the total 

number of datasets containing the same number of points in Phases A and B.  

Results and Discussion 

 Figure 1 shows the proportion of false positives observed for various phase lengths using 

the DC and CDC methods. For both methods of analysis, the proportion of false positives 

decreased systematically when the number of points in Phase B increased. By contrast, 

increasing the number of data points in Phase A did not systematically reduce the proportion of 

false positives when the number of points in Phase B was held constant. For the DC method, the 

proportion of false positives systematically remained below .05 only when Phase B contained six 

data points. When Phase B contained five points, type I errors were either marginally above or 

below the .05 value. By contrast, the CDC method produced false positives for less than 5% of 

datasets as soon as Phase B contained five data points or more. 

 From a conceptual standpoint, our results allow us to estimate the probability of 

observing changes in the absence of the introduction of an independent variable (type I error 
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rate). Our results indicate that the probability of observing false positives is low when 

practitioners or researchers collect at least three data points for Phase A and at least five data 

points for Phase B. In these cases, the alpha level remains near (for the DC method) or below 

(for the CDC method) .05, which is generally considered acceptable in the research literature.  

In general, our results are consistent with prior studies examining false positives in 

single-case experiments (Fisher et al., 2003; Krueger, Rapp, Ott, Lood, & Novotny, 2013; 

Novotny et al., 2014). That is, the use of single-case designs did not produce high levels of false 

positives. Our study further extends the literature by examining the impact of phase length using 

nonsimulated data. Interestingly, increasing the length of Phase A had marginal effects on the 

proportion of false positives when compared to Phase B. This observation may be an artifact of 

the DC and CDC methods, which rely on the number of points in Phase B to determine whether 

a change was produced or not. When using the DC and CDC methods to supplement visual 

inspection, our results suggest that researchers and practitioners should conduct at least three 

baseline and five treatment sessions prior to reversing phases (in ABAB designs) or introducing 

a new tier (in multiple baseline designs).  

Our study has some limitations that should be noted. First, we did not conduct a power 

analysis as it was not possible with non-simulated data. Researchers and practitioners should 

weigh power carefully in their choice of an analysis method. Even though the DC method 

produces slightly more false positives than the CDC method, it is more powerful and thus 

produces fewer false negatives (Fisher et al., 2003). Second, we used convenience sampling to 

identify graphs and produced multiple datasets using the same graphs. In the future, researchers 

should consider randomly selecting graphs and datasets. Finally, we extracted data from only 

published studies; the characteristics of baseline data from published studies may differ from 
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those obtained in practical settings (Sham & Smith, 2014). For example, the data paths may be 

more stable or favorable in published datasets, which could have decreased the likelihood of 

false positive outcomes. Thus, future studies should consider incorporating datasets from actual 

practical settings in their analyses.   

  



DUAL-CRITERIA METHODS 10 

 

 

References 

Baer, D. M., Wolf, M. M., & Risley, T. R. (1968). Some current dimensions of applied behavior 

analysis. Journal of Applied Behavior Analysis, 1, 91-97. doi:10.1901/jaba.1968.1-91 

Bourret, J. C., & Pietras, C. J. (2014). Visual analysis in single-case research. In G. J. Madden, 

W. V. Dube, T. D. Hackenberg, G. P. Hanley, & K. A. Lattal (Eds.) APA handbook of 

behavior analysis (pp. 191-218). Washington, DC: American Psychological Association.  

Fahmie, T. A., & Hanley, G. P. (2008). Progressing toward data intimacy: A review of within-

session data analysis. Journal of Applied Behavior Analysis, 41, 319-331.  doi: 

10.1901/jaba.2008.41-319  

Fisher, W. W., Kelley, M. E., & Lomas, J. E. (2003). Visual aids and structured criteria for 

improving visual inspection and interpretation of single-case designs. Journal of Applied 

Behavior Analysis, 36, 387-406. doi:10.1901/jaba.2003.36-387 

Huwaldt, J. A. (2015). Plot Digitizer [computer software]. Retrieved from 

http://plotdigitizer.sourceforge.net/ 

Krueger, T. K., Rapp, J. T., Ott, L. M., Lood, E. A., & Novotny, M. A. (2013). Detecting false 

positives in A-B designs: Potential implications for practitioners. Behavior Modification, 

37, 615-630. doi:10.1177/0145445512468754 

Ninci, J., Vannest, K. J., Willson, V., & Zhang, N. (2015). Interrater agreement between visual 

analysts of single-case data: A meta-analysis. Behavior Modification, 39, 510-541. 

doi:10.1177/0145445515581327. 

Novotny, M. A., Sharp, K. J., Rapp, J. T., Jelinski, J. D., Lood, E. A., Steffes, A. K., & Ma, M. 

(2014). False positives with visual analysis for nonconcurrent multiple baseline designs 



DUAL-CRITERIA METHODS 11 

 

 

and ABAB designs: Preliminary findings. Research in Autism Spectrum Disorders, 8, 

933-943. doi:10.1016/j.rasd.2014.04.009 

Shadish, W. R., & Sullivan, K. J. (2011). Characteristics of single-case designs used to assess 

intervention effects in 2008. Behavior Research Methods, 43, 971-980. 

doi:10.3758/s13428-011-0111-y 

Sham, E., & Smith, T. (2014). Publication bias in studies of an applied behavior‐analytic 

intervention: An initial analysis. Journal of Applied Behavior Analysis, 47, 663-678. 

doi:10.1002/jaba.146 

Smith, J. D. (2012). Single-case experimental designs: A systematic review of published research 

and current standards. Psychological Methods, 17, 510-550. doi:10.1037/a0029312 



DUAL-CRITERIA METHODS 12 

 

 

 

Figure 1.  Proportion of false positives for different phase lengths when using the dual-criteria 

(DC; left panels) and conservative dual-criteria (CDC; right panels) methods. The error bars 

depict the 95% confidence interval for each data point. The dotted line identifies a level of .05.  


