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RÉSUMÉ

Les acides ribonucléiques (ARN) forment des structures tri-dimensionnelles complexes

stabilisées par la formation de la structure secondaire (2D), elle-même formée de paires

de bases. Plusieurs méthodes computationnelles ont été créées dans les dernières années

afin de prédire la structure 2D d’ARNs, en partant de la séquence. Afin de simplifier

le calcul, ces méthodes appliquent généralement des restrictions sur le type de paire de

bases et la topologie des structures 2D prédites. Ces restrictions font en sorte qu’il est

parfois difficile de savoir à quel point la totalité des paires de bases peut être représentée

par ces structures 2D restreintes.

MC-Unfold fut créé afin de trouver les structures 2D restreintes qui pourraient être as-

sociées à une structure secondaire complète, en fonction des restrictions communément

utilisées par les méthodes de prédiction de structure secondaire.

Un ensemble de 321 monomères d’ARN totalisant plus de 4223 structures fut assemblé

afin d’évaluer les méthodes de prédiction de structure 2D. La majorité de ces structures

ont été déterminées par résonance magnétique nucléaire et crystallographie aux rayons

X. Ces structures ont été dépliés par MC-Unfold et les structures résultantes ont été com-

parées à celles prédites par les méthodes de prédiction.

La performance de MC-Unfold sur un ensemble de structures expérimentales est encou-

rageante. En moins de 5 minutes, 96% des 227 structures ont été complètement dépliées,

le reste des structures étant trop complexes pour être déplié rapidement. Pour ce qui est

des méthodes de prédiction de structure 2D, les résultats indiquent qu’elles sont capable

de prédire avec un certain succès les structures expérimentales, particulièrement les pe-

tites molécules. Toutefois, si on considère les structures larges ou contenant des pseudo-

noeuds, les résultats sont généralement défavorables. Les résultats obtenus indiquent que

les méthodes de prédiction de structure 2D devraient être utilisées avec prudence, parti-

culièrement pour de larges molécules.

Mots clefs: structure tertiaire, problème de satisfaction de contraintes



ABSTRACT

Ribonucleic acids (RNA) adopt complex three dimensional structures which are stabi-

lized by the formation of base pairs, also known as the secondary (2D) structure. Predict-

ing where and how many of these interactions occur has been the focus of many com-

putational methods called 2D structure prediction algorithms. These methods disregard

some interactions, which makes it difficult to know how well a 2D structure represents

an RNA structure, especially when large amounts of base pairs are ignored.

MC-Unfold was created to remove interactions violating the assumptions used by pre-

diction methods. This process, named unfolding, extends previous planarization and

pseudoknot removal methods. To evaluate how well computational methods can predict

experimental structures, a set of 321 RNA monomers corresponding to more than 4223

experimental structures was acquired. These structures were mostly determined using

nuclear magnetic resonance and X-ray crystallography. MC-Unfold was used to remove

interactions the prediction algorithms were not expected to predict. These structures

were then compared with the structured predicted.

MC-Unfold performed very well on the test set it was given. In less than five minutes,

96% of the 227 structure could be exhaustively unfolded. The few remaining structures

are very large and could not be unfolded in reasonable time. MC-Unfold is therefore a

practical alternative to the current methods.

As for the evaluation of prediction methods, MC-Unfold demonstrated that the computa-

tional methods do find experimental structures, especially for small molecules. However,

when considering large or pseudoknotted molecules, the results are not so encouraging.

As a consequence, 2D structure prediction methods should be used with caution, espe-

cially for large structures.

Keywords: tertiary structure, constraint satisfaction problem
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RÉSUMÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . 1

1.1 RNA Structure Models . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Ribonucleotides And Primary Structure . . . . . . . . . . . . . 3

1.1.2 Base Pairs And Secondary Structures . . . . . . . . . . . . . . 4

1.1.3 Tertiary Structure . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Experimental Techniques For RNA Structure Determination . . . . . . 7

1.2.1 X-ray Crystallography . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Nuclear Magnetic Resonance Spectroscopy . . . . . . . . . . . 8

1.3 RNA Secondary Structure Prediction Algorithms . . . . . . . . . . . . 8

1.3.1 Comparative Approaches . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Single-Sequence Approaches . . . . . . . . . . . . . . . . . . . 9

1.4 Master’s Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Structure Of The Thesis . . . . . . . . . . . . . . . . . . . . . 12

CHAPTER 2: UNFOLDING RNA 3D STRUCTURE . . . . . . . . . . . 13

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Overview Of The Current Unfolding Algorithms . . . . . . . . 16

2.2.2 Constraints For 2D Structure . . . . . . . . . . . . . . . . . . . 19

2.2.3 MC-Unfold: Unfolding As A Constraint Satisfaction Problem . 20

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 MC-Unfold Unfolds 3D Structures Efficiently . . . . . . . . . . 23

2.3.2 2D Structures Cannot Represent All Base Pairs . . . . . . . . . 25

2.4 Summary And Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 27

CHAPTER 3: COMPUTATIONAL VS EXPERIMENTAL STRUCTURES 28

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Meta-Annotate Creates Consensus Annotations . . . . . . . . . 29

3.2.2 Preparing Experimental Structures . . . . . . . . . . . . . . . . 31

3.2.3 Preparing Computational Structures . . . . . . . . . . . . . . . 34

3.2.4 Comparing Experimental And Computational Structures . . . . 35

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 A New High Quality Set Of Reference Structures . . . . . . . . 40

3.3.2 Computational vs 2Dunfolded Structures . . . . . . . . . . . . . 44

3.4 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 47

CHAPTER 4: CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . 49

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

I.1 Experimental Structure Data Set . . . . . . . . . . . . . . . . . . . . . xiii

I.1.1 Identical Sequences In Different PDB Files . . . . . . . . . . . xiii

I.1.2 Distribution: Base Pairs . . . . . . . . . . . . . . . . . . . . . xiv

I.1.3 Distribution: Structural Differences Between 3D Models . . . . xv

I.2 Supplementary Benchmark Results . . . . . . . . . . . . . . . . . . . . xv

I.2.1 Computational vs 3Dcanonical Structures . . . . . . . . . . . . . xv

I.2.2 Computational vs 3Dfull Structures . . . . . . . . . . . . . . . . xviii

v



LIST OF FIGURES

1.1 Hierarchy of structural models for RNA (pdb id:2LC8, chain A).

The nucleotides are colored to match between the models. . . . . 2

1.2 RNA forms a linear polymer ribonucleotides. . . . . . . . . . . . 3

1.3 Secondary structure (2D) of 2LC8 chain A (PDB) depicted using

VARNA. The colors correspond to those in the 3D structure of

figure 1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Tertiary structure (3D) depiction of 2LC8 chain A (PDB). . . . . 6

1.5 MC-Unfold uses a divide and conquer approach to unfold RNA

structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Most of the 3D structures of the CompaRNA data set contain at

least one multiplet. log1p(x)=ln(x+1) . . . . . . . . . . . . . . . 17

2.2 MC-Unfold is compared with the planarization and pseudoknot

removal algorithms. One solution is missed (in red) by the current

methods. The number of base pairs in the leftmost node of an arc

indicates how many base pairs are involved. . . . . . . . . . . . . 18

2.3 MC-Unfold uses a divide and conquer approach to solve the prob-

lem. The subproblems are divided (red and blue). They are solved

independently by a CSP solver and the full solutions are assembled

back by cartesian product. . . . . . . . . . . . . . . . . . . . . . 21

2.4 The Minizinc model used to solve the constraints is very simple

and concise. A matrix of booleans is passed to it, indicating if

base pair at index i can coexist with base pair at index j. . . . . . 22

2.5 The length and number of base pairs of the 320 tertiary structures

used to test unfolding is illustrated. The nine structures too large

to unfold in reasonable time are mostly ribosomal RNAs and are

identified on the right. . . . . . . . . . . . . . . . . . . . . . . . 23



2.6 For each 3D structure which were not already planar and multiplet-

free (227/320), the log10 of the number of saturated 2D structure is

displayed against the length of the corresponding sequence, sorted

by increasing length. . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Some of the 218 structures completely unfolded contain large amounts

of base pairs not representable by planar multiplet-free 2D structures. 25

2.8 Some 3D structures contain significant amount of base pairs vio-

lating common constraints of 2D structure prediction algorithms

(planar, multiplet-free). In general, this implies large pseudoknots

(left, 2LC8) and/or multiplets (right, 4PLX). The number of base

pairs is displayed next to the 2D structures. . . . . . . . . . . . . 26

3.1 Meta-Annotate calls on MC-Annotate, 3DNA and RNAview and

compares their results to create a high quality annotation. . . . . . 30

3.2 The annotations of Meta-Annotate can be viewed using Chimera

along with VARNA. The canonical (blue) and non-canonical (red)

base pairs of the lysine riboswitch (4ERJ) are depicted. . . . . . . 31

3.3 The PDB is filtered to keep single model and single chain RNA

monomers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 The experimental structures are compared on three levels. The

first contains all base pairs (3Dfull ), the second contains only

canonical base pairs (3Dcanonical ) and the last is all the planar

secondary structures obtained from the second one by using MC-

Unfold (2Dunfolded ). . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 The base pair distance is the cardinality of the symmetric differ-

ence between the two sets of base pairs compared. For example,

given bpset1 = {(0,6),(3,5)} and bpset2 = {(0,6),(1,5)}, their

symmetric difference would be {(1,5),(3,5)}which means a base

pair set distance of two. . . . . . . . . . . . . . . . . . . . . . . . 36

vii



3.6 The distances between computational (C1-C3) and experimental

(E1-E3) structures are used to find, for every computational struc-

ture, the most similar experimental structure. These couples of

structures are used to calculate the gap between computational and

experimental structures. . . . . . . . . . . . . . . . . . . . . . . 37

3.7 The linear correlation between the minimum base pair set distance

(error) and the sequence length is shown on the set of planar (left)

and non-planar (right, in grey) experimental structures. A distance

of zero indicates that a computational structure matched perfectly

an experimental structure. The vertical line is set at 0 or at the

largest sequence with a distance of zero. ∆ is the slope, S is the

standard error and R2 the r squared value. . . . . . . . . . . . . . 38

3.8 On each row, the linear correlation between the median base pair

set distance (error) and the sequence length are displayed. The

3D structure without multiplets or pseudoknots (on the left) are

separated from those containing them (on the right). ∆ is the slope,

S is the standard error and R2 the r squared value. . . . . . . . . 39

3.9 The experimental structures were mostly determined by solution

NMR structures and x-ray diffraction. NMR files generally con-

tain many conformers. . . . . . . . . . . . . . . . . . . . . . . . 41

3.10 For each sequence length, the number of unique sequences (above)

and the total number models associated with them (below) are

shown. The sequences are mostly short. . . . . . . . . . . . . . . 42

3.11 The size of clusters produced by CD-HIT-EST are counted. A

cluster size of 1 means that there was a single sequence in a cluster. 43

3.12 On the 2Dunfolded , most of the algorithms can find at least one ex-

perimental structure, some even for relatively large experimental

structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.13 On the 2Dunfolded , the median error remains quite good. . . . . . 46

viii



I.1 The same sequence can be found in many different deposited PDB

files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

I.2 The structures contain mostly canonical interactions. . . . . . . . xiv

I.3 The conformers of NMR ensembles can contain very different

base pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

I.4 On the 3Dcanonical , non-planar structures can sometimes be pre-

dicted by methods allowing for pseudoknots. . . . . . . . . . . . xvi

I.5 The median error on the 3Dcanonical is slightly higher for the non-

planar structures compared to the 2Dunfolded . . . . . . . . . . . . xvii

I.6 On the 3Dfull , few of the non-planar structures can be predicted.

The minimum error is also the largest of all representations. . . . xix

I.7 On the 3Dfull , the median error is the largest compared to both of

the other representations. . . . . . . . . . . . . . . . . . . . . . . xx

ix



LIST OF APPENDICES

Appendix I: First Appendix . . . . . . . . . . . . . . . . . . . . . . . . xiii



LIST OF ABBREVIATIONS

MFE Minimum Free Energy

mRNA Messenger RNA

NMR Nuclear Magnetic Resonance

RNA Ribonucleic Acid

2D RNA Secondary Structure

3D RNA Tertiary Structure

H-bond Hydrogen Bond

MCC Matthews Correlation Coefficient

CSP Constraint Satisfaction Problem

PDB Protein Data Bank



ACKNOWLEDGMENTS



CHAPTER 1

INTRODUCTION

Our knowledge of RNA started with messenger RNAs, carriers of genetic information

used in protein synthesis [1]. As the years went by, RNA was found to be implicated in

much more varied group of functions than was initially supposed. Currently, we know

that it play essential roles in biological functions such as transcription, replication, gene

silencing and even direct enzymatic activities [2, 3].

RNA molecules form highly intricate three-dimensional structures by folding back on

themselves, sometimes while interacting with other molecules. A single RNA molecule

has the capacity to co-exist in different structural states as well as the capacity to change

structure [4–6]. These properties are crucial to its functions, for example when acting as

molecular sensors and effectors [3].

Characterizing RNA structure and understanding its behavior is an important subject in

biology and bio-informatics. Being able to create molecular structures can open the door

to radical advances in biological engineering, medicine and industry [7].

The purpose of this chapter is to define concepts used throughout this work. We start by

presenting the many models used for representing RNA and its structure. The models are

organized into primary, secondary and tertiary structure, by increasing amount of infor-

mation. These models are frequently used to represent experimentally determined RNA

structures. Using one of the many techniques available today, constraints can be found

and used to create low and high-resolution structural models. In the case of RNA, the

most relevant are nuclear magnetic resonance (NMR) and X-ray crystallography. The

last concept presented is the prediction of RNA structures using computational meth-

ods. We are particularly interested in single-sequence secondary structure prediction,

but comparative methods are also presented.



1.1 RNA Structure Models

The study of RNA structure is divided into a hierarchical organization of models called

structures shown in figure 1.1.

Figure 1.1: Hierarchy of structural models for RNA (pdb id:2LC8, chain A). The nu-
cleotides are colored to match between the models.

The models are organized by increasing amount of information from primary to tertiary

structure. The primary structure is the sequence, the string of ribonucleotides obtained

by traversal of the phosphate backbone from 5’ to 3’ of the ribose. The secondary struc-

ture is formed by base pairs, edge-to-edge hydrogen bonds between nucleobases. The

tertiary structure is formed from interactions of secondary structure features. This work

is mainly concerned with the relationship between secondary and tertiary structures,

these are therefore the ones that should be well formalized before proceeding further.

2



1.1.1 Ribonucleotides And Primary Structure

Ribonucleotides are the building blocks of RNA molecules. They can be decomposed

into a nucleobase and a sugar (ribose). The nucleobases (adenine (A), cytosine (C)

and guanine (G)) are shared with DNA while thymine (T) is replaced by uracil (U) in

ribonucleotides. The ribose is very similar to the desoxy-ribose which forms DNA. It

contains an added hydroxil group which increases its reactivity.

Figure 1.2: RNA forms a linear polymer ribonucleotides.

The primary structure S of an RNA is the sequence of ribonucleotides s1..sn, following

the phosphate backbone and ordered by the nucleotides chemical 5’ to 3’. The four most

common symbols used to represent nucleotides are {A,C,G,U}, referring to the bases

adenine (A), cytosine (C), guanine (G) and uracil (U) [8]. The actual number of valid

nucleotide symbols is above 100 when enzymatically modified nucleotides are accounted

for. They are present in some of the most well-known experimentally resolved structures

such as transfer RNAs [9] and 5S ribosomal RNA [10]. Their distribution varies greatly

depending on the organism and underlying function of the RNA.
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1.1.2 Base Pairs And Secondary Structures

Base pairs are edge-to-edge hydrogen bonding interactions between nucleobases [11].

The canonical base pairs are the Watson-Crick base pairs A·U and C·G and the wob-

ble pair G·U. They are thought of as the most stable and important ones in an RNA

structure because they allow for the most amount of hydrogen bonding. Other base

pairs are referred to as non-canonical. Those interactions are common in experimen-

tally resolved structures, especially when accounting for modified base pairs. Base pairs

are usually described by a nomenclature. Currently, the most pervasive is the Leontis-

Westhof nomenclature [11]. The other notable ones are Saenger group’s [12], Guttell

group’s [13] and Major group’s [14].

A secondary structure S on RNA sequence s1, ...,sn is a set of interactions between

nucleotides in the sequence s1..sn. A pair (i, j) such that i < j is used to represent an

interaction between nucleotides at index i and j in the sequence. Because of the poten-

tial complexity of base-pairing patterns, many restricted and convenient definitions of

secondary structure have been designed. These definitions are discussed in great details

in section 2.2.2.

Illustrating secondary structure is an important task. Throughout this work, secondary

structures are represented using strings in dot-bracket notation and arc-annotated draw-

ings. In the dot-bracket notation [15], the dots represent unpaired positions. Opening

and closing brackets are matched to indicate the first and second base in a base pair. A

simple example could be the following string ”(.).” on the sequence ACUG. This would

be interpreted as A pairing (opening bracket) with U (closing bracket). Dot-bracket no-

tation requires the secondary structure to be planar. Non-planar features such as crossing

arcs shown in red in figure 1.3 cannot be represented unambiguously with the basic no-

tation [16]. The use of an extended notation allowing symbols such as { } or [ ] can be

used to represent non-nested base pairs unambiguously.
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Figure 1.3: Secondary structure (2D) of 2LC8 chain A (PDB) depicted using VARNA.
The colors correspond to those in the 3D structure of figure 1.1.

In an arc-annotated drawing, interactions between nucleotides are represented by an

arc going from one to the other on the linear sequence. The advantage is that it can rep-

resent tertiary structure features such as multiplets, which is not the case for dot-bracket

notation, even with extended notation. An example is shown in figure 1.3, realized using

VARNA [17].

There are many other useful representations for RNA secondary structure. The curious

reader can consult the excellent reviews by Ponty [18] and Schirmer [19].

1.1.3 Tertiary Structure

The tertiary structure is the most detailed structural model of RNA. It represents the bi-

ologically active/relevant features by their position in a three-dimensional space ((x,y,z)

coordinate system). The models vary from all-atom representations to coarse descriptors

An example 3D model is illustrated in cartoon-like representation in figure 1.4.

There is a myriad of tertiary motifs that have been observed in experimentally deter-

mined 3D models [20]. Since the goal of this thesis is to create a correspondence be-

tween base pairs in tertiary and secondary structure, the main interactions we care about

are the pseudoknots and the base pairs multiplets.
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Figure 1.4: Tertiary structure (3D) depiction of 2LC8 chain A (PDB).

Pseudoknots are non-nested base pairs often classified as elements of tertiary structure.

They are part of tertiary structure mainly because common algorithms for secondary

structures have issues dealing with the added complexity they bring [8]. They are evolu-

tionarily conserved and critical to the activity of many biological molecules such as the

self-splicing group I introns, E. coli’s 16S ribosomal RNA [21].

Multiplets are base pairs forming between more than two nucleobases (triplets, quadru-

plets, etc...). They are mostly described as tertiary structure, but like pseudoknots, there

have been attempts at representing and predicting them such as RNAWolf [22].

Although pseudoknots and multiplets are the main focus of this work, there are many

other interesting features of tertiary structure worth noting such as coaxial stacking, loop-

loop interactions and many others [20].

6



1.2 Experimental Techniques For RNA Structure Determination

This section is aimed at clarifying how experimental information is generated. Most

of the 3D structural models used later were created using high-resolution methods such

as crystallography and nuclear magnetic resonance spectroscopy. Acquiring structural

information and building models of RNA structure is a hard task. It involves costly

experiments and tricky interpretation.

Many valid techniques are left out. For a more thorough review of experimental deter-

mination of RNA structure, I recommend Felden’s 2007 review [23].

1.2.1 X-ray Crystallography

X-ray crystallography is the current gold standard in high-resolution RNA structure de-

termination. The process of crystallography can be separated into four steps. First, the

molecules are crystallized. X-rays are then projected on them and the pattern of inter-

action is captured. This pattern is used to build an electron density map, identifying

regions where atoms are located. Using computer algorithms and knowledge about ge-

ometry and bond lengths, models are built that fit the density map.

The crystallography of RNA is hard. The main challenge is to obtain high quality crys-

tals that can diffract to atomic resolution. Crystallographers try different variations of

experimental conditions (solution, temperature, additives) in order to obtain sufficient

amounts of high-quality crystals [24]. In the event that there isn’t any condition that

works, the sequence can be changed to improve crystallization.

A very important challenge for crystallography happens at the modeling step. The issue

is that at medium and lower resolutions (more than 2.5 to 3.5 angstroms, 0.25 to 0.35

nanometer), the constraints derived from the density map are not restrictive enough.

Building a model becomes error prone because the density map could accommodate

many different 3D models (the system is underdetermined). There are a few tools avail-

able to verify and quantify potential problems with RNA 3D models such as MolProbity

7



[25]. However, there are still instances of entirely incorrect structures [25, 26]. There-

fore, the interpretation of crystallographic data should be done with great care.

1.2.2 Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance spectroscopy (NMR) of RNA is another high-resolution

method. It exploits the nuclear magnetic resonance effect to detect hydrogen bonding

between nucleobases. With this information and auxiliary experiments, it can produce

high-resolution models of 3D RNA structures [27, 28]

NMR has some advantages over other high-resolution methods. The most obvious is

that it can be used to directly infer base pairing patterns. It can also be used to observe

RNA dynamics and structural interchanges [29]. Being able to investigate dynamics is a

significant advantage over crystallography.

NMR spectroscopy of RNA is technically challenging. RNA is made of only four nu-

cleotides, which makes the resonance assignment much harder than it is for proteins.

Because of this, high-resolution NMR experiments are only done on relatively small

structures, compared to x-ray crystallography [28]. For more details, there is a nice

review of the current approaches and their limitations [28].

1.3 RNA Secondary Structure Prediction Algorithms

Predicting the biologically relevant structure of an RNA is an extremely challenging

problem. Most of the work done in structure prediction was motivated by the cost and

time needed to determine structures using experimental methods. Secondary structure

prediction algorithms can be separated into the comparative and statistical categories.
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1.3.1 Comparative Approaches

The comparative approaches are based on the idea that functional constraints restrict

the tertiary structure of a molecule. For example, a transfer RNA must adopt a cloverleaf-

like structure for it to work properly. By observing patterns of homology and covariation,

hypothesis can be made to drastically restrict the conformational space that needs to be

explored [30, 31].

Currently, there are three approaches to comparative analysis [32]. The first is to cre-

ate a sequence alignment and give it to an alignment folding algorithm such as PFold

[33] or RNAAliFold[34]. The second approach is to simultaneously fold and align [35–

37]. The third is to obtain structures and assign a common structure [38].

There are many limitations to the comparative approach. Perhaps the most important

is that it aims at finding a single consensus structure. Any molecule with more than a

single functional structure, such as riboswitches, will elude these methods. Moreover,

pseudoknots and interactions with other molecules are not modeled in most of the cur-

rent approaches [32].

1.3.2 Single-Sequence Approaches

Single-sequence prediction methods are usually based on the idea that RNA secondary

structure adopts the most likely structure(s) according to some statistical distribution.

The main approach relies on the thermodynamic hypothesis which considers the struc-

ture of minimal free energy to be biologically relevant [39].

Dynamic programming stands out as the most prominent optimization technique in

single-sequence prediction algorithms. The optimization goal can be to maximizing the

number of complementary base pairs [40] or minimize the free-energy in the nearest-

neighbor model with experimentally-derived values [41, 42] as in MFold [43]. For more
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details about how these algorithms are designed, there are excellent primers [44] and

detailed accounts [8] written by dynamic programming adepts.

The limitations of current single-sequence approaches are somewhat severe. As with

comparative approaches, there are many biological features which are not accounted

for in common models. Most methods are restricted to canonical base pairs only and

forbid pseudoknots and multiplets. Non-canonical base pairs were included into RNA

secondary structure prediction in MC-Fold [45]. Pseudoknots included into rigorous

free-energy minimization algorithms in a few forays such as [46]. Finally, multiple pair-

ings were included in the MC-Fold-DP algorithm [22], although pseudoknots were not.

The only thing that has not yet been modeled in statistical approaches is interactions

with other macromolecules. An overlooked limitation of prediction algorithms based

on dynamic programming is the limited precision of the parameters used to drive the

optimization. Even if all assumptions of the models were satisfied, energy models such

as the nearest-neighbor [42] will still suffer from experimental measurement errors. This

was investigated by adding normally distributed noise well within the range of measure-

ment error to free energy values of MFold. The result was that around 30 percent had

different structure of minimal free energy [47].

1.4 Master’s Project

The first problem I wanted to tackle is the unfolding problem. Most 2D structure predic-

tion algorithms restrict the type of base pairs and the topology of the structures predicted.

For example, non-canonical base pairs, pseudoknots and multiplets are generally not al-

lowed. Removing those base pairs from RNA structures is used in many applications to

model, index, analyze RNA structures [48].

Currently, there are two algorithmic approaches that can remove those features from

experimentally-derived structures. These are the planarization [49] and pseudoknot re-

moval algorithms [48]. The main issues with those methods is that they generate one

or few secondary structures while there are many possible alternatives. Moreover, they

10



do not handle the removal of multiplets. Since I intended to use those methods to ana-

lyze experimental-derived 3D structures, I needed to extend those methods to be more

exhaustive in their output and deal with multiplets. MC-Unfold was created to solve this

(figure 1.5.

Figure 1.5: MC-Unfold uses a divide and conquer approach to unfold RNA structures.
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The other problem I was interested in is to understand how structures obtained using 2D

structure prediction methods compare with those obtained using experimental methods

such as NMR and X-ray crystallography. Currently, there are no evaluation that takes

into account that most prediction methods predict restricted forms of secondary struc-

ture. For example, if an algorithm predicts pseudoknot-free structures and the reference

contains pseudoknots, we must know that the model failed, not the prediction. MC-

Unfold was ideal to investigate this.

To do so, a large set of experimentally-determined 3D models of RNA was acquired

from the PDB. They were verified, annotated, unfolded and associated to their respec-

tive sequence to create a set of annotated 3D structures of RNA monomers. A variety of

single-sequence 2D structure prediction methods were then applied on those sequences.

The two sets of structures were then compared to find out if any experimental structures

were contained in the predicted structures and how far on average the predictions are.

1.4.1 Structure Of The Thesis

In chapter 2, the unfolding problem is defined. The current algorithmic approaches are

reviewed and analyzed to illustrate common pitfalls. A constraint programming algo-

rithm named MC-Unfold is implemented along with the most common constraints of

secondary structure prediction models. The code is tested and executed on a set of struc-

tures previously used to evaluate RNA secondary structure prediction algorithms [50].

In chapter 3, secondary structure prediction algorithms are evaluated against a new,

high-quality data set of reference structures. The construction of the data set, from PDB

filtration to cleaning and base pair annotations are detailed.

In chapter 4, a small review and conclusion are presented.
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CHAPTER 2

UNFOLDING RNA 3D STRUCTURE



2.1 Overview

RNA secondary structure (2D) models are widely used to model, index, analyze and

predict base pairing interactions in three-dimensional RNA structures (3D). In practice,

2D models are constrained so that a single 2D structure often cannot represent all base

pairs present in a 3D structure.

I define the unfolding problem as the task of removing tertiary interactions (base pairs)

from a 3D structure such that the resulting set(s) of base pairs respect the constraints of

an RNA 2D structure. This problem is already encountered in many important applica-

tions [48]. It is an essential step in predicting [51], comparing [52, 53], classifying [54]

and building repositories of 2D structure such as RNAStrand [55].

Unfolding tertiary structures used to be done manually. It was relatively unreliable and

non-reproducible [48]. More recently, planarization and pseudoknot removal algorithms

capable of solving parts of the unfolding problem were developed [48, 49]. These al-

gorithms remove base pairs with respect to some arbitrary optimization goal. The goal

can be to keep the maximal amount of base pairs [49] or to find the structure of minimal

free energy of a thermodynamic model [49, 56]. All the secondary structures generated

are saturated, in the sense that none of the base pairs removed (e.g. part of a multiplet)

could be added back without violating the constraints of 2D structure [48, 57]. These

algorithmic approaches solve the previous issues of transparency and reproducibility.

However, there is still place for some improvement.

The planarization and pseudoknot removal algorithms do not remove multiplets and

cannot generate all saturated structures. Multiplets are not currently handled and

have to be removed manually. This is problematic since it creates the same problems of

non-reproducibility that motivates the existence of the methods. Moreover, interesting

2D structures can be missed because the algorithms are aimed at finding one or very

few saturated structures. Since none of these structures can represent all the base pairs

present in the original feature, an exhaustive method is preferred.
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MC-Unfold was designed to address those issues. It is the first algorithm that can un-

fold 3D structures exhaustively and handle removing pseudoknots and multiplets. MC-

Unfold is based on a divide and conquer strategy and relies on a constraint satisfaction

problem (CSP) solver. Despite its higher time complexity, it is capable of efficiently

unfolding all but very large 3D structures (more than 400 nucleotides).

In this chapter, the previous unfolding methods [48, 49] and the tertiary interactions they

can remove are detailed. MC-Unfold is then described along some implementation de-

tails, including its divide and conquer strategy and its interface with the CSP solver. The

applicability of MC-Unfold is then demonstrated on a large data set of annotated 3D

structures from the Protein Data Bank (PDB, [58]) who were previously used to evaluate

RNA 2D structure [50].

2.2 Methods

To understand well the need for MC-Unfold, section 2.2.1 describes in details the pre-

vious approaches to solving similar problems (planarization, pseudoknot removal). A

review of the common 2D structure constraints and the strategies used to address them

is presented in section 2.2.2. MC-Unfold’s divide and conquer strategy is detailed in

section 2.2.3 along with some implementation details.

15



2.2.1 Overview Of The Current Unfolding Algorithms

The planarization problem was proposed by Yann Ponty as part of his PhD thesis in

2008 [49]. The goal was to create a planar 2D structure with an optimality goal in mind.

The first goal was to maximize the number of canonical base pairs and the second was to

miminize the free energy following the Turner model (as used in Mfold [43]). A modi-

fied version of the Nussinov algorithm [59] was used to solve the problem.

The pseudoknot removal problem and heuristics to solve it were proposed as part of

the Knotted To Nested (K2N) package [48]. Of the six approaches, five are heuristic

methods (EC, EG, IL, IO, IR) and the sixth is a generic optimization procedure which

can be used to create more complex scoring schemes. The K2N framework is the one

mostly in use today in applications such as the RNA Strand database [55], RNAPdbee

[60], RNAStructure [61] and many others.

Saturated 2D structures are the goal of all current unfolding algorithms [48] as well as

MC-Unfold. This saturation constraint states that no base pair can be added back to the

unfolded structures without violating the definition of 2D structure [62]. This is crucial

to avoid removing more base pairs than is absolutely necessary.
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Current algorithms do not remove multiplets. Triplets and larger multiplets are not

allowed in the input. Rather, they have to be dealt with manually, which creates the same

problem the methods were designed to solve. Unfortunately, multiplets are common in

3D structures and that severely limits the applicability of the algorithms. Of the 320

annotated 3D structures used to test the performance of MC-Unfold (section 2.3.1, show

in figure 2.1), slightly more than 70 percent (225/320) contained at least one multiplet.

This is a reasonable data set that was previously used to evaluate 2D structure prediction

algorithm [50]. This demonstrates that removing multiplets is a relevant issue to address.

Figure 2.1: Most of the 3D structures of the CompaRNA data set contain at least one
multiplet. log1p(x)=ln(x+1)
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Current methods can miss important 2D structures. Many structures can be ignored

by current methods because they are not optimal according to the criteria considered.

An example previously used to show the diversity of the six pseudoknot removal meth-

ods illustrates this well (figure 1 of [48]). Although the six methods are different, they

sometimes return the same solution and can miss some (see figure 2.2).

Figure 2.2: MC-Unfold is compared with the planarization and pseudoknot removal
algorithms. One solution is missed (in red) by the current methods. The number of base
pairs in the leftmost node of an arc indicates how many base pairs are involved.

In practice, finding the saturated 2D structure with the largest amount of base pairs could

lead us to ignore other relevant solutions. For example, a given 3D structure could

contain two large stems forming a pseudoknot. The largest of the two stems would

be the best solution and the user wouldn’t know about the other stem, which might be

significant. MC-Unfold can identify 3D structures which would cause such problems to

current methods (see figure 2.8). Depending on why we want to unfold a 3D structure,

we might not be able to tell relevant structures from other saturated structures. In those

cases, an exhaustive approach is advantageous.
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2.2.2 Constraints For 2D Structure

The constraints of RNA 2D structure models are intended to allow for more efficient

algorithms. For example, dynamic programming algorithms for free-energy minimiza-

tion of pseudoknot-free 2D structures can find optimal solution(s) in polynomial time.

When pseudoknots are included, the task can be NP-complete [63], depending on the

restrictions used. These constraints are therefore very useful.

The distinction is made between simple and complex constraints. Complex constraints

must be dealt with by constraint solving. They implicate choices between many base

pairs and multiple alternatives must be considered. Simple constraints are defined as

having only one unambiguous solution. For example, given a list of base pairs, the non-

canonical base pairs can be removed by filtering them out.

Complex constraints are that there should not be any pseudoknots nor multiplets in

the 2D structures, to make them planar. A planar 2D structure Splanar is a 2D structure

that can be drawn on a plane without any crossing edges. Given a list of base pairs,

a 2D structure is planar if there are no two base pairs (i, j), (x,y) ∈ Splanar such that

i < x < j < y. This implies that pseudoknots are forbidden. Most of the free-energy

minimization algorithms restrict themselves to planar 2D structures. This is not because

planar structures are most often observed in nature [64]. Rather, this constraint reduces

greatly the search space and complexity of prediction algorithms [8, 46]. Multiplets are

also forbidden. Although they are very common in experimentally resolved structures,

they are usually considered tertiary structure features [8]. Some prediction algorithm

include them, such as RNAWolf [22], but restrict themselves to triplets. To deal with a

triplet involving base pairs (i, j),(i,k), we remove one of the two. This is as in K2N,

where the base pairs were removed manually by visual inspection in PyMol [48]. The

main difference is that we don’t choose either, but instead let the CSP solver find all

possible solutions.
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Simple constraints group together restrictions on the type of base pairs considered and

a minimal distance in the sequence between bases involved in a base pair. Non-canonical

base pairs are often ignored. Most common methods such as MFold consider only the

canonical base pairs. That is the Watson-Crick base pairs (A-U, C-G and sometimes the

wobble G-U). Non-canonical base pairs have been included to an extent into ContraFold

[65] and MC-Fold [45]. A minimal distance between bases of a base pair is often spec-

ified. This is intended to avoid sharp backbone turns in the predicted structures. It also

defines the minimal size of hairpin loops. It is described by a positive integer d (e.g.

d = 3) specifying that there should not be any base pair (i, j) such that | j− i|< d [66].

2.2.3 MC-Unfold: Unfolding As A Constraint Satisfaction Problem

MC-Unfold uses a divide and conquer strategy (see figure 2.3). The constraints be-

tween base pairs are encoded into a constraint matrix M. The value at position M[i, j]

indicates that the base pairs i and j can or cannot co-exist in a 2D structure. The subprob-

lems correspond to the disconnected subgraphs of the graph built from M as adjacency

matrix, where an edge connects two nodes if the corresponding base pairs are conflicting.

The conquer part of the divide and conquer is solved using a CSP solver. The un-

folding problem is described by a model written in Minizinc [67, 68]. This model is

compiled into a set of lower-level constraints and given to a CSP solver, in this case

Gecode 4.4. The CSP solvers rely on backtracking and more advanced techniques to

efficiently go through the search space and find solutions satisfying the specified con-

straints. The main advantages to this approach are conciseness and simplicity. The full

code of the model is listed in figure 2.4.
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Figure 2.3: MC-Unfold uses a divide and conquer approach to solve the problem. The
subproblems are divided (red and blue). They are solved independently by a CSP solver
and the full solutions are assembled back by cartesian product.

The problem solved here is hard and involves trade-offs. Given a set of base pairs S, a

naive algorithms could try all possible subsets sn⊆ S and verify if sn obeys all constraints

(no conflicts and saturated). This would require O(2|S|) assuming the verification takes

constant time (which is not. This is much worse than the complexity of the current

unfolding methods, but as mentioned in section 2.2.1, these methods cannot yield all

saturated structures. Moreover, we can apply it to almost all structures of interest as

shown in sections 2.3.1 and 3.2.2.
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int: n;
set of int: bp indices = 1..n;
array[1..n, 1..n] of bool: constraints;

var set of bp indices: structures;

% no conflicts
constraint forall(i in structures)(

forall(j in structures)(
constraints[i,j]));

% saturated
constraint forall(i in (bp indices diff structures))(

not ( forall(j in structures)
(constraints[i,j]) ) );

solve satisfy;
output [show(structures)];

Figure 2.4: The Minizinc model used to solve the constraints is very simple and concise.
A matrix of booleans is passed to it, indicating if base pair at index i can coexist with
base pair at index j.

2.3 Results

To evaluate the applicability of MC-Unfold, it was tested on a large set of 3D structures

with complex base pairing topologies. MC-Unfold turns out to be very efficient and

capable of completely unfolding 218 out of 227 of the 3D structures in less than five

minutes on a desktop computer. The remaining nine are mostly large ribosomal RNAs.

The saturated 2D structures determined by MC-Unfold can be used to identify interesting

3D structure which do not conform well to the model of multiplet-free planar structures.
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2.3.1 MC-Unfold Unfolds 3D Structures Efficiently

A data set of RNA 3D structures from the PDB was used to demonstrate the per-

formance of MC-Unfold. The Protein Data Bank [58] is a repository of 3D models

at atomic resolution. The models are built from high-resolution methods such as crys-

tallography and NMR. This data is an interesting source of information for structural

prediction, because of the resolution and the quality.

As part of the CompaRNA project, RNA 3D structures from the PDB were cleaned using

modeRNA [69] and annotated using RNAVIEW [70]. The resulting data set contains a

high-quality and non-redundant subset of the PDB. Problematic structures, such as the

ones containing backbone breaks, less than 20 nucleotides and redundant ones were fil-

tered out [50]. Modified nucleotides were replaced by unmodified nucleotide according

to the mapping established in Modomics [9]. Summary statistics about the length and

number of base pairs identified are displayed in figure 2.5.

Figure 2.5: The length and number of base pairs of the 320 tertiary structures used to
test unfolding is illustrated. The nine structures too large to unfold in reasonable time
are mostly ribosomal RNAs and are identified on the right.
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MC-Unfold unfolds 3D structures efficiently. The goal of this experiment was to

test MC-Unfold under realistic conditions. To do so, the full annotation (canonical and

non-canonical base pairs) and all of the complex constraints detailed in section ?? were

used. To summarize, MC-Unfold was used to find planar, multiplet-free saturated 2D

structures without any base pair excluded.

Figure 2.6: For each 3D structure which were not already planar and multiplet-free
(227/320), the log10 of the number of saturated 2D structure is displayed against the
length of the corresponding sequence, sorted by increasing length.

Out of 227 structures that were not already planar and multiplet-free, 96.9 percent (218/227)

were unfolded completely while the remaining 9 could be unfolded partially, perhaps

fully with better computing power. It took 207 seconds (3 mins 27) on an Intel i5-4590

CPU (3.30GHz) to completely unfold the 218 3D structures. MC-Unfold is therefore

sufficiently efficient to unfold small to medium RNA 3D models.
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2.3.2 2D Structures Cannot Represent All Base Pairs

Given RNA 3D structure it is interesting to know how much of the base pairs can be

represented in a 2D structure model. It allows us to identify the structures which do not

fit well a model of 2D structure.

Figure 2.7: Some of the 218 structures completely unfolded contain large amounts of
base pairs not representable by planar multiplet-free 2D structures.
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The 3D structures with highest percentage of base pairs removed tend to contain large

amount of multiplets or pseudoknots, as illustrated in figure 2.8. In this case, this is

caused by the particular constraints used to test MC-Unfold.

Figure 2.8: Some 3D structures contain significant amount of base pairs violating com-
mon constraints of 2D structure prediction algorithms (planar, multiplet-free). In gen-
eral, this implies large pseudoknots (left, 2LC8) and/or multiplets (right, 4PLX). The
number of base pairs is displayed next to the 2D structures.

Structures such as those shown in figure 2.8 would be hard to predict for most 2D struc-

ture prediction algorithms because they are far from planar or multiplet-free. Identifying

those 3D structures comes in handy in chapter 3 to evaluate RNA 2D structure prediction

algorithms. The idea is that if a 3D structure contains significant amounts of base pairs

that cannot be represented in 2D structure, it should be taken into account.
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2.4 Summary And Conclusion

MC-Unfold was designed to address the lack of methods capable of unfolding exhaus-

tively 3D structures, including those with multiplets. A divide and conquer strategy is

used to separate base pairs into independent subproblems which are solved using a CSP

solver. The solutions are combined back using the cartesian product of the sets of base

pairs. The implementation of the algorithm was tested on a set of annotated 3D struc-

tures used to evaluate 2D structure prediction algorithm [50]. Of the 227 3D structures it

was tested with, 218 can be fully unfolded into all their possible saturated 2D structures

within less than five minutes on desktop computer. The remaining nine structures could

be unfolded given more time and computing power, but the result might be too large

for practical applications. Structures resulting from the unfolding process can be used

to determine how well a 3D structure fit constraints of 2D structures. This is done by

counting the amount of base pairs removed in the unfolded 2D structures. Identifying

these structures comes in handy later when evaluating 2D structures in chapter 3.

Overall, MC-Unfold is a practical and exhaustive approach to unfolding which extends

the previous planarization and pseudoknot removal algorithms with the capability of

removing multiplets. Furthermore, since it finds all saturated 2D structures, it is guaran-

teed to find all solutions which would have been returned by the previous algorithms. Its

performance is satisfying and it is ready for practical applications.

Further works remains to be done on the unfolding problem. New constraints could

enable us to extract information about more complex structures, albeit at a coarser level.

One very interesting constraint which could reduce the complexity large molecules is to

remove base pairs not forming helices [71]. Another interesting improvement would be

to sample the space of saturated structures instead of enumerating it.
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CHAPTER 3

COMPUTATIONAL VS EXPERIMENTAL STRUCTURES

3.1 Overview

RNA secondary structure prediction algorithms aim at predicting the organization of

base pairs from sequence information. The idea is that RNA folding occurs in a hier-

archical manner. First the sequence forms base pairs and adopts a secondary structure.

Then tertiary interactions form and define the active tertiary structure [20, 72, 73]. These

algorithms were developed because experimental methods are generally too costly for

large scale application.

There currently exists more than 30 computational methods to predict different versions

of secondary structure. Most are focused on predicting the canonical base pairs of planar

secondary structures but some also pseudoknotted secondary structures [46, 74, 75] and

even multiplets [22]. Obtaining the optimal pseudoknotted secondary structures accord-

ing to free energie strategies is much more complex [63], but fits the observed models of

secondary structures with more fidelity.

Evaluating prediction algorithms relies on correlation between different structure deter-

mination methods. Previous benchmark have examined the correlation of comparative

prediction algorithms against comparative structure models [32] and single-sequence

predictions against NMR/Crystallography models [50].

The previous benchmarks left some interesting questions unanswered. First and fore-

most, can methods predicting multiple structures find an exact experimental struc-

ture? In the same line of thought, how far are most of those predicted structures

from experimental structures?



To address these issues, a new benchmark was designed. First, a data set of RNA

monomer 3D structures was constructed from a subset of the PDB [58]. A new method

dubbed Meta-Annotate was built upon the three most popular annotation algorithms

(3DNA [76], MC-Annotate [77] and RNAview [70]). It compares the annotations pro-

vided by those three methods to infer a consensus annotation. These annotations were

used to identify base pairs in 3D structures and build the set of experimental structures,

by mapping each sequence to all of its corresponding 3D models. The set of compu-

tational structures was obtained under various strategies such as suboptimal structures,

stochastic samples of the suboptimal structures as well as other methods. The compu-

tational and experimental structures were compared by finding for each computational

structures the closest matching ones in the experimental set. The minimum and median

values for each sequence were reported and their value correlated with the length of the

sequence.

3.2 Methods

The goal of this chapter is to investigate how much correlation there is between sec-

ondary structure prediction algorithms and experimentally-determined 3D structures.

This involves examining available experimental structures to identify their base pairs.

These are then used to generate the set of experimental structures. The computational

structures are then obtained by feeding the sequence of experimental structures to the

secondary structure prediction methods. Finally, these computational and experimen-

tal structures are compared to assess how close the computational structures are to the

experimental ones.

3.2.1 Meta-Annotate Creates Consensus Annotations

Identifying base pairs in 3D models involves finding chemical group in a geometry sus-

ceptible of forming hydrogen bonds between nucleobases. The general approach is to

find nucleobases in close proximity and examine geometric properties to detect probable

hydrogen bonding sites. MC-Annotate [14, 77] relies on Gaussian mixture models to
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compute the likelihood of H-bonds between donor and acceptor chemical groups. These

H-bonds probabilities define a graph on which the maximum flow algorithm is applied

to model competition between donors and acceptors. H-bonds above a certain threshold

are kept and base pairing types assigned depending on local geometry of the bases and

hydrogen-bonds. RNAview [70] and 3DNA-DSSR [76, 78–80] use purely geometrical

rules to annotate base-pairs in 3D structures. Base pairs are deduced by verifying if they

satisfy certain conditions, which are mostly geometrical.

Meta-Annotate creates a consensus annotation by combining the result of other an-

notation software. It compares and searches for agreement on annotations performed

by RNAview [70], MC-Annotate (version 1.5, using mccore 1.6.2) [14, 77] and 3DNA-

DSSR (version 1.6.2-2016sept19)[76, 78–80]. A base pair is considered only if a ma-

jority of the annotators identifies a base pair between Watson, Hoogsteen or sugar edge

of a nucleobase (see figure 3.1). It is currently limited to PDB files that contain a single

chain of an RNA monomer.

Figure 3.1: Meta-Annotate calls on MC-Annotate, 3DNA and RNAview and compares
their results to create a high quality annotation.
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The consensus annotations can be examined visually. A small python script relying

on the the Chimera molecular viewer [81] was created. It changes the default visual style

and attributes color to the nucleobases depending on the type of interactions, as can be

seen in figure 3.2.

Figure 3.2: The annotations of Meta-Annotate can be viewed using Chimera along
with VARNA. The canonical (blue) and non-canonical (red) base pairs of the lysine
riboswitch (4ERJ) are depicted.

3.2.2 Preparing Experimental Structures

The first step is to build a data set of experimental structures. Experimental struc-

tures are structures determined by biochemical or biophysical methods (e.g. NMR, crys-

tallography). The number of experimentally determined RNA structures has increase

a lot in recent years. In 1995, years after most of the development of RNA secondary

structure prediction strategies (e.g. mfold, etc.) were done, the PDB [58] contained only

31 available 3D structures of RNA or RNA-protein mixes. This number eventually grew

to 155 in 2005 and then 462 in 2015 [82].

A new data set of annotated experimental structures was prepared from the PDB

database. The data set used in CompaRNA was an interesting candidate, but contained

large amounts of non-monomers and the annotation was based solely on RNAview. To
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improved upon this, we used a subset of RNA models from the PDB and annotated them

using Meta-Annotate. A large amount of 3D models were filtered out. Only 3D mod-

els of RNA monomers are considered. These models must not be in association with

proteins or DNA molecules or contain modified nucleotides. The filtration process is il-

lustrated in figure 3.3. Of the 4857 unique 3D models obtained from the PDB, 4223 (87

percent) were successfully cleaned and annotated. Models filtered out contained mod-

ified nucleotides and abnormalities which the annotation software could not deal with.

Moreover, molecules of more than 1000 nucleotides (pdb ids 3J28, 3J2A, 3J2B, 3J2D,

3J2E, 3J2F, 3J2G, 3J2H) were removed to avoid performance issues with MC-Unfold as

well as the structure prediction algorithms.

Figure 3.3: The PDB is filtered to keep single model and single chain RNA monomers.

There are often many 3D models representing the same sequence. For example,

NMR structures often contain many conformers [27] while crystallographic structures

may contain the same RNA interacting with a different ligand. Since all these structures

have been observed, the sequence is mapped to all potential structures and they all are

valid experimental structures.

Three versions of the consensus annotations are considered, that is 3Dfull , 3Dcanonical

and 2Dunfolded (see figure 3.4). The 3Dfull contain all the base pairs present in the con-

sensus annotation. including non-canonical base pairs. This is intended to give an honest

appraisal of how well the computational structures match all the known base pairs. The

3Dcanonical is the set of canonical base pairs in the 3D models. This is intended to give an

idea of how well we can predict canonical base pairs only, since they are believed to con-
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tribute most to the stabilization of 3D structures. The 2Dunfolded is the set of all unfolded

secondary structures created by MC-Unfold on the 3Dcanonical . The constraints used are

that there is no multiplet nor non-planar base pairs. This should be the most reasonable

version of 3D structures, since it conforms many of the underlying assumptions used in

computational methods.

Figure 3.4: The experimental structures are compared on three levels. The first contains
all base pairs (3Dfull ), the second contains only canonical base pairs (3Dcanonical ) and
the last is all the planar secondary structures obtained from the second one by using
MC-Unfold (2Dunfolded ).

Experimental structures are separated into planar and non-planar structures. This

is done on the basis of them containing non-planar base pairs and/or multiplets, as was

done in CompaRNA [50]. The planar structures should be the easiest to predict since

they fit the models used in planar secondary prediction algorithms (CentroidFold, RNA-

subopt, RNAstructure, SFold). The non-planar structures can still be predicted by the

methods allowing for pseudoknots (HotKnots, IPknot), as long as there are no multiplets

or non-conical base pairs involved.
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3.2.3 Preparing Computational Structures

The second step is to acquire computational structures. Computational structures are

structures predicted by a folding algorithm. Computational methods used range from

statistical sampling (SFold, RNAstructure’s stochastic, RNAsubopt) to the prediction of

suboptimal structures at an energy range above the MFE (RNAsubopt, RNAstructure’s

AllSub) and others (CentroidFold, IPknot and Hotknots). The prediction methods tested

can be separated into three groups. The first type is the generation of suboptimal sec-

ondary structures. The second is the generation of a sample of secondary structures from

the Boltzmann ensemble. The last group contains methods based on generalized centroid

estimators and heuristic approaches to predict pseudoknotted structures.

The first group of methods general of suboptimal structures within an energy range

above the MFE. This technique that was devised to address issues with the prediction of

secondary structure by minimal free energy [83, 84]. Inconsistencies with the nearest-

neighbor model, the possibility of structures at non-equilibrium and the existence of

molecules existing in many states such as riboswitches motivated researchers to inves-

tigate more structures of high probability. For each sequence, a set of at most 100 sub-

optimal structures was considered. In many instances, the sequences were small enough

that there was much less than 100 considered. The two methods for suboptimal structure

prediction are RNAStructure (AllSub version 5.8.1), from the RNAstructure package

[61] and RNAsubopt (version 2.2.10) from the Vienna package [85].

The second group of methods perform the proportional sampling of suboptimal

structures according to their probability of existence in the thermodynamic ensemble

(following a Boltzmann distribution) [84]. The resulting ensemble is often clustered

to reveal representative structures. The full set of secondary structures, not the repre-

sentative structures is used to compare them to experimental structures. By default, a

total of 1000 structures were returned by all tools. Duplicate structures can be present,
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especially for small sequences. The three methods that use stochastic ensemble are

RNAstructure-stoch (stochastic, version 5.8.1) from the RNAstructure package [61],

RNAsubopt-stoch (RNAsubopt using –stochBT option, version 2.2.10) from the Vi-

enna package and SFold-stoch (SFold, version 2.2-20110126) [86, 87].

The third group of approaches rely on γ-centroid estimators, integer programming

and other heuristics. CentroidFold (version 0.0.15) predicts secondary structures us-

ing γ-centroid estimators [88]. This corresponds to optimizing an objective function

which is the weighted sum of the expected number of true positives and true negatives

base pairs. The γ parameter adjusts the sensitivity and positive predictive value of the

proposed secondary structures. Values of gamma in the range of 2−5 to 210 were used

by setting the gamma option to -1. This allows us to observe the effects of gamma on

structures generated. IPknot (version 0.0.4) is an extension of CentroidFold that can

predict pseudoknotted structures [74] using integer programming. The default settings

were used. HotKnots (version 2.0) is an heuristic method for the prediction of secondary

structures with pseudoknots. Stems of high stability are iteratively formed and added to

substructures until none are left to be added. Hotknots was used with default parameters.

3.2.4 Comparing Experimental And Computational Structures

The last step of the evaluation is to create a method to measure how similar compu-

tational and experimental structures are. To do so, we need to represent what we care

about when we compare two RNA structures. A distance function d is a function that

maps a pair of objects to a non-negative real numbers (d : X×X → [0,∞)) and satisfies

the following three conditions.

1. d(x,y) = d(y,x) (symmetry)

2. d(x,y) = 0↔ x = y (identity of indiscernibles)

3. d(x,z)≤ d(x,y)+d(y,z) (triangle inequality)
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The base pair set distance is a simple distance function which is used on sets of base

pairs. It is applicable on sets of base pairs without restrictions which means we can use

it to compare structures containing non-planar and multiplets. Its value is the cardinality

of the symmetric difference of the two set of base pairs representing the structures com-

pared. A distance of N means that there are N base pairs that are not in the intersection

of the two base pair sets [19]. Its minimum value is zero and its maximum can go up

to the size of the union of the two sets (|bpset1|+ |bpset2|) if the intersection is empty.

Although the base pair set distance is not applicable to all situations, it applies well here

because we compare structures belonging to the same sequence. This means that they

have the same length and each nucleotide corresponds one-to-one between the structures

[19].

def base pair set distance(bpset1: set, bpset2: set) −> int:
sym diff = bpset1.symmetric difference(bpset2)
return len(sym diff)

Figure 3.5: The base pair distance is the cardinality of the symmetric difference be-
tween the two sets of base pairs compared. For example, given bpset1 = {(0,6),(3,5)}
and bpset2 = {(0,6),(1,5)}, their symmetric difference would be {(1,5),(3,5)} which
means a base pair set distance of two.

Since many sequences have more than one experimental structure, each computational

structure is paired with its most similar experimental structure. This is the structure

which minimizes the base pair set distance. This process is illustrated in figure 3.6. Once

the computational structures are paired with their most similar experimental structure,

we can evaluate how close the predictions are. The sequence length is correlated with

the minimum or median base pair distances of those pairs of structures using linear

regression. The minimum and median errors are correlated with the sequence length be-

cause it is available to the user and can be linked to the number of possible structures

[16]. This analysis is not intended to generalize outside of the structures tested but in-

stead is a way of summarizing the results. Goodness of fit tests are performed on the
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Figure 3.6: The distances between computational (C1-C3) and experimental (E1-E3)
structures are used to find, for every computational structure, the most similar exper-
imental structure. These couples of structures are used to calculate the gap between
computational and experimental structures.

linear regressions. Two measures used are the coefficient of determination and the stan-

dard error of the estimate. The coefficient of determination, or R squared, adopts values

are between 0 and 1, where a larger value indicates a better match between regression

performance. The standard error of the estimate is the square root of the average squared

deviation. Values near zero indicate better fit.

How Close Are The Best Predictions? The minimum error test was designed to find

out if it is possible to find any of the experimental structure in the set of computational

structures. For each sequence, we select the computational structure which had the least

difference with an experimental structure (closest to zero). We call this the prediction of

minimum error. A distance of zero implies that one of the computational structures is

contained within the corresponding experimental structures. Although it happens some-

times, it is common that the computational methods will not predict exactly any of the

experimental structures. This might be attributed to the presence of features that could

not have been represented in the secondary structure model (pseudoknots, multiplets) or

prediction errors.
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Figure 3.7: The linear correlation between the minimum base pair set distance (error)
and the sequence length is shown on the set of planar (left) and non-planar (right, in
grey) experimental structures. A distance of zero indicates that a computational structure
matched perfectly an experimental structure. The vertical line is set at 0 or at the
largest sequence with a distance of zero. ∆ is the slope, S is the standard error and R2

the r squared value.

The minimum error values must not be used to compare computational methods be-

tween themselves, but instead to compare them with the experimental structures. For

example, methods based on stochastic samples of the suboptimals will usually performs

best in this test because the set of predicted is larger and more varied than for other

methods. The median error calculated in the next test is a better indicator of relative

performance.

Another important aspect of this analysis is that even though the distances shown in fig-

ure 3.7 may appear relatively benign, small sequences usually contain only a few base

pairs. Therefore, a large percentage of base pairs predicted can be wrong while the over-

all distance remains small.
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How Close Are The Overall Predictions? The median test measures the central ten-

dency of the distance between computational and experimental structures. A large me-

dian value indicates that the computational and experimental structures are dissimilar.

The median is preferred to the mean for its robustness to outliers, meaning it wouldn’t

be affected by a few extremely large or small distance values.

Figure 3.8: On each row, the linear correlation between the median base pair set distance
(error) and the sequence length are displayed. The 3D structure without multiplets or
pseudoknots (on the left) are separated from those containing them (on the right). ∆ is
the slope, S is the standard error and R2 the r squared value.

The median test can be used to model how well a predicted structure would fit if it was

picked at random amongst the set of predicted structures. It is less affected by different

amounts of predicted structures than the minimum error test. As such, it can be used to

compare computational methods between themselves.
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3.3 Results

Th set of experimental structures is first described. To our knowledge, this is the first

and largest data set of annotated single-chain RNA structures, without any modified base

pairs, solely from experimental sources. The comparison of computational and experi-

mental structures is presented in section 3.3.2. Computational structures are compared

with the 2Dunfolded set of experimental structures described in section 3.2.2. The re-

sults are encouraging and useful to understand the extent and limitations of the current

single-sequence secondary structure algorithms.

3.3.1 A New High Quality Set Of Reference Structures

With over 4223 models accounting for 321 sequences, the collection of annotated struc-

tures done here is the largest collection of single chain RNA structures containing no

modified nucleotides.

Overall, the experimental structures are mostly small (below 50 nucleotides) determined

by NMR and X-Ray crystallography. Although the 3D models contain no modified nu-

cleotides nor intermolecular interactions with proteins, a few structures contain ligands.

There is variety in sequence (both length and similarity), the type of experimental tech-

niques used and the variety of RNA structures they present (types of base pairs, distance

between models of the same sequence). All of the information related to the PDB struc-

tures was acquired using PyPDB to query the PDB [89].
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3.3.1.1 The Models Are Mostly From NMR and X-Ray Crystallography

Most of the experimental structures were determined by NMR and crystallography.

Figure 3.9: The experimental structures were mostly determined by solution NMR struc-
tures and x-ray diffraction. NMR files generally contain many conformers.

In figure 3.9, we can see that most of the PDB ids identified originate from NMR and

crystallography. This however doesn’t take into account that the files deposited with a

single PDB may contain many 3D structures for the same sequence. The number of 3D

models, determined by NMR is therefore much higher than suggested by counting the

files.
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3.3.1.2 The Sequences And Models Are Small

There is a total of 321 unique sequences which correspond to 4223 3D models.

Figure 3.10: For each sequence length, the number of unique sequences (above) and the
total number models associated with them (below) are shown. The sequences are mostly
short.

In figure 3.10, we can see that most of the sequences are short. Moreover, the number

of 3D model is generally greater for small sequences. This can be explained by the

abundance of NMR models of small RNA sequences.
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3.3.1.3 The Sequences Are Diverse

For the evaluation to be relevant, the RNA sequences should be varied. To make sure that

the sequences have some variation, the sequences were clustered using CD-HIT-EST at

a cut-off value of 0.9 sequence identity [90].

Figure 3.11: The size of clusters produced by CD-HIT-EST are counted. A cluster size
of 1 means that there was a single sequence in a cluster.

Most of the cluster sizes are small (see fig 3.11), indicating that the sequences are varied.

There are some larger clusters, which come from well-known molecules such as the U6

internal stem loop, the tetrahydrofolate riboswitch and the HIV Tar loop.
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3.3.2 Computational vs 2Dunfolded Structures

The 2Dunfolded structures are the best match possible for most of the computational meth-

ods. These experimental structures correspond to the model used in all computational

methods except for IPknot and HotKnots. Moreover, when MC-Unfold is applied on

the non-planar 3Dcanonical structures, at least two planar structures are generated, which

increases the number of experimental structures that computational structures can match

with. This is therefore expected be the easiest test.

The results shown in figure 3.12 and 3.13 indicate that indeed, the computational meth-

ods are having more success on this representation. As we can see in figure 3.12, some of

the experimental structures can be found exactly in the computational structures. While

some of the methods are good at finding experimental structures, they may not be quite

as good when the median is considered. The median distances shown in figure 3.13 are

also the best performing.

As expected, both the minimum and median errors increase with the sequence length,

especially on non-planar structures. After a certain sequence length, no more experi-

mental structures are found in the computational structures (see fig 3.12, illustrated by

the vertical lines) and the median error becomes large.

The 3Dcanonical and 3Dfull versions of the experimental structures yielded similar results,

but with lower success. Because most algorithms (apart from IPknot and HotKnots)

predict only planar secondary structures, they cannot find any non-planar structures. In

the 3Dfull , the addition of non-canonical base pairs makes it even harder on all prediction

algorithms. These results can be found in sections I.2.1 and I.2.2.
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Figure 3.12: On the 2Dunfolded , most of the algorithms can find at least one experimental
structure, some even for relatively large experimental structures.

In figure 3.12 the ”-stoch” means that the method returned a stochastic sample of the

suboptimals.
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Figure 3.13: On the 2Dunfolded , the median error remains quite good.
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3.4 Summary and Conclusion

In this chapter, we observed the difference between computational and experimental

structures. The first step involved acquiring annotated 3D structures. Meta-Annotate,

was created to compare the annotations of many state-of-the-art annotation software to

produce a consensus annotation. The consensus annotations were then used to create a

large data set of 4223 experimental 3D structures.

The set of computational structures was created using a variety of single-sequence sec-

ondary structure prediction algorithms, including many of the best performing single-

sequence identified in CompaRNA [50]. The experimental and computational structures

were compared to find out how related the two are.

The results of the evaluation indicate that the computational methods can generate struc-

tures similar to the experimental structures, particularly the small 3D structures without

mutliplets, pseudoknots or non-canonical base pairs. In many instances, it was possible

to find a computational structure in the experimental structures for the planar and the

2Dunfolded non-planar structures. However, this was not the case when looking at the

3Dcanonical or 3Dfull experimental structures.

Another interesting finding is that the error, as measured using the base pair set distance,

generally increases as a function of the sequence length. This is expected since longer

sequences tend to contain more base pairs and the search space should grow as a func-

tion of the sequence length.

Overall, these findings indicate that there is still a big discrepancy between experimental

and computational structures, especially when considering all the base pairs. To answer

the two questions raised in the introduction, the prediction algorithms can manage to

predict some of the experimental structures. However, the overall predictions can be

very different from the experimental structures.
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A lot of interesting work remains to be done. Many secondary structure prediction algo-

rithms were not tested in this work, including methods using alignments or experimental

information which have shown great promise in earlier evaluations [50]. The current

methodology could be adapted easily to include them. Different distance functions could

be substituted to investigate other features than the base pairs (e.g. stems, branching).

The base pair annotations could be improved by including more computational methods

such as FR3D [91] and even manual annotations. Moreover, the annotations could be

done on the data used to assemble the 3D models, instead of on the 3D models, to avoid

bias induced by the transformation used to create the models. Finally, although there

was many different PDB files containing the same sequence, none of them were done

using NMR and X-ray crystallography. This would have been interesting to observe the

variability of the experimental techniques.

48



CHAPTER 4

CONCLUSION

The work presented in this thesis represents an interesting contribution to the field of

RNA secondary structure. The unfolding problem presented in chapter 2 is an exten-

sion of previous approaches to remove non-planar interactions from 3D structures. MC-

Unfold was designed to address the lack of methods capable of exhaustively unfolding

3D structures, including those with multiplets. Structures resulting from the unfolding

process can be used to determine how well a 3D structure fits the constraints of 2D struc-

tures. It can also be used to investigate how close a planar 2D structure to an unfolded

3D structure.

MC-Unfold is a practical and exhaustive approach to unfolding which extends the pre-

vious planarization and pseudoknot removal algorithms with the capability of removing

multiplets. Furthermore, since it finds all saturated 2D structures, it is guaranteed to find

all solutions which would have been returned by the previous algorithms. Its perfor-

mance is satisfying and it is ready for practical applications.

The evaluation of single-sequence secondary structure prediction algorithms presented

in chapter 3 is the first taking into account planar secondary structure. Many valuable

tools and data sets were created during this task such as Meta-Annotate and the set of an-

notated structures of RNA. The results of the evaluation indicate that the computational

methods can generate structures similar to the experimental structures, particularly the

3D structures without mutliplets, pseudoknots and non-canonical base pairs. However,

there are many instances where the predicted structures do not resemble experimental

structures. Therefore, these methods should be used with great care.
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Appendix I

First Appendix

I.1 Experimental Structure Data Set

I.1.1 Identical Sequences In Different PDB Files

Many PDB files contain the same molecule under different conditions such as ligands or

refinements of previous 3D models.

Figure I.1: The same sequence can be found in many different deposited PDB files.



I.1.2 Distribution: Base Pairs

The distribution of the different types of base pairs is illustrated in figure I.2.

Figure I.2: The structures contain mostly canonical interactions.

A large fraction of the structures contain at least one non-canonical base pair.
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I.1.3 Distribution: Structural Differences Between 3D Models

An interesting question that was raised when starting this project was how much varia-

tion is there between various models of the same sequence.

Figure I.3: The conformers of NMR ensembles can contain very different base pairs.

As we can see in figure I.3, there are some sequence with widely different models.

I.2 Supplementary Benchmark Results

I.2.1 Computational vs 3Dcanonical Structures

The 3Dcanonical contain all the canonical base pairs present in the experimental structures.

On the set of planar 3D structures (left), the results are the same as for the 2Dunfolded ,

because MC-Unfold doesn’t change structures that are already planar.

The 3Dcanonical introduces the complexity of non-planar features such as pseudoknots.

Since the structures are no longer unfolded, most of the computational methods cannot

predict non-planar structures exactly. Methods that allow pseudoknots (HotKnots and

IPknot) have some success on small structures.
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Figure I.4: On the 3Dcanonical , non-planar structures can sometimes be predicted by
methods allowing for pseudoknots.
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Figure I.5: The median error on the 3Dcanonical is slightly higher for the non-planar
structures compared to the 2Dunfolded .
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I.2.2 Computational vs 3Dfull Structures

The 3Dfull experimental structures contain all the base pairs, including non-canonical.

Since the computational methods used do not predicting them, unless a structure contains

only canonical base pairs, it is expected that the methods will not find an experimental

structure.

The results illustrated in figure I.6 and I.7 confirm it. As expected, the error increases

for all computational methods, especially for the non-planar structures. Apart from Hot-

Knots, none of the computational structures contained an exact non-planar experimental

structures.
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Figure I.6: On the 3Dfull , few of the non-planar structures can be predicted. The mini-
mum error is also the largest of all representations.
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Figure I.7: On the 3Dfull , the median error is the largest compared to both of the other
representations.
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