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RÉSUMÉ

Les réseaux ad hoc de véhicules accueillent une multitude d’applications intéressantes.

Parmi celles-ci, les applications d’infodivertissement visent à améliorer l’expérience des

passagers. Ces applications ont des exigences rigides en termes de délai de livraison et

de débit. De nombreuses approches ont été proposées pour assurer la qualité du service

des dites applications. Elles sont réparties en deux couches : réseau et contrôle d’accès.

Toutefois, ces méthodes présentent plusieurs lacunes.

Cette thèse a trois volets. Le premier aborde la question du routage dans le milieu

urbain. A cet égard, un nouveau protocole, appelé SCRP, a été proposé. Il exploite l’in-

formation sur la circulation des véhicules en temps réel pour créer des épines dorsales

sur les routes et les connectées aux intersections à l’aide de nIJuds de pont. Ces derniers

collectent des informations concernant la connectivité et le délai, utilisées pour choisir

les chemins de routage ayant un délai de bout-en-bout faible. Le deuxième s’attaque

au problème d’affectation des canaux de services afin d’augmenter le débit. A cet effet,

un nouveau mécanisme, appelé ASSCH, a été conçu. ASSCH collecte des informations

sur les canaux en temps réel et les donne à un modèle stochastique afin de prédire leur

état dans l’avenir. Les canaux les moins encombrés sont sélectionnés pour être utilisés.

Le dernier volet vise à proposer un modèle analytique pour examiner la performance

du mécanisme EDCA de la norme IEEE 802.11p. Ce modèle tient en compte plusieurs

facteurs, tels que l’opportunité de transmission, non exploitée dans IEEE 802.11p.

Mots clés: Réseaux ad hoc de véhicules, applications d’infodivertissement, routage

(informatique), IEEE 802.11p (norme).



ABSTRACT

The fact that vehicular ad hoc network accommodates two types of communications,

Vehicle-to-Vehicle and Vehicle-to-Infrastructure, has opened the door for a plethora of

interesting applications to thrive. Some of these applications, known as infotainment ap-

plications, focus on enhancing the passengers’ experience. They have rigid requirements

in terms of delivery delay and throughput. Numerous approaches have been proposed,

at medium access control and routing layers, to enhance the quality of service of such

applications. However, existing schemes have several shortcomings. Subsequently, the

design of new and efficient approaches is vital for the proper functioning of infotainment

applications.

This work proposes three schemes. The first is a novel routing protocol, labeled

SCRP. It leverages real-time vehicular traffic information to create backbones over road

segments and connect them at intersections using bridge nodes. These nodes are re-

sponsible for collecting connectivity and delay information, which are used to select

routing paths with low end-to-end delay. The second is an altruistic service channel se-

lection scheme, labeled ASSCH. It first collects real-time service channels information

and feeds it to a stochastic model that predicts the state of these channels in the near

future. The least congested channels are then selected to be used. The third is an ana-

lytical model for the performance of the IEEE 802.11p Enhanced Distributed Channel

Access mechanism that considers various factors, including the transmission opportunity

(TXOP), unexploited by IEEE 802.11p.

Keywords: DSRC, EDCA, IEEE 802.11p standard, routing, WAVE.
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CHAPTER 1

INTRODUCTION

1.1 Research Context

Road safety and traffic efficiency are among the major problems that governments

worldwide have been attempting to settle in the last decades. The inadequacy of current

methods, i.e., post-crash measures (e.g., airbags) and road network expansion (i.e., due

to spatial, financial, and environmental constraints), has mobilized government agen-

cies and the automotive industry to develop prominent solutions that aim at making

transportation systems safer and more efficient. The key idea is to equip vehicles with

cutting-edge technologies (e.g., sensors, geographical positioning system (GPS), net-

work interface cards (NICs), and cameras), making them evolve from a simple mean of

transportation into intelligent systems that can assist drivers in making refined decisions

and avoiding hazardous events. An example of such vehicles is KITT, David Hassel-

hoff’s car in the Knight Rider (K2000) TV show (1982-1986).

When deployed, these vehicles shall enable a new self-configuring wireless network

known as vehicular ad hoc network (VANET). It is based on the Wireless Access for Ve-

hicular Environment (WAVE) standards suite and is considered as the key enabling tech-

nology for future Intelligent Transportation Systems (ITS). VANET will enable several

useful applications such as automatic road traffic alerts dissemination, dynamic route

planning, service queries (e.g., parking availability), media sharing, and context-aware

advertisement [1]. To provide such services, two communication modes are supported,

including vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I).

In the next subsections, we start by briefly describing each communication mode.

Then, we present the characteristics and challenges of VANET. Next, we describe VANET’s

various applications and we review some of its ongoing projects.



1.1. RESEARCH CONTEXT

1.1.1 VANET Architecture

VANET supports two forms of communication: vehicle-to-infrastructure and vehicle-

to-vehicle. In V2I, messages are exchanged between vehicles equipped with WAVE

devices, called On-Board Units (OBUs), and stationary entities, called Road Side Units

(RSUs), usually installed along road edges or in dedicated locations such as intersections

and parking lots [2]. The basic functionality of RSUs is to extend the communication

range of the vehicular network via relaying messages received from vehicles to other ve-

hicles passing by (see Figure 1.1(a) [2]). They can also provide additional services such

as real-time traffic statistics, weather forecast, and Internet access (see Figure 1.1(b) [2]).

(a) RSU as safety information provider

(b) RSU as Internet access provider

Figure 1.1: RSU functionalities
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V2V is an infrastructure-less mode in which vehicles can directly communicate with

one another when they are within transmission range (i.e., 300 to 1000 meters). They

can also use multihop communication to reach out of range cars. At the heart of V2V

is a basic technique, called beaconing. It consists of sending periodic messages, labeled

beacons, containing various information such as vehicle’s position, speed, and direction.

The goal of beaconing is to make vehicles aware of their neighboring vehicles’ current

location in order to predict their future positions. This will help drivers make better

decisions, avoiding therefore hazardous events.

1.1.2 VANET Characteristics

VANET has particular characteristics that distinguish it from other wireless net-

works. For instance, nodes 1 in VANET are highly mobile (i.e., up to 50 km/h in cities

and 120 km/h in highways), causing frequent topological shifts. In addition, nodes

movements are restricted by road layouts and shall abide to driving rules (e.g., traffic

lights, stop signs, overtaking manoeuvres, etc.). Moreover, network density, which is

directly linked to traffic flow, is observed to greatly fluctuate depending on time periods

(i.e., night, day, and peak hours) as well as locations (i.e., downtown, highway, and sub-

urban). Finally, VANET has no power nor computational capacity constraints. In fact,

vehicles are equipped with batteries with a lifetime that spans between 3 to 5 years [3].

This allows for multiple gadgets to be installed such as high performance processors,

high capacity memory cards, digital maps and GPS devices.

1.1.3 VANET Challenges

The aforementioned characteristics bring along new challenges that might affect the

deployment of VANET in real life. For instance, high mobility and frequent topology

shifts can lead to network fragmentation, resulting in sporadic connectivity. This forces

routing protocols to build unstable routing paths that can extremely degrade the net-

work’s quality of service (QoS), delay and throughput in particular. Moreover, VANET

1. Nodes and vehicles will be used interchangeably in the rest of this dissertation.

3
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has the potential to grow to a very large scale, imposing the need for new techniques

(i.e., routing protocols, IP address configuration, and bandwidth allocation) as existing

approaches for other wireless networks are not suitable for this highly agile environ-

ment. Furthermore, maintaining a global network topology is nearly impossible for a

node in VANET. Traditional structures like trees cannot be used since they incur high

maintenance cost. Instead, each vehicle keeps track of its local topology information

(i.e., number of neighboring nodes, their locations, and their speed), collected via peri-

odic beacon messages. Besides, signal propagation between communicating vehicles is

affected by the presence of obstacles (e.g., buildings, trees, and even vehicles), increas-

ing therefore its fading rate [2]. Finally, security and privacy are of crucial importance

to VANET. Since packets encapsulate critical information, it is mandatory to make sure

that they are neither injected nor altered by fraudulent users. Keeping in mind the re-

quirements of VANET environment, cryptographic algorithms along with authentication

schemes must be as fast as possible to allow for real-time data transfer [4].

1.1.4 VANET Applications

VANET was conceived primarily to enhance road safety and avoid accidents. Safety

applications in VANET can be classified into event-driven and periodic, based on the

frequency at which safety messages are transmitted. Event-driven applications require

the transmission of safety messages only in case of an event taking place. For example,

at intersections, messages regarding vehicles that are violating traffic lights or stop signs

can be exchanged to prevent possible collisions. Similarly, in case of a car accident, mes-

sages are broadcasted quickly into the accident’s vicinity urging drivers to slow down,

averting therefore probable chain collisions (1 and 2 in Figure 1.2). These messages can

also be used to notify vehicles near exits about the accident in order to avoid traffic jams

(3 in Figure 1.2). Finally, paramedics and police officers can be notified immediately via

RSUs to rapidly intervene and save people’s lives. Periodic safety applications, on the

other hand, require transmission of safety messages at regular time intervals. To illus-

trate, RSUs located at intersections can regularly notify approaching vehicles about road

condition (e.g., slippery). They can also inform vehicles about the current traffic light

4
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Figure 1.2: VANET applications

phase and the time remaining before switching to the next one. This information can be

used by OBUs to suggest to drivers the stopping location or the optimal speed to cross

the intersection without stopping at the traffic light.

Aside from safety-related applications, VANET allows for plenty of other services

that offer tremendous potential for new business opportunities. These applications are

of two types: traffic efficiency and infotainment. Traffic efficiency applications focus

on enhancing route guidance and navigation. For instance, traffic statistics on various

roads can be acquired in real-time and alternative routes can be provided to avoid traf-

fic congestions. Likewise, controlling traffic lights via analyzing information collected

through VANET (e.g., speed and density) can help smoothing traffic flows, therefore re-

ducing traffic load on major roads. Infotainment applications, on the other hand, aims

at improving the driving experience, making passengers’ journey more enjoyable. For

example, available services in nearby regions (e.g., malls, restaurants, gas stations, and

parking lots) can be advertised using RSUs. These RSUs can also provide Internet access
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to passengers in order to check their emails, download music, or make online transac-

tions. Finally, media sharing (e.g., music, movies), social media applications, and online

multiplayer games can be enabled between neighboring vehicles. Bear in mind that these

applications may accelerate the deployment of VANET since people are more and more

addicted to their smartphones and they want to be connected anywhere, anytime.

1.1.5 VANET Ongoing Projects

Since the early 90s, VANET activity in terms of research and development has been

intensively growing. In this regard, several projects that aim at ensuring road safety

have been jointly launched by governmental agencies and car manufacturers in different

parts of the world. In the United States, the Federal Communication Commission (FCC)

assigned 75 MHz bandwidth from the 5.9 GHz band as a freely licensed spectrum to

enable safety applications using Dedicated Short Range Communication (DSRC) [5].

Since then, several projects have seen light. For instance, Vehicle Infrastructure Integra-

tion (VII), rebranded to IntelliDrive, focuses on establishing test beds to provide support

for V2V and V2I under DSRC. It also studies non-technical issues regarding privacy,

liability, and application of regulations. Similarly, the Vehicle Safety Communication-

Application project (VSC-A) focuses on vehicle communication and relative position-

ing, with the goal of enabling interoperability among safety applications [6]. It identifies

eight crash scenarios, including Emergency Electronic Brake Lights (EEBL), Forward

Collision Warning (FCW), Blind Spot Warning (BSW), Intersection Movement Assist

(IMA), and Do Not Pass Warning (DNP). The Integrated Vehicle-Based Safety Systems

(IVBSS) project explores the human-machine interface issues when several safety appli-

cations, with potentially overlapping or contradictory advisories, are operated simulta-

neously [6]. Finally, the Cooperative Intersection Collision Avoidance System (CICAS)

focuses on preventing dangers at intersections by allowing traffic lights to transmit phase

and timing information to nearby vehicles. Each vehicle would then predict the likeli-

hood of violating the red light; drivers are notified only when needed.

In Japan, a standard for V2I communication denoted also as DSRC System was

issued in 2001. It was used in electronic toll collection, but the system was generalized to
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support various services [6]. With the great success that this system has known, various

ITS projects have been inaugurated to enhance V2I and V2V communications under

the umbrella of Japan’s national ITS Safety 2010 initiative. For example, the Advanced

Vehicle Safety Initiative (AVSI) aims at warning drivers against road dangers ahead and

preventing rear-end collisions. It also focuses on developing new techniques for position

recognition of neighboring vehicles using V2V communication based on the Carrier

Sense Multiple Access (CSMA) technology [6]. The Advanced Cruise-Assist Highway

System (AHS) initiative focuses on reducing traffic accidents, enhancing safety, and

improving transportation efficiency using RSUs.

In Europe, a 30 MHz bandwidth was allocated by the European Conference of

Postal and Telecommunications Administrations (CEPT) to support road safety services

[7]. Since then, several projects were initiated. Examples include COOPERS, CVIS,

SAFESPOT, and PReVENT. The Co-operative Systems for Intelligent Road Safety project

(COOPERS) focuses on developing innovative applications for cooperative traffic man-

agement using V2I communication. It makes use of Continuous Air interface for Long

and Medium distance (CALM) standards, aiming at supporting continuous communi-

cations between vehicles via employing various media and communication interfaces

[6]. The Co-operative Vehicle-Infrastructure Systems project (CVIS) aims at design-

ing, developing, and testing new technologies to enable V2V and V2I communications

following the CALM standards. It also makes use of the IEEE 802.11p interface, de-

noted as "Microwave 5 GHz" (M5) interface [6]. The SAFESPOT project focuses on

enhancing the field’s view of autonomous vehicles via developing sophisticated coop-

erative systems that are based on V2V and V2I communications. The communication

technology used in SAFESPOT is IEEE 802.11a/p [6]. Finally, the Preventive and Ac-

tive Safety Applications project (PReVENT) aims at developing, testing, and evaluat-

ing safety related applications using advanced sensing and communication devices in-

tegrated in OBUs. Within PReVENT, the Wireless Local Danger Warning subproject

(WILLWARN) is based on IEEE 802.11a/p and uses the Network on Wheels (NOW) [8]

communication platform.
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1.2 Motivations and Objectives

Infotainment applications are supported by WAVE in order to accelerate VANET’s

deployment. Most of these applications have rigid QoS requirements (i.e., bandwidth,

delay and throughput). Yet, meeting them is not straightforward, given the particular

characteristics of VANET (e.g., high mobility, sporadic connectivity, and short links life-

time). Thus, the objective of this dissertation is to design and evaluate new solutions to

ensure infotainment applications QoS. This is done at the network layer and the medium

access control (MAC) sublayer. On the one hand, we propose a new routing protocol

for infotainment applications that considers the end-to-end delay when forwarding data

packets. On the other hand, we design and implement new mechanisms for managing re-

sources, DSRC channels in particular, in order to enable service differentiation between

different infotainment applications to further enhance their QoS.

The first part of this thesis addresses the problem of routing in urban VANET con-

sidering infotainment applications QoS requirements (e.g., short delivery delay and low

packet loss ratio). Several routing strategies have been proposed to deal with this issue.

Among them, position-based routing (PBR) ought to be the most convenient as it ex-

hibits great resilience to network topology changes [9]. Various PBR schemes [10–21]

have been proposed in the literature. They are either reactive or proactive. Reactive

schemes aim at establishing routing paths whenever a data packet is to be transmitted

while proactive approaches build virtual infrastructures (e.g., clusters and backbones),

ahead of time, to relay messages. Despite their good performance, exiting schemes

sustain major shortcomings. On the one hand, reactive protocols only acquire local net-

work topology, making them prone to local maximum and data congestion problems (see

Chapter 4 for more details). Proactive protocols, on the other hand, suffer large control

message overhead when maintaining the infrastructure, which might lead to network

congestion.

The second part of this dissertation focuses on the problem of DSRC channel se-

lection to enhance the QoS of V2V infotainment applications. In the literature, several

schemes [22–34] have been proposed to help service providers, mainly vehicles, of info-
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tainment applications select service channels that guarantee the best QoS (e.g., through-

put). They can be of two types: allocation-based and prediction-based. The former uses

single or dual transceivers and requires vehicles to keep track of used service channels in

their 1-hop and 2-hop ranges. This information is then exchanged on an event-driven ba-

sis and is used to select the least congested channel. The latter uses multiple transceivers

to continuously monitor all channels and deploys prediction mechanisms to identify the

best channel to be used. Although they assure certain level of QoS, schemes in both

categories experience various limitations. On the one hand, channel occupancy informa-

tion may be obsolete due to collisions, rendering the existing allocation-based schemes

of limited value. On the other hand, prediction-based schemes suffer cross-channel in-

terferences and are cost-inefficient, due to the use of multiple transceivers, making them

infeasible, particularly during VANET’s initial deployment [35].

The final part of this thesis addresses the problem of accurately modeling the per-

formance of the enhanced distributed access channel (EDCA) mechanism for IEEE

802.11p. This problem shall take into account many criteria, including the saturation

condition, the backoff procedure, the internal/external collisions, and the transmission

opportunity (TXOP). Several models [36–42] have been proposed in the literature to an-

alyze the IEEE 802.11p EDCA performance. While most of them were designed for

safety applications, very few can be applied to non-safety applications. Yet, to the best

of our knowledge, none of the proposed models have considered all the aforementioned

factors.

1.3 Thesis Contributions and Organization

The aforementioned research topics have yielded several results that we have sub-

mitted or published as articles in international refereed journals and conferences. The

thesis consists of three contributions made from three scientific articles (two journal ar-

ticle and one conference paper) which we considered the most significant and complete

among the seven articles proposed. Four of these articles are already published (one

journal article and three conference papers), two conference papers are accepted, and

9
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one journal article is under review (minor revision).

To address the issue of routing in urban VANET, we proposes a novel routing pro-

tocol SCRP [43, 44]. It is a distributed geographic source routing scheme that takes

advantage of the network topology to select routing paths with low end-to-end delay

(E2ED). SCRP starts by building backbones over road segments considering vehicles’

speed and spatial distribution. These backbones are then connected at intersections via

bridge nodes that keep an up-to-date network topology while monitoring the delay to

incur for transmitting new data packets over road segments. Based on this information,

SCRP assigns weights to road segments; the ones with the lowest weights are selected

to construct routing paths.

We then describe the service channel selection mechanism, called Altruistic Service

Channel Selection Scheme (ASSCH), a hybrid approach that aims at improving V2V in-

fotainment applications performance without affecting the delivery of safety messages.

It is WAVE-compliant and has three phases: 1) collecting real-time information about

channels state via compelling vehicles to collaborate; 2) feeding the collected informa-

tion to a Markovian model that predicts the state of each channel in the near future; and

3) selecting the least congested/used channel.

Finally, we present a theoretical and simulation-based analysis of the IEEE 802.11p

EDCA mechanism. In this regard, two Markovian models are proposed, taking into

consideration various factors (e.g., saturation condition, the backoff procedure, the in-

ternal/external collisions). The first model describes the backoff procedure as well as

the contention phase of the different traffic classes. The second model [45] extends the

first one by considering TXOP, unexploited by IEEE 802.11p. Using both models, we

derive the probability of transmission and the probability of collision and we infer the

normalized throughput for each traffic class. Simulations were conducted to verify the

effectiveness of our analysis.
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1.4 Thesis Organization

The remaining of this dissertation is structured as follows. After introducing VANET

and its characteristics, we review the WAVE framework in chapter 2. We describe in de-

tails the different standards being developed for WAVE deployment in the United States,

including the IEEE 802.11p standard, the IEEE 1609.X standards family, and the SAE

J2735 Message set Dictionary. In Chapter 3, we outline the existing approaches in the

literature that address the aforementioned issues (i.e., routing in urban VANET, DSRC

channel allocation, and EDCA performance modeling). We then present SCRP in chap-

ter 4, describe ASSCH in chapter 5, and detail the models proposed for IEEE 802.11p

EDCA performance analysis in chapter 6. Finally, in chapter 7, we summarize the major

contributions of this dissertation, outline future research directions, and present the list

of articles produced during this thesis.
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CHAPTER 2

WIRELESS ACCESS FOR VEHICULAR ENVIRONMENT (WAVE)

The automotive industry has been working to develop WAVE framework, which will

be used to support both V2V and V2I. The effectiveness of this technology is highly

dependent on cooperative standards for interoperability [5]. In this chapter, we aim

at giving insights about the different technologies and standards being developed for

WAVE deployment. This includes the Dedicated Short Range Communication (DSRC)

technology; the IEEE 802.11p standard; IEEE 1609.2, 1609.3, 1609.4 standards for Se-

curity, Network Services, and Multichannel Operations; and the SAE J2735 Message Set

Dictionary. Although WAVE is of interest to several countries, implementation models

vary from one place to another. In the following sections, we shed light on the North

American version of WAVE.

The rest of the chapter is organized as follows. Section 2.1 gives an overview of

DSRC while Section 2.2 describes in details WAVE’s protocol stack. Section 2.3 con-

cludes the chapter.

2.1 DSRC Overview

In 1999, the U.S FCC has allocated 75 MHz of licensed spectrum in the 5.9 GHz

band (i.e., from 5.85 GHz to 5.925 GHz) for DSRC communication [5]. This spectrum

is divided into seven 10 MHz channels, as illustrated in Figure 2.1, and a 5 MHz guard

band. Channels 172 and 184 are reserved for public safety applications. Channel 178

is referred to as the Control Channel (CCH) and is exclusively dedicated to transmitting

Figure 2.1: DSRC channels
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safety and control messages. The remaining channels are referred to as Service Channels

(SCHs) and are used for transmitting data packets of infotainment applications. Table 2.I

[5, 46] shows DSRC characteristics in USA, Japan, and Europe.

Table 2.I: DSRC characteristics in USA, Japan, and Europe

Features USA Japan Europe

Communication Half-duplex
Half-duplex (OBU)

full-duplex (RSU)
Half-duplex

Band 75 MHz 80 MHz 30 MHz

Channels 7 Downlink: 7, Uplink: 7 4

Transmission range 1000 m 30 m 15-20 m

Data Rate 3-27 Mbps 1, 4 Mbps 250-500 Kbps

Radio frequency 5.9 GHz 5.8 GHz 5.8 GHz

Channel separation 10 MHz 5 MHz 5 MHz

The primary motivation behind developing DSRC is to enable collision prevention

applications. Indeed, the U.S Department of Transportation (DOT) has estimated that

V2V communications based on DSRC can address up to 82% of all crashes in the United

States involving unimpaired drivers, potentially saving thousands of lives and billions of

dollars [5]. The reason is twofold: 1) DSRC is based on short-range (i.e., hundreds of

meters) two-way Line-of-Sight (LoS) communication with sufficient bandwidth which is

significantly cheap compared to other technologies such as cellular, WiMax or Satellite

[35]; and 2) DSRC adopts WiFi standards, making operations related to V2V and V2I

easier to integrate and implement.

DSRC can also be pivotal for many other applications beyond collision prevention.

Most of these involve communication to and from RSUs [5]. For instance, DSRC can

be used to assist navigation, make electronic payments (e.g., tolls, parking), reduce fuel

consumption (i.e., reducing therefore CO2 emissions), as well as collecting real-time

traffic statistics and disseminating them. It can also be used for entertainment purposes

such as Internet access, media sharing, and online gaming.
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2.2 WAVE Standards Suite

Figure 2.2 [5] illustrates WAVE protocol stack. The physical and MAC layers are

based on the IEEE 802.11p standard, which is a modified version of IEEE 802.11. At

the upper layers, WAVE employs a suite of standards defined by the IEEE 1609 Working

Group to enable safety applications: 1609.4 for multichannel operations, 1609.3 for net-

work services (i.e., including WAVE Short Message Protocol (WSMP)), and 1609.2 for

security services. Non-safety applications, on the other hand, use IPv6 and the TCP/UDP

protocols in the network and transport layers, respectively. In the next subsections, we

examine in more details the different standards, working from bottom to top.

Figure 2.2: WAVE protocol stack
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2.2.1 Physical Layer

WAVE’s physical layer is based on the IEEE 802.11a standard. It uses Orthogonal

Frequency Division Multiplexing (OFDM) modulation to provide different data rates

(i.e., from 3 to 27 Mbps) and has two modules.

2.2.1.1 Physical Layer Convergence Procedure (PLCP)

At the transmitter, PLCP processes the bytes in a MAC frame to be transformed into

OFDM symbols for transmission over the air by Physical Medium Dependent (PMD)

module [5]. PLCP adds the physical layer overhead to the MAC frame to create a Physi-

cal Protocol Data Unit (PPDU), as illustrated in Figure 2.3 [47]. The Preamble is used to

synchronize the signal at the receiver. while the SIGNAL field contains the data rate and

the frame length, acquired from the MAC layer. The SERVICE and TAIL fields facilitate

bit scrambling whereas the PAD field enures that the final OFDM symbol is properly

encoded. The Physical Layer Service Data Unit (PSDU) field contains the MAC frame.

At the receiver, PLCP performs the inverse function to extract the MAC frame from

the PPDU. It also provides the Received Signal Strength Indication (RSSI) to the MAC

layer.

Figure 2.3: PPDU format
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2.2.1.2 Physical Medium Dependent (PMD) Function

When PMD receives PPDU from PLCP, it performs OFDM modulation and trans-

mits PPDU over the air. At the receiver, PMD performs demodulation and passes the

received PPDU to PLCP along with RSSI. Note that, unlike IEEE 802.11a, DSRC uses

10 MHz channels to account for delay and Doppler spreads, likely to be encountered in

the vehicular environment [48].

2.2.2 MAC Sublayer

Like IEEE 802.11, IEEE 802.11p uses Carrier Sense Multiple Access/Collision Avoid-

ance (CSMA/CA) as the medium access mechanism. In addition, IEEE 802.11p utilizes

the Enhanced Distributed Channel Access (EDCA) mechanism to provide service dif-

ferentiation. In this paradigm, four access categories (ACs) are defined (i.e., AC_BK,

AC_BE, AC_VI, and AC_VO), each having its own parameters (i.e., Arbitration Inter-

Frame Space (AIFS), minimum contention window (CWmin) and maximum contention

window (CWmax)) with AC_VO having the highest priority, as show in Table 2.II. aCWmin

and aCWmax are set to 15 and 1023, respectively [47].

Table 2.II: EDCA Parameter set
AC CWmin CWmax AIFSN TXOP

AC_BK aCWmin aCWmax 9 0

AC_BE aCWmin aCWmax 6 0

AC_VI aCWmin+1
2 −1 aCWmin 3 0

AC_VO aCWmin+1
4 −1 aCWmin+1

2 −1 2 0

Each AC, with a frame to transmit, senses the channel first. If the channel is idle

and stays idle for at least AIFS, AC starts transmitting its frame. If the channel is busy,

AC invokes the backoff procedure by choosing a number of idle time slots (AIFSN) to

wait before attempting to transmit its frame. The countdown begins when the channel

becomes idle, is interrupted during any non-idle interval, and resumes when the medium

stays idle for at least AIFS [5]. Once AC transmits its unicast frame, it waits for an
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acknowledgement (ACK) from the recipient. If ACK is not received within a timeout

interval, AC retransmits the frame after invoking the backoff process. A frame can be

retransmitted as long as the retransmission limit is not yet reached. In case of unsuccess-

ful retransmission given that the retransmission limit was attained, the frame is dropped.

Note that each AC is allowed to send only one frame per channel access, i.e., transmis-

sion opportunity (TXOP) of each AC is set to 0.

The channel router module, illustrated in the top of Figure 2.4 [35], inserts data

frames into ACs of the appropriate channel based on the channel identifier and the prior-

ity fields, contained in their headers. Data frames will then be dequeued and scheduled

for external contention depending on their AC indices. The channel selector module,

depicted in the bottom of Figure 2.4, is responsible for carrying out multiple decisions

such as when to monitor a specific channel and for how long.

Besides, IEEE 802.11p introduces some enhancements to the traditional IEEE 802.11

standard in order to cope with VANET high mobility. Indeed, IEEE 802.11p defines a

new type of communication, called Outside Context of Basic Service Set (OCB), partic-

ularly for V2V, where exchanging data frames does not require neither authentication

nor association. To distinguish frames sent in OCB mode, IEEE 802.11p sets the value

of BSSID field in the frame header to 0xFFFFFF, also known as the wildcard value.

A receiver with OCB mode enabled will pass up the stack any data frame that has the

wildcard value as BSSID and will ignore any data frame with different BSSID. Data

frames sent in OCB mode are transmitted between nodes that do not belong to any Basic

Service Set (BSS). IEEE 802.11p defines the context of having such exchange as WAVE

BSS (WBSS), which will be investigated in chapter 5. In addition, IEEE 802.11p intro-

duces a new management frame, labeled Timing Advertisement (TA), which can be used

to distribute time synchronization information [49] in the absence of GPS devices.

2.2.3 IEEE 1609.4

IEEE 1609.4 defines a management extension to IEEE 802.11p that enables DSRC

devices to switch between different channels (i.e., CCH and SCHs). Under this exten-

sion, IEEE 1609.4 maintains a separate logical instance of the IEEE 802.11p MAC,

17



2.2. WAVE STANDARDS SUITE

Figure 2.4: IEEE 802.11p MAC architecture

including EDCA and state variables, for each channel on which it operates [5].

WAVE defines three types of devices: single transceiver (i.e., can only be on one

channel at a time), dual transceivers (i.e., one is dedicated to CCH while the other

switches between SCHs), and multi-transceivers (i.e., having a transceiver for each chan-

nel). The goal of IEEE 1609.4 is to specify a mechanism that allows all WAVE devices

to communicate. In this regard, IEEE 1609.4 defines two channel access modes: 1)

continuous, where CCH and SCHs are constantly monitored (i.e., the case of dual and

multi-transceiver devices); and 2) alternating, which uses Coordinated Universal Time

(UTC), obtained from GPS signals, to define a time division concept as illustrated in

Figure 2.5 [5]. Indeed, each second is divided into ten Synchronization Intervals (SIs).

Each SI consists of one Control Channel Interval (CCI) followed by one Service Channel

Interval (SCI). Guard Intervals (GIs) are inserted at the end of each CCI/SCI to account

for synchronization imprecisions [49]. When using the alternating mode, vehicles shall
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monitor CCH during CCI to not miss safety messages, and can switch to one of SCHs

during SCI.

Figure 2.5: Alternating access mode: CCI followed by SCI

2.2.4 IEEE 1609.3

IEEE 1609.3 defines a new protocol, called WAVE Short Message Protocol (WSMP),

considered efficient for 1-hop transmission of safety messages since it avoids the packet

overhead associated with conventional internet protocols. Packets sent using WSMP are

called WAVE Short Messages (WSMs). The minimum WSM overhead is 5 bytes, and

will rarely exceed 20 bytes, options and extensions included. This makes WSMP of

great value given WAVE’s pivotal concern (i.e., channel congestion).

2.2.4.1 Wave Short Message

WSM format is depicted in Figure 2.6 [5]. It consists of variable-length header

followed by variable-length payload and includes both mandatory and optional fields.

The WSM Version field indicates the version number associated with the current

1609.3 standard, which is 3 [50].The Provider Service Identifier (PSID) field plays a

similar role as a TCP/UDP port. It identifies the service that WSM payload is associ-

ated with. For bandwidth efficiency, PSID is defined in variable-length format. Leading

bits are used to indicate the number of bytes in PSID. For instance, a leading bit of 0
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Figure 2.6: WSM format

indicates that PSID is 1-byte long while a leading bit of 01, 011, and 0111 indicate that

PSID is 2-bytes, 3-bytes, and 4-bytes long, respectively.

The Extension Fields are optional fields used for future extensibility. IEEE 1609.3

defines 4 extension fields: channel number, data rate, transmit power used, and channel

load. Each one of these extensions has three attributes: identifier (1-byte), length (1-

bytes), and content (1-byte) [50]. The WSM WAVE Element ID field is used to identify

extensions contained in WSM header [50] while the Length field indicates the length of

the payload. The range of values for WSM length is 1 to WsmMaxLength−h, where h

is the length of WSM header. Finally, WSM Data field contains the higher layer infor-

mation being transferred.

2.2.4.2 Wave Service Advertisement (WSA)

IEEE 1609.3 defines another type of messages, labeled WSA. It contains information

regarding services to be offered by WAVE devices. A service can be almost any exchange

of information that provides value to a vehicle’s occupants [5]. Traffic alerts, tolling,

navigation, parking availability, and Internet access are few examples among many. Most

services are provided by RSUs, but vehicles could also cater services. Keep in mind that

safety messages are not considered as a service and therefore are not announced via

WSA.
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Figure 2.7: WSA format

WSAs are broadcasted over CCH. This is to make all vehicles in an area aware of the

existing services. These services can be offered on one or more SCHs. Indeed, a WSA-

sender, labeled provider, may offer up to 32 services, which can all be advertised with a

single WSA. These services can be supported by IPv6 or WSMP. When hearing WSAs,

vehicles interested in the advertised services, labeled users, switch to the appropriate

SCHs at the beginning of SCI.

The format of WSA message is shown in Figure 2.7 [47]. The WSA Version field

shall be 3 for the current 1609.3 standard [50]. The Header Option Indicator field in-

dicates which optional fields (i.e., the shaded fields) are present in WSA. A value of 1

in the ith bit implies that the ith optional field is present. The WSA Identifier field is an

unsigned integer, between 0 and 15, used to uniquely identify each WSA. The Content

Count field is used by the recipient to determine whether the received WSA is a repeat

of a previously received WSA (i.e., case of persistent WBSS, defined in Chapter 5).

The WAVE Information Element Extension field has the same format as extension fields

in WSM (i.e., identifier, length, and content). It defines five extensions: Repeat Rate,

indicating the number of times WSA is transmitted per 5s; transmit power used, indi-

cating the power with which the WSA frame was transmitted; 2DLocation; 3DLocation,

considering elevation; and Advertiser Identifier.

The Service Info Segment field describes the services being offered (up to 32 in-

stances). Each service instance has ten fields: 1) PSID; 2) Channel Index: indicates SCH

where the advertised service will be offered; 3) Service Info Option Indicator: indicates

the presence of Service Info WAVE Information Element Extension field if set to 1; 4)
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Service Info WAVE Information Element Extension: provides supplementary informa-

tion about the service; 5) IPv6 Address; 6) Service Port; 7) Provider MAC Address; 8)

Received Channel Power Indicator (RCPI) Threshold: indicates the recommended min-

imum received WSA signal value below which the service should be ignored; 9) WSA

Count Threshold: indicates the recommended minimum number of received WSAs be-

low which the service should be ignored; and 10) WSA Count Threshold interval: indi-

cated the time interval over which received WSAs are counted. It is optionally used with

WSA count threshold.

The Channel Info Segment field provides information regarding channels on which

services are being offered. There can be up to 32 instances of channel info, each hav-

ing seven fields: 1) Operating Class: allows the channel number to uniquely identify

a specific channel in the context of a country; 2) Channel Number; 3) Transmit Power

Level; 4) Adaptable: indicates whether Data Rate is a boundary or fixed value; 5) Data

Rate; 6) Channel Info Option Indicator: indicates the presence of Channel Info WAVE

Information Element Extension field if set to 1; and 7) Channel Info WAVE Informa-

tion Element Extension, which has two fields: a) EDCA Parameter Set; and b) Channel

Access, indicating the time slots during which the provider will be on the associated

channel.

Finally, the WAVE Routing Advertisement (WRA) field is used when the provider

offers a service that utilizes IPv6. It provides information to users about how to connect

to the Internet. Each WSA includes one WRA at most. WRA has the following fields:

1) Router Lifetime: indicates the duration during which the Default Gateway is valid;

2) IP Prefix: indicates the IPv6 subnet prefix; 3) Prefix Length; 4) Default Gateway;

5) Primary Domain Name System (DNS); and 6) WRA optional WAVE Information

Element Extension, which contains secondary DNS and Gateway MAC Address fields.

2.2.5 IEEE 1609.2

IEEE 1609.2 uses certificates to authenticate messages. These certificates include

information such as the public key of the sender, the permissions associated with that

public key, the identifier of the issuer, information to determine whether or not the cer-
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tificate has been revoked, the region within which the certificate is valid (i.e., mainly

for RSUs), the validity period, and the services that the certificate holder is allowed to

provide [51]. Vehicles will typically be reloaded with new certificates infrequently (i.e.,

each year). These certificates can be used for a limited time (e.g., 5 to 10 minutes)

[5], so that vehicles’ movements cannot be easily tracked using their safety messages

broadcast over long intervals [5]. For bandwidth efficiency purposes, once certificates

are exchanged between vehicles, only certificate digests can be appended to WSMs.

Besides, IEEE 1609.2 defines an encryption algorithm that uses a combination of

symmetric and asymmetric cryptography. The symmetric algorithm is Advanced En-

cryption Standard (AES) with 128-bit keys in Counter CBC-MIC mode while Elliptic

Curve Integrated Encryption Scheme (ECIES) is the asymmetric algorithm [52]. The

sender will encrypt the message with a symmetric key, and then will encrypt the sym-

metric key using the asymmetric algorithm [5]. The receiver will decrypt the symmetric

key first then the message.

2.2.6 SAE J2735

This SAE standard specifies a list of message types that are to be used by VANET

applications [53]. Each message is defined as a collection of data structures, called data

elements and data frames. A data element is the most basic structure in SAE J2735

standard. A data frame, on the other hand, is a complex data structure, composed of one

or more data elements or other data frames [53]. SAE J2735 standard defines the syntax

(i.e., length and format) and semantics of each data element and data frame.

One of the most important messages in SAE J2735 standard is the Basic Safety

Message (BSM). It conveys vehicle state information necessary to support V2V safety

applications. It has also the flexibility to convey additional information, as required by

the application [5]. BSM has two parts. Part I includes critical state information that

must be sent in every BSM (e.g., position, dynamics, direction, system status, and size).

Part II is optional and can be tailored to applications’ needs.
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2.3 Chapter Summary

WAVE has the capacity to support various types of applications, including infotain-

ment applications that offer new business opportunities. WAVE relies on several stan-

dards (e.g. DSRC, IEEE 802.11p, IEEE 1609.4, IEEE 1609.3, and IEEE 1609.2), and

basic interoperability tests among independent WAVE implementations are encouraging

[54]. Still, a number of challenges remain. Among them, an efficient mechanism to

select the best service channel to be used by service providers (i.e., mainly vehicles) is

needed. This is addressed in chapter 5. In addition, the fact that IEEE 802.11p EDCA

sets TXOP of all ACs to 0 deprives infotainment applications, especially those using

high priority ACs (i.e., AC_VO, AC_VI), from efficiently using service channels. This

problem is tackled in chapter 6. Finally, the harmonization of standards between the

United States and other regions of the world shall be performed to promote fast market

penetration.
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CHAPTER 3

RELATED WORK

Many schemes have been proposed to address the problem of QoS assurance in the

context of vehicular ad hoc networks. They are divided into networking layer approaches

and MAC layer techniques. The first part of this chapter describes the routing challenges

facing VANET in urban settings and presents the different routing protocols that have

been designed to tackle those issues. Afterwards, we describe how data packets of V2V

infotainment applications are transmitted following the WAVE framework and review

existing mechanisms that enable providers selecting the least congested service channels.

Finally, we outline the distinctive factors that shall be considered when analyzing the

performance of the IEEE 802.11p EDCA mechanism and surveys the different models

proposed in this regard.

3.1 Routing in Urban VANET

The urban environment poses a series of technical challenges to VANET’s routing.

Estimating the exact number of vehicles on road segments is complicated since traffic

density fluctuates considerably from downtown to suburbs and from day to night. In

addition, vehicles’ spatial distribution over road segments can be uneven as vehicles tend

to pile up at intersections, leading to sporadic connectivity. Furthermore, the presence of

obstacles (e.g., buildings, trees, and large vehicles) blocks signal propagation between

neighboring vehicles, making of intersections the ultimate point for routing decisions. To

address these issues, extensive research has been carried out. The following subsection

reviews some of the well known routing protocols in the literature designed for VANET

in urban settings.
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3.1.1 Node-Centric Routing Protocols

The first attempt to solve the issue of routing in urban VANET was the deployment of

node-centric routing protocols designed mainly for mobile ad hoc networks (MANETs).

MANET is a self-configuring type of wireless networks in which communication be-

tween mobile nodes (i.e., low to moderate mobility) can be carried out without reliance

on centralized resources or fixed infrastructure. A well known MANET routing protocol

is Ad-hoc On Demand Distance Vector (AODV) [55]. AODV creates routes between

nodes only when they are requested by source nodes. Indeed, Route Request (RREQ)

packets are flooded through the network in order to create routing paths to destination

nodes. RREQ contains the source IP address, the source node’s sequence number, the

destination IP address, and the destination node’s sequence number. Sequence numbers

are used to maintain the consistency of the routing information (i.e., routing tables).

Routes remain active as long as source nodes transmit periodic "Hello" messages. In

case "Hello" messages are no more received, routes time out and are deleted from the

routing tables.

Still, due to nodes’ high mobility, MANET protocols seem to be unsuitable for

VANET. In fact, the experimental study presented in [56] showed that AODV was un-

able to maintain long routes in VANET and suffered large packet losses along with high

end-to-end delay. Consequently, MANET protocols had to be customized to become

VANET-compliant. Namboodiri et al. [57] proposed PRAODV, which uses vehicles’

speed and location information to predict links’ lifetime and constructs alternative routes

before links expire. Since PRAODV selects the shortest alternative path, which may not

always be the best solution, a modified version called PRAODV-M was also presented

in [57] in order to select the path with the maximum predicted lifetime. Ooi et al. [58],

on the other hand, studied AODV’s RREQ flooding and concluded that it can definitely

cause network congestion in VANET. Subsequently, they proposed that RREQ messages

can only be forwarded within a limited zone, called Zone of Relevance (ZOR) (i.e., an

example of ZOR is the vicinity of a car crash).

Despite these modifications, several studies (e.g. [11, 59]) have shown that node-
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centric schemes still have poor performance in various VANET settings. As a result,

they are no longer used. Several routing strategies have been developed specifically for

the adverse environment of VANET. Among them, position-based routing (PBR) [9]

ought to be the most convenient routing approach for urban VANET as it exhibits great

resilience to network topology. It requires each vehicle to periodically broadcast its

position via beacon messages. This is feasible nowadays as most vehicles are equipped

with GPS devices. To attest for PBR convenience, projects such as CarTALK2000 [60]

and NOW [8] have already deployed it.

3.1.2 Position-based Routing Protocols

Various position-based routing protocols have been designed to address the routing

issues in urban VANET. One of the well-known schemes is Greedy Perimeter Stateless

Routing (GPSR) [10]. It combines greedy forwarding, by sending packets to the closest

neighbor to the destination, with perimeter routing, a sequence of edges traversed using

the right hand rule in order to go around void regions. Despite its good performance in

highway scenarios, studies such as [12] and [13] have shown that GPSR suffers from

sever performance degradation in urban environments. This is because: 1) direct com-

munication between nodes may not be possible due to obstacles (e.g., buildings); and 2)

frequent topology changes may induce routing loops. This implies that packets might

get forwarded in the wrong direction, yielding high delivery delay.

To address these shortcomings, several anchor-based protocols have been proposed.

Lochert et al. proposed Geographic Source Routing (GSR) [11] and Greedy Perimeter

Coordinator Routing (GPCR) [12]. GSR combines static street maps with Dijkstra’s

algorithm to compute the shortest distance path, expressed as a list of intersections, be-

tween source and destination. Like GSR, GPCR also computes the shortest distance path

between source and destination. However, instead of using static street maps like GSR,

GPCR only exploits local information obtained via beacon messages. Indeed, GPCR

always forwards packets to nodes at intersections, called coordinators, responsible for

making routing decisions (i.e., shortest path to destination) since they have better net-

work visibility. Still, due to their lack of traffic-awareness, both GSR and GPCR are
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highly susceptible to network fragmentation as the distribution of vehicles on road seg-

ments is uneven.

Subsequently, traffic-aware routing schemes have emerged. Lui et al. [13] proposed

Anchor-based Street and Traffic Aware Routing (A-STAR) protocol. It combines street

maps with statically or dynamically rated maps. These maps show the number of city

buses going through each street statically or based on the current traffic state, and are

used to identify the sequence of intersections, labeled anchors, through which packets

might be forwarded. In case an anchor gets disconnected, A-STAR marks it as out of

service and computes a new anchor path. Naumov et al. [14] proposed Connectivity-

Aware Routing (CAR) which seeks to find connected paths between source and destina-

tion nodes. CAR uses beacon messages to adapt to changes in traffic conditions (e.g.,

number of neighbors, speed). These beacon messages include also guards, geographic

markers, which are used to keep track of source and destination nodes’ movements. A

routing path, defined as a sequence of intersections received in RREQ packet, is selected

by the destination considering real-time traffic information. Similarly, Jerbi et al. [15]

proposed Greedy Traffic Aware Routing Protocol (GyTAR), a greedy-based protocol

that uses real time traffic, collected via beacons and control packets, to select the rout-

ing path between source and destination. Instead of computing the entire routing path,

GyTAR makes a routing decision whenever a data packet reaches an intersection. The

road segment that has the best balance between road density and distance to destination

is selected to forward data packets.

Mobility-centric data dissemination for VANET (MDDV) [16] and Vehicle-assisted

data delivery in VANET (VADD) [17] use opportunistic forwarding to transport data

packets from source to destination. MDDV considers road traffic conditions as well as

the number of lanes on each road segment to select the best road-based trajectory to

forward data. VADD uses historic traffic flow data to forward data packets over road

segments with the lowest delivery delay. Both protocols use carry-and-forward when

no vehicle can be found along the forwarding trajectory. This implies that data packets

are stored until a forwarding opportunity is possible (i.e., finding a suitable forwarder).

Intersection-based Geographical Routing Protocol (IGRP) [18] deploys location servers
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to store local topology information and construct routes with high connectivity proba-

bility and satisfactory QoS constraints (i.e., delay, number of hops, and Bit Error Rate

(BER)). Likewise, Intersection-based Connectivity Aware Routing (iCAR) [19] com-

bines connectivity information with average communication delay to enable better rout-

ing decisions. It avoids road segments with high vehicular density and high data volume

and uses carry-and-forward in low vehicular density. Finally, Backbone-Assisted Hop

Greedy Routing (BAHG) [20] relies on connectivity information, collected via backbone

nodes located at road segments and intersections, to select routing paths with minimum

number of hops, i.e., intermediate junctions, in order to reduce the end-to-end delay. An

update procedure was also proposed to deal efficiently with destination mobility.

3.1.3 Limitation of Existing Routing Protocols

Most of the aforementioned protocols only acquire local network topology via bea-

con messages. Thus, they are exposed to two main issues: 1) local maximum problem:

a situation where no other connected road segment is closer to the destination than the

current one; and 2) data congestion: forwarding data packets, originated from different

source-destination pairs, over the same routing path.

Figure 3.1 illustrates the local maximum problem. A, B, C, G, E, and F are junctions

and data packets are to be sent from source node S to destination node D. Most existing

schemes will forward data packets through the path A−B−C since road segments SA,B

and SB,C are highly connected. But once at intersection C, packets encounter the local

maximum problem since C and F are disconnected. This implies that packets will be

either carried to junction F or forwarded back to intersection B in order to select another

road segment, escalating therefore the end-to-end delay. With an up-to-date knowledge

of network topology, packets would have been forwarded over the path A-G-E-F instead.

Figure 3.2 shows a scenario where the path F-C-B-A is exploited by pairs (S1,D1)

and (S2,D2). This incurs large queuing delay at intermediate nodes, thus further increas-

ing the end-to-end delay. With the load balancing capability, (S2,D2) packets can be

transmitted over the path F-E-G-A while (S1,D1) packets are forwarded over the path

F-C-B-A.
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Given these shortcomings, we propose SCRP (see Chapter 4) that provides a solution

to the aforementioned problems through:

1. Creating backbones over road segments and connecting them via bridge nodes at

intersections. These nodes collect connectivity and delay information and assign

weights to road segments. Packets are forwarded over road segments with low

end-to-end delay, avoiding therefore the local maximum problem.

2. Identifying various routing paths between source and destination to be used for

load balancing, reducing therefore data congestion.

3.2 DSRC Service Channel Selection

WAVE allows for data packets of infotainment applications to be transmitted within

WAVE Basic Service Set (WBSS). It mandates that vehicles shall monitor received WSA

messages to keep track of used SCHs in their 1-hop range. This way, they can select the

least congested (i.e., used) SCH to establish their WBSS. Yet, this mechanism suffers

from two major shortcomings: 1) vehicles might end-up using obsolete SCHs informa-

tion due to WSA collisions; and 2) vehicles lack SCHs information within 2-hop range,

yielding poor service quality as two providers within carrier sense range may select the

same SCH to setup their WBSS. Several schemes have been proposed to help mitigating

these issues. They are of two types: allocation-based and prediction-based.

3.2.1 Allocation-based Schemes

Allocation-based schemes require vehicles to maintain channel occupancy tables

(OCTs), where the state of each SCH (i.e., free or busy) is stored. To disseminate SCH

state information, OCTs are piggybacked into control messages (i.e., WSA [22, 23] or

RTS/CTS [24, 25]) or data packets (i.e., [26, 27]).

Campolo et al [22] proposed CRaSCH, a cooperative reservation scheme for service

channels. It requires providers to maintain SCH status vectors, containing information

about SCHs status occupancy. Indeed, CRaSCH appends a new field to WSA, called

ChannelGossip, indicating the current occupancy status of every SCH (i.e., 2-hop status
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information). Whenever WSA messages are received, CRaSCH performs the "OR" op-

eration between the values contained in the ChannelGossip field of the received WSAs

and the SCH status vectors. This way, each provider is able to build its personal view of

the reserved SCHs in both 1-hop and 2-hop ranges, and can select the least used SCH. In

case a vehicle receives two different WSAs reserving the same SCH, a channel collision

warning (CCW) frame is broadcasted, urging the provider of the last received WSA to

choose another SCH.

Similarly, Wang et al. [23] proposed Minimum Duration Counter (MDC), a scheme

that maintains SCH status tables containing two fields: SCH number and duration counter.

The latter designates the corresponding SCH usage duration (i.e., estimated time for each

data transmission). Providers make use of these tables to select the least used service

channels. Once selected, providers update their respective tables and piggyback them

into WSAs in order to disseminate updated SCH information.

Asynchronous Multi-Channel Protocol (AMCP) [24] and Asynchronous Multi-Channel

MAC (AMCMAC) [25] use the RTS/CTS mechanism to negotiate the use of a common

available data channel. They also inform neighboring nodes to set these channels as un-

available for the entire data transmission duration. Indeed, in AMCP, a provider chooses

a free channel from its OCT and includes it into RTS. When receiving RTS, a user checks

if that channel is marked as free in its own OCT. If so, it broadcasts a CTS containing

the received SCH; otherwise, it broadcasts a rejecting CTS and the whole process is re-

peated. To make the handshake process shorter, each provider in AMCMAC appends

the list of all available channels to RTS. A user compares the list of received available

channels with its own OCT. If a match is found, the user replies with CTS containing the

SCH in common.

Distributed Reliable Multi-channel MAC (DRMMAC) [26] and Dedicated Multi-

channel MAC (DMMAC) [27] were designed to give every vehicle in the network the

chance to conduct collision-free and delay bounded transmission for safety messages. In

fact, CCI is divided into an Adaptive Broadcast Frame (ABF) and a Contention-based

Reservation Period (CRP). ABF consists of time slots that can be dynamically reserved

for collision-free delivery of safety and control messages. During CRP, vehicles nego-
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tiate and reserve SCHs to transmit non-safety messages. To enable vehicles to reserve

a slot in ABF, both schemes use a Time Division Multiple Access (TDMA) approach.

Indeed, Frame Information (FI) is attached to every transmitted packet over CCH, in-

cluding safety messages. FI consists of vehicle’s identifier as well as the states of all

slots in its 1-hop range. Providers use FI in order to select free slots (i.e., not used by

any other vehicle in their vicinities) to transmit their frames.

Finally, Su et al. [28] proposed a TDMA cluster-based multichannel MAC that is

made of three protocols: cluster configuration, intercluster communication and intra-

cluster communication. In the cluster configuration protocol, vehicles moving in the

same direction are grouped into clusters and Cluster Heads (CHs) are elected among

them. The intercluster communication protocol governs the exchange of safety and non-

safety messages between different clusters over separate channels. Lastly, the intra-

cluster communication protocol uses a TDMA scheme to enable CHs to collect/deliver

safety messages from/to cluster members. These CHs are also responsible for assigning

data channels to their respective cluster members, allowing them to transmit non-safety

messages.

3.2.2 Prediction-based Schemes

Prediction-based schemes require vehicles to be equipped with multiple transceivers,

i.e., one for each channel, to monitor all channels continuously. They deploy prediction

mechanisms to identify channels that are likely to be available in the near future.

Inage et al. [29] created databases to store and provide information regarding geo-

graphical and temporal channels availability. Based on this information, the best chan-

nel, defined as the channel to be available the longest possible in the movement direction

of the vehicle, is selected. Similarly, Chen et al. [30] created a spectrum utilization

database that keeps track of channels’ usage (i.e., DSRC channels, WiFi, and TV white

space) according to their temporal and spatial accessibility. The spectrum utilization

database takes cloud-sourced channel measurement (i.e., congestion level) from users as

input and computes the average values of channel utilization mapped to all combinations

of discretized time of day and location. The least congested channel is then selected to be
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used. Bozidar et al. [31] also created a database to dynamically select the best channel

along with the best transmission rate. The database has two parameters: 1) the number

of time periods during which packets were transmitted to a user on a specific channel

using a specific rate; and 2) the number of successfully transmitted packets to the same

user over the same channel and using the same data rate. The best (channel, rate) pair is

then selected.

Brahmi et al. [32] proposed a cluster-based approach for channel selection. Cluster

members listen to all channels and report observations to their respective CHs. After ag-

gregating all the observations, CHs decide on the state of each channel (i.e., free or busy)

in the current time slot and estimate their state in the subsequent time slot using a hid-

den markov model (HMM). Available channels are assigned by CHs to cluster members

based on the type of messages, i.e., safety or non-safety, to be transmitted. Likewise,

Mapar et al. [33] proposed a framework that enables vehicles, labeled Secondary Users

(SUs), to access TV white space in an opportunistic manner without causing interfer-

ences to stationary roadside TV users, labeled Primary Users (PUs). It monitors the

fluctuation of Received Signal Strength (RSS) in order to determine whether a channel

is currently free or occupied by either PU or SU. It then uses a hidden Markov model

to figure out the channels that are likely to be available in the near future. The least

congested SCH is selected to be used. Finally, Boyaci et al. [34] proposed a cross-layer

predictive approach to select the least congested service channel. It consists of collecting

energy data at the physical layer and feeding them to the MAC layer. This latter com-

bines the received data with information retrieved from a database containing channel

usage history in order to predict the state of SCHs in the future. The least used channel

among the ones to be available is chosen.

3.2.3 Limitation of Existing SCH Selection Schemes

Despite their adequate performance, both allocation-based and prediction-based schemes

have different limitations. On the one hand, only one busy state is considered, imply-

ing that service differentiation between various traffic classes is not supported. Besides,

relying only on control messages (i.e., WSA, RTS/CTS) to disseminate SCHs informa-
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tion may lead to inaccurate decisions, especially in a dense vehicular network, where

control messages may suffer from multiple collisions. This will make the information in

OCTs obsolete, rendering therefore the allocation-based schemes of limited value. On

the other hand, the use of multiple transceivers implies that prediction-based schemes are

cost-ineffective (i.e., according to the US Department of Transportation, one transceiver

in 2017 costs $335 for new cars and $233 as aftermarket equipment [? ]) and can suffer

from cross-channel interferences [35].

These observations have motivated us to propose ASSCH (see Chapter 5), a novel

channel selection mechanism that compels vehicles to cooperate in order to identify the

least congested service channel to be used. It is WAVE-compliant and it requires vehicles

to be equipped with single transceivers. It is based on a stochastic modeling to capture

the different features impacting the service channel’s choice (e.g. number of providers,

service priority, and channel occupancy time) and exploits beacon messages to exchange

SCHs state information. The rational behind choosing beacon messages is twofold: 1)

they are transmitted periodically, allowing for SCHs state information to be updated

regularly instead of event-driven (i.e., receipt of WSA); and 2) they do not generate any

additional overhead as they are a key component of VANET.

3.3 IEEE 802.11p EDCA Performance Analysis

To accurately analyze the performance of the IEEE 802.11p EDCA mechanism for

infotainment applications, we need to consider six factors: 1) Number of Access Cat-

egories considered (NAC): a model is considered pertinent if all the access categories

(ACs) of the EDCA mechanism (i.e., AC_BK, AC_BE, AC_VI, and AC_VO) are taken

into consideration; 2) AC queue condition (QC): an AC queue can be either saturated

or non-saturated. The former implies that AC has always data frames to send while

the latter indicates otherwise; 3) The backoff procedure (BP): defined as the mechanism

used by ACs to timely differ their transmissions when sensing a busy channel. It largely

depends on the parameters of each AC (see Section 2.2.2); 4) The backoff counter freez-

ing (BCF): when the channel is sensed busy, ACs freeze their backoff countdown, and
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resume decrementing it once the channel is sensed idle; 5) The busy channel at zero

(BCZ): when the countdown reaches 0, ACs can transmit their frames only if the chan-

nel is sensed idle. Otherwise, ACs invoke the backoff procedure once again; and 6)

Internal collisions (IC): occur when two or more ACs within the same station initiate

simultaneous packet transmissions. This is solved by doubling the contention window

for all involved ACs and then invoking the backoff procedure. This way, ACs with high

priority are always the first to access the channel.

In the literature, few models were proposed to analyze the performance of IEEE

802.11p EDCA. While most of them were designed for safety applications [36–38], only

two (i.e., [39, 40]) can be applied to non-safety applications. Eichler et al. [36] evalu-

ated the performance of the EDCA mechanism through simulations while considering

the collision probability, throughput, and delay. However, no mathematical analysis was

provided for the backoff phase. Gallardo et al. [37], proposed a Markovian model to an-

alyze the performance of EDCA over CCH. The model is made of three Markov chains,

each representing one AC, which are used to compute throughput, frame error rate, and

delay. Still, the proposed model does not consider the busy channel at zero and was not

verified through simulations. Likewise, Kaabi et al. [38] presented an analytical model

to examine the performance of EDCA over CCH. The model contains one Markov chain

representing the backoff procedure and is used to compute the probability of transmis-

sion as well as the throughput. Nevertheless, the model lacks the busy channel at zero

and only one AC was simulated.

Han et al.[39] proposed a Markovian analytical model for EDCA that is suitable for

both basic access and the RTS/CST access mode. It can be applied to all ACs and was

validated through simulations. It has two Markov chains: one modeling the backoff

procedure and the other modeling the contention phase after a busy period. Yet, the

proposed model lacks the backoff counter freezing as well as the busy channel at zero;

in addition, they only simulated two ACs and did not use the same values of the EDCA

parameters as defined by the IEEE 802.11p standard (i.e., see Table 2.II). Similarly, Jun

et al. [40] studied the access performance of the IEEE 802.11p EDCA mechanism using

Markov chains. Indeed, a 2-D Markov chain is first constructed to model the backoff
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procedure and to establish a relationship between the transmission probability and the

collision probability of each AC. Then, a 1-D Markov chain is proposed to model the

contention period of each AC and establish another relationship between the probability

of transmission and the probability of collision. Based on the two Markov chains, models

for normalized throughput and access delay are derived. Both Markov chains consider

all the aforementioned factors, except the busy channel at zero.

These observations have motivated us to propose a Markovian model that considers

all the aforementioned factors. The model describes two Markov chains that are used to

compute the transmission probability and the probability of collision of each AC, from

which an accurate throughput model is derived. Table 3.I shows the comparative review

of the discussed models for the IEEE 802.11p EDCA performance analysis.

Table 3.I: Comparison of IEEE 802.11p EDCA Performance Analysis Models

Model App. Type NAC QC BP BCF BCZ IC

Eichler [36] safety 4 X × × × ×

Gallardo [37] safety 3 × X X × ×

Kaabi [38] safety 1 × X X × ×

Han [39] non-safety 2 × X × × X

Jun [40] non-safety 4 X X X × X

Our Approach non-safety 4 X X X X X

3.3.1 EDCA Performance Analysis Considering TXOP

Since IEEE 802.11p allows each AC to transmit only one packet per channel access

(T XOP = 0), service channels are not efficiently used. We believe that by enabling high

priority ACs (i.e., AC _VO and AC _VO) to transmit more than one frame per channel

access (T XOP 6= 0), we can enhance the throughput of infotainment applications. In

the literature, the model proposed by Harigovindan et al. [41] is the only one to con-

sider TXOP when analyzing the performance of IEEE 802.11p EDCA. It focuses on

tuning T XOP limits in order to provide bit-based fairness for vehicles with different
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velocities when accessing the Internet via RSUs; yet, no mathematical analysis for the

backoff procedure was presented nor was the busy channel at zero taken into consider-

ation. Therefore, we propose a second model that extends the one mentioned above by

taking into account TXOP, unexploited in the IEEE 802.11p standard.

3.4 Chapter Summary

In this chapter, we started by reviewing the different schemes proposed to address the

issue of routing in urban VANET. Most of these routing protocols rely on local topology

information, obtained via beacon messages, to make routing decisions that depend on

the routing metrics used. However, almost all of them endure the local maximum and/or

data congestion problems, increasing therefore the end-to-end delay. We then described

the various mechanisms proposed in the literature to allow service providers to select the

least congested/used service channels. These mechanisms are of two types: allocation-

based and prediction-based, and both have different limitations. Finally, we discussed

multiple models that were designed to assess the performance of IEEE 802.11p EDCA

and have shown that they do not consider all the factors mentioned earlier.

We will devote the rest of this thesis to our contributions that aim at enhancing info-

tainment applications QoS. In Chapter 4, we detail the proposed routing algorithm, la-

beled SCRP, which selects low end-to-end delay routing paths to forward data packets. In

Chapter 5, we describe the proposed service channel selection scheme, labeled ASSCH,

that couples SCH state information with a stochastic model, predicting SCHs state in the

near future, in order to select the least congested service channels. Finally, Chapter 6

outlines the proposed models for analyzing the performance of the IEEE 802.11p EDCA

mechanism considering all the above-mentioned factors along with TXOP. Figure 3.3

depicts the system level description of our solutions for QoS support of infotainment

applications in VANET.
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Figure 3.3: Our solution for QoS support of infotainment applications in VANET
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CHAPTER 4

SCRP: STABLE CDS-BASED ROUTING PROTOCOL FOR URBAN

VEHICULAR AD HOC NETWORKS

This chapter addresses the issue of selecting routing paths with minimum end-to-end

delay (E2ED) for non-safety applications in urban vehicular ad hoc networks. Most ex-

isting schemes aim at reducing E2ED via greedy-based techniques (i.e. shortest path,

connectivity, or number of hops), which make them prone to the local maximum and/or

data congestion problems, yielding high E2ED. As a solution, we propose SCRP, a dis-

tributed routing protocol that computes end-to-end delay for the entire routing path be-

fore sending data messages. To do so, SCRP builds stable backbones on road segments

and connects them at intersections via bridge nodes. These nodes assign weights to road

segments based on collected information of delay and connectivity. Routes with the low-

est aggregated weights are selected to forward data packets. Simulations results show

that SCRP outperforms some of the well-known protocols in the literature.

The rest of the chapter is organized as follows. Section 4.1 presents the motiva-

tion behind SCRP design. Section 4.2 describes the network model while Section 4.3

presents the different components of SCRP. Section 4.4 outlines SCRP sensitivity analy-

sis while Section 4.5 portrays the simulations results. Finally, Section 4.6 concludes the

chapter.

4.1 Problem Statement

The fact that VANET accommodates two types of communications, Vehicle-to-Vehicle

(V2V) and Vehicle-to-Infrastructure (V2I), has opened the door for a plethora of inter-

esting applications to thrive. While some focus on enhancing road safety via assisting

drivers in avoiding hazardous events (e.g., car crashes, slippery roads, etc.), others aim

at making passengers’ journey comfortable and entertaining. For example, traffic statis-

tics can be acquired in real-time to compute alternative routes in case of congestions.
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Moreover, speed and density information can be collected on the fly to allow for better

traffic light management. Finally, businesses such as malls, restaurants, gas stations, and

parking lots can promote their services using Road Side Units (RSUs). These RSUs can

also provide passengers with internet access to check their emails, download music, and

play online games [2].

Most of these infotainment applications have rigid requirements in terms of deliv-

ery delay and throughput; yet, meeting them in urban VANET is not straightforward.

Numerous routing schemes have been proposed in the literature. Almost all of them

are greedy-based, where a routing decision is to be made whenever an intersection is

reached. This decision hinges on the routing metric used. For instance, GPSR [10],

GSR [11], and GPCR [12] select the shortest distance path between source and desti-

nation, while GyTAR [15], A-STAR [13], RBVT [1], and IGRP [18] forward packets

through well connected road segments. Nevertheless, these protocols and several others

suffer two major problems: local maximum and data congestion.

To overcome these limitations, we propose SCRP. It is a distributed geographic

source routing scheme that takes advantage of the network topology information to select

routing paths with low E2ED. To achieve this goal, SCRP builds stable backbones over

road segments by considering vehicles’ speed and spatial distribution. These backbones

are connected at intersections via bridge nodes that keep up-to-date network topology

and monitor the delay to incur for transmitting data packets over road segments. Based

on this information, SCRP assigns weights to road segments; the ones with the low-

est weights are selected to construct routing paths. This way, SCRP avoids the local

maximum problem and balances data traffic over all possible routing paths.

4.2 Network Model

Our network model consists of roads and intersections to mimic a typical urban en-

vironment. We define Si, j as the road segment between intersections Ii and I j. Each

road segment has distinctive characteristics such as length, width, number of lanes, and

traffic density. Vehicles have unique IDs and are equipped with GPS and other gadgets
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that provide information about their location, speed, and direction. They also have ac-

cess to digital maps (e.g., [61, 62]) that include precise information about road segments

and intersections. When forwarding data packets, source nodes inquiry location services

(e.g., RLSMP [63]) to acquire the location of the destination nodes.

4.3 Stable CDS-based Routing Protocol

SCRP has 6 procedures: backbone creation, link lifetime estimation, bridge node se-

lection, road segment assessment, articulation junction selection, and route construction.

The following subsections describe each one of them in more details.

4.3.1 Backbone Creation

This procedure is performed in each road segment. We assume that the creation

process starts at the beginning of each road segment and continues onward until an in-

tersection is reached. To build virtual backbones, we used the concept of connected

dominating sets (CDS), which we define as follows:

Definition. Given an undirected graph G(V,E) where V is the set of vertices and E is

the set of edges (i.e., wireless links existing at time t), a dominating set (DS) is a subset

V ′ ⊆V , where every node in V is either in V ′ or adjacent to at least one node in V ′. V ′

is called a CDS if there exists a path ei,ea,eb, ...,en,e j between any two nodes i, j ∈ V ′

such that a,b, ...,n ∈V ′.

We do not aim at finding Minimum-CDS (MCDS) since finding one is NP-hard [64]

and produces unstable backbones [65]. We describe stability in terms of the backbone’s

lifetime, defined as the time to elapse before the first disconnection between any pair of

backbone nodes occurs. Therefore, the longer the backbone’s lifetime, the more stable

it is. Figure 4.1 illustrates the way backbone creation procedure is carried out. First,

vehicles exchange beacons of the form: < ID,x,y,v,d,b,SF >, where ID is the vehicle’s

identifier, (x, y) are its Euclidian coordinates, v is its speed, and d is its direction. b is

a 1-bit flag to indicate the state of the vehicle. If Normal Vehicle (NV), b is set to 0; if
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Backbone vehicle Transmission Range 

Figure 4.1: Backbone creation mechanism.

Backbone Vehicle (BV), b is set to 1. SF denotes the vehicle’s stability factor, indicating

the vehicle’s suitability to be a backbone vehicle. It is computed as follows:

SFi = α

[
max

(
1
3
,
R−dnb

R

)]
+β

(
V t

nb
vt

i

)
α,β ∈ [0,1] (4.1)

where R is the transmission range while Vnb and dnb are the average speed of i’s neighbors

and the average distance between vehicle i and its neighbors, respectively. α and β are

weighting coefficients. dnb is computed by predicting the future positions of neighboring

vehicles using information included in beacons, avoiding situations where vehicles might

change positions during inter-beacon intervals.

Observe that the first part of the stability factor penalizes vehicles that have most of

their neighbors located far away. This is because the higher the distance between two

vehicles, the lower is their link’s quality [21]. We chose 1
3 , set using simulations, as an

upper bound for (R−dnb) in order to reduce the effect of obstructing vehicles, discussed

in [66], which degrades links’ quality. The second part, however, reflects the speed rela-
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tionship between a vehicle and its neighbors. Indeed, vehicles moving with low relative

speeds can be considered as moving in a platoon; therefore, they have high probability

of staying connected for a long time, unlike vehicles moving with high relative speeds

which shall endure rapid link disconnections, jeopardizing our backbone’s stability.

When receiving beacon messages, each node constructs its neighboring list. Each

entry in this list includes information extracted from beacons. Whenever a new neighbor

is discovered, a new entry is added and a timer is set. Each vehicle waits for two consec-

utive beacon intervals to hear from its neighbor. If no beacon is received, the neighbor’s

entry is deleted. Once the neighboring list is established, every node compares its SF to

the ones received from its neighbors. The vehicle with the lowest SF, vehicle A in Fig-

ure 4.1, is added to the backbone. It sets its b-flag to 1 and chooses the neighbor with the

lowest SF, vehicle B in Figure 4.1, as the next forwarder. Then, A sends a DESIG mes-

sage to B, informing it that it has been selected as a backbone vehicle. Once received, B

sets the b-flag to 1 and picks up the next vehicle to be included in the backbone, vehicle

C. This mechanism is repeated till the whole road segment is covered.

4.3.2 Link Lifetime Estimation (LLT)

Let BVi and BVj be two backbone vehicles. The time that they will stay connected de-

pends on their speed and direction. For instance, when they move in the same direction,

a disconnection occurs when BVj moves out of BVi’s transmission range. Hence:

LLT =
R−di, j

|vi− v j|
(4.2)

where di, j denotes the distance between BVi and BVj.

In case BVi and BVj move in opposite directions, two scenarios are to be considered:

• BVi and BVj are approaching each other. In this case, a link disconnection occurs

when both vehicles cross each other and be R meters apart.

LLT =
R+di, j

|vi + v j|
(4.3)
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• BVi and BVj are moving away from each other. A disconnection happens when

both vehicles are R meters apart.

LLT =
R−di, j

|vi + v j|
(4.4)

Note that LLT is stored in the neighboring list. It is computed and updated after each

beacon interval. It is used to compute the weight validity period, described in Section

4.2.4.

4.3.3 Bridge Nodes Selection

With backbones spanning only over road segments, SCRP nominates bridge nodes

to connect them at intersections. Figure 4.2 illustrates the bridge node selection mecha-

nism.

Intersection zone 
Intersection center A 

B 

C 

D 

E 

N 

E 

S 

W 

F 

G 

Figure 4.2: Bridge node selection mechanism

Originally, all vehicles within the intersection zone are candidates (i.e., A, B, C, D,

and E). We discard vehicles that went past the intersection’s center (i.e., B, D, and E)

since they are in their way to leave the junction. From the remaining candidates, we look

for vehicles that are close to the intersection zone’s boundary (i.e., A and C) and check
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whether they were BV s. In case there is only one, say C, we select it as the bridge node;

otherwise, the slowest vehicle among the former BV s is chosen as the bridge node. This

way, we guarantee that bridge nodes stay longer at intersections. For further insight,

Figure 4.3 depicts the flowchart of the bridge node selection mechanism.
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Figure 4.3: Bridge node selection flowchart

When a bridge node is about to leave the intersection zone, it looks for a substitute.

It computes tcross for each BV neighbor, defined as the time needed to cross the inter-

section zone. tcross is then compared to the remaining time of the green light phase trem,

computed as follows:

trem = tg− [(ta mod tC)− (tC− tg)] (4.5)
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where tg is the green light phase, ta is the time to reach the traffic light, and tC is the

light cycle. tg and tC are assumed constants as in [67]. In case trem > tcross, the bridge

node selects the BV with the highest tcross; otherwise, it chooses a backbone vehicle

from the vehicles stopped by the red light. Ideally, the selected BV should be close to

the boundary of the intersection zone (i.e, F and G in Figure 4.2).

4.3.4 Road Segment Assessment (RSA)

RSA is a distributed procedure that focuses on assessing the convenience of a road

segment to be part of a routing path. It sets up routing tables at bridge nodes to facilitate

packet forwarding. Whenever a bridge node is selected at an intersection, SCRP trig-

gers RSA. The bridge node starts by generating a Road Assessment Packet (RAP) and

broadcasting it over road segments. RAP collects information regarding connectivity,

delay, and hop count. Its format is depicted in Figure 4.4, where timestamp designates

RAP generation time, cells denotes the number of cells traveled when using carry-and-

forward, and options holds additional routing information.

Figure 4.4: RAP format

dp represents the average delay to incur for transmitting a new data packet over a

road segment. It is defined as the sum of delays to incur at each backbone vehicle, dhi .

dp =
h

∑
i=1

dhi (4.6)

According to [68], dhi has two components: Tq and Ttx. The former denotes the queuing
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delay and is defined as the time elapsed between the moment a packet enters the queue

until it becomes the head of it. The latter represents the transmission delay and is defined

as the time from the moment the packet becomes the queue’s head until it is successfully

transmitted or dropped. Ttx also incorporates the time when the channel is busy as well

as the backoff time when the channel is idle. Therefore, dhi can be expressed as follows:

dhi = E[Ttx +Tq] (4.7)

Tq and Ttx are correlated. Indeed, the queuing delay of a packet corresponds to the time

needed for all packets queued ahead of it to be transmitted. Thus, when a new packet

arrives to a queue containing k packets, dhi can be written as:

dhi = (k+1)E[Ttx] (4.8)

Observing Equation. 4.8, we can infer that dhi implies the memoryless property and is,

therefore, exponentially distributed. This is compatible with the finding in [69] which

demonstrates that the MAC service time for the IEEE 802.11 DCF can be approximated

by an exponential random variable. This is still valid for EDCA when access categories

are individually examined since they are considered as independent DCF stations [70].

Figure 4.5 illustrates the dissemination of RAP over road segments. When the green

car located at IA is elected as the bridge node, it generates and broadcasts RAP over

SA,B and SA,C. When receiving RAP, each BV over SA,B increments h to include itself,

computes dh using Equation 4.8 and adds it to the value of dp. It then forwards RAP

to the next BV . This process continues until RAP reaches IB. Since SA,C does not hold

a backbone, RAP will be carried until reaching IC. Bridge nodes at IB and IC compute

RAP’s delivery delay, drap, as follows:

drap = trx−Timestamp (4.9)

where trx designates RAP’s received time.

drap is then compared to two thresholds: Tbc and Tc f . Tbc represents the upper bound
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Figure 4.5: Connectivity and delay information collected via RAP

for the time needed by RAP to travel a road segment in the presence of a backbone. It is

computed as follows:

Tbc =
hmax

∑
i=1

Ttx (4.10)

where hmax represents the maximum number of BV s a road segment can hold. It is given

by:

hmax = d
3L
2R
e (4.11)

with L denoting the length of the road segment. Tc f , on the other hand, describes the

maximum tolerable time to wait for RAP when using carry-and-forward. It should not

exceed tcross in order to allow bridge nodes to have the desired information before leaving

their respective intersections. Hence, Tc f is expressed as follows:

Tc f = tcross−Tbc (4.12)
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Note that Tbc was subtracted from tcross in order to give bridge nodes enough time to

process received RAPs.

When drap < Tbc, bridge nodes infer that road segments hold backbones. In case

Tbc < drap < Tc f , bridge nodes assume that road segments are partially disconnected and

that carry-and-forward is to be used moderately. Otherwise, bridge nodes deduce that

road segments are completely disconnected. Based on this information, bridge nodes

assign weights to road segments.

wS(i, j) =


dp, drap < Tbc

dp + pc f dc f , Tbc < drap < Tc f

∞, otherwise

(4.13)

dc f is the delay to incur when using carry-and-forward. To compute it, we divide

the road segment into n sub-segments of length R (i.e., SA,C in Figure 4.5). Each sub-

segment is further partitioned into m cells of length l, defined as the sum of the vehicle’s

average length lav and the average safety distance ds. Each cell can contain at most two

vehicles with opposite directions. Hence, we obtain:

dc f =
cells∗ l

vav
(4.14)

where vav is the vehicles’ average speed on the road segment.

pc f is the probability of using the carry-and-forward mechanism. To estimate it, we

first derive the probability of having at least one vehicle in a cell. We model the vehicles

arrival to road segments as a Poisson process. Let λi be the vehicles’ arrival rate at road

segment Si, j. The probability of having at least one vehicle in a cell is:

pcell = 1− exp−(
λi
nm) (4.15)

Assume two vehicles u1 and u2 are moving from Ii to I j. u1 and u2 are disconnected if

they are m cells apart. Let pdis be the probability of disconnection. pdis can be written
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as:

pdis = (1− pcell)
m−1 (4.16)

Now, if u1 is the only vehicle in Si, j, pc f in this case can be expressed as

pc f =

b
du1,I j

R c

∏
k=1

pdisc (4.17)

where du1,I j is the distance between vehicle u1 and intersection I j.

As weights are dependent on connectivity and delay information, they need to have

validity periods. In case a road segment Si, j is holding a backbone, the validity period is

the time till a disconnection occurs (see Section 4.2.2). Otherwise, the validity period is

the time until the bridge node crosses the intersection (i.e., tcross). Therefore, we express

the weight validity period (WVP) of Si, j as:

WV PSi, j =

min(BSi, j), if backbone

tcross, otherwise
(4.18)

where BSi, j = {LLT1,LLT2, ...,LLTk} is the set of the estimated link lifetimes for BV s

over Si, j.

After computing the weights of road segments as well as their validity periods, each

bridge node constructs a routing table. These tables contain the list of road segments,

reachable from their respective junctions along with their weights and their validity peri-

ods. These tables are used by SCRP to construct routing paths. The weight of a routing

path, made of q road segments, can thus be expressed as:

wpth =
q

∑
i=1

wi (4.19)

Consequently, the weight validity period of a routing path can be expressed as:

WV Ppth = min(Rpth) (4.20)
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where Rpth = {WV PSi, j ,WV PS j,a, ...,WV PSp,z} is the set of WVPs of the road segments

forming the routing path.

4.3.5 Articulation Junction Selection

Having a global knowledge of the network topology is extremely difficult given the

considerable size of modern cities. In this regard, we divide the city into zones and

elect articulation junctions in each one of them. The size of each zone is set, using

simulations, to 3×3 blocks in order to limit RAP flooding and control its size.

An articulation junction is the intersection that is connected to most of the junctions

in its respective zone. It has up-to-date view of the zone’s network topology. Electing

an articulation junction is done in a distributed and dynamic fashion, as illustrated in

Figure 4.6. At first, each bridge node appoints its respective intersection as the articula-

tion junction, and sets ρ , the number of junctions to which it is connected, to 0. After

exchanging the first round of RAPs, bridge nodes update their respective ρ according to

the number of RAPs received (Figure 4.6(a)). In the second round, bridge nodes append

their routing tables to RAPs, using the options field, before broadcasting them. When

received, bridge nodes compare the routing tables received with their own. The inter-

section with the largest ρ is set as the articulation junction. To illustrate, bridge nodes

at junctions C, G, and I designate B, H, and F as the articulation junction, respectively

while D, F , and H set E as the articulation junction (see Figure 4.6(b)). For A and

B, since both have the same ρ , the intersection with the lowest total aggregated weight

is chosen as the articulation junction (i.e., A in this case). The same process will be

repeated in the subsequent rounds (Figure 4.6(c)), but only new or updated entries are

appended to RAPs instead of the whole routing tables. Eventually, E is nominated as the

articulation junction (Figure 4.6(d)).
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Figure 4.6: Articulation junction selection procedure

4.3.6 Route Construction

When a source node wants to send data packets to a destination, it generates a "Route

Query" (RQ) containing the source node’s ID, the destination ID, and the location of the

destination. The source node forwards RQ to the closest bridge node. Once received,

the bridge node checks its routing table to see whether it can reach the destination. If
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yes, it generates a "Route Result" (RR) and forwards it to the source node. Otherwise,

the bridge node transfers RQ to the zone’s articulation junction. The bridge node at

the articulation junction checks first whether the destination is within the zone. If yes,

it computes the route with the lowest weight to the destination, using its routing table,

and includes it into RR’s header. Otherwise, it computes the sub-path with the lowest

weight between the source node and itself and includes it into RQ; then, it forwards RQ

to its neighboring articulation junctions. This procedure continues till the destination is

reached.

It is possible that the destination receives multiple RQs, implying the existence of

several routing paths. In this case, the destination stores all paths in its routing table

along with their validity periods. It selects the path with the lowest weight, includes it

into RR header, and forwards it back to the source node. When received, the source node

starts sending data packets. These data packets are also used by bridge nodes as a means

to refresh the weights attributed to road segments along with their validity periods. When

the weight of the current path exceeds a threshold wth, the destination reselects the path

with the lowest weight from the list, includes it in a "Route Update" (RU), and sends it

to the source node. When received, the source node starts forwarding data packets on

the new routing path.

4.4 SCRP Sensitivity Study

In this section, we analyze the key parameters that might impact the performance of

SCRP if set inappropriately. This includes β , hmax, and wth.

4.4.1 Determining β

To determine the best value of β to be used, we simulated a road segment of 1500

meters while varying the number of vehicles (i.e., from 15 to 30) to depict low and

medium densities. Speed ranges between 30 and 80 Km/h for low density, and between

30 and 60 Km/h for medium density.

A backbone is built over the road segment and the stability index, defined as the ratio
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(a) β vs. stability index (b) β vs. number of backbone nodes

Figure 4.7: Determining the value of β

between WV P and the average backbone lifetime, is computed. Clearly, the higher the

stability index, the more stable is the backbone. Figure 4.9(a) shows β as a function

of the stability index. We observe that as β increases, the stability index increases.

The reason is that backbone vehicles stay connected much longer, yielding more stable

backbones. This implies that SF is upper-bounded by the second term, particularly by

β . When β ≥ 0.7, the stability index becomes steady. Figure 4.9(b) plots β as a function

of the number of backbone nodes. We observe that when β increases, the number of

backbone nodes for both densities drops. Furthermore, when β ≥ 0.6, the number of

backbone nodes remains constant. The reason is twofold: 1) the number of BVs cannot

be reduced anymore in order to preserve the backbone connectivity; and 2) selected BVs

yield the most stable backbone. Therefore, in the subsequent simulations, we set the

value of β to 0.7 and that of α to 0.3.

4.4.2 Determining hmax

Tbc is used to tell whether a backbone exists on a road segment. Hence, Tbc depends

on the road segment’s length and the vehicles’ density.

Figure 4.8 plots different Tbc values along with drap obtained via simulations. We
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Figure 4.8: Determining the value of hmax

observe that both small and large values of hmax result in Tbc not confining drap ad-

equately. This is because: 1) small values of hmax penalize larger road segments by

considering them as partially disconnected even if they hold backbones; and 2) large

values of hmax may consider partially disconnected road segments as segments with built

backbones, leading to inaccurate routing decisions. To illustrate, when L = 1500 me-

ters and h = 2L/R, Tbc is 50% higher than drap. The best approximation of Tbc occurs

when h = 3L/2R as there is a slight difference between Tbc and drap for both low and

medium densities (i.e., 2Ttx and Ttx, respectively). Therefore, we set hmax to 3L/2R in

our simulations.

4.4.3 Determining wth

Identifying a convenient value for wth is crucial for the proper functioning of SCRP

as it adjusts the tradeoff between performance and overhead. To demonstrate the im-

pact of wth, we considered a grid of 2500× 2500 meters, consisting of 2 zones. We,

then, setup four traffic flows, Fi (i = 1,2,3,4) where F1 and F2 are active during the

whole simulation, while F3 and F4 are activated and deactivated at different time in-

tervals. Activation/deactivation periods follow an exponential distribution with mean of

100 seconds. The packets generation rate is fixed to 20 packets/second.

Figure 4.9 plots wth as a function of E2ED and throughput. Both small and large
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(a) Average E2ED vs. wth (b) Throughput vs. wth

Figure 4.9: Determining the value of wth

values of wth yield low throughput and longer E2ED. This is because: 1) a small value

of wth might trigger the rerouting process so often, which incurs needless overhead;

and 2) a large value of wth prevents SCRP from timely responding to a congested path,

degrading therefore its performance. Figure 4.9 also shows that wth = 130 ms allows

for an optimal performance of our routing protocol. Hence, we set wth to 130 ms in our

simulations.

4.5 Performance evaluation

In this section, we present a simulation-based evaluation of SCRP and three other

urban routing protocols: GPSR [10], GyTAR [15], and iCAR [19]. These protocols

were chosen since they use different metrics to make routing decisions: GPSR [10] uses

shortest path, GyTAR [15] uses connectivity and distance to destination, and iCAR [19]

uses connectivity and delay.
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4.5.1 Simulation settings

We have implemented our protocol using ns-2 [71] and we deployed SUMO [72]

and MOVE [73] to generate realistic mobility traces for VANET. Vehicular flows were

created with specified origins and destinations. Each flow has a different inter-arrival

time and Dijkstra’s shortest path is used to compute routes from starting points to desti-

nation positions. The city map is a grid area of 7500×7500 m with bidirectional roads.

There are 165 intersections, 45 of them are unsignalized. The number of nodes is var-

ied between 150 and 600 to portray the network state at different time periods. Their

speed fluctuates between 30 and 80 Km/h, which is common for an ordinary city en-

vironment. We setup ten multihop UDP flows; they start at different time instants and

continue throughout the simulation.

To model the impact of obstacles, we deploy the free space with urban area path

loss exponent model proposed in [74]. In addition, we set 5 dB attenuation rate to

count for shadow fading caused by obstructing vehicles. The schemes are evaluated in

terms of average E2ED, packet delivery ratio (PDR), and routing overhead (RO). Results

are presented in the following subsections. Other system parameters are described in

Table 4.I.

Table 4.I: Simulation Parameter Settings

Parameter Value

R 250 m

lav 5 m

ds 3 m

ω 8 m

Data rate 2Mbps

Beacon interval 1 second

Packet generation rate 1 - 50 packets/second

Packet size 512 byte
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4.5.2 Simulation Results and Analysis

4.5.2.1 Probability of Connectivity

(a) (b)

Figure 4.10: CDF of the links connectivity for (a) N = 200 and (b) N = 400

Figure 4.10 compares the cumulative distributed function (CDF) of links connectiv-

ity used by the simulated protocols with respect to pc f for 200 and 400 vehicles. As

expected, SCRP, iCAR and GyTAR choose routes that have high connectivity to relay

messages while GPSR selects the shortest routing paths without considering link connec-

tivity. Figure 4.10 also shows that SCRP outperforms the other schemes as it prioritizes

segments with built backbones when forwarding data packets, thus taking advantage of

the up-to-date knowledge of the network topology. For example, when the connectivity

probability is set to 0.7, SCRP uses carry-and-forward over 38% of the links when the

network density is 400, against 50% for iCAR, and 60% for GyTAR.

4.5.2.2 End-to-End Delay

Figure 4.11(a) shows the average E2ED as a function of the network density. We

observe that all protocols have the tendency of decreasing E2ED as the network density

increases. The reason is that, increasing the density of the urban network reduces the
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(a) (b)

Figure 4.11: Average E2ED vs. network density and packet generation rate

number of disconnected road segments, lowering therefore pc f . We also observe that

SCRP incurs the lowest E2ED as it eliminates the local maximum problem, because of

the use of bridge nodes and articulation junctions. Unlike SCRP, iCAR and GyTAR rely

only on local information to make routing decisions whenever an intersection is reached,

making them prone to the local maximum problem. As for GPSR, the high E2ED can

be explained by the excessive use of the carry-and-forward mechanism.

Figure 4.11(b) shows E2ED variation with respect to packet generation rate. We ob-

serve that the average E2ED for all protocols increases with the increase of data load.

As GPSR and GyTAR do not allow for load balancing, they both experience data con-

gestion, which escalates E2ED. SCRP and iCAR provide lower E2ED due to the use

of alternative routes. Still, SCRP outperforms iCAR (e.g., by 43% when traffic load is

set to 50 packets/s). This is because iCAR uses the delay induced by Control Packets

(CPs) to estimate the delay to incur for data packets; this leads to inaccurate results as

CPs and data packets may not belong to the same Access Category (AC) of the EDCA

mechanism.
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4.5.2.3 Packet Delivery Ratio

Figure 4.12(a) exhibits PDR as a function of the network density. We observe that

PDR for all schemes increases with the increase of the network density. We also observe

that SCRP outperforms all the other routing schemes. This is because SCRP forwards

packets over roads with built backbones, incurring lower queuing delay. Likewise, iCAR

achieves good PDR compared to GyTAR and GPSR thanks to its prediction method,

which checks the existence of a neighbor before forwarding data packets. As GyTAR

forwards packets over roads with high vehicular traffic, it suffers multiple collisions,

leading to transmissions failure. Furthermore, its road connectivity evaluation procedure

may give inaccurate results since it does not consider traffic lights. Finally, due to its

long delivery delays, packets in GPSR are dropped before reaching the destination.

(a) (b)

Figure 4.12: PDR vs. network density and packet generation rate

Figure 4.12(b) shows PDR as a function of the packet generation rate. We observe

that PDR of all schemes decreases with the increase of packet rate. GPSR has the worst

PDR as many packets get dropped due to the excessive use of carry-and-forward. Gy-

TAR’s PDR is lower than iCAR’s because it lacks the load balancing capability, induc-

ing therefore multiple retransmissions. Even though iCAR allows for load balancing, its
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PDR is still low compared to SCRP. This is due to the inaccurate estimation of the data

packet delay that impacts its routing decisions, leading to packet losses.

4.5.2.4 Routing Overhead

Figure 4.13: Average routing overhead vs. network density

Figure 4.13 depicts the average RO for the simulated routing schemes. We consider

all control packets used in the routing process, except beacon messages since they are

a key component of VANET. GPSR is the only protocol to not generate any routing

overhead as it relies on the Euclidian distances to make its routing decisions. SCRP,

iCAR, and GyTAR incur additional routing overhead since they use discovery packets

to collect density and delay information over road segments. SCRP incurs the highest

routing overhead due to the creation of backbones over road segments as well as the use

of RQs, RRs, and URs when establishing and updating routes. We also observe that as

the network density increases, the routing overhead decreases. In fact, the higher the

density, the lower are the changes in the network topology, thus reducing the number

of triggered control packets. Note that SCRP generates few extra control packets per

road segment compared to iCAR. This is a small price to pay given the gains obtained

in terms of E2ED and PDR.
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4.6 Chapter Summary

In this chapter, we proposed a novel routing protocol for VANET in urban scenar-

ios, called SCRP. SCRP exploits up-to-date topology information to enhance the QoS

of non-safety applications for low to moderate network densities. It thrives to find the

most stable paths between source and destination that incur low E2ED. To do so, it starts

by building backbones on road segments and connecting them via bridge nodes at inter-

sections. Then, it assigns weights to the different road segments based on information

collected through RAPs. Simulation results show that SCRP achieves better performance

compared to existing greedy-based schemes, making it a good candidate for non-safety

VANET applications. Still, before forwarding data packets of non safety applications, a

mechanism is needed to decide on the service channel to be used. This will be covered

in the next chapter.
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CHAPTER 5

ALTRUISTIC SERVICE CHANNEL SELECTION SCHEME (ASSCH) FOR

V2V INFOTAINMENT APPLICATIONS

The Wireless Access for Vehicular Environment (WAVE) specifies that data pack-

ets of infotainment applications are to be sent within WAVE basic service sets (WBSS).

These WBSS are to be established on the least congested service channels. WAVE pro-

poses a mechanism to select such channels. Nevertheless, owing to high mobility in

VANET, there is a high chance of having overlapped WBSS, yielding unsatisfactory

performance. Several approaches have been proposed to avoid such a scenario. Yet, they

are either inefficient or cost-ineffective. In this chapter, we propose ASSCH, an altruistic

mechanism that impels vehicles to collaborate in order to select the least congested (i.e.,

used) service channel. ASSCH also includes a mechanism for WBSS termination, which

is not specified in WAVE. To the best of our knowledge, none of the existing schemes

have proposed something similar. Simulation results demonstrate that our mechanism

allows for quicker access to service channels, handles the overlapping problem better,

and incurs high channel efficiency.

The rest of the chapter is organized as follows. Section 5.1 presents the motivation

behind the design of ASSCH. Section 5.2 describes the system model. Section 5.3 de-

tails the proposed service channel selection scheme. Section 5.4 presents the simulation

results while Section 5.5 concludes the chapter.

5.1 Problem Statement

WAVE [75] was proposed to cope with VANET challenges. It operates on the DSRC

spectrum that is partitioned into seven channels. One of them is referred to as the control

channel (CCH) and is exclusively dedicated to transmitting safety and control messages.

The remaining six are used for transferring data packets of non-safety applications and

are referred to as service channels (SCHs). To enable vehicles to switch between these
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channels, WAVE uses the coordinated universal time (UTC), where each second is sub-

divided into ten synchronization intervals (SI). Each SI consists of one CCH interval

(CCI) followed by one SCH interval (SCI). A guard interval (GI) is inserted at the end

of each CCI/SCI to account for synchronization imprecisions [47].

WAVE allows data packets of infotainment applications to be transmitted within

WBSS, which can be established by any DSRC device (i.e., RSUs or OBUs) [5, 35].

A vehicle having packets to send, labeled provider, initiates WBSS by broadcasting

WAVE Service Advertisement (WSA) message during CCI. WSA contains the identifier

of the provider, a description of the service provided, and the service channel to be used

[47]. When receiving WSA, vehicles may choose to join WBSS. If so, these vehicles,

labeled users, along with the provider switch their transceivers to the advertised SCH

at the beginning of SCI. The provider then starts sending its data frames and terminates

WBSS once all of its packets are sent. There are two types of WBSS: persistent and

non-persistent [76]. The former is announced at every CCI for the entire WBSS life-

time. The latter is announced only once, i.e., at the establishment phase. In this chapter,

we focus on non-persistent WBSS. Note that WBSS does not require the association and

authentication procedures, used by IEEE 802.11 BSS, in order to exchange data.

WAVE mandates that vehicles shall monitor received WSA messages in order to keep

track of used SCHs in their 1-hop range. This way, they can establish their WBSS on

the least congested SCH. Yet, this mechanism suffers from two major shortcomings: 1)

vehicles might end-up using obsolete SCHs status information due to WSA collisions;

and 2) vehicles lack SCHs status information within 2-hop range, yielding poor service

quality as two providers within carrier sense range may select the same SCH to setup

their WBSS. Besides, no mechanism was proposed to inform users of WBSS termina-

tion in case of non-persistent WBSS. The authors in [77] suggested that users can leave

WBSS when an entire SCI elapses without receiving any data packet from their provider.

Still, this approach sets SCHs state as busy for an entire SCI even if no communication

is carried over them, leading to inefficient channel utilization.

These observations have motivated us to design ASSCH, a WAVE-compliant scheme

that allows providers to select the least congested SCH when setting up their WBSS. It
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has two objectives: 1) compel vehicles to cooperate in order to help providers select

the least used SCHs. This is achieved by exchanging SCHs state information through

beacon messages; and 2) notify users of their WBSS termination as quickly as possible

in order to have up-to-date SCH status information.

5.2 Network Model

Our network mimics a real-life VANET scenario, where vehicles move along a mul-

tilane highway segment with obstacles (e.g., houses and trees) on both of its sides. Hav-

ing unique IDs, vehicles arrive at the starting point of the highway following a Poisson

process with an average rate of λa. Vehicles travel with different speeds, uniformly dis-

tributed between Vmin and Vmax. Beacon messages are generated at a rate of λb, enabling

vehicles to transmit information regarding speed and location to neighboring vehicles.

This information is provided by GPS devices. Vehicles are also equipped with single

transceivers to enable Vehicle-to-Vehicle communication.

We adopt the alternating access mode (i.e., CCI followed by SCI) in order to allow

for safety and infotainment applications to co-exist. Such a capability is considered es-

pecially attractive as an initial deployment strategy to push VANET market penetration.

We make use of the FCC amendment [78] regarding DSRC, where only four SCHs (i.e.,

174, 176, 180, and 182) are allocated for infotainment applications. The other two (i.e.,

172 and 184) are reserved for future use. We set SCH 172 as the default service channel

for vehicles that did not join any WBSS. A provider Pvi, with (i = 0,1,2,3) denoting its

service priority, may request any SCH to establish its WBSS. Preference will always be

given to providers with high priority services. Time is discretized into slots of length σ .

At each slot, a channel can be either free or occupied. Let Ti be the service time of Pvi,

defined as the time period between WBSS establishment and termination, and is known

only to Pvi. To make it known to all vehicles, we alter its definition. Indeed, we consider

Ti as the remaining time until SCH becomes free given that it is currently used by Pvi.

This way, we can model Ti as an exponential distribution with mean µi. The rational

behind this modeling is that Ti is independent of the time the channel has been in use so
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far, reflecting its memoryless nature.

5.3 ASSCH Components

ASSCH allows providers to select the least used SCHs when setting up their WBSS.

It has three components: channel state information collection, future channel state pre-

diction, and channel selection. The following subsections describe each one of them in

more details.

5.3.1 SCHs State Information Collection

Vehicles maintain Channel State Tables (CSTs) to keep track of channel usage in

their vicinities. CSTs have six fields: 1) SCH identifier; 2) state: indicating the current

occupancy status of each SCH. A value of 1 implies that the channel is busy while a value

of 0 indicates that the channel is free; 3) provider’s identifier; 4) provider’s position; 5)

provider’s priority (i.e., priority of the service it offers, with i = 3 as the highest); and 6)

score: representing the utilization ratio of SCH, computed at the end of every SCI.

Before sending WSA to setup WBSS, Pvi collects information about the current

state of SCHs. This process is performed throughout an entire SI. During CCI, Pvi

listens for broadcasted WSAs in its vicinity and updates its CST accordingly. During

SCI, Pvi requires the cooperation of neighboring vehicles in order to monitor SCHs and

collect updated state information. Indeed, when SCI starts, Pvi switches to SCH 172 and

broadcasts a SCH Query (SCHQ) message to identify neighboring vehicles that have not

joined any WBSS. SCHQ includes Pv′is identifier only. Let SN be the set of vehicles on

SCH 172. When receiving SCHQ, every element in SN replies with a SCH Response

(SCHR) message, containing its identifier as well as the score of every SCH. When

receiving SCHR, Pvi chooses monitors (i.e., neighbors that will listen to SCHs during

the current SCI) based on the following rules:

1. If the state of SCH j is perceived to be free by all vehicles in SN , monitoring SCH j

is delegated to the farthest neighbor. This helps detecting hidden terminals.

67



5.3. ASSCH COMPONENTS

2. If otherwise, monitoring SCH j is delegated to the neighbor with the maximum

score for SCH j.

Once monitors are identified, Pvi creates and broadcasts a monitoring table (MT ).

Each entry in MT contains a monitor identifier as well as its assigned SCH. When receiv-

ing MT , monitors switch their transceivers to the assigned channels and start listening.

At the end of SCI, monitors update their CSTs (i.e., state and score of the assigned

SCH) and piggyback them into their beacon messages, which will be broadcasted in the

subsequent CCI.

When receiving beacon messages, vehicles extract the encapsulated CSTs. For each

occupied SCH, marked as free in their own CSTs, vehicles use the position field in the

received CSTs to compute their distances to the provider currently using SCH. In case

the distance is smaller than dth, defined as the carrier sense range, they set the state

of SCH to occupied; otherwise, they keep the state of SCH as free. This is to control

the propagation of CSTs, allowing for SCHs spatial reuse without suffering co-channel

interferences. According to [79], the average transmission range under the Nakagami

propagation model can be expressed as:

Rav =
1

αΓ(m)
Σ

m−1
i=0

(m−1)!
(m−1− i)!

× Γ(m − 1 − i +
1
α
)

(
mPth

PtK

) 1
α

(5.1)

where m is the fading factor; Γ(.) is the gamma function; α is the path loss exponent;

K = GtGr(c/(4π fc))
2; Gt and Gr are antenna gains of the transmitter and receiver, re-

spectively; c is the speed of light; and fc = 5.9 GHz is the carrier frequency. Hence, dth

can be expressed as:

dth =
Rav

ρ
, ρ ∈ (0,1] (5.2)

Figure 5.1 shows an example of how CSTs are disseminated and updated. After

collecting information about SCHs, PvA selects SCH1 and broadcasts its WSA at t = 120

ms. When received, vehicles in zone 1 update SCH1 entry in their CSTs by setting its

state to occupied. They also set the provider identifier, position, and priority to Pv′As. At

t = 200 ms, these vehicles broadcast their beacon messages. For instance, all vehicles in
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zone 2, including PvB and n2, receive the beacon message from n1 and update their CSTs

(i.e., SCH1 entry) accordingly. At t = 220 ms, PvB broadcasts its WSA with SCH4 as its

selected service channel. Here again, all vehicles in zone 2 update SCH4 entry by setting

its state to occupied; they also set the provider identifier, position, and priority to Pv′Bs.

Then, these vehicles broadcast their beacon messages at t = 300 ms. When received,

vehicles in zone 3 compute the distance separating them from PvA. Since that distance

is greater than dth, they set the state of SCH1 to free. When PvC wants to establish its

own WBSS at t = 320 ms, it can use available SCHs, including SCH1.

Figure 5.1: A sample scenario of how CSTs get disseminated and updated

Using this scheme, each vehicle is able to identify the state of SCHs in its 1-hop and

2-hop ranges as well as the priority of the providers using them. This information is then

fed to a stochastic model to foresee the state of SCHs in the near future, as described in

the next subsection.

5.3.1.1 Monitors Selection Problem

One might argue that two providers that are within transmission range may select the

same vehicle to monitor two different SCHs. However, this is unlikely to happen. In
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fact, whether they have the same or different priorities, either one of them will transmit

its MT first; when hearing it, the other provider should proceed to select another vehicle,

as monitor, before broadcasting its own MT.

Still, the real problem arises when providers are within 2−hop range, as shown in

Figure 5.2. Indeed, when the first MT is received, assume it is from PvA, M will im-

mediately switch to the assigned SCH and starts listening. When PvB transmits its MT,

M will miss it. This will deprive PvB from up-to-date information about the SCH as-

signed to M, leading to inaccurate channel selection decision. To mitigate this issue, we

make each monitor broadcasts a small message, labeled ASSIGNED, before switching to

the assigned SCH. ASSIGNED contains the monitor’s identifier as well as the assigned

SCH. It serves two purposes: 1) it acknowledges the receipt of MT by monitors; and 2)

it allows providers to know whether the selected monitors are used by other providers.

Keep in mind that SCHQ, SCHR, MT , and ASSIGNED are all transmitted over SCH

172 during SCI.

Figure 5.2: Monitors selection problem

5.3.2 SCHs Future State Prediction

In this subsection, we predict the state of each channel in the next SCI using the

Markovian model shown in Figure 5.3. There are six states {S f ,Sh,S0,S1,S2,S3} de-

scribing the channel status at the end of each SCI. A channel can be free (S f ), occupied

by a provider with priority (Si, i = 0,1,2,3), or suffering a hidden terminal problem (Sh).

Let pi
q be the probability of Pvi requesting a channel. The transition probabilities of the
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Markov chain are viewed as conditional probabilities, where Pm, j is the probability that

the channel will be in state Sm in the next SCI given that it is in state S j at the end of the

current SCI. Before expressing these probabilities, we first present few elements that are

essential to the derivation of the state transition matrix.

– Since vehicles only acquire local information via beacon messages, a provider

cannot know the exact number of vehicles that are within its carrier sense range.

Therefore, we estimate n using the fact that vehicles arrive to the highway follow-

ing a Poisson process with rate λa. Indeed, the average number of vehicles in the

carrier sense of a tagged vehicle can be expressed as:

n =
4λa(dth−Rav)

Vmin +Vmax
(5.3)

– Given that the channel is used by Pvi in the current SCI, the probability that Pvi

holds the same channel in the next SCI can be expressed as:

Pi
hold = P(t i

s > 1) = e−
1
µi (5.4)

– Given that the channel is used by Pvi in the current SCI, the probability that Pvi

releases the channel at the end of the current SCI is:

Pi
release = 1−Pi

hold = 1− e−
1
µi (5.5)

– The probability that no provider of priority i requests the channel can be computed

as [33]:

Pi
nrq = e−npi

q (5.6)

– The probability that at least one provider of priority i requests the channel is ex-

pressed as:

Pi
rq≥1 = 1−Pnrq = 1− e−npi

q (5.7)
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Figure 5.3: The Markov chain model for SCHs state prediction

The transition probabilities can therefore be expressed as follows:

Pf , f = e−nΣ3
i=0 pi

q (5.8)

Pf ,0 = (1− e−np0
q)e−nΣ3

i=1 pi
q (5.9)

Pf ,1 = (1− e−np1
q)e−n(p2

q+p3
q) (5.10)

Pf ,2 = (1− e−np2
q)e−np3

q (5.11)

Pf ,3 = 1− e−np3
q (5.12)

Pf ,h = 1− e−nΣ3
i=1 pi

q (5.13)

P0, f = (1− e−
1

µ0 )e−nΣ3
i=0 pi

q (5.14)

P0,0 = (1− e−np0
q + e−(np0

q+
1

µ0
)
)e−nΣ3

i=1 pi
q (5.15)

P0,1 = (1− e−
1

µ0 )(1− e−np1
q)e−n(p2

q+p3
q) (5.16)
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P0,2 = (1− e−
1

µ0 )(1− e−np2
q)e−np3

q (5.17)

P0,3 = (1− e−
1

µ0 )(1− e−np3
q) (5.18)

P1, f = (1− e−
1

µ1 )e−nΣ3
i=1 pi

q (5.19)

P1,0 = (1− e−
1

µ1 )(1− e−np0
q)e−nΣ3

i=1 pi
q (5.20)

P1,1 = (1− e−np1
q + e−(np1

q+
1

µ1
)
)e−n(p2

q+p3
q) (5.21)

P1,2 = (1− e−
1

µ1 )(1− e−np2
q)e−np3

q (5.22)

P1,3 = (1− e−
1

µ1 )(1− e−np3
q) (5.23)

P2, f = (1− e−
1

µ2 )e−nΣ3
i=1 pi

q (5.24)

P2,0 = (1− e−
1

µ2 )(1− e−np0
q)e−nΣ3

i=1 pi
q (5.25)

P2,1 = (1− e−
1

µ2 )(1− e−np1
q)e−n(p2

q+p3
q) (5.26)

P2,2 = (1− e−np2
q + e−(np2

q+
1

µ2
)
)e−np3

q (5.27)

P2,3 = (1− e−
1

µ2 )(1− e−np3
q) (5.28)

P3, f = (1− e−
1

µ3 )e−nΣ3
i=1 pi

q (5.29)

P3,0 = (1− e−
1

µ3 )(1− e−np0
q)e−nΣ3

i=1 pi
q (5.30)

P3,1 = (1− e−
1

µ3 )(1− e−np1
q)e−n(p2

q+p3
q) (5.31)

P3,2 = (1− e−
1

µ3 )(1− e−np2
q)e−np3

q (5.32)

P3,3 = 1− e−np3
q + e−(np3

q+
1

µ3
) (5.33)

Ph,h = e−
1
µ +(1− e−

1
µ )(1− e−nΣ3

i=0 pi
q) (5.34)

Ph, f = (1− e−
1
µ )e−nΣ3

i=0 pi
q (5.35)

µ = Σ
3
i=0µi (5.36)
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Given that SCH is free in the current SCI, it can be at one of the following states in the

next SCI:

– S f if no vehicle requested the channel (Equation 5.8).

– Si if there is at least one Pvi requesting the channel and no other provider with

higher priority is requesting the same channel (Equations 5.9, 5.10, 5.11, 5.12).

– Sh if there is a transmission that cannot be decoded. This implies that there is

at least one provider in 2-hop range using the channel, regardless of its priority

(Equation 5.13).

Given that SCH is used by Pvi in the current SCI, it can be at one of the following states

in the next SCI:

– S f if the current Pvi releases the channel and no request is made by any provider

(Equations 5.14, 5.19, 5.24, 5.29).

– Si in case:

1. the current Pvi holds the channel while there are no requests from other

providers or Pvi releases the channel and there is at least another provider,

having similar priority as Pvi, requesting the channel while there are no re-

quests from other providers with higher priorities (Equations 5.15, 5.21, 5.27, 5.33).

2. the current Pvi releases the channel and there is at least another provider

requesting the channel:

– having lower priority than Pvi while there are no requests from other

providers with higher priority (Equations 5.20, 5.25, 5.26, 6.20, 5.31, 5.32).

– having higher priority than Pvi (Equations 5.16, 5.17, 5.18, 5.22, 5.23, 5.28).

Given that SCH is at state Sh in the current SCI, it can be at one of the following states

in the next SCI:

– Sh if the current provider keeps using the channel OR the current provider releases

the channel and another provider in 2-hop range is using it (Equation 5.34).

– S f if the current provider releases the channel and no other provider in 2-hop range

is using it (Equation 5.35).
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After computing the transition probabilities of all possible states based on SCHs

current state, Pvi predicts the state of each channel in the next SCI as follows:

Sm, j = argmax Pm, j

m, j ∈ { f ,h,0,1,2,3} (5.37)

5.3.3 SCH Selection

The final step is to select the least used service channel on which Pvi can setup its

WBSS. For that, Pvi classifies SCHs, based on their predicted states, into six sets: S′f , S′h,

S′0, S′1, S′2, and S′3. The subscript of each set denotes the predicted state. When selecting

SCH, preference is always given to channels in S′f . If S′f = { /0}, channels in S′j, with

j < i, are considered. In case S′j<i = { /0}, we make providers wait till a service channel

becomes available. Note that instead of randomly choosing a channel in a set S′j<i, we

select the channel with the lowest score. This is rational since a low score can imply

that the provider using SCH has fewer data packets to send. As a result, Pvi has higher

chances of transmitting its data packets, lowering therefore the delay to setup its WBSS.

Observe that we did not solicit SCHs in S′j with j = i and j > i in order to avoid causing

collisions to providers with same or higher priority. Observe also that SCHs in S′h are not

considered in order to reduce the possibilities of enduring the hidden terminal problem,

thus enhancing the service quality of Pvi.

5.3.3.1 WBSS Overlapping Problem

It might happen that two providers (PvA and PvB in Figure 5.4), located within 2-

hop range, select the same SCH to establish their WBSS. This will result in overlapping

WBSS, with PvA and PvB unaware of this situation, leading to data collisions.

To tackle this problem, ASSCH uses a mechanism similar to the Channel Collision

Warning (CCW) described in [22]. Indeed, when vehicles U1 and U2 in Figure 5.4

receive WSAs from PvA and PvB reserving the same SCH, they broadcast a warning

message, labeled Overlapping SCH Notification (OSCHN). OSCHN contains the SCH
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Figure 5.4: WBSS overlapping problem

in question along with the identifier and the priority of the provider which will keep the

channel, selected based on the following rules:

1. In case PvA and PvB have different priorities, the provider with the highest priority

will keep the channel.

2. In case PvA and PvB have the same priority, the first provider to broadcast WSA

will keep the channel.

Assume that PvA is the one to keep SCH as it has higher priority. Since both U1 and U2

detect the overlapping problem, both will try to send OSCHN, leading probably to colli-

sion. To avoid such a scenario, both vehicles wait for a time interval before transmitting

OSCHN, computed as follows:

ti =
(
|d−d′|

max(d,d′)

)
+ γ (5.38)

where d and d′ are distances between the current vehicle and PvB and PvA, respectively.

γ is a randomly generated time offset to break the tie when PvB and PvA are of equal

distance to the current vehicle. Equation 5.38 indicates that the closest vehicle to the

provider to select a new SCH (i.e., PvB) will be the first to transmit OSCHN, increasing

therefore the probability of OSCHN successful delivery. Since U1 is the closest vehicle

to PvB, it will be the first to send OSCHN. When receiving U ′1s OSCHN, U2,PvA, and

PvB will react as follows:

– U2 cancels its OSCHN transmission since it learns that it is not the closest vehicle
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to PvB.

– PvA determines that its WSA was successfully transmitted and that it is entitled to

use the selected SCH.

– PvB learns that the selected SCH is already reserved by PvA. Thus, it updates its

CST (i.e., setting the state of the perviously selected SCH to occupied and the

provider using it to PvA) and selects a new SCH.

To quickly handle WBSS overlapping problem, ASSCH assigns OSCHN messages

higher priority than WSA messages. Bear in mind that our overlapping SCH notification

mechanism is different from CCW [22] in two ways. First, ASSCH considers providers’

priority and WSA generation time when deciding about which provider should keep

SCH. Second, unlike CCW that relies only on providers to send warning messages,

ASSCH impels all vehicles that detect an overlapping problem to get involved in notify-

ing concerned providers. This makes ASSCH more immune against OSCHN message

loss.

5.3.4 WBSS Termination

Amadeo et al. proposed a mechanism in [77] that enables users to detect non-

persistent WBSS termination. Indeed, if no data frame is received during an entire SCI

(see Fig. 5.5), users consider that WBSS has been terminated. Yet, this mechanism

causes inefficient channel utilization as users keep the state of the channel as occupied

for one additional SCI. To expedite the notification process, we add a T-bit flag to beacon

messages to indicate WBSS termination (see Fig. 5.6). When a provider ends its WBSS,

it sets T-bit flag to 1. When receiving the provider’s beacon message, users check the

T-bit value. If set to 1, it implies that WBSS was terminated. Hence, they leave it

immediately and update their CSTs. If set to 0, users know that WBSS is still alive,

keeping the state of the reserved SCH as occupied. Note that only beacons originated

from providers are checked for T-bit since the same flag is always set to 0 for all other

vehicles. To make the termination scheme more efficient, ASSCH gives higher priority

to providers’ beacon messages, allowing them to be transmitted first. This way, users

as well as neighboring vehicles can quickly get notified, enabling them to update their
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CSTs instantly, which will help reducing the waiting time to establish other WBSS.

Figure 5.5: WBSS setup and termination according to Amadeo et al.

Figure 5.6: WBSS setup and termination according to ASSCH

5.4 Performance Evaluation

In this section, we present a simulation-based evaluation of ASSCH and compares

it to CRaSCH [22], an allocation-based scheme that is closely related to our service

channel selection mechanism. We also implemented a multi-transceiver ASSCH, called

MASSCH, to simulate a prediction-based scheme in order to demonstrate the high per-

formance of ASSCH. The IEEE 802.11p [47] standard is used as a basis for comparison.
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5.4.1 Simulation Settings

We used OMNET++ [80] along with Veins [81] to implement the different schemes

and deployed SUMO [72] to generate realistic traces for our VANET. The simulation

setup is a one directional highway segment of 4000 meters with two lanes. Vehicle

speed is uniformly distributed between 80 and 120 km/h, which is typical for a highway

scenario. The Nakagami-m propagation model is used with the fading factor m set to

1.5 for short distance (≤80 meters) between transmitters and receivers and decreases to

m = 0.5 for longer distances (>80 meters) [81]. Other parameters are listed in Table 5.I.

Table 5.I: Simulation Parameter Settings
Parameter Value
Data rate 6 Mbps

λa 1 vehicle/s
λb 10 beacons/s
α 2
Pt 20 mW
Pth 3.162e-13 W
ρ 0.5

Antenna height 1.5 m
Gt = Gr 1

µ2, µ3 (in seconds) 7, 6
p2

q, p3
q 0.01, 0.02

We simulated an application that allows local sharing of two types of files: 1) a 5

seconds video file at 20 fps, where each frame is 320×240 with 16.7 million colors; and

2) a 30 seconds audio file with 2 channels, 16-bit bit depth, and a sample rate of 44.1

KHz. Once providers reach a specific point on the highway, they randomly choose the

type of service to offer (i.e., audio or video), and then trigger the SCH selection scheme

to choose the least used SCHs. When receiving WSA, interested vehicles join WBSS.

Once SCI begins, providers start transmitting their data packets. Four metrics were used

to assess the performance of the simulated schemes:

– Prediction accuracy rate: the rate of successfully estimating SCHs state by a
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provider over its time travel on the highway segment.

– Average capture delay (ACD): the delay experienced by providers to establish

WBSS. It is defined as the elapsed time between the moment providers send WSA

messages and the moment their first data packet is transmitted. It indicates how

well the different schemes handle service differentiation.

– Overlapping SCI (OSCI): the number of SCIs during which two or more providers

initiate WBSS over the same SCH. This metric evaluates how the different schemes

cope with the WBSS overlapping problem.

– Average throughput: the amount of data bits transmitted over a time period.

5.4.2 Simulation Results

5.4.2.1 Prediction Accuracy Rate

Figure 5.7: Prediction accuracy rate vs. Number of providers

Figure 5.7 shows the prediction accuracy rate for ASSCH and MASSCH (i.e. they

are the only simulated schemes to predict the state of SCHs in the future). We observe

that as the number of providers increases, the prediction accuracy slightly decreases.

MASSCH marginally outperforms ASSCH thanks to the use of multiple transceivers
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(i.e., 1 for CCH and five for SCHs), allowing it to continuously monitor SCHs. This

offers a better estimation of channels state, making its SCH selection mechanism more

accurate. Even though ASSCH only uses one transceiver, its accuracy estimation of

SCHs state matches that of MASSCH (i.e., only 3% less than MASSCH when the num-

ber of providers in the network is set to 50 and only 1.4% less on average). The reason

is twofold: 1) ASSCH not only uses CSTs, but also compels providers to acquire real-

time SCHs state information during SCI, using monitors; and 2) ASSCH disseminates

SCHs state information using beacon messages, allowing CSTs to be updates periodi-

cally, therefore reducing the impact of WSA collisions.

5.4.2.2 Average Capture Delay

Figure 5.8 shows ACD variation with the number of providers. We observe that ACD

of all schemes increases with the increase of providers’ density. IEEE 802.11p generates

the lowest delay for both audio and video services. This is because vehicles lack 2-hop

visibility (i.e., they only keep track of used SCHs in 1-hop range), relaxing therefore the

spatial SCH reuse policy (i.e., even if providers are within carrier sense range, they can

still use the same SCH, regardless of their priority). MASSCH outperformed ASSCH

and CRaSCH since it uses multiple transceivers. ASSCH experiences lower ACD com-

pared to CRaSCH (e.g., when the number of providers is set to 50, ASSCH incurs ACD

that is 11% and 89% lower than CRaSCH for video and audio services, respectively).

The reason is threefold: 1) ASSCH gives preference to providers with high priority when

selecting SCHs as well as when solving WBSS overlapping problem (i.e., the provider

with the highest priority is always the one to keep SCH). Unlike ASSCH, CRaSCH does

not differentiate between traffic flows, which explains why the video service incurred

lower ACD compared to the audio service; 2) ASSCH uses beacon messages, instead of

WSA, to disseminate CSTs. This helps vehicles maintain up-to-date CSTs even when

collisions involving WSA messages occur, allowing for better selection decisions; and

3) ASSCH uses the WBSS termination mechanism, allowing vehicles to get notified

rapidly. This way, more SCHs can be made available for new providers to choose from.

Observe that when the number of providers is set to 50, ASSCH provides ACD that is

81



5.4. PERFORMANCE EVALUATION

Figure 5.8: Average capture delay vs. providers’ density

62% and 34% higher than the one incurred by MASSCH for video and audio services,

respectively. This is a tiny price to pay given the cost savings that can be achieved.

5.4.2.3 Overlapping SCIs

Figure 5.9 shows the number of overlapping SCI with respect to the number of

providers in the network. We observe that OSCI for all schemes increases with the in-

crease in the number of providers. As expected, MASSCH outperforms all the schemes

due to its ability to quickly detect hidden terminals. ASSCH deals better with the

overlapping WBSS problem compared to CRaSCH. For instance, in a network with

50 providers, ASSCH experiences OSCI that is 44% and 84% lower than that experi-

enced by CRaSCH for video and audio services, respectively. The reason is that ASSCH

compels all vehicles that detect SCH overlapping problem to get involved in notifying

the conflicting providers. This gives ASSCH a better network visibility, allowing it to

closely match the performance of MASSCH (i.e, 17% and 41% higher than MASSCH

for video and audio services, respectively, when the number of providers is set to 50).

IEEE 802.11p generates the highest OSCI as it lacks a mechanism to address the over-

lapping WBSS problem and relies only on received WSAs to keep track of used SCHs.
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Figure 5.9: Overlapping SCIs vs. number of providers

5.4.2.4 Average Throughput

Figures 5.10(a) and 5.10(b) depict the average throughput and the collision rate (CR)

of all schemes as a function of the number of providers. We observe that CR increases

as the providers’ density increases, implying throughput’s drop. Here again, MASSCH

outperforms all the schemes thanks to its ability to quickly detect hidden terminals, mak-

ing it resilient to packet losses. Also, IEEE 802.11p has the worst performance as it lacks

2-hop visibility, making it prone to the hidden terminal problem. ASSCH incurs CR that

is 81% and 7% lower than that of CRaSCH for audio and video services, respectively.

This is because: 1) like MASSCH, ASSCH can avoid selecting SCHs suffering the hid-

den terminal problem thanks to the use of monitors during SCI; 2) giving preference

to high priority providers (i.e., audio service) to establish their WBSS first implies ef-

ficient SCH utilization. Indeed, SCHs used by high priority providers are not solicited

during SCH selection, avoiding therefore unnecessary contention. This yields higher

throughput (i.e., data packets are transmitted in a short period of time) and lower packet

loss (i.e., low collision probability). Low priority providers, however, might share SCHs

with high priority providers (i.e., when the remaining SCHs are occupied by high pri-

ority providers). Consequently, they endure frequent contention phases, which might
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(a) (b)

Figure 5.10: Average throughput and collision rate vs. providers’ density

increase their collision probability. This explains the low throughput of ASSCH-vid

compared to CRaSCH-vid (i.e., CRaSCH allows one WBSS per SCH); and 3) updating

CSTs periodically makes freshly released SCHs quickly available to be exploited by new

providers. Observe again that ASSCH performed nearly as good as MASSCH since this

latter incurs CR that is only 14.5% and 3.6% lower than that of ASSCH for audio and

video services, respectively, when the number of providers is set to 50.

5.5 Chapter Summary

In this chapter, we proposed ASSCH, a hybrid single-transceiver SCH selection

mechanism that seeks to enhance the service quality of V2V infotainment applications.

ASSCH makes use of WSA and beacon messages as well as cooperation among vehi-

cles in order to update CSTs. These CSTs allow providers to select the least used SCHs

to establish WBSS. Furthermore, using the WBSS termination mechanism, ASSCH in-

forms users immediately to leave terminated WBSS and update their CSTs accordingly.

Simulation results show that ASSCH outperforms existing allocation-based schemes and

performs as good as prediction-based schemes since it allows for quicker access to ser-

vice channels, handles the overlapping WBSS problem better, and incurs high through-
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put. Therefore, ASSCH can be a good candidate for service channel selection for V2V

infotainment applications (e.g., media sharing, weather forecast, traffic statistics dis-

semination), particularly during the initial deployment of VANET, as multi-transceiver

vehicles might not be widely popular [35].
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CHAPTER 6

IEEE 802.11P EDCA PERFORMANCE ANALYSIS FOR INFOTAINMENT

APPLICATIONS

This chapter tackles the issue of accurately modeling the IEEE 802.11p EDCA mech-

anism for infotainment applications. Most existing schemes were designed for safety

applications and do not consider all the factors that can affect EDCA performance (i.e.,

queue saturation condition, backoff procedure, and internal/external collisions). It this

regard, two stochastic models are proposed which take into account all EDCA major

factors. The first model describes two Markov chains that are used to compute the trans-

mission probability and the probability of collision of each AC, from which an accurate

throughput model is derived. The second model extends the first one by taking into ac-

count the transmission opportunity (TXOP), unexploited in IEEE 802.11p, in order to

enhance the performance of infotainment applications, throughput in particular. Simula-

tion results are provided to demonstrate the accuracy of the proposed analytical models.

The remainder of this chapter is organized as follows. Section 6.1 gives an overview

of the IEEE 802.11p EDCA mechanism. Section 6.2 presents the assumptions made

as well as the notations used for both models. Section 6.3 describes the first proposed

model along with simulation results. The same goes with Section 6.4 which describes

the second proposed model. Finally, Section 6.5 concludes the paper.

6.1 IEEE 802.11p EDCA Overview

Like IEEE 802.11e [82], IEEE 802.11p uses the EDCA mechanism to support dif-

ferent levels of quality of service. Indeed, four access categories (ACs) are defined,

each having its own parameters, i.e., minimum contention window (CWmin), maximum

contention window (CWmax), and arbitration inter-frame space number (AIFSN). Yet,

unlike IEEE 802.11e, IEEE 802.11p sets TXOP to 0 for all ACs, implying that ACs shall

send only one packet per channel access.



6.2. ASSUMPTIONS AND NOTATIONS

When ACi (i = 0,1,2,3, with 0 as the highest priority) has a packet to send, it senses

the channel first. If the channel is sensed idle for at least an Arbitrary Inter-Frame Spac-

ing (AIFSi), the packet can be transmitted.

AIFSi = AIFSNi×Ts +SIFS (6.1)

Ts designates the duration of a time slot while SIFS represents the length of the Short

Inter-Frame Space. If the channel is sensed busy, ACi continues sensing the channel.

When it becomes idle and stays idle for AIFSi, ACi invokes the backoff procedure. To

this end, ACi selects a backoff counter k between 0 and CWi, where CWi is set to CWmini

at the beginning. Whenever the channel is sensed idle, k is decremented. Otherwise, k

is stopped at its current value. ACi resumes decrementing k only when it senses that the

channel has been idle for at least AIFSi. When k reaches 0 and the channel is sensed

busy, ACi invokes the backoff procedure without changing the value of CWi. Otherwise

(i.e., channel is idle), ACi transmits its packet.

Upon failing to receive an acknowledgment frame (ACK) on time, ACi concludes that

its previous transmission was unsuccessful and will attempt to retransmit the packet. At

each retransmission, CWi is doubled and a new backoff procedure is invoked. When CWi

reaches CWmaxi , ACi uses CWmaxi for the upcoming retransmissions. When the retrans-

mission limit ri is reached, the packet is dropped and CWi is reset to CWmini .

To accurately analyze the performance of IEEE 802.11p EDCA, we will consider

all the factors described in Section 3.3. This includes the number of ACs considered,

the AC queue condition, the backoff procedure, the backoff counter freezing, the busy

channel at zero, and the internal and external collisions. To the best of our knowledge,

none of the proposed models [36–40] have considered all of these factors.

6.2 Assumptions and Notations

Like most related work, i.e., [37–41, 83], we assume that ACs have the same collision

probability for different transmissions. We also assume that packets are dropped only

due to collisions. The notations used in both models are summarized in Table 6.I.
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Table 6.I: Notations’ definition
Notation Definition

CW i
j Contention window size of ACi at backoff stage j

mi The backoff stage where CW i
m =CW i

max

pb Probability of a busy channel in a slot

pci Collision probability of ACi in a slot

τi Transmission probability of ACi

psi Probability of successful transmission for ACi

p fi Probability of T XOPi not yet expired

TL Transmission time of a packet of size L

Ti Average expected time spent at all states by ACi

Each state in the Markov chain, modeling the backoff procedure, is represented by a

pair of integers ( j,k), where j denotes the backoff stage while k designates the backoff

counter. j is initiated to 0 and is incremented by 1 whenever a collision occurs. When j

reaches ri, the packet is dropped if a collision happens, and j is reset to 0. k is initialized

to a value uniformly distributed between [0, CW i
j ] and is decremented by 1 whenever the

channel is sensed idle in a slot. CW i
j is computed as follows:

CW i
j =


CW i

min +1, if j = 0

2 jCW i
0, if 1≤ j ≤ mi−1

CW i
max +1, if mi ≤ j ≤ ri

(6.2)

After each successful transmission or packet drop, ACi shall invoke the backoff proce-

dure with backoff stage j = 0 [47]. We label this as post-backoff procedure. In case

no packets were queued at the end of the post-backoff phase, ACi keeps silent. It will

contend for the channel again once it has packets to be transmitted.
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6.3 IEEE 802.11p EDCA Performance Analysis Model

6.3.1 Probability of Transmission

Figure 6.1 illustrates the 2-D Markov chain describing the backoff procedure of ACi.
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Figure 6.1: The Markov chain modeling the backoff procedure of ACi

The transition probabilities of the Markov chain are expressed as follows:

For 0 < k ≤CW i
j −1 and 0≤ j ≤ ri

P( j,k| j,k) = pb (6.3)

P( j,k−1| j,k) = 1− pb (6.4)
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For 0≤ k ≤CW i
j −1 and 0≤ j ≤ ri

P(0,k| j,0) = 1− pci

W i
0

(6.5)

P(0,k|ri,0) =
1

W i
0

(6.6)

P( j,k| j−1,0) =
pci

W i
j

(6.7)

P( j,k| j,0) = pb

W i
j

(6.8)

During the backoff process, k is stopped at its current value whenever the channel is

sensed busy, as indicated by Equation 6.3. Otherwise, k is decremented by 1 according to

Equation 6.4. Equation 6.5 accounts for the situation where the previous packet is suc-

cessfully transmitted and the post-backoff procedure is invoked. Equation 6.6 implies

that the post-backoff procedure is invoked after ri is reached, regardless of the status

of the previous packet (i.e., either successfully transmitted or dropped). Equation 6.7

reveals that whenever a collision occurs, the backoff procedure is invoked with the back-

off stage j incremented by 1. Finally, Equation 6.8 specifies that when k = 0 and the

medium is sensed busy, the backoff procedure is invoked while keeping the same value

of j.

Using the Markov chain illustrated in Figure 6.1, a transmission occurs when k = 0

and the channel is sensed idle. Therefore, we have:

τi = (1− pb)
ri

∑
j=0

b( j,0) (6.9)

where b( j,0) denotes the stationary probability of state ( j,0). Using Equation 6.7, we

can express b( j,0) for 1≤ j ≤ ri as follows:

b( j,0) = b( j−1,0)pci (6.10)
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By recurring Equation 6.10, we have:

ri

∑
j=0

b( j,0) = b(0,0)
ri

∑
j=0

p j
ci

(6.11)

Since the sum of all states in the Markov chain equals to one, we have:

ri

∑
j=0

W i
j−1

∑
k=0

b( j,k) = 1 (6.12)

By recurring Equations 6.5- 6.8 and Equation 6.10 for 0 < j ≤ ri, we obtain:

W i
1−1

∑
k=0

b( j,k) =
(W i

j −1)p j
ci(1+ pb)b(0,0)

2(1− pb)
+b( j,0) (6.13)

For j = 0, and using Equations 6.5- 6.8 and Equation 6.10, we get:

W i
0−1

∑
k=0

b(0,k) =
(W i

0−1)(1+ pb)b(0,0)
2(1− pb)

+b(0,0) (6.14)

Combining Equations 6.13 and 6.14, we can compute b(0,0) as follows:

b(0,0) =
2(1− pb)

1+ pb

[
W i

0

m−1

∑
j=0

2 j p j
ci

+ W i
m

ri

∑
j=m

p j
ci
− (1 − 2pb)

ri

∑
j=0

p j
ci

]−1

(6.15)

Hence,

τi =
2(1− pb)

2
∑

ri
j=0 p j

ci

1+ pb

[
W i

0

m−1

∑
j=0

2 j p j
ci
+ W i

m

ri

∑
j=m

p j
ci
− (1 − 2pb)

ri

∑
j=0

p j
ci

]−1

(6.16)

6.3.2 Probability of Collision

Now, we need to compute the probability of collision pci of ACi. Equation 6.1 shows

that AIFSi depends only on AIFSNi since SIFS is similar for all ACs. According to

[47], the default values of AIFSN for AC0,AC1,AC2 and AC3 on SCHs are 2,3,6, and
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9, respectively (see Section 2.2.2). Given these values, four contention zones (z j, j =

1,2,3,4) can be identified, as illustrated in Figure 6.2. Different ACs contend in different

zones. For example, in z1, only AC0 is allowed to contend for the channel while in z2,

AC0 and AC1 can attempt to transmit. In z4, all ACs can attempt to access the medium.

Let N j
s denotes the number of slots in the jth contention zone. Based on Figure 6.2, the

number of slots in each zone is N1
s = 1, N2

s = 3, N3
s = 3, and N4

s = ∞.

Figure 6.2: Contention zones for the different ACs

To describe the contention phase after a busy period, we adopt the model presented

in [39, 40]. In this model, the slots involved in the contention phase (i.e., after AFISN0)

represent the states of the Markov chain (see Figure 6.3). The transition from the current

state to the next is carried out when the channel is sensed idle. Otherwise, the current

state transits to state 1. Therefore, the transition probabilities of the Markov chain illus-
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Figure 6.3: The Markov chain modeling the contention phase of ACi

trated in Figure 6.3 are expressed as follows:

P(s+1|s) = p1, P(1|s) = 1− p1 1≤ s≤ N1
s

P(s+1|s) = p2, P(1|s) = 1− p2 s≥ N1
s

P(s+1|s) = p3, P(1|s) = 1− p3 x1 +1≤ s≤ x2

P(s+1|s) = p4, P(1|s) = 1− p4 s≥ x2 +1

(6.17)

where x1 = N1
s +N2

s and x2 = x1 +N3
s . ACi will transit from one state to another in a

zone, i.e., from the current slot to the next one, if no transmission is carried over the

current slot. Therefore, we have:

p j = ∏
i< j

(1− τi)
Ni j = 1,2,3,4 (6.18)

where Ni designates the number of contending stations having ACi.

Let ps
s be the stationary probability of state s. Using the Markov chain in Figure 6.3,
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we obtain:

ps+1
s =



ps
s.p

1, 1≤ s≤ N1
s

ps
s.p

2, N1
s +1≤ s≤ N2

s

ps
s.p

3, x1 +1≤ s≤ x2

ps
s.p

4, s≥ x2

(6.19)

Since the sum of the stationary probabilities in a Markov chain equals 1, we get:

p1
s =

[
1− (p1)N1

s

1− p1 +(p1)N1
s

1− (p2)N2
s

1− p2 +(p1)N1
s (p2)N2

s
1

1− (p3)N3
s

+(p1)N1
s (p2)N2

s (p3)N3
s

1
1− p4

]−1

(6.20)

The stationary probability of a zone can be defined as the sum of the stationary proba-

bilities of all states in the zone [39, 40]. Therefore:

p1
z =

N1
s

∑
s=1

ps
s, p2

z =
N2

s

∑
s=N1

s +1

ps
s, p3

z =
x

∑
s=x1+1

ps
s, p4

z =
∞

∑
s=x2+1

ps
s (6.21)

The collision probability of ACi in zone z j (i.e., pz j
ci ) is equivalent to the probability that

when ACi has a packet to transmit in a slot, there is at least another ACi′ that has a packet

to transmit in the same slot. ACi′ can be of the same or different priority than ACi. Thus,

pz j
ci can be expressed as:

pz j
ci =

1−∏i′<i(1− τi′)
Ni′ .∏i≤i′< j(1− τi′)

Ni′−1, i < j

0, i≥ j
(6.22)

Hence, the collision probability of each ACi can be computed as:

pci =
∑i≤ j p j

z pzi
ci

∑i≤ j p j
z

(6.23)

94



6.3. IEEE 802.11P EDCA PERFORMANCE ANALYSIS MODEL

Now we need to quantify pb. Since pb is the probability that the channel is busy in a

slot, it is simply the probability that at least one station is using the channel in that slot.

pb = 1−
4

∑
j=1

p j
z p j (6.24)

By solving equations 6.16, 6.22, and 6.23, we obtain the probabilities of transmis-

sion and collision of each AC. These quantities are then used to derive the normalized

throughput for each AC.

6.3.3 Normalized Throughput

Let Di designates the normalized throughput of ACi. We define Di as the fraction of

time used by ACi to successfully transmit a packet from the average expected time that

it spends in all the states. Therefore, we have:

Di =
psiTL

Ti
(6.25)

Let pz j
si designates the probability of successful transmission of ACi in zone z j. pz j

si is

equivalent to the probability that when ACi is transmitting in a slot in z j, no other ACi′

has packets to transmit. Again, ACi′ can have the same or different priority than ACi.

Therefore, pz j
si can be expressed as:

pz j
si =

Niτi ∏i≤i′< j(1− τi′)
Ni′−1

∏i′<i(1− τi′)
Ni′ , i < j

0, i≥ j
(6.26)

Hence,

psi =
4

∑
j=1

p j
z pz j

si (6.27)

The Markov chain in Figure 6.1 shows that Ti is not fixed as it depends on the chan-

nel’s state (i.e., idle or busy). The channel is idle in a slot when no transmission is carried

out; therefore, the duration of the idle state is Ts. A busy channel in a slot, however, can
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be interpreted in two ways: successful transmission or collision. Thus, we have:

Ti = (1− pb)Ts + psiTsuc +(pb− psi)Tc (6.28)

where Tsuc and Tc are the durations of a successful transmission and a collision, respec-

tively, and are expressed as follows:Tsuc = AIFSi +Th +Td +SIFS+TACK +2δ

Tc = AIFSi +Th +T ′d +δ

(6.29)

where Th, Td , and TACK are the transmission times of the header, the payload, and the

ACK frame, respectively; T ′d denotes the transmission time of the largest packet involved

in the collision; and δ represents the propagation delay.

6.3.4 Performance Evaluation

To validate the accuracy of our model, we used OMNET++ [80] along with Veins

[81] to simulate the IEEE 802.11p standard and we generated the mobility traces using

SUMO [72]. Our simulation scenario represents a one-directional highway segment of

length 4000m with 2 lanes. The vehicles’ speed is uniformly distributed between 80 and

120 km/h. We use SCH 174 as the default service channel. Vehicles having packets to

be transmitted are labeled as providers while vehicles receiving packets are labeled as

users. When a Service Channel Interval (SCI) starts, providers contend for the channel to

transmit fixed size UDP packets (L = 512 bytes). We used the Nakagami-m propagation

model with m = 1.5 for short distance (≤80 meters) between transmitters and receivers

and m = 0.5 for longer distances (>80 meters) [81]. Other simulation parameters are

listed in Table 6.II.
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Table 6.II: 1st Model Simulation Parameters
CW 0

min 3 CW 0
max 7

CW 1
min 3 CW 1

max 7

CW 2
min 7 CW 2

max 15

CW 3
min 15 CW 3

max 1023

ri 7 Ts 13 µs

SIFS 32µs Data rate 3 Mbps

Trans. power 20 mW Sensitivity -89 dBm

6.3.4.1 Simulation Results and Analysis

Figure 6.4: Normalized throughput vs. traffic load

Fig. 6.4 shows the normalized throughput for the different ACs as a function of traf-

fic load. There are 4 providers, each having packets for a particular AC. All providers

are within 1 hop-range, contending to transmit their packets. We observe that the results

from the analytical model closely match those of the simulation. We also observe that

the normalized throughput has the tendency to stabilize for all ACs as the traffic load in-
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creases. This is because ACs have more packets buffered in their queues (i.e., saturation

condition), implying that they will continually contend for the channel.

(a) (b)

Figure 6.5: Normalized throughput and success rate vs. number of providers

Fig. 6.5(a) shows the normalized throughput as a function of the number of providers

in the network. In this scenario, providers have packets for all ACs and the number of

packets to be transmitted is set to 500. Fig. 6.5(a) shows that simulation results are very

close to the analytical results. Fig. 6.5(a) also shows that the normalized throughput

quickly decreases, for AC0 and AC1 in particular, when the traffic load increases. The

reason is twofold: 1) increasing the number of ACs in the network implies that more ACs

will contend for the channel, leading to higher number of collisions (i.e., internal and

external). Consequently, the probability of transmission τi decreases; and 2) increasing

the number of ACs can lead to an increase in interferences originated from the hidden

terminal areas, reducing therefore the normalized throughput.

To support our claim, we computed the number of dropped packets for all ACs; re-

sults are shown in Fig. 6.5(b). We observe that the number of dropped packets increases

rapidly for AC0 and AC1 as the number of contending ACs increases. For instance,

when only one provider has packets for AC0, no packet is dropped; however, when five

providers have packets for AC0, the number of dropped packets reaches 190 (i.e., 38%
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packet loss).

Figure 6.6: Normalized throughput vs. packet size

Finally, Fig. 6.6 depicts the impact of packet size on normalized throughput for AC0.

Results of the remaining ACs were not shown for the sake of clarity. Four providers

contend for the channel. Each one of them has packets for all ACs. Here again, we

observe that simulation results are very close to analytical results. Moreover, as traffic

load increases, the normalized throughput of all packet sizes reaches a maximum value

and starts decreasing. This is due to the increase of interfering traffic from hidden nodes

as well as the increase in the number of collisions. Fig. 6.6 also demonstrates that the

larger the packet size, the higher is the normalized throughput. This is because large

packet sizes allow for the transmission of a high number of data bits compared to low

packet sizes (e.g., 256 bytes), reducing therefore the time the channel is perceived as

idle.

6.4 IEEE 802.11p EDCA Performance Model Considering TXOP

In this model, we study the impact of transmission opportunity (TXOP) on the per-

formance of the IEEE 802.11p EDCA mechanism. We define TXOP as the time interval
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during which ACs can send one or multiple frames when accessing the channel. It can

be regarded as the maximum time ACs are allowed to hold the channel after winning a

contention. We believe that by enabling high priority ACs (i.e., AC0 and AC1) to transmit

more than one frame per channel access, we can enhance the throughput of infotainment

applications.

The model proposed by Harigovindan et al. [41] is the only model in the literature

that considers TXOP when analyzing the performance of IEEE 802.11p EDCA. How-

ever, a mathematical analysis of the backoff procedure was not presented and the busy

channel at zero was not considered. Thus, in this section, we propose a Markovian

model, which is an extension to the first proposed model, that takes TXOP into account.

While the probability of collision will remain unchanged (i.e., as it is mainly dependent

on AIFS), the probability of transmission as well as the normalized throughput will be

modified to accommodate TXOP.

6.4.1 Probability of Transmission

Figure 6.7 illustrates the 2-D Markov chain describing the backoff procedure of ACi

when considering TXOP.

The state SM represents the state where ACi can send frames without contending

for the channel as long as its TXOP is not yet expired. The transition probabilities of

the Markov chain, other than the ones already stated in Section 6.3.1, are expressed as

follows:

P(Sm| j,0) = p fi(1− pci) (6.30)

P(Sm|Sm) = p fi (6.31)

P(0,k|Sm) =
p fi pci

W0
+

1− p fi
W0

(6.32)

If ACi successfully transmits the first frame, it is allowed to transmit other frames, as long

as T XOPi is not yet expired (Equation 6.30). Equation 6.31 accounts for the situation

where ACi stays at SM as long as T XOPi holds, regardless of wether ACi has frames to

send or not. Finally, Equation 6.32 specifies that a backoff procedure is invoked when
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Figure 6.7: The Markov chain modeling the backoff procedure considering TXOP

ACi is at SM if: 1) a collision occurred while transmitting the current frame and T XOPi

is not yet expired; or 2) T XOPi has expired (i.e., post-backoff procedure).

Using the Markov chain, illustrated in Figure 6.7, a transmission occurs when:

– k = 0 and the channel is sensed idle.

– ACi is at state SM and T XOPi is not yet expired.

Hence, we have:

τi = bSM p fi +(1− pb)
ri

∑
j=0

b( j,0) (6.33)

where bSM designates the stationary probability of state SM and can be expressed as:

bSM =
p fi

1− p fi
b(0,0) (6.34)
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We know that the sum of all states in the Markov chain equals to 1. Thus, we have:

bSM +
ri

∑
j=0

W i
j−1

∑
k=0

b( j,k) = 1 (6.35)

For j = 0, and using Equations 6.5- 6.8, Equation 6.10 and Equation 6.32, we get:

W i
0−1

∑
k=0

b(0,k) =
(W i

0−1)(1+ pb)b(0,0)
2(1− pb)

+
(W i

0−1)p fi(1− p fi + p fi pci)b(0,0)
2(1− pb)(1− p fi)

+b(0,0)

(6.36)

Combining Equations 6.13 and 6.36, we get:

ri

∑
j=0

W i
j−1

∑
k=0

b( j,k)=

[
ri

∑
j=0

(pci)
j+

1+ pb

2(1− pb)

(
W0

m−1

∑
j=0

(2pci)
j +Wm

ri

∑
j=0

(pci)
j−

ri

∑
j=0

(pci)
j

)

+
(W i

0−1)p fi(1− p fi + p fi pci)

2(1− pb)(1− p fi)

]
b(0,0) (6.37)

Using Equation 6.34 and Equations 6.35- 6.37, we have:

b(0,0) =

[
ri

∑
j=0

(pci)
j +

1+ pb

2(1− pb)

(
W0

m−1

∑
j=0

(2pci)
j +Wm

ri

∑
j=0

(pci)
j−

ri

∑
j=0

(pci)
j

)

+
p fi

1− p fi

(
1+

(W i
0−1)(1− p fi + p fi pci)

2(1− pb)

)]−1

(6.38)

Thus,

τi =

[
ri

∑
j=0

(pci)
j +

1+ pb

2(1− pb)

(
W0

m−1

∑
j=0

(2pci)
j +Wm

ri

∑
j=0

(pci)
j−

ri

∑
j=0

(pci)
j

)

+
p fi

1− p fi

(
1+

(W i
0−1)(1− p fi + p fi pci)

2(1− pb)

)]−1[
p fi

1− p fi
+

(1− pb)(1− (pci)
ri)

1− pci

]
(6.39)

Now, we need to quantify p fi . p fi is the probability that ACi with T XOPi has still

102



6.4. IEEE 802.11P EDCA PERFORMANCE MODEL CONSIDERING TXOP

time to successfully transmit the current packet before T XOPi expires. T XOPi can be

regarded as the time till the channel becomes free, given that it is used by ACi. Clearly,

T XOPi is independent of the time the channel has been used up to the current moment,

implying the memoryless property. Therefore, p fi can be approximated by an exponen-

tial distribution with mean T XOPi.

p fi = e−(
1

T XOPi
) (6.40)

6.4.2 Normalized Throughput

Let Di designates the normalized throughput of an ACi. We define Di as the ratio of

the payload transmitted by ACi during its T XOPi and Ti. Thus, we have:

Di =
∑

Ni
j=1 psiTL

Ti
(6.41)

where Ni = max(1,b T XOPi
TL+SIFSc). psi is computed in the same way as in Section 6.3.3.

6.4.3 Performance Evaluation

In this section, we validate the accuracy of our model through simulations. We used

ns-2 to simulate a highway scenario, where one RSU is placed at its center; vehicles

passing by contend to transmit fixed-size UDP packets. AC parameter sets are kept the

same as in Table 6.II. The other simulation parameters are listed in Table 6.III. We did

not include results of AC2 and AC3 as we found that they are identical to the previously

proposed model.

Table 6.III: 2nd Model Simulation Parameters
Vehicles’ speed 70 miles/h Data rate 6 Mbps

T XOP0 1.504 ms T XOP1 3.008 ms

Figure 6.8 shows the normalized throughput of AC0 and AC1 as a function of packet

arrival rate. We set the number of vehicles in the RSU’s transmission range to 4 and
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L to 512 bytes. We observe that our model allows both AC0 and AC1 to have higher

throughput compared to the standard thanks to the use of TXOP. We also observe that the

normalized throughput has the tendency to stabilize as the packet arrival rate increases

for both AC0 and AC1. Indeed, when λi increases, ACs have more packets buffered in

their queues (i.e., saturation condition). As a result, they continually contend for the

channel. This is compatible with the findings of our first model.

Figure 6.8: Normalized throughput vs. packet arrival rate

Figure 6.9 shows the normalized throughput as a function of the number of stations

per AC. We set L = 512 bytes and λi = 4 Mbps. As expected, our model incurs higher

normalized throughput compared to IEEE 802.11p. In addition, we observe that the nor-

malized throughput decreases with the increase in the number stations. This is because

as the number of stations increases, more ACs will contend for the channel, leading to

higher number of collisions. Consequently, τi decreases, reducing therefore the normal-

ized throughput.
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Figure 6.9: Normalized throughput vs. number of stations per AC

Finally, Figure 6.10 depicts the normalized throughput as a function of the packet

size. Here, we set the number of vehicles in the RSU’s transmission range to 4 and

λi = 0.5 Mbps. Again, we see that using TXOP enhances the normalized throughput

of both AC0 and AC1 in comparison to the IEEE 802.11p standard. This is due to the

fact that transmitting multiple packets per channel access allows for the transmission of

a higher number of data bytes, augmenting therefore the normalized throughput.

Figure 6.10: Normalized throughput vs. packet size
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6.5 Chapter Summary

In this chapter, we developed two stochastic models to analyze the performance of

IEEE 802.11p EDCA for infotainment applications. In the first model, two Markov

chains were proposed. One illustrating the backoff procedure for each AC while the other

portraying the contention phase after a busy period. Both chains consider the backoff

counter freezing as well as internal and external collisions. They also consider the busy

channel at zero, which is not taken into account by almost all existing schemes. In the

second model, we took into consideration TXOP, unused by IEEE 802.11p, in order

to enhance the throughput of infotainment applications. Simulation results show that

our first model perfectly represents the throughput of different ACs. Simulation results

also show that using TXOP can increase the throughput of infotainment applications,

allowing for better QoS.
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CHAPTER 7

CONCLUSIONS AND PERSPECTIVES

7.1 Conclusions

VANET has seized the attention of different governments, industries, and academic

institutions since it offers tremendous potential for new business opportunities in terms

of traffic efficiency, convenience, and passengers’ infotainment. Yet, it has particular

challenges that may hinder its real-life deployment. The main objective of this research

project was to design new mechanisms for QoS support of infotainment applications in

VANET. To accomplish this goals, this dissertation proposes an efficient routing proto-

col for urban VANET (SCRP), a service channel selection scheme (ASSCH), and two

stochastic models to analyze the performance of the IEEE 802.11p EDCA mechanism.

In SCRP, information included in beacon messages is used to build backbones over

road segments, favoring vehicles moving with low relative speeds. Once backbones are

built, special nodes at intersections, labeled bridge nodes, are selected based on how long

they will stay at the junctions. These nodes will then collect information (i.e., number of

hops, delay, and connectivity) using a new control packet, called RAP. This information

is then used to assign weights to road segments. To control RAP size, the city is divided

into zones and an articulation junction is selected in each one of them. The articulation

junction is connected to most intersections in its zone and has up-to-date information

about connectivity and delay in its respective zone. By probing bridge nodes at articu-

lation junctions, possible routes between source and destination are constructed. Routes

with the lowest aggregated weights are selected to forward data packets. Simulation re-

sults show that SCRP achieves better performance compared to existing greedy-based

schemes in terms of E2ED and packet delivery ratio.

ASSCH is a hybrid service channel selection scheme designed for V2V infotainment

applications. It is a WAVE-compliant mechanism that assists providers in selecting the

least congested/used SCHs when setting up their WBSS. It starts by collecting real-time
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SCHs state information and updating CSTs accordingly. This is done throughout SI.

During CCI, vehicles keep track of received WSA to update their CSTs. During SCI,

providers select monitors to listen to different SCHs. SCHs state information is then fed

to a Markovian model in order to predict SCHs state in the near future. Finally, SCHs are

categorized based on their predicted states and the least used SCHs are selected. Simu-

lation results show that ASSCH outperforms existing allocation-based schemes and per-

forms as good as prediction-based schemes since it allows for quicker access to service

channels, handles the overlapping WBSS problem better, and incurs higher throughput

and success rate.

Finally, we mathematically analyze the performance of IEEE 802.11p EDCA for

V2V infotainment applications. Two stochastic models are proposed. Both models take

into consideration the ACs parameter sets, the backoff counter freezing, the busy chan-

nel at zero, and the internal and external collisions. The first model includes two Markov

chains that describe the backoff procedure and the contention phase of the different ac-

cess categories. The second model extends the first model by considering TXOP, un-

exploited in IEEE 802.11p, in order to enhance the throughput of infotainment appli-

cations. Simulation results show that our first proposed model perfectly represents the

throughput of different ACs. They also show that using T XOP can increase the through-

put of the different infotainment applications, allowing for better QoS.

7.2 Limitations

SCRP: During the initial phase of VANET’s deployment, not all vehicles will be

equipped with WAVE devices which may impact the performance of SCRP as it will not

be able to: 1) precisely compute the stability factor to select vehicles to be included into

backbones; 2) accurately estimate the information regarding connectivity and delay to

attribute weights to road segments; and 3) quickly select articulation junctions.

ASSCH: To predict the state of SCHs in the next SCI, ASSCH uses the Markovian

model described in Chapter 5. This Markovian model is executed by providers that want

to establish WBSS in every SCI even though we made the service time of providers with
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different priorities known to all vehicles. This increases the complexity of ASSCH.

EDCA Analysis Model: Due to time constraints, we limited the number of con-

tending ACs to 5. Also, we made providers transmit their packets on the same service

channel, instead of using different ones, in order to simulate the contention phase.

7.3 Perspectives

SCRP deployment in cities with irregular road topologies: In Chapter 4, one of

SCRP key components is the selection of articulation junctions. We did so by dividing

a city, with regular topology (i.e., grid topology) into zones of 3× 3 blocks. Yet, we

did not consider cities with irregular road topology. Therefore, an extension to SCRP

would be to specify a mechanism to select articulation junctions in cities with irregular

topologies. A possible solution would be to divide the city into cells of radius r and use

the same process described in Chapter 5 to select the articulation junctions. The value of

r, however, should reflect the tradeoff between convergence time and routing overhead.

On the one hand, a large value of r means that cells will contain many junctions. This

implies that the overhead for establishing routes will be low, but the scheme will con-

verge slowly as several rounds of RAP exchanges are needed to select the articulation

junctions. On the other hand, having a small value of r will yield a rapid selection of the

articulation junctions. Yet, the overhead for route construction will be high since several

articulation junctions may be prompted.

Dynamic Switching to freshly available SCHs: In ASSCH, high priority providers

can share SCHs with low priority providers in case all SCHs are occupied. Still, once

one of the SCHs becomes available, ASSCH does not allocate the freshly available SCH

to one of the providers sharing a service channel. As an extension to ASSCH, providers

sharing SCHs can be allowed to dynamically switch to the freshly available SCH, im-

proving therefore their service quality. Questions to be addressed are: which provider

should switch to the newly available SCH (i.e., considering priority, WBSS lifetime, and

the occupants of adjacent SCHs) and how to inform users of the eventual SCH switching.

Adaptive mechanism to dynamically select the best TXOP value: It was shown
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in this dissertation that the performance of infotainment applications can be improved

if TXOP is considered. Nevertheless, the values of TXOP used in this dissertation are

similar to the ones used by IEEE 802.11e. An extension of this study would analyti-

cally determine which parameters to consider when deciding whether a provider should

change its TXOP value. Another extension would be to implement this approach in

Veins [81], allowing for results’ verification.

7.4 Future Research Direction

Cross-layer approach for multihop infotainment applications: An interesting

buildup to the work done in this dissertation would be to design a cross-layer approach

to further enhance multihop non-safety applications’ QoS. Indeed, this approach should

enable data forwarding of non-safety applications in a multihop fashion and should sup-

port both V2V and V2I communication modes. When a provider wants to transmit data

to a far away user, the cross-layer approach will be deployed. On the one hand, the MAC

layer will be in charge of selecting the best available SCH (i.e., least used or least prone

to interferences) and dynamically switch to a freshly available SCH if the current used

SCH is shared. The network layer, on the other hand, is responsible for selecting the best

routing paths, depending on the application requirements (i.e., paths with low E2ED or

high throughput).
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