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RÉSUMÉ

Alors que le rendu réaliste gagne de l’ampleur dans l’industrie, les techniques à la

fois photoréalistes et basées sur la physique, complexes en terme de temps de calcul,

requièrent souvent une étape de précalcul hors-ligne. Les applications en temps réel,

comme les jeux vidéo et la réalité virtuelle, se basent sur des techniques d’approximation

et de précalcul pour atteindre des résultats réalistes. L’objectif de ce mémoire est l’invest-

igation de différentes paramétrisations animées pour concevoir une technique d’approx-

imation de rendu réaliste en temps réel.

Notre investigation se concentre sur le rendu d’effets visuels appliqués à des per-

sonnages animés par modèle d’armature squelettique. Des paramétrisations combinant

des données de mouvement et d’apparence nous permettent l’extraction de paramètres

pour le processus en temps réel. Établir une dépendance linéaire entre le mouvement et

l’apparence est ainsi au coeur de notre méthode.

Nous nous concentrons sur l’occultation ambiante, où la simulation de l’occultation

est causée par des objets à proximité bloquant la lumière environnante, jugée uniforme.

L’occultation ambiante est une technique indépendante du point de vue, et elle est dé-

sormais essentielle pour le réalisme en temps réel. Nous examinons plusieurs paramétri-

sations qui traitent l’espace du maillage en fonction de l’information d’animation par

squelette et/ou du maillage géométrique.

Nous sommes capables d’approximer la réalité pour l’occultation ambiante avec une

faible erreur. Notre technique pourrait également être étendue à d’autres effets visuels

tels le rendu de la peau humaine (diffusion sous-surface), les changements de couleur

dépendant du point de vue, les déformations musculaires, la fourrure ou encore les vête-

ments.

Mots clés: infographie, animation squelettique, enveloppe géométrique, défor-

mations, harmoniques de variété, réflectance.



ABSTRACT

While realistic rendering gains more popularity in industry, photorealistic and phys-

ically-based techniques often necessitate offline processing due to their computational

complexity. Real-time applications, such as video games and virtual reality, rely mostly

on approximation and precomputation techniques to achieve realistic results. The objec-

tive of this thesis is to investigate different animated parameterizations in order to devise

a technique that can approximate realistic rendering results in real time.

Our investigation focuses on rendering visual effects applied to skinned skeleton-

based characters. Combined parameterizations of motion and appearance data are used

to extract parameters that can be used in a real-time approximation. Trying to establish

a linear dependency between motion and appearance is the basis of our method.

We focus on ambient occlusion, a simulation of shadowing caused by objects that

block ambient light. Ambient occlusion is a view-independent technique important for

realism. We consider different parameterization techniques that treat the mesh space

depending on skeletal animation information and/or mesh geometry.

We are able to approximate ground-truth ambient occlusion with low error. Our

technique can also be extended to different visual effects, such as rendering human skin

(subsurface scattering), changes in color due to the view orientation, deformation of

muscles, fur, or clothes.

Keywords: Computer graphics, skeletal animation, skinning, deformations, man-

ifold harmonics, shading.
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CHAPTER 1

INTRODUCTION

Realistic rendering is an important topic in computer graphics, and it is commonly

used, especially in movies and special effects. However, due to the heavy computa-

tional cost it requires, realistic rendering techniques are not suitable for real-time appli-

cations such as video games and virtual reality. Real-time applications therefore rely

on techniques that approximate realistic rendering effects by simplifying calculations or

by "learning" from ground-truth values. However, even if approximation techniques can

yield good results in general, they may also suffer from some challenging limitations in

certain situations.

We investigate an approximation technique that focuses only on common animated

objects consisting of a skeleton controlling a skinned character, such as characters in

video games, moving clothes, deforming surfaces (e.g., muscles), etc. We assume that

there is, or approximate, some correlations with a linear dependency between motion

and appearance of objects. We construct a system of equations that "learns" motion and

appearance pairs and extracts some approximation parameters. These parameters are

then used to approximate realistic rendering of the skinned characters in real time.

To extract approximation parameters, we parameterize the mesh space of our skinned

skeletal models based on their joint, spatial, orientation, and manifold harmonic repre-

sentations. Our main goal is to correlate animation-dependent light transport by investi-

gating these different parameterizations. We construct a linear system based on ground-

truth appearance of the mesh (realistic rendering results), and the information linked

to the parameterization (joint angles or positions, vertex positions, manifold harmonic

bases, etc.). Then we extract the approximation parameters by solving the associated

system of linear equations. Real-time approximation is then done by computing an inner

product between the approximation parameters and the current animation pose.

We focus on ambient occlusion, a technique that increases realism of the rendered

results by giving perceptual clues to depth. It simulates the shadowing caused by objects



blocking ambient light and approximates the effects of environmental lighting. Even if

ambient occlusion computation is faster than, for instance, the computation of a global

illumination, it is still costly for real-time applications and animation sequences.

While our technique is based on parameterizing ambient occlusion, it may also be

applicable to other visual effects. For example, our investigation may be expanded to

render human skin, changes in color, deforming muscles, fur movement, clothing defor-

mations, etc., by simply "learning" some information, extracting a representation, and

then synthesizing new conditions.

This thesis is organized as follows. In Chapter 2, we cover preliminary and previous

work related with our approach. We detail our parameterization techniques in Chap-

ter 3. In Chapter 4, we provide and discuss our results. We then conclude our work by

discussing avenues for future work, in Chapter 5.

2



CHAPTER 2

PRELIMINARY

In this chapter, we will introduce some basic concepts and discuss the work related

with our research focusing on rendering visual effects applied to skinned characters

which contain skeletal and physical animations.

We begin by outlining some basics on animation before introducing important topics

related to our research, such as skinning, ambient occlusion, ambient occlusion approx-

imation techniques, and harmonic bases.

2.1 Animation Basics

Animation mimics the motion of objects by displaying a sequence of images, each

slightly different than the other, in a rapid succession. This rate changes from product

to product: while films in theaters require 24 frames per second (fps), IMAX requires

48 fps, and high-definition videos (such as HD TVs or current high-quality video games)

require 60 fps. Variation of frame rates is caused by technical decisions. For example,

24 fps was introduced to synchronize the sound with the film. Cathode ray tube (CRT)

used in TVs introduced 30 fps as standard for broadcast production. Due to recent tech-

nological development, high frame rates (such as 48 fps and 60 fps) are introduced to

increase the quality and realism (such as reducing motion blur and flickering found in

films) and align with human vision.

Traditional animations use photographs or drawings on paper. The animator must

draw every frame of the movement, then the frames are photographed one-by-one against

a painted background onto motion picture film. "Pinocchio" (1940) is a good example

of traditional animation (Figure 2.1).

Stop-motion is another animation technique that manipulates an object physically

to mimic motions or changes. The object is displaced by small increments between

individually photographed frames. Then, these frames are replayed as a fast sequence to



Figure 2.1: A scene from "Pinocchio" (1940, c©The Walt Disney Company). Image
from Wikipedia "Pinocchio (1940 film)" article (https://en.wikipedia.org/
wiki/Pinocchio_(1940_film)).

create the illusion of movement. Puppets, dolls with movable joints, or clay figures are

used in stop-motion animations. "The Nightmare Before Christmas" (1993) is a good

example of the use of such a technique (Figure 2.2).

Nowadays, computer animation is a widely adopted animation technique. The an-

imated images are generated using a computer, and usually 3D computer graphics is

used. On the other hand, 2D computer graphics is still used for stylistic, low bandwidth,

and faster real-time renderings. "Toy Story" (1995) is an important example of computer

animation (Figure 2.3).

3D animation is digitally modeled and manipulated by an animator using a computer-

based system. Polygon meshes are used to represent objects. Often reduced to a mesh of

triangles, these are defined by a set of vertex positions connected by edges to define faces.

To control its animation, a mesh may be associated to a virtual skeleton structure. This

process is called skeletal animation and it is used for character animation (Figure 2.4).

Character animation is a specialized animation focused on bringing animated char-
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Figure 2.2: An animator poses a character for a single frame of an ani-
mation sequence. Image from Buzzfeed "20 Crazy Facts About The Mak-
ing Of "The Nightmare Before Christmas" article by Arielle Calderon
(https://www.buzzfeed.com/ariellecalderon/the-making-of-
the-nightmare-before-christmas).

acters to life. Typical examples of character animations can be found in video games and

animated movies, e.g., in "Sheriff Woody" and "Buzz Lightyear" from "Toy Story" (Fig-

ure 2.3). 3D characters thus include a skeleton structure that is posed at each frame of

the animation, and the mesh components are manipulated using their associated skeleton

"bones".

Even though skeletal animation is mainly used to animate humanoid characters (hu-

man, animals, etc.), it can animate any kind of deformable objects, such as clothes, faces,

trees, etc. However, skeletal animation is usually not a physically-based technique; the

realism of the resulting movements is dependent on the talent of the artist, not some

underlying physical system.

Keyframing is widely used to generate computer animations. The scene is updated

for each key frame of the animation and in-between frames are interpolated to mimic

5
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Figure 2.3: A scene from "Toy Story" (1995, c©The Walt Disney Company). Image
from "Toy Story" official website (http://toystory.disney.com/).

any intermediate motion. Keyframing can create any kind of motion, however, realism

depends on the artist.

Motion capture is a technique to record (and replay) real-world motion. While

keyframing can be used to generate any kind of motion, motion capture is used to record

the motion of objects, humans, animals, etc. (Figure 2.5). The results of a motion

capture session are physically-based and realistic since they come from a "live" perfor-

mance. Even complex movements, such as secondary motions (such as jiggling of soft

tissue), weight and exchange forces can be captured in a physically accurate way. Thus,

motion capture can be used to increase the realism of skeletal animation. More details

related to rigging and skeletal animation can be found in Section 2.2. Unfortunately,

motion capture relies on expensive capture equipment, and results may still require an

expensive and cumbersome manual post processing to, e.g., remove capture noise. Mo-

tion capture is used both in video games, and movies and keyframing and motion capture

are regularly combined.

There are many ways to capture motions [17]: in early prosthetic, a set of armatures

are attached over a performer’s body, connected to each other using a series of rotational

and linear encoders, which are connected to an interface that records all encoders si-
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Figure 2.4: A skeleton is rigged to a 2D character being animated. Image from Mar-
ionette Studio "Skeletal Animation" web page (http://marionettestudio.
com/skeletal-animation/).

multaneously in order to prevent distorted or biased data. Finally, performer’s motion

is analyzed using a set of trigonometric functions. This design has restrictions that are

difficult to overcome.

Acoustic motion capture uses a set of audio transmitters strapped to various parts

of a performer’s body. The transmitters are sequentially triggered to output a clicking

sound and its associated receiver measures the time it takes for sound to travel from

its transmitter. Even if this method creates accurate results, the sequential nature of the

position data created can be an issue since a snap shot of the performer’s skeletal position

would be preferred instead of a time skewed data (biased data) stream.

Magnetic motion capture uses a centrally located transmitter to capture data. A set

of receivers are strapped on a performer’s body and they are used to measure their spa-

tial relationship to the transmitter. The resulting data stream contains 3D positions and

orientations from each receiver. This data is typically applied to an inverse kinematics

system to drive an animated skeleton. The magnetic approach has the same problem as

7
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Figure 2.5: Andy Serkis portrays "Gollum" on the performance capture stage. Image
from Andy Serkis’ official website (http://serkis.com).

the audio method. Also, a lack of receivers, and a limited capture range may cause some

problems.

Modern motion capture uses optical systems. Here, directionally-reflective balls

serve as markers attached to a performer’s body. Since this method does not require

any cabling, it offers a performer the most freedom of movement, and this is one of its

advantages. Video cameras equipped with light sources are connected to a synchronized

frame buffer, and acquired data sets are derived by 3D reconstruction from multiple cap-

tured images. This method suffers from occlusion of the markers; however, this issue can

be reduced by using more cameras. Also, the resolution of the cameras and the quality

of the tracking software play an important role in the quality of the data acquired.

We focus our investigation only on skeletal animated characters. We developed a

system fed by motion data and corresponding appearance to find connections between

motion and appearance. Even though we only use frames generated by keyframing, there

is nothing to prevent the use of motion captured data.

8
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2.2 Skinning

Skinning and skeletal animation are the methods used in video games and animation

movies to bring 3D characters to life. A renderable skin (mesh) is attached to the charac-

ter’s skeleton which defines how this skin moves and deforms according to the skeletal

poses. A skeleton is a rooted tree structure of bones and joints. It is a posable framework

used to manipulate skin and other geometric data. A skeleton is posed with transfor-

mation matrices at each frame of the animation, the skin is manipulated according to

skeleton’s new pose, and the character is rendered (Algorithm 1).

Algorithm 1 Basic skinning algorithm
1: for each animation frame do
2: Read the frame information (pose)
3: Construct the transformation matrices hierarchically depending on the frame in-

formation
4: for each vertex do
5: Transform the vertex to its deformed location using the transformation ma-

trices
6: end for
7: Render the deformed character
8: end for

Joints are nodes of the skeleton that allow movements of the skeleton. Each trans-

formation that poses a bone of the skeleton is applied at a joint. A transformation is

assumed to be rigid and generally contains a translation plus a rotation. However, some

cases (such as crowd simulation) use nonrigid transformations (scale and shear). At

each frame of an animation, related transformation matrices are applied to joints and the

skeleton is posed in this way. The terms bone and joint are used interchangeably in the

literature. We will refer to bones as the edges between joints (Figure 2.6).

Skin is represented as a polygon mesh. Most of the time a triangle mesh is chosen

over quad mesh for the representation. The mesh connectivity is assumed constant and

only vertex positions change during the skinning process (deformation). The transfor-

mations are applied to the vertices to have them at new positions for the current pose

(deformed positions). The influence applied to each vertex from a small set of transfor-
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Figure 2.6: Skeleton structure containing joints (blue spheres), bones (yellow tetrahedra)
and skin (grey polygons). The root matrix positions the global mesh, and multiplies
hierarchically all other matrices of the tree structure. Image from Leonid Sigal, "Human
Motion Modeling and Analysis" course slides.

mations is defined by skinning weights (also called vertex weights or bone weights).

Skinning weights bind the vertices to the skeleton. They describe the influence of

joints on each vertex. There is usually a fixed upper bound on the number (and weights)

of joints influencing a vertex, due to graphics hardware considerations. The weights of a

vertex are assumed to be convex (sum of all weights a vertex has is equal to 1); however,

there are some other cases that do not assume weights to be convex to let the artists feel

free. Even if modelling tools offer algorithms to assign skinning weights automatically,

this is not a trivial problem. Most of the time the artist assigns values to the weights

by painting them on mesh vertices (Figure 2.7). In this way, the artist can visualize the

attachments to discover and fix problems.

Skinning does not necessarily have to be applied to human-like characters as it can be

applied to any kind of character containing a skeleton, going from clothes, faces to any

deformable geometrical model or parts of. However, Kavan et al. [3] detail the important

considerations behind the skinning applied to a character without any skeleton in their

SIGGRAPH course.

10



Figure 2.7: Painting weights on the shoulder. Color range goes from blue (closer
to 0), green, to red (closer to 1). Image from Digital Tutors, "Weight Paint-
ing in Blender" page (https://www.pluralsight.com/blog/tutorials/
weight-painting-in-blender).

The original idea of skinning, proposed by Magnenat-Thalmann et al. [10], evolved

into four different approaches: physically based, volume preserving, example-based, and

geometric.

Physically based skinning methods, based on internal structure of the body, create

highly realistic deformations. Secondary motion effects (such as jiggling of soft tissue)

can be reproduced; however, physically based methods require anatomy knowledge and

have higher computational costs. Alternatively, methods capturing real world objects

(such as motion capture) can help to decrease computational costs while retaining the

same realism; however, they can require expensive hardware set up, and all objects may

not be captured easily.

Volume preserving skinning techniques allow the artist to control effects, such as

folding or building muscle interactively. A volume correction is applied after each

deformation. In this way, unnatural volume changes in deforming joint regions, such

as collapsing joints and candy-wrapper effects (explained later) can be prevented [19].

However, volume preserving skinning methods are also expensive when compared to

geometric skinning methods. Also, some of volume preserving techniques cannot be
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used in current standard animation pipelines. One of the important volume preserving

methods is lattice-based free form deformation (FFD) [1]. Since FFD provides smooth

deformations and preserves skin volume, it is widely used in commercial 3D modelling

software [13]. However, FFD also requires additional setup and the deformation is some-

times difficult to predict.

Example-based techniques start from example meshes and use approximations or

interpolations to get artifact free realistic results. They consist of direct interpolations

between example meshes [9], approximations using principal components of example

deformations [7], or fitting linear blending parameters to match provided examples [12].

Realism of the results is limited by the number of input examples, and producing these

input examples can be costly.

Geometric skinning techniques are the most common approach for skin deformation.

These approaches use a geometric way to bind the skin to the skeleton. Skinning weights

and transformation matrices have an important role in these techniques. We mainly

focus on geometric skinning techniques since our investigation works with linear blend

skinning and dual quaternion skinning [4].

The most popular geometric skinning method is linear blend skinning (LBS). Since

it is easy to parallelize on GPU, LBS has become the de-facto standard in video game

development. LBS starts from a rest pose shape along with joint transformations and

skinning weights. The rest pose shape is actually the skin (mesh) we mentioned earlier

in special "T-pose" (Figure 2.8).

LBS computes deformed vertex positions by a weighted sum, which is performed

for each vertex at every frame (Figure 2.9). Skinning weights are blended with trans-

formation matrices to transform rest pose vertex positions into their deformed positions

(Equation 2.1).

vi =
m

∑
j=1

wi, j M j vi (2.1)

where vi is the transformed (deformed) vertex position, vi is the rest pose position of

vertex, wi, j is the weight of the jth joint on the ith vertex, and M j is the transformation
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Figure 2.8: A mesh in "T-pose". Image from cgtrader, "Fatman T-Pose 3D model".

matrix of the jth joint. m is the upper bound for skinning weights. It is usually in the

[1, 4] range.

The rest pose vertex positions are in R3 or R4 (homogeneous space). Bone transfor-

mations include transformation matrices that define the animation frames in R4 (homo-

geneous space). These matrices are used to pose the skeleton of the character. Skinning

weights describe the influence of a bone on a specified vertex. Skinning weights are in

R, and usual range is [0, 1].

Equation 2.1 is also used to transform the vertex normal and tangent vectors. Nor-

mal and tangent vectors are used for shading operations. For transforming a normal,

ideally the inverse transpose of transformation matrix M should be used; the rest pose’s

vertex normal should be transformed using the upper 3× 3 block of the inverse trans-

posed matrix. However, if M does not include any nonrigid transformation (such as

nonuniform scale and shear), the rest pose normal can be transformed without taking

the inverse transpose of M. Still, the resulting normal should be normalized after the
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W1 W1

W2

W2

Figure 2.9: Skinning on a 2D cylinder. An unbent knee with skin attached to joints 1
and 2 (left) is skinned using a weighted sum of the skinning transformations (right). W1
and W2 are world matrices of the joints.

transformation.

Transforming tangent vectors does not require taking the inverse transpose of M;

however, normalization is still required after the transformation.

M is defined as M = B−1 W where B−1 is the inverse binding matrix that transforms

vertex positions from skin local space to joint local space. W is the world matrix of the

joint (Figure 2.10). So, matrix M provides a transformation for a vertex from skin local

space to joint local space, and finally to world space. The matrix M is updated for each

joint at each frame of the animation.

The world matrix for a joint j is defined as W j = L j W jparent , where L j is the local

matrix of joint j, and W jparent is its parent’s world matrix. For the root joint, the world

matrix is equal to its own local matrix. The local matrix of joint j is defined as L j =

T j R j S j, where T j is the translation matrix, R j is the rotation matrix, and S j is the scale

matrix of the joint. These matrices (translation, rotation and scale) are defined for each

animation frame in the animation file; W j must be recalculated for each joint, at each

frame.

The inverse binding matrix B−1
j of joint j is defined as the inverse of the rest pose

world matrix B−1
j = W−1

0 j , where W0 j is the rest pose world matrix of joint j. Since the

inverse binding matrix will not change between frames, it can be precomputed for each

joint of the skeleton.

14



Figure 2.10: Vertex transformation from local space to world space using matrix W .
Vertex v in joint’s local space (left). Vertex v in world space (right).

You can see LBS algorithm (Algorithm 2) for details of the steps.

The process of blending rigid transformations in LBS can cause some problems.

Blending works well if the blending transformation matrices are similar to each other.

On the other hand, if the rotation components of the transformation matrices differ, the

blended matrix may not necessarily remain a rigid transformation, and the rotation com-

ponent of the blended matrix will no longer be a proper rotation. This situation causes

artifacts known as the candy-wrapper effect and the collapsing elbow.

v

j1 j
2

CJ1v

Cj2v

v'

j
1

v v

v'

CJ2v

Figure 2.11: Candy-wrapper artifact of LBS. Reference pose (left), and animated pose
(right).

The candy-wrapper effect happens if one of the bones is tilted by a large angle, e.g.,

180 degrees about its main axis. In this case, vertices with nearly equal weights are

transformed to closely located points near this axis. Consider the simple arm rig in
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Algorithm 2 Linear blend skinning (LBS) algorithm
1: for each joint do
2: Calculate inverse binding matrices (B−1) as B−1

j = W−1
0 j -Precomputation-

3: end for
4: for each animation frame do
5: for each joint do
6: Calculate local matrices (L) as L j = T j R j S j
7: Calculate global matrices (W) as W j = L j W jparent

8: Calculate transformation matrices (M) by M = B−1 W
9: end for

10: for each vertex do
11: Deform the vertex using Equation 2.1
12: end for
13: end for

Figure 2.11: Vertex v in the figure is influenced equally by the joints j1 and j2, and let us

assume the arm is animated by twisting the joint j2 by 180 degrees around the x−axis.

We can write joint transformation as

M j1 =

I 0

0 1

 , M j2 =

Rx(180◦) 0

0 1


where I is the 3×3 identity matrix and Rx is rotation about the x−axis. Averaging M j1 v

and M j2 v locates vertex v exactly at the position of joint j2, and the skin collapses to a

single point. Another artifact caused by the skin collapse, collapsing elbow, occurs when

the angle between the axes of two adjacent bones becomes small. Vertex points on the

mesh lying between the two bones move towards the center and thus collapse with each

other. Examples of these effects on a 3D mesh are shown in Figure 2.12.

For solving these problems, linear blending of the matrices should be improved with

an approach that is coordinate-invariant, always returns a valid rigid transformation, and

interpolates two rigid transformations along the shortest path.

Direct quaternion blending (DQB) applies a linear combination of quaternions and

generates sufficiently accurate results; however, it fails at complex rotations, such as

around the armpit, or results in stretching effects in cloth animation because of switching

centers of rotation, leading to gaps (Figure 2.13).

16



Figure 2.12: Rest pose (left), candy-wrapper effect (middle), and collapsing elbow
(right). Image from "libigl Tutorial" on GitHub.

Figure 2.13: DQB fails when the rotation centers of the vertices differ considerably. In
this case, deformed vertices disintegrate and cracks appear. Image from Kavan et al. [4].

Spherical blend skinning (SBS) blends rotations and translations independently. Even

though SBS generates good results, it is not suitable in real-time applications and real-

time version of SBS suffers from the same problems as DQB.

Log-matrix blending (LMB) linearly combines matrix logarithms instead of matrices

themselves. In this way, centers of rotation can be handled properly; however, LMB

sometimes fails to select the shortest path in interpolation and may generate unnatural

skin deformations (Figure 2.14).

Dual quaternion skinning (DQS) solves the problems of LBS, DQB, and LMB. It in-

troduces dual quaternion blending (DLB) that properly blends centers of rotation (Equa-

tion 2.2)[4].

DLB(w; q̂1....q̂n) =
w1q̂1 + ...+wnq̂n

‖w1q̂1 + ...+wnq̂n‖
(2.2)
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Figure 2.14: LMB fails to identify the shortest path. Image from Kavan et al. [4].

where w is the skinning weight vector and q̂1, ..., q̂n are unit dual quaternions. Unit

dual quaternions satisfy ‖q̂‖ = 1 and they are always invertible. Unit dual quaternions

represent a rigid transformation and as ordinary quaternions, they are also associative,

distributive, but not commutative.

DLB does not provide a theoretically perfect solution as ScLERP (spherical linear

interpolation (SLERP) for dual quaternions); however, results differ little when com-

pared to ScLERP, and DLB thus generates plausible results. Additionally, ScLERP is

not suitable for real-time calculation.

DQS requires conversion of all transformation matrices into dual quaternions if the

animation data is not already expressed in dual quaternions. This conversion can be done

in the CPU, and then dual quaternions are sent to GPU. However, this conversion can

create a problem when the appropriate sign for the resulting dual quaternions is chosen.

Indeed dual quaternions q̂i and −q̂i represent the same rigid transformation, but their

interpolation can be different in the interpolated trajectory (shorter and longer path).

The sign of the dual quaternion must be handled in the vertex shader since it depends on

the joints influencing a vertex. You can see DQS algorithm in Algorithm 3.

DQS cannot handle nonrigid transformations as easily as LBS. Such transformations

can be useful in cases, such as crowd simulation to vary a character without modifying

the 3D geometric model itself. However, DQS requires higher dimensional geometric
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Algorithm 3 Dual quaternion skinning (DQS) algorithm
1: if working with transformation matrices then
2: Convert them into dual quaternions
3: end if
4: Find shortest path for the quaternions
5: Blend them and normalize
6: Perform skinning

algebra calculations for handling nonrigid transformations and these calculations have

great cost. Thus, if nonrigid transformations are required, a two-step skinning approach

is used. Nonrigid parts of the transformation are handled in the first step, and then rigid

parts are used to give the mesh its final shape. This also adds extra costs and requires

another update in the vertex shader code.

Even though DQS is better at removing some artifacts, it is expensive when com-

pared to LBS. Additionally, DQS also suffers from rotations larger than 180 degrees

(Figure 2.15). Because of its inefficiency compared to LBS, DQS could never gain

enough interest in video game development, and game developers keep using LBS by

limiting the joint’s degrees of freedom or adding more joints to the parts that fail.

90 degrees 179 degrees 181 degrees 270 degrees

Figure 2.15: Skin flipping artifact caused by the shortest path when rotating from 179 to
181 degrees. Image from Kavan et al. [4].

Even though we only use LBS to generate our results, our approach can work with

LBS and DQS since it depends on animation parameters (such as joint angles, vertex

positions) instead of skinning process.
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2.3 Ambient Occlusion

Ambient occlusion (AO), which is often associated with diffuse indirect illumina-

tion, simulates the shadowing caused by surrounding objects blocking the ambient light.

This light is assumed omnipresent and omnidirectional, and constant in a 3D scene. It

approximates effects due to environmental lighting that are otherwise captured only by

global illumination (GI) techniques. Ambient occlusion increases realism and improves

the perception of surface immersion in 3D scenes with significantly less computational

cost (Figure 2.16).

Figure 2.16: Ray-traced ambient occlusion. Image based on Jorge Pimentel’s rendering.

While GI techniques compute the illumination in a physically accurate way, ambient

occlusion considers only the geometric properties of every point in the scene. Yet, it

computes an impression of diffuse indirect illumination in a visually realistic way faster

than any other GI technique, such as photon mapping or path tracing. Additionally,

since AO considers only the geometry of the scene, changes in direct lighting or average

ambient reflected intensity have no effect on ambient occlusion computations.
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Some of the ambient occlusion techniques only focus on solving a particular case,

such as self-occlusion of an object on itself. Our investigation also only focuses on

self-occlusion of deformable objects (skinned characters) over time (animation).

Ambient occlusion is defined as the percentage of occlusion at a point on a surface

over the hemisphere above this point (oriented toward the surface normal at this point)

(Equation 2.3).

AO(x,n) =
1
π

∫
Ω

V (x,ω) max(n ·ω,0) dω (2.3)

where x is the point at which we compute ambient occlusion, n is the normal at this point,

V (x,ω) is the visibility at x in direction ω (1 if there is no intersection, 0 otherwise).

There are many techniques available for computing ambient occlusion. A detailed in-

vestigation can be found in a survey by Méndez-Feliu and Sbert [11]. We use per-vertex

ray-traced ambient occlusion computation for ground-truth results in our investigation

with sampling with a Monte Carlo method.

A Monte Carlo method estimates numerically the problems too complicated to solve

analytically. It allows us to solve multidimensional integrals using probabilistic bases. If

we assume that X is a random variable, then the cumulative distribution function (CDF)

of X is defined as

cdf(x) = Pr [X ≤ x]

and the corresponding probability density function (pdf) is

pdf(x) =
d
dx

cd f (x)

thus, the probability that x takes a value between a and b:

Pr [a≤ X ≤ b] =
∫ b

a
pdf(x) dx

The mathematical expectation of a random variable Y = f (X) on a domain Z, and its

variance are
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E[Y ] =
∫

Z
f (Z) pdf(Z) dz

σ
2[Y ] = E[ (Y −E[Y ] )2] = E[Y 2]−E[Y ]2

A Monte Carlo estimator for an integral with arbitrary dimensions is shown mathe-

matically as E[F ] = F , and defined as

F =
1
N

N

∑
i=1

f (Xi)

pdf(Xi)
≈
∫

x
f (x) dx (2.4)

where N is the number of samples, f (x) is the function of the integral that will be esti-

mated, such as the ambient occlusion function of Equation 2.3 (Equation 2.5). pdf(x) is

used for distributing the sampling points.

f (x) =
V (x,ω) max(n ·ω,0)

π
(2.5)

A major drawback of Monte Carlo integration is the size of the variance of the esti-

mation. If this variance is not reduced, then the results become noisy. Stratification and

importance sampling are methods used to decrease the variance. Stratification divides

the integration domain into sub-domains and performs Monte Carlo integration on each

sub-domain. Importance sampling chooses pdf(x) in order to place the points Xi at lo-

cations closer to f (x). Here, we use an importance sampling method, cosine weighted

hemisphere, to reduce the variance (Equation 2.6) since cosine weighted hemisphere

sampling generates better results (less noise) with fewer samples than other sampling

distributions, such as uniform sampling. Algorithm 4 shows how to draw samples (di-

rections) using cosine weighted hemisphere sampling.

pdf(x) =
max(n ·ω,0)

π
(2.6)

After we plug in f (x) and pdf(x) into a Monte Carlo estimator and make the simpli-
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fications, our final ambient occlusion equation reduces to a simple visibility summation

AO(x) =
1
N

N

∑
i=1

V (x,ωi) (2.7)

Algorithm 4 Generating random directions using cosine weighted hemisphere sampling
1: for each sample do
2: r1← randomValue()
3: r2← randomValue()
4: θ ← arccos(

√
r1)

5: φ ← 2 π r2
6: direction.x← sinθ cosφ

7: direction.y← sinθ sinφ

8: direction.z← cosθ

9: normalize(direction)
10: end for

Even though ambient occlusion is much faster than global illumination techniques,

high-quality AO is not fast enough for real-time rendering. In recent years many investi-

gations focused on approximation techniques to improve or accelerate ambient occlusion

calculations. In this and following section, we describe some of these techniques, but

the survey by Méndez-Feliu and Sbert [11] can be referred to for more details.

One of the most popular AO approximation techniques is screen-space ambient oc-

clusion (SSAO). SSAO is currently the de-facto standard in video games because of its

efficiency. The depth buffer is queried at points derived from samples in a sphere instead

of casting rays through the entire scene, and the fraction of occlusion is estimated only

within these sampled points. The occlusion factor depends only on the depth difference

between samples. Since SSAO is performed in screen space, it becomes independent

from scene complexity, while generating pleasant and plausible local results. Addition-

ally, it can be executed completely on the GPU without any CPU usage.

On the other hand, SSAO is not perfect. Because, it lacks spatial location of the

entire world geometry, the quality and realism of the results may suffer from missed

details absent from the depth buffer. Even if the basic SSAO has improved over time, it

still has accuracy problems hard to correct without interfering with depth discontinuities.
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Our technique is not a screen-space based technique. It uses the full 3D mesh ge-

ometry as it focuses on realism and investigates a different way for realistic ambient

occlusion approximation to be delivered in real time. The methods in the following

section are more closely related to our technique and investigation.

2.4 Ambient Occlusion Approximations

Even though ambient occlusion is faster to compute than full global illumination so-

lutions, it is still not sufficient for complex animated objects in the sense of both memory

and real-time computation complexity. For animated characters, ambient occlusion re-

sults should be updated dynamically for every frame of the animation. As long as we do

not use an approximation method, the only way to do this in real time is by precomputing

all the ambient occlusion information for all the animation frames. When the number

of frames and/or animated objects in the scene increases, the memory requirements for

precomputed ambient occlusion also increase. This explodes the memory eventually.

There is always a realism-performance tradeoff in realistic rendering, and approxima-

tion methods are used to minimize this tradeoff to achieve compromised realistic results

at real-time frame rates.

Our approach is similar to the ones of Kontkanen and Aila [6] and Kirk and Arikan [5].

We construct our linear system based on the one of Kontkanen and Aila [6]. Details of

our technique and experiments will be given in Chapter 3.

Kontkanen and Aila [6] extract some static per-vertex coefficients by solving a linear

system. These coefficients depend on animation parameters of reference poses and cor-

responding per-vertex ambient occlusion values. Their approach parameterizes ambient

occlusion as a linear combination of the animation parameters. Their system is fed with

the reference poses containing joint angle values along with the precomputed per-vertex

ambient occlusion values. They establish a linear mapping from an arbitrary pose to

approximated per-vertex ambient occlusion values. This mapping corresponds to the dot

product between the arbitrary pose vector (vector of joint angles) and the coefficients

extracted by solving the system. Details will be covered in Chapter 3.
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Kontkanen and Aila [6] assume that ambient occlusion depends linearly on the ani-

mation parameters (joint angles). Their second assumption is that ambient occlusion is

a sum of occlusions resulting from individual parameters. These assumptions cause a

loss of some higher order effects and make the approximation fail for some complicated

motions dependent on many animation parameters.

Comparison between Kontkanen and Aila [6] and ray-traced ground truth can be seen

in Figure 2.17.

Figure 2.17: Ray-traced ground truth (left), Kontkanen and Aila [6] (middle), compari-
son of the images (right). Image from Kontkanen and Aila [6].

Kirk and Arikan [5] also construct their approach based on the one of Kontkanen

and Aila [6]; however, they use a different parameterization and compress their data to

increase memory efficiency.

Kirk and Arikan [5] work with a localized multilinear model while Kontkanen and

Aila [6] work with the entire space of character poses. Additionally, Kirk and Arikan [5]

use joint positions supported with additional handle position information, which defines

a coordinate frame at each bone, as animation parameters. In this way, their method

can capture some effects which cannot be captured with using only joint angles, and

this increases their accuracy. A comparison between Kirk and Arikan [5] and ray-traced

ground truth can be seen in Figure 2.18.

Kirk and Arikan [5] cluster the reference poses according to their motion and con-

struct a linear system for each cluster based on the per-vertex ray-traced ambient occlu-

sion values, as well as joint and handle positions. These systems are solved to get some

coefficients for every vertex in the pose cluster. Then, vertices are clustered and another

linear system is constructed to get coefficients for vertex clusters.
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Figure 2.18: Comparison between Kirk and Arikan [5] (middle) and ray-traced ground
truth (left). Image from Kirk and Arikan [5].

The approach of Kirk and Arikan [5] cannot approximate the per-vertex ambient

occlusion results directly using a single dot product as do Kontkanen and Aila [6]. Kirk

and Arikan [5] use additional functions for transition, which is caused by clustering,

between several subspaces and a blending parameter. The blending parameter is user-

defined, mesh-dependent, and must be found by experiment.

As any kind of machine learning technique, both approaches depend on large refer-

ence pose collections that cover many different motions. Learning many different motion

examples also increases the generalization of these approaches to approximate arbitrary

animations.

We build our approach based on Kontkanen and Aila [6] and perform different pa-

rameterizations from joint angles to joint positions (without handles), vertex positions

and manifold harmonics. Details of our technique and experiments will be given in

Chapter 3.
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2.5 Manifold Harmonics

Spectral methods solve problems by examining or manipulating the eigenvalues,

eigenvectors, eigenspace projections, or a combination of these quantities. These meth-

ods can be applied to solve geometry processing problems such as mesh compression,

correspondence, parameterization, segmentation, smoothing, symmetry detection, sur-

face reconstruction, remeshing, etc. The main threads for the development of spectral

methods are spectral graph theory, signal processing related to Fourier analysis, and

works on kernel principal component analysis and spectral clustering.

The focus in spectral graph theory derives relationships between the eigenvalues

of the Laplacian or adjacency matrices of a graph and its various fundamental prop-

erties, such as diameter and connectivity. Spectral graph theory provides a basis for the

Laplace operators used in the computer graphics and geometry processing community,

i.e., Laplace-Beltrami operator.

The Fourier transform, a classical tool for signal processing, decomposes a function

of time (a signal) into a sum of sinusoidal bases (Fourier function bases). Thus, the

Fourier transform can be used to implement low-pass or more general convolution fil-

ters. This idea can also be extended to arbitrary manifolds by considering the Laplace

operator. The Laplacian provides insights in the structure and morphology of the shape.

This idea was applied to geometry processing by Taubin [16] for the first time using the

Tutte Laplacian. In time, different Laplacians were used for geometry processing. The

paper by Zhang [20] can be referred to for the details of Laplacians used in geometry

processing.

Most of the spectral methods have a basic framework in common, which can be con-

sidered as three main steps (Figure 2.19). Firstly, a matrix representing a discrete linear

operator based on the structure of the input mesh is constructed. Each entry of this matrix

represents the relation between the vertices (faces or other primitives) of the mesh. Sec-

ondly, eigenvalues and eigenvectors of the mesh are computed (eigen decomposition).

Finally, resulting structures from the decomposition are used in a problem-specific man-

ner to obtain a solution.
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Figure 2.19: Mesh segmentation application. 3D mesh data is transformed to 2D contour
data by preserving the geometric features. Figure based on Zhang et al. [21])

Combinatorial and geometric Laplacians are commonly used for spectral mesh pro-

cessing because their eigenvectors have similar properties to the classical Fourier basis

functions. Fourier transform of such a signal can be derived by an eigenspace projection

of the signal along the eigenvectors of a mesh Laplacian by representing mesh geometry

using a discrete signal defined over the manifold mesh surface. The eigenvectors of the

mesh Laplacians present “harmonic behavior”, and they are considered as the vibration

modes or the harmonics of the mesh surface with their corresponding eigenvalues as the

associated frequencies.

Combinatorial Laplacians are constructed based on the connectivity of the graph that

is the 1-skeleton of the mesh and they do not explicitly encode geometric information.

Geometric Laplacians discretize the Laplace-Beltrami operator from Riemannian geom-

etry, and explicitly encode geometric information of the mesh. Geometric Laplacians

require a manifold triangle mesh.

Even though they have a distinct heritage both Laplacians have a single mathematical

definition, and several fundamental properties. Laplacian operators are linear operators

acting on functions, which are specified by their values at the vertices, defined on a mesh.

So, if a mesh has n vertices, then the functions on the mesh are represented by vectors

with n components, and the Laplacian is expressed by an n×n matrix. Laplacian oper-

ator locally takes the difference between the function value at a vertex and a weighted

average of its values at the first-order or immediate neighbor vertices. This form is given

by [21]

(Lf)i = b−1
i ∑

j∈N(i)
wi j ( fi− f j) (2.8)
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where L is the Laplacian, f is a vector with n components, b−1
i is a positive number, and

wi j are the symmetric edge weights.

Eigenvector orthogonality and positive semi-definiteness are important properties for

Laplacian operators. An operator can be written as the product of a diagonal and a

symmetric matrix as

L = B−1 S

where B−1 is a diagonal matrix whose diagonal entries are b−1
i , S is a symmetric matrix

whose diagonal entries are given by Sii = ∑ j∈N(i)wi j and whose off diagonal entries

are wi j [21]. Even though L may not be symmetric, it is similar to a symmetric matrix

O= B−
1
2 S B−

1
2 . So, L and O have the same real eigenvalues, and if v is an eigenvector of

O with eigenvalue λ , then u=B−
1
2 v is an eigenvector of L with the same eigenvalue [21].

Since O is symmetric, its eigenvectors are mutually orthogonal. However, this may not

be true for L in general, and an additional scalar product (Equation 2.9) might be required

to make eigenvectors of L orthogonal

〈f,g〉B = fT B g (2.9)

The eigenvectors of L become orthogonal with respect to that product as

〈
ui,u j

〉
B = uT

i B u j = vT
i v j = δi j

Another desirable property, being positive semi-definite, is also not guaranteed for L.

However, L can be made positive semi-definite with respect to the proper inner product

based on Equation 2.9 (weights wi j are assumed non negative)

〈f,L f〉B = fT S f =
1
2

n

∑
i, j=1

wi j( fi− f j)
2 ≥ 0

A geometric mesh Laplacian is assembled using a discrete approximation to the

Laplace-Beltrami operator on a smooth surface. On a C∞ surface without boundary

(`), the Laplacian is a self-adjoint positive semi-definite operator; ∆` : C∞(`)→C∞(`).
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An important property of ∆` is defined as [21]

∫
`

f ∆` g da =
∫
`
∇ f ·∇ g da

On a surface with boundary, if von Neumann boundary conditions are established,

the Laplacian remains self-adjoint. Choosing g = f yields and establishes the positive

semi-definite property [21]

∫
`

f ∆` f da =
∫
`
‖∇ f‖2 da

For a given triangulated mesh, the Laplace operator is constructed similar to ∆`.

For this task, an n dimensional vector space of functions on the mesh are used. These

functions represent piecewise linear (continuous) functions on the mesh, and they are

defined by their values at the vertices. The Laplacian for the mesh is defined as

[C f ]i = ∑
j∈N(i)

1
2
(cotαi j + cotβi j)( fi− f j) (2.10)

where the angles αi j and βi j are subtended by the edge (i, j). With respect to Equa-

tion 2.8, C is obtained by setting bi = 1 for all i and wi j =
1
2(cotαi j + cotβi j) for all i

and j. Because of imposing von Neumann boundary conditions, the cotβi j term van-

ishes if (i, j) is a boundary edge [21]. The geometric Laplacians based on cotangent

formula (Equation 2.10) are currently the most popular discrete approximations to the

Laplace-Beltrami operator used for geometry processing.

We use the geometric Laplacian defined by Vallet and Levy [18] for parameterization

of ambient occlusion over an animated mesh. Vallet and Levy [18] present a method to

convert the geometry of a mesh into frequency space. They use a special Laplace oper-

ator based on manifold harmonics, which is a generalization of spherical harmonics for

arbitrary manifolds. Fourier-like function bases can be defined using eigenvectors of a

discrete Laplacian. Discretization is done by finite element methods (FEM) and discrete

exterior calculus (DEC). However, an orthogonal Laplace operator taking geometry into

account is also needed to get correct results. Vallet and Levy [18] handle both of these
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issues (orthogonal and geometry-aware Laplacian). An algorithm for fast eigenvector

calculation of this Laplacian is also given and a band-by-band spectrum computation

algorithm is proposed.

Our approach only uses the orthogonal, geometry-aware Laplace operator to explore

ambient occlusion parameterization. Details of our approach will be introduced in Chap-

ter 3.

Eigenvectors of a Laplace operator are used to calculate manifold harmonics bases

(MHB). Cotangent Laplacian (L), which is a Laplace operator used only for triangulated

meshes, is used for setting up the Laplacian by Vallet and Levy [18]. It is represented

as an N ×N matrix, where N is the number of vertices. The cotangent Laplacian is

calculated over a one-ring neighborhood (Figure 2.20).

Figure 2.20: Opposite angles of the edge i j are used for computing the cotangent Lapla-
cian (Image prepared based on Sorkine [14]).

The cotangent Laplacian takes geometry of the mesh into account; however, it is

not orthogonal. By using discrete exterior calculus (DEC), we can make the cotangent

Laplacian symmetric, and in this way, it becomes orthogonal. Symmetry for the Lapla-

cian is quite important. If the Laplacian (∆) loses its symmetry (∆i j 6= ∆ ji), the eigen-

function basis is no longer orthonormal, and this does not allow for the correct mesh

construction when we transform the mesh from frequency space to geometry space, and

the mesh becomes deformed (Figure 2.21).

Hodge star ?0 is used to recover the symmetry. ?0 is a diagonal matrix where its
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Figure 2.21: Because of losing symmetry, all the meshes are deformed except mesh E.
Image is taken from Vallet and Levy [18].

diagonal elements correspond to the dual area associated with the vertex. Crane et al. [2]

define this dual area as the total area of the one-ring neighborhood of a vertex divided

by 3.

After the Hodge star ?0 is calculated for the manifold, the Laplacian can be made

symmetric (and its eigenvectors orthonormal) using Equation 2.11. Alternatively, each

coefficient of this symmetric Laplace operator (∆̄) can be computed as in Equation 2.12

∆̄ = ?
− 1

2
0 L ?

− 1
2

0 (2.11)

where ?
− 1

2
0 is the inverse square root of the Hodge star, and L is the cotangent Laplacian

∆̄i j =−
cotβi j + cotβ

′
i j√∣∣v∗i ∣∣ ∣∣∣v∗j∣∣∣ (2.12)

where cotβ and cotβ
′
are the cotangent values of the angles across edge i j, and v∗ is the

dual area of the given vertex.

One of the important steps in this implementation is handling numerical precision

issues. They may make eigenvectors of ∆̄ not orthonormal even if the Laplacian is sym-

metric. Numerical precision issues can be solved by using ∆̄ =
(
∆̄+ ∆̄T)/2 operation.

After a positive semi-definite discrete Laplacian ∆̄ is assembled, its eigenvectors are

computed to get the manifold harmonics bases. These bases are used for manifold har-

monic transformations, which are a generalization of Fourier transform for transforming
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geometries (meshes) between frequency space and geometry space. When we transform

the mesh into frequency space, we can filter it or smooth it out, and then transform it

back to geometry space. These transformations are based on eigenvectors of ∆̄.

All eigenvector vk and eigenvalue λk pairs of the Laplacian on a manifold satisfy

−∆vk = λkvk. This minus sign is required for the eigenvalues to be positive [8]. This is

also the reason why ∆̄ is multiplied by −1 in Algorithm 5.

Algorithm 5 Setting up the Laplacian and getting MH bases
1: Calculate the cotangent Laplacian (L) of the mesh
2: Calculate the dual area (?0) of the vertices
3: Assemble the positive semi-definite discrete Laplacian (∆̄) using Equation 2.11
4: Multiply ∆̄ by −1 to get positive eigenvalues
5: Compute the eigenvalues and eigenvectors of ∆̄

6: Sort the eigenvalues and eigenvectors (ascending order)

7: Map the MH bases into canonical bases using H = ?
− 1

2
0 H̄

Another important point is to order the eigenvalues and eigenvectors. The eigen-

vectors are used either sorted by increasing or by decreasing eigenvalues. Vallet and

Levy [18] use ascending order. Thus, lower eigenvectors contain a general idea of the

shape whereas higher eigenvectors contain details of the shape. For example, a mesh

smoothing process is performed by excluding these higher bases (Figure 2.22).

Figure 2.22: Smoothing process of the Stanford bunny with 3485 (original), 1024, 97,
and 6 MH bases, respectively.

Manifold harmonic transform (MHT) is used to transform the mesh into frequency

space

x̃ = xT ?0 H (2.13)
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where x is the vector of the x coordinate of the vertices of the mesh, x̃ is the frequency

space coefficients for those x coordinates, and H is the manifold harmonics bases of the

mesh. The same idea is also applied to the y and z coordinates of the mesh vertices if

necessary. During our investigation, we used the per-vertex ray-traced ambient occlusion

results instead of the positions (coordinate values), so we obtained the ambient occlusion

coefficients in frequency space.

The inverse manifold harmonic transform (MHT−1) is used to transform the mesh in

frequency space back into geometry-space (Equation 2.14). For this operation, the coef-

ficients in frequency space (such as x̃k) are multiplied with the corresponding manifold

harmonic basis vector (Hk), and the results are summed to get the results in geometry

space, e.g., the x coordinates of the vertices of the mesh. Algorithm 6 can be followed

for the geometry processing using manifold harmonics bases.

x =
m

∑
k=1

x̃k Hk (2.14)

where x are the x coordinates of the vertices of the mesh transformed back into geometry-

space, m is the number of MH bases in use, x̃k is the kth frequency-space coefficient, and

Hk is the basis vector of the kth MHB.

Algorithm 6 Geometry processing using MH bases
1: Assemble the positive semi-definite discrete Laplacian (Equation 2.11)
2: Compute the eigenvectors of the Laplacian to get MH bases
3: Map the bases into canonical bases (Step 7 in Algorithm 5)
4: Transform the mesh into frequency space using MHT (Equation 2.13)
5: Perform the operation (smoothing, filtering, etc.)
6: Transform the mesh back into geometry space using MHT−1 (Equation 2.14)

We apply the idea presented by Vallet and Levy [18] with the per-vertex, ray-traced

ambient occlusion values to parameterize with manifold harmonics bases. We also ex-

periment with a smoothing process by decreasing the number of frequency-space coef-

ficients. Details can be found in Chapter 3.
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CHAPTER 3

COMBINED PARAMETERIZATIONS

The main goal of our investigation is the study of different parameterizations (such as

joint, spatial, orientation, etc.) to reduce animation-dependent light transportation. We

would like to come up with a system to approximate realistic real-time rendering. As

an important visual localized effect, we start our investigation with ambient occlusion,

which will simplify our first steps. Precomputed per-vertex ray-traced ambient occlu-

sion results are parameterized according to skeletal joint angles, joint positions, surface

vertex positions, and manifold harmonics. In this chapter, we describe our parameteriza-

tion systems, how we express them in matricial forms, and discuss their advantages and

disadvantages.

We start by assuming that there is a linear dependency between the motion and the

appearance of surfaces associated to bones, and we construct a linear system (Equa-

tion 3.1) to express this relation based on Kontkanen and Aila [6]. Our system is fed

with a selected motion (reference poses) and the corresponding appearance data. These

motion-appearance pairs are learnt by our system and parameters are extracted. These

parameters are then used to approximate the appearance of arbitrary motions in real time,

thanks to the following expression

A = JT (3.1)

where A is a P×N matrix containing the appearance information of P reference poses,

for a surface mesh of V vertices, J is a P×M matrix containing motion information (joint

angles, vertex positions, manifold harmonic (MH) bases, etc.) of reference poses, and T

is an M×N matrix containing the extracted parameters. Here, M refers to the number of

motion information components, e.g., vertex positions in 3D such that P×M = P×3N.

During our investigation, we consider that A is always filled with the precomputed

per-vertex ray-traced ambient occlusion results. We also refer to them as our ground-



truth results. J is constructed with different kinds of coefficients depending on our pa-

rameterization systems. T is extracted by solving the linear system.

Since Equation 3.1 is an overdetermined system of linear equations, there is no exact

solution for T and an optimal solution can be computed using the pseudoinverse J+ of J

(Equation 3.2). The pseudoinverse is defined and unique for all real or complex matrices.

J+A = T (3.2)

Each column of T includes the per-vertex approximation parameters (except for the

MH parameterization) and defines the visual effects due to all the motion information

(values in J) on a particular vertex. Thus, these parameters and the current motion

information can be used to approximate in real time, the per-vertex ambient occlusion

for arbitrary poses. This is done by establishing a linear mapping using the dot product

between the current motion information and the approximation parameters, such that

ai = jT ti (3.3)

where ai is the ambient occlusion value at vertex i, j is the motion information of the

current pose, e.g., vertex positions, and ti is the approximation parameters associated

with the ith vertex (ith column of T).

The general steps of the parameterization process follow Algorithm 7.

Algorithm 7 General steps of parameterization
1: Feed A with the precomputed appearance data
2: Feed J with the corresponding motion data
3: Take the pseudoinverse of J
4: Multiply the pseudoinverse of J with A to get the approximation parameters (Equa-

tion 3.2)
5: Use the related parameters in T for the approximation in real time (Equation 3.3)
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3.1 Joint Angles

We first parameterize the ambient occlusion using joint angles of the mesh skele-

ton. This is also what Kontkanen and Aila [6] did. Joint parameterization helped us to

construct the basis of our system.

Matrix A is filled with the per-vertex ambient occlusion of each reference pose P.

Ambient occlusion is precomputed using ray tracing for each pose of the animated mesh.

These AO values are also used as ground-truth values in our investigation.

A =


AO(v1, p1) . . . AO(vN , p1)

...
...

AO(v1, pp̂) . . . AO(vN , pp̂)


Matrix J is filled with joint angles defining by rotation R of each joint for the related

pose P. Most of the time this information is available in the animation file; however, it

is not directly used in the skinning process. Joint angles are used to generate the rotation

component of the transformation matrices. Thus, joint angle parameterization requires

extra information, which is not needed for skinning, both for precomputation and real-

time approximation. Additionally, joint angle parameterization cannot be plugged in the

current skinning pipeline right away, as some modifications are required in the shader

code.

J =


JA(R1, p1) . . . JA(RM, p1) λ

...
...

...

JA(R1, pp̂) . . . JA(RM, pp̂) λ


Joint angle parameterization also requires each row of J to be extended with a con-

stant value λ , which is the same for each reference pose in order to capture ambient

occlusion independently of any actual animation parameters. Our experiments on this

extra constant value showed that its effect can be crucial to reduce errors between ground
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truth and approximated results.

T is extracted using Equation 3.2. Each row of T includes the effects of the related

pose information (joint angles) to all vertices. Thus, columns of T include the approx-

imation parameters of each vertex (ÃO) and they are used for the per-vertex ambient

occlusion approximation (Figure 3.1). Equation 3.3 is used for this task. Current pose

vector j in the Equation 3.3 is filled with the joint angles of the current animation pose.

T =


ÃO(v1, t1) . . . ÃO(vN , t1)

...
...

ÃO(v1, tM) . . . ÃO(vN , tM)



Figure 3.1: Ambient occlusion ground truth (left), and approximation using joint angle
parameterization (right). Walking and running animations are learnt, walking animation
is approximated. Since the error rate is very small, there is no visual difference between
the approximation and ground truth.

Memory requirements for joint angle parameterization is rather low, e.g., 3.76 MB

is required for 15410 mesh vertices. However, because of the reasons mentioned in
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Section 2.4, some "higher" effects in motions depending on many parameters cannot be

captured, such as the shadow casted on the mesh body (face, torso, legs, etc.) by the

hand. Therefore joint angle parameterization fails for some more complex animation

sequences (Figure 3.2).

Figure 3.2: Joint angle parameterization suffers flickering for the complex motions that
depends multiple animation parameters, i.e., while armpit area suffers flickering, shad-
ows casting by the arms to torso approximated error prone. Ground truth (left), joint
angle approximation (middle) and 10 times magnified difference (right). All frames of
the striking animation are used to train the model.

3.2 Vertex Positions

In the parameterization with vertex positions, we keep matrix A the same; however,

matrix J is updated with vertex positions of the mesh in the reference pose:

J =


JA(Pv1, p1) . . . JA(PvM , p1) λ

...
...

...

JA(Pv1, p p̂) . . . JA(PvM , pp̂) λ


T is extracted in the same fashion (using Equation 3.2), and rows of T include effects

of vertex positions of the reference poses to all vertices. Real-time approximation of

vertex position parameterization is also done in the same fashion as joint angle parame-

terization using Equation 3.3. However, this time vector j includes the vertex position of
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the current pose coming from the skinning of the mesh with the current pose. Thus, the-

oretically, vertex position parameterization can be plugged in current skinning pipelines,

and the per-vertex ambient occlusion can be approximated during skinning.

Since positions of all the mesh vertices are used, memory requirements of vertex

position parameterization are higher than joint angle parameterization. For finely tessel-

lated meshes or multiple meshes in a scene, this can explode memory requirements and

it is not suitable for real-time rendering. To address this issue, we introduce clustering,

which decreases memory requirements, and allows us to experiment with local mesh

space instead of global space.

We cluster mesh vertices based on their skinning weights. Here, the joint with the

largest impact (weight) on a vertex is chosen as its cluster, and all the vertices affected the

most by the same joint are clustered together. After creating the clusters, an individual

linear system is constructed for each such cluster. Consequently, one matrix A per cluster

is filled with reference pose ambient occlusion of the vertices in the clusters.

Ac =


AOc(v1, p1) . . . AOc(vN , p1)

...
...

AOc(v1, pp̂) . . . AOc(vN , pp̂)


Similarly, Jc is filled with the vertex positions of the reference poses in the cluster.

Jc =


JAc(P1, p1) . . . JAc(PM, p1) λ

...
...

...

JAc(P1, p p̂) . . . JAc(PM, pp̂) λ


Thus, we get one matrix T for each cluster, and ambient occlusion is approximated

using Equation 3.3 for each cluster using the same j, the current pose vector, with each

cluster’s approximation parameters (Figure 3.3). Algorithm 8 can be followed for the

clustering steps.
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Algorithm 8 Steps of clustered vertex position parameterization
1: Cluster each vertex according to the joint with the largest weight on this vertex
2: Generate Ac with the precomputed appearance data of related vertices for each clus-

ter
3: Generate Jc with the reference pose vertex positions of related vertices for each

cluster
4: Solve the linear system (Equation 3.2) to get the approximation parameters (T ma-

trix) of each cluster
5: Approximate the ambient occlusion in real time using Equation 3.3 for each cluster

Since there are many more vertex positions than joint angles, vertex position parame-

terization causes the system to face overfitting. In this case, the system gets confused and

begins to make wrong decisions. For example, the meshes in our experiments can gener-

ate about 48000 parameters in total. For complex motions defined with many animation

frames, approximation results thus become inaccurate (Figure 3.4).

Regularization reduces the overfitting problem. Regularization simplifies the hypoth-

esis made (such as the linear dependency between the animation and the approximation

parameters for ambient occlusion) by penalizing some of the parameters (approximation

parameters in this case) using the regularization parameter λ . Since we multiply the ex-

tracted parameters with the regularization parameter λ , the effects of some parameters

are reduced or not considered at all. In this way, the system stops getting confused since

only the effects of the important parameters are considered.

One of the linear regularization methods is based on a gradient descent algorithm

(Equation 3.4). However, this approach depends on parameters such as a learning rate α

and a regularization parameter λ . Moreover, a gradient descent algorithm works itera-

tively to only reach a local minimum. If the learning rate α is too large, a local minimum

can be missed. On the contrary, if the learning rate is too small, it takes more iterations to

reach a local minimum. Additionally, the initial guess (starting solution) plays a crucial

role in a gradient descent algorithm.

θ j = θ j−α

[
1
m

m

∑
i=1

(hθ (xi)− yi)xi
j +

λ

m
θ j

]
(3.4)
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Figure 3.3: Ambient occlusion approximation using clustered vertex position parameter-
ization. Learning and approximating walking animation. Since walking animation does
not have many frames (only 30 frames), overfitting does not happen and regularization
is not required.

where θ j is the jth parameter extracted, α is the learning rate, m is the number of samples

in the training data, hθ (xi) is the approximated value of the ith sample, yi is the ground-

truth value of the ith sample, xi
j is the value of feature j for the ith sample (animation

parameters in our case), and λ is the regularization parameter.

Using regularization with the normal equation (Equation 3.5), we can eliminate the

learning rate α and the importance of the initial guess.

ΘΘΘ = (XT X+λM)−1XT Y (3.5)

where ΘΘΘ contains all the approximation parameters, X contains all the variables effecting
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Figure 3.4: Clustered vertex position parameterization without regularization suffers
from wrong approximations since the system gets confused during the parameter ex-
traction process because of working with a large number of animation parameters.

the approximation, λ is the regularization parameter, Y contains the ground-truth values,

and M is the identity matrix with a zero in the upper left diagonal entry.

Additionally, the normal equation solves for an optimal value directly. Thus, it elim-

inates iterations and results are directly optimal solutions. Even though the normal equa-

tion can be costly to evaluate for some systems since it requires expensive matrix oper-

ations, such as transpose, multiplication, and inverse, this is not our case. Our approach

is more suitable to work with the normal equation, and getting the most optimal results

depending on less parameters is more important for us to increase the realism of AO

approximations.

We update Equation 3.5 with our data (the precomputed ray-traced ambient occlusion

and clustered vertex positions) and use Equation 3.6 to get the approximation parameters

T. This operation is performed for each cluster.

T = (JT J+λM)−1JT A (3.6)

where T is the approximation parameters, J is the vertex positions of reference poses,

λ is the regularization parameter, M is the identity matrix with a zero in the upper left

diagonal entry, and A is the per-vertex ambient occlusion of reference poses.
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We also performed some experiments on regularization parameter λ . A set of values

in the range [10,−10] is assigned to λ , and the approximation parameters are recom-

puted, then both visual results and error rate of the approximation are considered. For

the mesh we used in Figure 3.5, λ = 10−5 generated the best results.

Figure 3.5: Fixed results using regularization.

We also performed a singular value decomposition (SVD) experiment to reduce the

number of approximation parameters. A square matrix E can be decomposed into its

eigenvalues and eigenvectors as Ev = λv where v contains the eigenvectors of E and

λ the eigenvalues of E. An eigenvector is a vector whose direction does not change

by the transformation. Even if the system may be stretched, the vectors point the same

direction. Each eigenvector has a corresponding eigenvalue that gives the scaling factor.

In other words, an eigenvector is the direction, and its eigenvalue tells the variance in

that direction (how the data spreads out on the line). So, the eigenvector with the highest

eigenvalue is therefore the principal component.

Using these characteristics we can reduce the number of operations needed. For

example, we can predict the final results without making all shading calculations, we

can decide to sample more or less some parts of the scene, or we can remove some
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unnecessary parameters to reduce computational or storage costs.

While square matrices (N×N) have eigenvalues, rectangular matrices (M×N) have

singular values. Singular values can be used for the same purpose by applying singu-

lar value decomposition (SVD). We applied SVD to our TP×3V matrix (where P is the

number of the reference poses and V is the number of vertices in the cluster), and exper-

imented reducing the singular values. Our visual and mathematical results showed that

T can be reduced by more than half while keeping the same error rate and visual quality

(Figure 3.6).

Figure 3.6: Approximation of striking animation using 50% of the singular values (left),
and 10% of the singular values (right). The approximation fails for geometries (such as
armpit) or areas (such as arms and torso) that break the assumptions that appearance of
the object depends linearly on the motion parameters, and that the motion parameters can
be handled independently. These assumptions were made by Kontkanen and Aila [6].

Table 3.I and Figure 3.7 can be referred for the error rates and plots of the singular

values.

Vertex position parameterization also requires the constant value λ to capture AO

independently of any actual animation parameters, and fails at complex motions as joint
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Max Error Min Error
Mean of MSE

(all frames)
Variance of MSE

(all frames)
10% 0.0177 0.0161 0.0168 1.9054×10−7

50% 5.6585×10−4 4.3844×10−5 1.7870×10−4 1.4322×10−8

70% 5.6585×10−4 4.3844×10−5 1.7870×10−4 1.4322×10−8

90% 5.6585×10−4 4.3844×10−5 1.7870×10−4 1.4322×10−8

100% 5.6585×10−4 4.3844×10−5 1.7870×10−4 1.4322×10−8

Table 3.I: MSE of striking animation with different numbers of parameters. The same
amount of the per-vertex error rates dominates the mean-squared error until less than
50% of the singular values are used.
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Figure 3.7: SVD plots for a typical cluster.

angle parameterization (Figure 3.8). Memory requirements of clustered vertex position

parameterization are higher than joint angle parameterization, e.g., for the same mesh

with 15410 vertices, clustered vertex parameterization requires 338 MB. On the other

hand, vertex position parameterization does not require any extra information that is not

used in the skinning process, and can be plugged in any current skinning pipeline.

3.3 Joint Positions

We also investigate parameterization with joint positions similar to Kirk and Arikan [5],

but without any kind of clustering and only considering joint positions. The same pre-

computed per-vertex ray-traced ambient occlusion matrix A is kept, and J is filled with

the joint positions of the reference poses.
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J =


JA(Pj1, p1) . . . JA(PjM, p1) λ

...
...

...

JA(Pj1, pp̂) . . . JA(PjM, pp̂) λ


Equation 3.2 is used to solve the linear system, and matrix T, containing effects of

joint positions, is extracted. Equation 3.3 is used for real-time approximation of ambient

occlusion with the j vector containing joint positions of the current pose.

Similar to joint angle parameterization, joint position parameterization has low mem-

ory requirements; however, it requires extra information not needed by the skinning pro-

cess both for extracting T and for real-time approximation. Additionally, the constant

value λ is required during the approximation of T, and joint position parameterization

fails at complex motions as do joint angle and vertex position parameterizations.

3.4 Manifold Harmonics

We begin our investigation on parameterization with manifold harmonics using a

static mesh. We construct the bases of the mesh, and get the spectral coefficients of

ambient occlusion using Equation 3.7 based on Equation 2.13.

ã = aT?0H (3.7)
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where a is the vector of precomputed per-vertex ray-traced ambient occlusion (ground

truth), ã is the frequency-space coefficients of ambient occlusion, ?0 is the Hodge star

operator (dual area of vertices), and H is the manifold harmonics bases of the mesh. For

details, please refer to Section 2.5.

Then, we use Equation 3.8 based on Equation 2.14 and reconstruct ambient occlusion

using the frequency-space ambient occlusion coefficients and the manifold harmonics

bases of the mesh as

a =
m

∑
k=1

ãkHk (3.8)

where a is the reconstructed per-vertex ambient occlusion, m is the number of MH bases

in use, ãk is the kth frequency-space ambient occlusion coefficient, and Hk is the basis

vector of the kth MH basis.

Because of MH properties, when all the MH bases are used, the exact same results

as the ground truth can be obtained if the Laplacian is set properly. Similarly, when

only one basis (MH basis with the smallest eigenvalue) is used, the result is an identi-

cal value for all vertices. We applied these two observations to our ambient occlusion

reconstruction to verify our results (Figure 3.9).

Figure 3.9: Ambient occlusion approximation based on MH bases parameterization on
the bunny. Left, approximation with all MH bases approximation. Right, approximation
with only the first (the smallest) base. AO is fully reconstructed with all MH bases, and
it is identical for all vertices when only the first basis is used.
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We also experimented on the visual effects resulting from the number of bases in

use. Our experiments show that when we decrease the number of bases by more than

30%, we start to lose details (Figure 3.10). On the other hand, the visual appearance of

ambient occlusion remains even if we decrease by 85% of the bases.

Figure 3.10: Ambient occlusion approximation based on MH bases parameterization.
100%, 91%, 72%, 32%, and 8% of the bases in use respectively.

Algorithm 9 details the process to compute the frequency-space ambient occlusion

coefficients, and the reconstruction using the fewer bases.

Algorithm 9 Ambient occlusion approximation using MH parameterization for a static
mesh

1: Assemble the positive semi-definite discrete Laplacian (Equation 2.11)
2: Get MH bases of the Laplacian
3: Compute the frequency-space ambient occlusion coefficients (Equation 3.7)
4: repeat
5: Multiply and sum the related frequency-space coefficients and bases (Equa-

tion 3.8)
6: until k reaches a user-specified upper bound (k ∈ [1,m], where m is the number of

MH bases in use)

The Laplace operator defined by Vallet and Levy [18] is a 3D Laplacian that is not

convenient to capture ambient occlusion over time (animation). For this task, the current

Laplacian ∆̄ must be extended to 5D, which includes ambient occlusion (4D) over time

(5D).

Ambient occlusion can be associated with the curvature of the manifold. The local

bending of the surface is measured by the curvature, i.e., how fast a curve is changing

direction at a given point. High changes in curvature translate to high frequencies. In
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the ambient occlusion case, we differentiate between positive and negative curvatures

since a positive (convex) curvature gives brighter shading (e.g., bump) and a negative

curvature (concave) gives dark shading (e.g., dip).

This idea is applied to our ∆̄ to extend it to 4D. Since ∆̄ is positive semi-definite,

∆̄+D is also positive semi-definite, where D is a diagonal matrix with positive entries.

The emphasis of the bases can be pushed towards concave regions by clamping the

curvature, ci in the [0,+∞] range for each vertex i, and using these values for the diagonal

entries of ∆̄. This operation is performed using Equation 3.9.

∆̃ = (∆̄+wD) (3.9)

where ∆̃ is the 5D, extended Laplacian, ∆̄ is our original Laplacian defined in [18], w

is the scalar weight mentioned above, D is a diagonal matrix with positive curvature

entries.

This kind of curvature is not the real curvature but it behaves in the same way. Ad-

ditionally, for extending ∆̄ to time (animation), instead of using a scalar weight for the

basis coefficients, each weight becomes a function of time, and this function can be

approximated with a continuous Fourier transform.

We start our investigation by considering only ambient occlusion (4D case), and

we use scalar weights W = {−10,−1,−0.5,0,0.5,1,10}. Setting w = 0 generates the

same results with ∆̄ as expected. However, all other ∆̃ Laplacians, computed with scalar

weights other than 0, fail to generate correct results including the case that only the first

basis of ∆̃ in use (Figure 3.11).

After the curvature-based approach failed to obtain generalized MH bases, we de-

cided to investigate the linear system used in other parameterization techniques. We

started our investigation by focusing on Equation 3.8. We can write the system in Equa-

tion 3.8 as
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Figure 3.11: MH bases approximation using the first basis. Left: w = 0 (original).
Middle: w =−0.5. Right: w = 0.5. Only w = 0 gets uniform results when only the first
basis is used. Gamma correction was applied to these images.

a1 = ã1H11 + ã2H21 + ã3H31 + . . .+ ãvHv1

a2 = ã1H12 + ã2H22 + ã3H32 + . . .+ ãvHv2

a3 = ã1H13 + ã2H23 + ã3H33 + . . .+ ãvHv3

...

av = ã1H1v + ã2H2v + ã3H3v + . . .+ ãvHvv

where ai is the ambient occlusion of vertex i, the ã vectors are the frequency-space

coefficients, and the Hi j vectors are the coefficients related manifold harmonics bases.

This operation can also be written using matrix multiplication as in Equation 3.10.

[
a1 a2 . . . av

]
=
[
ã1 ã2 . . . ãv

]
H11 . . . H1v

... . . . ...

Hv1 . . . Hvv

 (3.10)

Equation 3.10 is for a single pose; it can be extended to all poses by adding all the

frequency-space coefficients of the poses along with MH bases. One important step is to

fill the unrelated part of the MH bases matrix with zeroes. Thus, Equation 3.10 becomes

a vector-matrix multiplication as
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A1×PV = Ã1×PV ĤPV×PV (3.11)

where A is the per-vertex ambient occlusion vector for P poses, Ã is the frequency-space

coefficient vector of P poses, Ĥ is the matrix filled with the MH bases of the poses and

zeroes.

Equation 3.11 establishes our basis to generate the extended MH bases animation

(time) and ambient occlusion. As you can see, Equation 3.11 is similar to Equation 3.1

and the per-vertex ambient occlusion depends linearly on the frequency-space coeffi-

cients and the MH bases. Thus, we can rewrite Equation 3.11 and get

A = ÃH̃ (3.12)

where A includes the per-vertex ambient occlusion of P reference poses, Ã the frequency-

space coefficients of P reference poses, and H̃ is the generic MH bases.

A is filled by the precomputed per-vertex ray-traced ambient occlusion of each ref-

erence pose P;

A =


AO(v1, p1) . . . AO(vN , p1)

...
...

AO(v1, pp̂) . . . AO(vN , p p̂)


Similarly, Ã is filled with the ambient occlusion frequency-space coefficients of ref-

erence poses P. Since the frequency-space coefficients are gathered by multiplying the

ground-truth ambient occlusion with dual area and manifold harmonics bases of the

mesh (Equation 3.7), they include both geometry and ambient occlusion information.

Ã =


JA(ão1, p1) . . . JA(ãoM, p1)

...
...

JA(ão1, pp̂) . . . JA(ãoM, pp̂)
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Finally, H̃ is a V ×V matrix that includes animation and ambient occlusion related

information since we get it by solving the linear system. H̃ is generic and used to ap-

proximate the per-vertex ambient occlusion in real time using Equation 3.13

a = ãH̃ (3.13)

where a is the per-vertex ambient occlusion of the current pose, ã is the frequency-space

coefficients of the current pose, and H̃ is the generic, 5D MH bases.

Using the bases for the whole mesh is not handy for real-time operations since H̃ has

large memory requirements. Thus, we again introduce clustering to decrease memory

requirements. For not losing any information from the animated mesh, the vertices are

clustered depending on as many joints as possible. However, this creates another prob-

lem. Considering all possible joints having an effect on a vertex leads to many clusters

with few vertices. Small clusters tend to generate error prone results in the MH bases

parameterization. Thus, we introduce a threshold to consider only joints having influ-

ence above this threshold on the vertex. In this way, the multiple joints having a large

influence on vertices are considered, but the joints having a small impact are eliminated

while keeping the quality of the results. Our experiments with the threshold showed that

values in 0.2 level are good for the meshes with low tessellation or bad geometry, and

values in 0.1 for well generated meshes (Figure 3.12).

After clustering, each cluster has its own linear system and generic MH bases H̃.

Additionally, the per-vertex ambient occlusion is calculated using each cluster’s generic

basis with the current pose’s frequency space coefficients.

One important point at this step is setting the related data for each cluster. Clus-

tering according to multiple skinning weights generates geometries with discontinuities

and some important geometric information can be lost for calculation of the cotangent

Laplacian (L) or the dual area (Hodge Star ?0). This leads to incorrect MH bases, and

correct rendering results cannot be obtained. The easiest way to solve this issue and get

the correct MH bases is calculating the cotangent Laplacian and the dual area for the

whole mesh and gathering the related parts for the clusters from these matrices. These
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Figure 3.12: Clusters for the Amazing Spiderman mesh. 0.26 is used as the threshold.
"Amazing Spiderman Rigged V2" mesh by "bLender" user on Blend Swap.

steps are performed for each the reference pose.

Additionally, even if we set correct values for the positive semi-definite Laplacian,

we may face some non-positive coefficients when we get MH bases for some of the

clusters. This situation leads to mesh faces with sudden changes in the results when

the number of bases in use is decreased because the clusters include some subclusters

sharing the same MH basis as the first basis in their own subcluster but different than the

first basis of the main cluster. These clusters can be detected and separated from their

parent cluster after MH bases of the parent cluster is computed. To do so, we introduce

a two-step algorithm to get the correct generic MH bases ∆̄. In the first pass, we divide

the vertices into clusters according to the joints having skinning weights larger than the

threshold. Then, if necessary, we divide these clusters into the subclusters according to

their H̃ values (Algorithm 10).
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Algorithm 10 Two-step algorithm to obtain the clustered generic MH bases ∆̄

1: Cluster the vertices according to the threshold.
2: for each reference pose do
3: Pose the mesh with the current reference pose
4: Calculate L and ?0 for the whole mesh
5: for each cluster do
6: Set the related information and calculate the generic bases H̃
7: if the first basis is not uniform (not sharing the same value for the first basis)

in the cluster then
8: Gather the vertices with the similar first basis and create subclusters
9: Add the subclusters into the cluster list

10: Perform Step 6 for the main cluster
11: end if
12: end for
13: end for

These subclusters are considered only during the precomputation of the frequency-

space coefficients ã. The linear system (Equation 3.12) is constructed by considering

the main clusters, including subclusters. After the correct frequency-space coefficients

are calculated for each subcluster, these coefficients are put into correct positions in the

frequency-space matrix of the main clusters Ã, and the linear system is solved to get

generic MH bases H̃ (Algorithm 11).

In Algorithm 11, the first three steps are performed as a precomputation. The frequency-

space coefficients of the current pose ã is required to perform Step 6. Thus, the frequency-

space coefficients are needed to calculate for the pose before Step 6 is performed if this

information is not available beforehand.

Algorithm 11 Parameterization with MH bases
1: Perform the two-step clustering (Algorithm 10)
2: Fill A and Ã with the correct values
3: Solve the linear system (Equation 3.12) for each cluster to get H̃
4: for each pose do
5: for each cluster do
6: Compute ambient occlusion using Equation 3.13
7: end for
8: end for
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Since manifold harmonics parameterization focuses on pure geometry of the mesh

and extends it with the ground-truth ambient occlusion, it is the most accurate approach

to approximate ambient occlusion (Figure 3.13). Ambient occlusion can be approxi-

mated with a 10−30 error rate, and this approach does not fail at complex movements

(Figure 3.14). Also the constant value λ to capture AO independently of any actual

animation parameters is eliminated. Even for clusters with few vertices, this constant

parameter does not have a crucial role as it does with joint angles, joint positions, or

vertex positions parameterizations. Memory requirements of MH parameterization are

lower than clustered vertex position parameterization; however, it is larger than the joint

angles or joint position parameterizations, e.g., 144 MB is required for a 15410 vertex

mesh.

Figure 3.13: Ground truth (left), MH bases parameterization approximation (middle),
100 times magnified comparison (right). Running forward and backward animations are
learnt, running forward is approximated.
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Figure 3.14: MH approach does not fail in complex motions. Ground truth (left), MH
bases parameterization approximation (middle), and 100 times magnified difference.
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CHAPTER 4

RESULTS AND DISCUSSION

We tested our parameterization techniques using five different skeletal animations

on five different skinned characters. The animation data and some of the meshes come

from Tarini et al. [15]. We use the precomputed per-vertex ray-traced ambient occlusion

as ground truth. We shoot 10000 rays during the precomputation, and we choose max

distance (ray length) as 25% the diagonal of bounding volume of the mesh. We also use

the precomputed ray-traced ambient occlusion to train the linear systems of equations.

The linear system constructed based on Kontkanen and Aila [6] works well with the

motions learnt. Approximation results are close to the ground truth both mathematically

and visually as long as the assumptions of Kontkanen and Aila [6] are valid (appearance

of the object linearly depends on the motion parameters, and the motion parameters

can be handled independently). However, generalizations of this system (approximation

parameters) to any kind of random motion requires learning a large number of motion

examples with many different aspects as any other machine learning techniques. Other-

wise, the generalization fails at poses never treated before.

Correct approximation results also depend on the mesh geometry. If the mesh is not

well generated (broken parts, geometrically wrong tessellation, etc.), and/or the anima-

tions produce incorrect skinning results (such as self-intersections), then the approxima-

tion parameters cannot be extracted correctly since the ground-truth values (ray-traced

ambient occlusion) would not be correct, and approximation results are then prone to

errors. The more the system learns these error-prone reference poses, the more it gets

confused. Therefore, the errors in the approximation results (both visual and error rate)

increase and even the approximation of the motions learnt gets affected. These kinds

of problems are common in real-world applications, such as video games since low-

polygon meshes with problematic geometry and few animation frames that may lead to

error-prone skinning results, are used to decrease memory requirements.

We experiment and verify this situation by using a mesh with a poor geometry and



animations that include self-intersections that actually come from a video game [15].

During the experiment, we only increase the tessellation of the mesh, and "running"

(forward and backward), "dying", and "striking" animations are learnt. Animations of

"striking", "dying" (complex motion), and "walking" (unknown motion) are approxi-

mated.

Kontkanen and Aila [6] tackle this problem by generating their own "valid" refer-

ence pose set, and our results supported their method and their findings. Approximation

results of our approach can be increased either by eliminating invalid motions (such as

self-intersections) or fixing the mesh geometry.

Our parameterization with joint angles is the same as the parameterization from Kon-

tkanen and Aila [6]. As long as their assumptions are satisfied, joint angle parameteriza-

tion can approximate ambient occlusion with a precision of 10−13 (Figure 3.1). However,

geometry parts such as the armpits or situations such as the shadow casted by the hand

on the torso are problematic cases for this approach. Hence, the error rate increases to a

precision of 10−4, and flickering appears in the approximated results. The most complex

animation we worked on is the "striking" animation since it breaks many of the assump-

tions of Kontkanen and Aila [6], such as two arms of the humanoid geometry that cast

shadows on the torso. For this animation, joint angle parameterization generates visible

artifacts even if all the poses of the animation are learnt and approximated (Figure 3.2).

Parameterization with joint angles is also affected by the mesh geometry and invalid

poses (Figures 4.1 and 4.2). A result of the generalization of the joint angle approxima-

tion can also be seen in Figure 4.3. Error rates are listed in Table 4.I.

Animation Mean of MSE Variance of MSE
sequence Max error Min error (all frames) (all frames)

Dying 4.0975×10−3 5.4389×10−4 1.6232×10−3 5.1312×10−7

Striking 4.0846×10−3 2.0865×10−4 9.1364×10−4 4.214×10−7

Walking 3.3542×10−3 5.9681×10−4 1.4838×10−3 4.2904×10−7

Table 4.I: MSE of the "striking", "dying", and "walking" animations with joint angle
parameterization using a mesh with a poor geometry. The "running" (forward and back-
ward), "dying", and "striking" animations are learnt.
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Figure 4.1: Approximation of joint angle parameterization for the "dying" animation
with a poor mesh. Ground truth (left), joint angle approximation (middle), and 10×
magnified difference (right).

Even though memory requirements of joint angle parameterization is low, investigat-

ing and/or applying data compression methods can make joint angle parameterization

more useful for highly tessellated meshes or scenes consisting multiple meshes.

The parameterization with clustered vertex positions produces visually similar results

as the joint angle parameterization. However, it tends to fail more than the joint angle

parameterization when the assumptions are not held (Figures 4.4 and 4.5). Vertices

breaking the assumptions generate higher error rates and this also increases variance in

mean squared error (MSE) of the clustered vertex position parameterization.

Clustered vertex position parameterization can be integrated into the current skin-

ning pipelines. In this way, ambient occlusion can be approximated during the skinning

process by multiplying the skinned vertex position with the approximation parameters.

However, the biggest obstacle to its integration is the high memory requirements of this

approach. Even though SVD experiments showed that more than half of the parame-

ters can be eliminated, this may not be enough for highly tessellated meshes or complex

scenes with multiple meshes. Therefore, the further elimination of parameters along a

data compression technique can be investigated as future work.

The generalization of clustered vertex position parameterization follows in a simi-

lar fashion with joint angle parameterization. If the system does not cover the "valid"
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Figure 4.2: Approximation of joint angle parameterization for the "striking" animation
with a poor mesh. Ground truth (left), joint angle approximation (middle) and 10×
magnified difference (right).

reference poses capturing most of the possible motion then, clustered vertex position

parameterization tends to approximate error prone results for the motions not seen (Fig-

ure 4.6). Error rates can be seen in Table 4.II.

Animation Mean of MSE Variance of MSE
sequence Max error Min error (all frames) (all frames)

Dying 7.4977×10−3 1.4174×10−3 3.1699×10−3 2.1491×10−6

Striking 4.684×10−3 3.4522×10−4 1.7549×10−3 1.4655×10−6

Walking 3.8607×10−2 2.4583×10−2 0.0304 2.1944×10−5

Table 4.II: MSE of the "striking", "dying", and "walking" animations for clustered vertex
position parameterization using a mesh with a poor geometry. "running" (forward and
backward), "dying", and "striking" animations are learnt.

We only considered visual errors of joint position parameterization for a complex

motion (the "striking" animation), and did not perform any detailed investigation since it

could not beat either parameterization with joint angles nor parameterization with vertex

points.

The parameterization with manifold harmonics bases produces the best results for

the approximation of the motions learnt (Figure 3.13). The ground truth can be approxi-

mated with an error in the 10−30 range, and only clusters with few vertices (such as five
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Figure 4.3: Approximation of unknown (not in the training set), the "walking" anima-
tion with joint angle parameterization. Ground truth (left), joint angle approximation
(middle), and 10× magnified difference (right). Regularization parameter λ = 0.001.

Figure 4.4: Approximation of clustered vertex position parameterization for the "dying"
animation with a poor mesh. Ground truth (left), clustered vertex position parameteriza-
tion (middle), and 10× magnified difference (right).

vertices) produce approximation with a precision of 10−5 even for a motion sequence

that does not satisfy the assumptions (Figure 3.14). The MH bases parameterization

extracts the approximation parameters based on the ground-truth values and the mesh’s

own geometry. Thus, MH bases approximation may be affected more by poor mesh

geometry. As a result, relatively small clusters (e.g., clusters with less than 200 ver-

tices) may cause some visible flickering (because of the precision of 10−5) even though

other clusters are approximated with an error in the 10−30 range without any problems

(Figures 4.7 and 4.8).

On the other hand, MH bases approximation cannot be generalized as other parame-
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Figure 4.5: Approximation of clustered vertex position parameterization for the "strik-
ing" animation with a poor mesh. Ground truth (left), clustered vertex position parame-
terization (middle), and 10× magnified difference (right).

terization systems by simply learning more reference poses. MH bases parameterization

approximates error prone results regardless of increasing the number of the reference

poses covering many aspects (Figure 4.9). Increasing the number of the reference poses

may help to improve results in some clusters; however, it does not help to improve the

precision in the mesh’s itself.

The MH bases parameterization requires less memory than clustered vertex parame-

terization. However, depending on the desired level of quality or the detail of the mesh,

some clusters can use fewer parameters to approximate ambient occlusion. In this way,

memory requirements of MH bases parameterization can be decreased more, and a data

compression technique could be investigated to reduce the memory requirements further.

The MH bases parameterization also requires frequency-space coefficients (anima-

tion parameters in parameterization sense) of the current pose for ambient occlusion

approximation. These coefficients are not related to the skinning process either, and

computing them in real time for arbitrary poses may not be possible. Thus, related

frequency-space coefficients should be available before the approximation process. This

issue may be solved by also learning the frequency-space coefficients of the reference

poses and extracting some approximated parameters for them. Thus, another machine

learning technique can be applied to extract generalized frequency-space coefficients
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Figure 4.6: Approximation of unknown, the "walking" animation with clustered vertex
position parameterization. Ground truth (left), clustered vertex position approximation
(middle), and 10× magnified difference (right). Regularization parameter λ = 1000.

which will be used with the generalized MH bases. However, the effect of using gener-

alized frequency-space coefficients along the generalized MH bases on the quality of the

rendered images is unknown.
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Figure 4.7: Approximation of MH bases parameterization for the "dying" animation with
a poor mesh. Ground truth (left), MH bases approximation (middle), and 10×magnified
difference (right).

Figure 4.8: Approximation of MH bases parameterization for the "striking" animation
with a poor mesh. Ground truth (left), MH bases approximation (middle), and 10×
magnified difference (right).

Figure 4.9: Approximation of unknown, the "walking" animation with MH bases param-
eterization. Ground truth (left), MH bases approximation (middle), and 10× magnified
difference (right). Regularization parameter λ =−1000.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

We have presented a technique that approximates appearance of skeletal animated

skinned characters by "learning" motion-appearance data using parameterization tech-

niques of the mesh space based on joint angles and positions, vertex positions, or mani-

fold harmonics bases. We tested our technique on ambient occlusion. Our approximation

and parameterization techniques can approximate the ground-truth values with small er-

ror rates, and the quality of the results can be extended by learning all "valid" possible

motions. This also helps to extend our technique to arbitrary motions.

The linear system we construct for learning motion-appearance pairs and the ap-

proximation parameters extracted can experience difficulties to approximate complex

geometries and geometric configurations, such as an armpit and shadowing that depend

on many animation parameters, the shadows cast by a hand of the character on his torso,

etc. Additionally, geometry of the mesh may cause some problems in the approximation

results, e.g., mesh discontinuities and self-intersections are causes for failed results.

The parameterization with manifold harmonics bases approximates ground truth di-

rectly and does not fail as much as other parameterization techniques to approximate

complex geometries or motions because mesh geometry and ground-truth appearance

data are parameterized together. However, geometrical problems in the mesh and self-

intersections can still cause problems. The parameterization with vertex positions tends

to fail more frequently at complex motions and the data requirement is higher than other

parameterization techniques; however, it can be plugged directly into current skinning

pipelines and the appearance of the meshes can be approximated during the skinning

process.

Even though the parameterization with joint angles fails less than the parameteriza-

tion with vertex positions for complex motions and geometries, results are not as good

as the parameterization with manifold harmonics.

Improvements in the learning algorithm should be investigated to minimize the error-



prone approximation results, especially with complex motions or geometries. In this

way, the training of the system should be performed without learning every possible

motion to improve rendering results. Indeed, we need to have a better understanding

about what a given geometric configuration brings to the system of equations to analyze

its impact, and maybe better selection of the proper poses with impact on appearance.

Ambient occlusion results prove promising to extend our technique to other ap-

pearance phenomena. Since ambient occlusion is view-independent, diffuse shading,

changes in colors, subsurface scattering, etc., can be the next steps of the investigation.

Additionally, there is a prior work about approximating global illumination based on

precomputed radiance transfer (PRT) and bases of the Laplace operator. Based on the

similarities these approaches share with our MH bases parameterization, an investigation

should be performed about global illumination approximation. Also, other animated

meshes without a standard skeleton like deforming under gravity, motion or muscle

actions, or using a skeleton differently like for facial animations could generalize our

approach.

A study about directions could also be important for extending our technique. In

this way, our approach can be extended to caustics (incident light direction) or specular

shading (light and view directions), transparency and refraction (view direction). This

notion of directions also brings other possible applications to surface orientations to

model and animate surface features such as realistic fur, hair, etc.

Approximation of physically based animations is another interesting avenue. A lin-

ear system on physically based animated vertex positions and joint angles can be con-

structed, and by extracting parameters, realistic vertex positions can be approximated.

This idea can be applied to deformation of muscles, fur, clothes, etc.

With all those applications, maybe even combined memory requirements of our ap-

proach would quickly become a major hurdle, especially for scenes consisting of multi-

ple meshes, such as in video games. Data compression of the approximation parameters

is critical to the acceptance of our approach in the real-time scenarios where it could ap-

ply. Transferring the learned approximations to procedural models could be an another

route to alleviate the large memory requirements.
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