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Résumé 

Durant la dernière décennie, la recherche sur les jeux vidéo et leur implication sur les 

habiletés perceptivo-cognitives a gagné en intérêt. Plusieurs études ont démontré que les jeux 

vidéo (particulièrement les jeux d’action) possèdent la capacité d’influencer et d’améliorer 

différentes aptitudes perceptives et cognitives telles que l’attention visuo-spatiale, la vitesse de 

traitement de l’information, la mémoire visuelle à court terme ainsi que la poursuite d’objets 

en mouvement. Cependant, plusieurs autres études n’ont pas réussi à reproduire les mêmes 

résultats. D’un autre côté, un nouveau type d’entraînement perceptivo-cognitif, nommé 3-

Dimensional Multiple-Object Tracking (3D-MOT), et qui consiste à traiter des scènes 

visuelles dynamiques dénuées de contexte, a démontré son implication sur différents types 

d’attention, la mémoire de travail ainsi que la vitesse de traitement de l’information. L’étude 

actuelle a examiné quatre groupes de joueurs inexpérimentés qui s’entrainaient durant 10 

séances à l’aide d’un exercice perceptivo-cognitif (3D-MOT), ou d’un jeu de haut niveau 

visuel (jeu vidéo d’action : Call of Duty), de bas niveau visuel (Tetris) ou d’un jeu non-visuel 

(Sudoku). Des mesures d’électroencéphalographie quantitative et des tests 

neuropsychologiques effectués avant et après l’entraînement ont démontré que le 3D-MOT, 

par comparaison aux autres jeux testés, améliorait de façon plus efficace les fonctions reliées à 

l’attention, la mémoire de travail ainsi que la vitesse de traitement de l’information. Pour la 

première fois, cette étude démontre que l’entraînement non-contextuel de 3D-MOT améliore 

les habiletés perceptivo-cognitives plus efficacement que l’entraînement à des jeux de 

divertissement tels que les jeux vidéo. 

 

Mots-clés: 3D-MOT, jeux videos, d’entraînement perceptivo-cognitif, qEEG 
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Abstract 

In the past decade, research on video games and their implications on cognitive 

abilities have gained significant interest. Various studies suggest that video games (in 

particular action video games) have the inherent ability to influence and improve attentional 

abilities such as visual spatial attention, processing speed, visual short-term memory and 

multiple-object tracking. However, many other studies have been unable to replicate similar 

results. On the other hand, a recent cognitive enhancement tool that is visually dynamic and 

void of context called 3-Dimensional Multiple-Object tracking (3D-MOT), has demonstrated 

robust effects on cognitive-perceptual abilities such as divided, selective, and sustained 

attention as well as working memory and information processing speed. The current study 

examines four groups of non-video game players that train for 10 sessions on the cognitive 

enhancing technique (3D-MOT) or on one of three different visually stimulating games: 

highly visually stimulating game (Call of Duty), lowly visually stimulating game (Tetris), or 

non-visually stimulating puzzle (Sudoku). A battery of cognitive tests and quantitative 

electroencephalography preformed before and after training, demonstrated that training on 3D-

MOT improved cognitive functions related to attention, working memory, and visual 

information processing compared to video games. For the first time, this study demonstrated 

that non-contextual training with 3D-MOT improves perceptual-cognitive abilities more 

efficiently than video game playing. 

 

Keywords: 3D-MOT, video games, perceptual-cognitive training, qEEG 
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Chapter 1 - Introduction 

1. Overview 

What kind of games do you play? Rarely will someone today answer this question by 

naming a classic board game like Monopoly or Scrabble. Instead, they might respond by 

retorting that the question is too broad and ask you to narrow down the selection to online, 

mobile, or console games all of which are electronic by nature. According to the 

Entertainment Software Association (ESA), approximately 59 % of Americans play video 

games and the average North American household consists of two gamers who own at least 

one dedicated gaming console, PC, or smartphone (ESA, 2015). Devices such as wireless 

tablets, a PlayStation®, laptop, and smart TVs, are now intricately woven into our home 

décors. As a result of the digital age of gaming, consumers spent over 22 billion dollars in the 

video game industry, including software, hardware and accessories in 2014 (ESA, 2015). To 

describe the strong impact this industry is making, when Grand Theft Auto V (Action-

adventure game) was released in 2013, the game grossed a record one billion dollars worth of 

units in just under three days (ESA, 2015). It is clear that today’s society loves to play video 

games, and lots of it. 

How long have you been gaming? Those who grew up in Generation Y can recount the 

exact moment they experienced their first video game. Whether it was Nintendo’s Super 

Mario Brothers (1985), Atari’s Tetris (1988) or Sega’s Sonic the Hedgehog (1991), these 

games are classics in the video game world. According to the ESA, the average video gamer is 

thirty-one years old and has been playing video games for 14 years (ESA, 2015). Contrary to 

popular belief, women make up 48% of video gamers and women aged 18 years and older 

represent 36% of the gaming population in comparison to boys aged 18 or younger who make 

up just 17% of the population (ESA, 2015).  

It appears that with the growth of video game culture, more and more individuals are 

looking to uncover the hidden benefits and untapped potential of this unique form of 

entertainment. Its presence in popular media in recent years has highlighted certain cognitive 

benefits and the psychological disadvantages of playing video games. It is safe to say that 
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video games are embedded into our day-to-day lives and the sheer number of individuals who 

are connecting with the gaming world is increasing at an ever-increasing rate. Common to all 

games is the aching curiosity of knowing whether playing video games can make you smarter. 

So can video games offer something more than just a means of entertainment? Can their 

popularity and entertainment value be harnessed as tools to help train our brain, to be faster, 

stronger, and more capable? Some researchers have suggested that video game playing might 

be an effective means to train the brain and highlight cognitive abilities that are triggered such 

as attention, working memory and spatial abilities while others suggest its transfer onto every 

day activities is very limited (Bavelier et al., 2011; Boot, Kramer, Simons, Fabiani, & Gratton, 

2008). Perhaps video games aren’t the root of the cognitive enhancement but rather an 

inherent ability by the individuals who enjoy playing video games. The ideas seem 

encouraging but the research is inconclusive.  

Research has demonstrated quite evidently that the brain is capable of reorganizing 

itself based on experience, a phenomenon often termed as neuroplasticity (Draganski et al., 

2004). This newly recognized characteristic of the brain has opened up the ever-expanding 

field of brain-training programs, which are often geared towards improving overall cognitive 

abilities. However, many of these programs lack scientific arguments to support such large 

claims (Jak, Seelye, & Jurick, 2013). The idea that the brain can be systematically exercised to 

function at a higher level has gained attention by cognitive neuroscientists worldwide. 

Considering the immense potential of the field, various digital brain-training programs have 

become widely available to anyone who owns a smartphone, PC or tablet, and for a few extra 

dollars, the expansion pack promises you cognitive enhancement within just a few tries. But 

these applications are supported by very little research and even fewer results. Effective 

marketing on major social media outlets has convinced consumers that beneficial effects on 

the brain can be achieved through training applications such as LumosityTM (Lumos labs) or 

Brain AgeTM (Nintendo®). In fact, Lumos labs have recently been scrutinized by the Federal 

Trade Commission for claims of false advertising and are expected to pay a settlement of two 

million dollars (FTC, 2016). Do these programs truly offer anything more than an empty 

pocket?  
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Despite the lack of research, one particular brain-training method has provided 

significant conclusions in cognitive enhancement in young adults, the elderly, and athletes. 

The training method utilizes 3-dimensional multiple-object tracking (3D-MOT) to improve 

perceptual cognition and is a technology licenced under NeuroTracker™ (by Cognisens Inc.). 

The object of the task is to follow multiple objects presented in 3D while ignoring the 

distractors. Critical mental abilities are isolated through four defining factors including 1) 

MOT 2) a large visual field 3) speed thresholds and 4) binocular 3D cues (Faubert, 2013). The 

technique is void of any content and aims to improve divided, sustained and selective 

attention.  

The purpose of this thesis will be first to determine the effects of visual training using 

several types of modern video games compared to the 3D-MOT technology, and second, to 

subsequently compare the cognitive gains of each game by using a battery of 

neuropsychological tests and brain imaging to determine which provided the most significant 

cognitive gains. By reviewing the most current literature in the video game field, we hope to 

get an understanding of whether certain styles of video games can be harnessed as a tool to 

enhance cognitive function or if 3D-MOT may be a more effective tool to stimulate cognitive 

enhancement. 
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2. Cerebral Plasticity  

The term plasticity refers to the ability the nervous system has to reorganize its 

connections functionally and structurally in response to experiences in their environment 

(Baroncelli et al., 2011). In other words, cerebral plasticity corresponds to the development 

and adaptability of neuronal circuits. Neuroplasticity can be divided into two types: functional 

plasticity (which allows the brain to relocate its abilities from a damaged area to an 

undamaged area) and structural plasticity (which is the brains capacity to change its physical 

structure as a result of learning).  

Plasticity is the defining factor of memory and learning processes and at times, 

intervenes to compensate for effects created by intrinsic and extrinsic factors by organizing 

new neuronal networks. It is incredibly active during the first few stages in post-natal 

development, particularly in the brain regions that correspond to major behavioural functions 

(Berardi, Pizzorusso, & Maffei, 2000). However, the evidence over the years has shown that 

neuroplasticity can be induced well after the critical period has ended (Kramer, A. & Willis, 

2003). This “plastic” potential of the brain persists throughout the lifespan and has also been 

observed in elderly persons (Mahncke et al., 2006). The human brain is capable of 

reorganizing neuronal tissue and networks when learning new abilities (Draganski & May, 

2008). Besides its role during the acquisition of new experiences, synaptic plasticity plays a 

major role in the restoration of a function that is damaged after cerebral lesions (Ptito, Kupers, 

Lomber, & Pietrini, 2012; Sabel, Henrich-Noack, Fedorov, & Gall, 2011; Wiesel & Hubel, 

1963). For example, brain-imaging studies have shown the ability of cross-modal plasticity, 

which permits the reorganization of neural networks when one sensory system is absent or 

inhibited (Kupers, Chebat, Madsen, Paulson, & Ptito, 2010). Additionally, neuroplasticity has 

been shown to persist well after the critical periods of development have passed. Early 

research conducted on individuals who have lost a limb show functional cortical 

reorganization in areas that are responsible for the output of movement (Merzenich, 1998) and 

others have found that newly generated cells in the hippocampus (a region in the brain that is 

responsible for learning and memory) can transform into functional neurons in an adult human 

brain  (van Praag et al., 2002).  
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Plasticity can be observed in different levels within the visual system, in a healthy 

brain or in a damaged brain. Usually, it can be induced during perceptual learning that is 

influenced by a change in performance while training. Perceptual learning can be defined as 

the increased ability to extract information from the environment due to an experience or 

practice (Kellman & Garrigan, 2009). A noteworthy example of plasticity in the human brain 

and in other animal species is the effect of physical activity. In fact, physical activity plays an 

important role in neurogenesis, angiogenesis, and the production of growing factors important 

for memory and cognitive functions. There are a number of studies that show the beneficial 

effects of physical exercise as well as enriched environments on cognitive functions in animal 

models (Vaynman & Gomez-Pinilla, 2006; Vivar, Potter, & van Praag, 2013) and in humans 

(Kramer, A. F. & Erickson, 2007).  

The idea that the brain can change based on learning and new experiences is well 

accepted in science. This understanding of neuroplasticity has led to an increase in curiosity in 

brain training techniques for a variety of purposes. Cognitive training can benefit older 

populations, training athletes, or cognitively impaired individuals. In addition, these training 

programs often grow with strength when transfer is observed. Researchers often describe the 

result of training to produce near or far transfer effects. Transfer can be described as the 

ability to extend a task learnt in one context onto a new context (Bransford, Brown, & 

Cocking, 1999). Near-transfer can be described as improvements in a task and similar tasks 

within the same context following training whereas far-transfer suggests transfer onto tasks 

outside of the trained context (Barnett & Ceci, 2002).  

Due to the great amount of interest in brain research and its implications on every-day 

society, researchers have looked towards a common hobby that is highly prevalent among 

people: Video games. Some researchers believe that playing video games has a beneficial 

effect on cognition while others are not as convinced by its abilities to cause such change 

(Bavelier et al., 2011). In turn, cognitive enhancers such as 3D-MOT have similarly gained 

interest as a simplified method to increase cognitive perceptual abilities.  

 

Throughout the subsequent chapters, understanding different types of video games and 

commercial brain-training programs will be pertinent to uncovering the plastic potential of the 

brain and whether 3D-MOT can offer a more efficient approach. 
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3.Types of Video Games 

 For a non-video gamer, it is easy to suggest that all video games are the same.  Video 

games vary from content, audience, format and overall style. Some games can be fast paced 

racing games like Need for Speed, where the goal of the game is to compete in racing 

competitions and unlock levels to upgrade your racing car.  Other games are slower and more 

strategic like Civilization, where the goal is to create your own empire and conquer the virtual 

enemy in hopes to achieve world domination. Each game offers a unique experience to the 

player, tailored to their preference and style. For the purpose of the research study, three types 

of games were explored due to their various levels of visual stimulation and attentional 

requirements expected. The tree categories included a high visual stimulus, a low visual 

stimulus, and a non-visually stimulating game. However, there is one type of video game that 

has received more attention than all the others when it comes to video games and cognitive 

enhancement: Action-video games (AVG). 

 

3.1 Action Video Games 

 First person shooter (FPS) games often fall under the category of AVG’s and are 

primarily centered on weapon-based combat through the experience of a protagonist. In other 

words, through a first person perspective, the main character is controlled by the gamer. This 

is unlike third-person shooter games, in which the player can usually see the character they are 

in control of. The story line in many of these action video games change, however the idea 

stays the same – navigate yourself through a series of dynamic visual scenes while you kill the 

enemy and avoid being killed. Often times, this requires players to memorize the detailed 

playing map, track their opponents and teammates, react quickly to visual stimuli, and take 

note of their resources all at the same time.   

 The first FPS game was developed in 1987 by Atari ST and was called MIDI Maze, 

similar to the game PacMan. However, the pioneer in FPS games were developed by id 

SoftwareTM with the creation of Wolfenstein 3D in 1992. With the success of their game, id 

SoftwareTM quickly released Doom in 1993, which paved the way for FPS games for years to 

come. Their popularity and success was attributed to the creation of a multiplayer setting 
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where players could engage in competitive matches amongst each other. Over the subsequent 

years, FPS games gained increasing popularity with the addition of household PC, gaming 

consoles, and hand held devices.  

 Interestingly, this genre of gameplay has gained a lot of interest over the last few years 

as a tool for cognitive enhancement not for their graphic content but rather their visually 

stimulating scenes. The idea that spatial awareness, working memory, and attention are all 

cognitive abilities utilized when playing these games have sparked significant debate in the 

research world.  

 

3.2 Casual Video Games 

 Although AVGs have dominated public interest, casual games have become 

increasingly popular due to mobile handheld devices such as tablets and cellular phones. The 

Casual Games Association (CGA) estimates approximately 103 billion US dollars in revenue 

for the casual game market encompassing Asia, Eastern Europe and Latin America alone in 

2017 (CGA, 2014). Casual games are often catered to individuals who do not normally engage 

in video games and involve simple rules that allows for easy completion in a relatively short 

period of time. Common games such as Solitaire or Minesweeper are two games that many 

associate with their first PC. However, video games have come a long way since their simpler 

forms and a large number of games have been created on various platforms that can be easily 

accessed from the Internet and ultimately on a variety of devices. The boost in casual games is 

largely credited to the ease of game access. To illustrate this fact, the popular casual game 

Candy Crush Saga by King was downloaded approximately 268 million times in 2013 

(Lototska, 2014) . Although 40% of all game revenue is generated on the computer screen it is 

estimated that the Personal Screen (i.e. cellular phone) and floating screen (i.e. tablet) will rise 

to a total of 36% of all game revenues by 2017 (CGA, 2014).  

 One casual game in particular has stood the test of time and has appealed to all age 

groups: TetrisTM. Developed by Russian programmer Alexey Pajitnov in 1984, the developer 

combined the game of tetrominoes and his favourite sport tennis to create a worldwide game 

sensation. The game consists of four consistent shapes that fall continuously from the top of 

the screen. The goal of the game is to maximize the score by arranging the shapes to fill a 
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completed row so that the pile of shapes decreases and points may be awarded (Lindstedt & 

Gray, 2015). As the number of lines cleared increases, the faster the shapes fall, until the 

player can no longer clear the rows and game over is inevitable. The game has continued to 

keep players entertained over the span of two decades and has recently gained interest in its 

influences on cognition.   

 

3.3 Reasoning-puzzle game 

 Finally, there is another type of game that does not require any platform other than a 

pencil and paper: reasoning-puzzle games. Although this type of game is not considered a 

video game or visually dynamic in any way, their prevalence in newspapers and magazines 

has withstood the modern age of technology. Often, these reasoning-puzzle games require a 

logical approach in order to find the correct solution and encompass a wide variety of games 

such as crossword puzzles, word-search puzzles, number puzzles or logic puzzles. These are 

games that often require pattern recognition and inductive reasoning to solve and in turn 

increases in difficulty as the players advance and creates new strategies. Deduction skills are 

also another asset that are frequently used in reasoning-puzzle games.  

 Under the current definition, the widely popular game Sudoku can be incorporated into 

reasoning-puzzle games. Originally called Number Place, this logic-based puzzle was created 

in the late 1900’s but gained popularity near the end of the 1980’s. The objective of the game 

is to organize the digits 1 to 9 in a square grid (9 x 9) where each column, each row, and each 

sub-grid (3 x 3) contains all the digits. There are many variations of the game since its 

invention, including larger grids, the incorporation of letters and mathematics and even the 

Rubik’s Cube. 

 

 What cognitive abilities seem to be trapped by game play? Where does the debate on 

transfer lye and does expertise have an influence on cognitive enhancement? By analyzing 

game training studies and various game playing studies in the field, we hope to reach a better 

understanding on these various types of games and their impact on our brains.  
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4. Video games in cognitive training 

4.1 First person shooter – High visual stimulus 

 AVGs have become particularly popular as a genre of video game that promotes a 

number of broad perceptual and attentional abilities especially due to the intense speed of the 

game. These types of games contain fast moving objects that often move in and out of the 

visual field, a high motor load demand while manoeuvring the main character or characters, 

and draws on capabilities such as divided attention or peripheral processing when new or 

existing information is presented in one of the four corners of the screen, recreated in figure 1-

1 (Spence & Feng, 2010). 

Two researchers, Shawn Green and Daphne Bavelier, have largely contributed to the 

field of video games and science. In particular, their interest in AVGs have sparked 

discussions and gained significant interest from cognitive researchers and the general public. It 

was in their letters to nature in 2003 where they first suggested that playing AVGs have an 

effect on selective attention and that there seems to be a difference in cognition when 

comparing expert video game players (VGP) and non-video game players (NVGP) (Green & 

Bavelier, 2003).  In their article, they predicted the results of two attentional tasks such as the 

flanker compatibility effect and the enumeration task, and correctly assumed that VGP’s 

would outperform NVGP’s (Green & Bavelier, 2003). In the same study, the researchers 

continued their experiments by conducting an adapted version of the Useful Field of View 

(UFOV) task to determine if video game playing would enhance processing abilities outside 

the training range (10°, 20° and 30° from fixation). They noted that VGPs appeared to 

substantially outperform NVGPs for all three ranges. They suggested that their results indicate 

an enhanced allocation of spatial attention over the visual field, including previously untrained 

locations (Green & Bavelier, 2003). The two researchers expanded their investigation on 

VGPs by reporting enhanced abilities in the number of objects that can be apprehended (in 

enumeration and multiple object tracking tasks [MOT]) and suggested that these 

enhancements are driven by changes in visual short-term memory (Green & Bavelier, 2006a).  
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Figure 1-1: An example of a highly visually stimulating AVG as seen in the game Call of 

Duty®: Ghosts – Level 5 Homecoming  

 

 

 

 

 

 

 

 

 

 

 

 



 

 11 

Finally, Green and Bavelier (2007) go as far as suggesting that action video games can 

alter characteristics within the visual system, including changes in spatial resolution of visual 

processing by conducting a two part experiment. To do this, they found the spatial resolution 

of visual processing by calculating the smallest distance a distractor can be located from a 

target without compromising the ability to identify the target. This phenomenon is also 

referred to as “crowding” and suggests that the closer distractors are located to a target, the 

harder it is to identify the target object (Leat, Li, & Epp, 1999). The authors claimed that 

action VGPs could tolerate the affects of crowding better than NVGPs. In addition they 

claimed that similar effects were reflected in NVGPs who were trained on an AVG and thus 

arguing that AVG augmented spatial resolution (Green & Bavelier, 2007).  

 

Visual short-term memory is another cognitive process that is suggested to be 

enhanced by video game play (Blacker & Curby, 2013; Green & Bavelier, 2006a). In their 

first experiment, Blacker and Curby (2013) demonstrate that action VGPs have an advantage 

over NVGPs when presented a brief coloured visual stimuli suggesting an enhancement of 

visual short-term memory. However, to increase task difficulty, their second experiment used 

complex shapes as the stimuli and found that both groups were less efficient when encoding 

and storing the complex shapes (Blacker & Curby, 2013). These results conflict with an 

existing study by Wilms and colleagues (2013) who suggested that action VGPs have a 

heightened ability when processing information into visual short-term memory.  

Video game research has since expanded into a diverse field suggesting a number of 

cognitive advantages. Training studies have been an integral part in the research to help 

persuade the idea of a transfer effect, in particular in tasks that would benefit humans in their 

every day lives. However, there have been numerous replication failures, which often leave 

the public wondering, is there truly an advantageous effect to playing video games? 

Although their conclusions sounds convincing and in many ways may justify the 

endless hours some people play action video games, other researchers have taken it upon 

themselves to question the validity of such strong claims. Boot and colleagues (2008) 

examined the perceptual-cognitive abilities apparently tapped by AVGs by conducting a two-

part study. First they examined the possible transfer of cognitive tasks between VGPs and 

NVGPs and then they sought to train NVGPs in one of three video games (AVG, puzzle game, 
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or real time strategy game) for a duration of twenty-one hours (Boot et al., 2008). In the first 

scenario, VGPs and NVGPs were given twelve neuropsychological tests that examined 

attention, memory and executive control. Interestingly, VGPs did not differ significantly to 

NVGPs on expected tests such as the UFOV task, enumeration, Corsi block-tapping task, 

attentional blink, or the Tower of London tasks (Boot et al., 2008). Experts were however 

more capable in MOT, task switching and mental object rotation (Boot et al., 2008). More 

interestingly, NVGPs that were trained extensively on a video game did not improve on most 

cognitive tasks and slightly improved on mental rotation performance (Boot et al., 2008). 

Similarly, Irons and colleagues (2011) were also curious about the effects of action 

video game playing and attempted to replicate previous findings related to attentional 

capacity. Their study compared VGPs and NVGPs on a flanker compatibility task and 

determined that VGPs do not exhibit a greater capacity to filter out distractors (Irons et al., 

2011). The authors were unable to replicate the results of Green and Bavelier’s flanker 

compatibility task a few years earlier (Green & Bavelier, 2006b). In addition, the researchers 

conducted an Eriksen flanker task (Eriksen & Eriksen, 1974) to test differences in VGPs and 

NVGPs when processing irrelevant peripheral stimuli (Irons et al., 2011). Although VGPs had 

a faster reaction time than NVGPs, this difference in speed did not yield significance. The 

researchers were unable to reproduce previous findings that suggested that video game playing 

leads to an increase in attentional capacity (Green & Bavelier, 2006b) but were surprised to 

find other researchers had the same difficulty in replicating video game play studies that 

improved attention (Boot et al., 2008; Murphy & Spencer, 2009).  

Interestingly, a recent study examined the effects of action video games versus strategy 

video games and the influence of game expertise on two cognitive tasks: the flanker task and 

the change detection task (Gobet et al., 2014). The aim of the study was to replicate previous 

studies on video game transfer and to uncover the influence of expertise in either Call of Duty: 

Modern Warfare 3 (AVG) or StarCraft 2: Wings of Liberty (strategy video game). The 

researchers found no significant correlation between the expert video gamers’ skill level and 

the two cognitive tasks. Remarkably, action players failed to outperform the strategy players 

on the flanker task and there was no effect of expertise on the change detection task, 

suggesting that there was no interaction between the type of game played and the image type 
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(Gobet et al., 2014). This last detail was particularly interesting considering that near-transfer 

did not occur even though images from the players’ game expertise were used. 

Video games are often packed with high intensity moments where multitasking skills 

are utilized and practiced. However, Donohue et al. (2012) conducted a study to test whether 

VGPs are immune to dual-task costs by preforming three experimental paradigms with and 

without a simultaneous distracting task: videogame-based driving task, MOT, and a non-

computer-based image search task (Donohue, James, Eslick, & Mitroff, 2012). The distractor 

task consisted of oral questions from the game Trivial PursuitTM (Genus II and Pop Culture 

editions). A total of sixty participants were included in the study and were divided into FPS 

video game experts and non-video game experts. Subjects then conducted each paradigm in a 

single-task and dual-task phase. The researchers observed that performance deteriorated for all 

participants during the dual-task phase and noticed no differences between VGPs and NVGPs, 

suggesting that costs can be observed in situations of high attentional demand across 

modalities despite the level of video game expertise (Donohue et al., 2012). The research 

surrounding AVGs has yielded confounding results and more research is needed to understand 

the effect of video games and its influence on cognitive perceptual abilities.  

 

4.2 Casual games – Low visual stimulus 

Casual games are simple games that players often play without dedicating an extended 

period of time to completing the game and contain very simple rules. These are types of games 

that individuals can play on the bus during their commute to work or while they wait in the 

line at the grocery store to pass the time. As pictured in figure 1-2, with the increase in mobile 

devices and relative ease of access to the Internet, these casual games are often just a fingertip 

away and have become the most popular types of games played online or on mobile 

smartphones (ESA, 2015). But can these casual games offer more than just a means of short-

term entertainment?  Are there any cognitive advantages that can be tapped through these 

simple games?  
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Figure 1-2: An illustration of a participant playing the low-visual stimulus casual video game, 

Tetris®  
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One casual game in particular has gained the interest of researchers since the mid 90’s. 

An early training study took participants with no prior Tetris experience and subjected them to 

a 6-hour training regimen in two separate experiments (Okagaki & Frensch, 1994). After 

preforming pre and post session computerized measures of mental rotation and visualization 

skills, the researchers found that practicing Tetris was efficient enough to improve mental 

rotation time and spatial visualization (Okagaki & Frensch, 1994).  

 

In another experiment, skilled Tetris players were compared to non-Tetris players and 

revealed that experts in Tetris were superior in mental rotation of shapes similar to Tetris 

pieces or identical but not on other various tests of spatial ability (Sims & Mayer, 2002). 

Interestingly, the same researchers trained a group of non-Tetris players for 12 hours, over a 

span of four weeks, and compared their pre and post gains with a control to find that the 

results did not differ between groups (Sims & Mayer, 2002). In fact, the expert-Tetris players 

used an alternative method when dealing with Tetris shapes compared to non-experts. This 

suggests that spatial expertise is highly domain specific and does not transfer onto other 

domains (Sims & Mayer, 2002). However, Terlecki et al. (2008) tested video game transfer 

with Tetris and found that training on the game was able to transfer onto other spatial tasks 

and was persistent several months after training. 

 Green and Bavelier (2003) have also used Tetris as a control group for their research 

on video games. In their initial study, they trained a group of NVGPs on an AVG called Medal 

of Honor, for one hour per day for 10 consecutive days. They also trained a separate group of 

participants on the casual game Tetris, for the same amount of time. They suggested that 

Tetris contained a stimulating visuo-motor component but that AVGs, on the other hand, 

challenges distributed and selective attention (Green & Bavelier, 2003). They even suggested 

that Tetris would be an ideal control task due to the fact that attention is focused on one object 

at a time therefore there would be no changes in visual attention the way an AVG would 

continuously stimulate the subject with new visual information (Green & Bavelier, 2003). 

Their results showed perceptual-cognitive improvements in their AVG group and not in the 

control Tetris group.  
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 Another study compared the effects of Tetris Nintendo® and a commercial brain 

training game called Brain Age Nintendo® (Nouchi et al., 2013). Here, 32 participants were 

divided into a brain-training group and an active control in which the subjects were given an 

extended battery of neuropsychological tests to assess perceptual-cognitive abilities. The 

participants were then trained for a minimum of 5 days a week for 15 minutes. Although the 

researchers found significant improvements in measures of executive function, working 

memory, and processing speed in the Brain Age group compared to the active control group, 

the Tetris group showed improvements on measures of attention and visuo-spatial ability 

(Nouchi et al., 2013).  

 Finally, a study by Haier and colleagues (2009) took structural and functional images 

using Magnetic Resonance Imaging (fMRI) of adolescent girls before and after training on 

Tetris (Haier, Karama, Leyba, & Jung, 2009). The subjects were asked to practice Tetris for 

three months for an average of 1.5 hours a week whereas the control group was asked not to 

play Tetris for the duration of the study. At the end of the study, post images found that the 

Tetris trained group showed thicker cortical regions but that brain activity was reduced 

primarily in the frontal area (Haier et al., 2009). Interestingly, the blood oxygen level 

dependent changes observed did not overlap with the changes in cortical thickness. The 

researchers suggested that playing the visual-spatial problem solving game Tetris for a period 

of 3 months structurally changed an area of the brain but not consequently create a functional 

change in the same area (Haier et al., 2009). Although the idea that a simple casual game will 

provide cognitive benefits is enticing, the research at the moment is limited and lacking in 

scientific strength to be considered as an efficient brain-training exercise due to weak far-

transfer effects observed (Baniqued et al., 2014). 

 

4.3 Reasoning Puzzle Games - No visual stimulus  

 It is a common conception that Sudoku helps exercise the brains capacity, but is that 

truly a fact or a myth? Although this idea is widespread, there is little evidence to prove its 

veracity. Well-known magazines and media outlets with bold article headings suggest that 

Sudoku practice, as observed in figure 1-3, is proven to workout the brain and cognitive  
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Figure 1-3: An illustration of a participant solving the non-visually stimulating puzzle game, 

Sudoku 

  



 

 18 

training games like Brain AgeTM Nintendo® have incorporated Sudoku in their training 

programs. However, the scientific literature is very limited, leaving these seemingly 

convincing claims without any support.  

There are few published articles on the effects of Sudoku and cognitive function; 

however, a study by Grabbe (2011) examined the popular game and its influence on working 

memory. Grabbe suggested that Sudoku performance and performance on working-memory 

tests would have a significant relationship. Forty-seven participants were recruited for the 

study (28 young adults and 19 older adults) for a single session of ninety minutes. Participants 

were asked to perform eight cognitive tasks that particularly measured working-memory such 

as backward digit span, letter-memory, Stroop task, before they continued onto the timed 

Sudoku tests. The results showed that three of the working-memory tasks were correlated to 

Sudoku performance (Grabbe, 2011). Although Grabbe found a correlation in three out of 

eight working memory tests, the idea that Sudoku puzzles offer cognitive benefits lacks 

scientific weight.  

 Since the research on various types of games has proven to be unclear in regards to 

their influence on cognitive perceptual abilities, then perhaps techniques directed to cognitive 

enhancement may offer more significant results. 

 

5. Cognitive brain-training techniques 

Cognitive enhancement or “brain training” can be defined as any increase of core 

information processing systems in the brain, which includes the mechanisms that are 

responsible for perception, attention, conceptualization, memory, reasoning and motor 

performance (Sandberg & Bostrom, 2006). In addition, brain training can also be defined as 

the engagement of a program or activity whose intention is to improve a cognitive skill or 

ability through repetition over a limited amount of time (Rabipour & Raz, 2012).  

Training can range over a variety of different facets. Some therapies have explored the 

natural affects of exercise and nutrition, suggesting that the collaboration of these non-

invasive therapies can stimulate synaptic activity and repair damaged neurons (Gomez-Pinilla, 

2011). Recently, brain-enhancing drugs called “nootropics” have gained the interest of 
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students looking for a competitive advantage over their peers. These smart drugs known 

otherwise as methylphenidate, modafinil, and piracetam influence the brains alertness, 

promote oxygenation of neurons, increase blood flow and heighten overall stimulation of brain 

activity (Piracetam, 2015). Another brain enhancing therapy popular within research is neuro-

stimulation. Transcranial magnetic stimulation (TMS) is an invasive technique that uses brief 

high intensity magnetic fields to induce currents so that neurons may be depolarized in small 

regions of the cortex (Luber & Lisanby, 2014). Studies show that specific frequencies have 

induced cortical enhancement. Five Hz of cortical stimulation has specifically shown to affect 

executive function (Boroojerdi et al., 2001; Cooper, Humphreys, Hulleman, Praamstra, & 

Georgeson, 2004; Kohler, Paus, Buckner, & Milner, 2004; Luber et al., 2007; Romei, Driver, 

Schyns, & Thut, 2011; Yamanaka, Yamagata, Tomioka, Kawasaki, & Mimura, 2010).  

 However, in this modern age, a quick and simple subconscious practice, where one can 

attain improvement without perceiving the work behind it as a chore, intrigues the average 

consumer more than actively exercising or undergoing treatment.  

 

6. Commercial brain training games 

Over the last few years, brain training companies have developed into a multibillion 

dollar industry and their revenue is expected to surpass 6 billion by 2020 (SharpBrains, 2013). 

An increasing number of brain training programs have guaranteed that their techniques 

enhance or rehabilitate behaviour and brain function. LumosityTM, Brain Age: Nintendo® DS, 

and Brain MetrixTM are just a few of the many companies that have optimized on the market 

of products, each promising that their programs lead to enhanced cognition. LumosityTM has 

recently reached 50 million subscribers and members have spent nearly 39 million hours on 

brain training activities (Zhang, 2014). These statistics illustrate the consumers’ curiosity and 

belief that such training programs have a significant affect on their cognition. The prospect of 

these changes appeals to a variety of consumers – from the healthy and ambitious to the 

concerned and cognitively impaired, there is no shortage of consumer interest in the field of 

cognitive neuroscience. These companies primarily target younger children and elderly 

persons whose cognitive abilities are in the process of developing or have declined with age. 
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The programs also offer a simple platform through the Internet medium where consumers can 

access training from the comfort of their own living rooms.  

The idea behind most of the commercial brain-training programs is that practicing one 

or more tasks may lead to an improvement in performance on previously untrained tasks (Boot 

& Kramer, 2014). But does it truly work? Most of these programs present individuals with a 

variety of simple games that involve tracking multiple moving objects, recognizing complex 

patterns, rapidly detecting objects presented in the visual periphery, or remembering properties 

in rapidly presented pictures (Boot & Kramer, 2014). Over time and with continuous practice, 

players are able to preform the tasks faster and more accurately. However, this objective 

would prove useless if there was no transfer onto other real-world scenarios. The real 

advantage of brain-training programs is to extend the training and practice gained while 

playing onto general perceptual and cognitive improvements that can benefit ones life in a 

meaningful and productive way.  

There is an abundance of research that shows that brain-training protocols can improve 

visual attention, inhibition or conflict related attention, working memory and reasoning related 

to the trained task but these improvements seem to rarely expand further to influence broader 

abilities (Ackerman, Kanfer, & Calderwood, 2010; Ball et al., 2002; Boot et al., 2010; Boot et 

al., 2008; Lee et al., 2012; Owen et al., 2010; Willis et al., 2006).  

In a massive experiment conducted by Owen and colleagues (2010) in collaboration 

with the BBC program ‘Bang Goes The Theory’, 11,430 individuals participated in a six-week 

online brain training study in which participants were trained on tasks that would improve 

reasoning, memory, planning, visuospatial skills and attention. Participants were divided into 

two testing groups; experimental group one was trained on tasks that emphasized reasoning, 

planning and problem solving whereas experimental group two was trained on tests that 

entailed short-term memory, attention, visuospatial processing and mathematics. As the 

participants improved on the said tasks, the tasks similarly became increasingly challenging. 

The control group was not trained in anyway and was asked to answer random questions with 

the use of online resources. All three groups were administered a set of four benchmark tests 

that observed reasoning, verbal short-term memory, spatial working memory and paired-
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associates learning. Interestingly, after six-weeks of training, all three groups exhibited similar 

improvements across all four cognitive-perceptual tests (Owen et al., 2010). This suggests that 

the training program for the two experimental groups was not affective enough to create a 

significant enhancement in cognitive function when compared to the control group (Owen et 

al., 2010). The researchers consider that the lack of generalized effects of training was due to 

the types of cognitive tests but indicate the unlikeliness of this event due to the sheer variety of 

cognitive tasks that were used.  

Interestingly, a study by Lee and colleagues (2012) attempted to understand directed 

training and the transfer of training onto untrained tasks. Their participants learned how to 

play a cognitive video game called Space Fortress (Donchin, 1989)  over a period of 30 hours 

(Lee et al., 2012). Subjects were divided into two specified training regimens called Hybrid 

Variable-Priority Training or Full Emphasis Training. Subjects in the hybrid variable-priority 

group focused on improving specific skills while managing task priority whereas full emphasis 

training subjects played the game simply to achieve a high score. Groups were then compared 

based on their game performance, retention of training gains, and transfer of training to 

untrained tasks as a direct result of training. Their results showed that the hybrid variable-

priority group was able to advance further in the game than the full emphasis group and was 

particularly helpful to individuals who had little video game experience (Lee et al., 2012). 

However, contrary to their initial expectations, both groups did not show any transfer onto 

untrained cognitive tasks that measured memory, attention, visual processing, motor control, 

reasoning ability, and dual-task ability (Lee et al., 2012). Their study is one of many that 

suggest that practice can influence improvement in a specific task but that these training 

regimens offer little transfer onto untrained task. 

Researchers Nouchi et al. (2012) performed a randomized control trial on the brain 

training game Brain AgeTM on the elderly. Thirty-two participants were randomly assigned to 

either the Brain Age group or the Tetris control group. The participants were then trained for a 

minimum of 5 days a week for 15 minutes per training session. The training session took 

about 20 days and multiple cognitive tests were administered before and after the study. The 

results showed that Brain Age was more effective than Tetris in all their measures of executive 
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functions and to two measures of processing speed. However, the researchers found no 

significant differences in all measures of attention and global cognitive statuses between the 

Brain Age group and the Tetris group (Nouchi et al., 2012).  

The rise in commercial brain-training games has peaked the awareness of consumers 

and in turn, researchers are working quickly to identify the benefits and/or faults of these so-

called cognitive enhancing games. The research is still relatively new, however understanding 

the programs and developing more effective and efficient technologies is imperative if we 

wish to unlock and exercise the hidden capacities of the brain.  

 

7. 3-Dimensional Multiple Object Tracking (3D-MOT) 

The 3D-MOT model, also known under the commercial name as NeuroTracker™ (by 

Cognisens Inc.), was developed at the Université de Montréal. It is a program that trains 

cognitive-perception over dynamically complex visual scenes devoid of any athletic context or 

motor demand (Faubert & Sidebottom, 2012). The standard NeuroTracker™ program, titled 

“CORE”, entails following four spheres (balls) in random motion within a virtual cube while 

four other identical balls serve as distractors. The balls are able to bounce off the virtual walls 

of the cube and collide with other balls as well. The stereoscopy of the virtual space is created 

with the help of 3D-glasses. 

The 3D-MOT technique is represented in figure 1-4. During the test, the subject may 

fixate on a green dot, located in the centre of the virtual cube. To start, eight yellow spheres 

are stationary and uniform for 1 second (Figure 1-4 a). Four spheres of interest become red 

within a 2 second time frame so that the subject may identify the target spheres in an adequate 

amount of time (Figure 1-4 b) before they turn back to yellow. The eight spheres then begin to 

move in a randomized order for 6 seconds (Figure 1-4 c) until they simultaneously stop. At 

this moment, the subject is asked to identify the four target spheres. Once the selection is 

confirmed, the four correct spheres are revealed (Figure 1-4 e). Following 20 trials, the 

threshold is estimated by calculating the speed of the four last inversions. Each measure of 

threshold (20 trials) takes approximately 8 minutes. The speed of each trial increases after a  
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Figure 1-4: Illustration of the different phases of the 3D-MOT or NeuroTrackerTM during 

“Core” mode 
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correct response and decreases after an incorrect response, following a psychophysical 

staircase method (Levitt, 1971). 

The 3D-MOT technique is a high-level cognitive task that stimulates a number of 

important neuronal networks that work simultaneously during the exercise. The task solicits 

networks implicated in the integration of the complex movement, distributed, sustained and 

dynamic attention including working memory (Faubert & Sidebottom, 2012). To achieve 

optimal training conditions and to maximize the effects of transferability, the technique is 

based on four critical components.  

Firstly, 3D-MOT involves the distribution of attention on the targets of interest while 

ignoring the distractors (refer to figure 1-4). The idea behind the MOT is that it is a task that 

requires a divided attentional pursuit, which evaluates the visual systems ability to follow the 

position of all targets amongst the distractors. During the MOT task, performance is 

commonly measured as a function of the number of objects tracked successfully (Pylyshyn & 

Storm, 1988). It is possible to follow a maximum of four objects at the same time but only if 

the spatial index is limited to two indexes per visual hemisphere (Alvarez & Cavanagh, 2005). 

The limited resource model, also known as FINST, created by Pylyshyn (1989) tries to explain 

the way an individual is able to follow objects. Based on primitive mechanisms of vision, the 

visual system assigns attentional cues to each element that needs to be followed. Interestingly, 

each of these elements function independently (Pylyshyn, 1994). Another model suggests that 

the targets are grouped into a single element that demands a single attentional mechanism. The 

grouping continues during movement and helps to facilitate the pursuit (Yantis, 1992). 

Additionally, a more recent model suggests that the visual system deploys an attentional 

multifocal mechanism that allows for the pursuit of multiple moving objects (Alvarez & 

Cavanagh, 2005). Video games offer visually stimulating scenes that often require the player 

to track multiple objects and elements simultaneously. Figure 1-1 provides an example of an 

average visual scene in Call of Duty®: Ghosts where the first person shooter is introduced to a 

high level of visual information.  

A study by Green and Bavelier (2006a) compared NVGPs and VGPs performance on 

2-dimensional MOT and suggested that VGPs successfully tracked approximately two items 

more than NVGPs. In addition, non-video gamers who were trained on an AVG showed an 
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enhanced performance on the MOT task suggesting that the effect is likely mediated by 

changes in visual short-term memory skills (Green & Bavelier, 2006a).  

Furthermore, the addition of stereoscopy to the MOT paradigm is important. Many of 

the studies found in the literature consist of the MOT task in 2D, projected on a standard sized 

computer screen (Green & Bavelier, 2006a; Pylyshyn & Storm, 1988; Trick, Perl, & Sethi, 

2005). In fact, with the application of 3-Dimension (stereoscopic vision), following the targets 

proves to be more superior as it helps disambiguate the obstructions that could be presented in 

dynamic visual scenes like in 3D-MOT (Faubert & Allard, 2013). Additionally, 3D-MOT uses 

a measurement of average speed thresholds as a dependent variable, which is important in 

performance since it requires more attentional resources to track targets at higher speeds 

(Feria, 2012).  

7.1 Perceptual-cognitive training with 3D-MOT 

Recent studies have revealed the effectiveness of this new type of perceptual-cognitive 

training based on a general cognitive approach (Faubert, 2013; Faubert & Sidebottom, 2012; 

Legault, Allard, & Faubert, 2013; Legault & Faubert, 2012; Parsons et al., 2014; Romeas, 

Guldner, & Faubert, 2016). Young adults, elderly people and even professional athletes that 

are trained with 3D-MOT have shown an increase in their threshold speed and ultimately their 

ability to attend to the targets (Faubert & Sidebottom, 2012; Parsons et al., 2014; Romeas et 

al., 2016). By training 308 participants on the 3D-MOT task for a total of 15 sessions 

(approximately 90 minutes per session), Faubert (2013) demonstrated that the processing of 

dynamic and complex visual scenes that are void of sport context is sensitive to athletic 

performance. In fact, the speed of visual trailing and the learning capacity of professional 

athletes were superior to elite amateurs (university level athletes) and were superior to novices 

(Faubert, 2013). Similarly, a study showed that younger and older adults trained on 3D-MOT 

over a period of 5 weeks showed similar gains and their training significantly improved their 

speed thresholds (Legault et al., 2013). According to the authors, younger adults exhibited 

greater performance than the older adults while tracking three or four targets.  

In another study, researchers reached the same conclusions as the former experiment, 

however they suggested that the young adults who habitually played video games preformed 

significantly better at their MOT task (Sekuler, McLaughlin, & Yotsumoto, 2008). 



 

 26 

Interestingly, children who play video games have shown to preform better at the MOT task 

than children who do not play video games (Trick, Jaspers-Fayer, & Sethi, 2005). Trick et al. 

(2005) modified the MOT task and asked participants to track one of four moving targets that 

were disguised to blend in a crowd of 10 other similar looking distractors. Tracking accuracy 

was measured in five age groups between 6 to 19 years of age. The conclusion was that 

tracking performance was significantly better in young participants who played AVGs, and 

slightly better in those who played action-sports games as opposed to those who did not play 

video games at all (Trick, Jaspers-Fayer, et al., 2005).  

Taking into account the effect of video game playing influences on MOT throughout 

age groups, Sekuler et al. (2008) divided participants into three groups: one older group of 

adults, and two younger groups of adults (subdivided into habitual video gamers and non-

habitual video gamers). They suggested that had they not subdivided the youth group into 

NVGP and VGP’s the age-related effects would have been overly exaggerated however the 

effect of video game playing substantially affected MOT performance (Sekuler et al., 2008).  

Legault et al. (2013) considered video game play to have an affect on their participants’ 

results, however a video game habit survey was unable to explain the difference between 

younger and older adults. In fact, most participants did not play video games more than once a 

week except for one expert gamer and yet his MOT speed threshold did not seem to be 

substantially superior than the others (Legault et al., 2013) 

Recently, neurological techniques have allowed researchers to explore the effects of 3D-MOT 

on cognitive functions and attention (Parsons et al., 2014). Parsons and colleagues (2014) 

trained one group of ten young adults (on 10 sessions of 3D-MOT while another group of 

young adults (n=10) were not trained. Participants completed a battery of neuropsychological 

tests before and after testing, along with a quantitative electroencephalogram (qEEG). This 

technique allowed the researchers to identify the electrical activity of the brain pre and post 

3D-MOT training. The results revealed that 3D-MOT training had a positive affect on 

attention, speed of information processing, and working memory. Interestingly, those who 

were trained with 3D-MOT exhibited changes in cerebral activity that corresponded to 

frequencies associated with attention (represented by theta and beta waves at 4-8 Hz and 13-30 

Hz respectively) and visual processing speed (represented by gamma waves at 30-50 Hz) 

(Parsons et al., 2014). QEEG studies have shown that delta, theta and alpha brainwaves (slow 
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frequency waves) are often associated with inattention, lack of focus, and dissociative states 

whereas beta brainwaves (high frequency waves) are often associated to cognitive activity and 

cortical activation (Monastra et al., 2005; Thompson & Thompson, 2003). Other studies have 

shown that individuals with attentional deficits exhibit high amplitudes of slow wave activity 

(1-11 Hz) and relative deficits in high amplitude beta activity (12-20 Hz) (Arns, Heinrich, & 

Strehl, 2014; Lubar, 1991; Sterman, 2000). Parsons et al. (2014) suggest that the benefits that 

are observed as a result of 3D-MOT training have a transferable capacity onto our everyday 

activities  

In addition, the 3D-MOT technique has revealed promising effects on transferability onto 

socially relevant tasks. A study by Legault and Faubert (2012) trained older observes on the 

3D-MOT task for 5-weeks and submitted them to a simple biological motion task consisting of 

two components: walker and mask. The study included two control groups that were either 

subjected to a visual perceptual task (once every week for a duration of 5 weeks) or a single 

session of 3D-MOT and biological motion testing.  The researchers found that training on 3D-

MOT had a significant effect at 4 meters on the biological motion walker task, whereas the 

control groups showed no transferable effects (Legault & Faubert, 2012). Training on 3D-

MOT also had an impact when participants were asked to discriminate the walker amid noise 

and revealed greater tolerance for the masked task than untrained participants (Legault & 

Faubert, 2012). 

Another example of 3D-MOT transferability was revealed in a recent study by Romeas, 

Guldner and Faubert (2016). Varsity soccer players from the University of Montreal were 

recruited and divided into one experimental and two control groups. The experimental group 

was trained on the 3D-MOT task, while the active control group was asked to watch 3D soccer 

videos and the passive control were given no particular instructions (Romeas et al., 2016). The 

researchers revealed that those trained on 3D-MOT showed improvements in decision-making 

accuracy while passing the ball when compared to the two control groups (Romeas et al., 

2016). The authors suggest the study is the first of its kind to demonstrate non-contextual 

perceptual-cognitive training to have an effect from the laboratory setting onto the field 

(Romeas et al., 2016). 

One of the major goals in our study was to evaluate the impact of various visually 

stimulating video games onto 3D-MOT thresholds, before and after training. If video game 
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researchers suggest that certain video games have positive effects on cognitive perceptual 

abilities and specifically MOT (Dye, Green, & Bavelier, 2009; Green & Bavelier, 2006a; 

Green, Pouget, & Bavelier, 2010; Trick, Jaspers-Fayer, et al., 2005), then we would anticipate 

the same results across our participants. AVGs often stimulate the gamer to make fast 

decisions at any given moment. However, 3D-MOT helps actively train dynamic visual 

information, which is a crucial part of decision-making (Romeas et al., 2016). The technique 

applies the networks implicated in the integration of complex movements, distributed, 

sustained and selective attention which are all crucial elements in precise decision making.  

 

It is difficult to predict the future of perceptual-cognitive training and to what extent the 

training methods will show transferability. Measurable tools such as neuropsychological tests 

and qEEG will provide insight on the benefit of 3D-MOT training compared to individuals 

who train on a variety of visually stimulating video games. If the purpose of brain training is 

to efficiently and effectively enhance the brain, then unbiased participants who are NVGPs are 

essential in measuring the effect of each training method. The study will contribute to the 

understanding of 3D-MOT and video games in a field that has only lightly been exploited. 
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8. Objectives and hypothesis 

Given the existing evidence for the perceptual-cognitive effects of video games (in 

particular AVGs) and the promising effects of 3D-MOT training, we wanted to compare these 

methods of cognitive training using empirical data consisting of neuropsychological tests and 

a qEEG. These techniques would allow us to observe changes on a qualitative and quantitative 

level. In short, our aim was to compare the groups trained on various visually stimulating 

video games to a separate group trained on the 3D-MOT program and identify whether 

playing video games or training on 3D-MOT is a more reliable and effective means to enhance 

perceptual-cognitive abilities. 

Hypothesis 1: Improvement in 3D-MOT with training. 

 Perhaps most obviously, we expected to see improvements in the 3D-MOT task across 

all participants in the 3D-MOT training group. Preliminary data have already shown that the 

capacity for MOT can be enhanced using the NeuroTrackerTM technology (Faubert & 

Sidebottom, 2012). This experiment should replicate the documented evidence. 

 

Hypothesis 2: Positive attentional changes in qEEG 

 We expected the most significant changes to occur in the 3D-MOT group. These 

changes were expected to occur in the frontal and parietal attentional areas of the brain. 

Specifically, we expected to see decreases in delta, theta and alpha brainwaves (slow 

frequency brainwaves) in the group undergoing 3D-MOT training. Furthermore, we expect to 

see an increase in beta power (high frequency brainwaves) in the 3D-MOT group. 

 

Hypothesis 3: Improvements in Neuropsychological Attentional Assessments 

 It stands to reason that improvements in the 3D-MOT task, which relies heavily on 

attention and visual processing, should correlate with improvements in scores on standardized 

neuropsychological test batteries. We expected the individuals trained on the 3D-MOT task 

would preform better on all of the cognitive tests compared to the other three groups.  



 

 

 

Chapter 2: Materials and Methods 

The research project was approved by the ethics board (Comité d’éthique de la recherché en 

santé; CERES) of the Université de Montréal on July 29th 2014. 

1. Subject recruitment 

Participants for the study were recruited from the Montreal area. Individuals who were 

interested in participating were initially screened by email correspondence and were asked two 

critical questions. Firstly, potential participants were asked  how many hours of video games 

they play approximately in 1 week and if so, then what type of games. Secondly, participants 

were asked if they were in any way considered a professional athlete and was part of a 

competitive sports team. Due to the nature of the training-effect in the study, it was crucial that 

participants were inexperienced players with little to no video game playing experience on a 

PC or consol. Subjects who played less than one hour of video games a week over the last 12 

months were admitted to the study. Most participants admitted to little to no exposure to video 

games and overall disinterest in video games. Additionally, professional to highly experienced 

athletes, were also rejected from the study due to their superior capabilities in 3D-MOT. 

Individuals who were interested in participating but admitted to playing on a competitive high 

to intermediate level sports teams for an extended period of time in their childhood were also 

rejected from the study. 

A total of 47 participants were recruited for the project after passing the initial 

screening phase. Five participants were excluded due to failure to pass the Integrated Visual 

and Auditory Continuous Performance Task (IVA+CPT). These participants scored between 0 

to 59 on either one, or both, their auditory or visual quotient scores (suggesting major 

deficiencies in attention). Two participants concluded the study but upon analysis, were 

excluded based on IVA+CPT post scores (exhibiting major deficits). One of these participants 

seemed to be unaware of his attentional deficit and the other admitted going through 

psychologically stressful times in her life and was not functionally stable. In total, 40 

participants were divided into four separate training groups of ten: NeuroTrackerTM - NT, Call 

of Duty - COD, Tetris - TT, and Sudoku - SD. 
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Participants were accepted into the study once they confirmed they spent less than one 

hour a week on playing video games and that their athletic standing was less than highly 

experienced. Other restrictions included age (constrained between 18-35), visual acuity (6/6 

Snellen chart), stereoscopic acuity (minimum 40 sec of arc) which were evaluated during the 

first session. Psychological capacity (stable and no known psychological deficits; including 

attention deficit/hyperactivity disorder, epilepsy, or depression) was also a restriction 

determined in the initial questionnaire. 

An initial questionnaire was also sent to determine level of education, current medical 

conditions, and caffeine, alcohol and nicotine habits. 

2. Consent, Compensation and Adverse Effects 

Participants were sent an electronic copy of the consent form, along with the initial 

questionnaire and subject guidelines. The guidelines were intended to ensure that participants 

arrived to the sessions in an adequate cognitive ability and were not influenced by physical 

exercise, caffeine, or nicotine.  

During the initial testing session, participants were free to ask any questions about the 

study. A hard copy of the consent form was signed and the training group assigned to them 

was revealed. 

Participants were compensated for their participation in the study at a rate of 15 dollars per 

session. Initial testing took approximately 2.5 hours. Training sessions were 30 minutes per 

session for a total of 5 hours. Additionally, the fifth session (half-way mark) took 

approximately one hour because it included a training session followed by a qEEG. The final 

session took approximately 2 hours for an overall total of 10 hours. All subjects received a 

total of 150 dollars for their participation in the study. 

Participants in all groups were aware of the nature of the study. They understood that each 

group was being trained using a game that required different levels of visual stimulation and 

that the effects of training were analyzed pre and post for each group. Each group assumed the 

group in question was the one they were assigned to. 
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In terms of expected adverse effects, participants were cautioned that the MOT exercise in 

3D may induce sore eyes, headache, fatigue, and mild-nausea. None of the participants in any 

of the training groups admitted to such adverse effects.  

Participants included in experimental the COD group were cautioned that training on the 

AVG Call of Duty ® may provoke heightened levels of anxiety or acute aggressive behaviour. 

Participants in this group were told to discontinue game play should they feel uncomfortable 

or anxious at any time during the testing session. None of the participants in the group 

experienced such adverse effects.  

3. Initial assessment  

All participants met with the researcher for an initial (pre) testing session. They were 

advised of the duration of the pre session in advance to avoid time constraints. In this session, 

three types of assessment tools were used in order to evaluate the effects of video game 

training. First, standardized neuropsychological tests were used to measure attention, short-

term and working memory, and information processing speed. Second, a functional measure 

of brain activity using a qEEG was used to assess resting state brain function. Finally, a 

baseline 3D-MOT session was also performed to observe threshold scores before and after 

training.  

4. Baseline neuropsychological evaluation  

Eight separate neuropsychological tests were used to measure a variety of cognitive 

abilities, including attention, working memory, visual information processing speed and 

spatial perception. To replicate a previous study done in the lab by a fellow colleague, a 

similar battery of tests were used with the exclusion of the Delis-Kaplan Executive Functions 

System Color-Word Interference Tests. The Delis-Kaplan Executive Functions System Color-

Word Interference Test was not included in this study because of the large ceiling effects 

observed in the Parsons et al. (2015) study. The tests are defined and explained below 

according to the cognitive function they measure. 
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Attention  

4.1 Integrated Visual and Auditory Continuous Performance Task  

The Integrated Visual and Auditory Continuous Preformance Task (IVA+Plus®) is a 

neuropsychological test administered on the computer that analyzes different types of visual 

and auditory attention and yields information regarding these two modalities (Arble, Kuentzel, 

& Barnett, 2014). The test is particularly useful in the diagnoses of attention deficit disorders, 

however its use in research is well recognized (Sanford & Turner, 2009). The test is divided 

into three sections, including a 2-minute warm-up, 15-minute test, and 2-minute cool-down. In 

total the test lasts approximately 20 minutes. Each participant was instructed to click the right 

mouse button when a visual and auditory stimulus of the “number-1” is presented and to 

inhibit this motor action when an alternate stimulus of the “number-2” is shown. The test is 

categorized into ‘response control’ and ‘attention’. To consider all the various elements of 

attention, both categories are then further subdivided into 6 different scales: Prudence, 

consistency, stamina, vigilance, focus and speed. The IVA+Plus® has the added benefit of 

comparing an individual’s raw scores to normalized test scores based on the participant’s age. 

However, due to the nature of the continuous performance tests, the IVA+Plus® test is prone 

to ceiling effects in high-preforming populations (Tinius, 2003).  

4.2 The d2 Test of Attention  

The d2 test is administered to measure information processing speed and attention. The 

task proves simple, but selective attention and speed is key to the success of the task. 

Participants were shown three examples of various types of the letter ‘d’. The first is a lower 

case ‘d’ with two dashes at the top, another lower case ‘d’ with two dashes on the bottom, and 

finally a lower case ‘d’ with one dash at the top and one dash at the bottom. Following the 

example, a line with 47 different configurations of ‘d’s and ‘p’s were presented with randomly 

alternating dashes. The distractors were presented as the letter ‘d’ or ‘p’ with a maximum of 

four dashes and were hidden amongst the targets. The participant was asked to cross out as 

many targets as quickly and as accurately as they could while ignoring the distractors. Each 

subject was given a 20-second time limit for each line and a total of 14 lines to complete 

(Brickenkamp & Zillmer, 1998). Errors of omission (failure to cross out a target) and errors of 
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commission (failure to cross out the right target) were added together for the total number of 

errors. The final score was calculated by counting the total number of items identified, minus 

the number of total errors (Brickenkamp & Zillmer, 1998).
 

Short-term and Working Memory 
 

4.3 Digit Span (WAIS-III)  

To test for short-term memory and working memory, specifically in the auditory 

domain, the digit span task was administered. The instructions for the task were fairly simple. 

For the first trial, subjects are read a series of numbers (in English or in French- depending on 

their preference) and were asked to repeat them back in the same order. The second trial was 

similar but subjects were asked to repeat the numbers in reverse order. Each trial contains a 

new series of numbers and increases in length after each second trial. In other words, trials 1 

& 2 contain two digits, trials 3 & 4 are three digits and so on. One point was given for the 

success of each trial and the task was stopped once the subject was unable to successfully 

repeat the sequence twice in a row (Wechsler, 1997). 

4.4 Letter-Number Sequencing (WAIS-III)  

To test for working memory in the auditory domain the Letter Number Sequencing 

task was administered. In this task, a sequence of letters and numbers were read out loud to the 

subject (in English or in French, depending on their preference). The subject then had to 

reorganize the sequence and repeat the letters in alphabetical order and then the numbers in 

ascending order. Just like in the digit span task, each sequence gets harder with the addition of 

a number or a letter following every third trial. One point was given for the success of each 

trial and the task was stopped once the subject was unable to successfully complete the trial 

three times in a row (Wechsler, 1997). 

4.5 Spatial Span (WAIS-III)  

The Spatial Span task was administered to test visuo-spatial working memory and is an 

adaptation of a task developed by Corsi (Kessels, Van Zandvoort, Postma, Kappelle, & De 

Haan, 2000). Similar in some ways to the digit span task, subjects were shown a sequence of 
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taps, which are tapped onto a board containing 10 mounted cubes. The test is administered in 

two parts: Forward tapping and reverse tapping. In the first part, subjects were shown a 

sequence of taps and are asked to repeat the sequence in the same order. The second part was 

similar to the first, but this time subjects were asked to repeat the taps in reverse. One point 

was given only if the entire sequence was correctly repeated. After every second trial, the task 

becomes more difficult with the addition of an extra cube. In other words, trials 1 & 2 include 

two cube taps, trials 3 & 4 include three cube taps and so on. Testing ends once the subject 

failed to correctly repeat the sequence demonstrated (Kessels et al., 2000). 

Information Processing Speed  

4.6 Block Design (WAIS-III) 

To test spatial perception, problem solving and visual abstract processing, the Block 

Design task was administered. Subjects were initially given a set of 4 blocks. Two faces of the 

block are entirely red, two are entirely white, and the other two sides are half-white and half-

red (dissected on the diagonal). Subjects were shown an image taken from the WAIS-III 

stimulus booklet and were asked to reconstruct the image using all four of the blocks as 

quickly as they could. For the first set of tests, subjects had a time limit of 60 seconds. The 

amount of time taken to execute the task is noted and points are given according to their time. 

Subjects were then given an additional five blocks, for a total of nine red-white faced blocks. 

In this part of the task, subjects had 120 seconds to correctly reconstruct the image. If the 

subject was unable to recreate the model, the timer was stopped and the stimulus was removed 

(Wechsler, 1997).  

4.7 Symbol Search (WAIS-III) 

To test visual information processing speed, the Symbol Search task was administered. 

Subjects were shown two target symbols and a series of five symbols that followed. Subjects 

were asked to cross off the box ‘yes’ or ‘no’ when one of the two targets were present in the 

sequence of distractors. Each trial had to be completed in order, for a total of 60 trials. The 

subject was given 120 seconds to complete as many trials and as accurately as possible. One 

point was given for each correct trial (Wechsler, 1997).  
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4.8 Code (WAIS-III) 

Another way to test visual information processing speed was the Coding task. In this 

task, subjects were shown a diagram with the numbers 1 to 9, where each number was 

associated to a symbol. Underneath the diagram was a grid in which the numbers 1 to 9 were 

randomly assigned to each empty square. The subject must then fill each empty square with 

the appropriate paired symbol in successive order. The subject was given 120 seconds to 

correctly fill in as many boxes as possible and one point was given for each correctly filled 

box (Wechsler, 1997).
 
 

5. Resting state qEEG  

The first subject to participate in the study was tested using a 64-channel BioSemi 

system before the 32-channel Mitsar system (Model 202, Mitsar Medical) was available for 

the remainder of the experiment. Neuroelectric activity was recorded from 32 individual 

channels. This included a pair of linked ear references (A1/A2), a ground electrode (AFz) and 

31 active electrodes. The active electrodes were attached to the Mitsar cap and were placed 

according to the 10-20 system (represented in figure 2-1). 

 The subjects’ forehead and ears were cleaned using NuPrep and rubbing alcohol to 

ensure proper impedance. A properly fitted Electro Cap was gently placed on the subjects’ 

head according to a circumferential measurement of their head (medium: 54-58 cm large: 58-

62 cm). Electro-Gel (Electro-Cap International, Inc.), a medium viscous conducting gel, was 

inserted into each electrode-hole in the cap through a blunted needle attached to a syringe. The 

blunted needle was used to push apart any hair or remove scalp residue to ensure good 

impedance throughout all the electrodes of below 5kOhms.   

The subjects were tested in an eyes-open and eyes-closed condition. Five minutes of 

data was collected for each condition. During the eyes-open condition, participants were told 

to fixate on a red-dot on the wall, located at eye level. To avoid contaminating the data 

through natural eye movements known as ocular artifacts, subjects were asked to avoid 

excessive blinking, inhibit shifting their gaze, and to control blurring their vision. The data 

were coded by the main author and given to a colleague to remove any anomalies due to  
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Figure 2-1: Augmented 10-20 system of the Mitsar cap placed on a participant   
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ocular artifacts and facial muscle tension as well as to ensure the cleaned data were unbiased 

by the main author. The colleague was unaware of the condition (pre or post) or training group 

(NT, COD, TT, SD) assigned and from these data extracted 60 seconds of qEEG recording. 

The mid-testing qEEG was left to review and analyze once preliminary conclusions were 

investigated. All the EEG recordings were analyzed using Neuroguide (version 2.7, Applied 

Neuroscience, Inc), which is software that contains a normative database and various tools for 

statistical data analysis.  

6. 3D-MOT session  

The 3D-MOT sessions were performed in the laboratory on a 60-inch screen Panasonic 

television as observed in figure 2-2. Subjects were asked to sit in a chair approximately 58 

inches away from the surface of the screen. The length between the subject and the screen was 

calculated using the field of view formula, because the 3D-MOT task utilises a visual field of 

approximately 45 degrees. The subjects used a set of Panasonic stereoscopic glasses, which 

are active shutter lenses that are synchronized to 120 Hz.   

The 3D-MOT task was divided into five different phases and is outlined below. Each 

series of 3D-MOT was comprised of 20 trials and yields a cumulative threshold. Each session 

consisted of three trials and an average session score was calculated. Subjects in all four 

groups performed the 3D-MOT task at the initial and final testing sessions as a final measure 

of cognitive-perceptual changes. 

 

There were five phases to each trial:  

1. Presentation: the eight yellow spheres appeared and remained still for two seconds.  

2. Indexation: the four spheres turned red (targets) and were lined with a white halo for two 

seconds. The four target spheres turned back to yellow and the spheres appeared as 

they had in the original phase. The phase lasted one second.  

3. Movement: all eight spheres moved along a linear path in the virtual 3-D cube. When two 
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Figure 2-2: An illustration of a participant performing the 3D-MOT task  
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spheres came into contact with one another or when it hit the wall, it bounced off and 

continued its trajectory. This phase continued for six seconds. During tracking, the 

cross in the middle of the cube served as a fixation point so that subjects could focus 

more efficiently and track the spheres using their peripheral vision. Subjects were not 

told the benefit of the fixation point but were merely suggested the application could 

be useful. 

4. Stoppage and identification: all eight spheres stopped movement and were labeled with 

numbers (1 to 8). Subjects verbally stated which spheres they tracked and were 

inputted using a keyboard by the researcher. Each selected target was identified with a 

white halo. Saying the answers verbally helped the subject focus on the task at hand 

and not feel overwhelmed to switch their attention off the screen. When other 

distractors masked the targets, the subject would ask the researcher to rotate the cube 

so that they could identify the number of the target. Once the four spheres were 

selected, the researcher asked for a confirmation before validating the responses. There 

were no time limitations during this phase.  

5. Feedback: the target spheres were revealed and illuminated. When all four spheres 

were correctly identified the system made a bell sound and a star appeared on the right 

side of the screen. When one or more of the targets were incorrectly identified, the 

system made a swoosh sound and identified the incorrect spheres. This phase lasted 

two seconds.  

If the subject was able to correctly identify all four-target spheres, the speed of 

movement of the spheres increased in the subsequent trial. Similarly, if the subject was unable 

to correctly identify the spheres and made one or more mistakes, the speed of movement 

decreased on the subsequent trial. This method followed an adaptive staircase in which large 

changes were observed in initial trials when the spheres were correctly identified and smaller 

changes were observed in later trials, to maintain a zone where the participant could optimize 

their improvement.  

At the end of 20 trials, a cumulative threshold for the speed of the spheres was 
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measured and displayed on a graph that the subject can see. This number was recorded and the 

task was repeated for a total of three times.  

7. Training  

This section describes a typical training session for all four groups. Each participant 

visited the lab a total of ten times, including their pre and post testing session. The entire 

procedure took approximately three to four weeks, depending on the participants’ availability. 

Furthermore, due to the training effect of the study, it was pertinent that participants scheduled 

sessions no longer than four days apart and were never scheduled for two training sessions in 

one day. This choice was made to help facilitate the effects of training and transfer onto the 

cognitive tasks within a limited amount of time.  

Each group consisted of 10 subjects that were assigned randomly into one of four 

groups. The only factor taken into account was the distribution by sex within each group. 

Upon arrival at each training session, subjects were given a session questionnaire to measure 

their current level of fatigue, number of hours of sleep, last caffeinated/alcoholic beverage, last 

cigarette, and whether they had taken part in any kind of high-intensity physical activity 

within the last six hours. Although these data were not included in the final analysis, these 

variables were important in order to indicate possible reasons that may have influenced 

cognitive awareness during the testing session.  

7.1 Experimental Group 1: 3D-MOT – NeuroTrackerTM (NT) 

Each training session consisted of three series of 20 trials (as described in the text 

above). It required approximately thirty minutes to complete the training session. Depending 

on the participants’ availability, sessions were scheduled between two to four times per week.  

7.2 Experimental Group 2: High visual stimulus- Call of Duty (COD) 

Each training session restricted participants to 30 minutes of game play of a AVG 

called Call of Duty – Ghosts®. Participants played started the campaign on “recruit mode” 

due to their inexperienced level. Level one – Ghost Stories was mainly a practice level where 

subjects learnt how to run, aim, shoot, and operate other important controls required for 

completion of the game. Their main goal for each session was to reach each level checkpoint 
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and ultimately defeat the level to continue onto the next series. When the level was deemed 

too difficult, participants were verbally instructed what to do. The training game was played 

on a PlayStation 4® approximately 95 inches away from the Panasonic television. The volume 

was turned on so that players can hear the verbal instructions in the game. 

7.3 Experimental Group 3: Low visual stimulus – Tetris (TT) 

Each training session required 30 minutes of game play of a classic video game called 

Tetris® on www.freetetris.org. Participants played on a 15 inch LG laptop and controlled the 

Tetris blocks using the arrow keys on the laptop keypad. Participants were given a score sheet 

to record their progress throughout the duration of the training session. The score sheet 

analyzed the improvement in level, total score, and the number of lines completed within each 

session.  

7.4 Experimental Group 4: No visual stimulus – Sudoku (SD) 

Each training session required 30 minutes of Sudoku puzzles printed on paper from 

www.krazydad.com/sudoku. Participants started the training session with an easy level puzzle. 

As they began to accurately complete the puzzles at a faster rate, participants were given more 

advanced puzzles to solve. The speed at which the subject completed the puzzle was timed and 

each test was corrected. Participants were encouraged to complete as many puzzles as possible 

within a given training session. Puzzles that were left unfinished at the end of a session were 

resumed at the following visit. 

8. Final assessment  

The post session took approximately 2 hours to complete and was comprised of the 

same neuropsychological tests and qEEG assessments as the pre session. Depending on the 

availability of the participant, the post session took place approximately 3 to 4 weeks after the 

initial assessment.  
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9. Statistical analysis  

The statistical analysis for neuropsychological assessments and 3D-MOT measures 

were preformed using IBM SPSS statistics version 19. Parametric tests were used when the 

homogeneity of variances (Levene’s test) was non-significant. A mix-design analysis of 

variance (ANOVA) with repeated measures and a Greenhouse-Geisser correction where the 

between-subject factor was by group (NT, COD, TT, and SD) and the within-subject factor 

(session) was used to compare the 3D-MOT speed thresholds between each training group. 

A one-way ANOVA using delta values where the between-subject factor was by group 

(NT, COD, TT, and SD) and the within-subject factor by session (pre and post) was used to 

show significant differences between groups on neuropsychological tests. A repeated measure 

one-way ANOVA was used to compare each group to the NT group individually, where the 

between-subject factor was pre and post session. Finally pre and post- training t-tests were 

used to demonstrate significant changes within-groups on their neuropsychological test scores. 

In addition, effect size using Cohen’s d was calculated to determine the magnitude of change 

for each test.  

All the EEG recordings were analyzed using NeuroGuide (version 2.7, Applied 

Neuroscience, Inc), which is software that contains a normative database and various tools for 

statistical data analysis. Test-retest and split-half reliability measures were restrained at 0.90 or 

higher. On minute of artefact-free pre and post EEG data was extracted from a colleague who 

was masked to the test condition and group. 
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Chapter 3: Results 

1. 3D-MOT 

The results of the one-way ANOVA indicated that there was a significant difference 

among the four groups (F [3,36]=14.205, p<0.001, η2=0.542). An LSD test revealed that NT 

group thresholds were significant compared to COD, TT, and SD (p<0.001, respectively), 

which showed that there was a significant improvement in the NT group. As represented in 

Figure 3-1, the thresholds for the 3D-MOT increased with every trial and produced significant 

results from the initial testing session to the final testing session (p<0.001).  

Figure 3-1 displays the average 3D-MOT threshold scores for the 10 sessions of 

training and the pre and post sessions of those trained in groups 2, 3, and 4 with one standard 

error of the mean (SEM) and a logarithmic trend line representing the rate of change for the 

NT group. The final session scores for groups 2, 3 and 4 were improved by an average of 

approximately 0.3 on their threshold scores whereas group 1 improved by approximately 1.0 

by the final session.  

2. Cognitive measures 

 A Levene’s test of homogeneity yielded no differences among groups (p > 0.01).  The 

subsequent tables provide statistical data on the battery of neuropsychological tests preformed 

including pre-post 3D-MOT thresholds.  
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Figure 3-1: Average pre and post speed threshold scores on 3D-MOT for the NT, COD, TT, 

and SD group. A logarithmic trend line represents the NT GROUP session averages 
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Table 1. Neuropsychological Test Results: mean values of Pre-Post Within-Group t-Tests and 

effect sizes  

 
* Significant result 
~* Trending toward significance  
Abbreviations: IVA: Integrated Visual and Auditory Continuous Performance Test; WAIS, Wechsler Adult 
Intelligence Scale 
 

Table 1 shows the NT group achieving significance on five out of nine of the t-tests 

and a sixth t-test trending towards significance, whereas COD and TT achieved significance 

for only three of the tests and SD achieved significance for only two tests. WAIS-Letter-

Number-Sequence (p=0.035) and WAIS-Spatial Span (p=0.034) improvements were distinct 

to the NT group. WAIS-Block design trended towards significance for both the NT group 

(p=0.072) and COD group (p=0.069). All subjects improved on WAIS-Code and d2 test of 

attention, consequently exhibiting a ceiling effect. Additionally, the NT group preformed at an 

average score of 120 on the Sustained Auditory Attention Quotient, which is 2 standard 

deviations above the standard norm (100 ± 10). Cohen’s d, is used to describe effect sizes 

which are defined as ‘small’ (d=0.2), ‘medium’ (d=0.5) and ‘large’ (d=0.8). The table above 

interestingly shows 6 standards of medium to large effect sizes for the NT group in 

comparison to 4 standards of medium to large effect for the COD, TT, and SD group. 

 

 

Measure Pre Post Delta Significance2 effect2size Pre Post Delta Significance2 effect2size
IVA+Plus)Auditory 120.8 126.2 5.4 0.190 0.427 118.9 112.4 :6.5 0.173 0.442
IVA+Plus)Visual 102.6 102.2 :0.4 0.869 0.218 97.58 99.35 1.77 0.582 0.279
WAIS:Symbol)Search 45.9 51.9 6 0.013* 0.719 38.3 46.4 8.1 0.000* 0.906
WAIS:Code 89.3 103.7 14.4 0.001* 0.851 85.5 91.9 6.4 0.018* 0.693
WAIS:Block)Design 52.9 56.8 3.9 0.072~* 0.562 49.5 53.2 3.7 0.069~* 0.567
WAIS:Number)Sequence 20.3 22.1 1.8 0.212 0.408 20.7 20.6 :0.1 0.893 0.046
WAIS:Letter:Number)Sequence 11 12.8 1.8 0.035* 0.636 11 11.6 0.6 0.239 0.387
WAIS:Spatial)Span 16.8 18.2 1.4 0.034* 0.638 15.6 15.1 :0.5 0.637 0.160
d2)Test)of)Attention 461.8 538.8 77 0.000* 0.942 425 478.9 53.9 0.001* 0.863

Measure Pre Post Delta2 Significance2 effect2size Pre Post Delta Significance2 effect2size
IVA+Plus)Auditory 105.5 102.4 :3.1 0.725 0.119 107.6 103.7 :3.9 0.381 0.313
IVA+Plus)Visual 100.9 101.9 1 0.754 0.170 95.93 95.73 :0.2 0.946 0.138
WAIS:Symbol)Search 46.5 52.5 6 0.000* 0.880 49.3 52 2.7 0.093 0.530
WAIS:Code 90.9 95.1 4.2 0.050* 0.602 94.3 100.6 6.3 0.027* 0.660
WAIS:Block)Design 51.1 53.8 2.7 0.289 0.351 59.2 61.1 1.9 0.082 0.546
WAIS:Number)Sequence 21 21.2 0.2 0.751 0.108 20.3 21.3 1 0.244 0.383
WAIS:Letter:Number)Sequence 12.4 12.9 0.5 0.399 0.282 12.2 12.6 0.4 0.443 0.258
WAIS:Spatial)Span 16.5 17.4 0.9 0.108 0.511 17.6 17.1 :0.5 0.601 0.177
d2)Test)of)Attention 441.9 517.9 76 0.000* 0.902 466.8 545.2 78.4 0.000* 0.928

)

)

NT2Group2(n=10) COD2Group2(n=10)

TT2Group2(n=10) SD2Group2(n=10)
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Table 2. One-way analysis of variance (ANOVA) using delta neuropsychological test results 

 

 

 
 

 

 

 

 

 

 

 
* Significant result towards NT 
Abbreviations: IVA: Integrated Visual and Auditory Continuous Performance Test; WAIS, Wechsler Adult 
Intelligence Scale 
 

Table 2 displays the mean delta values between groups in a one-way ANOVA to 

determine if there were significant differences among each other. The WAIS-Code test 

showed a significant value where (F [3,36]=3.554, p<0.024, η2=0.228). Also a mixed ANOVA 

(pre and post WAIS-Code results; NT, COD, TT, and SD) showed the NT group to be 

significantly different compared to COD (p=0.023), TT (p=0.005) and SD (p=0.022).  

 

 

 

 

 

 

 

 

 

 

 

F(3,36) p η2
IVA+Plus)Auditory 1.240 0.310 0.094
IVA+Plus)Visual 0.125 0.945 0.010
WAIS;Symbol)Search 2.331 0.091 0.163
WAIS;Code 3.554 0.024* 0.228
WAIS;Block)Design 0.255 0.857 0.021
WAIS;Number)Sequence 0.875 0.463 0.068
WAIS;Letter;Number)Sequence 1.500 0.231 0.111
WAIS;Spatial)Span 1.537 0.222 0.114
d2)Test)of)Attention 1.228 0.314 0.093

Measure
Delta3Anova
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Table 3. Pre-Post ANOVA comparing the NT group to COD, TT, and SD on 

neuropsychological tests 

 
* Significant result 
~* Trending toward significance  
Abbreviations: IVA: Integrated Visual and Auditory Continuous Performance Test; WAIS, Wechsler Adult 
Intelligence Scale 
 

Table 3 analyses pre and post neuropsychological test results for each group relative to 

the NT group in a one-way ANOVA.The WAIS-Code test showed significant results across all 

groups in favour of the NT group. In addition, the 3D-MOT thresholds were significant 

(p<0.01) across the board. Interestingly, IVA+Plus Auditory demonstrated a statistical trend in 

the NT versus COD group (p=0.056). This result is displayed in figure 3-2.  

  

Measure F p η2 F p η2 F p η2
IVA+Plus)Auditory 4.188 0.056)~* 0.189 0.824 0.376 0.044 2.670 0.120 0.129
IVA+Plus)Visual 0.141 0.712 0.008 0.059 0.811 0.003 0.904 0.354 0.048
WAIS@Symbol)Search 0.829 0.375 0.044 0.000 1.000 0.000 1.877 0.187 0.094
WAIS@Code 4.688 0.044* 0.207 8.543 0.009* 0.322 4.547 0.047* 0.202
WAIS@Block)Design 0.006 0.940 0.000 0.153 0.700 0.008 0.870 0.363 0.046
WAIS@Number)Sequence 1.558 0.228 0.080 1.180 0.292 0.062 0.262 0.615 0.014
WAIS@Letter@Number)Sequence 1.906 0.184 0.096 2.673 0.119 0.129 2.520 0.130 0.123
WAIS@Spatial)Span 2.644 0.121 0.128 0.439 0.516 0.024 3.097 0.095 0.147
d2)Test)of)Attention 2.806 0.111 0.135 0.004 0.948 0.000 0.010 0.921 0.001
3D@MOT)threshold 31.448 0.000* 0.636 35.623 0.000* 0.664 36.053 0.000* 0.667

Pre,Post/Anova/(NT/vs/COD) Pre,Post/Anova/(NT/vs/TT) Pre,Post/Anova/(NT/vs/SD)
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Figure 3-2. Delta IVA+CPT Auditory results for NT, COD, TT, and SD 
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3. QEEG: 

Complete qEEG maps are provided in Annex 1. For the purpose of this study, only 

beta frequencies during eyes-open and eyes-closed conditions are represented in the tables 

below but a condensed analysis is provided under each table. An overview of the relevant 

significant results is provided in Table 12. Relative power group paired t-tests are presented on 

the left and provide a p-value scale from 0.00 (red) to 0.06 (blue). For strength and clarity, 

statistical results are considered highly significant where the p-value is between 0.00 (red) and 

0.02 (yellow) and slightly significant where the p-value is between 0.03 (green) and 0.06 

(blue). Relative power percent differences on the right show increases (red) or decreases (blue) 

in a cortical region. Frequency bands are defined in the NeuroGuide database as delta (1-4 

Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (13-30 Hz), and gamma (30-50 Hz).  

3.1 Beta frequency maps 

Table 4. NT group qEEG results for relative power group paired t-test: Eyes-Open condition 

observing beta amplitude (13-30 Hz) 

 

In the NT group eyes-open condition, absolute power group paired t-tests showed delta 

and theta frequencies decreased in activity in the mid-parietal, left temporal, and occipital 

!Relative!Power!Group!Paired!t1Test!(p1value) !Relative!Power!Percent!Difference!(%)

NT!EO!
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regions. Absolute beta and gamma power decreased in the mid-left temporal lobe. Relative 

power group t-tests showed no significant changes in delta, theta, and gamma frequencies. 

Alpha frequency increased in the left and right posterior parietal regions and beta power 

significantly increased in the mid parietal region. 

 

Table 5.  NT group qEEG results for relative power group paired t-test: Eyes-Closed condition 

observing beta amplitude (13-30 Hz) 

 

In the NT group eyes closed condition, absolute power group paired t-test showed 

delta, theta and gamma frequencies decreased in activity in the pre-frontal and mid-parietal 

areas. Relative power group t-tests showed no significant changes in delta, theta, and gamma 

frequencies. Alpha frequency increased in the right temporal region and beta power 

significantly increased in the pre-frontal and mid-frontal areas.  

 

 

 

 

!Relative!Power!Group!Paired!t1Test!(p1value) !Relative!Power!Percent!Difference!(%)

NT!EC!
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Table 6.  COD group qEEG results for relative power group paired t-test: Eyes-Open 

condition observing beta amplitude (13-30 Hz) 

 

In the COD group eyes open condition, absolute power group paired t-tests showed no 

significant changes for any bandwidth. Similarly, the relative Power group Paired t-test 

showed no significant changes for any bandwidth. 

 

 

 

 

 

 

 

 

 

!Relative!Power!Group!Paired!t1Test!(p1value) !Relative!Power!Percent!Difference!(%)

COD!EO!
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Table 7. COD group qEEG results for relative power group paired t-test: Eyes-Closed 

condition observing beta amplitude (13-30 Hz) 

 

 

In the COD group eyes closed condition, absolute power group paired t-test showed a 

significant increase in theta at 7 Hz and 8 Hz in the frontal region and right posterior temporal 

region. In addition, a single significant increase in delta was observed at 3 Hz and at gamma 

50 Hz in the left occipital area. Relative power group paired t-test shows a single significant 

increase in alpha/theta 8 Hz in the frontal region, a significant decrease of Beta at 29 Hz in the 

frontal region, and finally a significant decrease in gamma at 35 Hz in the frontal region.  

 

 

 

 

 

 

!Relative!Power!Group!Paired!t1Test!(p1value) !Relative!Power!Percent!Difference!(%)

COD!EC!
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Table 8. TT group qEEG results for relative power group paired t-test: Eyes-Open condition 

observing beta amplitude (13-30 Hz) 

 

In the TT group eyes-open condition, absolute power group paired t-test showed a 

slight significant decrease of theta in the left-mid parietal region. Beta frequency increased in 

the mid-parietal area at 13 and 14 Hz only. Relative power group paired t-tests showed a slight 

decrease in theta at 6 Hz, slight increase in alpha at 11 Hz, slight increase in beta at 18 Hz, and 

slight decrease in gamma at 33 and 35 Hz.  

 

 

 

 

 

 

 

 

!Relative!Power!Group!Paired!t1Test!(p1value) !Relative!Power!Percent!Difference!(%)

TT!EO!
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Table 9.  TT group qEEG results for relative power group paired t-test: Eyes-Closed condition 

observing beta amplitude (13-30 Hz) 

 

In the TT group eyes-closed condition, absolute power group paired t-test showed a 

slight decrease of theta in the frontal region at 6 Hz and a significant decrease in gamma 

frequency in both left and right temporal regions and mid-parietal region. Relative group 

paired t-test showed an increase in alpha frequency in the right-parietal region at 12 Hz. Beta 

frequency in the left-frontal and mid-parietal region also slightly increased at 13, 14 and 19, 

and 25 Hz. Gamma frequency significantly decreased in the right temporal region. 

 

 

 

 

 

 

 

!Relative!Power!Group!Paired!t1Test!(p1value) !Relative!Power!Percent!Difference!(%)

TT!EC!
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Table 10.  SD group qEEG results for relative power group paired t-test: Eyes-Open condition 

observing beta amplitude (13-30 Hz) 

 

 In the SD group eyes-open condition, absolute power group paired t-test showed slight 

increases in delta in the mid-frontal region at 1 Hz. In addition, there was a slight increase in 

theta left temporally at 5 Hz and frontally at 8 Hz. A slight increase in absolute beta was 

observed in the mid-parietal region at 13 Hz and 15 Hz. No significant changes were observed 

in the relative power group paired t-test. 

 

 

 

 

 

 

 

 

!Relative!Power!Group!Paired!t1Test!(p1value) !Relative!Power!Percent!Difference!(%)

SD!EO!
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Table 11.  SD group qEEG results for relative power group paired t-test: Eyes-Open condition 

observing beta amplitude (13-30 Hz) 

 

 In the SD group eyes-closed condition, absolute power group paired t-test showed an 

increase in delta in the frontal region and right occipital region. Theta was significantly high in 

the frontal and mid parietal region at 6 to 8 Hz. In addition, beta frequency increased mid-

parietal to left frontal region at 14 to 18 Hz. Relative power group paired t-test showed an 

increase in delta in the occipital region. Theta frequency significantly increased in the left 

frontal region and occipital region as well as left and right mid parietal regions. A slight 

decrease in alpha was observed at 10 Hz in the mid-parietal area. Decrease in beta and gamma 

frequency is observed in the mid-parietal region.  

 

 

 

 

 

 

!Relative!Power!Group!Paired!t1Test!(p1value) !Relative!Power!Percent!Difference!(%)

SD!EO!
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Table 12. Overview of significantly relevant changes in eyes-open and eyes-closed conditions 

for NT, COD, TT, and SD 

 

The results from the qEEG data obtained are subject to interpretation and absolute 

power must be referred to when interpreting relative power. 

 

Delta

Theta

Alpha

Beta

Gamma

Delta

Theta

Alpha

Beta

Gamma

Delta

Theta

Alpha

Beta

Gamma

Delta

Theta

Alpha

Beta

Gamma

CD#EC

No/change

No/change !/in/right/mid/to/left/temporal/region/12/Hz

No/change Slight/!/in/mid<frontal/19/Hz/

"/in/right/+/left/temporal/region /"//right/to/left/posterior/temporal/region

Slight/!/in/mid<parietal/13<14/Hz No/change

No/change No/change

TT#EC

No/change No/change

/Slight/"/in/right/to/pre<frontal/region

FTT#Absolute#Power#Group#Paired#t7Test FTT#Relative#Power#Group#Paired#t7Test

TT#EO

No/change No/change

"/in/left/mid<parietal/region "/in/mid<parietal/region

No/change No/change

Condition

Condition FTT#Absolute#Power#Group#Paired#t7Test

SD#EO

No/change

No/change

No/change

FTT#Relative#Power#Group#Paired#t7Test

No/change

No/change

No/change

No/change No/change

No/change No/change

SD#EC

!/in/pre<frontal/+/right/posterior/region !/in/right/occipital/region

!/in/frontal/to/occipital/+/mid<parietal/region/ !/in/frontal/to/occipital/+/left/mid<parietal/region

No/changeNo/change

/No/change /"/in//frontal/region/29/Hz

No/change Slight/"/in/right/posterior/+/left/frontal/region

No/change

!/in/mid<parietal/to/frontal/region/14/+/16/Hz Slight/"/in/mid<parietal/to/left<parietal/region

No/change "/in/mid<parietal/region

No/change No/change

!/in/occipital/region No/change

!/in/frontal/+/right/temporal/region !/in/pre<frontal/region

No/change

No/change

No/change No/change

No/change No/change

No/change No/change

!/in/frontal/+/mid<parietal/region/

No/change

Condition FTT#Absolute#Power#Group#Paired#t7Test FTT#Relative#Power#Group#Paired#t7Test

No/change

"/in/left/mid<parietal/region

"/in/left/+/pre<frontal/and/mid<parietal/region

No/change

No/change

"/in/frontal//+/left/temporal/region

No/change

No/change

!/in/right/temporal/region

Condition FTT#Absolute#Power#Group#Paired#t7Test FTT#Relative#Power#Group#Paired#t7TestWave

NT#EO

"/in/mid<parietal/to/occipital/region/

"/in/mid<parietal/to/occipital/region/

No/change

"/in/left/temporal/region/

"/in/left/temporal/to/mid<parietal/region

No/change

No/change

!/in/left/+/right/posterior/parietal/region

!/in/mid<parietal/region/

No/change

Wave

NT#EC

CD#EO



 

 

 

Chapter 4: Discussion 

The primary goal of this study was to compare the perceptual cognitive changes 

between participants trained on video games versus a high-level 3D-MOT cognitive technique. 

According to our neuropsychological tests and qEEG results, individuals trained on 3D-MOT 

revealed improved scores on neuropsychological assessments and increased in beta power 

compared to the other three groups trained on various video games. Most interestingly, 

subjects trained on the AVG showed no significant changes in beta power whereas 3D-MOT 

participants had significant gains in beta power and significant decreases in delta, theta and 

gamma power. The results suggest that training on 3D-MOT, for the same duration as playing 

a video game, can provide greater cognitive enhancement.  

4.1. 3D-MOT  

As expected, 3D-MOT speed thresholds improved with training. The group trained on 

3D-MOT exhibited similar trends as pervious training studies on the elderly, athletes, and 

young adults (Faubert, 2013; Faubert & Sidebottom, 2012; Legault et al., 2013; Parsons et al., 

2014; Romeas et al., 2016). A 3D-MOT session takes approximately 25 minutes to complete 

and each individual trial requires 7 seconds of sustained attention in order to accurately track 

the four spheres. During the trial, the individual must equally exercise their selective attention 

onto the four target spheres all the while dividing their attention to follow each sphere 

separately. The complexity of the perceptual-cognitive task collectively engages complex 

motion integration, sustained and distributed attention, and working memory. The 3D-MOT 

task has recently shown to enhance cognitive function by improving attention, visual 

information processing speed and working memory in young adults (Parsons et al., 2014). In 

addition, varsity soccer players trained on the task, improving attentional processes involved 

in decision-making accuracy on the field, indicating that the technique has a transferable effect 

onto untrained tasks (Romeas et al., 2016). The researchers also saw transferable effects onto a 

biological-motion perception task in an older population in a laboratory setting (Legault & 

Faubert, 2012). The group trained on the 3D-MOT task in this study demonstrated similar 

improvements in attentional processes evaluated through neuropsychological assessments and 

qEEG activity. This consistent trend in 3D-MOT improvement with training stands to reason 
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that training on this task exercises and enhances these fundamental attentional features found 

within 3D-MOT.  

4.2. QEEG 

The most interesting result was the data provided by the qEEG for the NT group and 

the COD group. The NT group that trained on 3D-MOT showed significant increases in 

absolute and relative beta frequencies in the frontal, mid-parietal, and left occipital regions and 

significant decreases in absolute slow amplitude frequencies in the frontal, mid-parietal and 

occipital regions whereas the COD group that trained on the high-visual stimulus video game 

showed no overall significant changes at any bandwidth. According to these results, 3D-MOT 

training appears to increase attention associated with high amplitude waves and decrease 

inattention associated with low amplitude waves. To better interpret the data, the brain can be 

considered like an orchestra, in which the absolute power can be represented as each 

individual member of the orchestra and the relative power represents the orchestra playing as a 

whole. In the NT group, it appears that the absolute delta, theta, and gamma waves decreased, 

thus allowing for overall beta activity to be more representative.  Beta activity has been 

associated with attentional cognitive processes (Ogrim, Kropotov, & Hestad, 2012; Ray & 

Cole, 1985). High beta activity coupled with low alpha activity at rest correlated with 

attentional investment, while low alpha activity and high theta activity at rest correlated with 

drowsiness and low attentional investment (MacLean, Arnell, & Cote, 2012). High theta 

activity to low beta activity ratios have been found to be characteristic of individuals with 

attention deficit hyperactive disorder (Barry et al., 2010; Barry, Clarke, & Johnstone, 2003; 

Monastra et al., 1999; Ogrim et al., 2012; Snyder & Hall, 2006). Our finding is consistent with 

a previous study by Parsons and colleagues (2014) who suggested that attention was improved 

on the group trained on the 3D-MOT task. According to their results, the group trained on 3D-

MOT also revealed significant relative power increases in beta bandwidth and significant 

decreases in theta and alpha bandwidth (Parsons et al., 2014). Additionally, the increase in 

relative and absolute beta frequency in the 3D-MOT group associated with attentional 

cognitive processes may be indicative of the improvements observed in nearly 6 out of the 9 

neuropsychological tests.  
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The cortical regions where increased beta activity was observed were particularly 

interesting. Several fMRI imaging studies using the MOT task have reported activations along 

the dorsal fronto-parietal cortex, intraparietal sulcus and superior parietal lobule (Alnaes et al., 

2015). In particular, a study by Culham and colleagues (2001) observed the functional role of 

these areas during attentive tracking and suggested that these areas play a large part in the 

MOT task performance due to added control of attentional mechanisms or increased visual 

information selected by attention. The study observed load-dependent functions in the parietal 

and frontal cortex and in particular the intraparietal sulcus suggesting that this area is directly 

involved in the cognitive components required to preform a tracking task, including spatial 

attention and working memory (Culham et al., 2001). Bearing in mind that the brain images 

conducted in this study were obtained using a qEEG, it is relevant to note that fMRI and qEEG 

data can be examined in congruence with one another due to the strong link between 

electrophysiological and fMRI markers of neuronal activity (Huster, Debener, Eichele, & 

Herrmann, 2012; Logothetis & Pfeuffer, 2004). Also, fMRI signals at a specific region contain 

information about the local dipole activity and as such neuroelectric EEG signals may 

instigate a metabolic response (Wibral, Bledowski, & Turi, 2010). Remarkably, the 3D-MOT 

group eyes-closed condition revealed relative beta power increases in the dorsal frontoparietal 

cortex, intraparietal and superior parietal area and are highlighted in figure 4-1. In addition the 

3D-MOT eyes-open condition revealed relative beta power increases in the areas containing 

the intraparietal sulcus and superior parietal lobule. These findings suggest that the areas of 

the brain known to have an active role in attention and visual information may be exercised 

with 3D-MOT training. Although video games offer a high load of visual information and in 

many ways involve selective, sustained and divided attention, the 3D-MOT task appears to be 

a more effective technique to enhance perceptual cognitive abilities. The overall minimal 

nature of the task provides a content free medium coupled with unpredictable and endless 

variations of possible trajectories, which ultimately enhances the effectiveness of the 

technique. Perhaps the over-stimulation that can be observed in many AVGs does not offer the 

same level of fine-tuned training when compared to 3D-MOT. In other words, the visual 

simplicity of the 3D-MOT task, that is content free, creates a more favourable exercise to 

strengthen complex cognitive perceptual skills. 
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Figure 4-1: An fMRI image highlighting the dorsal fronto-parietal cortex (pink) , intraparietal 

sulcus (red) and the superior parietal lobule (purple) which represent areas of the brain where 

beta activity was observed in the NT group. 
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Several video game training studies have also used EEG to observe executive functions 

related to alpha and theta frequencies. The EEG data, however, were recorded in a non-resting 

state while the participant played the AVG video game in question. Maclin et al. (2011) and 

Mathewson et al. (2012) observed modest increases in frontal alpha power after 20 hours of 

training on the video game Space Fortress (Maclin et al., 2011; Mathewson et al., 2012). A 

study by Anguera et al. (2013) trained participants on a custom made 3D video game called 

NeuroRacer and observed increased midline frontal theta power after training. The researchers 

suggest that these changes in frequencies predict improvements in learning and sustained 

attention (Anguera et al., 2013; Maclin et al., 2011; Mathewson et al., 2012). The assumptions 

were made based on research indicating that increases in frontal theta power affects focused 

attention (Ishii et al., 1999) and increases memory load (Jensen & Tesche, 2002). However, 

research on increased frontal theta activity observed during resting-state EEG on subjects with 

attention deficit and hyperactive disorder has been linked to a decrease in attention (Hermens 

et al., 2005; Mann, Lubar, Zimmerman, Miller, & Muenchen, 1992) and decreases in theta 

activity has been associated with encoding new information (Klimesch, 1999). The COD 

group, eyes-closed condition revealed increased absolute and relative frontal theta activity at 8 

Hz and no significant changes in the eyes-open condition. The frequency band at 8 Hz is 

partial to interpretation considering it sits on a boundary between theta (4-8 Hz) and alpha (8-

12 Hz) frequency. The COD groups’ neuropsychological tests revealed improvements in 

WAIS-Code, WAIS-Symbol search, and d2 test of attention and can be indicative of improved 

selective attention. Similarly, the SD group revealed eyes-closed absolute power increase in 

the frontal and mid-parietal theta activity at 6-7 Hz and relative power increases in occipital 

theta activity at 6 Hz. However, the SD group only improved on WAIS-Code and the d2 test 

of attention and lingered on trending towards significance for the block design task. The 

neuropsychological results do not offer a tangible explanation for the increase in frontal theta 

activity. Although the data regarding theta activity is rather conflicting it can also be proposed 

that the theta increase in eyes-closed condition is a result of the default mode network: The 

human brains basal neural activity (Raichle et al., 2001; Raichle & Snyder, 2007). Recent 

studies have identified regions of the brain (including the medial prefrontal cortex) that are 

activated under passive conditions such as daydreaming, reminiscing about the past or 

thinking about the future, and other varieties of spontaneous cognition (Buckner, Andrews-
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Hanna, & Schacter, 2008). A study by Chen et al. (2007) observed changes in eyes-open and 

eyes-closed conditions to understand the features of the default mode network and found a 

greater fronto-central theta activity in the eyes-closed condition and theta reductions in the 

eyes-open condition (Chen, Feng, Zhao, Yin, & Wang, 2008). Inversely, Scheeringa et al. 

(2008) suggested that frontal theta activity is negatively correlated to the default mode 

network (Scheeringa et al., 2008). Considering the location of the theta activity (medial 

prefrontal cortex), the inconclusive neuropsychological test, and the observations made in the 

eyes-closed condition, the data suggest that the increases in frontal theta in both the COD and 

SD group could be a result of the default mode network in which participants were engaging 

in spontaneous cognition.   

Another result that warrants further examination was observed in gamma frequency 

decreases in the eyes-closed condition for the NT, TT, and SD groups. Typically, gamma 

activity has been associated with auditory and visual attention as well as visual short-term 

memory tasks (Gruber, Muller, & Keil, 2002; Gruber, Muller, Keil, & Elbert, 1999; Jensen, 

Kaiser, & Lachaux, 2007; Tiitinen et al., 1993). Gamma band activity has also been linked to 

the coordination of cortical areas involved in a given task (Jensen et al., 2007). The 

expectation would then likely be to observe increases in gamma power, however here the 

opposite change was observed. The TT group saw decreases in absolute gamma in the left and 

right temporal regions and relative decreases in the right temporal region. These cortical areas 

are considered a part of the visual ventral stream, responsible for visual identification and 

object/face recognition with strong connections in the medial temporal regions (Desimone & 

Duncan, 1995). With regard to the neuropsychological assessments, the TT group 

demonstrated improvements in the WAIS-Symbol Search, WAIS-Code, and the d2 Test of 

Attention, three tasks measuring information processing speed that rely heavily on rapid object 

recognition.  

How, then, would these functional changes in brain activity be interpreted? A decrease 

in gamma activity corroborates the neuropsychological tests in supporting the idea that visual 

identification and object recognition are exercised through Tetris training, leading to less 

overall activation of the visual ventral stream. Essentially, since less cortical areas were being 

solicited and task performance improved, this change appeared to reflect the brain to work 
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more efficiently. These changes appeared to be symptomatic of specialization. Further 

observed decreases in frontal absolute gamma for the NT group in the eyes-closed condition 

and left-temporally in the eyes-open condition can be interpreted as a result of an enhancement 

of the involved cortical networks. In other words, the brain can decrease amount of cortical 

areas involved in these tasks (demonstrated by decreased gamma) while increasing the relative 

load on these areas  (as demonstrated by increased beta activity).  

4.3. Neuropsychological assessments  

As hypothesized, the NT group improved significantly on five out of nine 

neuropsychological tests and a statistical trend was apparent on a sixth test. The COD and TT 

group improved on three tests while the SD group only improved on two. In view of the 

demanding attentional resources solicited by the 3D-MOT task, improvements on these 

cognitive tests were observed after 10 sessions. Perceptual-cognitive functions such as 

attention (sustained, selective and divided), working memory, and visual information 

processing speed were exercised and improved with 3D-MOT training. This finding 

corresponds to the EEG beta activity observed in the areas of the brain that are involved in 

attentional mechanisms. Interestingly the WAIS-Letter-Number sequence and WAIS-Spatial 

Span were the two tests in which the NT group uniquely reached significance, suggesting that 

visuo-spatial working memory, attention, and concentration may be inherently improved with 

3D-MOT training. The EEG changes in the areas involved in the frontal-parietal network, 

responsible for cognitive control, complement this result. During the 3D-MOT task, short-term 

memory and working memory function collectively to increase threshold scores. The four 

target spheres must be temporarily stored within short-term memory while working memory is 

exercised to retain each individual target moving at random. The COD, TT and SD group did 

not show significant improvements on the same cognitive tests. It is unclear whether spatial 

and working memory can be improved with video game play and research studies have offered 

inconsistent results (Boot et al., 2008; Oei & Patterson, 2013). It was especially surprising to 

see the TT group gain no apparent spatial or working memory benefits from the training. The 

Tetris game required participants to strategically place different shapes while taking into 

consideration of each subsequent falling shape and the spaces that need to be filled, therefore 

involving a spatial memory component to the game. However, the qEEG data showed no 
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major changes in any frequency that could justify this result. The idea that the relatively 

simple task would exercise spatial memory was rejected. Most researchers in video game 

training studies use cognitive tasks such as the UFOV, enumeration, attentional blink test, and 

MOT to evaluate attention. An extensive video game training study by Boot et al. (2008) used 

the aforementioned tests as well as the Corsi-Block tapping test. After training NVGPs for 20 

hours on a FPS shooter game called Allied Assault or on Tetris, neither group showed any 

significant improved effect on the spatial processing and spatial memory task (Boot et al., 

2008). The COD and TT group similarly revealed no significant improvements on the WAIS-

Spatial span task. 

In addition, the WAIS-Block Design test demonstrated a statistical trend for both the 

NT and COD group, which may suggest enhanced changes in spatial perception, visual 

abstract processing and problem solving. The areas of the brain that would explain these 

outcomes are the hippocampus and occipital cortex. QEEG analysis can not observe deep 

hippocampal activity and strangely, occipital cortex activity was also not observed in the NT 

or COD groups either. The WAIS-Code test improved for all four groups following training. 

However, the significant improvements in the 3D-MOT group comparative to the three other 

groups, revealed greater benefits in visual-motor coordination, motor and mental speed and 

visual working memory. This improvement in visual information processing was obvious after 

each subsequent training session, as the participants’ 3D-MOT thresholds continuously 

improved throughout study.  

The neuropsychological assessment was designed to replicate a previous laboratory 

study by Parsons and colleagues (2014). The pre-post within-group t-tests were similar for the 

NT group on all tests with exception for IVA+Plus-Auditory and WAIS-Block design tasks. 

The NT group averaged two standard deviations above the norm on the IVA+Plus-Auditory 

test and yet still improved from pre to post session. The WAIS-Block design task also 

demonstrated a statistical trend for the NT group and the COD group. With a larger sample 

size, these deviations would likely show significant results.  

4.4. Limitations and future directions 

Although the study design took into account different visually stimulating video games 

and a pencil and paper task, the study lacked a conventional non-active control group. In 
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retrospect, a non-active control group would have provided insight on the extent of test re-test 

scores and overall brain changes after training. Training studies that included non-trained 

controls are less likely to experience placebo effects (Basak, Boot, Voss, & Kramer, 2008; 

Berry et al., 2010). The participants in each active group were aware of the nature of the study 

and understood that their attentive skills were being exercised to observe their cognitive 

abilities before and after training. This effectively may have motivated placebo effects on 

certain cognitive tests. For example, the group trained on Tetris may have assumed their 

scores would improve on a cognitive test that requires fast processing speed such as WAIS- 

Symbol Search, whereas the group trained on Sudoku may not have felt their training would 

exercise the same skill. Similarly, participants may have improved their performance on a task 

simply because they were being observed, also known as the Hawthorne Effect (Benson, 

2001). Perhaps a non-active control would have avoided these effects and offered a more 

efficient means to compare the four groups. 

A common limitation among many training studies is the strength of a large sample 

size. The number of participants in each group was adequate for the extent of a preliminary 

training study, however more conclusive conclusions could have been achieved with a greater 

sample size. The sample size in this study was chosen to maintain similar parameters as the 

Parsons (2014) study. Future researchers may want to consider using the variable data 

obtained in this study to determine a suitable number of participants. Nevertheless, the NT 

group attained significant results on numerous neuropsychological tests and positive cortical 

activity. Now that compelling data have been revealed, the next step would be to expand the 

sample size. Additionally, all participants were trained on their training program for a total of 

5 hours for the duration of the study. Many of the training studies by Green and Bavelier 

(2003; 2006b) that observed cognitive benefits had trained NVGPs for 10 hours and had some 

train on a video game for 30 hours. It would be interesting to compare cognitive changes after 

increasing the amount of training across all four groups as well as increasing the sample. An 

interesting idea for future research could replicate the study and additionally look at expert 

video game players compared to those trained on 3D-MOT. Finally, there is a relative amount 

of ambiguity when observing individual EEG frequencies as well as limited spatial resolution. 

Future research should aim to integrate EEG data coupled with fMRI scans to provide more 
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accurate brain images with greater temporal and spatial resolution. Although this study had 

several analytic components that were mainly interpreted independently, future endeavours 

can incorporate both the qEEG and neuropsychological tests for a more comprehensive 

conclusion. 

It is without question that video games can provide an attractive platform that, if 

manipulated properly, can be harnessed into a learning tool. Dr. Michael Merzenich 

eloquently described video games as “[…] controlled training regimens delivered in highly 

motivating behavioural contexts” (Bavelier et al., 2011, p. 763). In fact, video games have 

shown to improve reading speed with children affected by dyslexia (Franceschini et al., 2013), 

have helped young cancer patients adhere to life-saving treatments (Kato, Cole, Bradlyn, & 

Pollock, 2008) and improved fundamental visual functions in adults suffering amblyopia (Li, 

Ngo, Nguyen, & Levi, 2011). AVG training has also been examined as a job-related training 

tool and has revealed an increase in performance in laparoscopic surgeons during endoscopic 

simulations (Schlickum, Hedman, Enochsson, Kjellin, & Fellander-Tsai, 2008) as well as 

pilots of unmanned aerial systems (McKinley, McIntire, & Funke, 2011). Perhaps video 

games would be more beneficial to populations that aim to train specific tasks rather than 

enhancing overall cognition. Future research in the benefits of video games should work in 

close collaboration with video game developers to produce task specific training games that 

can be used in multifaceted settings. Conversely, 3D-MOT appears to have a greater effect on 

overall perceptual-cognitive abilities and can be used to improve the lives of many individuals. 

 

Conclusion 

 The potential implications of 3D-MOT on cognitive enhancement are growing in 

strength with each replicated study and the varieties of populations it can impact are 

promising. In comparison with the extensive research on video games, it appears that training 

on 3D-MOT for the same length of time as playing a video game significantly improves 

perceptual-cognitive abilities. Forty healthy young-adults, who were inexperienced in video 

games, were divided into four equal groups. One group received perceptual-cognitive training 

with 3D-MOT while the 3 other groups received training on one of three different levels of 
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stimulating video games (COD, TT, and SD). Training on 3D-MOT for 10 sessions revealed 

convincing effects on attention, working memory, and visual information processing 

compared to training on video games. Neuropsychological tests and qEEG data provided 

quantitative support that 3D-MOT enhances perceptual–cognitive abilities eminently better 

than video games. Our modern world is unquestionably loaded with visual and auditory 

information, and individuals are often required to employ all their attentional resources to be 

able to keep up with the demanding environment. It is for these reasons that individuals who 

wish to enhance their cognitive capacity may benefit more form a general cognitive training 

technique like 3D-MOT rather than a commercial video game. Other specialized fields such as 

professional sports teams, human spaceflight agencies, and armed forces may use the 

technique to sharpen the cognitive abilities of their teammates, partners or comrades. The 

current study is one of the first comparative studies that examined cognitive enhancement 

acquired through video games to a technique that is fundamentally different and contributed to 

the first steps involved in understanding the benefits of 3D-MOT as a cognitive enhancer.
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