
2 i’?i 3j3ô 2

Université de Montreal

EFFECT 0F INTERFERON TAU ON THE SECRETION 0F E-CADHERIN AND
MACROPHAGE MIGRATION INHIBITORY FACTOR FROM BOVINE

ENDOMETRIAL EPITHELJAL CELLS.

Par

Ana Maria Ocampo Barragân

Département de biorneédecine vétérinaire
Faculté de médecine vétérinaire

Mémoire présenté à la Faculté des études supérieures
en vue de l’obtention du grade

Maître ès sciences (M.Sc.)
en sciences vétérinaires

option reproduction

Août, 2006

© Ana Marfa Ocampo Barragân, 2006
Université de Montreal

Faculté des études supérieures



J

Q



Université (111
de Montréal

Direction des bibliothèques

AVIS

L’auteur a autorisé l’Université de Montréal à reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement à des fins non lucratives d’enseignement et de
recherche, des copies de ce mémoire ou de cette thèse.

L’auteur et les coauteurs le cas échéant conservent la propriété du droit
d’auteur et des droits moraux qui protègent ce document. Ni la thèse ou le
mémoire, ni des extraits substantiels de ce document, ne doivent être
imprimés ou autrement reproduits sans l’autorisation de l’auteur.

Afin de se conformer à la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu être enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n’y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable tetain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author’s permission.

In comptiance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, t does flot represent any loss of
content from the document



Ce mémoire intitulé

EfFECT 0F INTERFERON TAU ON THE SECRETION 0F E-CADHERIN AND
MACROPHAGE MIGRATION INFflBITORY FACTOR FROM BOVINE

ENDOMETRIAL EPITHELIAL CELLS.

Présenté par

Ana Maria Ocampo Barragân

A été évaluée par un jury composé des persoimes suivantes

président-rapporteuse

Dr Alan K Goff, directeur de recherche

codirecteur

membre du jury



111

RÉSUMÉ

Jnterferon-tau (TFN-T) sécrété du concept allongé du bovin, exerce un effet paracrine sur la

sécrétion d’une variété de protéines à partir de l’endométrium qui sont nécessaires pour

l’adhésion de l’embryon, durant la période de préimplantation. L’objectif de ce travail était

de déterminer si lIEN--r altérait les fonctions relatives à l’endomètre, en modifiant la

sécrétion de protéines spécifiques importantes pour les fonctions utérines et/ou pour le

développement de l’embryon. L’immunolocalisation du facteur d’inhibition de la migration

du macrophage (MTF) était comparé sur des tissus endométrials provenant de vaches en

cycles et enceintes. Les résultats démontrent une augmentation de la coloration de

l’épithélium lurninal et glandulaire de vaches enceintes. Le traitement des cellules

épithéliales de l’endomètre bovin (BEEC) in-vitro, avec 100 ng/rnl TFN-T pour 24 h.

démontre une plus forte accumulation du cytoplasme du MIF qtie les cellules contrôles.

Donc les résultats in vivo observés sont probablement dû à cause de la stimulation du MIE

par 1’ IFN-T. Le milieu du BEEC traité in vitro avec 100 ng/rnl WN-t pour 24 h. fut analysé

par deux dimensions PAGE et Western blotting. Le résultat démontre l’apparence d’un

point qui fut identifiée pour une forme soluble de E-cadherin.

Dans le présent ouvrage, en utilisant l’in vitro BEEC, il a été démontre que LFN-t stimule le

clivage protéolytique de l’E-cadhenn et une subséquente accumulation dans le cytoplasme

et accumulation du 3-catenin à la membrane plasmatique. Un effet autocrine de MIE fut

également observé sur E-cadherin et -catenin dans BEEC in vitro. Ces changements du

MIE et E-cadherin causés par IFN--r, secrété par l’embryon jouent un rôle important dans

l’attachement du trophoblaste sur le mur endornétrial.

Adhésion, concept, embryon, utérus, enceinte, endométrium, préimpÏantation.
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ABSTRACT.

Interferon-tau (1FN-T) secreted ftom the elongated bovine conceptus exerts a paracrine

effect on the secretion of variety ofproteins from the endometrium that are necessary for

adhesion ofthe embryo in the preimplantation period. The objective ofthis work was to

determine if WN-t alters endometrial function by modifying the secretion of specific

proteins important for endometrial function and/or embryo development.

Immunolocalization of macrophage migration inhibitory factor (MIF ) was compared in

endometrial tissues from cyclic and pregnant cows compared to non pregnant cows. The

resuits showed increased staining in luminal and glandular epithelium ofpregnant cows.

Treatment of bovine endometrial epithelial cells (BEEC) in vitro with 100 ng’ml IFN-t

for 24 h. showed stronger cytoplasmic accumulation ofMfF than control cells. Therefore,

the observed in vivo results are probably due to stimulation of MW by LFN-r. Medium

from BEEC in vitro treated with WN-T for 24 h was analyzed by two-dimensional PAGE

and Western blotting. The resuit showed the appearance of a spot that was identified as

the soluble form ofE-cadherin. In the present work using in vitro BEEC, it has been

shown that IFN-T stimulates the proteolytic cleavage ofE-cadherin and subsequent

accumulation in cytoplasm, and of 13-catenin at the plasma membrane. An autocrine effect

ofMIF was also observed on E-cadherin and f3-catenin in bovine endometrial epithelial

celi in vitro. These data suggest that changes in MW and E-cadherin induced by IFN-t

secreted by the embryo plays an important role in attachinent ofthe trophoblast to the

endometrial wall.

Adhesion, conceptus, embiyo, uterus, pregnancy, endometrium, preimplantation
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Effect of interferon-tau on the secretion of E-cadherin and macrophage migration

inhibitory factor from bovine endometrial epithelial celis.

INTRODUCTION

Early embryonic mortality causes a ioss of 600 million dollars per year in reduced weaning

wcights and milk production (Austin, 2001) The embryo losses occur during the first 4 to 6

weeks of pregnancy in high producing dairy cattie, and during periods of nutritional or

environmental stress, these losses can approach 80% (Ott, 2003a). The harmonic

interactions between the hypothalamus, pituitary, ovary, uterus and conceptus are essentiai

for normal embryo development and implantation. Disruptions in these interactions resuit

in failure of the embryo to attach and embryo mortality. The basic events that occur in the

utents in response to pregnancy must be studied and understood so that future technologies

may be designed to detect eariy pregnancy and decrease eariy abortion.

The successful implantation of the ernbryo in the cow requires a succession of coordinated

events; these inciude progesterone-induced development of the utenis, and conceptus and

placental formation. The communication between the conceptus and the maternai

endometrium in the preimplantation period happens via the secretion of growth factors,

hormones and cytokines and by several molecules including adhesion signaling,

transcription, ceil cycle and DNA replication proteins, that creates an environment

propitious for attachment (Carson et al., 2000) When the conceptus and uterus are

developing simultaneously, the attachment of trophectoderm to endometrium can occur.

This event happens in ruminants, rodents and primates(Imakawa et al., 2004).

Steroid hormones secreted during the estrous cycle, estradioi -17r3 (E-173) and

progesterone (P), prepare the utenis to receive the embryo. Thc appropriate secretions of
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the endometrium in the preattachment period permit the elongation and development ofthe

conceptus in ruminants (Bazer and Roberts, 1983).

In the mammalian uterus the establishment ofpregnancy is dependent on the corpus luteum

(CL), which secretes P, the essentiai hormone of pregnancy. If the female does flot become

pregnant, the CL regresses due to a pulsatile secretion ofprostaglandin f2a (PG F2a) from

the endometrium, a process known as luteolysis and another new estrous cycle commences

(Bazer and First, 1983). If the female becomes pregnant, the schronous deveiopment of

the endometrium and conceptus resuits in the trophectoderm secreting interferon tau (IFN

T), which is the signal for the maternai recognition of pregnancy that prevents luteolysis,

and allows the attachrnent and subsequent implantation (Bazer et al., 1997).

Ruminant biastocysts develop for up to three weeks in the uterine lumen, before

implantation, during this period maternal-conceptus communication is established

(Yamada et ai., 2002). The trophobiast (Tr) secretes specific molecules such as placentai

lactogens, prolactin-related proteins, IFN-r, and adhesion molecules such as integrins

(Gumbiner, 1996; Hynes, 1987), glycoproteins and cadherins that serve as receptors for

extracellular matrix ligand and act as modulator of cellular function (Lessey, 1994; Lessey

et al., 1994a; Lessey et al., 1994b). After blastocyst elongation during the preimplantation

period, LFN-t acts on the bovine endometrium and increases secretion of several proteins

that support conceptus-endometrium development necessary for adhesion.

Endometrial proteins such as interferon-gamma-inducible protein 10 kDa (LP-10) regulate

the establishment of apical interactions between trophobiast and epithelial ceils during

early gestation (Nagaoka et al., 2003). Galectin-15 has an extracellular function to regulate

Tr migration and adhesion to the endometriai epithelium, and intracelluiar function to

regulate Tr ccli survival, growth and differentiation (Gray et al., 2004). Granulocyte
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macrophage colony-stirnulating factor (GM-CSF) (Ernond et al., 2004) beta 2

microglobulin, interferon stimulate gene 17 (ISG17) (Jolrnson et al., 2002) osteopontin

(OPN) I and OPN II may induce adhesion between luminal epithelium and tropliectoderm

to facilitate superficial implantation (Jolmson et al., 1999a; Jolmson et al., 1999b). In the

early pregnancy, WN-t from bovine conceptus, stimulate secretion of uterine endometrial

cytokines; ubiquitin cross-reactive protein (UCRP), bovine granulocyte chemotactic

protein-2 (GCP-2) (Staggs and Dooley, 1998; Teixeira et al., 1997) and macrophage

migration inhibitory factor (MW) (Wang and Goff, 2003). Also WN-’c may affect the

cleavage of the external domain of E-cadherin, that is transmembrane protein of the

adherents junctions and is responsible for homophilic celi to cell adhesion (Wheelock and

Johnson, 2003a; Wheelock and Johuson, 2003b).

The role of proteins secreted by the uterus in trophoblast-epithelium adhesion has flot been

determined in domestic ruminants and remains a point of intense investigation. The effect

of IFN-’c on cdl adhesion in bovine endornetrial epithelia! celis is flot understood. My goal

was to determine if IFN-t lias an effect on the secretion of proteins such as MW and E

cadherin and how these proteins are involved in the modification of epithelial cells for ce!!

adhesion.

LITERATURE REVIEW

Conceptus developmeut

In mammals aller mating and ferti!ization the zygote develops into a blastocyst as it

migrates through the oviduct into the uterus. Close to the uterus, the so!id bail of ceils, the

moru!a, becomes fluid-filled and a cavity blastocoele appears, which enlarges rapid!y and

transforrns the moru!a to a blastocyst. The blastocyst lias peripheral layer of large ftattened

celis, the trophectoderm or trophob!ast, and a knob of smaller celis to one side of the
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central cavity, the so called inner ceil mass (1CM) (Russell et al., 2006). The 1CM will give

rise mainly to the aduit organism, while the ceils of trophectoderm form the placenta and

embryonic membranes (Koo et al., 2002; Maddox-Hyttel et al., 2003). After

differentiation, the blastocyst hatches from the zone pellucida and acquires the ability to

attach to the uterus (Brandao et al., 2004; Dalton et al., 1995; Hynes, 1987). This

preimplantation stage varies in duration between species. In mice, implantation occur 4

days post coitum (McLaren, 1985), humans average 9 days (Lee and DeMayo, 2004), and

in cow implantation does not occur until 30 days after fertilization (Xiang and MacLaren,

2002).

Tr celis express a number of extracellular matrix receptors and matrix-degrading activities

that support interaction and invasion through the endometrium (Carson et al., 2000; Carson

et al., 2002). During the development of the embryo, genes encoding for putative

transcription factors, these transcription factors are expressed in 1CM or trophoblast

lineages, such as Rex-I (Rogers et al., 1991), GAlA-3 (Ng et al., 1994), T-Box gene

Eomesodermic (Hancock et al., 1999), the caudel related gene Cdx-2 (Beck et al., 1995),

activating protein-2 gamma (Shi and Kellems, 1998), basic helix-loop helix (bHLH) (Sapin

et al., 2000), Mash 2 (Rossant et al., 1998), Ets-2 that orchestrates modifications ofcellular

adhesion (de Launoit et al., 1998; Meyer et al., 1997), and a transcription factor

protocadherins encodes a transmembrane ceil adhesion molecule (Imakawa et al., 2004;

Yamamoto et aI., 1998). Comparison of day 7 and day 14 embryos revealed that blastocyst

expresion of most genes increased during this period, and a small number of genes

exhibited decreased expression. Clustering analysis dernonstrated that trophoblast celis

secrete specific molecules such as piacental lactogens (PLs), prolactin-related proteins

(PRPs), IFN-T, and adhesion molecules that apparently ail play pivotai roles in the
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preparation needed for implantation, since their expression was remarkably enhanced

during the pre-implantation period (Ushizawa et al., 2005a). Expression of ovine nterferon

tau (oLFN-T) gene is restricted to the trophoblast and is not detected in any other ceIl types

in ruminants. Substantial secretion ofoIFN-t, starts on day 12-13 ofpregnancy, reaches the

highest on day 16 —17, and then declines rapidly. Changes in the degree of DNA

methylation could be one of the major mechanisms leading to downregtilation of the oIfN-

T gene during early gestation (Nojima et al., 2004; Ushizawa et al., 2006). Expresion of

gene eomesodermic, the caudel related gene Cdx-2, activating protein 2 gamma, bHLH,

Mash 2, Hand I and Ets-2 increased up to implantation (Roberts et al., 2003). The change

in expression of these genes propose novel molecules in trophoblast differentiation

(Ushizawa et al., 2006; Ushizawa et al., 2005b).
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Figure 1. Early pregnancy events in sheep. This schematic summarizes the relative

changes in embryo/blastocyst development after fertilization in relation to position in

the female reproductïve tract and circulating levels of ovarian steroid hormones.

Fertilization occurs in the oviduct, and the morula stage embryo enters the uterus on

day 4. The blastocyst is formed by day 6 and hatches from the zona pellucida on days

8—9. The blastocyst develops from a spherical to a tubular form by day 11 and then

elongates to a filamentous conceptus between days 12 and 16. The elongation of the

blastocyst marks the beginning of implantation, which involves apposition and

transient attachment (days 12—15) and firm adhesion by day 16. Taken from Spencer

et aI., 2004.
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Maternai preparatïou for implantation

The preparation of maternai tissue for implantation of conceptus implicates that the uterus

undergoes dynamic changes, including differential and ordered activation or repression of

gene expression and programmed changes in posttranscriptional and posttranslational

modifications of mRNA and proteins (Carson et al., 2002). The steroid hormones secreted

during estrous cycle E-1 7(3 and P, prepare the endometrium for the secretion of proteins

and prostaglandins. The proteins nourish the embryo and the prostaglandins act on the

corpus luteum and induce luteolysis if the animal does not have a viable ernbryo. The

conceptus itself secretes growth factors, steroids, prostaglandins and cytokines depending

on the species, which presumably act on the endometrium to prevent prostaglandin

secretion, or directly on the ovary to stimulate protein secretion (Goff, 2002).

ProstagÏandins are aiso involved in implantation. IFN-r elevated cycloxygenase (COX)-2

expression and selectively increased prostaglandin E2 (PGE2) secretion in epithelial celis

at the tirne of pregnancy recognition, and may have a luteotropic effect (Asselin et al.,

1997; Guzeloglu et al., 2004; Xiao et al., 1999).

In the estrous cycle, the coordinated secretion of hormones by the hypothalamus, ovary and

utems prepares the endometrium for the implantation of embryo. Gonadotropin-releasing

hormone produced by hypothalamus regutates the synthesis and release of luteinizing

hormone (LH) and follicle-stimulating hormone (FSH) from the anterior pituitary gland.

FSH and LH are synthesized and secreted by gonadotroph ceils of the anterior pituitary

gland (Wilson et al., 2004). These hormones regulate gametogenesis, steroidogenesis and

ovulation in mammalian ovaries.

Corpus Luteum formation
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The preovulatory LH surge initiates the differentiation of follicular ceils into luteal ceils

(luteinization). The CL is a heterogeneous tissue containing endothelial celis, steroidogenic

ceils as large luteal ceils (LLC) and small luteal celis (SLC), fibroblasts, smooth muscle

celis and immune ceils (OTShea et al., 1989). The endothelial ceils contribute

approximately 50% of the total cell population of the CL (Meidan and Girsh, 1997).

Studies by Mamluk et aI., 1998 (Mamluk et al., 1998) showed that PGF2a is a major

regulator of prostaglandin F receptor (PGfr) and luteinizing hormone receptor (LHr)

expression in the two steroidogenic celi types, and ah three major cell types of the CL

(steroidogenic and endothelial) express PGFr and LHr mRNA (Mamluk et al., 1998).

PGf2a induces an elevation in luteal expression of endothelin-l (ET-1) (Girsh and Dekel,

2002) from endothelial celis, which may mediate the luteolytic action of PGF2a (Girsh et

al., 1996; Levy et al., 2001).

The CL lasts for 17-18 days in the cyclic cow or for up to 200 days in the pregnant cow.

Regression of the corpus luteum is essential for normal cyclicity as it allows the

development of a new ovulatory follicle (Meidan and Girsh, 1997; Meidan et al., 1999).

The CL produces P, required for the establishment and maintenance ofpregnancy (Schams

and Berisha, 2004). P also seems to play a luteotropic role by stirnulating the synthesis of

LHr in bovine CL (Jones et al., 1992). There is also evidence that P represses the onset of

apoptosis in the CL by a progesterone receptor (PR) dependent mechanisrn (Rueda et al.,

2000). During early diestrus, P from the newÏy formed CL stimulates accumulation of

phospholipids in endometrial luminal epithehium (LE) and glandular epithehium (GE) that

cari liberate arachidonic acid for synthesis and secretion of PGF2Œ. During diestrus,

progesterone levels increase and act via PR to block expression of estrogen receptors tER)

and oxytocin receptors (OTR) in the cndornetrial LE and GE (Spencer et al., 2004b).
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Continuous exposure of the endometrium to P eventually down-regulates PR gene

expression in the endometrial LE. The loss of PR terminates the P block to ERa and OTR

formation. The increase in OTR expression is facilitated by increasing secretion of

estrogen by ovarian follicles (Spencer and Bazer, 2002).

Luteolysis.

In ruminants and other large domestic animais PGF2u is the luteolysin secreted by the

uterus that controls the length of the estrous cycle. Episodic release of PGF2a from the

uterus reaches the CL through a counter current system between the uterine vein and the

ovarian artery and induces luteolysis (Schams and Berisha, 2004). Luteolysis is initiated by

increased expression ofERs and subsequently OTRs by the uterine endornetrial epithelium.

Oxytocin (OT) stimulates PGF2a secretion by cow endometrial celis (Ohtani et al., 2004;

Tysseling et al., 1998; Tysseling et al., 1996) through activating the OTR (a 7-

transmembrane, G-protein-associated receptor), increasing inositol triphosphate turnover,

cytosolic calcium concentration, and activation ofprotein kinase C (Duras et al., 2005). In

the uterus, these events resuit in activation of COX-2 (Asselin and Fortier, 1996). In cattie

and sheep, luteolysis appears to be initiated by an increase in endometrial sensitivity to OT

due to the increase of the number of OTR (McCracken et al., 1996; McCracken et al.,

1999), and the existence of positive feedback loop between endometrial PGF2u and luteal

OT secretion (Parkinson et al., 1992).

In contrast to PGF2Œ, PGE2 may be a luteotropic agent and could be a luteo-protective

signal to antagonize potential luteolytic effects of PGF2Œ. Before implantation, PGE2 may

aiso be responsible for the increase in vascular permeability and secretion of growth factors

and nutrients, and it may be involved in the local regulation of immune responses (Emond

et al., 1998).
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Emb ryo endometrial interactions

The synchronous development of blastocyst and endometrial luminal epithelium

receptivity initiates an adhesion cascade that resuits in implantation. In ruminants the

blastocyst sheds the zona pellucida (day 8) and elongates to a filamentous form. The

elongation of the blastocyst marks the beginning of implantation, which involves

apposition and transient attachment (days 12—15) and firm adhesion by day 16 in sheep

(Spencer et al., 2004a). Apposition of the conceptus involves the trophectoderm becoming

closely associated with the endometrial LE followed by unstable adhesion. Afler day 14,

the filamentous conceptus appears to be immobilized in the uterine lumen. The elongating

blastocyst maintains close contact with the endometrial LE, which appears to imprint its

rounded shape on the trophectoderm in fixed specimens (Gharib-Harnrouche et al., 1993).

On day 15, apposition occurred: most microvilli on the surface of the trophoblast

disappeared. Between days 16 and 18, adhesion began as a result of the interpenetration of

the uterine microvilli and cytoplasmic projections ofthe trophoblast celis (Guillomot et al.,

1981). Adhesion of the trophectoderm to the endometrial LE progresses along the uterine

hom and appears to be completed around day 22 and 28, the establishment of an overali

intimate epithelial contact of fetal binucleate celi with microvillar junction take place and

continued binucleate ceil migration at the time of mature bovine placenta formation (King

et al., 1982; Wathes and Wooding, 1980).

The endometrium in ruminants consists of LE, GE, several types of stroma (stratum

compactum and stratum spongiosum), blood vessels and immune cells. In sheep, the

endometrium has two distinct areas: aglandular caruncular and glandular intercaruncular.

The caruncular consist of LE and compact stroma and are the sites of superficial

implantation and placentation (Amoroso and Perry, 1975; Lawn et al., 1969). Placentation
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in ruminants such as cows and goats are noninvasive, or the extent of invasion is very

lirnited (Hashizurne et al., 2003; Hirata et al., 2003; Steven, 1975). Tr remain essentially in

the uterine lumen and placentation involves onÏy superficial physical contact with the

maternai tissue (Carter and Enders, 2004). In contrast placentation in humans and mice is

highly invasive as the Tr penetrates into endometrial stromal tissue (Bischof and Campana,

2000; Bischof et al., 2000a; Bischof et al., 2000b).
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Figure 2 Apposition and adhesion phases of blastocyst implantation in sheep. (A)

Preattachment involving shedding of the zona pellucida (phase 1) and precontact and

blastocyst orientation (phase 2). The antiadhesive mucin MUC-1 is present ou the

endometrial LE, thereby preventing contact of the Tr with adhesive receptors such as

integrins. Histotroph, sccreted from the endometrial LE and GE, nourishes the

developing blastocyst. (B) Apposition and transient attachment (phase 3). After day

11, the tubular blastocyst elongates to form a filamentous conceptus. During this

period, expression of MUC-1 declines on the LE, which exposes constitutively

expressed integrins on the LE as well as trophoblast. Apposition occurs between the

trophoblast ami endometrial LE and between the Tr papillae ami GE ducts.

Elongation of the blastocyst probably requires apposition and transient attachment to

the endometrial LE. (C) Adhesion (phase 4). Firm adhesion of the mononuclear cetis

of the Tr to the LE occurs between days 15 and 16. Available evidence indicates that

several molecules (GIyCA1’I-1, galectin-15 and osteopontin) interact witli receptors

(integrins ami glycoconjugates) on the apical surfaces of the Tr and LE to facilitate

adhesïon. Taken from (Spencer and Bazer, 2004).
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Recognition of pregnancy

During the preimplantation period, pregnancy recognition signais from the conceptus to the

maternai system are antiluteolytic and/or luteotrophic. The functional iife span of the CL is

controiied by release of PGF2a from the uterus and IFN-T is the signal from the

trophoblast acts in a paracrine or endocrine manner to interrupt endometrial production of

luteolytic PGF2Œ (Kim et al., 2003).

Maternai recognition of pregnancy in ruminants (sheep, cattie, goats) requires that the

conceptus elongate from a spherical to a tubular and then filamentous form to produce

IFN-’t, which is the signal that prevents development of the endometriai luteolytic

mechanism (Kim et al., 2003; Spencer and Bazer, 2002). IFN-T is considered to prevent

luteolysis by blocking the upregulation in OTR during diestrus (Spencer et al., 1996),

through the activation and repression of genes responsive to Type I IFN (Green et al.,

2005).

The IFN-r secreted by conceptus inhibits OTRs and protects the CL and maintains

secretion of P (Bazer and First, 1983; Bazer and Roberts, 1983). IFN-r is released by the

conceptus in the pregnant cow by day 12-28, reaches highest levels on days 15-19, after

which time levels decrease from days 21 to 26 of pregnancy (Roberts, 1991; Roberts et al.,

199 la; Roberts et al., 199 lb). In the sheep, the quantities of 0IFN-T secreted are elevated

(20—200 mg/day) by days 14-16 ofpregnancy and 1-2 mg!day by the day 12 ofpregnancy

(Rooke et al., 2005). IFN-T is reduced as definitive attachrnent of trophectoderrn to the

uterine epithelium is established (Day 21 or 25 of pregnancy in the sheep and cow,

respectively) (Roberts et al., 1992; Spencer and Bazer, 2004).

The only maternai tissue immediately exposed to IFN-t is the epithelium that borders the

endometrium (Rosenfeld et al., 2002). IFN-t binds to a dimeric interferon receptor (IfN-R)
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in the celi membrane. The intracellular domain of the receptor binds tyrosine kinases,

Janus kinases, (JAKs) which are activated afier interferon binding, and subsequently

phosphorylate other proteins named signal transducers and activators of transcription

(STATs). The STATs dimerize and bind two other proteins to form a trimeric interferon

stimulated gene factor (ISGF) complex, which is translocated to the nucleus, where it binds

an interferon-stimulated regulatory element (ISRE), resulting in the expression of the

interferon regulatory factor 1 (IRF-l) gene. The product of this gene, in tum, activates

expression of TRF-2, which interacts with other regulatory elements to control the

expression of interferon-responsive genes, including the OTR and ER receptors (Demmers

et al., 2001).

TFN-t possess similar antiproliferative and antiviral activities to other Type I IFN

(Mathialagan and Roberts, 1994). IFN-T affects the synthesis of cytokines that contribute to

the immunomodulation required to prevent rejection of the conceptus and stimulate

blastocyst growth (Demmers et al., 2001; Gierek et al., 2006).

Adhesion mechanisms

Ce!! adhesion mechanisms are responsible for assembling cells together and, along with

their connections to the interna! cytoskeleton determine the overal! architecture of the

tissue (Gumbiner, 1992). Three general classes of proteins take part in cel! adhesion: the

ce!l adhesion molecules/adhesion receptors, the celi-extracellular matrix (ECM) proteins,

and the cytoplasmic plaque/peripheral membrane proteins (Gumbiner, 1996). The cell

adhesion receptors are glycoproteins that mediate binding interactions at the extracellular

surface and determine the specificity of celi-cel! and cell-ECM recognition. They comprise

integrins, cadherins, immunoglobulins, selectins and proteoglycans (Bella and Berman,

2000). The ceil adhesion receptors recognize and interact with either other ce!! adhesion
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receptors on neighboring celis or with proteins of the ECM. The ECM is typicaliy

composed of large glycoproteins inciuding collagen, fibronectins, laminins and

proteoglycans. Cytoplasmic plaque proteins serve to link the adhesion systems to the

cytoskeleton, to regulate the functions of the adhesion molecuies, and to initiate transducer

signais at the ceil surface by the adhesion receptors (Gumbiner, 2005). Signais generated

locally by the adhesion receptors themseives are involved in the regulation of ceil

adhesion. These reguiatory pathways are aiso influenced by extrinsic signais arising from

the classic growth factor receptors (Gumbiner, 1996).Adhesion mechanisms are highly

reguiated during tissue morphogenesis and are intimateiy reiated to the processes of celi

motiiity and celi migration. Iii particular, the cadherins and the integrins have been

impiicated in the control of ceil movement. Cadherin-mediated celi compaction; integrins

mediated ceil spreading and motility on the extraceilular matrix (Wheelock and Johnson,

2003a; Wheelock and Johnson, 2003b).

Adliesion moecuJes and implantation

Endometrial epithelium synthesize and secrete or transport a complex array ofproteins and

related substances termed “histotroph”, that is a mixture of enzymes, growth factors,

cytokines, lymphokines, hormones and other substances that act as primary regulators of

conceptus survival, deveiopment, production of pregnancy recognition signais,

implantation and placentation (Bazer et al., 1979; Burton et al., 2002) These uterine

secretions establishing synchrony between development of the conceptus and uterine

receptivity that remodeling the endometrial LE for conceptus adhesion (Burghardt et al.,

2002). The LE that is a simple, polarized ceil layer mediates cell-celi and ceii-extraceliuiar

matrix interactions is normally nonadhesive; however, this characters is lost during
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development of receptivity and begin apical adhesion between LE and Tr defines the onset

of implantation (Lue et al., 2006).

In the early pregnancy, continuous exposure of the endometrium to progesterone down

regulates the progesterone receptors in the epithelia, a process that is associated with loss

of the ceil-surface mucin glycoprotein 1 (MUC-1) and induction of several secreted

adhesion proteins (Carson et aÏ., 1998). The removal of mucin, that is an antiadhesive

barrier is hypothesized to be necessary to expose other glycoproteins involved in the

adhesion between Tr and LE (Aplin and Hey, 1995; Hey et al., 1995).Mucin is locally

reduced at implantation sites, via the activity of celi-surface proteases that are triggered by

the blastocyst or rnediated by paracrine signais from biastocysts (Brayman et al., 2004;

Thathiah et al., 2004). In sheep the implantation adhesion cascade is initiated after down

regulation ofMUC-1 (Johnson et aI., 2001).

A number of endometriaÏ proteins have been identified as potential regulators of blastocyst

development and implantation in sheep, including glycosylated celi adhesion molecule 1,

galectin-15, osteopontin, that binding to adhesion receptors such as integrin, cadherin and

immunoglobulin and selectin, to proteins of ECM. These adhesion proteins are secreted for

luminal epithelium and regulate for progesterone or TFN-T produced by the Tr during

blastocyst elongation (Spencer et al., 2004a).

Galectins are proteins with a conserved carbohydrate recognition domain that bind b

galactosides, thereby cross-linking glycoproteins as well as glycolipid receptors on the

surface of ceils and initiating biologic responses (Cooper, 2002). Functional studies of

other gaiectins have implicated these proteins in ceil growth, differentiation ami apoptosis

as weIl as in celI adhesion, chemoattraction and migration (Yang and Liu, 2003).
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Integrins comprise a family of heterodimeric intrinsic transmembrane glycoprotein

receptors that mediate cellular differentiation, motility and adhesion (Giancotti and

RuosÏahti, 1999; Munger et al., 199$; Oktay et al., 1999). The central role of integrins in

the implantation adhesion cascade is to bind ECM Iigand(s) to cause cytoskeletal

reorganization, stabilize adhesion, and mediate ceil migration, proliferation and

differentiation through numerous signaling intemiediates(Burghardt et ai., 2002; Pfarrer,

2006). Altered expression of integrins is correlated with several causes of infertility

(Lessey, 1994; Lessey et al., 1994a), nul! mutations of several integrins leads to peri

implantation lethality (Hynes, 1996) and functional blockade of selected integrins reduces

the number of implantation sites. In the sheep, receptivity to implantation does flot appear

to involve changes in either temporal or spatial pattems of integrin expression, but may

depend on expression of other glycoproteins and ECM proteins, such as galectin-15, OPN

and fibronectin, which are ligands for heterodimers ofthese integrins.

OPN is a member of the small integrin-binding ligand, N-linked glycoprotein ($IBLTNG)

family of genetically related ECM proteins recognized as key players in a number of

diverse processes such as bone mineralization, cancer metastasis, cell-mediated immune

responses, inflammation, angiogenesis and cell survival (Johnson et al., 2003a; Sodek et

al., 2000).OPN has also been linked to pregnancy (Johnson et al., 2003b). Microarray

profihing identified OPN as the most highly upreguïated ECM adhesion molecule in hurnan

endometrium that is receptive to implantation (Carson et al., 2002). Multiple integrin

receptors for OPN are present on trophoblasts and LE of humans and domestic animais,

some ofwhich increase during the peri-implantation period (Damario et al., 2001; Lessey,

1994).
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IFN induced protein secretion from endometrium

When the bovine conceptus makes contact with the uterine wall, IFN-r is secreted and has

an immunomodulatory activity that offers protection for the embryo from the immune

system of the mother. IfN-t is an apoptotic protein that induces the secretion of protein

and cytokines and prepares the endometrium for embryo attachment. IFN-’t possesses

potent antiviral, antiproliferative, and immunomodulatory activities (Demmers et al.,

2001). It can also alter the synthesis of endometrial proteins; retard the growth of the

endometrium during the preimplantation period (Roberts et al., 1992).

IFN-r was shown to increase expression of beta 2 microglobulin, ISG1 7 (also known as

Ubiquitin Cross Reactive Protein), which is expressed in the endometrium of Day 17

pregnant cows, prepares the uterine wall for the adhesion and implantation of the embryo

(Austin, 2001; Hicks et al., 2003; Ott, 2003b; Ott et al., 1998). ISG17 controls cytosolic

protein processing through the proteosome; osteopontin (Johnson, 1999), which promotes

celi—celi attachment and may be involved in attachment ofthe blastocyst to the endometrial

epithelial surface; and the antiviral Mx protein (Ott et al., 199$).

IFN-r stimulate the expression of endornetrial IP-10 that regulates the establishment of

apical interactions between trophoblast and epithelial celis during early gestation (Nagaoka

et al., 2003). Also Galectin-15 was discovered in the uterus ofsheep, and secretion in to the

uterine lumen increased between days 14 and 16 of pregnancy and galectin- 15 mRNA was

detected only in the endometrial LE and superficial ductal GE (Kuwabara et al., 2003;

Purkrabkova et al., 2003). Galectin-15 is hypothesized to function extracellularly to

regulate trophoblast migration and adhesion to the endometrial epithelium, and

intracellularly to regulate trophoblast ce!! survival, growth, and differentiation (Gray et al.,

2004).
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Expression and secretion of OPN I and OPN II are induced by IFN-T in uterine glands

during the periimplantation period. Also OPN is a potential mediator of implantation in

sheep, as a bridge between integrin heterodimers expressed by Tr and uterine LE

responsible for adhesion for initial conceptus attachment (Johnson et al., 2001; Johnson et

al., 1999a; Johnson et al., 1999b) Also IfN-’r induces adhesion molecules UCRP and GCP

2 during early pregnancy (Staggs and Dooley, 199$).

In the periattachment period IFN-T increases the expression of GM-CSF in immune and

nonimmune ceils of the bovine endometrium (Emond et al., 2004). Furthemore, IFN-T

stimulates the production of PGE2 in bovine endometrial cells via the induction of COX-2,

PGE2 increases the expression of GM-CSF, a cytokine that promotes conceptus growth

and survival, from leukocytes and endometrial stromal cells (Emond et al., 2000; Emond et

al., 2004).

Pleiotropic cytokine MIF was stimulate for IFN-t from uterine epithelial celis (Arcuri et

al., 2001; Wang and Goff 2003). The pleiotropic activities of MIF are based upon

transcriptional regulation of inflammatory gene products, modulation of cdl proliferation,

differentiation, and cell cycle control, inhibition of apoptosis, and several metabolic effects

(Calandra et al., 2000; Lue et al., 2006; Walter et al., 2000; Wang and Goff, 2003; Wang et

al., 2003) MIF is released by bovine endometrial epithelial, but flot stromal, celis and is

stimulated in response at IFN-T (Wang and Goff, 2003). MIF has an autocrine effect in

adhesion; it stimulates the formation of integrin clusters and accumulation of cytoplasmic

-catenin.

Endometrial cytokines

The cytokines are implicated in processes characteristic of inflammation, immunity,

remodeling and the migration of various cellular components. In mammalian reproduction
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processes like ovulation, blastocyst implantation and parturition resemble those of the

inflarnmatory and reparative processes in which cytokines and chernokines act as autocrine

and paracrine mediators. Actually, many reports have widely documented the involvement

of cytokines in the intercellular signaling that affect reproductive events (Orsi et al., 2006).

A recent study demonstrates the transcription of 16 different cytokines common in normal

and turnor bearing ovaries (Burke et al., 1996).

The endometrium is source of cytokines; interleukins (ILs), tumor necrosis factors (TNFs),

transforming growth factors (TGfs), colony-stimulating factors (CSFs), and interferons

(IFNs) have been reported in cycling and pregnant endometrium (Arcuri et al., 1999;

Arcuri et al., 2001). The cytokine interleukin-1 beta has a major effect on gene expression

in stromal cells from human endometrium and plays a role in disorders of the

endometrium, especially in implantation-related infertility and endometriosis (Rossi et al.,

2005).

The recently recognized multifunctional cytokine MIF that modulates the immune response

and acts as a growth and angiogenic factor (Baugh and Bucala, 2002), has possible

functions in reproduction. MIF mRNA and protein have been identified in murine and

human ovaries as well as in human follicular fluid. Iii rodents, MIF has been detected in the

amniotic fluid and in the early embryo (Nishihira et al., 199$).

li human pregnancy, a sarcolectin-binding protein whose properties corresponded to those

of MIF lias been described in term placenta (Zeng et al., 1993) also MW is expressed by

first-trimester human trophoblasts (Arcuri et al., 1999). Similarly, in human endometrium

hCG induces MW synthesis and secretion by endometrial stromal celis, and results of

nuclear transcription assays (run-on) revealed that hCG acts predominantly by up

regulating MW gene transcription (Akoum et al., 2005; Kats et al., 2005). Human
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endometrial epithelial ceils can also secrete MW (Chaisavaneeyakom et al., 2005). Thus, as

demonstrated by immunohistochemistry, in the secretory-phase glandular epithelium, the

protein is mainly located on the lurninal side, usually at the apical surface of the ceils

(Paulesu et al., 2005). Moreover, abundant immunoreactive material is present in the

glandular secretion (Arcuri et al., 1999; Paulesu et al., 2005), and it has been suggested that

endometrial epithelial celis secrete MIF during the luteal phase of the menstrual cycle

(Arcun et al., 2001).

MIF and the immune response

MIF bas immunosuppressive activity and it has bee shown that MIF is capable of

inhibiting Natural Killer cells in cell-mediated cytolysis of both neoplastic and normal

celis ofhuman endometrium (Apte et al., 199$). Also MIF represents an important effector

of hCG-induced endometrial changes during embryo implantation, growth, and

development (Akoum et al., 2005).

MW is present in human serum at concentrations ranging from 2-6 ng/ml. Macrophages

contain large quantities of stored, pre-forrned MW (2-4 fg!cell) that is released in response

in lipoproteins (LPS) stimulation. Physiological concentrations of glucocorticoids stimulate

macrophage secretion of MW (Isidori et al., 2002; Nishihira et al., 1995). On release from

macrophages, MIF can exert potent autocrine and paracrine effects, prornoting cdl

activation, proinflammatory cytokine release and overriding glucocorticoid action at the

site of inflammation (Chesney et al., 1999; Isidori et al., 2002; Liao et al., 2003). MIF is

present in several tissues including T lymphocytes, anterior pituitary ceils, monocyte

/macrophages, eosinophils, endothelium, various epithelial cell types, fibroblasts, and

muscle cells (Baugh and Bucala, 2002).
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MIF is involved in the regulation of innate and adaptative immunity. It is a counter

regulator of glucocorticoid action within the immune system (Baugh and DonneÏly, 2003),

and inhibits the random migration of macrophages and promotes tumor ceil growth. The

pro-inflamatory effect of MIF may be explained by its ability to induce release of the pro

inflammatory cytokine tumor necrosis factor a (TNF-a) by macrophages, and form a

positive feedback ioop, as TNF-a is itself able to induce MIF secretion via tyrosine-kinase

dependent pathway (Mitcheil et al., 2002).

MIF in proliferation and differentiation

MIF has the potential to suppress the action of the tumor suppressor gene p53, leading to

ccli growth (Fingerle-Rowson et al., 2003). MIF inhibits p53 activity in macrophages via

an autocrine regulatory pathway, resulting in a decrease in cellular p53 accumulation and

subsequent function. This mechanism to explain its critical proinflammatory action of MW

in conditions such as sepsis (Mitchell, 2002). MW induces tumor cell growth in concert

with other growth factors. It stimulates the proliferation of fibroblasts and also in wound

repair (Takahashi et al., 1998). MW could prornote both tumor celi growth and

angiogenesis induced by lysophosphatidic acid via mitogen-activated protein kinase

(MAPK) signaling pathways (Sun et aI., 2003). MIF is directiy associated with the growth

of Iymphoma, melanoma, and colon cancer (Nishihira et al., 2003). Studies where

treatments with either anti-MW immunoglobulin therapy andlor MW antisense

oligonucleotide confer antitumor activity (Chesney et al., 1999) and the activity ofMIf is

associated with cancer angiogenesis, progression, and metastasis (Leng et al., 2003;

Stephan et al., 2006; Wymann et al., 1999).
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MIF in adhesion

MIF is implicated in adhesion, and M1F secretion is induced by cell adhesion to fibronectin

in quiescent mouse fibroblasts (Mitcheil et al., 1999). Therefore adhesion-mediated release

of MLF subsequently promotes integrin-dependent activation of mitogen-activated protein

(MAP) kinase, cyclin Dl expression, and DNA synthesis. MIF is secreted in a protein

kinase C (PKC) dependent fashion as a consequence of ccli adhesion to the ECM and plays

a significant role in integrin-mediated signalling to sustained MAP kinase activation cyclin

Dl expression, and celi cycle progression (Liao et al., 2003). MIF stirnulates the

proliferation of mouse fibroblasts (Mitcheli et al., 2002) throught the activation of the

p44/p42 extracellular signal-regulated kinase (ERK) rnitogen-activated protein kinase

(MAPK)s. Additional growth factors stimulate the rapid release of preforrned MIF from

adherent, quiescent fibroblasts including the sustained activation of MAPK in serum

stimulated fibroblasts is dependent upon MTF autocrine action (Ren et ai., 2003). Hence

growth factors and adhesion are required for efficient signaling to sustained ERK

activation and subsequent celi cycle progression (Roovers et al., 1999). This is through

cyclin Dl transcription and the subsequent activation of specific cyclin-dependent kinases

(Welsh et al., 2001).

MIF secretion is induced by a variety of stimuli including growth factors and integrin

engagement (Liao et al., 2003). Extra-cellular MIF then binds to its putative membrane

bound receptor, CD74 (Leng et al., 2003), which can then initiate the activation of Rho

GTPase activity via an unknown mechanism. Increased Rho activity is then thought to

promote the activation of Rho kinase and myosin light chain (MLC) phosphorylation.

Hyperphosphorylated MLC, in turn, induces stress fiber formationlintegrin clustering and
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subsequent focal adhesion kinase-dependent sustained MAPK activation, cyclin Dl

transcription, and retinoblastoma tumor suppressor inactivation (Swant et al., 2005).

The activation of Rho by integrins and growth factors is essentiai for modulating the

sustained activation of ERK and subsequent cyciin Dl transcription (Welsh, 2004). Rho

and Rho kinase-dependent stress fiber formation have been tightiy linked to endothelial

ceil reorganization and mature blood vessel formation (Hoang et ai., 2004), recruitment

and clustering of integrins leading to focal adhesion formation (Roovers and Assoian,

2003). MW production following growth factor or extracellular matrix stimulation would

also perform in cell repiication. In the case of neoplastic celis, internai (oncogenic) or

external (growth factors, extracellular matrix) signals could serve to increase MW

production that, in tum, may facilitate anchorage independence and loss of contact

inhibition (Meyer-Siegler et ai., 2005; Meyer-Siegier et ai., 2004; Rumpier et al., 2003).

MW may be implicated in downreguiation of E-cadherin because inflammatory cytokines

can reduce E-cadherin mRNA levels, down-regulate E-cadherin surface expression, and

induce a loss of E-cadherin-mediated adhesion (Jakob and Udey, 1998). IL-1, TNF-Œ and

LPS induced increased expression of major histocompatibility complex (MHC) class II Ag,

CD4O and CD86 compiex and decreased E-cadherin expression that was temporally related

to dissociation ofaggregates (Jacob et al., 1999; Jakob et al., 1997; Jakob and Udey, 1998)

E-Cadherin in Epithelial celis

The epitheiium is composed of a single layer of polarized epithelial celis, the membrane

lias one apical and one basolaterai dornain. In mammals, multiproteinjunctional complexes

mediate the adhesion between epithelial cells, which are comprised of the apical tight

junctions, the subapical adherens junctions and basoiateral desmosomes, linked to

cytoskeletal filaments (Wang et al., 2006). The morphogenesis of the epithelium is
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sustained by cadherins that are a superfarnily of calcium (Ca++) dependent celi-ceil

adhesion molecules. E-cadherin that belongs to type 1 transmembrane protein of the

adherens junctions, and are responsible for hornophilic ceil to celi adhesion (Wheelock and

Johnson, 2003b). E-cadherin is a 120-kDa transmembrane gycoprotein (Takeichi, 1991)

composed of five tandem extracellular cadherin domains (EC1—EC5), a single

transmembrane domain and a distinct and highly conserved cytoplasmic tau that

specifically binds catenins. Extracellular domains EC1 to EC4 are homologous cadherin

repeats and include the well-known His-Ala-Val (HAV)-sequence that is conserved within

the binding surface of the first domain (Renaud-Young and Gallin, 2002), and EC5 is a

less-related membrane-proximal domain (Gooding et al., 2004).

Classical or type I cadherins (E-, N-, P-, R-, H-, EP cadherin) mediate adhesion at the

adherens, ceil—ceil or ceil—matrix adhesive junctions that are linked to microfilaments. A

predomain (usually less than 80 arnino acids) between the signal sequence and the start of

the EC1 domain exists at the N terminus (Takeichi et al., 1990) and must be cleaved prior

to adhesive function activation (Ozawa et al., 1990a; Ozawa et al., 1990b; Ozawa and

Kernier, 1990). E-cadherins mediate both homotypic one type of cadherin on one celi

surface interacting with the same type of cadherin on the surface of the opposing celi, and

heterotypic ceil—ceil interactions. Homotypic adhesion involves N-terminal F3-strands

(Trp2) (Gooding et al., 2004) and the conserved HAV sequence as essential components of

the EC1 adhesion recognition site (Blaschuk et al., 1990a; Blaschuk et al., 1990b). T-cells

expressing integrins aEb7/aM290b7 specifically interact with E-cadherin in the

lymphocyte adhesion system (Cepek et al., 1994).
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Figure. 3. Cadherin domain layout. A cadherin molecule (green) consists of five

extracellular domains, a transmembrane domain and an intracellular domain, itself

divided into a membrane proximal (residues 574—655) and catenin-binding (655—725)

domain. In purpie, interacting proteins pl2Octn is bound to the membrane proximal

region; b-catenin binds the catenin-binding domain, then binds a-catenin at its N

terminus. a-catenin and vinculin form the direct link between the b-catenin—cadherin

compiex and the actin cytoskeleton (orange). Residue numbers shown are based on

the sequence and structure of the C-cadherin ectodomain. Taken from (Gooding et

aI., 2004).
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The extracellular domain provides Ca++ dependent adhesion, and interactions between the

cadherin cytoplasmic tau and the cytoskeleton significantly increase the strength of

cadherin-mediated adhesion (Yap et al., 1997a; Yap et al., 1997b). The cytoplasmic

carvoxil tau is associated with a group of closeïy related but distinct inner-membrane

proteins, termed the catenins (Œ, f3 and p120)(Gumbiner and McCrea, 1993). Cytoplasmic

domain of E-cadherin interaction with a complex of f3-catenin (92 kDa) or plakoglobin (y

catenin), which forrn the link to the actin cytoskeleton via OE-catenin (102 kDa) (Gooding

et al., 2004; Nieset et al., 1997). The anchorage of catenines (cc-, f3-, y- and p120) to the

actin cytoskeleton forrns staNe celI—celi contacts (D’Souza-Schorey, 2005). pl20ctn was

originally identified as a substrate for receptor tyrosine kinases (Harrington and Syrigos,

2000) binds directly to the cytoplasmic dornain of cadherin and regulate actin cytoskeleton

modulators such as RhoA, Rac and Cdc42 (Goodwin et al., 2003). The maturation of initial

weak adhesive events between adjacent celis is consolidated by clustering of p120 and

RhoA (Noren et aI., 2000). The pl20ctn—E-cadherin interaction may itselfbe sufficient to

stabilize the E-cadherin complex (Wang et al., 2005) and Cdc42 (actin cytoskeleton

modulators). The adhesion of E-cadherin-f3-catenin at the cytoplasmatic membrane

provides stability at adherens junctions. The disassembly and loss of E-cadherin pemiits

phosphorylation of f3-catenin that resuits in a decrease in the association of f3-catenin with

E-cadlierin and a-catenin, thereby weakening the adherens junctions (Huber et al., 2001).

f3-catenin has also been found to serve as a key component in signalling processes during

embryonic development and adult tissue horneostasis (Eger et al., 2000; Li et al., 2002a;

Ponassi et al., 1999; Stockinger et al., 2001). Therefore f3-catenin lias emerged as a key

effector of the Wnt pathway, and f3-catenin, or Armadillo in Drosophila, is a switch
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associated with epithelial—mesenchymal transitions and cancer (Bienz, 2005; Eger et al.,

2000). happropriate activation of 13-catenin in the intestinal epithelium, and in other

tissues, ofien leads to cancer (Basta-Jovanovic et al., 2003; Polakis, 2000; Polakis, 2002).

In the absence ofWnt signaling, f3-catenin is phosphorylated by glycogen synthase kinase-

313, targeting it for ubiquitination and 26S proteosome-mediated degradation. Suppression

of glycogen synthase kinase-313 following Wnt/Fzd (ftizzled) binding aÏlows f3-catenin to

accumulate and function in the nucleus as a transcriptional co-activator with T celi

factor/lymphoid enhancer factor (TCF/LEF) transcription factors (Nelson and Nusse, 2004;

Winn et al., 2005). Ubiquitination of E-cadherin is mediated by Hakai, an E3 ubiquitin

ligase, and has been proposed to signal the intemalization of cadherin molecules (Fujita et

aÏ., 2002). It is also possible that Hakai-mediated ubiquitination might control the transport

of E-cadherin to late endosomes and lysosomes for degradation, although this has flot been

demonstrated (Cong et al., 2003; Serban et al., 2005; Yook et al., 2005).
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Figure 4. Ihe dual function of b-catenin in celi adhesion and transcriptïon. b-catenin

(b-cat) functions in ccli adhesion at the plasma membrane, by linking cadherins (E

cad) to a-catenin (a-cat). Cytoplasmic leveis of b-catenin are tightty controlled by a

destruction complex including the adenoma polyposis cou (APC) gene product, the

scaffotd molecules axin (conductin homolog; also known as axin2), glycogen synthase

kinase (GSK3b) and casein kinase (CM). b-catenin also functïons in transcription,

and this switch can be regulated by tyrosine phosphorylation. b- catenin contains two

crucial tyrosine resïdues at positions 142 and 654. Phosphorylation of tyrosine residue

654, for instance by c-src, leads to loss of E-cadherin-binding. The tyrosine kinases

Fer, Fyn or Met can induce pliosphorylation of tyrosine residue 142 of b-cateniu. This

induces ioss of binding to a-catenin and promotes the interaction with the nuciear co

factor BCL9-2. The b-catenin—BCL9-2 complex locates to the nucleus and regulates,

in conjunction with the LEF/TCF DNA binding proteins, the transcription of crucial

target genes. Taken from (Brembeck et al., 2006)
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Cadherin recruitment

E-cadherin is recruited exclusively to the lateral membrane domain, the site of cell-cell

contact. The process begins with the engagement of opposing E-cadherin molecules at the

tips of filopodial or lamellopodial projections. Following the formation of this initial

cluster of E-cadherin molecules, assemble with adjacent extremity , generating a zipper

like structure, which then develops into a mature, linear celi-ceil contact (Adams et al.,

1996), throughout this process, E-cadherin is transported from a cytoplasmic pool to the

initial cluster (Hogan et al., 2004). Several proteins are known to interact with E-cadherin,

including -catenin, pl20ctn, but appears that they flot are involved in the recmitment of

E-cadherin to nascent ceil-ceIl contact sites (Fujita et al., 2002; Peinado et al., 2005).

The printing of small clusters of E-cadherin at the nascent celi-ceil contact sites, the

homophilic ligation of E-cadherin induces the binding of C3G (a guanine nucleotide

exchange factor for Rap 1) to the cytoplasmic tau of E-cadherin, which may in tum induce

the activation of Rap 1. Activation of Rap 1 mediates the further recruitment of E-cadherin

from the cytoplasmic or plasma membrane pool, facilitating the development of mature E

cadherin-based cell-cell contacts. Rap activity is required for the recruitment of E-cadherin

into nascent cell-cell contact sites but flot for the maintenance of mature E-cadherin (Cong

et al., 2003; Wheelock and Johnson, 2003a). The interaction between C3G and E-cadherin

is increased during formation of new ceil-ceil contacts and decreased as ceil-celi contacts

matur this interaction may be modulated by the competition between C3G and r3-catenin

for E-cadherin (Hogan et al., 2004). The interaction between -catenin and E-cadherin is

regulated by phosphorylation of E-cadherin (fluber et al., 2001). E-cadherin interacts with
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the N terminus of C3G, which acts as an inhibitory domain suppressing the catalytic

activity ofthe C terminus (Ichiba et al., 1999)..

Epithelial to mesenchymal transitions

Epithelial to mesenchymal transition, describes the morphological changes that occur in

embryonic epithelia to individual migratory celis. The presence of E-cadherin at the celi

surface is a key determinant in distinguishing epitheliai ceils from mesenchymal celis and

in establishing epitheliai ceil polarity within tissue (Palacios et al., 2005). Several

deveiopmentai processes in animais are controiied by the Wnt signaiing pathway. These

comprise early embryonic patteming, epitheliai—mesenchyrnal interactions and

maintenance of stem ceil compartrnents (Bienz and Clevers, 2003). The sharing of a

critical component between two fundamental processes, ccli adhesion and ceil signaling,

may reflect a need for coordinate control between them. The adhesion to maintain the

tissue integrity and celi signaling is coupled to a loosening of adhesion between epitheiial

ceils during epitheliai—mesenchymal transitions and other developmental processes (Bienz,

2005). The iinke between these two processes seemed to reside in Ç3-catenin, which

potentially couples loss of ccli adhesion to increased Wnt signaling if diverted from the

piasma membrane to the nucleus (Wang et al., 2006). Studies on cases of puimonary

adenocarcinoma, have shown that the loss of expression of E-cadherin and -catenin

occurs prior to the structural destruction of the alveolar waii by invasion of carcinoma celis

(Genda et al., 2000).

There is a continuous process of reassembiy and disassernbly of epitheiiai ccli adherens

junctions to maintain the dynamics of the epithelial monolayer. The intercellular adherens

junctions are speciaiized subapical structures that function as principle mediators of ceii—

celi adhesion. Their disassembly correlates with a ioss of ceil—celi contact and an
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acquisition of migratory potential. Oncogenes and growth factors might trigger individual

cellular responses, and the concerted action of several such responses will be required to

bring about the decisive changes that lead to the pennanent dissolution of an adherens

junctions (Palacios et al., 2005).

The development and regeneration of tissues is criticaiiy dependent on the balance of celi

migration, celi—ceil adhesion, and ceil—matrix interactions (Vespa et al., 2005). Integrin

mediated ceil-matrix adhesion and motility occur in the presence of cadherin-based

intercellular adhesion (Grosheva et al., 2001; Larue and Bellacosa, 2005).A standard

characteristic of epithelial tumor progression is the loss of the epithelial phenotype and

acquisition of a motile or mesenchymal phenotype (Zhou et ai., 2004). These transitions

are accompanied by the ioss of E-cadherin function by either transcriptional or

posttranscriptional mechanisrns (Liu et al., 2006b; Vogelmaim et al., 2005). E-cadherin

mediated adhesion inhibits receptor tyrosine kinase (RTK) activity. E-cadhenn was found

to interact tbrough its extracellular domain with epidermal growth factor receptor (EGFR)

and other receptor tyro sine kinases, thereby decreasing receptor mobility and ligand

afflnity with the consequential ioss of ccli adhesion, and increased ceil migration and

invasion (Andi and Rustgi, 2005).

Internalization and recycling of cadherin

Posttranscriptional and posttranslational modifications regulate the cadherin adhesive

activity. The trafficking of E-cadherin together with the endocytic pathway represents a

cellular process that can regulate stability of adherens junctions. E-cadherin is intemalized

and then is recycled back to the laterai ceil surface for adherens junctions reassembly or

can be transported to the lysosome for degradation. Actin remodeling and posttransiational

modifications of junctionai components can also impact on the stability of the adherens
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junctions (Wang et al., 2005) This traffiking of E-cadherin to the lysosome serves as a

means to ensure that celis do not reform their celi-ceil contacts and remain motile (Baizac

et al., 2005; Palacios et al., 2005).

The spreading of epithelial celis is mediated by the proteosome (Tsukarnoto and Nigam,

1999). Metalloproteases and y-secretase cleave the extracellular and transmembrane

domains of E-cadherin, dissolving adhesive contacts (Ii et al., 2006; Wildeboer et al.,

2006), suggesting that fragments generated by metalloproteases promote celi invasion

through paracrine rnechanisms. Calpain and caspase-3 have been shown to target the

cytosolic domains ofE-cadherin (Carragher et al., 2006; Raynaud et al., 2006; Wells et al.,

2005). The proteolytic cleavage of E-cadherin has been linked to destabilization of the

adherens junctions during the metastatic progression of various cancers. Proteolysis of E

cadherin was reported almost two decades ago after the discovery that an 80-kDa E

cadherin extracellular domain fragment was released into the culture media of tumor ceils

(Billion et al., 2006; Chu et al., 2006; Kuefer et al., 2003). E-cadherin levels are increased

in the serum of individuals affected with adenocarcinornas including prostate cancer

(Kuefer et al., 2005).

Regulation of cadherins

Loss of the function or the expression of any of the elements of the E-cadherin!catenin

complex makes the cell incapable of adhering, resulting in a loss ofthe normal architecture

of tissues and acquisition of a motile or mesenchymal phenotype. The presence of E

cadherin at the ceil surface is a key determinant that distinguishes epithelial celis from

mesenchymal cells and establishes epithelial celi polarity within tissues. Silencing

mutations in E-cadherin or its transcriptional repression have principally been attributed to

the decrease in cellular levels of E-cadherin during epithelial to mesenchymal transitions
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(Eger et al., 2004). In a significant percentage of invasive tumors, the genes encoding E

cadherin as well as the associated catenins are normal, suggesting that posttranscriptional

processes regulating adherens junctions stability may account for celi-ceil dissociation and

acquisition of migratory potential (Larue and Bellacosa, 2005; Lu et aÏ., 2003). To

maintain the dynamics of epithelial monolayers, E-cadherin is rapidly removed from the

plasma membrane and then subsequently recycled back to the celi surface to reform new

ceil-ceil contacts. Thus, the recycling of E-cadherin through the endosomal recycling

pathway represents an effective mechanism for the remodeling of adhesive contacts in

dynamic situations where ceil-celi contacts must be dissolved and refonried (Ivanov et al.,

2004a; Ivanov et al., 2004b; Lock and Stow, 2005). When E-cadherin is intemalized and

then shuttled to the lysosome instead of being recycled back to the lateral membrane the

celis do flot reform their ceil-ceil contacts and remain motile (Kamei et al., 1999; Togashi

et al., 2002). E-cadherin at celI-celi contact may stimulate or inhibit epithelial ceil

proliferation in different settings (Liu et al., 2006b).

There is some evidence that cadherin adhesion may be regulated by tyrosine

phosphorylation. In celis transfected with the v-src oncogene, the observed increased

tyrosine phosphorylation of f3-catenin and E-cadherin resulted in functional changes such

as decreased adhesion and increased migration, without affecting the overali expression of

either the catenins or the cadherins (Liu et al., 2006a; Liu and Li, 1998). EGfR as well as

hepatocyte growth factor have been found to induce -catenin and y-catenin tyrosine

phosphorylation (Nishioka et aÏ., 2003; Siater et al., 2005). Stability of cadherins are

proportionate for proteins Rho. The Rho family are small GlPases regulate actin

cytoskeletal dynamics in different ceil types.(Betson et al., 2002; Nakagawa et al.,

2001).Rap 1 is actived upon adherensjunctions disassembly that is stimulate by E-cadherin
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internalization and trafficking along the endocytic pathway and Rapl is associated and

required for the formation of integrin-based focal adhesions (Balzac et al., 2005).

Soluble E-cadheriu.

Soluble E-cadherin is a 80 kDa fragment released during breakdown of extracellular

domain of E-cadherin of the celi-ceil adhesion as it could be a tumor marker is found in

serum from patients with lung cancer, Reduced expression of E-cadherin is present in

tumorigenic and metastasis (Charalabopoulos et al., 2004; Jonsson et al., 2005).

In prostate cancer ceils hepatocyte growth factor/scatter factor mediate release of

matrilysin furthermore matrilysin activate the extracellular cleavage of E-cadherin

increased the concentration of soluble E-cadherin, resulting in the shedding of a soluble Mr

$0,000 fragment in tissue culture medium. and the dissociation from the cadherinlcatenin

complex. (Davies et al., 2001).

E-cadherin is involved in inducing cell cycle arrest, at least partially through up-regulation

ofthe cyclin-dependent kinase inhibitor, p27 (Schrier et al., 2006). Loss ofE-cadherin lias

been found in premalignant conditions in a number of organs including colorectal

adenoma, oesophagus and gastric dysplasia. (Bailey et al., 1998). Soluble E-cadherin levels

could predict disease recurrence in patients with gastric carcinorna that undenvent curative

surgery. Serum soluble E-cadlierin was a good marker for predicting disease recunence in

the first 3—6 months after surgery, with a median of 13 months before clinical recurrence

(Chan et al., 2005). Reduced E-cadherin—catenin expression is associated with tumor

dedifferentiation, infiltrative growth, and lymph node involvement (Park et al., 2006). It

lias been discovered that -catenin can bind flot only to E-cadherin but also to other

molecules such as the EGfR (Viswanathan et al., 2006).



38

Mastrix metalloproteinases (MMPs) are implicated in the proteolytic cleavage of E

cadherin in endothelial ceils, resulting in the release of a soluble Mr 90,000 fragment after

growth factor deprivation-induced apoptosis (Herren et al., 1998). MMPs belong to a group

of zinc-dependent transmembrane enzymes that function extracellularly at neutral pH, and

are thought to play key roles in tissue remodeling, tumor invasion, and metastasis.

Cathepsins (CTS), peptidases that have biological roles in degrading ECM, are present in

early pregnant ewes. CTS of endometrial and conceptus origin may regulate endometrial

remodeling ami conceptus implantation. Endometrial CT$ genes are regulated by ovarian

ami placental hormones, and cathepsin L (CTSL) is a novel LFN-t stimulated gene

expressed only in luminal epithelium and superficial glandular epithelium of the

endometrium ofpregnant ewes by days 10 and 18 (Song et al., 2005), these catepsins may

are implicates in cleavage of E-cadherin. Cleavage of the extracellular domain of E

cadherin promotes destabilization of adherens junctions and loss of adhesive contacts in

dynamic situations where ceil-celi contacts must be dissolved and reformed, as an example,

in embryo implantation.

In epithelial cells E-cadherin-mediated cell adhesion helps establish the celi polarity, but

may be dynarnicaly regulated by IFN-r in the preimplantation period and stimulate the

remodeling ofBEEC to non-poarized phenotype, essential for adhesiveness ofTr.

IFN-T stimulate the secretion of MIF in BEEC (Wang and Goff, 2003) and MIF may 5e

implicated in downregulation of E-cadherin because inflammatory cytokines can reduce E

cadhenn mRNA levels, down-regulate E-cadherin surface expression, and induce a loss of

E-cadherin-mediated adhesion (Jakob and Udey, 1998).IFN-T is secreted by the elongated

bovine embryo and stimulates the secretion of proteins from the endometrium that are

probably important for embryo development and attachment. My purpose was to
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understood the regulation of the secretion of two specific proteins, MIF and E-cadherin,

stimulated by IFN-T and determine if they can modify endometrial function.

HYPOTHESIS AND OBJECTIVES.

The hypothesis of present work is that JFN-r from the embryo stimulates secretion of

proteins from the endornetrium that are important for embryo development and attachment.

The main objective was to determine if IFN-t altered endometrial function by modifying

the secretion of specific proteins.

The specific objectives were:

1. Determine if MIF expression is different between pregnant and non pregriant cows.

2. Study the regulation of E-cadherin in endornetrial epithelial ceils.

3. Deterrnine if MIF has autocrine effects in the endometrial epithelial ceils.

MATERIALS AND METHODS

Chemicals and Reagents.

Celi culture medium (RPMI 1640), Hanks buffered saline solution (HBSS, calcium and

magnesium free), newbom calf scmm (NBCS), gentarnicin and trypsin were purchased

from Invitrogen. Collagenase (type II), trypsin (type III, from bovine pancreas), DNase I

(type I, from bovine pancreas) were purchased from Sigma Chemical Co. (St. Louis, MO).

Matrigel was obtained from VWR Canlab (Montreal, QC, Canada). Protein assay dye

reagent concentrate and electrophoresis reagents were obtained from Bio-Rad Laboratories

(Hercules, CA). Mouse anti-human MIF antibody mouse IgG and rhMJF were purchased

from Cedarlane Laboratories Limited (Homby, ON, Canada). Bio trans nylon membranes

(0.2 mm) were obtained from Bio-Rad. Tissue culture plates were obtained from Coming

Costar (Fisher Scientific, Montreal, PQ, Canada). BioMax film was obtained from Eastman

Kodak Company (Rochester, NY). The recombinant bovine IFN-t was a generous gifi from
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Dr. R. Michael Roberts (University of Missouri). Vectastain ABC Kit for mouse IgG was

purchased from Vector Laboratories Inc. (Burlingame, CA). Ail othr antibodies and normal

serum were obtained from Santa Cruz 3iotechnology (Califomia).

Preparation and culture of ceils

The epithelial ceils were prepared as previously described (Xiao and Goff, 1998). Uteri

from cows at days 1 to 3 of the estrous cycle (ovaries with a corpus hemorrhagicum) were

collected at the slaughterhouse and transported on ice to the laboratory. Celis prepared

from endometrium at this stage respond to WN-’ç in a physiological manner, Briefty, the

two homs of the uteri were piaced in sterile HBSS containing 50 g / ml of gentamicin.

The myometrial layers were dissected from the two homs, and the horns were then inverted

to expose the epithelium. The everted homs were digested for 2 hr in HBSS with 0.3%

(w/v) trypsin at 37°C to obtain epithelial ceils. At the end of incubation, the digested homs

were scraped iightly with forceps, washed twice in HBSS and then further digested to

obtain stromal ceils by incubating in HBSS with 0.016% (w/v) trypsin III, 0.016% (w/v)

collagenase II and 0.008% (w/v) DNase I for 45 mins at 37°C. Im;nediateiy after each ceil

suspension was collected, 10% NBCS was added to inhibit the trypsin. For epithelial celis,

the celi suspension was centrifuged at 60 g for 5 min and then the pellet was washed 3

more times with HBSS. For further purification, the epithelial celi pellet was suspended in

20 ml RPMI-1640 medium supplemented with 5% NBCS and 50 jig/mI of gentamicin and

plated onto 100 x 20 mm Nuncion petri dishes (Grand Island, NY, USA) and 100

incubated at 37°C with 5% C02, 95% air for 3 h. At the end of incubation, contaminating

stromal ceils adhered to the dish and the floating epithelial celis were collected. Celis were

then plated onto Matrigel-coated culture dishes. 100 tg of 11% Matrigel was added to each

welI of 24-well plates and the plates were dried ovemight. For stromal celis, the ceil



41

suspension was centrifuged at 60 g for 5 min to remove clumps of celis and then the

supematant was centrifuged at 1000 g for 10 min. The pelleted ceils were washed twice

with HBSS. The stromal celi suspension was plated onto dishes and after a 3 h incubation,

the floating ceils were washed away by gentie pipeting. The cells were cultured at 37°C

with 5% C02, 95% air until they were confluent (about 7 days) in RPMI-medium

supplernented with 10% NBCS. The culture medium was changed every two days. The

homogeneity of the celi populations was examined by immunocytochemistry with

pancytokeratin antibody. Epithelial ceil contamination of stromal celis was about 3% and

stromal ceil contamination ofepithelial celis was less than 1%.

Radioactive labeling of Secreted Proteïns and 2D-PAGE

The confluent epithelial cells were incubated in the presence or absence of 100 ng!ml LFN

T for 24 h at 37°C. CelIs were washed and incubated with rnethionine-free RPMI-1640

medium for 30 min. The medium was then replaced with 500 ml ofmethionine-ftee RPMI

1640 medium containing 5 ml (50 mCi) of35S-labeled methionine (specific activity .1200

Ci/mmol) and the celis were incubated in the presence or absence of 100 ng/ml 1FN-t for a

further 24 h. The medium was removed and stored at —$0 °C until protein extraction.

Before separation and analysis of the proteins by means of 2D SD$ PAGE, the culture

medium was centrifuged (500 3 g for 10 mm) to remove ccli debris prior to protein

extraction. The proteins were concentrated to 50 ml using Ultraftee-15 concentrators (5000

MW cutoff; Millipore, Bedford, MA) and added to LPG buffer (8 M urea, 2% CHAPS,

0.5% IPG buffer [pH 3—10], brornophenol blue, 65 mM dithiothreitol [DTTÏ). Prior to

loading, a 5-ml aliquot of each sample was removed for radioactive counts, and 5 il

internai protein standards were added to each sample so that the molecular mass and

isoelectric points of found proteins could be estimated. The separation in first dimension
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was carried out using Immobiline DryStrips (pH 3—10), which had been rehydrated for at

least 10 h in an Inimobilin Drystrip reswelling tray (Amersham Pharmacia Biotech AB,

Baie d’Urfe’, QC, Canada). The samples were then separated on a MultiPhore II flatbed

system (Amersham) for 16 h at 1 58C. The voltage was 300 V for the first 3 h, from 300 to

2000 V during the following 5 h, and finally 8 h at 2000 V. Before the second dimension

was performed, the dry strips were first equilibrated for 10 min in equilibration solution 1

(0.5 M Tris/HC1 pH 6.8, 3.6 g urea, 3 ml glycerol, 0.1 g SDS, 25 mg DDT, and distilled

water up to 10 ml) and another 10 min in equilibration solution 2 (0.5 M Tns/HC1 pH 6.8,

3.6 g urea, 3 ml glycerol, 0.1 g SDS, 0.45 g iodoacetamide, and distilled water up to 10

ml). The second dimension was performed after placing the strips on Phannacia ExcelGel

XL SDS 8—1$ using the MultiPhore II flatbed system at 158C. Afier running, were

immediately immersed in fixing solution (50% methanol, 10% acetic acid in water), and

stained with Coomassie blue, destained, and incubated in a radiographic enhancer and then

in a preserving solution. The gels were wrapped in cellophane, air dried, and exposed with

Kodak radiographie film for various times. Protein spots on control and IFN-t gels were

compared, and molecular weight and pI estimated using the computer program Phoretix 2D

(version 4.00, Nonlinear Dynamics Ltd., Newcastle upon Tyne, UK).

Protein Sequencing

To obtain proteins for sequencing, the procedure for culture and incubation ofthe celis was

the same as described above except that the proteins were not Iabeled with 35S-methionine.

The 2D gels were run, each loaded with 50 jig of unlabeled proteins. After 2D PAGE the

proteins were stained with silver nitrate (silver staining kit, Amersham), and the spots of

interest were excised. The sequence analysis was performed at the Harvard Microchemistry
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facility by Microcapillary reverse-phase HPLC nanoelectrospray tandem mass

spectrometry on a Finnigan LCQDECA quadruple ion-trap mass spectrometer.

Western Blotting

The confluent epithelial ceils and stromal ceils, were incubated in the presence or absence

of 100 ng/mÏ of IFN-t for 24 h at 37°C. The culture medium were recollected and

centrifuged (600 x g for 10 min at 4°C) to remove insoluble material. The proteins were

concentrated to 250 pi using Ultrafree-15 concentrators (5000 MW cutoff; Millipore). The

supematant was recovered and stored at -20°C pending analysis. The protein concentration

was determined by the method of Bradford, with the Bio-Rad DC Protein Assay. Protein

extracts (40 jig) were heated at 99°C for 5 min and resolved by 7.5% SDS-PAGE. The

gels were equilibrated in transfer solution for 1h and then electro-transferred into a 0.45

m nitrocellulose membrane, using a Miniprotean II transfer (Bio-Rad, Mississauga, ON).

The membranes were then blocked 1 h at room temperature in tris-buffered saline (TBS)

with Tween 20 containing 5 % milk powder, then incubated with polyclonal rabbit anti E

cadherin (1:500), and subsequently with horseradisli peroxidase-conjugated anti-rabbit

secondary antibody (1:5000) in 1% skirn milk at room temperature by 2 h. Afier that the

membranes were washed with TBS with Tween 20, 3 X 20’, then incubated with

chemiluminescent detection reagents (ECL Plus, Amersham Biosciences) for 5 minutes.

The membranes were wrapped, and exposed to Kodak radiographie film for various times.

Immunohistochemistry

Uteri (day 1-3 of the estrous cycle) were obtained from a slaughterhouse. Pieces of tissue

were carefully excised and transferred in Zamboni’s solution by 24 hs and embedded in

paraffin. Tissue sections 5 jim thick were mounted on polylysine-coated siides,

deparaffinized, rehydrated, and then heated with 10 mM citrate buffer (pH 6). After two
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wash with PBS, siides were then incubated with 0.3 % hydrogen peroxide in methanol for

30 min to quench endogenous peroxidase activity. Afier washing with TBS-Tween 20

0.05%, tissues were incubated with 20% of blocking normal serum (Vectastain Eut ABC

Kit; Vector Laboratories) at room temperature for 1 h. Primary antibodies, polyclonal goat

anti Mif; polyclonal rabbit anti E-cadherin and monoclonal mouse anti J3 catenin; ail at

(1/100) were added to the slides and incubated at 40 C overnight. After washing 3 X 5 min

in TBS-Tween 20, tissue sections were incubated for 1 h room temperature, with 2 tg!m1

biotinylated antibody (anti-rabbit, anti goat or anti-mouse). Subsequently, siides were

washed with TBS-T and incubated with Vectastain ABC kit (Vector Laboratories) reagent

containing horseradish peroxidase for 30 min. After further washing with TBS-T, color

development was achieved using AEC (Vector Laboratories) peroxidase substrate. After

washing the tissue sections were counterstained with haematoxylin and mounted with

aquamount. Negative controls were performed using the same protocol without primary

antibody.

Immunocytochemistry

Confluent uterine epithelial celis grown on cover slips (Fisher-Brand) were washed twice

in phosphate-buffered saline (PBS) and incubated in 100% methanol and stored at —20 °C

until used. After washing twice in PBS, ceils were then incubated with 0.3 % hydrogen

peroxide in methanol for 30 min to quencli endogenous peroxidase activity for 30min.

Aller washing with TBS-T 0.05%, slides were blocked in 20% normal donkey serum or

normal horse serum for 1 h at RT. They were further incubated in primary antibody

(polyclonal goat anti MIF; polyclonal rabbit anti E-cadherin, and monoclonal mouse anti 3

catenin, each of (1/100) at 40 C overnight. After washing 3 x 5 min in TBS-T, slides were

incubated for 1 h with 2 p.gJrnl biotinylated antibody (anti-rabbit, anti goat or anti-mouse).



C

45

Subsequently, siides were washed with TBS-T and incubated with Vectastain Eut ABC

(avidin biotin complex) kit (Vector Laboratories) reagent containing horseradish

peroxidase for 30 min washed again with TBS-T for 3 x 5 min and color development was

achieved using AEC (Vector Laboratories) peroxidase substrate. After washing, the tissue

sections were counterstained with haematoxylin, and mounted with aquamount. Negative

controls were performed using the same protocol without prirnary antibody.

Statistical Analysis

Each experiment was carried out using the celis from one utems and was repeated with

three different uteri. Western blots were nin in triplicate for cach uterus. For E-cadherin,

the data were analyzed by 2-way ANOVA, which included the main effects of time and

treatment (control, IFN-t). For E-cadherin by effect of MIF were at diferents dosage. m

Differences between individual means were determined by Tukey HSD test. A probability

of P < 0.05 was considered to be statistically significant. The data were analyzed using the

computer program JMP (SAS Institute Inc., Cary, NC). Ail tests of significance were

performed using the appropriate error ternis according to the expectations of the mean

squares.
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RESULTS

Immunolocalization of MIF in bovine endometrïum.

To determine if MIF production changed during the estrous cycle and if it was altered

during pregnancy, immunolocalization of MIF was compared in endornetrial tissue taken at

the begiiming at the cycle and at day 1$ of the estrous cycle and pregnancy. The resuits

Figure 5 a, c and e were negatives (no first antibody) do not showed immunostain for MIF,

whilst in figure 5 b MLF was present in luminal and glandular epithelium ofcyclic cow and

figure 5 d, MIF was weakly present in the tissue of non pregnant cows at day 1$. This is in

contrast to the increase in the amount of MIF staining found in the luminal and glandular

epithelium from pregnant cows, figure 5 f. Stromal tissue did not show stain for MIF.
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Figure 5. Immunolocalization of MIF in bovine endometrium. Bovine uterï were

taken on days 1-3 of the cycle (a & b); on day 18 of the cycle (c & d); and day 1$ of

pregnancy (e & t). Figures a, c and e are negatives (no first antibody). Tissue samples

from pregnant and non pregnant cows were kindly provided by Dr Lesile MacLaren.

Magnification 20 x. LE Lumenal epithelium; S, stroma; GE, glandular epithelium.

The analysis was performed on three different tissue samples.
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MIF in bovine epithelial endometrial ceils

To establish if ITN-t stimulated the production of MIF, bovine epithelial endornetrial celis,

taken from uteri early in the cycle, were cultured on cover slips until confluent (9 days) and

then treated with and without IfN-T for 24 h. MW was detected using

immunocytochemistry with goat anti-MW antibody. The resuits (fig. 6) showed that

epithelial cells treated with IFN-t had a stronger staining in the cytoplasrn than non-treated

ceils. Endometrial stromal celis that were cultured and treated similarly to the epithelial

ceils showed no positive staining.
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MW in bovine epithetial endometrial celis
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Figure. 6. Immunolocalization of MW in bovine uterine endometrial ceils cultured

until confluence (9 d) on cover slips and treated with lOOng of WN-t for 24 h. (a)

negative control (no first antibody), (b) control, epithelial ce]]s no treatment. (c)

epithelial celis treated with IFN-t for 24 h, (d) stromal ceils treated with WN-r for

24 h. Magnification 20 x. Ihe analysis was performed on cel]s from three different

uteri.
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Identification of E-cadherin by 2D SDS PAGE.

In order to try to identify other proteins secreted by the endometrial epithelial ceils, that are

stimulated by LFN-’t and therefore could play a role in embryo development and

implantation, confluent cultures of bovine endometrial epithelial celis were treated with or

without TFN-T and the 35S-methionine labeled proteins were analyzed by 2D PAGE.

Figure 7 shows representative 2D gel autoradiographs of labeled proteins from control and

JFN-t treated celis. A comparison of control and IFN-t-treated celis showed that a protein

spot with an estirnated pI of 4.8 and molecular mass of 76 kDa was present in 1FN-r-

treated but flot in control ceils. This spot corresponded to the $0 kDa soluble fragment of

extracellular domain of E-cadherin.
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Identification of E-cadherin by 2U SUS PAGE.
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Figure 7. Identification of proteins secreted from endometrial epithelial celis and

stïmulated by IFN-r. Epithelial celis were cultured with 355-methionîne incubated

with and without 100 ng/ml of IFN-T for 24 h. Radiolabeled proteins in the medium

were separated by 2U-PAGE. The resulting representative autoradiographs were

generated by exposure of x-ray film to the dried gels. Arrows show the position of

protein spots upregulated by IFN-r treatment.
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To identify this protein, in-gel digestion and sequence analysis was performed at the

Harvard Microchemistry Facility by microcapillary reverse-phase HPLC nanoelectrospray

tandem mass spectrornetry on a finnigan LCQDECA quadruple ion trap mass

spectrometer. The peptide sequences (dwvippïscpenekgpfpk, gldfeak and epdtfmeqk)

that resulted in positive identification of the protein were located in the amino acid

sequence of Bos taurus E-cadherin from Genbank Database [accession number

AAR91598]):

MGPWSRSLSALCCCCRCNPWLCREPEPCIPGFGAESYTFTVPRRNLERGRVLGRVS

fEGCAGLPRTVYVSDDTRFKVHTDGVLTVRRPVHLHRPELSFLVHAWDSTHRKLS

TKVTLEVSAffflHHHHSHHDSPSGTQTEVLTfPGPHHGLRRQKRDWVIPPISCPEN

EKGPFPKSLVQLKSNKEKETQVFYSITGQRADTPPVGVFIIERETGWLKVTQPLDR

EQIAKYILFSHAVSSNGQAIEEPMEWITVTDQNINKPQFTQEVFKASALEGALPGT

SVMQVTATDDDEVNTYTAAIGYTWAQDPMLPHNKMFTINKETGVISVLTTGLDR

ESFPTYTLMVQAADLNGEGLSTTATAVITVLDTNDNAPRFNPTTYVGSVPENEAN

VAITTLTVTDADDPNTPAWEAVYTVLNDNEKQFWVTDPVTNEGTLKTAKGLDFE

AKQQYILYVAVTNVAPFEVTLPTSTATVTVDVIDVNEAPIfVPPQKRVEVPEDFGV

GLEITSYTAREPDTFMEQKITYRIWRDTANWLEINPETGAISTRAELDREDVDHVK

NSTYTALIIATDNGSPPATGTGTLLLFLDDVNDNGPVPEPRTMDFCQRNPEPHIININ

DPDLPPNTSPFTAELTHGASVNWTIEYNDQERESLILKPKKTLELGDHKINLKLDN

QNKDQVTTLDVHVCDCDGWSNCRKÀRPAEAGLQVPAILGILGGILAFLILILLLLL

LVRRRRVVKEPLLPPEDDTRDNVYYYDEEGGGEEDQDfDLSQLHRGLDARPEVTR

NIWAPTLMSVPQYRPRPANPDEIGNHDENLKÀADSDPTAPPYDSLLVFDYEGSG$

EAATLSSLNSSESDQDQDYDYLNEWGNRFKKLADMYGGGEDD
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E-cadherin and f3-catenin in bovine endometrium.

Endometrial tissue taken at the beginning of the cycle (day 3) was used to detect E

cadherin and f3-catenin by immunohistochemistry (figure 8): panel (b) shows

immunoexpression of E-cadherin in LE and GE, but not in S. Panel (d) from the same

uterus shows immunolocalization of -catenin by mouse monoclonal anti IgG,to the LE. I

catenin was not present in GE and S. Panels (a) and (c) were negative controls, no first

antibody was added.
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Figure 8. Immunolocalization of E-cadherin and -catenin in bovine endometrium.

Bovine uteri were taken early in the estrous cycle (—‘day 3). (a) Negative for E

cadherin (no first antibody was added). (b) Positive for rabbit polyclonal anti E

cadherin. (c) Negative for f3-catenin (no first antibody). (d) Positive for mouse

monoclonal anti f3-catenin. Photomicrographs are at a magnification of 20 x. LE;

Luminal epithelium; S, stroma; GE, glandular epithelium. The analysis was

performed on tissue from three different uteri.

E-cadherin and -catenin in bovine endometrium.

a b

C u
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Effect of IFN-r on soluble E-cadherin secretïon.

b determine whether TFN-t altered the secretion of soluble (8OkDa fragment) E-cadherin

protein from the endometrial epithelial celis in vitro, proteins present in the culture medium

were analyzed by Western blotting using a polyclonal rabbit anti E-cadherin IgG. The

resuits (Fig. 9) showed a significant (P <0.05) increase in E-cadherin in the medium from

bovine endometrial epithelial celis cultured in the presence of IFN-r compared with control

celis. Samples of culture medium of stromal ceil from the same uterus did flot demonstrate

differences in the secretion ofE-cadherin between the control and IFN-T treatment groups.
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Effect of IFN-t on soluble E-cadheriu secretion
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Figure 9. Effect of IFN-r on soluble E-Cadherin secretion. Confluent bovine

endometrial epithelial celis (EC) and stromal ceils (STC) were cultured with and

without 100 ng/ml IFN-r for 24 h. After culture the medium was concentrated and

E-cadherin measured by Western blotting. Upper panel shows a representative

Western blot (CEC = control epithelial celis, IFNEC = IFN-’r epithetial celis, CST =

control stromal celis, IFNST IFN-t stromal celis) and the lower panel shows the

mean of four blots after quantification of spot density. Bars represent the SEM.
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Effect of IFN-t on E-cadherin in bovine uterine epithelial ceils.

In order to establish the effect of IFN-t on E-cadherin in bovine epithelial ceils cultured

and treated with 100 ng of IFN-r by 24 h, the cover slips of ceils in the absence of

treatrnent and treated ceils were immunostained with polyclonal rabbit anti E-cadherin. The

resuits of figure 10 shown that panel ta) did not stain, was negative conrol. The panel (b)

correspond at ceils control without IFN-T, shows low percent of ceils stain, the panel (c) of

celis treated with TFN-T shows more intense staining for E-cadherin and found mainly in

the cytoplasm of the ceils. The panel (d) was for stromal celis of the same cultures and did

flot shows immunostain for E-cadherin. These immunocytochemistry results are

concordant with the resuit of Western blotting that shown a positive effect of IFN-T

treatment on E-cadherin secretion.
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Effect of WN-t on E-cadherin in bovine uterine epithelial celis.
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Figure. 10. Immunodetection of E-cadherin in bovine uterine epithelial celis

cultured on coverslips until confluence (9 d) and treated with 100 ng of WNt by 24

h. Panels a) negative control no first antibody was added, (b) celis in absence of

treatment, (c) ceils treated with IFNt for 24 h, (d) stroma] celis treated with WNt

for 24 h. Magnification 20 x. The analysis was performed on celis from three

different uteri.



60

Expression of 13-catenin in bovine endometrial epithelial celis for effect of IFN-r.

As f3-catenin is directly associated with the highly conserved cytoplasmic domain of the

ceil adhesion protein E-cadherin. We examined 3-catenin expression in bovine endometria

cells.The resuits of figure 11 shown that in panels: (a) negative control did flot stain, no

first antibody was added, (b) celi in absence of treatment shows low percent of

immunoreactivity of 3-catenin located at celi boundaries, and (e) celi treated with IFN-r

for 24 h., immunreactivity for f3-catenin was increased at ceil boundaries and cytoplasm.
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Expression of f3-catenin in bovine endometrial epithetial ceils for efTect of WN-r.
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Figure 11. Immunolocalization of -catenin in bovine endometrial epithelial ceils.

Epithelial celis were cultured on coverslips until confluence (9d) and then treated with

100 ng of IFNt for 24 h. Uteri were taken early in the estrous cycle. Panels ta) negative

control no first antibody was added, tb) celi in absence of treatment, (e) ceils treated

with IFNu for 24 h. Magnification 20 x. The analysis was performed on ceils from

three different uteri.
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Response of MIF on E-cadherin in bovine endometrial epithelial ceil.

In order to detemine if MIF has autocrine effects in the cleavage of E-cadherin from

endornetrial epithelial celis in vitro, uterine epithelial cells were cultured until confluence

(9d) and treated with several doses of MIF protein for 24 h. Proteins present in culture

medium were concentrated and analyzed by Western blotting with a polyclonal rabbit anti

E-cadherin IgG to determine if the soluble fraction (80 kDa) of E-cadherin was secreted

into the culture medium. The results of Figure 12 shows that E-cadherin concentrations in

culture medium were not significantly affected by treatment with MIF (P > 0.7). Data were

subjected to least-squares ANOVA.
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Response of MIF on E-cadherin in bovine endometrial epithelial ccli.
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Figure 12. Effect of MIF on the secretion of the soluble fragment of E-cadherin.

Epithelial ceils were cultured until confluence and treated with several doses of MIF

protein for 24 h. Western blotting was performed on the medium to quantify f

cadherin. The upper panel shows a representative Western blot. The lower panel

shows the mean of four blots after quantification of spot density. The bars represent

the SEM.
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Effect of MIF on E-cadherin in bovine epithelial ceils.

The presence of E-cadherin at the celi surface is a key determinant in distinguishing

epithelial ceils from mesenchymal celis and in establishing epithelial ceil polarity within

tissues. liteniaIization of E-cadherin is essential for adherens junction disassembly and

increased celi migration. To determine if MTF had an autocrine effect on the internalization

of E-cadherin, endometrial epithelial celis were cultured on coverslips and treated with 10

or 100 ng I ml of M1F for 24 h. The resuits of figure 13 shown: ta) negative control, no

first antibody was added, (b) celis in absence of treatment presented a tenuous

immunoreaction by the antibody (red color) at ceil-ceil contact region, (c) celis treated with

10 ng I ml of MIF, demonstrated inimunostain located at celi boundaries of the plasma

membrane and cytoplasm, (d) celis treated with 100 ng / ml of MIF immunoreactivity for

E-cadherin was increased and concentrate at cytoplasm found an intemalization of E

cadherin.
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Figure 13. Effect of MII? on immunodetection of E-cadherin in bovine endometrial

epithelial celis in culture. Epithe]ial celi were cultured to confluence on cover slips

and then treated with different doses of MW for 24 h. Immunocytochemistry was

performed to detect E-cadherin using a polyclonal rabbit antibody. (a) ceils control

no first antibody was added, (b) ceils control in the absence of treatment, (c) celis

treated with 10 ng of MW, (d) ceils treated with 100 ng of MIT. Magnification 20 x.

The analysis was performed on celis from three different uteri.

Effect of MW on E-cadherin in bovine epithelial celis.
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Effect of MIF on -Catenin expression in bovine endometrial epithelïal celis

In order to demonstrate if MIF had autocrine effect in destabilization of Adherens junctions

by concentrating 13-catenin in cytoplasm or nucleus, endometrial epithelial celis were

cultured on coverslips until confluence and then treated with 10 or 100 ng of MIF by 24 h.

The resuits of figure 14 showed that in panel (a) celi control no first antibody was added,

(b) ceils in absence of treatment were a slight immunostailming (red coloration) present to

the ceil membrane, (c) ceils in presence of 10 ng / ml ofMIF the positive immunoreactivity

was increased, at the plasma membrane and cytoplasm, (d) celis after treatment with 100

ng/ml of MIF shows an increased of concentration of 3-catenin in cytoplasm but flot in the

nucleus.
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Figure 14. Effect of MW on -catenin expression in bovine endometrial epitheha] ce]]s

in culture. Confluent ceils grown on covers]ips were treated with 10 or 100 ng/ml MW

for 24 h. Immunocytochemistry was performed to detect f3-catenin using a

monoclonal mouse antibody. a) negative (no first antibody was added). (b) control celi

in absence of treatment, (c) ceils treated with 10 ng of MW, (d) cells treated with 100

ng of MW. Magnification = 20 x. Ihe analysis was performed on cells from three

different uteri.

Effect of MW on -catenin expression in bovine endometrial epithelial celis

a b

C u
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DISCUSSION.

In the cow, embryo implantation is characterized by migration, elongation into a

filamentous conceptus, apposition and adhesion to camncular areas that contain a

considerable amount of glandular epithelium (Gray et ai., 200 la; Gray et al., 2001b). The

filamentous conceptus secretes IFN-T, an ernbryonic cytokine that is known as a key factor

for the maternai recognition of pregnancy. IFN-r prevents PGF2a release and exerts a

paracrine effect on the secretion of variety of proteins from the endometrium necessary for

adhesion ofthe embryo in the preimplantation period (Hansen, 199$; Martal et al., 199$).

The objective of this study was to investigate proteins whose secretion is modified by IFN

‘t. In a previous study it was shown that MIE secretion from the luminal epithelium of

bovine endometrial tissue is stimulated by IEN-’t (Wang and Goff, 2003). Results of the

present study confirm that MIF is expressed in bovine endometrial epithelial ce!! in vitro;

they also extend these findings to demonstrate that MIE is expressed in the ruminant

endometrium in vivo during the estrous cycle and early pregnancy at the implantation

period. One important finding of this study is that IFN-’t stimulated the cytoplasmic

accumulation of MIF (fig 6-c) from endometrial epitheiial cells. A possible expianation for

this is that IFN-’t stimulates the synthesis of MIE protein and their accumulation in

cytoplasm. The resuits of the in vivo immunohistochemical data showed that MIE was

predorninanfly expressed in the luminal and glandular epithelium. Stromal ceils of non

pregnant and pregnant cows did flot show immunostaining for MIE. These result different

with the study of Suzuki (Suzuki et al., 1996) in the mouse uterus, which showed that MIE

is iocalized in the tunica muscularis in the preimplantation period. In humans, MIE is

expressed in endometrial stromal cells (Akoum et al., 2005). Thus, these findings indicate

the existence of differences in uterine MIF localization and response to regu!atory factors
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among species. The staimng for MW was stronger in the pregnant cow when compared to

non-pregnant cows. This suggests that MW is stimulated in the pregnant cow, presumabiy

via the action of IFN-t, confirming the in vitro data.

MIF was discovered as an activated T-lymphocyte-derived protein that inhibits the random

migration of macrophages in vitro and is secreted by macrophages in response to cytokine

stimulation, also MIF is recognized as a multifunctional cytokine that modulates the

immune response, and stimulate pathophysiologic neovascularization and celi replication

(Calandra et al., 2003; Mitcheil, 2004). MW is expressed in the human endometrium across

the menstrual cycle and in early pregnancy in giandular epithelium (Arcuri et ai., 2001).

Studies showed that hCG, a glycoprotein hormone that plays a critical role in the initiation

and maintenance of pregnancy, markediy stimulates MIF expression in endometrial

stromal ceils in a dose-dependent manner (Akoum et al., 2005). In addition MW is released

in endometriosis and acts as a potent mitogenic factor for human endotheliai ceils in vitro

(Yang et al., 2000). This suggests an involvernent ofMIF in endometriai function.

When bovine endometriai epithelial cells were treated with WN-t for 24 h, 2 SDS PAGE

showed an increase in the secretion ofthe 80 kDa soluble fragment ofE-cadherin. This was

confirmed by Western blotting of culture medium of uterine epithelial celis where IFN-t

increased the cleavage of E-cadherin. This study shows for the first tirne that IFN-t

stimulates the secretion of soluble fraction (80 kDa) E-cadherin from endometrial epithelial

celis. This may be an effect of apoptosis induced by IFN-T. Studies by Wang et ai, found

that IFN-t can induce apoptosis in bovine uterine epithelial celis and that this effect is

modulated by progesterone (Wang and Goff, 2003). Studies have shown that ischemia is

associated with cadherin cieavage and causes a loss of cell-surface E-cadherin and

degradation of E-cadherin to a fragment of 80 kDa (Bush et al., 2000; Covington et al.,
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2005; Covington et al., 2006). Experiments showed that transient expression of exogenous

E-cadherin in both epithelial and fibroblastoid celis arrested celi growth or caused

apoptosis, depending on the cellular E-cadherin levels (Eger et aI., 2000; Stockinger et al.,

2001).

WN-’t may induce apoptosis in bovine endometrial epithelial ceils or stimulate protein

synthesis. IFN-t binds to type 1 WN receptor on the endometrium and stimulates gene

factor three induced IRF-1 and fflF-2 (Choi et al., 2001; Spencer et aI., 1999). TRF-1 is a

transcriptional activator and IRF-2 is its antagonistic repressor (Choi et al., 2001). TRF-1

may promote the synthesis of proteins in the endometrium. IFN-t stimulates the

endometrial rernodeling by increasing ceil proliferation because the effects of IFN-T are

mediated through type I IFN receptor located in the luminal epithelium ofthe endometrium

(Godkin et al., 1997). IFN-t can stimulate the transcription of uterine genes (Emond et al.,

2000; Teixeira et al., 1997; Tuo et al., 1998) through the LFN-stimulated response element

and interferon-g-activated sequence (GAS) (Stewart et aI., 2001). Therefore IFN-t may

stimulate the secretion of endometrial proteins M1F and E-cadherin relate in implantationof

embryo.

In ruminants, IFN-T induced adhesion between the luminal epithelium and trophectoderm

is essential for attachment and superficial implantation. The present experiments

demonstrate that IFN-T induced proteolytic cleavage of E-cadherin from endometrial

epithelial ceils in vitro and the results of immunohistochemistry showed that E-cadherin

and -catenin were present in endometrial tissue. E-cadherin was expressed on luminal and

glandular epithelium, but not in stroma while 13-catenin was present in lurninal epithelium

but not in glandular epithelium and stroma. When bovine epithelial ceils were treated with

IFN-r for 24 h in vitro they showed an increase in E-cadherin staining in the cytoplasm and
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-catenin was concentrated at cytoplasmatic domain to cadenins-cadherin. This experiment

showed that TFN-T stimulates cleavage of 80 kDa fragment of E-cadherin and

intemalization of cytoplasmatic fraction of E-cadherin or increased protein production, and

this process may facilitate the dissolution ofadherensjunctions (Palacios et al., 2005).

The down-regulation of the adherens junctions is a hallmark characteristic of an epithelial

to mesenchymal transition, a process by which ceils lose their polarized epithelial

phenotype and concomitantly acquire a migratory or mesenchymal phenotype (Thiery,

2003).

Epithelial to mesenchymal transition have been shown to occur during normal embryonic

development. Thus, the presence of E-cadherin at the ccli surface is a kcy determinant in

distinguishing epithelial celis from mesenchymal celis and in establishing epithelial ccli

polarity within tissues (Huber et al., 2005; Larue and Bellacosa, 2005). Kanako et al.,

(2006) studied the WNT signaling pathway in the ovine uterus during the estrous cycle and

early pregnancy, and found that 3-catenin GSK3B (glycogen synthase kinase-3 beta) E

cadherin mRNAs were abundant in the endometrial epithelia and also in conceptus

trophectoderm. MiN. p-JUN and JNK proteins which mediates non-canonicai WNT

signaling pathway wcre also abundant in endometrial epithclia and conceptus

trophectoderm (Kanako, 2006). These resuits implicate the canonical and non-canonical

WNT signaling pathways in regulating conceptus differentiation and implantation in sheep

E-cadherin is type-I transmembrane protein is clcaved by a metalloproteinase in vivo,

generating a soluble extracellular fragment and a carboxyl-terminal fragment associated

with the cellular membrane (Haas et ai., 2005). In the bovine endometrium, MMPs may be

associated with ECM remodeling during implantation and placentation in vivo (Hirata et

al., 2003). During peri-implantation period in the mouse, E-cadherin expression protein
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was inhibited and the expression of MMP-2 and MMP-9 was increased at the

transcriptional level (Liu et al., 2006a). Catepsins that are stimulates for IFN-t and are

implicates in endometrial remodelin and conceptus implantsation may promote the

cleavage ofE-cadherin.

MIF on secretion of E-cadherïn.

These studies also provide preliminary evidence that MIF might have an autocrine effect

on uterine epithelial celis in vitro. Although MIF did not significantly affect the cleavage

of E-cadherin in bovine endometria! epithelial ce!! in vitro it did effect the ce!lular

redistribution of E-cadherin from the membrane to the cytoplasm. Therefore the effect of

MIF in immunoreactivity of -catenin was a marked cytoplasmic accumulation.

An autocrine effect of MIF on E-cadherin and f3-catenin in bovine endometrial epithelial

celis may be explained by the autocrine effect of MW on proliferation (Mitchell et al.,

1999) and adhesion to fibronectin in quiescent mouse fibroblasts (Liao et al., 2003). Both

exogenous!y added rMIf and endogenously released MIF induced the proliferation of

quiescent mouse fibroblasts (Beswick et al., 2006; Mitcheli et al., 1999; Ren et al., 2003).

This proliferative response was associated with the phosphorylation and activation of the

p44/p42 ERK kinases. ERK activation was sustained for a period of at least 24 h, and was

dependent upon protein kinase A activity (Mitcheli et al., 1999). Because cytokine

mediators frequently function as mitogenic growtli factors (Lang and Burgess, 1990), it

was found that MIF is a growth factor-induced autocrine signaling factor (Mitche!! et ai.,

1999) and that MW is regulated by both growth factor and integrin activation and serves as

an autocrine activator ofMAP kinase, cyclin Dl expression, and DNA synthesis.

Extemal (growth factors, extracel!ular matrix) signais could serve to increase MW

production that, in tum, may facilitate anchorage independence and !oss of contact
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inhibition. (Swant et al., 2005). Both growth factors and adhesion are required for efficient

signaling to sustained ERX activation and subsequent celi cycle progression (Roovers et

al., 1999). More recently, the autocrine effect of MTF on sustained ERK activation was

proposed to occur through a receptor-mediated signalling pathway that involves the

intermediate activation of MLCK (Wadgaonkar et al., 2005a). However, since intracellular

MIF also binds to and activates MLCK (Wadgaonkar et al., 2005b) and since extracellular

MW is efficiently endocytosed and translocated into the cytosol it is possible that the

autocrine action of extracellular MW in sustained ERK signalling involves MIF

endocytosis (Lue et al., 2006). MIF xvas identify as a natural ligand for CD74, a Type II

transmembrane protein, is a high-affinity binding protein for MW. MIF binds to the

extracellular domain of CD74, and CD74 is required for MiT induced activation of the

extracellular signal—regulated kinase—1/2 MAP kinase cascade, celi proliferation, and PGE

2 production (Leng et al., 2003)..
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Autocrlte effects of M1F
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Figure 15. Proposed scheme of MIF-dependent signaling to MAPK and cyclïn Dl

transcription. MIF secretion is induced by a variety of stimuli including growth

factors and Integrin engagement (Liao et al., 2003; Mitcheli et al., 1999). Extra

cellular MIF then binds to its putative membrane bound receptor, CD74 (Leng et al.,

2003) that can then initiate the activation of Rho GTPase activity via an unknown

mechanism. Increased Rho activity is then thought to promote the activation of Rho

kinase and MLC phosphorylation. Hyperphosphorylated MLC, in turn, induces

stress liber formation/integrin clustering and subsequent FAK-dependent sustained

MAPK activation, cyclin Dl transcription, and Rb inactivation. Taken from (Swant

et al., 2005).
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IFN-t from the embryo during the preimplantation stage is involved in the reorganization

of the lurninal epitheHum (Wathes and Wooding, 1980) and synthesis and secretion of

histotroph by the glandular epithelium (Spencer and Bazer, 2004). Remodeling of the

glycoprotein adhesion molecules of the apical surfaces of these celis precedes implantation

(Aplin, 1997). Reduction of Muc-1 (Johnson et aI., 2001) precedes integrin activation

(Maheshwari et al., 2000). Iii pregnant sheep at day 17, when intimate contact between LE

and trophectoderm begins, a decrease in Mue-I was observed on uterine LE exposed

apically at integrins to interaction with OPN during peri-implantation period (Johnson et

al., 2001).

OPN protein is localized on the apical aspect of the endometrial LE, GE, and conceptus Tr

(Johnson et al., 1999b; Johnson and and Bazer, 1999), and is a potential mediator of

implantation in sheep, as a bridge between integrin heterodimers expressed by Ir and

uterine LE responsible for adhesion for initial conceptus attachment (Johnson et al.,

2003a). Integrin activation initiates multiple intracellular signaling pathways and results in

regulation of ceil functions such as motility, proliferation and differentiation (Maheshwari

et al., 2000).

Members of the integrin family of cell surface adhesion molecules are now lmown to relay

signais between extracellular matrix proteins in the microenvironment and intracellular

signaling pathways in ceils (Morozevich et al., 2002). Through interaction with the

cytoskeleton, signaling molecules, and other cellular proteins, integrin cytoplasmic

dornains transduce signals from both the outside and inside of the ceil and regulate

integrin-mediated biological functions (Liu and Burridge, 2000; Liu et al., 2000). Integrin

f3 chains, for example, interact with actin-binding proteins (e.g. talin and filamin), which

forrn mechanical links to the cytoskeleton, might also link integrins to signaling
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mechanisms and, in some cases (e.g. JAB1) mediate integrin-dependent gene regulation

(Epler et aI., 2000). E-cadherin ami 3-catenin also are implicated in the remodeling of

endometrium during implantation; in pregnant mice, the 3-catenin signaling pathway is

inhibited in both blastocyst and uterus during the window of implantation (Li et al., 2005;

Li et al., 2002b).

CONCLUSION.

In conclusion, embryo implantation involves endometriai remodeling for adhesion of the

conceptus into the uterine wall. In ruminants, IFN-T secreted from the embryo induces

adhesion between luminal epithelium and trophectoderrn essential for attachment and

superficial implantation (Klein et al., 2006). In the present work using in vitro endometrial

epithelial celis, it has been shown that IFN-t stimulates the proteolytic cleavage of E

cadherin and subsequent accumulation in cytoplasm, and accumulation of 13-catenin at the

plasma membrane. Similariy MIF was increased in luminal and glandular epithelium from

pregnant cows. MIF was stimulated supposedly via the action of IfN--c. An autocrine effect

of MW was observed on E-cadherin and -catenin cytoplasmic accumulation in bovine

endometrial epithelial cell in vitro. These data suggest that changes in MIF and E-cadherin

induced by IFN-r secreted by the embryo play an important role in attachment of the

trophoblast to the endometrial wall.

There is much information about WN-T in pregnancy recognition but the effect of IFN-t in

remodeling of bovine endometrium at the preimplantation period is flot clearly understood.

To further advances our knowledge on how MW, E-cadherin and f3-catenin affect

attachment of the bovine embryo, these proteins should be loacated by

immunohistochemistry in uterus bovine at different times of the estrous cycle and the

implantation period in pregnant animais. Since proteolytic cleavage of E-cadherin or f3-
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catenin might induce apoptosis or celi growth. Therefore it is important verify their in vivo

effect.
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