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Abstract

Introduction: hihaled nitric oxide (INO) is clinically approved by the Food and

Dnig Administration (FDA) in the treatment of persistent pulmonary hypertension

of the newbom. Additionally, it has achieved widespread use in a range of other

conditions. Its use is flot without risks, particularly rebound pulmonary

hypertension following weaning of ll\TO.

Aim: To describe the effects of a controlled weamng protocol of INO on

hemodynamic and respiratory parameters.

Methods: 13 pigs were randomly spiit into two groups; one to undergo

cardiopulrnonary bypass (CPB) with continuous llJO, the other to undergo CPB

with INO with weaning. Both groups were subjected to a CPB procedure lasting

90 minutes and maintained anesthetised and mechanically ventilated for a total

duration of 24 hours. INO weaning began afler CPB. The following parameters

were measured or calculated: mean pulmonary arterial pressure (MPAP), mean

systemic arterial pressure (MAP), cardiac index (CI), pulmonary vascular

resistance (PVR), systemic vascular resistance (SVR), Pa02:F102, shunt and

pulrnonary compliance.

Resuits: A significantly higher CI was detected in the weaned ll\TO group and a

significantly greater SVR was detected in the continuous INO group. No other

significant differences parameters were detected between groups.

Over time, within each group, MPAP and PVR showed a significant increase.

Mean systemic arterial pressure, CI, Pa02:F102 and pulmonary compliance

showed a significant decrease over time. Rebound pulmonary hypertension was

not observed in the weaned iNO group.

Conclusions: We have demonstrated the safety of a controlled weaning process.

With regards to the major advantages observed in previous studies comparing

CPB with and without continuous iNO, our INO weaning protocol looks

promising for future clinical use.

Key words: cardiopulmouary bypass, nitric oxide, inhaled nitric oxide,

porcine model



iv

Résumé

Introduction: Le monoxyde d’azote inhalé (1NO) est reconnu cliniquement par la

US food and Drug Administration dans le traitement de l’hypertension

pulmonaire persistante du nouveau-né. Son utilisation s’est répandue dans la

gestion de diverses pathologies mais n’est pas sans risque. Le sevrage du patient

en NO peut ainsi être associé à une hypertension pulmonaire rebond très délétère.

But : Décrire l’effet d’un protocole contrôlé de sevrage sur les paramètres

hémodynamiques et respiratoires.

Méthodologie: 13 cochons furent répartis aléatoirement en deux groupes; un

soumis à une circulation extracorporelle (CEC) avec du LNO en continu, l’autre

soumis à une CEC avec NO et sevrage. La CEC a duré 90 minutes, la ventilation

mécanique et l’anesthésie furent maintenues durant 24 heures. Le sevrage en INO

commença après la CEC. Les paramètres suivants furent mesurés ou calculés

pression artérielle pulmonaire moyenne (PAPm), pression artérielle systémique

moyenne (PASm), index cardiaque tIC), résistances vasculaires pulmonaires

(RVP), résistances vasculaires systémiques (RVS), ratio Pa02/Fi02, gradient

alvéolo-artériel en oxygène, admission veineuse / shunt physiologique et

compliance pulmonaire.

Résultats : Un IC significativement plus élevé fut observé dans le groupe INO

sevré et des RVS significativement plus grandes dans le groupe [NO continu. Il

n’y eut pas de différences significatives entre les deux groupes pour les autres

paramètres hémodynamiques et respiratoires.

Avec le temps, dans chaque groupe, la PAPm et les RVP ont connu une

augmentation significative. La PASm, l’IC, le Pa02:fi02 et la compliance

pulmonaire ont montré une baisse significative dans le temps. Aucune

hypertension pulmonaire rebond ne fut observée dans le groupe NO sevré.

Conclusions : Nous avons démontré la sécurité d’une procédure de sevrage

contrôlé de l’INO post-CEC sur des paramètres hémodynamiques et respiratoires.

En comparaison de la différence observée lors d’études antérieures en faveur du

traitement continu en NO versus une CEC en absence d’INO, le protocole de
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sevrage élaboré dans la présente étude s’avère extrêmement prometteur pour une

future utilisation clinique dans le cadre des chirurgies cardiaques avec CEC.

Mots Clés : circulation extracorporelle, monoxyde d’azote! oxyde nitrique,

monoxyde d’azote inhalé, modèle porcin
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1. Introduction

At present, the use of ll\TO is clinically approved by the Food and Drug

Administration (FDA) for persistent pulmonary hypertension of the newbom,

following evidence from large, controïled multicentre trials.’4 It has also achieved

widespread use in a multitude of other clinical situations, such as acute respiratory

distress syndrome (ARDS), acute pulmonary hypertension, and pulmonary

hypertensive crises during cardiopulmonary bypass

The primary benefits of INO are a selective pulmonary vasodilatation (both

arteries and veins) of ventilated areas of lung resulting in decreased

intrapulmonary shunt and improved Pa02. This, and the absence of effect on

systemic vascular tone has been demonstrated in numerous studies.57

In addition, a reduction in neutrophil adhesion (a crucial step in acute lung injury)

to both pulmonary8’° and distal” systemic vasculature has been demonstrated. It

should be noted that the timing of ll\TO administration appears to be key to these

beneficial effects, with contrasting results found in studies delivering INO afier

pulmonary inj ury was established.12’13

The use of INO in clinical practice has flot been without problems, primarily due

to the occurrence of rebound pulmonary artery hypertension (PAR) associated

with an increase in right to left shunting and a resultant decrease in Pa02

following discontinuation of TNO.14 It has been proposed that downregulation of

endogenous cNOS during INO could result in a lack of endogenous NO following

weaning of INO,152° resulting in rebound PAR. Also, endothelin (ET) receptor

(A) blockade has been shown to prevent rebound PAR indicating a possible

interaction between NO, ET, and its receptor.21’22

Circumvention ofrebound PAR is achievable through careful, stepwise weaning

of INO.2325

The aim of this study was to evaluate the hemodynamic and respiratory effects of

a iNO weaning protocol during a cardiopulmonary bypass procedure (CPB)

procedure in a porcine model (previously reported by our group26), compared with



continuous delivery of [NO. Inhaled Nitric oxide was delivered prophylactically

i.e. on induction ofanesthesia, prior to the CPB procedure.

2



2. Review of the literature I

2.1 Introduction

The aims of this review are twofold:

1. To briefly discuss the physiological similarities between the porcine and

human cardiovascular system with reference to suitability for cardiovascular

research.

2. To review the current knowledge ofthe effects of cardiopulmonary bypass

(CPB) on the cardiovascular and respiratory systems.

2.2 The validity of pigs as animal models for cardiovascular research;

anatomy and physiology

0f the large animal models currently used for cardiovascular research, the pig has

particular advantages over other species with respect to its similarities to humans.

These include size, digestive physioÏogy, dietary habits, kidney structure and

function, pulmonary vasculature bed structure, coronary artery distribution,

respiratory rate, many hematological parameters, immunology and cardiovascular

anatomy and physiology.27

2.2.1 Anatomy

Anatomically, the porcine pulmonary system is similar to that ofhumans.

Grossly, the human left lung is made up of an upper and lower lobe and the right

lung of an upper, middle and lower lobe. The porcine pulmonary system is

cornprised ofa right lung made up ofcranial, middle and caudal lobes and a left

lung made up ofa split cranial lobe and caudal lobe. There is also a left accessory

lobe. In addition, the anatomy of the bronchial artery and local anastamoses

closely resembles that ofhumans. This is an important feature due to the

importance ofbronchial artery supply during CPB.28’29 Continuous pulmonary

perfusion with oxygenated blood was associated with lower pulmonary
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inflammation (reduction in polymorphonucleocytes (PMNs; neutrophuls) and

neutrophil elastase concentrations in bronchoalveolar lavage fluid (BAL)), when

cornpared with CPB without continuous puÏmonary perfusion in a neonatal pig

model ofCPB.29

2.2.2 Physiology

The cardiovascular and pulmonary systems are similar to that ofhumans.27’3°

The size of pigs often used in laboratory investigations (25-3 0 kg) have a heart

size to body weight ratio of 0.005, identical to that ofhumans (70 kg). Other

sirnilarities include, a very low incidence ofpre-existing collateral coronary

vessels (under 2%), a sirnilar end-artery coronary anatomy, distribution and size

of coronary vessels,3’ and similar hemodynamic parameters (see Table 1).

However, their pattem of venous drainage differs from man in that there is a large

hemiazyguous (left azygous) vein.31The importance ofthis during cardiac

investigations involving invasive techniques is the risk ofhemorrhage due to

vessel fragility.

The electrophysiology of the heart is different in the pig compared to man though

the intracardiac electrophysiologic parameters resemble man doser than any other

non-primate animal.31 The porcine conduction system has the following

differences from humans: different location of AV node, shorter and more

proximally branching penetrating bundle, more connective tissue, Ïess elastic

tissue and a larger number ofnerve fibres, implying an important neurogenic

component to conduction.32 These differences have been demonstrated in

immunohistochemical studies

Importantly, with respect to CPB, the pig heart is very susceptible to ventricular

fibrillation (which may or may not be preceded by atrial fibrillation), frequently

requiring defibrillation andlor pre-treatrnent with anti-arrhythmic agents such as

bretylium tosylate.30’35 This susceptibility highlights the importance of good CPB

technique and myocardial protection when using this animal for CPB.

In addition, the metaboÏic response ofthe porcine rnyocardium to ischemia is

similar to that ofhuman myocardium; rendering the porcine model relevant to the
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study of post CPB ischemia and reperfusion injury, and acute myocardial

infarction.3’

Parameter Human Pig (30 kg)

Cardiac output (hmm) 2.5-3.5 2.0-2.5

Right atrial pressure 0-8 1-9
(mmHg)
Right ventricular pressure 15-30 24-30
(mmHg)
Puim. arterial pressure 15-30 24-30

(mmHg)
Left ventricular pressure 1 10-140 1 16-150
(mmHg)
Aortic pressure (rnmHg) 70-105 1 14-126

Table I: Comparison of cardiovascular system parameters between humans and

pigs.27

Other advantages

In addition to their physiological and physical pararneters, their availability

(compared to non-human primates) and breeding characteristics make them

particularly suitable as large animal models. With regard to breeding

characteristics, they have large litters, reach sexual maturity rapidly (4-5 months)

and ovulate every 3 weeks. They also adapt well to the laboratory environment

and have few disease problems when housed conectly.

2.3 The systemic iuflammatory response and cardiopulmonary bypass (CPB)

The systemic inftammatory response syndrome (STRS) and its possible sequelae

were defined at a consensus conference ofthe American College ofChest

Physicians and the Society ofCritical Care Medicine.36 It has been recognised

that STRS may occur as a resuit ofinfectious or non-infectious causes (such as

CPB) and a clinical progression to sepsis, severe sepsis, septic shock, multiple

organ dysfunction syndrome (MODS) and death has been demonstrated.37 This

study37 also showed that patients with negative bacterial cultures had similar
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levels ofmorbidity and mortality rates, highlighting the importance of non

infectious causes of SRS such as CPB.

The pathogenesis of SIRS is stiil unclear due to the many complex interactions

involving various facets ofthe immune system, factors associated with CPB

equipment and techniques, patient factors and the generation of a reliable and

consistent animal model of CPB.

At present, the progression of SRS following CPB, towards adverse sequelae is

thought to depend on the balance of pro and anti-inflammatory cytokines, within

each organ system. Following CPB, the theory of multiple hits states that CPB

primes the immune system (PMN priming and pulmonary sequestration), and

secondary minor insuits result in serious sequelae, deranging attempts of the body

at re-establishing homeostasis.384’

SRS: diagnosis requires presence of 2 or more ofthe following:
Temp>38°Cor<36°C
Heart rate> 90 bpm
Resp rate > 20 breaths/min or PaCO2 <32 mmHg
Leukocytes> 12000, <4000/ mm3 or> 10% immature (band) fonns
Sepsis: SIRS with documented infection
Severe sepsis: sepsis associated with organ dysfunction, hypoperftision or hypotension
Septic shock: sepsis with hypotension despite adequate resuscitation along with the
presence of perfusion abnormalities
MODS: a state of altered organ function in an acutely ill patient such that homeostasis
caimot be maintained without intervention

Table II: Criteria for the diagnosis ofSIRS, sepsis and MODS.42

2.3.1 Pathophysiology ofthe inflammatory response to CPB.

The inflammatory response to CPB is mediated through contact activation,

ischemia- reperfusion induced injury to various organs including brain, heart and

blood, kidney, liver and lungs, and, endotoxemia via splanclmic hypoperfusion.

2.3.1.1 CPB effects on the cardiovascular system.

The occurrence of major cardiovascular complications (cardiac death, myocardial

infarction, heart failure) in cardiac artery bypass graft (CABG) patients is
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considerable (10%). The overail incidence ofmyocardial infarction (MI) in a

multicentre study of 566 human patients was up to 25% and the majority of cases

occurred within 16 hours after the release of aortic occlusion.44 Tndependent

predictors ofmyocardial infarction (MI) were intraoperative ST segment

deviation, intraventricular conduction defect, lefi bundie branch block, duration of

hypotension (systolic arterial blood pressure iess than 90 mrnHg) after CPB and

duration ofCPB.

Proinflammatory cytokines released as a resuit of CPB have been shown to play a

role in the myocardial dysfunction and ischemic episodes associated with CPB

procedures).45 In a study of 22 human patients,45 levels ofTNF-alpha, interleukin

(IL)-6 and IL-8 were determined to exhibit two peaks; the first early in the post

operative period and the second approximately 18 hours after the CPB procedure.

Left ventricular wall motion abnormalities were associated with raised IL-6 and

IL-8 levels and postoperative myocardial ischemic episodes were associated with

raised IL-6 levels. Aortic cross clamp time was independently predictive ofthese

postoperative cytokine levels. In addition, Oddis and Finkel showed that TNF

alpha, IL-lbeta and IL-6, and NG-methyl-L-arginine (NMA; a NO synthase

inhibitor) ail compietely biocked the positive chronotropic effects ofthe beta

adrenergic agent isoproterenol on cardiac myocytes.46 Ibis demonstrates a link

between cytokines and NO and myocardial beta-adrenergic desensitisation and

may provide a partial explanation for the myocardial depression seen post CPB.

The leveis of production of NO by the myocardiurn may have both beneficial

cardioprotective and deleterious effects. A constitutive cardiac nitric oxide

synthase (cNOS) has been demonstrated in both humans and animal models and

its activity linked to the contractile state ofthe heart, possibly through beta

adrenergic pathways.47’48 Nitric oxide produced via cNOS has inhibitory roles in

myocardial contractility and the degree ofplatelet adhesion to endothelium.49’5°

During an inflammatory response, NO production is upregulated via inducible

NOS (iNOS) and this may have deleterious effects for myocardial function.
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Increased NO concentrations have been associated with myocardial stunning in

hurnans.51 There may be several mechanisms underlying the end resuit such as the

inhibition of mitochondrial activity, aterations in platelet-endothelial adhesion,

and the formation of radical oxygen species such as peroxynitrite and beta

adrenergic desensitisation.46’48’50’52’53

Recent evidence implicates a role for ET ta potent vasoconstrictor produced by

endothelial ceils) in myocardial depression foïlowing CPB as demonstrated by

local production ofthis vasoactive mediator and the beneficial effects of ET

receptor antagonism on rnyocardial function.54’55

In addition, myocardial cyclooxygenase (COX)-2 protein and mRNA levels have

been shown to increase significantly in an animal model of CPB and cardioplegia.

Inhibition ofprostaglandin production lias been associated with improved

systemic arterial blood pressure and urine production dtiring CPB.56’57

2.3.1.2 CPB effects on hemostasis

The inflammatory response to CPB affects hemostasis through contact activation

ofthe coagulation and fibrinolytic cascades (figures 2 and 3), endothelial damage

via inflammatory mediators, and leukocyte and platelet activation.5862

The duration of CPB, postoperative skin temperature and plasma complement

(C3) levels have been positively correlated with postoperative bleeding time and

levels ofblood loss.63

The use ofhemofiltration during CPB was associated with a reduction in

cytokines (TNF, IL-10), rnyeloperoxidase, C3a and a reduction in postoperative

bleeding.64

The involvement ofplatelets was demonstrated with significantly less

postoperative blood loss and improved levels ofpulmonary function (post

extubation gas exchange, lowered ventilation times) following the post CPB

infusion ofpre-operatively harvested platelet rich plasma.65
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2.3.1.3 CPB effects on pulmonary function.

Cardiopulmonary bypass is well known for its effects on the pulmonary system,

namely Acute Lung Injury (ALI) and the more extreme form ofthis syndrome,

the Acute Respiratory Distress Syndrome (ARDS). This syndrome, in addition to

the effects of CPB on other organ systems puts the patient at risk of developing

MODS.67 The incidence and mortality rates ofARDS vary between surveys with

currently accepted figures of an incidence between 1 - 3% with a mortality of 30 -

50%.426869 Mortality rates have dropped markedly from approximately 90% in

the early 1970s despite no major advances in pharmacological therapy in 30 years

ofresearch. Improved ventilation strategies have been responsible for the majority

of this improvement.69’7°

The current definition ofALI is hypoxemia (Pa02:F102 300 rnmHg), bilateral

pulmonary infiltrates (indicating inflammatory change) on thoracic radiographs

and normal pulmonary capillary wedge pressure.7’ The progression of ALT to

ARDS has been described as involving a proliferative phase when fibroblasts

infiltrate and remodel areas of inflammation followed by fibrosis and

consolidation ofthe lung parenchyma and a Pa02:F102 200 mmHg.69

The risk ofdevelopment, and severity ofALI, has been positively linked to CPB

duration 72

Pulmonary dysfunction below the threshold of ALT classification occurs in 12%

of patients and includes perfusionlventilation mismatch, reduced oxygenation

index and reduced lung compliance.73

In addition, and perhaps relevant to MODS, an association between early

pulmonary dysfunction (defined by mechanical ventilation with an Pa02:F102

150 mmHg and pulmonary infiltrates) and renal and netirological dysfunction,

nosocomial infections, prolonged mechanical ventilation, increased intensive care

unit (ICU) and hospital stay and mortality has been identified.72

Many studies have demonstrated the role ofthe inflarnmatory response in

pulmonary dysfunction.74’75 However the importance of various inflammatory

mediators within the inflammatory process is still the subject of investigation.
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Histologically, the inflammatory response and pulmonary damage following CPB

has been demonstrated.76 Neutrophils and their associated inflammatory

mediators play an important role; 50% of circulating PMNs are sequestered to the

lungs following CPB (from the release ofthe aortic cross-clamp) and are

associated with a significant increase in oxidative activity.75 Granulocyte elastase,

IL-6 and IL-8 levels correlate with a reduced respiratory function.74 Reactive

oxygen species (ROS) have also been associated with an increase in pulmonary

endothelial permeability.77

Sinclair et aï. studied pulmonary endothelial permeability and found a transient

increase in permeability in ail patients (20 patients) post-CPB but no association

between markers measured (protein accumulation index, and BAL to serum urea

ratio) and the development ofARDS. Increased levels ofthese markers were

associated with a longer duration of CPB. They postulated that though PMNs had

a role to play in pulmonary dysfunction, celiular activation occurred at a systemic

rather than local level supporting the theory of a systemic inftammatory response

to CPB.78

Recently, ET has been implicated in the pathogenesis ofincreased pulmonary

vascular resistance following CPB. Severai animal studies have shown increased

plasma ET, ET receptor and ET mRNA concentrations within pulmonary vascular

cndotheÏium and ET receptor blockade has been shown to decrease the levels of

pulmonary vascular resistance.7981

The enzyme COX 2 and prostaglandin (PG) synthesis may also play a role in

increased pulmonary vascular resistance, with increased levels of COX 2 protein

and mRNA associated with increased pulmonary resistance.82

2.3.2 The effects of extracorporeal perfusion on the inflammatory response

Almost every component of extracorporeal perfusion has been shown to have a

potential effect on the inflammatory system. This includes perfusate temperature;

cardioplegia temperature; circuit type; oxygenator type; priming solution

composition; the heparin-protamine complex; pulsatile versus nonpulsatile

perfusion; pump types; and shear stress.
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2.3.2.1 Perfusate temperature

A study involving 18 patients undergoing elective CABG compared the effects of

tepid (34°C) and hypothermic (28°C) perfusate on markers of inflammation,

respiratory index, systemic vascular resistance and intubation time.83 Tepid CPB

resulted in a reduction in respiratory dysfunction with a shorter intubation tirne

compared with that ofthe hypothermie group.

Menasché et al. suggested allowing the core temperature of patients to drifi

between 32-34°C during CPB following the resuits ofa clinical study of 30

patients. This study dernonstrated increased levels of cytokines and an increased

requirement for vasopressor support in patients undergoing normothermic (37°C)

CPB, compared with patients undergoing hypothermic CPB (28-30°C).84

An animal study (pigs) found that moderate hypothermia (28°C) was associated

with the lowest histological degree of organ damage.85 This was associated with

lower TNF and higher IL-10 levels.

In contrast, a recent study did not show a significant difference in the

postoperative levels of any of the inflammatory markers measured (C-reactive

protein, IL-6) between normothermic (37°C) and hypothermie (26°C) CPB

patients.86 Different perfusate temperatures (20°C, 32°C, 37°C) were found to

have no relationship to neurological dysfunction following CPB.87

2.3.2.2 Cardioplegia temperature

Warm blood cardioplegia was found to reduce the levels ofTNF, IL-6 and IL-8

post-operatively compared with cold crystalloid cardioplegia.88 However, a study

comparing the effects on complement and PMN activation between wanri and

cold blood cardioplegia showed that both complement and PMN activation was

higher in the warm bÏood group.89
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2.3.2.3 Circuit type

The balance of cytokines is pushed in favour of inflammation as a resuit of the

interaction ofblood with a CPB circuit, demonstrating the need for improvements

in circuit biocompatibility (see section 2.3.1.3).°

Such improvements (a conventional circuit versus a polymer coated circuit) have

been shown to decrease fibrinolysis and thrombin generation and preserve

platelets.91

The use ofheparin coated circuits (HCC) versus conventional circuits in high risk

patients undergoing CPB found that HCC resulted in a shorter intensive care and

post-operative hospital stay, and a lower incidence of lung and renal

dysfunction.92 fi a similar study comparing HCC to conventional circuits, a

reduction in post-operative morbidity (myocardial infarction, arrhythmias,

respiratory insuit, neurological dysfunction) and intensive care stay was

demonstrated.93

With respect to inflammation, a comparison ofthe concentrations of IL-1, IL-6,

IL-8 and TNF by HCC and conventional circuits showed that levels of IL-6 and

IL-8 levels were reduced in the serum of patients in the HCC group.94 In addition,

the method of circuit coating and type of heparin employed have effects on the

degree of activation of various components of the inflammatory cascade.95

2.3.2.4 Oxgenator type

Resuits from studies comparing the effect ofbubble versus membrane

oxygenators on inflammation and post-operative outcome have been mixed. This

may be due, at least in part, to the difference between experimental studies and

the clinical situation.

Two studies by the sarne group found that though there was no difference

between the degree ofcomplement activation between two groups of patients

undergoing CPB with either a membrane or bubble oxygenator; evidence ofPIVIN

activation (plasma lactoferrin and myeloperoxidase plasma concentrations) was

significantly lower in the membrane oxygenator group.96’97 Looking at organ

dysfunction in this study, cardiac (post-operative need ofinotropic support), renal
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(senim creatinine levels) and pulmonary (alveolar-arterial oxygen pressure

gradient), but flot cerebral function (psychometric tests and adenylate kinases

levels), was improved in patients with membrane oxygenators versus those with

bubble oxygenators.

The effect ofbubble oxygenators on respiratory function was associated with an

increase in extravascular lung water and atelectasis (on chest radiographs),

compared with membrane oxygenators.98 However, these changes had no effect

on the duration ofpostoperative ventilation, mortality or hospital stay.98

A smaller, more recent study looking at complement activation, respiratory

function, granulocyte activation and endothelial damage between CPB with

membrane versus bubble oxygenators showed no significant differences between

the groups for ail variables studied.99

A comparison of flat sheet and hollow fibre membrane oxygenators in terms of

shear stress showed a positive conelation between the pressure drop across flat

sheet oxygenators (shear stress generated) and the degree ofneutrophil elastase

released; a marker ofPMN activation.100

2.3.2.5 Priming solution composition

The effect of crystailoid versus colloid priming solutions on colloid osmotic

pressure (COP) in 20 patients during CPB found that COP decreased by a

significantly lesser amount both during and after CPB in patients receiving a

colloid prime.93 Measures of complement (C3b/c and C4b/c) and PMN activation

(neutrophil elastase) and TNF increased similarly in both groups.

Patients with colloid prime showed an improved postoperative fluid balance,

shorter duration of intubation, smaller rectal to skin temperature gradient and

shorter hospital stay.

In addition, a colloid prime bas been shown to improve cardiac index and prevent

extravascular lung water accumulation postoperatively when compared with a

crystalloid prime)0’
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2.3.2.6 Heparin and protamine compiex

Heparin and protarnine (antagonises the anticoagulant effect ofthe heparin

antithrombin III complex; Figures 2 & 3) are given prior to, and at the termination

of CPB respectively, in order to minimise the coagulation response to CPB.

Together they fomi a complex which has been shown to activate complement via

the classical pathway with many ensuing deleterious effects.102”°3 These

complexes may cause increased pulmonary arterial pressure, decreased systolic

and diastolic arterial biood pressure, myocardial oxygen consumption, cardiac

output, heart rate and systemic vascular resistance.

The irnpaired balance of pro and anti-coagulants in patients following CPB lias

important foies lfl postoperative coaguiopathies and multiple organ dysfunction.

2.3.2.7 Pulsatile versus non - pulsatile perfusion

A ciinical study comparing CPB with pulsatile and nonpulsatile flows

demonstrated lower leveis of endothelial damage (reflected by lower ET levels)

and cytokine activation (lower IL-8 concentrations) with pulsatile flows.’°4

Levels of endogenous endotoxin are lower with pulsatile CPB whilst cNOS,

which piays an important role in the modulation ofvascular compliance via NO,

is activated by pulsatile ftow.105”°6

2.3.2.8 Pump types

A clinical study measuring the ievels ofinflammatory mediators TNF, IL-ibeta,

IL-8, IL-6, PMN counts, neutrophil elastase and terminai complement

components in patients undergoing CPB with either a centrifugal or roller pump

demonstrated that centrifugal purnps generated a greater inflammatory response in

terms ofa significant increase in IL-6, PMN counts and neutrophil elastase

concentrations.’°7 However, a recent retrospective study on the effect ofpurnp

type on neurological outcomes found that patients undergoing CPB procedures

with centrifugal pumps had a lower incidence of permanent neurological deficit

and coma compared with roller pumps; there was no difference in mortality

rates.’08
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2.3.2.9 Shear stress

Within the vasculature, shear stress acts as a physiologic stimulus contributing to

vasoregulation via the endothelium. An animal model (pig) comparing the effects

ofpulsatile versus nonpulsatiÏe flow CPB demonstrated a reduction in endothelial

NO production in the nonpulsatile group. It is known that NO contributes to

vascular tone and may partially explain the increased vascular resistance seen

with nonpulsatile CPB.’°9

However, the shear stress associated with CPB may be excessive and have

detrimental effects. It has been demonstrated that hypothermia, plasma dilution

and shear stress acted synergistically to decrease erythrocyte deformability and

cause immediate and deÏayed hemolysis which may impair microcirculation and

oxygen supply.”°

An in vitro study demonstrated the detrimental effects of shear stress on

leukocytes. At levels ofshear stress less than that required to cause erythrocyte

hemolysis, there was evidence of leukocyte destruction, disniption, aggregation,

cytoplasmic granule release and increased adhesiveness.” Increased platelet

activation has also been linked to shear stress.112

Endothelial injury as a resuit of shear stress may alter the interaction of these celis

with the ceils ofthe immune system and underlying smooth muscle.”3

2.3.3 Inflammatory markers

Due to the cascade nature of enzyme systems and interaction between various

aspects ofthe inflammatory response there are a plethora ofinflammatory

markers available as indicators ofthe degree, chronicity, type ofinflammatory

response and response to treatment.

In ternis ofCPB, many markers have been studied but only those ofparticular

relevance to CVS and respiratory dysfunction will be discussed.
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2.3.3.1 Cytokines

Cytokines are soluble paracrine mesengers that play a key role in the homeostasis

ofthe immunological and physiological systems. The actions ofindividual

cytokines may be loosely described as pro or anti-inflammatory though specific

actions are dependent on each situation. For instance, IL-6, described as a pro

inftammatory cytokine has been demonstrated to play a protective role in

hyperoxic lung injury in mice through the inhibition of celi death and matrix

metalloproteinases (MMP) expression.”4

Interleukin-ibeta and IL-6 plasma concentrations have been shown to be

predictive of a poor outcome in ARD$ and plasma IL-8 and IL-18 levels were

raised in non survivors following cardiac surgery and the subsequent development

of SRS compared with survivors.”5’116

Bimodal serum peaks for TNF (2 and 1$ hours post CPB), IL-6 (irnmediately and

12-18 hours post CPB) and IL-8 (early and 16-18 hours post CPB) have been

documeflted.’”17

Striking a balance with proinflammatory cytokines are antiinflammatory

cytokines, cytokine receptors and cytokine receptor antagonists; in particular, IL-

10, IL-1 receptor antagonist (ra), TNF soluble receptors 1 and 2 (TNF5r 1 and 2)

and transforming growth factor beta (TGF3).64’9°

In a sirnilar fashion to pro-inflammatory cytokines, elevations of components of

the anti-inftammatory response are staggered in tirne following CPB. In pediatric

CPB, the plasma response began with IL-10 (increased levels during CPB and

peaking 24 hours post CPB), followed by IL-ira (increased levels 2 hours post

CPB and peaking at 24 hours post CPB) and TNFsr (increased levels 2 hours post

CPB and peaking at 24 hours post CPB). From BAL samples, only IL-8 and IL-10

were significantly elevated following CPB.118

In aduit CPB patients, IL-10, TGF-beta and IL-ira plasma levels increased early

following CPB (levels peaked within 2 hours post CPB and had decreased by 24

hours post CPB). Turnour necrosis factor soluble receptors 1 and 2 levels
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increased following CPB and remained elevated at the 24 hour sample
90,119,120time.

Pulmonary dysfunction following CPB is a frequent complication and believed to

be largely mediated through local PMN sequestration and activation, through

adherence, degranulation of enzymes and superoxide production.’21 -126

A comparison of BAL and plasma specimens from patients with ARDS,

dernonstrated that the lungs may be the primary source of IL-8.’27 Furthermore,

Donnelly et al. provided evidence of a link between IL-8 in BAL and the

development ofARDS.’28 No sucli link was established with plasma IL-8.

Increased concentrations of IL-8 and IL-ibeta (at levels ten times in excess of IL

ibeta ra) are present for prolonged periods in the BAL of patients with ARDS.’29

Interleukin-8 showed a strong correlation with the PMN concentration ofthe

BAL. Elevated IL-Ibeta levels on day 7 after the onset ofARDS was correlated

with increased mortality.

A comparison between two subsets of CPB patients (postoperative cardiovascular

dysfunction and postoperative lung injury) found that increased plasma

concentrations of IL-8, IL-6 and platelet activating factor (PAF) were associated

with cardiovascular dysfunction.’3° Patients with severe lung injury had increased

plasma thromboxane (Tx) B2 and decreased plasma PAF, PG E2 and 6-keto PG

Flaipha. BAL samples were flot taken.

Tumour necrosis factor may play a pivotal role in cardiac insufficiency following

CPB through its release following ischernia and reperfusion; this has been

demonstrated by the comparison ofblood samples from peripheral arterial blood,

coronary sinus blood and mixed venous blood in patients undergoing elective

CABG.’3’ They showed increased levels ofTNF and IL-6 in coronary sinus blood

following aortic declamping cornpared with peripheral arterial blood indicating

the myocardium as an important source ofTNF and IL-6. The effect ofthe

inflammatory process on the heart following CPB is myocardial depression with

decreased contractile function and myocyte apoptosis.’32”33 Tumour necrosis

factor is believed to create these effects through at least two different
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mechanisms; an early depressive phase that is sphingosine mediated and a later

component mediated through inducible NOS.’33

2.3.3.2 Matrix metalloproteinases (MMPs)

Matrix metalloproteinases are involved in the degradation of collagen and the

remodelling ofthe extracellular matrix. They are believed to play an important

role in MI, cardiac ischernia - reperfusion injury, ventricular dilation and heart

failure, ALI and ARDS.’34136 Use of an animal model ofALI has demonstrated

the importance ofMMPs (MMP 2 and MMP 9) in the mediation ofALI.’36

Patients with ARDS have increased levels ofMMPs (2 and 9) in BAL samples.’37

Matrix metalloproteinase 9 is released as part ofthe inflammatory response in

humans during CPB.’38 Matrix metalloproteinases 2 and 9 appear to play

prominent roles following CPB and the associated inflammatory and ischernia
134 139-142reperfusion injuries.

Cytokines play an important role in modulating MMP gene expression; in

particular TNF and IL-ibeta both increase the production ofMMP.’43 1n addition,

they increase the activity and stability of MMPs, and the activation of CPB

primed PMNs by cytokines leads to the release ofMMPs.

Measurements ofMMP have been undertaken in both the plasma and BAL of

patients and animal models with pulmonary dysfunction. fticreased BAL

concentrations ofMMP 2 and MMP 9 in patients with ARDS compared with

healthy controls has been demonstrated and MMP 9 levels correlated with BAL

PMN concentrations.’37 There have been similar findings in the lungs of rats with

hyperoxic lung injury.’44

The importance ofMMPs in different clinical conditions is still under

investigation. Though their roles in cardiac and pulmonary dysfunction have been

demonstrated (as referenced above), their role in the dysfunction ofother organs

is not clear. Ziswiler et aÏ. (2001) found no evidence for a role ofMMP in an

animal model ofrenal ischemia reperfusion injury.’45

Appendix 1 contains an accepted article from our group entitled, “Increased

alveolar and plasma gelatinases activity following porcine cardiopulmonary



20

bypass: liihibition by inhaled nitric oxide”. This offers further discussion on the

relationship between INO and MMPs.

2.3.3.3 Reactive oxygen species (ROS)

Reactive oxygen species may play an important role in the damage and

dysfunction associated with the inflammatory response to CPB and the associated

iscliemia reperfusion injury.14648 The sources ofROS and their relative

importance have been difficult to identify due to their highly reactive and short

lived nature, difficulties in direct measurement and unreliabiltiy of indirect

measurements.146

It has been demonstrated that ROS are generated by the myocardium as a result of

ischemia reperfusion and play a role in myocardial dysfunction.149

A study in humans undergoing CPB using a direct method of detecting ROS

[electron spin resonance (ESR) spectroscopy] has showed a release ofROS,

independent ofmyocardial ischemia and reperfusion; detection ofROS occurred

from the onset of CPB until the end ofthe CPB part ofthe procedure.’46 This

provides evidence of the role of CPB (and possibly decreased perfusion) in the

generation ofROS, as no increases were associated with any preparatory surgery

(sternotorny, vascular graft preparation) prior to the onset of CPB.

Reactive oxygen species generated as a result of CPB may play roles in

rnyocardial dysfunction and systemic PMN activation, feeding the inflammatory

response. 150,151

More cornmonly, indirect measures of oxidation have been used; signs of

oxidative protein damage in BAL ofARDS patients (chlorotyrosine,

orthotyrosine, nitrotyrosine; Lamb et al.), plasma antioxidant levels (ascorbate,

aipha-tocopherol, retinol, beta-carotene, selenium, lipid peroxidation products)

and the plasma antioxidant enzyme activity of catalase, superoxide dismutase and

glutathione-peroxidase in erythrocytes.’52’153

Reactive oxygen species have been shown to play an important role in ALI and

ARDS and it has been suggested that an oxidant-antioxidant imbalance exists)52

Reactive oxygen species take part in chain reactions involving celi membranes
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resulting in the destruction of membrane integrity, the release of cytotoxic

substances and DNA damage with resultant alterations in protein synthesis.

Reactive oxygen species affect vascular endothelium through PMN - dependent

and - independcnt mechanisms resulting in dysfunctional vascular tone. In animal

models ofpulmonary vascular smooth muscle, the effects ofROS have been

mixed with reports ofboth vasodilatation and constriction.’54

The origin ofROS in ALI and ARDS maybe from arange of sources. The

stimulation ofPMNs and other leukocytes by cytokines (TNF-alpha) and

endotoxin leads to ROS production. Complement plays a role in the stimulation of

ROS production from primed leukocytes following contact activation associated

with extra-corporeal circulation and endotoxin stimulation. A major source of

ROS for ail organs following CPB is ischemia reperfusion injury. Here, ROS is

endogenousÏy produced and it has been demonstrated that 20-40% ofthe free

radicals detected following heart-lung bypass are produced by endotheliai cells.’56

finally, the aggessive oxygen therapy used in the management ofARDS can

result in hyperoxic toxicity, caused by ROS.’57 In an animal model ofcerebral

ischemia reperfusion it was demonstrated that PMN production ofROS

(superoxide anion) increased in fine with the duration ofischernia, suggesting

their role in cerebral ischemia reperfusion injury.’58

2.3.3.4 Endothelin 1 (ET)

Endothelin 1 is a vasoactive peptide with fibrogenic properties whose production,

by endothelial ceils, has been investigated widely in various cardiovascular

disorders (ischemic heart disease, hypertension, cardiogenic and endotoxic

shock).’59 It may exert its effects through stimulation of arachidonic acid (AA)

metabolism, and eicosanoids have been used as markers of ET activity.’6°

Increased plasma concentrations following CPB have been associated with an

increase in length of intensive care stay and prolonged pharmacological

management.’6’ However, its role in inflammation is flot fully understood;

whether its presence is a reflection of vascular injury or a cause of
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vasoconstriction. In a study of patients with mixed connective tissue disease,

plasma ET reflected damage and correlated with an increase in von Willebrand’s

factor (a recognised marker of endothelial damage). The plasma concentrations

measured were flot enough to cause vasoconstriction in vitro.159

A comparison of ET levels ftom various sites has demonstrated that plasma ET

levels were a systernic product and flot ofcardiac origin.’62 In a similar study of

patients with sepsis, with and without ARDS, the lung did not appear to be a

major site of ET production. In one study of CPB patients, no association was

demonstrated between increases in plasma ET levels and pulmonary

vasoconstriction. On the contrary, plasma ET was associated with pulmonary

vasculature vasodilation.’63 However, another study in CPB patients, found an

association between pulmonary plasma concentrations of ET and an increase in

pulmonary vascular resistance.64

ET levels have been positively correlated with an increased organ failure score

and oxygen consumption and negatively correlated with the Pa02:F102 ratio.’65

More recently, in several animal models (pigs), ET production and rises in

systemic plasma levels have been associated with local tissue production

(myocardial and pulmonary vascular endotheÏial celis) and spiil over to the

systemic circulation. The release of ET was documented to begin immediately

following the onset of circulatory arrest and continue throughout this period.54’8’

In further animal models, ET has also been demonstrated play an important rob in

myocardial depression and increases in pulmonary vascular resistance folbowing

CPB



3. Review of the Lïterature II:

Inlialed Nitric Oxide

3.1 Introduction

Nitric oxide (NO)

Initially described as endothelium - derived relaxing factor (EDRF) before its

identification as NO.’66”67 Its discovery resuited in award of the Nobel Prize in

Physiology or Medicine in 1998 to RF Furchgott, U Ignarro and F Murad. Its

potentiai physiological, pathological and therapeutic roles have received

widespread interest over the last 25 years. What follows is a brief sumrnary of the

current state ofknowledge of NO and its potential and actual therapeutic roles.

3.1.1 Biosynthesis

The foie of NO is as an endogenous activator of soluble guanylate cyclase

resulting in the formation of cyclic guanosine monophosphate (cGMP), a second

messenger ofrnany ceils (nerves, smooth muscle, monocytes, platelets).

The biosynthesis of NO is controlled by nitric oxide synthase (NOS) enzymes,

catalyzing a reaction between molecular oxygen and L-arginine. There are 3

known isofoms of this enzyme; inducible (iNOS), expressed in macrophages,

Kupffer celis, neutrophils, fibroblasts, vascular smooth muscle and endotheiial

ceils, and two constitutive (cNOS) forms, one in the endothelium (eNOS; also

found in cardiac rnyocytes, renal mesangial ceils, osteoblasts, osteoclasts and

platelets) and the other in neurons (nNOS). Levels of iNOS and hence NO

production, increase in response to pathological stimuli as part of the immune

system, whereas the primary role of cNOS is in normal physiological states.

The amount of NO produced as a resuit of catalysis by iNOS, eNOS and nNOS

varies; constitutive forrns producing picornolar concentrations of the molecule

and iNOS capable ofproducing millimolar concentrations.
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3.1.2 Enzyme characteristics

The NOS isoforms exist as dimers, each containing heme, flavin adenine

dinucleotide (FAD), flavin mononucleotide (FMN) and tetrahydrobiopterin as

prosthctic groups. In addition, they have binding sites for L-arginine,

nicotinamide adenine dinucleotide phosphate (NADPH) and calcium-calmodulin.

Activation of the dimers is controlled by these prosthetic groups in conjunction

with ligand binding.

NOS enzymes are associated with the Golgi apparatus and plasma membranes.

The details of the enzymatic process are unclear but it appears that NOS is

bimodal in combining oxygenase and reductase activities at distinct structural

dornains catalyzing the following reaction.

02 + L-arginine —> NO + citrulline

(NOS)

Enzymatic activity is the rate-limiting step as substrates are abundant in the

cytoplasm.

3.1.3 Isoform activity

cNOS activity is controlled by intracellular calcium-calmodulin, the production of

which is stimulated by a variety of stimuli.

Vascular resistance control under physiological conditions is likely in response to

pulsatile ftow and shear stress.

iNOS activity is calcium independent (though calcium-calmodulin will stimulate

its activation) and induced instead, by lipopolysaccharide (LPS) and! or cytokines

synthesized in response to LPS or inflammation.

3.1.4 Nitric oxide carnage and breakdown

Nitric oxide is freely diffusible across ceil membranes thus explaining its local

paracrine effects (on smooth muscle, monocytes and platelets adherent to
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endothelium). NO carnage in the bloodstream is through a high affinity for herne

(as part ofHb). In the absence ofoxygen, bound NO is relatively stable. However,

in the presence of oxygen, NO is rapidly inactivated by conversion to nitrate and

the heme (to which it is attached) oxidized to metHb. Outside Hb, NO can react

with oxygen resulting in nitrate and nitrite formation which are excreted in urine.

Reversible binding of NO to globin via its —SH groups (nitrosothiol formation) is

also possible, resulting in S-nitrosylated Hb allowing NO to be effective at sites

distant from its production.1’

3.2. Physiological and pathological roles of NO

The effect of NO may be mediated through either autocrine or paracrine action

resulting in effects such as vasodilatation in vascular smooth muscle, decreased

platelet adhesion and aggregation and the inhibition of monocyte adhesion and

migration. These effects are through its action on cGMP. Cytotoxic actions are

rnediated through combination with superoxide anion (O2), with which it reacts

very rapidly, out competing superoxide dismutase and producing peroxynitrite

(ONOO).

3.2.1 Vascular effects

The physiological control of peripheral (both pulmonary and systemic) vascular

resistance through eNOS is constantly present and active. Endothelial NOS

expression is increased by vascular shear stress and eNOS activity is increased by

mediators which increase intracellular calcium, such as bradykinin and

acetylcholine.

At a cellular level, NO produced by endothelial cells (or administered as INO)

diffuses into vascular smooth muscle cells. Here, NO activates soluble guanylate

cyclase, which catalyses cGMP. Through cGMP-rnediated protein kinases, NO

exerts its clinical effects of vascular srnooth muscle relaxation. In addition,

protein kinases inhibit leukocyte adhesion, platelet adhesion and activation, and

cell prolifereation.
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The action of cGMP is balanced by its hydrolysis to GMP. This is catalysed by

phosphodiesterase 1 (brain, heart, lung, testis) and 5 (lung, platelets, vascular

smooth muscle and kidney), in humans. Inhibition of phosphodiesterase 5, as a

dmg target (zaprinast, siidenafil, dipyridamole), increases endothelium-dependant

vasodilation.

3.2.2 Neuronal effects

As a non-adrenergic non-cholinergic (NANC) neurotransmitter it has a role in

neuronal development and plasticity.

3.2.3 Immune system

iNOS appears to play an important role in the innate immune system, responding

to a variety of pathogens. Here its activity is through free radical generating,

nitrosylation and heme-binding properties.

3.2.4 Nitric oxide and pathophysiology

The number of pathological conditions in which NO is known to play a part is

likeiy to increase with further research due to the systemic distribution of NOS

and the large number of cell types upon which NO has been shown to act. For

example, sepsis states invoive the overproduction of NO through iNOS

recruitment leading to systemic vasodilatation. Whilst inadequate NO production

by cNOS is associated with artherogenesis (resultant from hypercholesterolernia

and cigarette smoking) and impotence.

3.3 Therapeutics

Inhaled NO (INO) has found use in a range of conditions (acute pulrnonary

hypertension, right ventricular failure, pulmonary hypertensive crises following

CPB and in neonates, heart, lung and liver transplantation), ail ofwhich have two

factors in common: the desired effect is within the pulmonary system (the effect

of INO is lirnited to this system), leading to a reduction in intra-pulmonary
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shunting or, is gained secondary to changes in the pulmonary circulation, such as

reduced workload on the riglit side ofthe heart.

Pulmonary hypertensive crises following CPB is part of a range of vasomotor

dysfunction following CPB.’68 Nitric oxide plays a central role to post-CPB

vasomotor function; the activity of eNOS is decreased as a resuit of several

rnechanisms, including alterations in ceil membrane potential, substrate and

cofactor depletion, alterations in intracellular calcium, and injury to cellular

components.168

The clinical effect of INO is limited to the pulmonary vasculature, with a haif life

of a few seconds. Inactivation of NO is primarily as a resuit of binding of NO to

O2 and to the heme component of hemoglobin, resulting in the release of NO3-.

Binding of NO to thiols is another source of NO inactivation.

A potentially serious drawback to the delivery of INO is the risk of rebound

pulmonary hypertension.16971 This complication may resuit in hypoxernia and

right ventricular overloading and failure.

The delivery and monitoring of NO will be discussed later, suffice to say that

concentrations of NO less than 50 parts per million (ppm) do not appear to be

toxic. 169

Traditional NO donors, such as nitroglycerin, nitroprusside and S

nitrosoglutathione have systemic effects that may or may not be desirable

depending on the condition being treated.

NO inhibition is currently limited to experirnental studies though this may have

therapeutic potential in cases of NO over production such as sepsis. These

compounds are primarily L-arginine analogues and include N-monomethyl-L

arginine (L-NMMA) and N-nitro-L-arginine methyl ester (L-NAME).

3.4. INO toxïcity

There are three potentially toxic products associated with INO; NO2 resulting

from combination with oxygen, ONOO from combination with superoxide ion

and metHb following the oxidation ofnitrosylHb.



28

NO2 inhalation studies have found that inhalation of concentrations greater than

10 ppm resuits in pulmonary edema, alveolar hemorrhage, alteration in surfactant

properties, hyperpiasia of Type II alveolar epithelial celis, intrapulmonary

accumulations of fibrin, neutrophils and macrophages and death.172 Acute

overdose of INO Ïeads to rapid NO2 accumulation, methemoglobinemia,

pulmonary edema and hemorrhage, hypoxernia and death)73 The Occupational

safety and Health Administration of the United States lias set $ hour time

weighted average exposure limits in the workplace at 5 ppm. Chronic (9 weeks),

low level exposure of 05- 1.5 ppm caused focal degeneration of pulmonary

interstitial ceils and mild emphysematous changes in rats.174

Peroxynitrite is readily formed from the reaction of NO and superoxide. Under

physiologie conditions this is limited by the superoxide scavengers, primarily

superoxide dismutase. However, under pathological conditions when superoxide

concentrations may be increasd or scavengers exhausted, peroxynitrite

concentrations increase.175 Endogenous peroxyiiitrite production is useful through

its ability to cause oxidation, peroxidation and nitration of lipids, proteins and

DNA.’76”77 This enables the destruction ofmicroorganisms and tumour ce11s178”79

but is a double edged sword, resulting in surfactant alteration (decrease in surface

tension,’80 macromolecular structural changes and apoptosis induction.176”77

MetHb production is limited in the nonnal individual by reduction back to Hb by

cytochrome b5, methemoglobin reductase within erythrocytes, and by glutathione.

3.4.1 NO and DNA

NO lias several effects on DNA; the formation of mutagenic nitrosamines,’76

DNA strand breakage’8’ and inhibition ofDNA enzyme repair systems)78

3.4.2 NO and lipids

The in vivo effects of NO on lipids are unclear, with the production of both pro -

and anti - arthcrogenic lipoproteins demonstrated (through oxidation and
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peroxynitrite). These effects appear to depend on relative concentrations of the

various molecules involved.’82”83

Evidence from iNO clinical trials between 198$-1997 show that signfficant

methemoglobinemia or NO2 formation was uncommon and a reduction in INO

was usually sufficient to decrease levels. Discontinuation of iNO was required in

only 0.6 ¾ of patients.’74

The side effects of long terrn INO usage are complicated by the possible multiple

sources of markers of NO related However, no changes in

surfactant properties’86 or pulmonary function either during or after mechanical

ventilation as a result of INO have been observed.

3.4.3 INO and inflammation

There is stiil conflicting evidence regarding the role of endogenous and INO in

inflammation. Much of this appears to depend on the concentration of NO and

timing ofits delivery.42”74

The low concentrations of NO normally produced by cNOS are essential for the

maintenance ofvascular tone plus effects on platelet and leukocyte

It lias been reported that inhibition of cNOS during inflammatory insult worsens

the resultant inflammation.’88

By contrast, iNOS leads to much higher concentrations of NO and it is this which

is believed to act in a pro-inflammatory fashion.189’92

Inhaled NO is capable of decreasing elevated pulmonary artery pressure (PAP),

improving hypoxemia by reducing intra-pulmonary shunt, and optimizing

ventilation perfusion (V/Q) matching. Inhaled NO can also inhibit the

inflammatory process by reducing cytokine synthesis and inactivating nuclear

factor KB (NF-KB), as several cytokines contain a binding site for NF-KB in their

promoter gjfl5•93 Nitric oxide can also decrease the expression of adhesion

molecules preventing neutrophil adhesion and migration. Inhaled NO can exert its

effect on the lung, on leukocytes trapped in the pulmonary area but as it is
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transported by red blood celis to the general circulation, INO could have

extrapulrnonary effects.

3.4.4 Importance of timing ofdelivery

Pretreatrnent with INO or delivery early in the onset of the insuit appears to be the

key to maximizing the anti-inflammatory effects of NO.8’171”94’195

Though the rote of NO in inflammation is undoubtedly complex, much ofthe

conflicting data regarding the pro- and anti-inflammatory effects of INO can be

explained by the timing of delivery ofINO.

Appendix 2 contains an article submitted to Nitric Oxide-BioÏogy and Chemistiy

(Impact factor of 2.545), represents resuits ofa previous series ofexperiments. It

demonstrates the safe use ofpre-emptive, continuous INO and its protective

effects against lung ischernial reperfusion associated with CPB. Stich resuits are

very promising for promoting the use ofpre-emptive [NO therapy during cardiac

surgery with CPB. Before expecting such clinical advance, one point remained to

be solved: Could [NO be reasonably and safely weaned for the cardiac patient

after CPB?



4. Project aim and nuil hypothesis

The aim of this study was to evaluate a 1NO weaning protocol during a CPB

procedure in a porcine mode! (as va!idated by our group26), and use this mode! to

compare the hemodynamic and respiratory effects of a weaning INO protocol

against continuous IISTO.

Nuil hypothesis: step-wise weaning ofINO does not resuit in ciinically significant

rebound pulrnonary hypertension. There is no difference between weaned and

continuous TNO treatment.

5. Methodology

This study was performed at the Notre Dame Hospital (CHUM) anima! centre

with the approva! of the institutional animal care committee (Centre de recherche

du CHUM) in comp!iance with the guide!ines ofthe Canadian Council on Anima!

Care.

5.1 Animais

Pigs weighing between 30 and 35 kilograms, free of c!inical pu!monary disease

were purchased from Vadnais Fami Inc. (Drurnrnondville, Québec, Canada). The

animais were allowed an acclirnatization period of at least 3 days in our housing

facilities (Notre-Dame Hospital research laboratories) prior to the procedure.

Anima!s were housed individua!!y with twice daiiy access to proprietary feed and

ad libituin access to water.

5.2 Experimental procedure

The foi!owing sections on anesthesia, venti!ation, LNO administration,

monitoring, CPB procedure and post-operative protocol were carried out as

published by our group.26 Animais were randomized into 2 groups. One group
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(weaned INO; n=6) had 1NO weaned foilowing the end of the CPB procedure

(weaning began at T4, i.e. 4 hours after inducing CPB) whiist the rernaining group

(continuous iNO; n=7) had iNO continued until termination of the experimental

period at T24 (24 hours after induction of CPB). Individuals collecting data were

blinded to the INO protocol.

5.2.1 Anesthesia
Animais were fasted 12 hours prior to surgery. Premedication consisted of

intramuscular atropine (0.04 mg/kg), azaperone (4 mg/kg) and ketamine (25

mg/kg). Anesthesia was induced thirty minutes later with intravenous fentanyl (5

g/kg) and thiopentai (5 mg/kg) deiivered through a 20 gauge catheter placed in

an ear vein. Intubation was performed with an $ mm endotracheal tube

(Mailinckrodt Company, Mexico city, Df, Mexico) facilitated with a

laryngoscope and surgical preparation (washing, shaving and first disinfection)

followed. The animais were attached to the operating room table in a supine

position. A single dose of antibiotic (enrofloxacin 5 mg/kg) was given

intravenously at this time.

A total intravenous anesthesia technique was used for the maintenance of

anesthesia with an infusion of thiopental (5 mg/kg/hr) and fentanyl (20 tg/kg/hr)

in the same syringe. Neuromuscular biockade was perforrned with pancuronium

through a loading dose of 0.2 mg/ kg followed by an infusion of 0.2 mg/kg/hr.

Lactated Ringer’s solution (Baxter Corporation, Toronto, Ontario, Canada) was

given at a basal rate of 10 ml/kg/hr throughout.

5.2.2 Hemodynamic monitoring and support

Monitoring was by continuous ECG, rectal temperature, urine output (Foley

catheter placed by cystotomy), and systemic arterial blood pressure [via a 20

gauge arterial catheter (Arrow International Inc., Reading, PA, USA) piaced in

the left carotid artery]. Puimonary arterial pressure, pulmonary capillary wedge

pressure, central venous pressure, cardiac output (through thenriodilution) and

blood temperature were monitored via a Swan-Ganz pulmonary artery catheter

(Abbot Laboratories, Chicago, IL, USA) placed in the right internai jugular vein.
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Hemodynamic data were collected by an Mli 66ATM Model 66S cardiovascular

monitor (Hewlett Packard Ltd., Palo Alto, CA, USA), which also provided the

following calculated variables: systemic vascular resistance, puÏmonary vascular

resistance and cardiac index.

Fluid and drug administration was via an 18-14 gauge double lumen venous

catheter (Arrow International Inc., Reading, PA, USA) placed in the left extemal

jugular vein.

5.2.3 Mechanical ventilation and respiratory monitoring

Mechanical ventilation was provided by a 7200ETM Puritan Bennett ventilator

(Puritan Beimett, Carlsbad, CA, USA) in the volurne-controlled mode with a

positive end expiratory pressure (PEEP) of 5 cm H20. Tidal volume was 10 ml/kg

and respiratory rate adjusted to maintain an end tidal C02 pressure between 40

and 50 mm Hg. Inspired oxygen fraction (fi02) was 1.0 during the surgical part

of the procedure and reduced to 0.5 following chest closure (provided the arterial

partial pressure ofoxygen; Pa02> 85 mm Hg).

During CPB, ventilation was continued at a reduced tidal volume of 3 ml/kg and

respiratory rate of 8 breaths per minute.

Respiratory data were collected with a Capnomac Ultima monitoring system

(Datex Instnimentation Corp., Helsinki, Finland). Data monitored, or calculated

by the monitoring system, were: peak, plateau and mean airway pressures, end

tidal pressure of carbon dioxide, PEEP, respiratoiy rate, tidal volume, inspiratory:

expiratory ratio and dynamic compliance. Arterial and venous blood gas and

electrolyte analysis was carried out with an iSTAT Blood Gas AnalyzerTM (I

STAT® Portable Clinical Analyzer, Sensor Devices Inc., Waukesha, WI, USA).

Gas analyzers were calibrated in accordance with manufacturers’ instructions by

a respiratory technician.

5.2.4 Inhaled NO administration

NO gas (1000 ppm NO, balanced N2 cylinder; VitalAire Santé Ltée., Montréal,

Canada) was cyclically injected into the inspiratory line during inspiration by an
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NO injector developed by our group and used in both animal and human

studies.23’26 The delivered NO concentration was monitored by a

chemiluminescence technique (Polytron NO/N02, Drager, AG). During CPB, NO

was delivered directly to the membrane oxygenator.

Weaning of NO (for the weaned NO group) was carried out in a stepwise

fashion with a 50% reduction in NO every 20 minutes, until 6.3 ppm, then

stopped afier a further 10 minutes. Weaning procedure took 90 minutes in total

and commenced following chest closure (T4). No reduction in NO was

performed in the continuous NO group.

5.2.5 Cardiopulmonary bypass procedure

Following instrumentation (TO; venous, arterial and urinary catheters), a median

stemotomy was performed and the pericardium opened with a simultaneous

injection ofintravenous heparin (4 mg/kg) to give an activated clotting time > 400

seconds (measured on site). An aortic cannula (20 French; Chase Medical Inc.,

Richardson, TX, USA) was placed in the aortic root followed by placement of a

multiple hole venous drainage cannula in the inferior vena cava via the right

auricular appendage. A cardioplegia cannula (9 French; Medtronic Inc., Grand

Rapids, MI, USA) was then placed in the aortic root proximal to the aortic valve,

enabling cold blood cardioplegia.

The CPB circuit consisted of a membrane oxygenator (Trillium Affinity NT

oxygenator, Medtronic Inc., MN, USA), cardiotomy reservoir (Affinity CVR,

Medtronic Inc., MN, USA), filter (Affinity 351, Medtronic) and tubing. A Sams

rouer pump 7000 (Sarns Inc., Ann Arbor, MI, USA) was used and cardioplegia

provided by a Myotherm XP cardioplegia delivery system (Medtronic Inc., MN,

USA).

The circuit was primed with a total volume of 1750 ml composed of: Lactated

Ringer’s solution (1000 ml; Baxter Corporation, Toronto, Ontario, Canada),

Pentaspan (500 ml; DuPont, Pharma Inc., Missisauga, Ontario, Canada), sodium

bicarbonate (1 mEq/ kg), mannitol (200 ml) and heparin (5000 RJ).
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Cardiopulmonary bypass was maintained at a flow rate of 70-mI/kg/rnin and

blood temperature decreased to 32°C. The aorta was clamped and hyperkalemic,

oxygenated, coid blood cardioplegia instituted at a flow rate of 300 mI/m2, flot

exceeding a perfusion pressure of 100 mmHg. This resulted in rapid cardiac

arrest. Heart temperature (measured with a temperature probe placed in the

myocardium) was maintained between 12 and 15°C.

Partial pressure of arterial oxygen was maintained between 300 and 350 mmllg

and partial pressure of venous oxygen between 50 and 60 mmHg, by adjustments

to fresli gas flow.

Mean systemic arterial pressure rnaintained between 50 and 65 mrnHg by

adjustment to the ftow rate plus a bolus ofphenylephrine [0.5- 1 ml (0.1 mgI mi)]

if required.

5.2.6 Re-warming and CPB weaning procedure

The aortic clarnp time was 75 minutes and the total CPB time 90 minutes. Blood

re-warming commenced 10 minutes prior to aortic de-clamping using water at

38°C. The aortic clamp was removed and cardioplegia stopped when the biood

temperature attained 35°C. Defibriliation was necessary in ail cases, except one,

as ventricular fibrillation was observed as the temperature of the heart increased.

Internai defibriliation was carried out with 20 jouies once myocardiai temperature

was 32°C. The animais were weaned off CPB by graduai clamping of the venous

outflow une. Cardiopulmonary bypass was stopped once the heart was able to

maintain a stable arteriai pressure. Heparin antagonism with protamine suiphate

(1 mg/100 TU heparin) commenced at weaning.

Following removai ofthe CPB cannuiae, a thoracic drain was placed and the chest

closed (T3).

lime point (T x hours) Procedures
TO End of instrumentation, stemotomy, CPB

(90 minutes)
T4 Start of 1NO weaning following chest

dosure

Table III: Experimental time points
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5.2.7 Post-operative period

Blood remaining in the CPB circuit was collected and transfused. Aims during the
post-operative period were horneostasis ofcardiopulmonary and renal function.
b address these aims, protocols were established for the treatment of cardiac
insufficiency, ventricular arrythmias, hypovolaemia and tachycardia (Appendix
2).

The duration of follow-up monitoring was until T24.

5.2.8 Statistical analysis

Analysis of continuous dependent variables was performed with a linear mixed
model ofrepeated measures (SAS version 9.0, Cary, NC, USA). A priori contrasts
were performed for between groups comparisons at different time points. The
effect of tirne for each group was analysed, and post hoc analysis was performed

with Duimett’s test. Values are presented as mean ± SEM.

Significance was claimed when P 0.05.



6. Resuits of INO weanin% versus continuous administration

6.1 Losses

In total, the procedure was performed in 17 pigs. 0f these, 4 pigs died during the

experimental procedure: one due to likely underlying respiratory infection, one to

surgical eor (lacerated aorta) and two to technical difficulties during CPB

(failure of CPB circuit integrity).

6.2 Hemodynamic data

6.2.1 Mean puimonary arterial pressure (MPAP)

Comparison between groups did not detect significant differences (P = 0.36),

though there was a tendency to higher values of MPAP in the weaned group

compared with the INO group at T7 (P = 0.06), T$.5 (P = 0.09) and 110 (P =

0.07).

There was a significant (P < 0.0001) main effect in pooled data ofboth groups of

an increase in MPAP over time. There wa a significant difference at ail tirne

points compared with T0, except for T5 (P = 0.07), T6 (P = 0.0$) and T6.5 (P =

0.10). (Figure 3).

6.2.2 Mean systemic arterial pressure (MAP)

No significant main effect of group was detected (P 0.53). There was no

significant interaction of group with time (P = 0.70). Over time there was a

significant main effect in pooled data for both groups (P < 0.0001). Dunnett’s

post Jioc test revealed a significantly lower MAP at ail time points compared with

TO.

6.2.3 Cardiac index (CI)

Between groups comparisons detected a significantly higher CI (P 0.01) in the

weaned INO group cornpared with the continuous INO group at ail timepoints. In

addition, there was a significantly lower CI at ail tirne points (pooled data from

both groups) cornpared with TO (P < 0.0001). There was no difference in the
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effect induced in each group because the interaction term (group x time) was non

significant (P = 0.55). (Figure 4)

6.2.4 Pulrnonary vascular resistance (PVR)

Between groups comparisons did not detect significant differences (P = 0.57).

However, a priori comparisons detected a statistically significant difference

between at T4 (P = 0.02) and T24 (P= 0.005). This difference reflected a greater

PVR in the continuous INO group. There was a significant (P < 0.002) main

effect in pooled data ofboth groups of an increase in PVR over time

There was a significant effect of time (P = 0.002), with an increase in PVR

compared with TO at ail timepoints except for T5 (P = 0.15), T6 (P = 0.16) and

T6.5 (P=0.20). (FigureS)

6.2.5 Systemic vascular resistance (SVR)

Between groups comparisons detected a significantly higher (P = 0.03) SVR in

thc continuous TNO group compared with the weaned fNO group. There was a

tendency towards a significant effect of time (P = 0.05), although there was no

significance detected at any time point compared with TO. The effect observed on

SVR was identical in both groups (non significant interaction; time x group, P =

0.92).

6.2.6 Surnmary

0f the cardiovascular parameters rnonitored, significant differences were flot

detected between groups for the foliowing parameters: pulmonary vascular

resistance, mean pulmonary arterial pressure and mean systemic arterial pressure.

Significant differences were detected between groups for cardiac index (greater in

the weaned TNO group) and systemic vascular resistance (greater in the

continuous ll’J0 group).
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There was a significant increase in MPAP and PVR for both groups over tirne.

There was a significant decrease in CI, SVR, and MAP over time in both groups.
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Figure 3: MPAP for continuous vs weaned ll’10 groups. Data points represent

mean * SEM. From lefi to right, time points represent TO, T4, T5, T5.5, T6, T6.5,

17, T7.5, T8.5, 110, T12, T15, 119, T21, T23 and T24 for each group. Weaning

of NO occurred between T4 and T5.5.
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Figure 4: CI for continuous vs weaned iNO groups. From lefi to right, tirne points

represent TO, 14, T5, T5.5, T6, T6.5, T7, 17.5, 18.5, 110, T12, T15, 119, T21,

T23 and T24 for each group. Weaning of NO occuned between T4 and T5.5.

Asterisks represent time points at which significant differences were detected

between groups.
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Figure 5: PVR for continuous and weaned ll’sTO groups. From left to right, time

points represent TO, T4, T5, T5.5, T6, T6.5, T7, T7.5, T8.5, T1O, T12, T15, T19,

T21, T23 and T24 for each group. Weaning of NO occurred between T4 and T5.5.
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Figure 6: SVR for continuous and weaned INO groups. From lefi to right, time

points represent T0, T4, T5, T5.5, T6, T6.5, T7, T7.5, T8.5, T10, T12, T15, T19,

T21, T23 and T24 for each group. Weaning of NO occurred between T4 and 15.5.

Asterisks represent tirne points at which significant differences were detected

between groups.

6.3 Respiratory data

6.3.1 Pa02:FIO2 ratio

No significant differences were detected between groups (P = 0.26) with ail time

points included in the analysis. However, a significant interaction terni (P 0.03)

was associated with a significantly greater PaO2:F102 ratio in the continuons

group at TO (P = 0.002). A significant effect oftime was present for pooled data

(P <0.0001), with significantly decreased Pa02:F102 ratio at ail tirne points

compared with 10 (P <0.0001 for ail comparisons).
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6.3.3 Physiologic Shunt (Qs/Qt)

There was no significant difference between groups (f = 0.52). Over time, a

significant decrease in shunt at T4 was detected compared with 10 for both

groups (P 0.027).

6.3.5 Compliance

Significant differences were not detected in the between groups comparison (P =

0.74).

There was a significant decrease (P < 0.0001) over time in pooled data from both

groups, at ail time points compared with TO, with the exception ofT4 (P = 0.2 1).

6.3.6 Surnrnary

0f the respiratory parameters monitored, there was no overail significant

difference between groups. Pooling data from both groups over time, there was a

siginificant decrease in the Pa02:Fi02 ratio and compliance, and a tendency

towards a significant increase in deadspace
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figure 7: Compliance for continuous aitd weaned LNO groups. From left to right,

time points represent 10, T4, T5, T5.5, 16, 16.5, T7, T7.5, T$.5, T10, 112, T5,

T19, T21, T23 and T24 for each group. Weaning of NO occulTed between T4 and

T5.5.



7. Discussion

Within our study, every pig was weaned successfully without furtlier intervention.

0f the hemodynarnic parameters measured, CI and SVR were significantly

different between groups.

Therefore, the nuli hypothesis of absence of difference between weaned and

continuous JNO therapy is rejected.

The lack 0f significant differenccs in PVR between the weaned or continuous

INO groups highuights the effectiveness of a carefuliy managed weaning strategy

in avoiding rebound pulmonary hypertension, as was encountered by many early

studies.’9’21

7.1 Inhaled NO and rebound hypertension

Abrupt discontinuation of INO treatment in aduits and children results in a

transient, though potentiaiiy life threatening, rebound increase in pulmonary

arterial hypertension (PAH), an increase in intrapulrnonary right-to-left shunting

and PVR, a decrease in Pa0214’196’197 and a decrease in dynamic respiratory system

compliance24 i.e. reversai of the benefits gained from NO. This response to the

abrupt discontinuation of INO is irrespective of initial response, though occurs

oniy after exposure to iNO of several hours.

The underlying mechanisms of such a reaction are unclear, though several

candidates have been proposed:

1) Inhibition of eNOS upon exposure to INO (reversible following removal of

NO) was the first mechanism proposed.’5’17 The meclianism of action is believed

to be through direct action of INO on eNOS15 or via interaction with superoxide18

leading to a reduction in NOS activity without a reduction in either NOS protein

expression’7”9 or alteration in gene expression.18’2°

2) More recently, ET has been irnpÏicated in rebound PAH. Physiologically, there

is evidence for regulation between NO and ET through an autocrine feedback

loop.’98 The delivery of INO lias been associated with an increase in ET plasma
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levels (but without concomitant increases in gene expression), suggesting a

possible role for ET following NO withdrawal in rebound PAH.22 Tying in with

earlier research implicating a role for superoxide interaction with eNOS,18 it was

recently demonstrated that an ET receptor may be involved in the production of

superoxide.21

Rebound PAH and hypoxemia can be minimised with careful stepwise weaning

of INO, initiated in stable patients (in terms of Pa02 and required Fi02).

Experience has shown that weaning from a low concentration of NO (1 ppm or

less) is likely to have a lesser (rebound and deleterious) effect on Pa0223’25 than

from a higher concentration (4 or 16 ppm).199

7.1.1 Effectiveness ofweaning

Sign Occurrence

Pulmonary arterial hypertension No significant differences between groups,
significant increase ovcr time in both

groups.

Pulmonary vascular resistance t Increased in both groups over time. No

significant difference between groups

Decreased oxygenation Pa02:F102 decreased over time. No

significant differences between groups.

Decreased compliance Decreased in both groups over time. No

significant difference between groups

Table IV: Signs associated with potential rebound pulmonary hypertension and

occurrence during experimentation.

7.1.2 Effects of continuous NO versus control groups

Our initial assessment was a comparison of the effects of continuous NO versus

control groups (see attached article, Appendix II, “Pre-emptive and continuous

inhaled NO counteracts the cardiopulrnonary consequences of extracorporeal

circulation in a pig model”). The conclusion of this study was that inhaled NO

had no long-term beneficial effect on lung mechanics and surfactant homeostasis

despite improving lung hemodynamics, inflammation and oxygenation, and that
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the use ofpre-emptive and continuous inhaÏed NO therapy has protective and safe

effects against lung ischemial reperfusion associated with CPB.

7.1.3 Effects of continuous versus weaned INO groups

Comparisons over time for each variable in both the continuous and weaned INO

groups revealed several resuits of interest.

7.1.3.1 Hemodynamic data

MPAP: both groups showed a significant increase over time (figure 3). This

change is likeiy due to the increasingly present effects of VILI and the systernic

inflammatory response to CPB. It shouid be noted that continuous INO, when

cornpared with animais flot receiving INO, showed a statisticaiiy significant

beneficial effect (Iower value for MPAP; see attached paper, Appendix II). The

lack of significant differences between groups highiights the safety of the

weaning protocol employed.

PVR: There was no significant difference between groups.

A significant effect of tirne was detected in both groups. The likely reason behind

this change is as explained above for MPAP; VILI has been demonstrated to

cause pathological changes similar to ALT! ARDS20° and would therefore

contribute to the deleterious effects of a systemic inflammatory response to CPB.

The two components of MPAP are CI and PVR, Therefore the absence of

difference in CI induced in either group explains that the change in MPAP

observed is a resuit of alteration in pulmonary vasoconstriction. Using the

ventilation strategy employed in our study, VILT was unavoidabie, though it was

out with the aims of the study to employ protective ventilation strategies. More

work stili rernains to be done on the protocois of such strategies and with our

model a change in ventilation protocol would have been necessary as soon as

signs of VILI emerged (difficuit to distinguish from inflammation in response to

CPB) and introduced variability whilst interfering with the desired controlled

delivery of INO. furthenore, a study examining the effects of INO in a

ventilated (using a very simiiar ventiiatory strategy to ours) porcine model
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without surgicai interference, found stability in both hemodynamic and

respiratory parameters over time, suggesting a minor contribution from VILI.201 It

is unclear why PVR was at a lower, aibeit non significant level at TO (P = 0.29)

and T5 (P 0.15) in the weaned group, compared with the continuous INO group.

And also, why there was a significant difference between groups at T4 and T24.

Two surprising resuits were with CI and SVR.

CI: there was a significantly higher Clin the weaned group cornpared with the

continuous [NO group at ail tirnepoints. However, looking at TO, the weaned

group was at a higher level of CI. The effect of termination of CPB induced a

similar decrease in Clin both groups. As the continuous INO group had a lower

CI at TO, the overail effect, despite a similar decrease post-CPB, was a lower CI at

ail time points compared with the weaned [NO group. Indeed, the INO weaning

process did flot induce a greater degree of CI depression despite the theoretical

fact that the initiaiiy higher value of Clin the weaned INO group, could rnagnify

any subsequent difference between groups.

SVR: there was a significantly higher SVR in the continuous lNO group

compared to the weaned group. In both groups there was a pattern to a sharp

decrease in SVR irnmediateiy foilowing tennination of CPB, followed by an

increase, then decrease in SVR over the remainder of the experirnent. This was

likeiy due to a variable other than the localized effects of [NO. A systemic

inflamrnatory response would be associated with vasodilatation and a decrease in

SVR. The greater level of SVR in the continuous [NO group is in accordance with

the lower CI seen in this group. A greater degree of vasoconstriction was required

to maintain a stable MAP (no significant difference between groups). A greater

degree ofvasodilation was not observed in the weaned [NO group.

Another possibiiity is that the time of increase (T6- T7.5) reflected a time of

instability following CPB, associated with the use of vasoconstrictors (as

standardized in the Methodology section and to be used as required).

MAP: there were no significant differences in MAP between groups. There was a

significantly lower MAP in both groups over time compared with TO. The

observed decrease following end of CPB was as a result of the systemic effects of
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CPB. However, any difference was artificially maintained above an MAP of 60

mm Hg in accordance with experimental protocol.

7.1.3.2 Respiratory data

0f the respiratory data, oxygenation was assessed by the Pa02:f102 ratio.

The Pa02:F102 ratio decreased over time in both groups to similar degrees and

over a sirnilar tirne frame. These changes are unlikely to be due to INO weaning.

If weaning were to have had an effect, a difference would be expected more

acutely at T4. The effect of the ventilatory strategy used and the likely occurrence

of VILI, in conjunction with a systemic inflamrnatory response may explain the

changes seen over time in both groups. Though any benefits of TNO appear

limited over time in our model, it is clear there are benefits with the use of iNO

compared with controls groups (see attached paper, “Pre-emptive and continuous

inhaled NO counteracts the cardiopulmonary consequences of extracorporeal

circulation in a pig model.” [Appendix II]).

Lung compliance: although there were no significant differences between

groups, compliance decreased significantly over time in both groups, again

reflecting the cornbined effects of VILI in conjunction with the systemic

inftammatory response. It should be noted that weaning of iNO did flot resuit in a

further decrease in compliance compared with the continuous INO group.

Moreover, as observed previously (Appendix II), ll’10 treatment does flot

counteract the progressive decrease in compliance following CPB.

Physiologic Shunt: no significant differences were detected between groups.

However there vas a significant decrease in shunt at T4 compared with TO. This

is likely due to the beneficial effect of INO (see Appendix II).

7.2 Ventilator-induced tung injury (VILI)

VILI is a well documented syndrome20° whereby barotraurna202204 and

biotrauma205 can lead to lung injuries in normal lungs functionally and

histologically similar in appearance to ALT and ARDS204 in animal models.

furthermore, damage in already injured lungs is likely to be increased; the range
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of compliance found in lungs with ARDS favours further damage as a resuit of

traditional mechanical ventilation.206 The counterpart of VILI in humans is

ventilator-associ ated lung inj ury (VALI) 207

7.2.1 Pathophysiology ofVILI

VILI is associated with alveolar hemo;ihage, hyaline membrane formation,

pulmonary edema and inflammation, atelectasis, hypoxemia and the release of

inflammatory mediators.207’208

Protective ventilation strategies, as presented below, have a beneficial effect in

patients with ALI and ARDS. The main determinants of VILI are excessive tidal

volume and! or end-inspiratory alveolar volume.207 However, the mechanisms

underlying VILI and therefore the means of improvements are yet to be fully

understood.

Alveolar epithelial plasma membrane stress failure as a resuit of mechanical

stretch induced injury is an important basic mechanism of VILI.204 It occurs when

the supporting matrix of alveolar epithelial cells undergoes large defoniiations as

may occur with mechanical ventilation. Underlying lung lesions such as

atelectasis, as found in ALT] ARDS patients, may increase susceptibility to such

mechanical stress. The precise method of mechanical ventilation is important in

that deformation frequency, duration and amplitude play roles of varying

importance in causing injury, the inter-relationships are yet to be fully

understood209 though it lias been found that reducing the amplitude of

deformation through PEEP, decreased lung injury.203

Surfactant dysfunction and depletion, as occurs in ARDS and ALI leads to

alveolar instability, atelectasis and increased shear stress under ventilation. This

lias been documented in vivo tising video microscopy during ventilation of

normal and surfactant deactivated lungs.21° In normal lungs, the alveoli neyer

collapsed and there was littie change in volume. In the surfactant deactivated

lungs, alveoli collapsed, reopened and over distended during ventilation.

Subsequently, PEEP applied to surface deactivated lungs was found to reduce

alveolar size increases to control levels.21’
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Computed tomography demonstrated that the lungs of patients with ARDS is flot

uniformly damaged, leading to rnechanically driven air following a path of least

resistance within the lungs and causing alveolar over distension and bullae

formation.205

At a cellular level, over inflation resuits in alveolar epithelial212 and endothelial213

perrneability. This permeability follows from increases in intracellular calcium

through stretch-activated ion channels leading to the involvement of tyrosine

kinases, activation of the calcium-calmodulin pathway and phosphorylation of the

myosin light chain.20° Such biochemical evidence indicates more than rnerely

physical damage as a cause for increased permeability.

Conventional mechanical ventilation in both intact lungs and those with ALT leads

to the recniitment and activation of inflammatory ceils (primarily neutrophuls and

macrophages).204’214 Such recrnitment, via pro-inflammatory cytokines, is an

important aggravating factor in VILI. A large number of animal studies using

cytokine receptor antagonists, antibodies, detection of cytokines in BAL and gene

expression have uncovered the involvement of interleukin-1, interleukin-$,

transforming growth factor-beta and interleukin-6 in leukocyte recruitment and

700subsequent VTLI:

For some time, there lias been interest in the possibility of

decornpartmentalization, whereby VALI contributes to systemic inflammation

and MODS through loss of the compartmentalization! localization of

inflammatory mediators and bacteria to the lungs.215’216 However, clinical

evidence of this hypothesis is sparse. The recent prospective, randomized,

multicenter trial investigating the effects of low tidal volume and plateau airway

pressure on ARDS patient mortality also demonstrated a reduction in plasma TL-6,

highlighting the possibility of a link between improved mortality and levels of

inflammatory mediators.207

Tn summary, it remains that the improvement in mortality rates over the last 30

years have resulted solely from alterations in mechanical ventilator strategy, with

strong evidence now backing up clinical practice.207 Undoubtedly, mechanical

ventilation lias more than a physically injurious effect on the pulmonary system
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but a clear link between cytokines, resultant inflammation, and pulmonary injury

possibly extending to systemic effects is yet to be clearly demonstrated.217’218

7.3 Conclusions

• Comparing weaned and continuous INO groups demonstrated no significant

difference between groups in pulrnonary vascular resistance, highlighting the

safety of a controlled weaning process.

• Changes in hemodynamic and respiratory parameters over tirne may reflect

the effects of systemic and localised (pulmonary) inflammation as a resuit of

an inflaminatory response to CPB and possibly VILI opposing any beneficial

effects ofINO.

Our experiments have effectively demonstrated the safety of careful weaning, but

were weak in describing contributions by other factors such as VILI, probably as

a resuit ofsmall sample size.
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Abstract
Post-pump syndrome is associated with systemic inflammation. Matrix
metalloproteinases (MMP)-2 and -9 contribute to pro-inflammatory and
platelet-activator reactions. Nitric oxide is involved in regulation of MMPs.
The objectives of our study were to investigate the intensity of inflammation
induced by three different surgical procedures, its effects on the activity of
MMPs and its regulation by inhaled nitric oxide (20 ppm). Inhaled nifric oxide
was initiated immediately after tracheal intubation and maintained for total
duration of experiments. Thirty pigs were equally randomized into 6 groups
[sham; sham + nitric oxide; cardiopulmonary bypass; bypass + nitric oxide;
bypass + lipopolysaccharide (1 1g/Kg for 50 mm); bypass +
iipopoiysaccharide + nitric oxide] and animais were subjected to anesthesia
and mechanicai ventilation up to 24 hours. The levels of MMP-2 and MMP-9
in plasma and bronchoalveolar lavage were measured using zymography.
Bypass resulted in a time-deperident rise in MMPs activity, an effect
potentiated by lipopolysaccharide. Inhaled nitric oxide attenuated the effects
of bypass + lipopolysaccharide. These resuits confirm that MMP-2 and MMP
9 are associated with the inflammatory process causing the post-pump
syndrome. Pre-emptive and continuous administration of inhaled nitric oxide
helps to prevent increased MMP-2 and MMP-9 activity.
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Matrix—metalloproteinases (MMPs) are zinc-dependent
endopeptidases, known for their ability to cleave one or several constituents of
the extracellular matrix. Zymogen forms of the MMPs (pro-MMPs) are
secreted in the matrix from a large number of celis types such as epithelial,
endothelial or smooth muscle celis [1,2). Activation of the pro-MMPs in the
local environment can resuit in discrete alterations in tissue architecture and
their main role is physiologic tissue remodeling during wound repair and
growth development [1]. Several studies have showri that extracellular matrix
degradation by MMPs, specifically MMP-9, is involved in the pathogenesis of
a wide spectrum of cardiovascular disorders, including atherosclerosis,
restenosis, cardiomyopathy, congestive heart failure, myocardial infarction,
aortic aneurysm and post-pump syndrome [3-5]. The major physiologic
inhibitors of the MMPs in vivo are Œ-2 macroglobulin and the family of
specific tissue inhibitor of MMPs (TIMPs), naturally occurring proteins
specifically inhibiting these proteases and produced by many celi types. The
TIMPs bind with high affinity in a 1:1 molar ratio to the catalytic site of active
MMPs, resulting in loss ofproteolytic activity, particularly TIMP-l to 72-kDa
(MMP-2) and 92 kDa (MMP-9) gelatinases. Moreover, TIMP-1 and TIMP-2
can form a specific complex with pro-MMP-9 and pro-MMP-2, respectively.
This interaction has been suggested to provide an extra level of regulation by
potentially preventing activation. The production of gelatinase is controlled by
a variety of agents including pro-inflammatory cytokines, such as interleukin
l-f3 and tumor necrosis factor-Œ [61.
Since the early days of cardiac surgery, it has been recognized that
cardiopulrnonary bypass (CPB) is associated with systemic inflammation,
occasionally leading to major organ dysfunction. When organ dysfunction
cannot be directly attributed to a specific cause, such as infection or ischemia,
the concept ofthe “post-pump syndrome” or “systemic inflammatory response
syndrome to CPB” is used as an alternative explanation [7]. Reduced arterial
oxygenation is a common complication of the post-pump syndrome [8]. In a
study of 400 patients undergoing a variety of cardiac surgeries with CPB,
there was a 40% decrease in dynamic lung compliance within the first 4 hours,
and in alveolar-arterial oxygen gradient (from 296 at intensive care unit anival
to 152 at 12 hours and 181 mmHg at 24 hours) [9]. Acute respiratory distress
syndrome (ARDS), the most severe form of lung dysfiinction with a
Pa02/Fi02 ratio below 200 nmiHg, has an incidence rate after CPB of 0.5 to
1.7 % with mortality reported to be between 40 to 60% or higher [7,10].
Numbers of studies have associated the release of gelatinases with CPB and
pulmonary injury [4,11-14]. During and afler CPB in humans, these MMPs are
synthesized and released in plasma [li-13] and in heart tissue (right atrial
biopsy specimens) [13]. In addition, MMP-2 and MMP-9 levels are increased
in bronchoalveolar lavage (BAL) of ARDS patients [14]. In experimental
conditions, isolated rat hearts submitted to ischemia-reperfiision have
hightighted the deleterious role of MMP-2 in the recovery of mechanical
function during reperfusion [15]. In an animal model of CPB-induced acute
lung injury (ALI) the importance of MMPs (-2 and -9) was demonstrated
when ail pathological changes typical of ALI after CPB were prevented by
usïng a chemically modified tetracycline, a potent MMP and elastase inhibitor
[4].
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Usually, nitric oxide (NO) inhalation improves hypoxemia in ALI / ARDS
patient [16]. The mediator NO has been suggested to have anti-inflammatoiy
properties. It inhibits the release of cytokines and prevents the expression of
adhesion molecules in endothelial ceils, smooth muscle celis, leukocytes and
platelets [17,18]. The administration of a NO donor (S-nitroso-glutathione)
during CPB reduced the Ca2-independent activity of NO synthase (NOS)
[19]. furthermore, NO donors and prostacyclin inhibited the secretion of
gelatinase A (MMP-2) induced by collagen and thrombin in intact platelets,
indicating that enzyme release is controlled by both compounds [20]. On the
other way, pre-emptive infusion with a NO scavenger decreased gelatinases
activities in the lung, lefi ventricle and atrium in a canine CPB model [21].
With use of a non-selective NOS and soluble guanylate cyclase inhibitors, it
was suggested that NO and cyclic GMP are necessary to up-regulate the
expression ofMMP-9 [22].
Our objective in this study was first to measure the activity of MMP-2 and
MMP-9 in sham-operated pigs and in animals subjected to CPB in the
presence or absence of lipopolysaccharide (LPS). Acute lung injury / ARDS
affer CPB can develop after consecutive minor insults, with CPB acting as the
initial inflammatory event [23]. A short period of CPB alone is rather
innocuous, but when combined with a subsequent, seemingly benign insult
(i.e., transient hypoxia, ischemia, endotoxemia with a low dose of LPS), the
resuit is an overwhelming inflammatory response leading to endothelial injury,
pulmonary edema, and ALI / ARDS [24]. We also aimed to examine if pre
emptive administration of inhaled NO exerts significant effects on MMPs
activity in our anesthetized and mechanically ventilated porcine model of
extracorporeal circulation [25].
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Experimental procedures

This study was performed with the approval of the institutional animal care
committee in compliance with Canadian Council on Animal Care guidelines.

Animais and experimental protocol

Thirty acclimated, 4-month old hybrid (Pietrain x Landrace) castrated male
pigs (37.2 ± 2.5 Kg), free from clinically evident pulmonary disease were
randomized into six groups of five animals. The first (sham) group vas
submitted to stemotomy with a 90-minute pericardial opening, followed by
closure. The second (CPB) group was subjected to 90-minute CPB with 75-
minute aortic clamping. The third (CPB + LPS) group vas subjected to the
CPB procedure as above, plus receiving an infusion of 1 ig/Kg of E. cou LPS
0111:34 (Sigma-Aldrich; Stockholm, Sweden) mixed in 100 ml of isotonic
saline and delivered at a flow rate of 120 ml/hour during 50 minutes
commencing one hour post-operatively [23]. Fourth (sham + inhaled NO),
fifth (CPB + inhaled NO), and sixth (CPB + LPS + inhaled NO) groups were
submitted to the same procedure as their respective controls plus the
administration of 20 parts per million inhaled NO, initiated immediately after
induction of anesthesia and maintained for the surgery and the whole 24 hours
follow-up penod.
Experimental set-up, ventilation strategy, CPB and inhaled NO administration
(20 parts per million) were performed as previously described by our group
[25]. We have selected a dose of inhaled NO (20 parts per million), as this
dose causes a significant pulmonary vasodilatation [26], whilst ensuring an
inspired fraction of NO2 below 1 part per million with our synchronized
intermittent mandatory ventilation system of NO administration [27].
Pigs were premedicated intramuscularly with atropine (0.04 mg/Kg),
azaperone (4 mg/Kg) and ketamine (25 mg/Kg), and anesthesia induced with
intravenous (auricular vein) fentanyl (5 Ig/Kg) and thiopental (5 mg/Kg).
Afier intubation with an 8 mm ID endotracheal tube (Mallinckrodt Company,
Mexico City, DF, Mexico), the pigs were placed in a supine position.
Anesthesia was maintained by continuous infusion of thiopental (5 mg/Kg/h)
and fentanyl (20 1g/Kg/h). Muscle relaxation was induced with 0.2 mg/Kg
pancuronium with intermittent re-injection (0.1 mg/Kg) to achieve optimal
surgical and ventilatory conditions. Afier endotracheal intubation, 20 ppm of
NO gas was injected cyclically into the inspiratory line during the inspiratory
phase by a NO injector for 24 hours. A 1,000 ppm NO balanced N2 cylinderTM
was obtained from VitalAire Santé Ltd. (Montreal, Quebec, Canada). The NO
and NO2 concentrations delivered to the animals were monitored with an
electrochemical device (Polytron N0/NO2Tt, Drager A.G., Lubeck,
Germany). During CPB, NO vas added directly to the gas mixture delivered
to the oxygenator. Hemodynamic and respiratory monitoring was constant and
for the whole (24 hours) duration ofthe experiment [28].
CPB materiats andprocednre
A median stemotomy vas performed, and at the time ofpericardial opening an
intravenous injection of heparin (4 mg/Kg) was given to achieve an activated
clotting time > 400 seconds. An aortic cannula (20 french; Chase Medical
Inc., Richardson, TX, USA) vas placed in the aortic root followed by
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placement of a multiple hole venous drainage cannula in the caudal vena cava
via the right auricular appendage. A cardioplegia cannula (9 French;
Medtronic Inc., Grand Rapids, MI, USA) was then placed in the aortic root
proximal to the aortic valve, enabling cold blood cardioplegia. The CPB
circuit consisted of a membrane oxygenator (Tnllium Affinity NT
oxygenatorT, Medtronic Inc., MN, USA), a cardiotomy reservoir (Affinity
NT54lT’, Medtronic Inc., Minneapolis, MN, USA), a filter (Affinity 351TM,

Medtronic Inc.), tubing and a SamsT roller pump (Sams Inc., Ann Arbor, MI,
USA). The circuit was primed with 1,500 mL lactated Ringer’s solutionTM
(Baxter Corporation, Toronto, Ontario, Canada), 500 mL PentaspanTM
colloidal fluid (DuPont Pharma Inc., Mississauga, Ontario, Canada), 1 meq/Kg
sodium bicarbonate, 5,000 lU heparin, and 200 mL mannitol.
Cardiopulmonary bypass was initiated at a flow rate of 3.0 L/min/m2 and
blood temperature was decreased to 32°C. Following aortic clamping, cardiac
arrest was induced by continuous hyperkaliemic cold blood cardioplegia (8°C
to 12°C) through the aortic cardioplegia cannula at a flow rate of 500 mL/min,
not exceeding a perfusion pressure of 100 mm Hg. Heart temperature
measured by a temperature probe placed in the lefi ventricular myocardium
was maintained below 15°C tlwoughout the procedure. Pulmonary capillary
wedge pressure was kept less than 15 mm Hg by intermittent interruption of
cardioplegia and cardiac decompression through the cardioplegia aortic
cannula. Mean systemic arterial blood pressure (mSAP) was maintained
between 50 and 65 mm Hg by adjustment to die flow rate, plus a bolus of
phenylephrine [0.5-1 mL (0.1 mg/mL)] if required. Arterial partial pressure of
carbon dioxide (PaCO2) was maintained between 40 and 50 mm Hg by
adjusting fresh gas flow. The aorta vas clamped for 75 min. Blood re
warming commenced 10 min pnor to aortic de-clamping using water at 3 8°C.
Following aortic clamp removal, the heart was electrically defibrillated (20
joules) as ventricular fibrillation is obseiwed in most pigs afier reperfusion
[25]. The cardioplegia was stopped and the animals were subsequently weaned
from CP3 once rectal temperature was above 3 5°C. The total length of CPB
xvas at least 90 min. Intravenous protamine (1 mg/100 lU heparin) normalized
activated clolling time. Hemostasis was performed after removal of the CPB
cannulae, thoracic drainage placed under negative pressure, and the chest was
closed. Blood from the CPB circuit was subsequently transfused.

At TO (just before chest opening), T4 (2 hours post-CPB) and T24 (22 hours
post CPB), blood and BAL samples were collected for the measurement of
MMPs. Fiberoscopy was undertaken for BAL with isotonic sterile saline
solution injected as 3 aliquots of 25 ml. Lavage vas performed at TO in the
right accessory lobe, T4 in the lower left lobe, and T24 in the lower right lobe.
The total recovered BAL samples (kept at 4°C throughout procedure) were
filtered, centrifuged for 8 min at 1 SOxg to separate the surfactant (supematant)
from cells and cellular debris. Five (5) mL of the supematant was divided into
500 jiL aliquots and frozen at -80°C for further analysis (IL-8 [29,30]; TNF-Œ
[30]; MMPs). Total celi count in BAL was achieved by the hemocytometer
method.

MMP-2 and MMP-9 analysis
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The release ofMMP-2 and MMP-9 during CPB was measured by zymography
as described previously [20,31]. This method has been validated for the MMP
measurement in humans and in a canine model of CPB [13,21]. Briefly,
zymography is performed by subjecting samples (20 ig protein each) to 8%
SDS-PAGE with copolymerized gelatin (2 mg/ml; Sigma, St-Louis, MO) as a
substrate. After electrophoresis, the gels are washed with 2% Triton X-100,
and then incubated in buffer (50 mM Tris-HC1 buffer with 0.15 M NaC1, 5
mM CaCI2, and 0.05% NaN3, pH 7.5) at 37°C until the activities of the
enzymes can be determined. After incubation, the gels are stained with 0.05%
Coornassie brilliant blue G-250 (Sigma, St-Louis, MO) in a mixture of
methanol: acetic acid: water (2.5:1:6.5) and destained in 4% methanol with
8% acetic acid. The gelatinolytic activities are detected as transparent bands
against the background of Coomassie brilliant blue-stained gelatin. Enzyme
activities are quantffied using a gel documentation system (Bio-Rad
Laboratories, Mississauga, ON) and expressed as specific activity per
milligram ofproteins (UI/mg proteins) [20,31].

Statistical analysis

The comparison of MMP-2 and MMP-9 activities between experimental
groups was done using Kruskall-Wallis and Mann Whitney tests with Dunn’s
correction for post Ïîoc analysis. Time-courses of this release were compared
using Friedman test. Where significance was found in this infra-group
comparison, a Wilcoxon test vas used for post hoc analysis, followed by
Dunn’s correction. The level of statistical significance was set at 0.05 before
correction and data are presented as mean ± standard deviation.
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Resuits
Inter-groups comparison

In plasma, the rise of MMP-2 activity occurred at time 124 in pigs submitted
to CPB versus sham (p <0.05) (fig 1A,B) and to CPB + LPS versus sham at
time T4 (p <0.01) (Fig lA) and T24 (p <0.05) (Fig lB). The rise ofMMP-9
activity was significantly higher after CP3 + LPS versus sham and CPB at
time T4 (p <0.01) (Fig 2A). The difference was no more present at time T24.
In BAL, MMP-2 activity increased significantly in pigs submitted only to CPB
+ LPS versus sham at time T4 (p <0.01) (Fig 1C) and at time 124 (p <0.01)
(Fig 1D). The rise of MMP-9 activity was significantly higher in pigs
submitted to CPB + LPS versus sham (p <0.01) at time T24 (Fig 2D).

Ti,ne- dependent effect ofthe insutt on MMPs for each group

In BAL and plasma, there was no difference in time for MMP-2 and MMP-9
in the sham group without or with inhaled NO.
The MMP-2 activity increased in BAL over time in the CPB group at time T4
compared to time TO (ns) and at time T24 versus time TO (p <0. 01) (Fig 3);
this effect vas also present in the CPB + LPS group (p < 0. 05 at time 124
versus time TO) (Fig 4). Activity of MMP-9 increased significantly over time
in BAL in the CPB group at time T24 versus time TO (p <0. 05) and in CPB +

LPS group at time T24 versus time T4 (p <0. 05).
In plasma, MMP-2 also demonstrated an increased activity over time in both
CPB (p <0. 01 at time T24 versus time TO) (Fig 3) and CPB + LPS groups (p
<0. 01) at time T24 versus time 10) (Fig 4). In plasma, the rise of MMP-9
activity occurred in the CPB + LP$ group at time 14 versus 10 (p <0. 05)
then MMP-9 activity retumed to the initial value at time T24.

Effect ofthe procedure
The sham procedure did not induce any change in MMPs.
The CPB alone induced an increase ofMMP-2 activity in plasma and BAL at
T24, and ofMMP-9 only in BAL at T24. This was corroborated by the
statistically significant comparison between sham and CPB groups at T24 for
MMP-2 in plasma.
The CPB + LPS procedure similarly induced an increase ofMMP-2 and
MMP-9 activity in BAL at T24, and ofMMP-2 in plasma at the same time.
Moreover, an increase in MMP-9 was observed in plasma for this group at 14,
but was no more present at T24. This was corroborated by the statistically
significant comparison between sham and CPB + LPS groups at T4 and T24
for MMP-2 in plasma and BAL, and for MMP-9 in plasma at T4 and in BAL
at T24.

Effect ofinhaled NO (fig 1, fig 2)

In sham group, MMP-2 and MMP-9 activities were not changed with inhaled
NO both in BAL and in plasma at time T4 and time T24.
In the CPB group, the rise of MMP-2 activity in BAL was significantly higher
compared to CPB + inhaled NO group at time T24 (p <0. 05) (Fig 1D). In
plasma, the rise of MMP-2 activity was also significantly higher in the CPB
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group compared to CPB + inhaled NO at time T4 (p < 0. 05) (fig lA) and
time 124 (p <0. 05) (Fig lB). These differences were flot found for MMP-9
activities both in BAL and in plasma.
In CPB + LPS group, the rise of MMP-2 activity in BAL was significantly
higher in CPB + LPS group compared to CPB + LPS + inhaled NO at time 14
(p < 0. 05) (fig 1C) and time T24 (p < 0. 05) (Fig 1D). This effect was
significant for MMP-9 activity in BAL only at time T24 (p <0. 05) (fig 2D).
In plasma, the rise of MMP-2 activity was significantly higher in the CPB +

LP$ compared to CPB + LPS + inhaled NO group at time 14 (p <0.05) (Fig
lA) and T24 (p <0.05) (fig lB). This effect was not found for MMP-9.

Ce!! count in BAL and leukocyte cottnt in bÏood

There was no change in the BAL celi count over time neither in the three
inhaled NO-treated groups, or in the sham group. However, at 124, the BAL
ceil count was statistically higher compared to TO in both CPB (p 0.007) and
CPB + LPS (p = 0.02) groups. The increased value at 124 in CPB and CPB +

LPS groups vas higher than the value in the sham group (p < 0.03). The
difference between control groups and inhaled NO-treated groups did not
reach statistical significance (p = 0.09) at T24.
Moreover, the neutrophil differentials in BAL were also greatly augmented (p
<0.05) at T24 in the CPB (+206%) and CPB + LPS (+244%) groups, but were
lower in the inhaled NO treated animals without reaching statistical
signfficance. No similar difference could be observed for monocytes or
lymphocytes in BAL. The CPB + LPS procedure had a significant effect on
the blood leukocyte count over time: whereas it decreased with time in the
sham and CPB (p = 0.004) groups, it increased in the CPB + LPS group. In the
sham and CPB groups, leukocyte count decreased over time respectively from
18.9 ± 5.1 i03 / mm3 at time TO to 13.7 ± 1.6 i03 / mm3 at time 124 and 22.4 +

5.5 l0 / mm3 at time TOto 13 ± 1.6 i0 / mm3 at time 124. In the CP3 + LPS
group, leukocyte count increased from 16.7 + 3.5 i03 / mm3 at time 10 to 18.9
+ 7.3 i03 / mm3 at time 124. Moreover, inhaled NO had no effect on blood
leukocyte count over time.
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Discussion

The post-pump syndrome constitutes a model of systemic and local
inflammatory reactions with cellular (leukocytes, platelets, endothelial celis)
activation and the release of pro-inflammatory cytokines and enzymes
mediating acute inflammation and organ injury [7,24]. We have developed a
porcine model to study the gelatinase activity afler CPB and their potential
implication in the associated inflammatory response.
As CPB constitutes only an initial stimulus not systematically associated with
consequences, inflamrnatory reaction was potentiated with subsequent LPS
infusion. At 1 ig/Kg for 50 mm, LPS in association with CPB increases the
inflammatory reaction to induce a reai post-pump syndrome and at this dose, it
does not induce ALI alone [4,23,24].

Inhaled NO decreases neutrophil and piatelet activation and inhibits neutrophil
function in ischemia / reperfusion [32] and ARDS [33] conditions. Moreover,
combined therapy with NO gas (20 ppm) and iloprost (a stable anaiog of
prostacyclin, 2 ng/Kg/min) reduced the deleterious effects of CPB in human
patients, such as thrombocytopenia, platelet activation, platelet-leukocyte
aggregate formation, and suppression of platelet aggregative responses [34].
This resuit was in agreement with previous demonstration of a possible
beneficiai effect of NO donors to inhibit the Ca2-independent activity of NOS
increased after CPB [19], or the secretion of MMP-2 [20]. In the same time,
inhibition of the NO pathway decreased the MMP-2 and —9 activities afler
CPB [21] and prevented the up-regulation ofMMP-9 [22]. As neutrophils and
platelets are implicated in the physiopathoiogy of post-pump lung syndrome
and release of gelatinases, we have studied the effect of inhaled NO on MMP
2 and MMP-9 activity in plasma and BAL in pig submitted to sham operation,
CPB and CPB + LPS. We hypothesized that the post-pump syndrome could be
induced by an initial deficiency in endogenous NO in relation with the non
puisatile blood flow generated by the CPB machine, decreasing the shear
stress, source of endothelial NOS stimulation. Deficient NO production affects
the inflammatory cascade, allowing the vascular adhesion of inflammatory
ceils primed by contact with the extracorporeal circuit. hideed, tve have
observed with the same model decreased levels of nitrite, nitrate (NOx), stable
plasma metabolites of the endogenous NO production in ail three groups
treated without inhaled NO (sham, CPB, CPB + LPS) [29,30]. This was not
the case in comparative groups treated with pre-emptive 20 ppm inhaled NO
in swine [29,30] and in human patient [35]. This initial deficit in endothelial
NO synthesis is particularly marked in older patients and could be judiciously
replaced by a pre-emptive administration of exogenous NO donor [19] or
inhaled NO [29,30,35] at low dose. The pre-emptive use of a NO donor
suppressed the increased Ca2-mndependent activity of iNOS observed afler
CPB [19] and the inhibition ofthe NO pathway decreased gelatinases activity
afler CPB [21]. Therefore, we speculated that NO replacement therapy could
blunt the consequences of induction of NOS activity and systemic
inflammation [35], leading to a decreased activity ofgelatinases.
The release of MMPs during CPB appears to be dependent on the intensity (as
reflected by the initial inflammatory insult induced by CPB and amplified by
repeated subsequent stimuli such as mechanical ventilation or the LPS
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perfusion) of the inflammatory stimuli. Indeed, in BAL and plasma, the levels
of MMP-2 and MMP-9 remained stable in the sham group over the 24 hours
period. In pigs submitted to CPB, MMP-2 activity increased only in plasma
after 24 hours, compared to the sham group. This could reflect the summation
of inflammatory stimuli induced initially by CPB and repeated by the
ventilator-induced lung injury under general anesthesia. In pigs submitted to
CPB + LPS, the increase in MMP-2 activity occurred both in plasma and in
BAL immediately after the end of LPS administration (at T4) and for a period
of 22 hours and was signfficantly higher than in the sham group. The rise of
MMP-9 activity was significantly higher in plasma afier LPS infusion (at T4)
compared to CPB group, but only occurred in BAL afier 24 hours compared to
the sham group. We can conclude that the LPS administration after CPB
constitutes a potent stimulus for the rise of the MMPs activities. Our data
confirm the resuits described by Camey et al. [4] and Picone et al. [23].
Interestingly the CPB + LPS group vas the only group that developed severe
physiological lung injury typical to ARDS associated to post-pump syndrome
[4,23,28]. This was corroborated by the greater release of MMPs in BAL and
blood, as well as the increase in leukocyte levels in blood.
Our results may be explained by the different expression pattems of MMP-2
and MMP-9. Whereas MMP-2 is constitutively expressed in various ceil types,
MMP-9 is strongly induced in epithelial cells by inflammatory cytokines,
particularly TNf-a [6,36]. Inflanmiatory conditions are also associated with
increased activation of oxidant-producing enzymes and NO, which could
directly affect MMP expression or activation [19—22]. The release of MMP-2
from intracellular reserve in plasma and BAL ceils may explain the precocious
rise of MMP-2 activity in plasma and in BAL. The same mechanism could
explain the rapid rise of MMP-9 activity in plasma. As a matter of fact,
infusion of LPS to healthy volunteers resulted in a rapid increase of plasma
MMP-9 activity, likely resulting from liberation of this gelatinase from
leukocytes, endothelium and vascular ceils [37]. However, the rise of MMP-9
activity in BAL appeared only afier 24 hours in our experiment. This time
allows for induction of expression ofMMP-9 [36]. This could also reflect the
role of the lung as end-organ to present the induced release of MMP-9 in
plasma with a lag time in BAL.
Inhaled NO abolished significantly the rise in MMP-2 activity in plasma affer
4 and 24 hours and in BAL afler 24 hours in CPB group without effect in
simm operation, whereas neither CPB alone or CPB + inhaled NO did affect
MMP-9. The effect ofinhaled NO was marked in the CPB + LPS group where
the rise in gelatinase activity was the highest. In this group, inhaled NO
abolished signfficantly the rise in MMP-2 both in plasma and BAL after 4 and
24 hours. The effect of inhaled NO on MMP-9 was not significant in plasma
(whereas MMP-9 increased in plasma at T4 for CPB + LPS) while this effect
was present in BAL afler 24 hours. As inhaled NO did flot (or minimally)
influence cells count, celis composition in BAL, leukocytes and platelets count
in blood, these results may be explained by the inhibition of the release from
intracellular stores or by a decreased induction of MMPs synthesis by cells.
Inhaled NO acted as an anti-inflammatory agent by decreasing neutrophil
numbers in BAL and its major chemoattractant, IL-8 [29,30], as well as
MMPs. Inhaled NO also increased cell apoptosis in the lungs during
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inflammatory conditions, which may explain, in part, how it resolves
pulmonary inflammation [29,30].
Okamoto, et al. [38] demonstrated that the inhibitory effects ofS-nitrosothiols
on MMP-9 expression were associated with diminished nuclear transiocation
and activation of NF-KB. NF-KB activation is involved in the induction of
various pro-inflammatory genes and is critical in inflammatory-immune
processes in the lung. Various studies have indicated that NO (or S
nitrosothiols) may regulate inflarnmatory processes by suppressing NF-KB
activation (e.g., in neutrophils or alveolar macrophages)[39,40]. Consequently,
the inhibitory effects ofS-nitrosothiols on MMP-9 expression may be caused
by inhibition ofNF-KB activation, and the effects on MMP-9 are most likely
flot specific but may be common to other Nf-icB—regulated genes [38].
Badly, neither Okamoto, et al. [38] or ourselves have measured the TIMP-l
level in plasma and BAL. To have a complete idea ofthe regulation ofMMP
activity, it would have been indicated to do it (but technically more difficuit),
particularly with the recent demonstration that exogenous NO has no
modulatory effect on the extracellular TIMP- 1 content but sfrongly amplifies
the early increase in cytokine-induced TIMP-l mRNA and protein levels [39].

We conclude that MMP-2 and MMP-9 may play a role in the pathogenesis of
inflammatory lesions encountered during the use of CPB procedure,
particularly when associated with a post-pump syndrome. Furthermore, the
release ofMMPs appears to be related to the severity ofinflammatory stimuli.
The pre-emptive, continuous administration of inhaled NO attenuates the rise
of MMP-2 and MMP-9 activity related to the inflammatory reaction. These
results, in association with the beneficial effects of inhaled NO on oxygenation
and pulmonary hemodynamics in the same pig CPB model [28], and the
reduced postoperative bleeding observed with the combined treatment of
inhaled NO and iloprost [34], suggest that the pre-emptive and continuous
administration of inhaled NO will have to be considered as a possible new
therapeutic option for patients subjected to CPB: before that, the exact
mechanisms of action have to be précised, as well as the clinical use including
selection of patients, starting and weaning conditions of the NO inhalation,
possible toxicity and side effects.
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Legends

Fig. 1. Variation of MMP-2 activity in BAL and plasma at time T4 and T24

versus 10 (%).

Intergroup comparison * p < 0.05 versus sham, # p < 0.05 versus group

without inhaled NO.

Fig. 2. Variation of MMP-9 activity in BAL and plasma at time 14 and T24

versus TO (%). Intergroup comparison * p < 0.05 versus sham, § p < 0.05

versus CPB, # p < 0.05 versus group without inhaled NO.

Fig. 3. MMP-2 activity in plasma and BAL in CPB group over time (UIImg

proteins).

# p <0.05 versus TO.

Fig. 4. MMP-2 activity in plasma and BAL in CPB + LPS group over time

(UI/mg proteins). # p < 0.05 versus TO.
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Appendix 2

Pre-emptive and continuous ïnhaled NO counteracts the
cardiopulmonary consequences of extracorporeal circulation in a
pig model.

Eric Troncy’, Bemard Hubert, Daniel Panga, Rame Tahab, Dominique Gauvin”, Guy
Beaucharnp’, Ruud A.W. Veidhuizen’, Gilbert A. Biaise’

Unit of Anaesthesiotogy/Pharmacology, Department of veterinary biomedicine,
Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Quebec,
Canada
b Laboratory of Anaesthcsia, Department of Anaesthesia, Centre Hospitalier de
l’Université de MontréaÏ, Notre-Dame Hospital, Montreal, Quebec, Canada

Department of Anaesthesia and Intensive Care Medicine, Centre Hospitalier
Universitaire de Liege, Belgi um.
d Department of Physiology, Lawson Health Research Institute, University of Western
Ontario, London, Ontario, Canada

CORRESPONDING AUTHOR:
Dr Gilbert A. Biaise,
Laboratory ofAnaesthesia, Deschamps Pavilion, Room FS-1136
CHUM-Notre-Dame Hospital, 1560 Sherbrooke street East
Montreal, (Quebec), H2L 4M1, Canada
Tel: (514) 890-8000 ext.25790; Fax: (514)412-7520

SOURCES 0f SUPPORT: The Canadian Institutes ofHealth Research Grant (CIHR
#6537) supported this work.

Abstract
Cardiopulrnonary bypass (CPB) activates a systemic inflammatory response
characterized clinicaily by alterations in cardiovascular and pulmonary function. The
aim of this study was to measure the cardiopulmonary consequences in sham
operated pigs, and in animais subjected to CPB in the presence or absence of
lipopolysaccharide (LPS). We aiso investigated, if the perioperative administration of
inhaled NO exerts significant cardiopulmonary effects in an anaesthetized and
mechanically ventilated pig moUd of extracorporeal circulation. Thirty pigs were
randomized into 6 equal groups (sham; sham + INO; CPB; CPB + INO; CPB + LPS;
CPB + LPS + INO) and subjected to anaesthesia with mechanicai ventilation for up to
24 hours. We found that CPB + LPS group has the highest degree oflung injury. We
also demonstrated that there vas a significant difference on the cardiovascular
parameters (heart rate, central venous pressure, stroke volume index, and mean
systemic arteria] blood pressure) between the CPB groups and the sham groups. The
deteriorated lung mechanics vas associated with a decrease in active subfraction of
surfactant (LA) with time during the procedure (P = 0.0003), on which inhaled NO
had only an initial beneficial effect. In our moUd, inhaled NO had no long-term
beneficial effect on lung mechanics and surfactant homeostasis despite improving
lung haemodynamics, inflammation and oxygenation. We conclude ftom this study
that the use of pre-emptive and continuous inhaled NO therapy has protective and
safe effects against lung ischemialreperfusion associated with CPB.
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Cardiopulmonary bypass (CPB) is the most common means of enabling cardiac
surgery. Approximately 750,000 cases of cardiac surgery with a CPB period are
performed annuailyin North America [1].
Postoperative lung dysfunction is a common complication afier CPB [2-4]. For up to
75,000 of these patients, the procedure induces an inflammatory process that results
in acute pulmonary injury, namely acute lung injury (ALT) and the more extreme
form of this syndrome, acute respiratory distress syndrome (ARDS) [5]. The general
incidence of ARDS is 1-3% with a mortality of 30-50%, whilst the incidence of ALT
after CPB is five times higher [6-8]. The risk of development and severity of ALI
have been positively linked to CPB duration [9].
Pulmonary dysfunction below the threshold of ALI classification occurs in 12% of
patients and includes ventilation!perfusion (V/Q) mismatch, reduced oxygenation
index and reduced lung compliance [10].
Nitric oxide (NO) inhalation improves hypoxaemia in ALI/ARDS patients [11,12].
Tnhaled NO decreases elevated pulmonary arterial pressure (PAP). It reduces right
ventricle afterload as in cases of pulmonary embolism [13], heart anWor lung
transplantation [14] and various high-risk cardiac procedures involving coronary
artery bypass grafting [15,16], Fontan-type operation [17], andlor lefi ventricular
assist device placement [18,19]. It improves hypoxaemia by reducing intra
pulmonary shunt, and optimizing V/Q matching. Moreover, NO inhalation is
associated with: (i.) a decrease in pulmonary neutrophil and platelet sequestration in
animal models with acute pulmonary injury [20-24] and, (ii.) a decreased secretion of
oxidative substances by neutrophils during ALTIARDS, suggesting that the
deleterious effects induced by neutrophils could be reduced [25]. Inhaled NO can also
inhibit the infiammatory process by reducing cytokine synthesis and inactivating
nuclear factor—KB [26-28], and by decreasing the expression of adhesion molecules,
preventing neutrophil adhesion and migration. The Main effects of inhaled NO are
locahsed to the lung, e.g. on leukocytes trapped in the pulmonary area. However,
through carnage by blood borne moiccules to the general circulation, inhaled NO also
has extrapulmonary effects [29,30].

The relationship between the severity of CPB-induced inflammatory response and the
cardiopulmonary complications has not been established yet. Our objective in this
study was twofold: Firstly, to measure the cardiopulmonary consequences in sham
operated ptgs, and in animais subjected to CPB in the presence or absence of
lipopolysaccharide (LPS); Secondly, to examine if the perioperative administration of
inhaled NO exerts significant cardiopulmonary effects in an anaesthetized and
mcchanically ventilated porcine model of extracorporeal circulation [31].

xl



xli

Experïmental procedures

This study tvas performed with the approval of the institutional animal care
comrnittee in comphance with Canadian Council on Animal Care guidelines.

Animais and experimentaiprotocol

Thirty acchmated, hybrid male pigs (mean ± SD; 37.15 ± 2.48 Kg), ftee from
clinically evident pulmonary disease were randomized into six groups of five
animais. The procedure vas similar for ail pigs. After induction of anaesthesia and
instrumentation, a 15-min period vas allowed for stabihzing haemodynamic and
blood gas parameters, at which point data tvas recorded as baseline values (Tse).
Over the next 2-2.5 hours, the surgical procedure tvas performed, the end of which
vas recorded as T0: the first group (sham) vas submitted to stemotomy with a 90-min
pericardial opening, foliowed by surgicai site closure; the second group (CPB) vas
subjected to 90 min CPB with 75-min aortic clamping; the third group (CPB + LPS)
was subjected to the CPB procedure as above, plus an infusion of I .tg/Kg of E. cou
LPS 0111 :B4 (Sigma-Aldrich; Stockholm, Sweden) mixed in 100 mL of isotonic
saline and delivered at a flow rate of 120 mL/h over a 50 min period [32], which
commcnced one hour post-operatively, i.e. ftom T1 to T1 8 Fourth (sham + INO), flfth
(CPB + ll’10), and sixth (CPB + LPS + INO) groups were submitted to the same
procedure as their respective controls plus the administration of 20 parts per million
(ppm) inhaled NO, initiated immediately after induction of anaesthesia and
maintained for the surgery and the entire post-operative period, which ended at T22,
i.e. 24-hours after Tbase.
Experimental set-up, ventilation strategy, CPB and inhaled NO administration (20
ppm) were performed as previously described by our group [31]. The dose ofinhaled
NO (20 ppm) vas se]ected to achieve significant pulmonary vasodilatation [33],
whilst ensuring an inspired fraction of NO2 beiow I ppm with our system [34]. Pigs
were premedicated intramuscuiariy with atropine (0.04 mg/Kg), azaperone (4 mg/Kg)
and ketamine (25 mglKg), and anaesthesia induced with intravenous (auricular vein)
fentanyl (5 ig/Kg) and thiopental (5 mg!Kg). Afler intubation with an 8 mm ID
endotracheal tube (Mallinckrodt Company, Mexico City, DF, Mexico), the pigs were
placed in a supine position. Anaesthesia vas maintained by continuous infusion of
thiopentai (5 mglKg’h) and fentanyl (20 j.tg!Kg/h). Muscle relaxation was induced
with 0.2 mglKg pancuronium with intermittent re-injection (0.1 mglKg) to achieve
optimal surgicai and ventiiatory conditions. Afler endotracheal intubation, 20 ppm of
NO gas was injected cychcafly into the inspiratory une during the inspiratory phase
by a NO injector for 24 hours. A 1,000 ppm NO baianced N2 cyiinderTM was obtained
from VitalAire Santé Ltd. (Montreal, Quebec, Canada). The NO and NO2
concentrations dehvered to the animais were monitored with an electrochemicai
dcvice (Polytron NO/NO2Tt, Drager A.G., Lubeck, Germany). During CPB, NO was
added directiy to the gas mixture delivered to the oxygenator.

IIaenioc1ynan ic mollitoring and support

Monitoring tvas by continuous ECG, rectal temperature, urine output (Foiey catheter
piaced by cystotomy), and systemic arterial biood pressure [via a 20 gauge arteriai
catheter (Arrow International Inc., Reading, PA, USA) placed in the ieft carotid
artery]. Mean PAP, pulmonary capiilary wedge pressure (PCWP), central venous
pressure (CVP), cardiac output (in duplicate at end-expiration) and blood temperature
were monitored via a Swan-Ganz pulmonary anery catheter (Abbott Laboratories,
Chicago, IL, USA) piaced in the right internai jugular vein.
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A cardiovascular monitor (MI I 66AT1 Model 66S, Hewlett Packard Ltd., Palo Alto,
CA, USA) coflected haemodynamic data, including the fotlowiiig calculated
variables: cardiac index, stroke volume index (SVI), systemic vascular resistance
index (SVRI) and pulmonary vascular resistance index (PVRI).
Fluid and drug administration was performed via an 18-14 gauge double lumen
venous catheter (Arrow International Inc., Reading, PA, USA) placed in the lefi
extemal jugular vein.

Ventilation strategy and respiratoly monitoring

A ventilator (7200AETM, Puritan Bennett, Carlsbad, CA, USA) vas used for
mechanica] ventilation in the intermittent positive pressure mode with positive end
expiratory pressure (PEEP) of 5 cm H20. Tidal volume (VT; 10 mL/Kg) and
respiratory frequency were adjusted to maintain end-tidai C02 partial pressure
between 40 and 50 mm Hg. The F102 was maintained at 1.0 during the surgical
procedure, and was reduced to 0.5 at the end ofthe procedure, maintaining Pa02> 85
mm Hg. Ventilation was continued during CPB with a reduced VT (3mL/Kg) and
ventilation frequency (8 breaths/min). Ail respiratory data vas measured with a
Capnomac UltimaTM monitoring system (Datex Instrumentation Corp., Helsinki,
Finland). Parameters monitored werc pulmonary mechanics (peak, plateau, end
expiration and mean airway pressures, PEEP, respiratory rate, VT, minute volume,
end-tidal C02 and dynamic thoraco-pulmonary compliance), and gas exchange
(arterial and mixed venous blood gas and electrolyte analyses; I-STAT1 Clinicai
Analyzer, Sensor Devices Inc., Waukesha, WI, USA). The oxygenation index
(Pa02/Fi02), arterial-to-venous 02 content difference (Ca02 - C02) alveolar-to
arterial 02 tension difference (A-aDO2) and physiologic shunt/venous admixture

(Qs/QT) were calculated.

AIl vascular and airway pressures, CO, arterial and mixed venous blood gas samples,
and urine output measurements were recorded at Tbe, hourly from T0 (end of CPB)
to T6, and at T10, T16 and T22.

CfB niaterials andprocedure

A median sternotomy was performed, and at the time of pericardial opening an
injection of intravenous heparin (4 mglKg) vas given to achieve an activated clotting
timc > 400 seconds. An aortic cannula (20 French; Chase Medical Inc., Richardson,
TX, USA) was placed in the aortic root followed by placement of a multiple hole
venous drainage cannula in the caudal vena cava via the right auricular appendage. A
cardioplegia cannula (9 French; Medtronic Inc., Grand Rapids, MI, USA) was then
placed in the aortic root proximal to the aortic valve, enabling cold blood
cardioplegia. The CPB circuit consisted of a membrane oxygenator (Trillium Affinity
NT oxygenatorTM, Medtronic Inc., MN, USA), cardiotomy reservoir (Affinity
NT54ITM, Medtronic Inc., Minneapolis, MN, USA), filter (Afflnity 35lT1, Medtronic
Inc.), tubing and a SamsTM roller pump (Sams Inc., Ann Arbor, MI, USA). The
circuit was primed with 1,500 mL lactated Ringer’s solutionTM (Baxter Corporation,
Toronto, Ontario, Canada), 500 mL PentaspanT1 colloidal fluid (DuPont Pharma Inc.,
Mississauga, Ontario, Canada), I meq/Kg sodium bicarbonate, 5,000 lU heparin, and
200 mL mannitol. Cardiopulmonary bypass vas initiated at a flow rate of 3.0
Llmin/m2 and blood temperature vas decreased to 32°C. Following aortic clamping,
cardiac arrest was induced by continuous hyperkaliemic cold blood cardioplegia (8°C
to 12°C) through the aortic cardioplegia cannula at a flow rate of 500 mL/min, not
exceeding a perfusion pressure of 100 mm Hg. Heart temperature measured by a
temperature probe placed in the left ventricular myocardium was maintained below
15°C throughout the procedure. Pulmonary capillary wedge pressure was kept less
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than 15 mm Hg by intermittent interruption of cardioplegia and cardiac
decompression through the cardioplegia aortic cannula. Meaii systemic arterial blood
pressure (mSAP) tvas maintained between 50 and 65 mm Hg by adjustment to the
flow rate, plus a hotus ofphenylephrine [0.5-i mL (0.1 mg/mL)] if required. Arteriai
partial pressure of carbon dioxide (PaCO2) was maintained between 40 and 50 mm
Hg by adjusting fresh gas flow. The aorta tvas ciamped for 75 min. Following aortic
clamp removal, the heart tvas eiectricaiiy defibrillated (20 jouies) as ventricular
fibrillation is observed in most pigs after reperfusion [31]. The animais were
subsequently weaned from CPB once rectal temperature was above 35°C. The total
length of CPB was at least 90 min. Intravenous protamine (1 mg/100 lU heparin)
normalized activated clotting time. Haemostasis was performed afier removal of the
CPB cannulae, thoracic drainage placed under negative pressure, and the chest was
closed. Blood from the CPB circuit tvas subsequently transfused.

Bronchoalveotar lavage (BAL.) sampling and analyses

At Tbase (just prior to chest opening), T2 (2 h post-CPB) and T22 (22 h post CPB),
blood and BAL samples were collected [35]. Ail respiratory parameters, even
those with continuous follow-np, viIl be presented for the same time-points to
faciiltate comparison. The total recovered BAL samples (kept at 4°C throughout
procedure) were flltered, centrifuged for $ min at lSOxg to separate the
surfactant (supernatant) from ceils and cellular debris. Five mL of the
supernatant vas divided ïnto 500 jiL aliquots and frozen at -20°C (total
surfactant; TS) and -80°C for further analysis (IL-8 t35,361; TNF-Œ 1361; MMPs

1371). The remaining supernatant vas centrifuged at 40,000xg for 15 min to
separate the bvo subfractions of surfactant: large aggregates (LA; the pellet) and
small aggregates (SA; the supernatant). Both LA and SA were stored at -20°C
for further analysis.
Surfactant analvsis

PÏzospholipid (PL)-phosphorus measurement was ztsed to determine the total quantity of
stujactant PLs. Lipids were first extractedfrom the samples (15, LA and SA), using
the ,nethod ofBligh and Dyer [38]. Phospholipid-phosphorus levels were determined
ztsing the Duck-Chong phosphorus assay as described previousÏy [39J. Briefty, 100
8L of 10% MgNO3 in CH3OH were added ta the extracted lipids. Samples were then
dried and ashen in afi1me hood on an electric rackfor approximately 1 min. One mL
of 1M HCI was added ta the samples. Samples were covered and reheated at 95 °Cfor
15 min. After cooling, 66 p1 of each sample was added ta individual wells of a 96-
well plate along with 134 pI ofa dye: 4.2% ammonium molybdate in 4.5 M HC1 with
3% malachite green (1: 3 vol./vol.). The absorbency ofthe samples (trzîilicate) was
read at 650 mn. and the phosphorus concentration was calculated using a standard
curve ofphosphorus rangingfrom 0.1 ta 1.] pg on the sample plate. The anount of
suijactant in each fraction was calculated and expressed as inilligrams of PL per
kilogram ofbody weight (ing PL/Kg).

Ccli analysis
The peliet of the lSOxg centrifugation vas resuspended in 10 mL RPMI-1640 +
10% foetal catf serum, and viability vas determined by trypan blue exclusion.
Total celi count was achieved by the haemocytometer method; differential
cytospin slides were produced and stained with Wright-Giemsa for cell
differentiation. Ceils were counted under a microscope at bOx magnification
[35,36].
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Statistical analysis

Analysis of continuous dependent variables was performed with a linear mixed model
for repeated measures (SAS version 9.0, Cary, NC, USA). A priori confrasts were
performed to compare different levels of the independent variables at different time
points. In particular, we analyzed the variation with time for each group taken
separately or pooled adcquately with regards to the procedure. Variation between
groups at different time-points vas analyzed by comparison of groups for procedure
(sham vs. CPB vs. CPB + LPS) or treatment with inhaled NO. Values are presented as
mean ± SD. The level ofstatistical significance was set at 0.05.
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Resuits

for ail parameters, we wifl first present the effect of the treatment, inhaled NO,
followed by the effect ofthe procedure (sham vs. CPB vs. CPB + LPS). There xvas no
statisticaily significant difference in rectal temperature and urine output between
groups throughout the experimental period.

Haemodynamic data

Ail groups demonstrated a significant variation with time ofmPAP (fig. 1).
-When looking at the overali effect of inhaied NO, higher mPAP values were
observed in the groups without inhaled NO from T1 to T22 (P < 0.05). This vas
conflrmed by the pair-wise comparisons demonstrating a signifïcant difference
between the two sham groups from T3 to T4 (P < 0.03); between the two CPB groups
from T1 to T16 (P < 0.03); and between the ttvo CPB + LPS groups ftom T3 to T5 (P <

0.01).
-The two CPB + LPS groups, with and without inhaled NO, differed significantiy
from the remaining groups at T2 (i.e. first time point after the end of LPS
administration), and the CPB + LPS group differed signiflcantly from the remaining
groups from T3 to T5 (P < 0.04). There tvas no significant difference between the
sham groups, with and without inhaied NO, and the CPB groups, with and without
inhaled NO, respectively, at any time.

-The PVRI followed a similar course, with the exception of the CPB + ll’JO group,
which demonstrated no significant variation with time (fig. 2).
A significant difference between groups, with higher PVRI values in the groups
without inhaled NO, was observed from T1 to T22 (P < 0.01). The pair-wise
comparisons conflrmed a significant difference bettveen the two sham groups from T2
to T4 and T10 to T22 (P < 0.05), between the two CPB groups from T1 to T3 and T6 to
T16 (P < 0.04), and between the two CPB + LPS groups from T3 to T5 and T10 to T16
(P < 0.02).
-The CPB + LPS group PVRI was higher than ail other groups at T4 and T5 (P <

0.04).

-Treatment with inhaied NO had no significant effect on other haemodynamic
parameters.
-No significant difference was found between groups for cardiac index, SVRI, and
PCWP. The two latter variables (SVRI and PCWP) did not show any statistically
significant difference over time. The cardiac index decreased significantly from Tb
(5.2 ± 1.3 L/min.m2) to T1 (3.6 ± 0.9 L/min.m2) for ail groups (n=30). A significantly
lower heart rate (fig. 3) vas observed in the sham groups from T3 to T22 (P < 0.05)
compared to the four CPB groups. Central venous pressure was simiiarly affected,
with a significant difference from T5 to T22 between the two sham groups (7.1 ± 2 mm
Hg; n=iO) and the four CPB groups (10.2 ± 1.8 mm Hg; n=20). for the four CPB
groups, the mSAP decreased signiflcantiy from Tb,. (69.5 ± 13.2 mm Hg; n=20) to T1
(58.7 ± 10 mm 1-1g), but not in the two sham groups (60.8 ± 11.6 at Tb,se VS. 61.2 + 7

mm Hg at T1; n=i 0). from T10 to T22, mSAP vas significantiy higher in the two sham
group (77.5 ± 10.7 mm Hg; n=10) compared with the four CPB groups (6 1.5 ± 9.3
mm Hg; n=20) (P < 0.05). Similar in-time differences occurred for SVI (from T2 to
T22; P < 0.02) between the two sham groups and the four CPB groups.

Respiratory data
Pulmonary mechanics
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-Treatment with inhaled NO had no significant effect on any parameter. There was no
significant difference in respiratory rate, VT, minute volume and end-tidai CO2
between groups.
-In ail groups, compared to baseline, dynamic comphance vas significantÎy decreased
at T22 (P < 0.005), and was significantly decreased at T2 in the CP3 + LPS and CPB +

LPS + INO groups (fig. 4) (P < 0.002). Peak airway pressure demonstrated opposite
changes, with a significant increase for ail groups at 122 (P < 0.02), and a significant
increase .occurring at T2 in the CPB + LPS and CPB + LPS + TNO groups (P < 0.04).

Gas exchange
-A significant difference between groups, with higher PaO2/FiO2 values in the inhaled
NO treated groups, vas observed (Fig. 5) at T22 (F = 0.001). The pair-wise
comparisons demonstrated a significant difference bettveen the two CPB groups at
122 (P = 0.02); and between the two CPB + LPS grotips at T22 (P = 0.02).
-The oxygenation index demonstrated a significant variation with time for the three
control (without inhaled NO) groups when compared to baseline, but not for the three
inhaled NO treated groups (Fig. 5) confirming the inhaled NO effect. The observed
decrease in control groups was present at T2 and T22 for the CPB group and at 122 for
the sham and CPB + LPS groups. There was no significant difference between the
sham groups, with and without inhaled NO, at any time.

Moreover, inhaled NO tvas associated with a significant improvement in P(A-a)O2,
CaO2 - CO2, and Qs/QT in each treated group (P < 0.05) demonstrating the effect of
inhaled NO on oxygenation index at T22.

Effect ofthe procedure on BAL surfactant

There was no sign(ficant dfference in BAL return volume belween groups. There was a
non—sigmficant trend of TS and SA to decrease with timne with no inter—group
d(fference. The active subfraction ofsumjactant (LA) decreased significantÏy witïi time
during the procedure (P = 0.0003) (fig 6f Farticularly, the observed decrease with
time was statistically sign(ficant in the inhaled NO-treated groups (T22 vs. T0,): sham
+ INO group (P = 0.0007), CPB + INO group (P 0.05) and CPB + INO + LFS
group (P 0.04).

With the comparison ofthe pooled groups (inhaled NO treatment vs. without
inhaled NO), the LA content was significantly higher in the inhaled NO groups at
Tbase (P = 0.03), an effect observed after only 75-90 min exposure to inhaled NO.
However, this effect disappeared at T2 and 122 (Fig. 6). The pair-wise comparison
was not statistically significant at any time.

Celis count in BAL and leukocytes count in blood
There was no change in the BAL cells count over time neither in the three inhaled
NO-treated groups, nor in the sham group. However, at T22, the BAL celis count vas
statistically higher compared to Tbas. in both CPB (P = 0.007) and CPB + LPS (F
0.02) groups. The increased value at T22 in CPB and CPB + LPS groups was higher
than the value in the sham group (P < 0.03). The difference between control groups
and inhaled NO-treated groups was close to statistical significance (P = 0.09) at 122.

Moreover, the neutrophil differentials in BAL were also greatly augmented (P < 0.05)
at T22 in the CPB (+206%) and CPB + LPS (+244%) groups, but were lower in the
inhaled NO treated animais without reaching statistical significance. No similar
difference could be observed for monocytes or lymphocytes in BAL. The CPB
procedure had a significant effect on the blood leukocyte count over time: whereas it
decreased with time in the sham and CPB (P = 0.004) groups, it increased in the CPB
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+ LPS group. Moreover, inhaled NO had no effect on eukocyte count in blood over
time.
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Discussion

Wliereas CPB aJonc vas flot different ftom Sham (thoracotomy surgery alone) for its
effect on pulmonary haemodynamics, the addition of an LPS perfusion to CPB
induced a clear pulmonary vasoconstriction leading to an increased mPAP. At T2, i.e.
the first time-point afier the end of LPS perfusion, inhaled NO had no effect in
counter-acting the increased puimonary vasoconstriction, but there vas an effect at
the next time-point, T3. Compared to CPB alone, the addition of LPS after CPB
accelerated the decrease in lung compliance and the iiicrease in peak ainvay pressure.
from this, we suggest that exposure to a benign event (this low dose of LPS is
supposed to reproduce a low level exposure to infectious agents) aggravates the lung
injury initially induced by the CPB procedure. However, after T5, the LPS effects are
disappearing resulting in no difference between the CPB and CPB + LPS groups.
Without LPS, CPB alone is not different from Sham for pulmonary haemodynamics
and slightly different for gas exchange parameters. A large difference for the systemic
haemodynamic variables (heart rate, central venous pressure, mSAP and SVI) was
present. It should be noted that inhaled NO had no effect on these systemic
haemodynamic parameters. And, as expected, by decreasing pulmonary
vasoconstriction in ail treated groups, inhaled NO improved the oxygenation index by
reducing Qs/Qr and improving V/Q matching.

Validation ofthe model

Picone et al. [32] demonstrated that the severe lung injury typical of post-pump
syndrome couid be caused by multiple, sequential insuits. Their data established that
CPB causes pulmonary neutrophil sequestration without lung injury. In the most
widely studied model of sequential insult ARDS, gut ischemia serves as the initial
insuit and causes pulmonary PMN sequestration without lung injury [40-42]. A
subsequent exposure to an otherwise benign insuit (LPS 1 ig/Kg over 50 minutes in
this case) activates primed and sequestered neutrophils to cause vascular injury,
which leads to post-pump syndrome [32]. Moreover, a dose of 100 igIKg LPS is
necessary to cause ARDS in pigs not subjected to CPB [43]. Our data confirm the
observation of Picone et al. [32]: in the CPB + LPS group, mPAP, PVRI, and peak
airway pressure increased to a higher level andlor more quickly, whereas the lung
compliance decreased faster than in the other groups. This tvas corroborated by the
greater release of MMPs in BAL and blood, as well as the increase in leukocyte
levels in blood [37]. It must be highlighted that Picone et al. stopped their follow-up 3
hours after the end of CPB (when the CPB + LPS group showed the highest degree of
failure), corresponding to L to T35 in our design [32]. It was also at this time that our
CPB + LPS showed the highest degree of insult. However, in addition our study
demonstrates that the gradation in lung injury between sham, CPB and CPB + LPS is,
for the most part, transient. The three groups were similar at T22 for lung compliance,
peak airway pressure and oxygenation index. However, there was a net difference on
the cardiovascular parameters (HR, CVP, SVI and mSAP) and, as we demonstrated in
previous studies [35-37], on the BAL values (ceil count, neutrophil differential, IL-8
and MMPs concentration) between the CPB groups and the sham group, reflecting
the difference in inflammatory reaction.

Bffects ofpre-emptive and continuous inhaled NO therapy
The L-arginine-NO system has been strongly implicated in the pathophysiology of
ischemialreperfusion [42,44] and sepsis [45]. NO is a multifaceted agent with roles in
vascular homeostasis, neurotransmission, and inflammation. It is produced by three
isoforms of NOS, of which two are expressed in endothelial ceils (eNOS) and
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neurons (nNOS), and the third (iNOS) is mainly induced in macrophages, vascular
smooth muscle celis, and other ccli types only afier specific stimuli [46]. Endothelial
NO is a potent vasodilator. It inhibits plate]et aggregation, attenuates endothelial cefls
and leukocytes interactions, and may maintain the microvascular permeability barrier
[47]. It bas been shown that a rapid decrease in eNOS activity follows
iscbemialreperfusion promoting leukocyte adherence, activation, and migration
across the endothelial barrier, and increases microvascular permeability thus
enhancing the tissue inflammatory reaction [48]. Leukocyte-endothelial interaction
involves a complex interplay between adhesion molecules and their ligands. Three
endothelial adhesion molecules (P-selectin, E-selectin, and ICAM-l) have been
linked to the effect of decrcased NO on leukocyte adhesion. A strong link bas been
established between loss of eNO during splanchnic ischemialreperfusion and
increased expression of P-selectin that is responsible for early rolling of leukocytes in

systemic postcapillary venules [49]. Indeed, we also observed in our swine model that

NOx production is reduced after CPB [36] and CPB + LPS [35], leading to a potential
deficit in endogenous NO, which was counteracted by the use of exogenous inhaled
NO in the corresponding groups. Inhaled NO acted as an anti-inflammatory agent by
decreasing neutrophil numbers in BAL and its major chemoattractant, IL-8, as well as
MMPs [37]. Inha]ed NO also increased ccli apoptosis in the lungs during
infiammatory conditions, which may explain, in part, how it resolves pulmonary
inflammation [35,36].

Ail the anti-inflammatory effects of pre-emptive inhaled NO in our model were
translated as beneficial effects on cardiopulmonary parameters, mainly on mPAP and
oxygenation index. In addition, pre-emptive and continuous inhaled NO vas devoid
of any adverse systemic cardiovascular effect, nor vas it associated with any
deleterious (pro-inflammatory) effect. In contrast, inhaled NO did flot counteract the
CPB-induced alterations on lung mechanics (thoraco-pulmonary compliance and
airway pressure), despite an intcresting initial effect on surfactant component (LA).
Lung surfactant is one oftbe most important factors contributing to lung stability and
maintains lung compliance by reducing surface tension at the air-liquid interface [50].

It is composed of 90% lipid, mostly PLs, and 10% surfactant-specific proteins.
Surfactant lipids and proteins are stored in lamellar bodies of type II pneumocytes,
and secreted by exocytosis. Under normal conditions, approximately 50% of the
surfactant present in the alveolar space is in the form of functionally active LA, and
approximately 50% in the form of small surfactant vesicles SA. The LA subtype is
primarily responsible for the surface tension-lowering property of surfactant [51,52].

The decreased synthesis, secretion and/or dysfunction of surfactant may cause
aiveolar coliapse (atelectasis), increasing ainvay pressure and decreasing lung
compliance, and favouring ventilation/pcrfusion mismatch or shunt and subsequent
hypoxaemia, as a consequence [50]. To the best of our Iaiowledge, this is the first
report indicating that short-term (75-90 mm) inbaled NO can increase LA content.
Despite the ability of inhaled NO to exert this protective effect, the beneficial impact
on surfactant was of short duration, as it disappeared after 4 hours, even in the sham
operated group. This is disappointing, particularly because it bas been observed that
the surface activity of the LA surfactant vas impaired on days I to 3 following CPB
in infants (< 1 year old) [53]. We propose that prolonged inhaled NO has no long-
terni effect on the derangement of type II pneumocyte homeostasis caused by
hyperoxi a, mechanical ventilation and inflammation.
Tbe addition ofa 20 ppm NO to the inhaied air during endotoxin shock in pig [54] or
hyperoxia-induced pulmonary dysfunction in newbom guinea pigs [55] improved
oxygenation index and reduced PAP. However, it did not affect lung mechanics or
inflammatory indices (levels of BAL fluid total protein, tumour necrosis factor-alpha,
IL-8 and neutrophil counts), despite prophylactic administration. Moreover, the short
term exposure (< 5 days) 10 NO/O2 delayed onset of respiratory distress and iieither
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exacerbated nor attenuated pulmonary dysfunction compared with 02 exposure alone
[55].
We used high fi02 (1 and 0.5), mechanical ventilation with iow PEEP on paraiyzed
pigs in supine position to match extreme clinicai practice, and the clinically relevant
concentration of 20 ppm inhaled NO was delivered. With this combination, inhaled
NO had no long-term beneficial effect on lung mechanics and surfactant homeostasis
despite improving lung haemodynamics, inflammation and oxygenation. This is
encouraging to associate pre-emptive inhaied NO with protective ventiiatory
strategies (iow fiO2, permissive hypercapnia, prone position, etc.).

Importance ofthe timing of administration ofinhaied NO and of animal model
In the situation ofischemialreperfusion or sepsis, therapies are directed on one side at
inhibition of excessive NO production by nonselective or selective iNOS inhibitors
and, on the other side, at L-arginine suppiementation or administration of exogenous
NO [45]. Compensation of deficient NO production by substrate supplementation or
by its exogenous administration may indeed diminish the inflammatory process. This
anti-inflammatory effcct could be related to the decreased expression of adhesion
molecuies (via a pivotai inhibiting role on nuclear factor—KD [26-28]), the direct
effect on neutrophil function, and also the effect on improved biood flow with
increased shear rate and hydrodynamic forces that reduce ieukocyte adhesion
[42,44,49,56]. This latter role is supported by increasing evidence of NO-carrier
forms aliowing extra-pulmonary effects from inhaied NO [29,30,57].
By its effects (summarized in the introduction), inhaled NO vas demonstrated a safe
therapy for acutely decreasing lung dysfunction, but without substantiai impact on the
duration of ventilatory support or survivai in infants [58-60], or in adults [60,611.
Therefore, inhaled NO vas presented as a therapy in search of an indication. The
search continues [62]. This iack of long term clinicai benefit of inhaled NO in
ALI/ARDS may be attributable to the presence of multiple pathophysiological
features, including alveolocapillary leakage and tissue oedema, neutrophil infiltration
and activation, and tissue oxidative injury [63,64]. The disparity between its potential
anti-inflammatory activity and the lack of significant chnical benefit of inhaled NO
may be reiated to the timing ofinhaied NO therapy. Most ciinical trials have assessed
the effect of inhaled NO therapy in patients with weli-estabiished ARDS. In this
situation, inhaied NO may be potentially pro-inflammatory [65].
Few studies have initiated inhaied NO prior to, or concurrent with, an inflammatory
insuit. Under experimental conditions, pre-emptive inhaled NO demonstrated anti
inflammatory effects on isoiated rat lungs [20,66]. This bas been confirmed in in vivo
models of ALI, induced by injection of, endotoxin in rats [21], and of endotoxin [67]
or plateiet-activating factor t68] in pigs. Curiousiy, similar results were not initially
reproduced in rabbits [69,70]. Decreased lung inflammation and injury with pre
emptive inhaled NO was associated with decreased pulmonary iNOS activity in a
mouse model of sepsis-induced ALI [71], with delayed release of reactive oxygen
species in pigs [44] and rabbit lungs [72] and with decreased activation/migration of
ieukocytes in rats [42] during ischemia!reperfusion-induced ALT.

As stated above, the mechanisms involved in the variation ofinhaled NO effect
counteracting ALT are not clear. To the extent ofour knowledge, these disparate
actions could be related to I) differences in the timing of administration and/or 2)
differences in the concentration ofinhaled NO used, or 3) model differences.
It should be emphasized that large amounts of NO may aiso exert proinflammatory
cffects [46,73,74]. However, most of the available experimental data support a

beneficial net anti-inflammatory effect of NO therapy in diverse acute models ofALI.
Particularly, inhaled NO therapy vas studied in ALT induced on isolated lungs or by
induction of sepsis or ischemialreperfusion in various species, and it was found that
pre-treatment [20,21,42,66-68,71] and “preconditioning” [44,72] of the lung
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vasculature tvith NO administration maintains endotheliai integrity and attenuates the
increase in microvascular leak. Such studies support initiation ofinhaled NO therapy,
at reasonab]e concentrations [54,75] before the inflammatory insult. This approach,
which vas assessed in our experiments of CPB-induced ALT in pigs, may prove
effective in relevant clinical conditions in which NO therapy may be initiated prior to
an anticipated proinflammatory stimulus (e.g., before reperfusion of ischemic
organs).
Conceming the model chosen (CPB-induced ALI in pigs) and its validity to evaluate
an anti-inflammatory effect of inhaled NO, it is extremely important to consider that
ail the numerous models presented previously do not repiicate the clinical situation,
with the exception of CPB-induced inflammation in pigs [23]. firstty, CPB-induced
ALI/ARDS is a clinical reality encountered daily in cardiac surgical patients, which
could be quite easiiy reproduced in pigs. Secondly, pigs have a cardiopulmonary
physiology, pharmacology and anatomy comparable in many aspects to those of
humans [76]. finaiiy, ail the other modeis are only representative of one, or more,
components ofthe infiammatory process leading to ALT/ARDS or sepsis in humans.

Picone et al. speculated, in their conclusion, that if the inflammatory effects of CPB
can be reduced, the incidence of post-pump syndrome will be diminished [32].
Firstly, we reproduced the data of Picone et al. [32], where sham induces a minor
insult compared to CPB, and where the subsequent exposure to an otherwise benign
insuit (minimal dose of LPS) aggravates significantly the lung injury. This confirms
the possible multiple, sequential nature of insults leading to the typical post-pump
ALT/ARDS. In contrast to Picone et al. [32], we demonstrated that the gradation in
lung injury between sham, CP3 and CPB + LPS is, for the most part, transient.
Secondly, from the series of experiment we have conducted in CPB-induced
ALT/ARDS in pigs, the use of pre-emptive and continuous inhaied NO therapy looks
promising, with regards to its anti-inflammatory and protective effects on pulmonary
haemodynamics and oxygenation, as well as its safety. It stiil remains to study the
weaning strategy before considering a future new clinical indication for inhaled NO.
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Legends

Fig. 1. Mean pulmonary arterial pressure (mPAP) (mm Hg) over time.

Significant effcct oftimc (compared to T6e) for sham (T3, T10, T16, T2), CPB (14, T6,

T10, T16, T,,), CPB + LPS (T1 to T22), sham + INO (T16, T22), CPB + INO (T22), CPB

+ LPS + INO (T2, T3, T4, T10).

Effcct of inhalcd NO on mPAP over time: § P < 0.05 vs. same group without inhaled

NO (sec tcxt for more details).

Effcct of the procedure on mPAP over time: CPB + LPS fi P < 0.05 vs. other groups

(sec text for more details).

Fig. 2. Pulmonary vascular resistance index (PVRI) (dyncs.sec/cm5.m’) over time.

Significant effcct of time (compared to Tbasr) for sham (T, to T22), CPB (T2, T6, T10,

T16, T22), CPB + LPS (12 to T22), sham + INO (T0 to T22), CPB + LPS + INO (T2, T5,

T6, 110).

Effect of inhaled NO on PVRI over time: § P < 0.01 vs. same group without inhaled

NO (sec text for more Uctails).

Effect of the proccdurc on PVRI over timc: CPB + LPS fi P < 0.05 vs. othcr groups

(sec text for more details).

Fig. 3. Heart rate (beats/min) over timc.

Significant cffcct oftimc (compared to T6e) for sham (T1 to 122), CPB (T3 to T6, 116,

T22), CPB + LPS (T1 to 122), sham + INO (T3 to T6), CPB + LPS + INO (T1 to T22).

Effcct of thc proccdurc on heart rate ovcr timc: thc two sham groups # P < 0.05 vs.

thc four othcr CPB groups (sec tcxt for more dctails).

Fig. 4. Lting compliance (mL/cmH2O) ovcr time.

Effect ofthc proccdurc on lung compliance ovcr timc: * P <0.05.

At T22, the lung compliancc in ail groups was significantly dccrcascd. At 12, only in

thc CPB + LPS and CPB + LPS + INO groups, this dccrcasc vas significant.

Fig. 5. Oxygenation index (PaO2/FiO2) (mm Hg) over time.
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Sigiiificant effect of tirne (compared to Tb35) for sham (T22), CPB (T2, T,2), and CPB

+LPS (122): *P<005

Effect of inha]ed NO on PaO,/FiO, over time: § f < 0.05 vs. same group without

inhalcd NO (sec text for more details).

Fig. 6. Large aggregates (LA) content in BAL per weight (mg PL/kg) over time.

Significant effect oftirne (compared to Tb,,e) for the inhaled NO treated groups (T22):
*f<005

Effect ofinhaled NO on LA content: § P <0.05 vs. same group without inhaled NO

(sec text for more details).
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Operating Protocols

Problem Signs Treatment
Hypovolemia CVP < 5 mmHg Pentaspan bolus: 5— 10 ml!

PCWP < 10 mmHg kg over 45 mins.
CI < 2.5 Li mini m2
MAP < 50 mmHg
Urine prod. < I ml! kg! hr

Cardiac insufficiency CI < 2.5 L! mini m2 NE; 8— 12 mcg! kg! hr
CVP> 15 mmHg
PCWP> l8mmHg
MAP <50 mmHg

Ventricular tachycardia Mg suiphate 1g 1V
Lidocaine I mg’ kg 1V
Brctylium tosylate 0.5 mg! kg
IV

Appendix 3
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Arterial blood gas analyses

Appendix 4

Parameter Timepoint Range Mean SD
(hrs) (minimum) (maximum)

PH Baseline (TO) 7.37 7.51 7.46 .05

CPB (12) 7.27 7.53 7.44 .09
Post CPB (T4) 7.37 7.47 7.42 .04
T7 7.30 7.53 7.46 .08
T8.5 7.46 7.56 7.50 .04
124 7.30 7.53 7.45 .09

PaCO2 (mmllg) Baseline (TO) 37 50 42.3 4.7
CP3 (T2) 34 61 42.9 9.2
Post CPB (T4) 35 44 39.3 3.5
T7 34 52 40.0 6.2
T8.5 33 44 38.2 4.0
T24 36 60 41.5 9.8

Pa02 (mmHg) Baseline (10) 459 542 496.1 29.3
CP3 (T2) 93 602 335.9 200.8
P0stCPB(T4) 234 507 316.1 101.0
T7 134 219 188.9 29.3
T8.5 149 231 205.2 29.8
T24 75 210 148.7 48.8

HC03 (mmHg) Baseline (TO) 28.8 33.9 30.7 1.7
CPB (12) 25.5 29.5 27.9 1.5
Post CPB (T4) 20.9 28.0 25.2 2.5
17 24.8 31.6 28.3 2.2
18.5 27.9 30.9 29.2 1.2
124 23.1 29.9 28.1 2.5

3E Baseline (TO) 4.7 7.4 6.3 1.0

CPB (12) 0.3 6.1 3.6 2.7
Post CPB (T4) -3.5 3.8 0.9 2.9
T7 4.1 5.9 5.2 0.7
18.5 4.4 6.5 5.3 1.0
124 -2.0 4.8 2.3 3.1

Table ofselcct arterial blood gas analysis results. Weaned INO group.

Parameter Timepoint Range Mean SD
(hrs) (minimum) (maximum)

PH Baseline (10) 7.39 7.54 7.50 0.06

CPB (12) 7.28 7.60 7.40 0.11
Post CPB (14) 7.30 7.43 7.39 0.05
17 7.34 7.47 7.41 0.06
18.5 7.41 7.49 7.50 0.03
124 7.29 7.51 7.42 0.08

PaCO2 (mmHg) Baseline (10) 34 49 41.7 5.4
CPB (T2) 29 48 43.2 7.1
Post CPB (14) 41 53 44.5 4.7
T7 38 54 45.0 5.8
T8.5 32 46 41.0 5.2
124 37 61 43.6 9.8

Pa02 (mmHg) Baseline (10) 479 641 562.0 56.9
CPB(12) 188 612 379.8 160.5
Post CPB (14) 207 337 256.5 48.4
T? 149 249 213.0 40.1
18.5 149 247 216.7 35.4
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T24 48 209 128.0 62.4

HCO (rnrnHg) Baseline (10) 25.5 33.1 28.9 2.5

CPB (T2) 20.0 28.7 25.9 3.3
P05tCPB(T4) 23.1 27.3 26.0 t.6

T? 22.6 32.3 28.2 3.6
T8.5 23.0 30.9 28.3 2.7

T24 25.5 29.9 27.7 1.9

BE Baseline (TO) 1.1 9.0 5.2 2.9

CPB (T2) -5.5 6.4 1.6 4.5

PostCPB(T4) -1.4 2.9 1.4 2.0

T7 -2.3 8.3 3.9 3.9
T8.5 0.4 7.3 4.3 2.5

T24 1.7 6.0 3.7 2.1

Table ofselect arterial blood gas analysis resuits. Continuous INO group.
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