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Abstract

Single Photon Emission Computed Tomography (SPECT) brain bÏood flow

imaging is a routine diagnostic technique used in clinical settings to provide accurate

assessments of a variety of neurological and psychiatric diseases, such as, epilepsy,

dementias and other neurodegenerative affections, strokes, traumatic brain injury, etc..

However, brain SPECT imaging offers relatively low spatial resolution and often limited

contrast, making it potentially difficuit to interpret.

A restoration technique for enhancing image contrast and reducing noise using a

3D adaptive Wiener filter is presented in this work. The well-known Wiener filter is a

global filter which is optimal in the sense that it minirnizes the mean square error

between the original image and the estimate. When the Wiener filter is applied to restore

degraded images, a priori information about the point spread flrnction (PSF) and the

power spectrum of the original image and noise have to be available. Unfortunately,

these information are generally unknown.

To overcome these limitations of the Wiener filter, we propose using a reference

image to provide a priori information on the brain SPECT image and to track precisely

the change of contrast and mottle. The reference image is produced by a higher

resolution brain MRI scan of the same patient co-registered to the SPECT study.

According to the characteristics of the brain SPECT imaging, we also assume that the

PSF of the system is a Gaussian ftinction with unknown standard deviation and the

system noise is an additive white Gaussian noise (AWGN). The 3D adaptive Wiener

filter then can automatically choose the best combination of its two parameters (the PSF

width and the power spectrum density of noise) based on the contrast-mottle criterion to

finally restore the SPECT image.

Tests are conducted with both synthetic SPECT images resulting from a digital

Hoffman phantom and actual clinical SPECT cases. Our resuits show that the contrast of

images is significantly improved by at Ïeast a factor of 2 while kceping amplification of

noise at acceptable level.

Key words: restoration, Wienerfitter, SPECT MRL image processing
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Résumé

L’imagerie SPECT du flot sanguin cérébral est un outil important dans le

diagnostic et l’évaluation de maladies neurologiques et psychiatriques telles que

l’épilepsie, les démences de type Alzheimer, les accidents vasculaires cérébraux, les

lésions cérébrales traumatiques, etc.. Cependant, les images SPECT souffrent d’une

pauvre résolution et d’un faible contraste qui peuvent rendre le diagnostic difficile pour

les médecins.

Une méthode de restauration utilisant le filtre adaptatif de Wiener 3D a été

proposée pour améliorer le contraste des images et réduire le bruit. Le filtre de Wiener

est un filtre global bien cornai qui est optimal dans le sens où l’erreur quadratique

moyenne entre l’image originale et l’estimation est minimisée. Quand le filtre de Wiener

est appliqué pour restaurer les images dégradées, des connaissances a priori sur la

fonction de réponse impulsionnelle (PSF) du système de formation de l’image et les

spectres de puissance de l’image original et du bruit sont nécessaires. Malheureusement,

ces informations ne sont souvent pas disponibles.

Pour contourner ces problèmes, nous proposons d’utiliser une image de référence

qui est capable de fournir une information a priori sur l’image SPECT du cerveau et de

suivre précisément les changements du contraste et du bruit. L’image de référence est

générée par le recalage d’une image IRM de ce même cerveau sur l’image SPECI. Nous

supposons aussi que la PSF du système est une fonction Gaussienne avec un écart-type

inconnu et le bruit est un bruit blanc gaussien additif (AWGN). Le filtre adaptatif de

Wiener 3D peut alors choisir automatiquement la meilleure combinaison de ces deux

paramètres (la largeur de la PSF et le spectre de puissance du bruit) basée sur un critère

de contraste-bruit pour restaurer l’image SPECT.

Les tests sont faits sur des images SPECT synthétiques qui sont produites avec

un fantôme numérique de Hoffman et de vraies images SPECT obtenues en clinique.

Nos résultats indiquent que le contraste des images est amélioré au moins par un facteur

2. En même temps, l’amplification du bruit demeure acceptable.

Mot clés . restauration, filtre de Wiener, SPECT IRPvL traitement d ‘images
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Cliapter 1

Introduction

Single Photon Emission Computed Tornography (SPECT) imaging of cerebral

blood flow lias been widely used in diagnosing brain diseases due to its ability to reveal

abnormal regions of cerebral blood flow at a cost-efficient level. However brain SPECT

images suffer from limited resolution and lower contrast compared to Magnetic

Resonance Imaging (MRI) scans, which unfortunately can only provide anatomical

information. Thc goal of this work is to improve the quality of the present SPECT

images in clinic with the help of MRI data using a restoration approach. In this chapter,

we will first introduce sorne general information about SPECI imaging, including a

brief history, instrumentation, and examples of applications to clinical problems. We

then address the issue of degradation that affects the quality of brain SPECT images in

the second section. Section 1.3 contains a literature review of restoration techniques for

dealing with degradation problem. A brief description about the Digital Imaging and

Communications in Medicine (DICOM) standard that is widely used in the medical

imaging comrnunity will be given in section 1.4. FinaÏly, we will present the

organization ofthe rest ofthis thesis.

1.1 SPECT imaging

1.1.1 The history of develop ment of SPECT imaging

SPECT is routinely used to help diagnose a variety of diseases in every organ

system of the human body. SPECT imaging uses a gamma camera to collect gamma

rays emitted from a patient previously administered with a small dose of a radiotracer

(usually composed ofa carrier molecule determining the localization ofthe agent, and of

a radioactive atom providing the detectable signal) and reconstnicts 3D images based on
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data thus collected. SPECT allows us to visualize functional information about a

patient’s body system or specific organ.

SPECT imaging is one of the rnost common tools in Nuclear Medicine. Nuclear

Medicine lias a complex and multifaceted heritage. Many scientists and researcliers

made their contributions to its development. Here we oniy mention those major

evolutions in the histoiy. Altliough the first emission computed tomography device,

MARK IV, was deveïoped by Kuhi and Edwards in 1963 [KE63], the foundation of

Nuclear Medicine was laid down at the end of the l9tli century and the beginning ofthe

2Otli century.

Ail began with the discovery ofX-rays in 1895 by Roentgen, a German pliysics

professor. Whuïe experirnenting with electron beams in a gas discharge tube, he

discovered some unknown (X) rays capable of producing an image on nearby

photographic plates. Roentgen won the first Nobel Prize in physics in 1901. Roentgen’s

remarkable discovery precipitated one of the most important medical advancernents in

human history.

Henri Becquerels discovery of natural radioactivity with uranium salts was in

1896 [NobOS]. This extraordinary discovery caused a real revolution in scientific

thought and lcd to a new breaktlirough in the understanding of the universe. He was

tlierefore named “father ofradioactivity”.

Two years later, in 1898, Pierre and Marie Curie discovered the radioactive

element polonium. Tliey introduced tlie new terrn: “radioactive” {AE93]. After mucli

very difficuit and tiring work, the Curies were able to establish thc cliemical properties

of polonium and those ofanother radioactive elernent, radium [CC 1898]. Both polonium

and radium were more radioactive than uranium. The Curies and Henn Becquerel were

1903 Nobel Laureates.

Lord E. Rutherford was a British physicist. He discovered three different kinds

of radiation produced by uranium cornpounds in 1899 [BLO4]. He then separated and

namcd them alpha, beta and gamma radiation according to their penetrating abilities. He

also proposed a model ofthe atomic nucleus. He was a 190$ Nobel Laureate.
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In 1913 Frederick Soddy introduced the name “isotope”. He obtained the 1921

Nobel Prize in Chemistry.

The first artificial radioactive isotopes were produced by Irene Curie, the

daughter of Pierre and Marie, in 1934 (Noble Laureate in 1935). At the tirne, uses of

radionuclides were only for some treatments(therapy) and metabolic tracer studies,

rather than imaging, because more sophisticated, econornical means to produce

radioactive materials for widespread application in medicine, military and other

industries were not available.

The widespread clinical use of Nuclear Medicine did not start until the mid of

2Oth century. The l950s were a major milestone in Nuclear Medicine. In 1957, Walter

Tucker’s group at the Brookhaven National Laboratory invented the first iodine-132 and

technetium-99rn generator [SNMO5]. Technetium-99m, a radioactive isotope of the

man-made element technetium with a suitable haif-life of about 6 hours, relatively low

gamma energy (140-keV) and causing minimal radiation damage to body organs, thus,

becomes the most widety used radioisotope.

In 1952, Hal O. Anger invented the first gamma camera, which included a

pinhole collimator in front of a thallium-activated NaI(Tt) crystal (5/6” thick) and a

large piece of photographic paper for ïn vivo studies of a turnor [WagO3]. In 1957,

Anger replaced the film and screen with a NaI(T1) crystal 4 inches in diameter followed

by 7 photomultipiiers. This is a truly revolutionary contribution to Nuclear Medicine as

it is a stationary imaging system (versus Benedict Cassen’s rectilinear motion of its

scanner) that is simultaneousiy sensitive to the ail radioactivity in a large field ofview.

Anger’s design bas flot been dramatically improved and has only been evotving slowly

to the present day. Modem Gamma cameras commonly tise a lead collimator perforated

with many parallel, converging or diverging holes instead of the original pin-hole

configuration.

There were also important developrnents in image reconstruction, such as

algorithm for compensation of photon attenuation and emission tomography. In 1963,

Kuhl and Edwards presented the first tomography imaging system using detectors

mounted around a patients head, which became the precursor to SPECT. However these
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images were ofpoor quality, so the technique was flot wideÏy accepted. In the same year,

Alan M. Cormack, a nuclear physicist, developed mathematical algorithms to calculate

internai attenuation values, which is very important for image reconstruction. In 1967,

Godfrey N. Hounsfield developed image reconstruction algorithms for tomography

using computers. The algorithms took into account the effects of photon attenuation and

scatter. Both Cormack and Hounsfield were awarded the 1979 Nobel Prize in

Physiology or Medicine.

The concept of the SPECT device was developed between 1974 and 1977 (J.

Keyes and ass. and R. Jaszczak and ass.), while conimercial production started in 1982

[SteOl].

Since then, SPECT imaging lias become a major field in Nuclear Medicine

[BPLM97] and the original single-headed camera has been replaced with two-, three

and four-headed scanners, or even full-ring systems (see Fig. 1), which provide faster

scanning with superb resolution.

1.1.2 SPECT înstrumentation

Most commercial SPECT equipments are based on the rotating gamma camera,

either single- or multi-head, shown in Figure 1. A triple-headed SPECT system can

provide three times as much data as single headed camera for the same data acquisition

time, which results in higher resolution. No matter how the SPECT system is equipped,

with one or multiple heads, the basic hardware components remain the same. A SPECT

imaging system essentially includes:

* Collimator

* Detector/NaI (Tl) scintillation crystal

* Light guide

* Photomultiplier tube (PMT)

* Circuit for signal amplification and positioning

* Computer for data analysis and image reconstruction
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(a) (b)

(c) (d)

figure 1: SPECI system with (a) One head. b) Bi-head. (c) Tri-head. (d) Full-ring detector.
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Figure 2: (a) Four types of collimator: parallet, pinhole, converging and divergïng. (b) Parallel
collimator.

The coilimator is the first object that an emitted gamma photon encounters afier

exiting the body of a patient who is injected with a radioactive tracers, such as 99mTc,

or FilIn The collimator is a crucial component of the gamma camera. Figure 2(a)

shows four major types of collimators: parallel hole, pinhole, converging hole and

diverging hole. The paraliel-hole collimator is the most widely used, because the image

size remains the same as the object size. This type of collimator selects photons having

direction perpendicular to the surface of the scintillation crystal and absorbs ail the rest

of the radiation. Pinhole collimators offer higher magnification than parallel collimators

and are used to magnify very small objects such as the thyroid by placing the object

close to the pinhole, but at the cost of varying sensitivity depending on the location of

the object and some distortion. The diverging and converging collimators can minimize

and magnify the image. They create distortion in the images. The former is useful for

imaging a large object with a small camera, and the latter, for imaging smaller objects.

After going through the collimator, the incident gamma photons are detected by

the scintillation crystal that is the real gamma radiation detector. NaI(Tl) is the preferred
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material due to its higher conversion efficiency — about 13% of the energy deposited in

the crystal is emitted as visible light. The interaction of gamma ray photons with the

crystal causes the release of the electrons that in tum interact with the crystal lattice to

produce light photons. This phenomenon is called scintillation.

The light emitted by the crystal is then captured, amplified and localized by an

array ofphotomultiplier tubes. As shown in Fig. 3(a), PMT array is attached to the back

of the crystal. Each PMT consists of one photocathode and several dynodes (a typical

photomultiplier tube has 10 to 12 dynodes). The photocathode converts light photons

into electrons, and dynodes amplify the electrical signal at each step. Figure 3(b)

describes the functions of a photomultiplier tube.

Usually, a gamma photon will be detected by more than one PMT. A position

circuitry (Fig. 4(a)) is thus needed to determine the position of the scintillation event,

based on the fact that the doser a PMT is to the scintillation event, the larger the output

signal (Fig. 4(b)). The position of scintillation is finally determined by the calculation of

the center of gravity ofthe outputs ofthe different PMTs.

In SPECT acquisition, a computer receives all incoming projection data (i.e.

planar views acquired at multiple angles around the patient) and uses reconstruction

algorithms to produce a final readable 3D image that depicts the 3D spatial distribution

of gamma photo radioactivity within the patient.

cass tube
—00 A

visible
Iigh -

photon 5Ignn In
preamp

i’IXji -401)

pnooathcjde
Â

dynodes

(b)(a)

Figure 3: (a) PMT array. (b) Ihe functional diagram of OIIC PMT
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(a) (b)

Figure 4: fa) The functional diagram of the position circuitry. (b)The position of scintillation chosen
by the position circuitry.

Figure 5: (a) 3D SPECT data acquisition, a set of2D projections fa total of 90 projections). fb) 1D
projection of a plane at angle O.
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Before introducing SPECT image reconstruction, let’s look at the data

acquisition process. The SPECT data acquisition is a set of 2D projections, which are

obtained by rotating the gamma camera heads around the patient at various angles and

shown in f ig. 5(a). Mathernatically, for parallel beam tornography, 1D projection of a
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planar activity pattemJ(x, y) at angle O can be described by the radon transform for a set

of parameters (x’, ), which is the une integral through the image J(x, y), where the une

is positioned according to the value of (x’, ), shown in fig. 5(b). The 1D projection

function can be expressed by R(x’, 9)
= [ f(x’ cos O

— v sin O, x’ sin O + y’ cos O)dy’

For example, the value at point P in fig. 5(b) is the integral value along line L. The

collection of Radon transforms of each slice of the object at ail angles is cailed the

sinogram (Fig. 6). A set of2D sinograms forrri the raw data ofa 3D SPECT image.

Figure 6: (a) The collection of Radon transforms of a braïn slice at ail angles. (b) A suce of a brain
SPECT image.

The most common reconstruction algorithm is filtered backprojection. It is based

on the Fourier slice theorem, which telis us that the 1D Fourier Transform of the

projection function at angle O is identical to the spectrum along that angle O in the

frequency domain, i.e. the 2D Fourier Transform of the image. The principle of the

filgtered backprojection for 2D image reconstruction is thus (a) taking 1D Fourier

transforms of the projection function for each angle, (b)multiplying the result of the step

(a) with a filter function Iu (where w is the radius in the polar coordinate system) in the

frequency domain, (c) and then finding the inverse Fourier Transform. This algorithm

can be easily extended to 3D volume. Without data filtering, the resultant reconstnicted

images would be extremely noisy and unreadable, so the fiÏtered backprojection is

actually used for the image reconstruction in most commercial SPECT systems. f igure

6(b) shows a slice of a brain SPECT image.

(a) (b)
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1.1.3 Application ofbrain SPECT imaging in clinic

Brain SPECT imaging using a varicty of tracers (not just for evaluating blood

flow) is a common application of SPECT imaging in the clinical world. It provides

accurate assessment of regional cerebral functional activity that is important for the

diagnosis of a variety of conditions. It can be used for instance in: (1) Iocating focal

activation in epilepsy, (2) confirming and eventually specifying a clinical diagnosis of

dementia, (3) giving supplementary information in addition to other imaging techniques

(e.g. MRI or fMRI) to distinguish viable brain turnor from cerebral necrosis after

radiation or chemotherapy, (4) allowing clinicians to clarify the nature of movernent

disorders suci as Parkinson’s disease. Some information on those diseases is listed

below. Many other conditions can also be evaluated with above techniques.

Epilepsy, a condition where a subject suffers from recurrent seizures, is a

common and serious neurological condition. At any one tirne between 1 in 140 and 1 in

200 people in the United Kingdorn (at Ieast 300,000 peopte) are being treated for

epilepsy [MBWMB96] [WST98]. Each year, in a cornmunity of 250,000 people

between 125 and 200 wilI develop epilepsy [fCMCO2]. In the United States, the

prevalence (the number of people with the disease at any one time) of aduit-onset

epilepsy is around 2 million [FCA200Ï], and incidence (new cases occurring in a

population during a specific period, here one year) is 135,500 [FCA2001]. Accurate

preoperative localization of the seizure focus is very important for effective surgical

treatment of patients with medically intractable complex partial seizure. lie

investigation from Cascino et al. [CBMSO4J shows ictal SPECT may be a reliable

indicator ofthe ictal onset zone in patients’ intractable partial epilepsy for which surgery

could be considered.

Alzheimer’s disease is the most common cause of dernentia among people aged

65 and older. Scientists estimate that up to 4 million people currently suffer from the

disease, and the prevalence doubles every 5 years beyond age 65 in the United States

[ADERCO5]. It is aÏso estimated that approxirnately 3 60,000 new cases (incidence) will

occur each year and that this number will increase as the US population ages [BGK98].
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A recent study from the University ofTexas Southwestern Medical Center by Frederick

et al. pubtished in May 2004 [fHRHO4J showed that SPECT imaging may lead to early

diagnosis ofAlzheimer’s disease. Researchers used SPECT to measure blood flow in the

posterior cingulate cortex — an area of the brain that plays a part in orientation, sensory

interpretation and vocabulary retention. The posterior cingulated sign allows doctors to

differentiate early-stage Alzheimer’s disease from other forms of dementia, such as

frontotemporal disease.

Around 33,000 people are diagnosed annually with brain turnor (incidence) in

the United States [ABTAOO]. Evaluation of possible recurrence after therapy remains a

significant clinical problem, and SPECT imaging with tracers such as 99tTcMIBI can

potentially help differentiate post-therapy damage from actual tumor recurrence. SPECT

is not routinely used in the initial diagnosis of a brain tumor in the United States, but

might complement information obtained from other scans to help doctors understand the

effects of a tumor on brain activity and function.

The incidence and prevalence for Parkinson’s disease are 54,927 [APTAOO] and

1.5 million [NPF98], respectively, in the United States. Diagnosis can be quite difficuit

early on, even for specialized neurologists, and reports have accumulated recently on the

potential of SPECT imaging with Iigands targeting certain components of a specific

neurotransmission system (the dopamine system) to allow for early, sensitive and

specific diagnosis of this disease. For example, the findings from D. J. Tuite, MD, of

Adelaide and Meath Hospital in Dublin [RSNAO2] show that SPECT images are useftil

for early diagnosis of Parkinson’s disease. They tested 50 patients using

radiopharmaceutical agent ioflupane with SPECT. The sensitivity of the SPECT

diagnosis achieves 98% and the specificity 97%. He mentions too, that positron

emission tomography (PET) is probably just as effective as SPECT but it is much more

expens ive and is not readity.

In addition, brain SPECT imaging is flot only important for diagnosis, but also

useful for case management, research, and follow-up of therapy efficacy such as

potential neuroprotective and neurorestorative therapies for Parkinson’ s disease.
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Since the total population of ail those brain diseases is huge, it is very important

to have an efficient and accurate tool for diagnosis. Although brain SPECT imaging bas

been employed for diagnosis for decades, researches by doctors and researchers are stili

on-going in order to provide earlier or more accurate diagnosis with SPECT.

1.2 Sources of degradation in SPECT imaging

SPECT imaging is widely used in diagnosis, follow-up of patients and

therapeutic management. However, the images suffer from relativcly poor spatial

resolution and low contrast that can make it difficuit for physicians to corne up with an

accurate interpretation for diagnosis, in particular, early diagnosis, i.e. when expected

changes rnight be rather Iirnited. In this section, we wiH introduce those major degrading

effects in SPECT imaging.

The degradation of SPECT images cornes from many sources: gamma photon

attenuation, inherent blurring from collimator and scintillation detecor, scattering effect,

and statistical noise. These degradations make SPECT images blutTy and noisy.

Attenuation is caused by the interaction of photons in the patient’s body ai-id

other media on the path to the scintillation detector. The interaction of photons with

rnatter causes four major effects [SanO3], photoelectric effect, Compton scattering (also

known as incoherent scattering), coherent scattering, and pair production. The

photoelectric effect takes place when a gamma photon strikes an orbital electron of the

atom ofmaterials (body or media) and the total energy ofthe gamma is spent in ejecting

that electron from its orbit, as shown in Fig. 7(a). The photoelectric effect occurs when

the energy of gamma ray is below 50 keV. Compton scattering is an interaction in which

a part of the energy of the incident gamma photon being transferred to an orbital

electron to cause its ejection, a new and lower energy gamma photon having the

remainder of the original photon’s energy is ernitted with a direction different from that

of the incident gamma photon, as shown in Fig. 7(b). Compton scattering is thought to

be the dominant phenomenon for gamma rays in the intermediate energy range 100 keV

to 10 MeV. Figure 7(c) shows coherent scattering effect, which occurs when the incident
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gamma photon interacts with the whoie atom. There is no internai energy exchange

between the gamma photon and scattering atom, so the gamma photon just changes

direction. Pair production is the case where a high energy gamma passes close enough to

a heavy nucleus such that ail the energy of the gamma is converted into the mass of an

eiectron-positron pair. If the original gamma has at least 1.02 meV energy, the positron

is then converted into two gamma photons with 0.51 keV energy each, shown in Fig.

7(d). Obviousiy, such energies are flot encountered in clinicai Nuclear Medicine.

Attenuation causes a reduction in the number of photon detected by the gamma

camera, resuiting in degradation of information about the distribution of the tracer

within the body because attenuation is generaiiy not unifonn.
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Figure 7: Four effects of attenuation. ta) Photoelectric effect. (b) Compton scattering. (c) Coherent
scattering. (d) Pair production LABO5J.



‘4

Cross-section (17cm)

10

0.1

0.01

0.001

0.0001 Energy (keV)

Figure 8: Differential cross-section for the photo-electric effect, Compton scattering, coherent
scattering and pair production and total cross-section for water as a function of photon energv

ISanO3].

Each of those effects, as mentioned, has a probably of occtirrence which strongly

depends on the photon energy and the property of materiat. f igure $ shows the

attenuation cross-section with respect to the photon energy. Due to low energy gamma

photons uscd in SPECT, typically 100-300 keV, and to the fact that the human body is

mainly made of water, photons experience more Compton scattering than the

photoelectric interaction. The attentiation in SPECT is thus the main resuit of Compton

scattering.

The collirnator is a crucial component ofthe gamma camera, because collimation

has the greatest effect on determining SPECT system spatial resolution and sensitivity,

which are the main quaÏity parameters of SPECT imaging system. Spatial resolution

denotes the ability ofthe equipment to reproduce fine details, while sensitivity relates to

the fraction of incident photons that is actually recorded by the imaging system.

Resolution of a collimator is inversely related to its sensitivity. The resolution in Nuclear

Medicine is usually expressed as the “fuII-width-at-half-maximum” (FWHM) amplitude.

When a collimator bas longer holes with a srnaller diameter, it bas better spatiaL

resolution because the angle of acceptance is smaller and more scatter is rejected, while

Total

10 100 1000 10000
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its sensitivity is lower because fewer photons reach the scintillation detector. Figure 9(a)

shows this feature. The coltimator in Fig. 9(b) has opposite properties, higher sensitivity

and lower resolution, because it bas shorter holes with a wider diameter. Due to this

characteristic, the design of a gamma camera for general purpose is a compromise

between resolution and sensitivity. In other words, SPECT images are aiways bÏurred by

the finite size and length of the collimator bores.

In addition to the effect of collimation, SPECT image resolution is also

restrained by scintillation detector’s response (the intrinsic resotution), and the distance

of object to collimator. The intrinsic resolution varies with different manufacturers. The

typical value of intrinsic resolution is between 3-5 mm (FWHM). In generat, system

resoltition falls about I mm for each additional centimeter increased ofa patient position

from the face of a parallel-hole collimator. In Nuclear Medicine, resolution defines the

degree of blurring along the boundaries between different regions of the image. The

major factor limiting the resolution in SPECT is therefore the collirnator-detector

response blurring.

Besides collimation effect and the detector response blurring, detection

sensitivity and the spatial resolution are also influenced by the dose of the agent used,

the image voxel size, the number of projections, the acquisition time, and filtering

process [CatOl].
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IiI I /1 [ I I
Scintillation [ I I J I
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Figure 9: (a) Lower sensitivity and higher resolution collimator. (b) Higher sensitivity and lower
resolution collimator.
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Because the collimation blurring and the detector’s intrinsic transforni function

are the two independent blurring sotirces, they can be analyzed as two sub-systems in

series [MD79]. When the phenomenon of scattering is absent, the point spread flinction

(PSF) for parallel-hole collirnators is typically approximated as a Gaussian function

[BB73] [GTMPB$8]. The detector PSF depends on the precision ofthe positioning-logic

circuits, and is usually modeled by a Gaussian function too.

The hypothesis that the PSF has Gaussian distributions for Fan-beam (diverging)

collimator is confirmed by Pareto et aï. [PPFJCRO1]. Gaussian function is also used to

simulate the intrinsic response ofthe detector for fan-beam collimator [f1G98].

Noise is the superposition of many factors, including photoelectric noise,

electronic thermal noise, transmission noise and quantization noise. Since the detection

of photons in SPECT is a Poisson process and the detection probability is veiy low,

around iO, measures of the projections include Poisson noise [SanO3]. Without

attenuation correction, noise in SPECT is characterized by Poisson function. However,

after application of the attenuation correction algorithrn, the (slightly stronger) noise has

a distribution similar to a Gaussian [AF99].

Some degradation is reduced or corrected by SPECI imaging design itself or

image reconstruction procedure. For example, Compton scattering, can be reduced by

using detectors with good energy resolution, which can distinguish the scattered photons

from the original incident gamma photons. During the reconstruction, special

mathematic algorithms, such as uniform atgorithms, can compensate most attenuation

effect. The present commercial SPECT systems frequently use the filtered

backprojection reconstruction algorithm to process the acquired data for producing final

images. Because the filtered backprojection algorithm cannot deal with photon

interaction or detector characteristics, resolution degraded by the imaging process

cannot be recovered by the reconstruction process. Although multi-detector system has

been designed, which results in relative high spatial resolution and rapid imaging of the

object, the typical spatial resolution of SPECT brain perfusion images can only achieve

around 10 mm FWHM in the plane ofthe suce.
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Thus, two problems, blurring and noise in the observed SPECT images, are

commonly experienced in the context of image restoration for medical image processing.

1.3 Image restorafion techniques overvïew

Attering acquisition and reconstruction strategies to account for a source of

degradation is costly in tertns of processing time, added complexity in imaging and

processing, and I or enhancement other sources of degradation [KinO3]. As a resuit,

actual SPECT images in clinic are usually noisy and have low contrast and spatial

resolution when compared to those acquired with other imaging modalities. The

objective of restoration is thus to recover as rnuch information abotit the object being

imaged from the degraded reconstnicted image by modeling the imaging system and

noise.

Image restoration is a field of digital image processing that attempts to reduce

the effects of the PSF blutring and to remove the noise as rnuch as possible. In other

words, image restoration intends to achieve an improved image that is as close as

possible to the real scene. Thus restoration techniques usually focus on modeling the

degradation of imaging system, implernenting the inverse process, and fonnulating a

criterion to yield an optimal resuit. It should not be confused with another image

improvement technique — enhancernent, in which the chosen features are made more

visible for further detection. Image restoration techniques share the sarne objective with

image reconstruction processing and try to solve the same mathematical problem.

However restoration is based on a full image, while reconstruction operates on a set of

projection data.

A variety of restoration techniques have been developed, and also it exists a

number of ways in classifying them. We classify these rnethods into two categories,

restoration with a priori information and blind deconvolution without or with partial a

priori information.

in the first category, we continue to classify them into linear restoration and non

linear restoration methods. With linear methods, imaging system is modeled as a linear
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shift-invariant system, which is a common mode! used in medical imaging systems. In

other words, the degraded image is the convolution of the ideal image with the PSF of

the system, plus superposition of additive noise. In non linear algebraic rnethods, the non

Iinearity is introduced by either a nonlinear image formation and recording system

mode!, or a !inear shift-invariant system model with some constraints that produce non

linearity, e.g. non-negativity constraint — an image is formed aiways of positive

intensities. This constraint is aiways tnie since the image is gcnerated by the transport of

radiant energy. Non linear properties may also corne from the formulation of the

restoration problem, for examp!e, the use of complex optirnization criteria.

Since there are multiple different restoration algorithms, we only introduce those

methods that are the basis for others. For linear a!gebraic approach, a large class of

restoration filters is derived based on least-squares criterion ftrnctions, considering either

unconstrained or constrained approaches, which include inverse filtering, constrained

!east—square filter, Wiener fi!ter, Tichonov-Miller, and maximum entropy method. For

nonlinear approach, there are Van-Cittert, Landweber with positivity constrain,

conjugate gradients forrn of Tichonov-Mi!ler and stochastic (random) rnethods that

ernp!oy maximum !ikelihood estimation and expectation-maximization a!gorithm.

Linear restoratïons

The linear shift-invariant system model in the spatial domain assumes that the

observed image, reprcsented as a stacked vector g and resulting from the imaging system,

is equa! to the product of a point spread function matrix H and the tme image vector f,

plus the noise vector n (see section 2.2).

Inverse ifitering is an unconstrained linear restoration approach using !east

square criterion, which assumes that the norrn of the noise is as srna!! as possible. In

other words, it finds the estimate that minimizes the norm of the difference between

the measured image g and the b!urred estimate Hi It is one of the simp!est

deconvolution methods. However, this method cannot tolerate any noise. In reality,

noise is ampÏified due to the fact that the spectral properties of the noise are not taken
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into account. As a consequence, this solution may flot be irnplemented in practical

applications where the data term is aiways affected by noise. The key problem of inverse

filtering is that it treats both image structure and noise equally because it cannot

distinguish them.

In mathematical terms, the restoration problem is ill-posed or ill-conditioned,

that is, the problem cannot be uniquely solved. Small changes in the data can cause

arbitrarily large changes in the resuits. In addition, the goals of image restoration,

removing noise and deblurring (increasing contrast and resolution), are in conflict,

because blur caused by any source is actually a form of bandwidth reduction of the

image due to the image formation process, so a high-pass fitter is needed to undo this

part. On the other hand, noise is also composed of high frequencies, so a low-pass fitter

shoutd be chosen to remove it. The ill-posed nature of restoration leads to more than one

solution for the same system. Regtilarization methods are usually applied to solve ill

posed problems.

Regularization methods use a prioii information for restoring degraded images.

Ihe key characteristic of regularization is a trade-off concept, that is, the choice of the

penalty term, which balances between fidelity to measurements and to ci priori

information. Depending on the type of prior knowledge, there will be different

mathematical expressions serving as a penalty term.

Constrained least-squares filter is a deterministic regularization method, which

uses deterministic prior information about the original image. It is much more effective

than the simple inverse filter. Hunt proposed this method that minimizes sorne linear

operator on the object QÎ with some other conditions, for instance, the norm of the

noise signal [Hunt 73j. Using the method of Lagrange multipliers, the constrained teast

square problem becomes to seek an estimate to minimize + a(g
— Hif

— 2)

where the parameter a is often obtained by an iterative method.

Wiener filter is a special case of constrained least-squares filters. from the

viewpoint of implementation, Wiener filter is one of stochastic regularization

approaches [BK97], which tries to minimize the mean square error between the original
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image and the estirnate subject to knowledge of signal and noise covariance matrices, Rf

and R, so it is also called least-mean-square filter. Here, the linear operator is chosen

to be equal to (Rf)”2(R)”2. The Fourier version of the Wiener filter can be very

effective when the frequency characteristics of the image and additive noise are known

(at least to some degree), and under the assumptions that both signal and noise

covariance are stationary and independent. The Wiener filter is by far the most common

deblurring technique used because it rnathematically retums the best resuits and takes

the shortest computational time to find a solution. The detail derivation of Wiener filter

wiIl be presentcd in Chapter 2.

The Tikhonov-Miller [Mi170J [PTVF92I restoration is linear and non-iterative in

its original form. The method is based on a rnean-square-error criterion and an energy

bound that is the regularization pararneter, the ratio of the noise power to the object

power. Due to this botind, those spectral components outside the bandwidth of the PSF

in the estimate Î will be suppressed. The solution may include negative values.

Introducing an appropriate cost function, such as entropy, is another way of

regutarization. The maximum-entropy method introduced by Jaynes in 1968 [Jay6s] and

frieden in 1972 {Fri72] are widely used for astronomical image restoration. The

principle of maximum entropy is a method for analyzing the available infonnation in

order to determine a unique epistemic probability distribution [WikO5]. If the object fis

normaflzed to unit energy, then each f scalar value can be interpreted as a probability.

Using constrained least-squares approaches, the maximurn-entropy filter tries to

minimize the negative of the entropy f’ lnf subject to the constraint that is

11g — 111112 = 1111112 [AH77]. Maximum entropy helps suppress artificial oscillations but is

sensitive to noise and slow when compared with other methods.

Non ]inear restoration

For non-linear methods, the results nonnally cannot be obtained by an analytical

form. Instead, an iterative procedure is employed.
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Van Cittert iterative deconvolution [Cit3l], known as basic iterative

deconvolution (BlD), is based on the linear degrading system. In this technique, just like

other iterative methods, the first step is to set the initial estimate to the measured image

g. The basic idea ofthis algorithm is that if this first estimate fi is correct, the difference

ofthe measured image and the output g that is the resuit ofblurring the first estimate f

with the PSF, g - gj, should 5e zero. If not, the correction might be made based on this

difference. Ibis algorithm is repeated until the error is below a threshold, or the update

is no longer significant. Because this algorithm does not put any restraints on the fidelity

to prior knowïedge, it might resuit in severe noise amplification.

Iterative Tikhonov—MiIIer method is a modification of the analyticat Tikhonov—

Miller form. It adds an extra non-linear element property, positivity. Because the

Tikhonov—MiÏler method includes a penalty term, it can thus effectively control noise

amplification.

Many methods try to find the optimal value of the penalty terni based on

Tikhonov’s regularization. For instance, the Conjugate Gradient Least-Square methods

[HH94] use the number of iterations as a regularization pararneter for the Tikhonov

equation with no other regularization tenn.

Stochastic approaches are also used for image restoration. They are particularly

effective when the blur function and the signal and noise power spectra can flot be

obtained. In stochastic approaches, the original image is assumed to be a realization of a

random field, usually Gaussian or Markov. Maximum LikeÏihood (ML) and Maximum a

Posteriori (MAP) approaches are specific types ofstochastic methods.

Richardson [Fri72] and Lucy [Luc74] proposed the well-known Lucy

Richardson algorithrn, which is derived from the maximum likelihood expression for a

non linear system (with Poisson noise) through an iterative method. Lucy uses a

correction terrn based on the ratio between the observed image and the estimate. A first

guess must be specified, a constant for example, to start the iteration. This method is

effective when the PSF and a littie information about noise are known. However, this

technique has a common problem just like other maximum likelihood methods, noise

amplification, because it attempts to fit data as closely as possible.
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A similar technique was proposed by Hunt in 1977 in which Maximum a

Posteriori probability method was applied. The MAP solution differs from the ML

solution solely because of the a priori information. The MAP estimate and the Wiener

fiher estimate in linear systems are the same on Gaussian densities [AH77]. The MAP

problem is solved by the steepest descent method. An initial guess in MAP is usually

made from a Wiener filter used as a linear approximation.

in the second category, blind deconvolution, both the true image and the PSF are

estimated through an iterative approach using partial information about the imaging

system. There are two main approaches to blind deconvolution of images, identifying

the PSf separately from the estimation ofthe true image and simultaneously estimating

the PSF and the truc image [KH96]. Kundur et al. listed five blind deconvolution

methods: a priori blur identification methods that fail into the first approach, Zero Sheet

Separation rnethods, ARMA (Auto-Regressive Moving Average) Parameter Estimation

methods, Nonparametric Deteministic Image Constrains Restoration and

Nonparametric methods based on high order statistics that fail into the second approach.

An iterative approach has an advantage — an additionat regularization obtained

by ending iteration before convergence. On the other hand, iterative image restoration

algorithrns usually need a good estimate. for this purpose, the observed image is chosen

for the first estimate. This is an obvious and frequently used way. However, when noise

is present in the measured image, it may hamper the convergence ofthe algorithm.

In our work, we propose an adaptive Wiener filter, a new approach based on the

Wiener filter, for improving SPECT images. Our approach overcornes the limitation of

the Wiener filter and keeps its simplicity, stability, ability to remove noise, and

efficiency of increasing contrast and resolution.

1.4 DICOM standard

In the medical imaging society, the DICOM standard is commonly used for the

transmission and storage ofdigitat medical images from the rnost common modalities in

hospitals and clinics, such as SPECT and MRI. The standard was developed by the joint
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committee of the American College of Radiology (ACR) and the National Electrical

Manufacturers Association (NEMA) founded in 1983. The entire DICOM [DICOMO4]

standard consists of 18 parts. Image format is only one ofseveral issues and is addressed

in Part 10 ofthe standard. By convention, image files that are compliant with Part 10 of

the DICOM standard are referred to as DICOM format file.

Unlike other medical image formats, a single DICOM file contains both head

and image data. Using MRIcro [RorO4] software package, the DICOM files can be

easily converted to other image formats applied frequently for medical image processing,

such as the Analyze format that includes two separated components, header (.hdr) and

image (.img) files.

The raw data we processed for this study are the DICOM format images.

1.5 Content of the rest of this thesis

We have reviewed the history of SPECT imaging, its application in clinic.

degrading factors in SPECT imaging systems, different restoration rnethods that cari

improve degradation, and the DICOM standard for digital medical images. In Chapter 2,

we wiII first derive Wiener filter mathernatically, then we propose our adaptive Wiener

filter. The third chapter describes the methodologies of the additive Wiener filter for

restoration of SPECT images. Chapter 4 presents the experimental resuits on both

Hoffman phantom and real SPECT images. The thesis is ended by the conclusion in the

Iast chapter.
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Chapter 2

Adaptive Wiener Filtering

2.1 Introduction

In chapter 1, many common linear and non linear image restoration approaches

were reviewed. Among them, the Wiener filtering is the most common linear restoration

technique due to its simplicity, capability of being computed in a straightforward and

economical way and tolerance to noise.

The well-known Wiener filter is a global filter that is optimal in the sense that it

minimizes the mean square eiior between the original image and the estimate. However,

when we apply the Wiener fiher to restore degradcd images, o priori information, such

as the PSf and the power spectra of the original image and noise, are needed.

Unfortunately, these information are normaÏly unknown.

In this work, we propose an iterative Wiener filter to overcome these limitations.

Since we work in biomedical imaging, we assume that for the same patient, a higher

resolution image (an anatomic image, such as, a MRI scan that uses magnets and radio

waves and provides much higher details in the soft tissues, or a CT scan that uses x-ray

and gives a good information of the bone structures) is acquired in addition to the

SPECT image. We use this higher resolution MRI (or CI) volume with a set of image

processing as our reference image to approximate the real scene — the “non-degraded

SPECT image” that in fact neyer existed. Then the PSf and the power spectrum of noise

are iteratively estimated based on a Gaussian PSF and Additive White Gaussian Noise

(AWGN), as well as a criterion of image goodness — the contrast-mottle criterion.

In the following sections, we shall first formulate the restoration problem, then

introduce the Wiener filtering algorithm, and finally present our adaptive method based

on the Wiener filter.
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2.2 Restoratïon problem formulation

Before formulating the restoration problem, we have to define the degradation

model for SPECT imaging. This degrading system is assumed to be a [inear shift

invariant system with additive noise [MM00], which is a common modet used for most

medical imaging systems. Although living systems are flot linear, vie can linearize them

based on some reasonable assumptions, because such linear mode! will then allow us the

luxury of borrowing from the field of linear systems theory, Fourier analysis, linear

algebra, nurnerical analysis, and rnany other disciplines for dues as to useful inversion

technique [AH77]. The focus of this thesis is image restoration hence the system

linearization will flot be further discussed.

We start modeling a two dimensional imaging system. An imaging system is

usualty an image degradation process consisting ofthe input, the system, and the output,

shown in fig. 10.

A mathematica! formula ofthis system may be expressed by:

g(x,y) = — k,y — t)f(k,Ï) + n(x,v) = j(x,v) h(x,v) + n(x,y) (2.1)
Â=I /I

where J(x, y) and g(x, y) represent an original and degraded M X N images respectively,

h(x, y) is the blur operator, also called the point spread function, and n(x, y) denotes

additive noise introduced by the imaging system. indicates two-dimensional

convolution. Here we assume the imagej(x, y) and the function h(x, y) are periodic both

/(x. y)

n(x,v)

y)

Figure 10: The block diagram of an imaging system.
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in x and y directions with periods M and N, respectively. The resulting image g(x, y) is

also periodic with the same periods asJ(x, y) and h(x, u).

Early classical techniques derive the Wiener filter from frequency-domain

concepts. In this work, we introduce the algebraic approach derived by Gonzalez and

Wintz [GW$7] that allows us to compare the Wiener filtering with other restoration

techniques. Therefore, we represent Eq. (2.1) in terrns of a matrix-vector formulation,

which is given by

g = Hf + n (2.2)

1(0,0)

j(0,N—1)

f(l,0)

f(l,N—l)

[(M — 1,0)

J(M — 1, N — 1)

n(0,0)

n(0,N—l)

ii(I,0)

ii(1, N—1)

n(IVI —1,0)

i;(A’I —1,N—1)

where g, f, and n have the same rneanings as for Eq. (2. 1) except for the vector

formulation. These vectors have MN (it means MxN) dimensions obtained by stacking

the rows (one can stack the columns too) of each of functions, J(x, y), g(x, y) and n(x, y).

The matrix H is MN x Pv[N representing a superposition of blur operator and bas special

properties. These special properties are desirable for representing linear shifi-invariant

system and lead to the following special matrix structure:

gr

g(O,O)

g(0,N—1)

g(l,0)

g(1,N-1)

g(M —1,0)

g(M —1, N —1)

f= n=

i 1NxI I MNxI MiVxI (2.3)
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H 11
—

H —2

= II H H
—

H,

11M—I 11M—2 11M—3 “O MNxMN (2.4)

where H is called a MN X MN block-circulant matrix with M X M blocks and each sub

matrix H is itself a circulant NXN matrix. It is formed from the i-th row of the array

h(x,y) as follows:

h(i,O) h(i, N — 1) h(i, N — 2) h(i,1)

H
= h(i,1) h(i,O) h(i, N — 1) ... Jz(i,2)

h(i,N—l) h(i,N—2) h(i,N—3) h(i,O)
(25)

where the array Ïi(x,v) is the blurring ftmction. The matrix H has the circulant property

because of the assurned periodicity ofh(x,v).

According to the degradation model, it is clear that the goal of restoration is to

solve the inverse problem of Equation (2. 1) or (2.2), in other words, to find the inverse

transformation such that the original image can be recovered from the measured data:

f =H(g—n)
(2.6)

The inverse transformation W’ should exist and be unique, and noise

characteristic should be known. If these conditions were satisfied in most applications,

the restoration problem would not be a critical issue in image processing. However, the

real word is aiways not the one we desire. For the situation where there is no inverse

transforniation (singular), which is flot unusual, the restoration problem has no solution.

Even if H’ exists, it may be ill-posed. Hadamard first introduced the definition of iiI

posedness in the field of partial differential equations [Had23]. A problem is welI-posed

when a solution exists, is unique and depends continuously on the initial data. It is iii

posed when it fails to satisfy at least one of these criteria. Andrews concluded that image
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restoration is an ill-posed or ill-conditioned problem at best and a singular problem at

worst [AH77].

Therefore, in the best case, there is usually no unique solution for restoration

problem in view of noise and ill-conditioning. We thus use some prior knowledge to

make an ill-posed problem welt-posed, so the class of admissible solutions can be

restricted. We will discuss them in the next subsection. It is important to keep in mmd

that the resuits for restoration problems are usually obtained in the optimal sense.

Notice that, even if the inverse transformation W1 exists and is unique, and n is

known, directly computing W’ would be time consuming. For example, if we suppose M

= N= 512, MN= 262,144 and H would be a 262,144 by 262,144 matrix to be inverted.

Fortunately, the complexity of this problem can be reduced considerably by taking

advantage ofthe circulant properties of H {GW87].

Since H is a block-circulant matrix, we can solve Equation 2.2 in a feasible way,

by diagonalizing H.

If H is a block-circulant matrix, according to [Hun73] we can write H as:

H = EDE’ (with EE1 = E1E = 1) (2.7)

or D = E1HE (2.8)

where D is a diagonal matrix whose elements D(k, k) are related to the discrete Fourier

transform of h(x, y).

Multiplying both sides ofEq. (2.2) by E’, and applying Eq (2.7), we get:

E1g=DE’f+En
(2.9)

The product E’g is an MNx1 vector, containing the stacked rows ofthe two dimensional

discrete Fourier transform matrix G(tt, y) ofg(x, y). It is the same for the vectors E’f and

E’n.

Now the restoration problem becomes solving the followïng equation in the

frequency domain, which avoids the calculation ofthe inverse matrix W’. Eq. (2.9) can

be written as:

G(u, y) JI(u, v)F(it, y) + N(u, y) (2.10)

foru=0,l,...,M-landv=0,1,...,N-1.
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In the following subsections, we shah introduce sorne criteria to obtain the

solution for Eq. (2.10), the restoration problem.

2.3 Wiener filter

2.3.1 Introduction

The main technique used in order to transform the ill-posed problem into a well

posed one is the so-called “regularization procedure” [Mi170]. They usually use some a

priori information for the derivation of a solution. The Least-squares criterion is one of

those techniques that will give a unique solution and possesses simplicity. Two

approaches, unconstrained and constrained, could be considered to solve the least

squares restoration problem. We derive these two approaches using GonzaÏez and Wintz

formulation [GW87].

2.3.2 Inverse filter — Ieast-squares unconstrained restoration

We will first introduce the solution for unconstrained restoration problems. This

rnethod will lead to the inverse filtering, which is not our goal but has some important

relation with Wiener filtering.

We can rewrite Eq. (2.2) to express the noise term:

n=g—Hf (2.11)

The unconstrained criterion here is to find the estimate of the original f to minimize

fig
—

in a least-sqtiare sense under the assumption that the norm ofthe noise term is

as srnahl as possible. This problem can be therefore expressed by minimizing the

criterion function:

J(Î)= g—HÎ
(2.12)



with respect to Î, where,
—

HÎ[ = (g — — IIÎ), the square norm of (g — HÎ).

It is noted that Î is flot constrained by other requirernents except that it is required to

minimize Eq. (2.12).

Minirnization of Eq. (2.12) is obtained by differentiating the function J with

respect to Î. By setting the resuit to zero we get the following equation:

Î =(HTH)HTg = H(H’’HTg = H’g (2.13)

Replacing W1 in the above equation by Eq. (2.7), we have:

Î =(EDE’)g = fD’E’g (2.14)

Multiplying both sides of Equation (2.14) by E’ as we did previously, yields:

f’Î = D’E’g
(2.15)

Using notations in the frequency domain, the above equation is expressed by:

G(tt,v)
F(u,v) =

H(tt,v) (2.16)

which is refereed to as the inverse filter method.

2.3.3 Wicner tï]ter least-squares constrained restoration

In constrained image restoration, we wiIl flrst define a matrix Q with appropriate

dimension and then choose an estirnate Î to minirnize QÎ[, subject to the constraint

— HÎ[
=

In other words, we seek an Î that minirnizes the following criterion

function:

J(Î)
= NQÎN2 + ag

— HÎN2 — InI2
(2.17)

where a is a constant called the Lagrange multiplier.

Minirnization is carried out by differentiating Eq. (2.17) with respect to Î and

setting the resuit equal to zero:
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ai
=2QTQÎ_2aHT(g_Hî)=o

(2.18)

We obtain the solution for the general constrained restoration probtem by soïving (Eq.

2.1$) for L This is givenby:

î=(HTH+)QTQ)HTg
(2.19)

where y = lia is chosen to satisfy the constraint — Hî[
= IIII2•

Wiener lias derived an optimal solution based on the statistic of the image and

noise features, mean and correlation. 1f each element of f and n is considered as a

random variable, we can define two cotTelation matrices:

E(JJ) E(JJ)
R1 =E(ff )=

. : (2.20)

E(L) •.. E(ftl\If!vI)

E(n0n0) E(n0n1) E(n0ii11_1)

E(n1 ;i) E(n1 ‘) .
E(n !l1.1N._1)

R=E(nn)= .. (2.21)

E(nAJN-1 n0) E(n1_ nMN_I)

where Et.) denotes the expected value operation. Since the elements of f and n are reat,

E(f,j) = E(f1f) and E(n,n,) = E(nn) , the matrices Rf and R are real and

symmetric with alI non-negative eigenvalues. Andrews and Hunt showed that R and R

can be made to approximate block-circulant matrices and can be diagonalized by the

matrix E [AH77]. It leads to the Fourier transform ofthe correlations, Rf and R , which

are called the power spectra of signal and noise, respectively. We thus can write:
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= EAE’ and R EBE (2.22)

We can easily get the transpose of H from Eq. (2. 7), given by:

HT =EDE’ (2.23)

where D* is the complex conjugate of the matrix D. Choosing matrix Q such that

QTQ = using Eqs. (2.7), (2.22) and (2.23), and rnultiplying Eq. 2.19 by E1,

after some matrix manipulations we have:

= (D*n + yA’B)’ D*Elg
(2.24)

where the elements of A and B are the Fourier transforms of the elements in Rf and R,

respectively. As we have rnentioned, these terms are the power spectra of signal and

noise and will be denoted by P, (u,v) and J-jzt,v) , respectively.

Choosing y = 1, we get the following equation in the frequency domain:

II*(ttv)
f(u y) = G(u,v)

I II(u, y) +F, (ti, y) / P, (u, y)

= I I H(ti, y) 2
G(tt y) = H,,. (u, v)G(u, y)

H(tt,v) H(u,v) 12 +z(u,v)/Pr(u,v)
(2.25)

for u and y = 0, 1, ..., M-1 (M = N). The Wiener filter is given by the term within

bracket:

H (u,v)
= H(tt, y) 2

(2.26)
H(u,v) H(tt,v) 12 +1(u,v)/P1(u,v)

From the above equation, we can see that the Wiener filter consists of two parts,

the inverse filter and the Wiener estimator as shown in Fig. 11.



33

Wiener Filter h11(x,y)

g(x,y) F”ï J
Inverse Filter Wiener Estimaor

Figure 11: The block diagram of the Wiener luter.

It is noted that the derivation of the Wiener filter is based on a statistical model

of the image in which the rneasured image is a single realization of a random field. The

resuit obtained by using the Wiener filter is thus optimal in an average sense.

Equation (2.26) can be easily extended to three dimensions:

II*(u, e, w)
H (u, y, w) =

I H(u, e, w) 12 +J (ti, y, w) / P, (tt, e, w)
(2.27)

Hence, using the Wiener filter, one can estirnate the original image under the assumption

that we have ci priori information such as the PSF of the imaging system and the power

spectra ofthe original image and noise are known.

2.4 Adaptive Wïener filter

2.4.1 Limitations ofthe Wiener filter

The needed conditions to apply the Wiener filter is that the PSf of the imaging

system and the power spectra of the signal and the noise are known. However, this is flot

the case in practical use. In this work, therefore, we propose an adaptive Wiener filter

that uses a reference image as the original image and estimates the PSf and the power

spectra of noise according to an image contrast-mottle criterion.

Metabolic SPECT and anatomie MRI brain images contain complernentary

information necessary to interpret brain function and pathology. SPECT images can

offer physiologie information such as cerebral blood flow, cerebral oxygen utilization,

local glucose metabolism and local protein synthesis, but with lower spatial resoÎution,

while MRI scans provide good soft tissue discrimination and higher spatial resolution. In

clinical application, patients often receive both MRI and SPECT scans.
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Firstly, we propose using the MRI scan as a reference image (affer a set of

processing) for providing a priori information about the non-degraded SPECT image.

Secondly, we make an assumption that the PSF of SPECT imaging system is a

Gaussian function with an unknown variance. In addition, it is assurned that the additive

noise introduced by the system is an AWGN. Although this assumption is only an

approximation of the reality, it is widely used in the literatures and we wilI show later

that it is acceptable to improve the SPECT images.

Lastly, with the contrast-mottle criterion, the adaptive Wiener filter can

iteratively estimate the parameter of the PSF and the power spectnim of the noise to

finally restore the SPECT image.

2.4.2 Image contrast-mottle criterion

In Nuclear Medicine, stibject contrast comes from the ability of the agent to be

selectively taken up by the organ of interest and by the timing of imaging processing to

coincide with the maximum uptake of the radiopharmaceutical. In the context of

biomedical engineering, the increase of the dose of the radiopharmaceutical is strictly

forbidden, and increasing data acquisition tirne can introduce movement of organs,

therefore the contrast of SPECT images is hard to be improved.

However, the contrast of an image is very important for diagnosis. To visualize a

given lesion, the contrast should be high enough to overcome the loss ofvisibility due to

the presence of noise. For this reason, we introduce the image contrast-mottle criterion

[WLOLF 85] [MMOO], into our restoration procedure to choose the best combination of

two parameters for the adaptive Wiener ifiter so that the recovered image contrast is

enhanced while the amplification ofrnottle is acceptabÏe.

If J(x, y) represents the intensity of a pixel located at the position (x, y), the image

contrast can be defined in the following ways [MigO3]:

Standard deviation of gray levels in the image

I I N—l.f—I

C
= f—(f(x,v) —

°
° (2.28)
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where in is the average intensity ofthe image.

Variation between maximum and minimum intensity values in the image.

= max[f(x,v)] — min[f(x, y)]
max[J(x,v)] + min[J(x,y)] (2.29)

Relative difference of intensity in the image

c = 1174
—

mB
(2.30)

where rn4 and rnB represent the mean values in the region A and B of the image,

respectively.

In this work, the definition of the contrast is based on the third method. Brain

SPECT images have three main regions of interest, Gray Matter (GM), White Matter

(WM) and Cerebrospinal fluid (CSF). The average contrast is deflned between the WM

and GM regions [MMOO],

C = i —

_______

(131)

where in and fllc;f are the mean values of the pixel intensity in the regions of white

matter and gray matter respectively, C represents the average contrast.

The mottie is characterized by taking the ratio of the standard deviation of pixel

value to the mean in one region and defined by Mignotte et al. [MMOO] as:

M,1
=

and MG1f
= 6GM (2.32)

1111VM

where and Gf are the standard deviation of the pixel intensity in the areas of

WM and GM respectively. The average mottle ofthe image is thus defined by:

M — + PGMMGM (2.33)

where is the proportion of pixels belonging to the area of white matter and the

same meaning for flGf

The above average contrast and mottie criteria are used to evaluate the

performance of image restoration techniques in [WLOLF$5] [MMOO]. The contrast is
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the parameter that we intend to increase so that the image can be enhanced by means of

restoration technique. The mottie parameter is used to measure the amplification of

noise and/or the presence of artificial effects that are the side effect generated by

restoration processing. It is the parameter that we want to control.

In order to increase image contrast, we introduce this contrast-mottle evaluation

cnterion into our restoration process. Two parameters will be adjusted such that the

current mottie is under a threshold and the current contrast is maximum. If this criterion

is met, the adaptive Wiener filter will choose this best combination of its parameters so

that the recovered image contrast can be rnaximally increased while its noise

amplification and the artifacts are under acceptable level.

2.4.3 The formulation ofthe adaptive Wiener filter

The adaptive Wiener filter consists of two major tasks, estirnating the pararneter

ofthe PSF and the power spectrum ofthe noise.

As for the estimation of the PSF, it is generally implemented in two steps. The

first step is making assumptions on the characteristics of the PSF. A popular rnethod is

using pararnetric models such as 1D uniform local averaging of neighboring pixels for

linear motion blur, uniform intensity distribution within a circular dist for out-of-focus

blur, Gaussian ftmction for atrnospheric turbulence blur and other imaging blur. The PSF

pararneters are then characterized by the features of the true and blurred images. for

example, for astronomical speckle imaging, the PSF can be identified by a point source

against a uniforrn background [Bats2l. In the frequency domain, zeros are resulting from

situations in which the source of blurring is tinear motion [Can76j

[CTE9IJ[ Cha9l][ FM9Ï].

In section 1.2 we described the degradation sources of SPECT imaging and

modeled the bluning effect as a Gaussian flinction PSF with zero mean. The estimation

of the SPECT PSF thus becomes only estimating the standard deviation of the Gaussian

ftinction (assumed isotropic) or the PSF width (c’).

Rooms et al. proposed a wavelet based method that measures the sharpness of

edges in the blurred image by caictilating the magnitude of the Lipschitz exponent and
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finds out the relation between this value and the standard deviation of Gaussian PSF

[RRPPO2J. However this technique is noise sensitive.

in section 2.4.1, we mentioned that the parameter ofthe Gaussian PSF and the

power spectrum of noise would be estimated iteratively according the contrast-mottle

criterion. The detailed iteration process will be explained in section 4.1.3. Experiments

wilI show that our method has a good tolerance to noise, in other words, the

identification ofPSF can be estimated under noisy situation.

Now let us discuss the estimation of the term P,7!?1 in Equation (2.28). This terni

can be interpreted as the reciprocal ofthe signal-to-noise ratio. In conventionat ways, the

power spectrum of the true image P is approximated by one of the observed image.

This obviously is a quite rough estimation. Gonzalez and Wintz proposed using a

constant in proportion to the standard deviation of the noise term to replace the P,,/P in

[GW87]. This method is simple but still needs the knowledge of noise. In this work,

since we introduce a reference image that is very close to the true scene, P1 is obtained

by calculating the power spectral density of this reference image (MRI) after an

appropriate gray level assignment (sec section 3.3.4).

As the noise tenn is rnodeled as AWGN, its power spectral function does not

vary with frequencies and is equal to its variance everywhere. Hence, the 3D adaptive

Wiener filter can be forrnulated by

11 (tt, y, w, o-)
H111,(u,v,w,o-,K) = (2.34)

y, w, o-)1 + K / P,. (tt, y, w)

where H(u, y, w, u) represents the three dimensional Fourier transform of the Gaussian

PSF with unknown standard deviation . H*(u,v,w,g)is the complex conjugate of

H(ti, y, w, u). K denotes the constant power spectnim of the AWGN that we have to

estimate.

Fig. 12 shows the functional diagram of our adaptive Wiener filter. The whole

process needs two inputs, one is the raw SPECT image and another is the raw MRI

volume. The reference image is obtained by preprocessing (e.g. registering) the raw

MRI volume with respect to the raw SPECT volume image.
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It is easy to find that the adaptive Wiener filter is a non linear restoration method

due to the introduction of the contrast-rnottle criterion. The iterative resuits converge

when the combination of the two parameters, the PSf width () and the constant power

spectrum of noise (K), makes the restored image meet the contrast-mottÏe criterion.

Adaptive Wiener filter
Raw SPECT
g(x,y,z)

SFECT

Figure 12: Interpretation of the proposed technique.



Chapter 3

MRI Data Preprocessing

3.1 Introduction

Adaptive filters are these filters that are capable of self adjustrnent. The adaptive

Wiener filter requires two inputs: the degraded image to be processed and the reference

image. However, the original MRI volume can flot be directly employed as the reference

image. We have to apply a number of image processing techniques to make the original

MRI data becorne the reference image. figure 13 summarizes the major tasks for the

whole system including a 4-step data preprocessing (during which only the MRI data is

processed) and the iterative restoration procedure that we deflned in section 2.4.3. The

data preprocessing consists of (1) removing skull, scaLp and other non brain material

from the raw MRI volume, (2) registering the previous image with regard to the SPECT

image, (3) segmenting the registered brain MRI volume into three brain regions (GM,

WM and CSf), and (4) assigning regional cerebral (SPECT) activity for GM, WM and

CSF regions in the previous resuit.

Original MRI

Figure 13: The block diagram of the system.
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We received raw MRI and SPECT images from the CHDM (University of

Montreal Medical Center). The original data is stored in DICOM format (section 1.4

gives the description of this standard). Since MRI and SPECT images corne from two

different and complementary imaging modalities, they have different voxel sizes, and

different intensity values for the three main brain regions. It is evident that the original

MRI scan could not meet the requirement as a reference image without being processed.

Fortunately, in digital image processing, segmentation and registration techniques can

help us to achieve this goal. A short introduction about image segmentation and

registration will be presented in section 3.2. Section 3.3 contains the detailed

description of each data preprocessing technique.

3.2 Segmentation and registration

Segmentation and registration are two of the most important image processing

techniques. We will address these two issues in the following subsections.

3.2.1 Segmentation

Segmentation is to partition an image into several constituent components, in

other words, to classify each image pixel to one of the image parts. The purpose of

segmentation is usually to extract areas of interest from an image for subsequent

processing. Although a variety of techniques exist to segment an image, the principles of

these methods are generally based on one of two basic properties of gray-level values:

discontinuity and similarity [GW$7].

In the first class, the detection of discontinuity is based on sudden changes in

gray level. The approaches among this category detect isolated points, unes, and edges

in an image through small spatial masks.

However, when noise and other effects that introduce artificial intensity

discontinuity are present, these masks alone are flot sufficient. They are typically
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followed by further local or global analysis to link edge pixels into a meaningful set of

object boundaries.

In the second class, thresholding and region growing are two common

segmentation approaches using the property of gray-level-value sirnilarity.

Thresholding is one of the most important approaches for image segmentation.

Techniques in this group are on a basis of pixel gray values. One way to choose

thresholds is via an image histogram. in rnany situations, histograms are composed of

several regions, so one can select those gray values lying on boundaries as thresholds, by

which the images are segmented. Thresholding is also the most basic segmentation

method, often followed by or combined with other methods, such as optimal procedure,

boundary characteristics, multiple variables to characterize each pixel, and models used

to deal with more complicated gray-level-value situations. The technique we used for

the MRI brainJnon-brain segmentation is a thresholding method with a surface mode!.

We wil! describe it in section 3.3.1.

Region-growing segmentation, as implied by its name, is accornplished via

connecting pixels and srnall regions into larger regions. The methods start by selecting a

set of seed points inside each regions, from which regions are grew by adding their

neighborhood that have similar properties, such as same gray range, or same texture, etc.

We shah use this technique for our data processing. A more detailed description wihl be

given in section 3.3.3.

3.2.2 Registration

Registration is a critica! stage for comparing and visualizing different images.

Indeed, for providing a priori information, the MRI data should be aligned with the

SPECT image. Performing registration is therefore a necessary step to achieve this goal.

The registration is defined as a technique that determines the spatial alignment between

images of the same or different subjects, acquired with the same or different modalities

[DerOl].

There are a wide variety ofregistration methods. Maintz and Viergever cÏassified

medical registration methods based on fine basic criteria as follows [MV9$1,
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* Dimensionality: spatial dimensions only or time series with spatial dimensions.

* Nature of registration basis: extrinsic, intrinsic and non-image based

* Nature of transformation: rigid, affine, projective and non-linear

* Dornain of transformation: local and global

* Interaction: interactive, semi-automatic, and automatic

* Optimization procedure: parameters computed and parameter searched for

* Modalities involved: mono-modal (intra-modality), multi-modat (inter-modality),

modality to model, and patient to modality

* Subject: intra-subject, inter-subject, and atlas

Object: head (brain), thorax, abdomen, etc.

It is noted that a particular registration aÏgorithm can possess different criteria at the

same time.

Based on these criteria, the registration method chosen for our work is a 3D,

brain, intra-subject, inter-modality, automatic, global and linear registration.

During the process of registration, a transformation or mapping between the

coordinates in one space and those in another bas to be detemiined so that biological,

anatomical or ftinctional correspondence can be achieved.

There are different types of transformation. Each type depends on the assumption

made for the medical images to be registered. If the structures of interest in the images

are either bone or enclosed in bone, such as brain, rigid body transformation will be used,

where individual bones are considered as rigid at the resolution of radiological imaging

modalities. Ibis rigid body transformation bas six degrees of freedom or unknown

including three translations and three rotations.

When tissues deform in more complicated ways involving, for example, scaling

or skewness or sharing resulting from different imaging systems, an affine

transforniation is useful for overcoming these problems. An affine transformation bas 12

degrees of freedorn. We can naturally consider a rigid transformation as a special case of

affine, in which the scaling values are all unity and the skewness and sbaring are zero.
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If we want to align images more accurately, even for the brain, in the case of

development of chiidren, lesion growth, or different subjects, additional degrees of

freedom are needed. In this type of application, an affine transformation is first used to

give an approximate alignment, higher degree of freedom or non-linear registration

algorithms are then implemcnted.

In literature a number of methods have been reported to determine a registration

transformation. Many researchers use geometric features for rigid body registration.

Point-based methods, for example, use singular value decomposition techniques

[EBMTH$8] [HHCGCBSG91] to resolve the Procrustes problem to finally determine

this transformation. Surface matching method, such as the head-and-hat algorithm, takes

advantage ofhigh-contrast skin surface—the boundary between tissue and air—to measure

the distance between a point on the bat (the image to be registered) and the nearest point

on tbe head (tbe bigher-resolution image) [LPCC8$], using the Poweli iterative

optimization technique [PTVF92] to get the final solution.

Other researchers use voxel similarity measures. One of the sirnplest methods is

to minirnize the sum of square intensity differences (SSD) between two images based on

the assumption that the images differ only by Gaussian noise after registration.

Corretation techniques suppose that the intensity values in two images possess a linear

relationship, in which the conelation coefficient is optimized. These rnethods are usually

applied for intra-modality registration. As for inter-modality registration, the situation

becomes more complex. The rnethod proposed by Woods et al. [WMC93J is originally

for MRI-PET registration. It is the first widely used inter-modality registration algorithm

by measuring voxel intensity similarity. The software package AiR (Automated image

Registration) [AIRO2] is created by Woods et aï. to supply brain inter-modality

registrations. We will present this algorithrn later (section 3.3.2) and use it for our MRI

SPECT registration.

3.3 MRI data preprocessing



44

The MRI data was acquired by a SIEMENS system. It is a sagittal T1-weighted

MRI consisting ofa series of 144 planes, with 512x512 pixels each. Voxel size is 0.5

mm in plane, with suce thickness of 1 mm.

3.3.1 Removal of skull and scalp with Braïn Extraction Too] (BET)

Because the brain MRI data include skull, scalp, eyeballs, skin, fat, muscle, etc,

while the brain SPECT image does flot, we need to exciude these non brain structures

from the raw MRI scan so that the registration, which is the necessary step for the raw

MRI scan to become the reference image, can be made more accurately.

The techniques to remove the skull and scalp while maintain the brain including

only GM, WM, and CSF are called “stripping”, “skull-strippïng”, “brainlnon-brain

segmentation”, or “brain extraction”. Brain extraction algorithms fail into the category

of image segmentation.

There are three major brain extraction algorithrns: manual, threshold-with

morphology and surface-modet-based [SmiO2]. The Brain Extraction Tool proposed by

Smith [SmiO2] is the third one, which is selected for our MRI brainlnon-brain

segmentation.

Smith defines a surface mode! with a tesseÏlated mesh of triangles shown in f ig.

14, and then uses two constraints, one that imposed some form of smoothness on the

surface and another that fitted the surface model to the brain surface, to find an optimal

solution iteratively.

Figure 14: Three views of a surface mesh.

The method starts with calculating the intensity histogram of a 3D brain image.

The intensity minimum t2 (2% of voxel intensities below this value) and maximum t98

(2% ofvoxel intensities over this value) thresholds are then found from the histogram. A

vertex
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rough brain!background threshold t is set to lie at 10% ofthe interval [t2.t98]. The centre

of gravity (COG) of the brainlhead is estimated by using ail voxel intensities greater

than t in a standard weighted sum of position. The mean “radius” r of the brain!head is

aiso roughly estimated by accounting ail voxels with intensity greater than t.

After that, the spherical tessellated surface is initialiy centered on the COG with

its radius set to half ofthe estimated value r, and then the main iterated loop is executed.

At each iteration, an update of each vertex in the tessellated surface is perfornied by

estirnating where that vertex should move to for improving the surface. To find an

optimal solution, the BET uses a small movement update (small relative to the mean

distance between neighboring vertices) with many iterations (typicaliy 1000). For each

vertex, the smalÏ movement update vector u is calculated from three ternis: within

surface vertex spacing, surface srnoothness control, and brain surface selection term.

The third terni is parallel to the normal of a difference vector that takes the current

vertex to the mean position of its neighbors (if this vector were rninimized for ail

vertices, the surface would be forced to be smootb and all vertices wouid be equaiiy

spaced). This term is actually interacts with the image and attempts to force the surface

modei to fit to the reai brain stirface.

The final brain surface model is found by performing a check for self

intersection, b save computation tirne, the vector u in the main loop does flot taken into

account this check. If the surface is self-intersected, the main iterated Ioop is re-nm with

much higher smoothness constraint for the first 75% iterations and lineariy dropped

down to the original level for the rest of iterations.

The major procedures of BEY are iiiustrated by Fig. 15 and its implementation

can be found in the MRIcro software package.

3.3.2 MRI-SPECT registration with AIR

Since we do not focus on image registration in this work, the MRI-SPECT

registration problem will be deait with by an automated tool. The AIR package supptied

by Woods et aï. satisfies our requirement for brain intra-subject and inter-modality

registration.
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Woods et aï. proposed an automated inter-rnodality registration algorithm in

1993 [WMC93], in which the MRI-PET registration problem was addressed. This

algorithm is a voxel-intensity-similarity rnethod. The AIR software package is

developed based on this algorithrn and offers many linear and non linear rnethods for 3D

inter-modality registration. Each of these methods bas its own model. Here we only

mention one model applied for our application, affine 12-parameter mode!, which is a

linear transformation plus translation and defined by:

x’ a b c d x

y’ = e f g h y (3.1)
z’ j j k in z

1 00011

where [x’, y’, z’] and [x, y, z] are the coordinates ofMRI and SPECT respectivcly.

The transformation parameters for inter-modalities registration in AIR are

ca!culated by minimizing a criterion r = co xi,1 IN with = and

N = n1 where the parameters are described as fo!lows: t is the weighted average of

the nonrialized standard deviations rneasured for the variations MRI voxel valties. For

any voxel position j whose intensity is j in the MRI study, there is a corresponding

SPECI voxel whose intensity value is Œ,. Let c, and m1 represent the standard deviation

and the mean of cLU respectively for a!! voxe!s n1, which is the total number of voxels

whose intensity isj within the brain in the MRI study. It is assumed that t is minimum

when two volumes are registered. The optimization algorithm is the Newton-Raphson

method.

Once the transformation matrix (Eq. 3.!) is computed, a mapping from the o!d

coordinate to the new one for each point of the MR! data is then performed. For the

execution of this mapping, we need to interpolate intensity values because most points

do not fal! on the volume discrete grid (voxe!). Trilinear interpolation is sufficiently

accurate for our application and is defined by:

= — x)(l — v)(1 — z) + 11001(1 — v)(1 — z) + 1(1 — x)y(1 — z)

+ (1 — x)(1 — y)z + Ix(1 — y)z +1011(1 — x)i + J10xv(! — z) + I11xvz (3.2)
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where I represents the intensity at each point. Figure 16 explains the relationship

between a point (x, y, z) that is flot on the discrete grid and its 8-voxel neighborhood.

It is noted that in order to have a better performance ofregistration, we manually

implement a rescaling and a roughly centering process on MRJ data prior to the affine

transformation.

3.3.3 Segmentation of the registered MRI volume

After registration, the MRI volume has been aligned with the SPECT voLume.

The final purpose of using the MRI data is to provide a reference image that contains

only three regions ofbrain, gray matter, white matter and Cerebral-Spinal Fluid. We use

a region-growing segmentation method to achieve this goal.

Since region-growing is the most basic segmentation approach, the software

toolkit ImageJ [1J04] provides a method in this category, called connected threshold

region growing. This method needs two inputs for extracting one particular region, a

seed point and a growing criterion based on intensity sirnilarity — two threshold values

(high and low) for this region. The region grows from the seed point by checking its 6-

Figure 16: Trilinear interpolation.
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voxel neighborhood to verify if any meet the intensity threshold requirernent. If they

have intensity between the high and low threshoÏd values, the method continues to grow

from them as well. Other much more sophisticated algorithms, such as the one in

[HCJD], exist for segmentation but are flot necessary here.

With this region-growing segmentation method, we finally obtain a registered

and segmented reference image that consists ofonly three regions ofbrain.

3.3.4 Regional cerebral activity assignment

Finally in the last step, each segmented region received an activity level (gray

level value) corresponding to the expected SPECT activity of the radiotracer. This value

may vary depending on the agent used for SPECT imaging [AM99]. In our experiments,

we use Tc99m-ECD radiotracer and set the activity ratio between gray matter and white

matterto 4:1.



Cliapter 4

Experïment and Resuits

4.1 Restoration of synthetic brain SPECT image of Hoffman
Phantom

4.1.1 Hoffman phantom

The 3D Hoffman phantom was developed by Hoffman et aï. in 1990 [HCDM9O].

This phantom contains three regions ofthe brain: gray matter, white matter and ventricle.

The digital Hoffman phantom [DSC03J has the activity ratio of 4: 1:0 for nonrial gray

matter : white matter : ventricle (each voxel with intensity values from O to 255). We

have mentioned early that this ratio may vary depending on the agent used for SPECT

imaging, for example, using Tc99m-ECD produces 4:1 gray-to-white matter ratio while

using Tc99rn-HMPAO produces only 2.5:1 gray-to-white matter ratio [AM99]. The

volume has 19 suces in axial plane with 128x128 pixels for each. The voxel size is

1.69mmxl.69mmx3.38rnm. A slice ofthis phantom is shown in Fig. 17(a), in which an

artificial hypoperfusion is added at the center ofthe small circle.

With the Hoffman phantom, a priori information is exactly known, so we can

fully analyze the restored image resulting from the adaptive Wiener filter.

4.1.2 Synthetic SPECT

To get a synthetic SPECT volume, we apply the linear degraded model on the

Hofftnan phantom. You may recall that this model is defined by Equation (2.2):

g = Hf + n

Two synthetic SPECT volumes are created with two different pairs ofparameters

(the PSF width u, and the variance of the Gaussian noise), which are (u =2 voxels or

7.94 mm FWHM, 1000) and (u = 3 voxels or 11.9 1 mm FWHM, 100), respectively,
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noted fWHM(mm) = u(ntm) X 2J2 in 2 . A suce of each synthetic SPECT volume is

shown in figures 17(b.l) and 17(b.2). The corresponding degraded contrast and mottte

values are (Ce, = 18.10%, M1 32.70%), and (Ce, = 7.80%, M(1 24.91%). Notice that

in a realistic situation, there should be no (Poisson) noise in the background, but because

we use a simpler additive model for creating mottie.

hypoperftision

Figure 17: (a) Original Hoffman phantom su. (b.1) Synthetic SPECT suce with PSF FWHM
=7.94 mm and noise variance = 1000, contrast Cd 18.104Y0 and mottie Md 32.70’Y0. (c.1) Restored
image for (b.!), contrast Cr = 32.05% and mottie M. 27.75%. (b.2) Synthetic SPECT suce with
PSF FWHM = 11.91 mm and noise variance = 100, contrast Cd =7.80% and mottie Md =24.91%
(c.2) Restored image for (b.2), contrast C. = 28.74 % and mottie Mr = 27.78%.

ta)

03.1) (b.2)

(c.1) (c.2)
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4.1.3 Restoration of synthetic brain SPECT image

for convenience, the adaptive Wiener filter formulation is listed below again

II*(u,v, w,)
‘AW (u, y, iv, u, K) = (4.1)

H(u,v,w,u)L + K/Pf(u,v,w)

where H(u, y, w, o) is the 3D ffT of h(x, y, z, o), which is a radial syrnmetry 3D

Gaussian function centered at the origin with a standard deviation u to be estimated:

x2 +y2 +z2
h(x,y,z,u) = Aexp(— ) (4.2)

2u

in which A is a normalization constant. The parameter K in Equation (4.1) is the constant

power spectrum of noise that we have to estirnate too.

The restoration process starts by an initialization routine and is followed by a

tow-level nested loop (see Fig. 1$).

Initialization:

0. Set n = 0, u = 1 (flot necessary be integer value) voxel (FWHM = 3.97 mm), the

iteration step Kstep be a value (e.g. 5, or 10), and the mottle amplification factor

margin Ja,j;l be a value (e.g. 1.2 or 1.4).

1. Calculate the mottie M° and contrast C° for the degraded image g(x, y, z).

2. SetK=lO5and Cax=C°.

Two-level nested loop:

3. Calculate the adaptive Wiener filter H,1 , (u, y, w, u, K) using the following equation

with the initial values ofthe PSF widthuand the constant power spectrum of noise K:

y, w, u)
H,1(u,v,w,u,K)= (4.3)

H(u,v,w,u)L +K/Ff(u,v,w)

4. Get the estirnated function in the frequency domain with:

fr(u, y, w) = HAy (u, y, w, u, K) G(u, ‘, w) (4.4)
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Then compute the 3D inverse FFT to obtain Î(x, , z).

5. Compute the mottie M,, and contrast C,, values of the estimated image J(x, y, z).

6. If C,, is larger than C,,1 and M,, is smaller than fnlargj,,
x M0, the inner Ïoop is

repeated with K = K! Kstep. Keep the maximum value of C,, as C,ax.

7. If the above conditions do flot hold, but C is larger than Çj, repeat the outer

loop by increasing o- by 1 (as previous stated, it is flot necessary to 5e an integer)

voxel (FWHM 3.97 mm).

8. If ail conditions do flot hoÏd, stop iteration.

With this algorithm we obtained a restored images with contrast and mottie of

(c, 32.05%, M 27.75%) and (C = 28.74%, M,. = 27.78%), respectively, shown in

figures 17(c.1) and 17(c.2). The estimated PSF values are exactly the sarne as the

degraded value, G = 2 (7.94 mm FWHM) and = 3 (11.91 mm FWHM), and the

estimates ofthe noise term are also very close to the ones we added, 781.25 and 97.65

respectively.

Other more complex optimization schemes may be used to get the best set of

parameters, but with no real improvement ofthe final image results.

In Fig. 17 (c.1) or (c.2) one can observe a clear improvement of the image

quality and a hypoperfusion within the circle that was not visible in the degraded images.

4.2 Restoration of real brain SPECT image

4.2.1 Reference image

Figures 19(a) and 19(b) show a suce of the MRI and SPECT volumes in axial

view, respectively. The voxel sizes and dimensions of MRI and SPECT images are

(1 .00mmxO.5OmmxO.SOmm, 144x512x512) and (1.86mmx 1.86mmxl .86mm,

128x128x97) respectively. The voxel intensities vary from O to 255 for both images (0 is

black and 255 is white). To transfonn the original MRI data into an appropriate
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reference image, a 4-step processing: brain extraction, linear registration, segmentation,

and regional cerebral activity assignment has to be done.

from figures 19(a) and 19(b), we can find that a huge difference exists in

appearance of MRI and SPECT images. In order to make an accurate registration on the

MRI volume, brainlnon-brain segmentation is necessary. Using the MRIcro package, the

brain ofthe MRI scan is automatically separated from the skull and scalp.

We use the AIR package to align the MRI volume with respect to the SPECT

volume. (1) The program rnanualresÏice allows us to rescale and center the MRI volume

manually. To execute this function, we only need to enter a desired voxel size (sarne as

SPECT voxel size), new matrix dimensions (same as SPECT volume dimensions) and a

translation value along z-axis (84 is chosen). The image produced by this program is

shown in fig. 20(b). (2) The program aligniinear implements 3D affine transformation.

This program lias several options. We choose a Gaussian filter with FWHM of

$mmx$mmx$mrn along each dimension to smooth the brain-only rescaled MRI file.

The option threshold, an integer value used to exciude low intensity, was set to 10 for

both resliced and standard files (the MRI and SPECT intensities range from O to 255).

The program reslice takes the resuits of aÏignlinear to produce a realigned file.

figure 20 (e) shows the brain-only rescaled and registered MRI volume.

Afier registration, using the ImageJ toolkit with a Region Growing aÏgoritlim, we

segment GM and WM into two files. The seed for GM or WM is easily chosen by

selecting a point in each region. The low and high thresholds for GM and WIVI regions

are manually chosen (here are {45, 72} and {71, 97}, respectively). We then combine

these two binary images to one file, in which a voxel segrnented into both GM and WM

regions is assumed to 5e in the GM region.

finally, using 4:1 for the activity ratio of gray matter and white matter, we set

the GM gray level to 200 and the WM to 50. The resuits are shown in fig. 20(d).

4.2.2 Restoration

Afler above four procedures, we are ready to do our real mission, to restore the

brain SPECT image (fig. 2 1(a)) with the help of the reference image (i.e. the registered
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and segrnented MRI volume). The restoration process has been described in Section

4.1.3. Here, a summary ofthis algorithm is given again in Fig. 1$. The adaptive Wiener

filter restores the SPECT volume with G 13.11 mm FWHM and K 1562.5. The

contrast and mottic in the images before and after the restoration are (4.46%, 19.82%)

and (10.38%, 27.64%) respectively, see Fig. 21.

Table I summarizes ail resuits, and figures 22-23 give the relationships between

contrast/mottle and the estimated parameters. We will discuss them in the next section.

4.3 Discussion

You may recall that image restoration bas conflicting goals, removing blurring

and flot creating noise at the same time. Obviously, this is an ideal solution but almost

impossible to be realized. We have to take a balance between an image with more details

and higher noise and an image with less sharpness but lower noise. We aim to deblur as

much as possible whiÏe keeping amplification of noise under an acceptable level.

For the restoration of synthetic SPECT, two scenarios were realized. The case

shown in Fig. 17(b.l) represents a relatively srnaller blulTing effect (FWHM is 7.9 mm),

with a higher noise level (the noise variance is 1000). The image produced by the

adaptive Wiener filter improves the image contrast by a factor of 1.77 (from 18.1% to

32.05%) while the mottle is even decreased to 84.8% of the original value (from

32.70% to 27.75%). This is because the adaptive Wiener filter performs just like the

original Wiener filter and is capable to reduce noise if blurring is Iow. Figure 17(b.2)

shows the situation where a heavier blurring (11.91 mm FWHM) is present but the noise

level is a relatively lower (the noise variance is 100). The contrast in the recovered

image, Fig. 17(c.2), has been dramatically increased to 28.74% from 7.8% (a factor of

3.68) but at the price of a littie mottle amplification, a factor of 1.12 (from 24.9 1 to

27.64). The artificial hypoperfusion is clearly revealed in the rcstored images in figures

17(c. 1) and 17(c.2) while there is no trace in the corresponding degraded images.
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(a)

(b)

Figure 19: (a) A suce of the MRI volume in axial view. (b) A suce ofSPECT volume in axial view.
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(a)

(b)

(c)

(d)

Figure 20: ta) Ihe original SPECT. (b) The MRI after brain extraction and scaling. (c) The
registered MRI. (d) The segrnented and registered MRI.
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(a)

(b)

figure 21: (a) The original SPECT image. (b) The restored SPECT image.



Studies Degraded Image Margin (f) for Restored Image
Contrast Mottie the Maximum Contrast Mottie Estimated

% Acceptable % % Parameters
Mottie (factor)

Synthetic
SPECT#1 f=0.85 FWHM51

fWHM 18.10 32.70 M,=27.79 32.05 27.75 =7.94mm
=7.94mm, (f=1.77)

u01.2= 1000 K=78 1.25
$ynthetic

SPECT#2 f=1.12 fWHM1
FWHM 7.80 24.91 M,,=27.90 28.74 27.78 =11.9lmm

=11.9lmm, (L=3.68)
Unojse=1 00 K=97.65

FWHM est
Real SPECT 4.46 19.82 f=1.40 10.38 27.64 =13.1 lrnm

M,,5=27.74 (J=2.33) K=1562.5

Table 1: Summary offxperiment Resuits
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Figure 23: ReaI SPECT. (Up) Contrast vs. Kwith different a in voxel. (Low) Mottte vs. Kwith
different a in voxel (1 voxel=1.$6mm and FWI{M = 4.38 mm).

for the restoration of the real brain SPECT, as Fig. 21(b) shows, the resulting

image improves the contrast significantly by a factor of 2.33 (from 4.46% to 10.38%),

while the mottle is increased just by a factor of 1.39 (from 19.82% to 27.64% ). As a

resuit of contrast improvement, the SPECT image afier restoration provides much more

details than the original one. The estimated PSF width and noise variance for this case

are 13.11 mm FWHM and 1562.5 respectively, so we can say that the SPECT image is

quite blurry and very noisy.

Figure 22 gives the relationships between contrast/mottle and the estimated value

K with different values ofPSF (uin voxel) for the synthetic SPECT #2. Similarly, Fig.

23 is for the real SPECT image. From these figures, we can find that the contrast of the

estimated images first increases, then becomes flat, and finally decrease as the constant

K decreases, while the mottle aiways jncreases. ObviousÏy, a higher contrast is with a
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higher PSF (o), e.g. 4 voxels in both figures, however, the mottle curves with higher

PSf (o) exceed the margin very quickly. Therefore, our method automatically takes a

solution considering both contrast and mottie conditions.

It sliould be noted that the maximum margin among the three situations is set to

1.4, which is stili considered acceptable when the contrast lias been improved

significantly (for example by a factor of 2) [WLOLF$5].

The reference image takes an important role in our adaptive Wiener filtering

processing because it can provide a priori information for the true scene. The different

choices of parameters in the preprocessing programs may or may flot affect the final

resuits.

for the registration program aligniinear, if we replace the smoothing factor

FWHM 8mmx 8mmx $nrm by 6mmx6rnmx6mm or 1 Ommx 1 Ommx 1 Omm, or increase

the threshold (ti) to 60 for the SPECT image, only minor changes will appear in the

reference image, and none of them lias an influence on the final estimates of the PSF

width (o-) and the power spectrum of noise (K) for the adaptive Wiener filter, that is, we

get the same resuits, u= 3 (13.11 mm FWHM) and K = 1562.5 as in section 4.1 for the

real SPECT image.

However, changes in the segmentation processing do make the adaptive Wiener

filter generate different resuits. For example, when combining the two segmented

images (GM and WM regions) into one file, if a voxel belonging to both regions is

considered in the WM region instead of the GM region, the adaptive Wiener filter will

choose the combination of o-= 4 voxels (15.88 mm FWHM) and K 12500 to produce

an estimate, which further smoothes the SPECT image. In this case, because the gray

matter is a very thin layer in the brain, we must give it priority over the white matter,

otherwise, the segmentation image will be less accurate.

As for the adaptive Wiener filter, two start values (a0 and K0) for the PSF width

and the power spectrum of noise respectively as well as the iterative step value Kstep for

updating the power spectrum of noise, have to be initialized. Usually, c is equal to 1

voxel (3.97 mm or 4.37 mm fWHM, depending on image voxel sizes) and K0 is any big
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number, such as 1O. The choice of K0 should be large enough. In addition, the power

spectnlm of noise K varies widely, hence we can flot update it linearly, that is, we have

to use K K! Kstep instead of K = K + Kstep. It is evident that with a bigger step the

program execution time is less. However, the restored image quality may not be

improved optimally.

For the definition of the contrast, a weighted average contrast considering

different interfaces between GM and WM, or WM and CSF, or GM and background,

_______

1CSF mbackgrotlfldsuch as, C = a(1
— ) + ,8(1

— ) + y(1
— ) may gwe a more accurate

VM

resuit.

Comparing the restored synthetic and real brain SPECT images, we can easily

find that the former resuits are better than the later one. This is because ci priori

information about the true image is exactly known for Hoffmai phantom and only

pseudo-prior knowÏedge is used for SPECT restoration.
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Conclusion

We have proposed an adaptive Wiener filter that uses a reference image

produced by a higher resolution brain MRI volume to provide a priori information for

the brain SPECT image, based on the assumption that the PSf ofthe SPECI imaging is

a Gaussian function with an unknown standard deviation and the system noise is AWGN.

Then according to the contrast-mottÏe criterion, the algorithm calculates the best

combination of the two parameters of the Wiener filter (the PSF width and the constant

power spectrum density of noise), and finally restores the SPECT image.

Our experirnent resuits prove that in the context of biornedical imaging,

anatomical image such as MRI can provide ci priori information for functional image

such as SPECI.

Our adaptive Wiener filter can automatically choose the best combination of its

parameters due to the application ofthe contrast-rnottle criterion.

Our method does significantly improve the contrast and sharpness of synthetic

and real SPECT image in clinic while keeping amplification of noise under acceptable

level. The important point is that this filter has a high tolerance to noise.

Notice that the degradation mode! used by the adaptive Wiener filter assumes

that noise is additive while in reality it is a multiplicative Poisson process. Nevertheless,

the resuits with real SPECT/MRI data are visually impressive. It seerns that at the high

count level used in SPECT, the difference between (multiplicative) Poisson and

(additive) Gaussian noise does flot affect significantly the efflciency ofthe atgorithm.

Some ideas for future work on this topic include:

* Build a user-friend!y interface that wi!l be he!pful for the end-users, such as

physicians and clinicians.
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* Conduct clinical studies, for example epileptic studies. In these studies, the restored

SPECT will be used to detect the focus of epileptic seizure in the region of the

temporal lobe and perform Receiver Operator Characteristic (ROC) analysis

[HM82]{HM83] to measure the resuits of diagnosis with and without using our

method.
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