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Résumé 
La sclérose latérale amyothrophique (SLA) est une maladie neurodégénérative 

charactérisée par la perte des neurones moteurs menant à la paralysie et à la mort. Environ 20% 

des cas familiaux de la SLA sont causés par des mutations de la superoxyde dismutase 1 

(SOD1), conduisant vers un mauvais repliement de la protéine SOD1, ce qui a comme 

conséquence un gain de fonction toxique. Plusieurs anticorps spécifiques pour la forme mal 

repliée de la protéine ont été générés et utilisés comme agent thérapeutique dans des modèles 

précliniques. Comment le mauvais repliement de SOD1 provoque la perte sélective des 

neurones moteurs demeure non résolu. La morphologie, le bilan énergétique et le transport 

mitochondrial sont tous documentés dans les modèles de la SLA basés sur SOD1, la 

détérioration des mitochondries joue un rôle clé dans la dégénération des neurones moteurs. De 

plus,  la  protéine  SOD1  mal  repliée  s’associe  sélectivement  sur  la  surface  des  mitochondries  de  

la moelle épinière chez les modèles de rongeurs de la SLA. Notre hypothèse est que 

l’accumulation   de   la   protéine   SOD1   mal   repliée   sur   les   mitochondries   pourrait   nuire   aux  

fonctions mitochondriales. À cette fin, nous avons développé un nouvel essai par cytométrie de 

flux afin d’isoler  les mitochondries immunomarquées avec des anticorps spécifiques à la forme 

malrepliée de SOD1 tout en évaluant des aspects de la fonction mitochondriale. Cette méthode 

permettra de comparer les mitochondries portant la protéine SOD1 mal repliée à celles qui ne la 

portent pas. Nous avons utilisé un anticorps à conformation spécifique de SOD1, B8H10, pour 

démontrer   que   la   protéine  mal   repliée   SOD1   s’associe   avec   les  mitochondries   de   la  moelle  

épinière des rat SOD1G93A d’une  manière   dépendante   du   temps. Les mitochondries avec la 

protéine mal repliée SOD1 B8H10 associée à leur surface (B8H10+) ont un volume et une 
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production excessive de superoxyde significativement plus grand, mais possèdent un potentiel 

transmembranaire comparable aux mitochondries B8H10-. En outre, la présence de la protéine 

mal repliée SOD1 reconnue par B8H10 coïncide avec des niveaux plus élevés de la forme pro-

apoptotique de Bcl-2.  L’immunofluorescence  de  sections  de  moelle  épinière  du  niveau  lombaire  

avec   l’anticorps   spécifique   à la conformation B8H10 et AMF7-63, un autre anticorps 

conformationnel spécifique de SOD1, démontre des motifs de localisations distincts. B8H10 a 

été trouvé principalement dans les neurones moteurs et dans plusieurs points lacrymaux dans 

tout le neuropile. Inversement, AMF7-63  a  marqué   les  neurones  moteurs  ainsi  qu’un  réseau  

fibrillaire distinctif concentré dans la corne antérieure. Au niveau subcellulaire, SOD1 possèdant 

la conformation reconnu par AMF7-63 est aussi localisée sur la surface des mitochondries de la 

moelle   épinière  d’une  manière  dépendante  du   temps.  Les  mitochondries  AMF7-63+ ont une 

augmentation du volume comparé aux mitochondries B8H10+ et à la sous-population non 

marquée. Cependant, elles produisent une quantité similaire de superoxyde. Ensemble, ces 

données  suggèrent  qu’il  y  a  plusieurs  types  de  protéines  SOD1  mal  repliées  qui  convergent  vers  

les mitochondries et causent des dommages. De plus, différentes conformations de SOD1 

apportent une toxicité variable vers les mitochondries. Les protéines SOD1 mal repliées 

réagissant à B8H10 et AMF7-63 sont présentes en agrégats dans les fractions mitochondriales, 

nous ne pouvons donc pas prendre en compte leurs différents effets sur le volume mitochondrial. 

Les anticorps conformationnels sont des outils précieux pour identifier et caractériser le 

continuum du mauvais repliement de SOD1 en ce qui concerne les caractéristiques 

biochimiques et la toxicité.  Les informations présentes dans cette thèse seront utilisées pour 

déterminer le potentiel thérapeutique de ces anticorps. 
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Abstract 
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder characterized by 

the loss of motor neurons resulting in paralysis and death. Approximately 20% of familial ALS 

cases are caused by mutations in superoxide dismutase (SOD1), which leads to misfolding of 

the SOD1 protein, resulting in a toxic gain of function. Several antibodies have been generated 

that are specific for the misfolded form of the protein, and have been used as therapeutics in pre-

clinical models. How misfolded SOD1 provokes a selective loss of motor neurons remains 

unresolved. Mitochondrial morphology, bioenergetics and transport are all documented is 

SOD1-mediated ALS models, thus mitochondrial impairment plays a key role in motor neuron 

degeneration. Moreover, misfolded SOD1 selectively associates with the surface of spinal cord 

mitochondria in ALS rodent models. We hypothesize that the accumulation of misfolded SOD1 

on mitochondria could impair mitochondrial function. To this end, we developed a novel flow 

cytometric assay to immunolabel isolated mitochondria with misfolded SOD1 antibodies while 

also evaluating aspects of mitochondrial function. This method will allow for a comparison of 

mitochondria bearing misfolded SOD1 to those without. We utilized the B8H10 conformation 

specific SOD1 antibody to demonstrate that misfolded SOD1 associates with SOD1G93A rat 

spinal cord mitochondria in a in a time dependent manner. Mitochondria with B8H10-reactive 

misfolded SOD1 associated with their surface (B8H10+) have a significantly larger volume and 

produce excessive amounts of superoxide, but have a similar transmembrane potential compared 

to B8H10- mitochondria. In addition, the presence of B8H10-reactive misfolded SOD1 

coincides with higher levels of the pro-apoptotic form of Bcl-2. Staining of lumbar spinal cord 

sections with both B8H10 and another conformation specific SOD1 antibody, AMF7-63, 

yielded distinct localization patterns. B8H10 was found predominantly in motor neurons and 
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numerous puncta throughout the neuropil. Conversely, AMF7-63 marked motor neurons as well 

as a distinctive fibrillar network that was concentrated in the anterior horn. At the subcellular 

level, AMF7-63-reactive misfolded SOD1 also localized to the mitochondrial surface of spinal 

cord mitochondria in a time-dependent manner. AMF7-63+ mitochondria have an increased 

volume compared to B8H10+ mitochondria and the unlabelled subpopulation. However, they 

produce similar amounts of superoxide. Together, these data suggest that there are multiple 

species of misfolded SOD1 that converge at the mitochondria to cause damage. Moreover, 

different SOD1 conformations may ellicit varying toxicities towards mitochondria. Both B8H10 

and AMF7-63-reactive misfolded SOD1 are present in aggregates in mitochondrial fractions 

and can therefore not account for any different effects produced in terms of mitochondrial 

volume. Conformational antibodies are invaluable tools to identify and characterize the 

continuum of misfolded SOD1 species with regards to biochemical characteristics and toxicity. 

The information presented in this thesis will be used in determining the future therapeutic 

potential of these antibodies. 

  

Keywords : ALS, SOD1, misfolded SOD1, mitochondria, flow cytometry  
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1. Introduction 
1.1. Amyotrophic lateral sclerosis 

Amyotrophic Lateral Sclerosis (ALS) was first described by Jean-Martin Charcot as a 

progressive paralysis of voluntary muscles ultimately leading to death [1]. Charcot classified 

these symptoms under the name of ALS with amyotrophic meaning atrophy of muscles, and 

lateral sclerosis referring to the hardening of tissue in the lateral part of the spinal cord. In North 

America,  ALS  is  also  called  Lou  Gehrig’s  disease,  in  honour  of  the  New  York  Yankees  player  

who died of this  disease  in  1941.  In  France,  the  disease  is  known  as  Charcot’s  disease,  named  

after its founder, whereas in the United Kingdom and Australia it is commonly referred to simply 

as Motor Neuron Disease.    

 

1.2. Epidemiology    

ALS is a late onset neurodegenerative disorder. The mean age of onset is 61.8 ± 3.8 years 

[2]. The range of disease onset is quite broad, with symptoms beginning from twenty to ninety 

years old [3]. Juvenile and early adult onset are occasionally reported and associated with 

specific genetic lesions [4, 5]. ALS is relatively rare with an incidence of 1.8/100, 000 in North 

America [2]. The incidence in men is slightly higher than woman [6]. The prevalence of ALS 

disease is 3.4 per 100, 000 in North America [2]. These figures underscore the lifetime risk of 

ALS, which is 1 in 350 for men and 1 in 400 for women [7]. ALS is a relentless progressive 

disease resulting in the majority of patients expiring within three to four years of disease onset 

and only about 10% surviving ten years after onset [8].   
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Although clinically identical, ALS patients can be segregated into two groups, sporadic 

(SALS) and familial ALS (FALS) [9]. SALS is used to describe individuals that have no family 

history of ALS, which is contrasted with FALS which is used to refer to individuals who have 

a first or second degree relative with ALS [10]. Approximately 5 to 10% of ALS cases are 

classified as familial [11], leaving the vast majority due to sporadic and not fully defined 

etiologies.  

While the cause(s) of SALS is largely undefined, it is postulated that symptoms can 

result from genetic susceptibility in combination with environmental factors and time [12]. 

Increased age and tobacco use are associated with increased incidence of ALS [12]. Other 

proposed risk factors are athleticism [13], pesticide exposure [14], and trauma [15], however, 

the validity of these risk factors remains to be confirmed. The complexity and cost of 

determining environmental risk factors of SALS make it a daunting task, and thus limit the 

available strategies to model SALS in a research setting.       

Classically, ALS is considered a disease with a purely motor phenotype, however this view 

is gradually changing. It is now appreciated that many patients exhibit cognitive defects, and in 

fact,  ALS  overlaps  significantly  with  Frontotemporal  Dementia  (FTD).  Following  Alzheimer’s,  

FTD is the second most common form of dementia, and manifests as executive and language 

dysfunction with changes in behaviour and personality [16]. The prevalence of FTD is between 

10 and 30 cases per 100,000 in people aged 45 to 60 years [17]. Approximately 50 % of ALS 

patients have a loss of function in neurological tests examining frontal lobe function. These 

patients are referred to as ALS with cognitive or behavioral impairment (ALS Ci/ALS Bi). 

Fifteen percent of ALS patients have a significant enough decline in frontal lobe function to be 
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officially diagnosed with FTD, and are classified as ALS-FTD [18]. ALS also clusters with 

certain neurodegenerative and neuropsychiatric diseases, for instance diagnosis of 

schizophrenia is higher in families with ALS, as well as rates of suicide [19]. Genetic 

susceptibility to neurological and neurophysiological factors may be at play for increasing risk 

in families with known ALS cases, however these factors are yet to be identified. 

  

1.3. Clinical presentation 

ALS is characterized by the degeneration of upper motor neurons in the cerebral cortex, and 

lower motor neurons in the brain stem and spinal cord [20]. Symptoms of lower motor neuron 

degeneration include muscle cramping and fasciculations (involuntary muscle contractions), 

muscle atrophy and corresponding weakness [20]. Symptoms caused by the loss of upper motor 

neurons include motor symptoms, such as uncoordinated and slow movement, spastic tone, as 

well as non-motor symptoms such as executive dysfunction [20]. Loss of upper motor neurons 

can also produce some Parkinson-like symptoms, including muscle rigidity and tremor [20].  

In the majority of patients (65-75%), onset of disease begins in the limbs (spinal onset), 

usually unilateral [21]. About one-third of patients have a bulbar onset, where they experience 

speech and swallowing dysfunction first, characterized by flaccid or spastic dysarthria, 

dysphagia, hoarseness, tongue wasting, weakness and fasciculations [21]. Limb onset is 

associated with prolonged survival, as well as younger age at presentation of symptoms [20]. 

Conversely, bulbar onset, older age at presentation and early respiratory muscle involvement 

are linked to reduced survival time [21] Uniquely, sensory neurons, ocular motor neurons, and 

neurons  in  the  Onuf’s  nucleus  are  preserved  [22, 23] or only affected at late stages of disease 

[24]. Symptomatic members of the same family, with the same mutation can have variable times 
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of onset, symptom presentation, and rate of disease progression, highlighting that ALS is 

clinically heterogeneous [25].  

 

1.4. ALS Genetics (Table 1) 

1.4.1.  Superoxide Dismutase 1 

In 1993, SOD1 (superoxide dismutase 1), found on chromosome 21q22.22 was identified 

as the first gene  to cause FALS [26]. This finding was surprising given that SOD1 had been 

known as an abundant detoxifying enzyme for years [27]. There are over 170 reported mutations 

in SOD1 that cause ALS ([28], ALSoD: http://alsod.iop.kcl.ac.uk/) (Fig. 1). This is remarkable 

given that the entire gene encodes five exons and produces a protein of only 153 amino acids, 

even more surprising is that there are over 75 different amino acid mutations [29]. A major area 

of study in ALS research is determining what properties the SOD1 mutations have in common, 

and which of these are important for pathogenesis. Minor amino acid substitutions, such as 

G93A, (glycine to alanine) lead to disease, suggesting that almost any alteration in protein 

structure will result in ALS. The validity of some of the identified SOD1 mutations as causative 

of ALS remains contentious [30]. ALS causative mutations in SOD1, are found in all five exons 

of SOD1, with no clear hotspots [31]. However, six mutations are reported at residue G93: A, 

C, D, R, S or V. Each mutation produces a variable phenotype with G93V being most 

aggressive, G93A with intermediate aggressiveness (2 to 3 years from diagnosis to death), 

G93S, C and D being least severe, and G93R having a variable phenotype [32]. The majority of 

SOD1 mutations (80%) are missense with only a few insertions and deletions [33]. In almost all 

ALS kindreds, mutations in SOD1 are dominantly inherited with the exception of the D90A 

mutation, which is recessively inherited [34]. Mutations in SOD1 constitute approximately 12



 

 

Table 1:        
Genes implicated in ALS           

Gene Protein Function Inheritance Diagnosis 
Percentage (%) of cases 

References 
FALS SALS 

SOD1 Superoxide metabolism AD, AR ALS, PMA 12 3 Rosen et al., 1993 

TARDP RNA metabolism  AD ALS, ALS-FTD 4 1 Kabashi et al., 2008; 
Sreedharan et al.,2008 

FUS RNA metabolism  AD, AR ALS, ALS-FTD 4 1 Kwiatkowski et al., 2009;            
Vance et al., 2009 

C9ORF72 DENN protein, unknown function AD ALS, ALS-FTD, FTD 40 7 
DeJesus-Hernandez et al., 
2011; Renton et al., 2011 

SQSTM1 Ubiquitination, autophagy AD ALS, ALS-FTD 1 <1 Fecto et al., 2011 
VCP Proteasome  AD ALS, ALS-FTD, FTD, IBMPFD 1 1 Johnson et al., 2010 

OPTN Autophagy AD, AR  ALS, POAG <1 <1 Maruyama et al., 2010 
PFN1 Cytoskeletal dynamics AD ALS <1 <1 Wu et al., 2012 

UBQLNS Ubiquitination, autophagy X-linked ALS, ALS-FTD <1 <1 Deng et al., 2011 
VAPB Vesicular trafficking AD ALS, SMA <1 <1 Nishimura et al., 2004 

hnRNPA2B1/A1 RNA metabolism  AD ALS, IBMPFD, FTD <1 <1 Kim et al., 2013 
 

Table 1: Genes implicated in ALS. Adapted from Renton et al., 2014 [35] and Leblond et al., 2014 [10]. Values represent the 

percentage of ALS cases explained by each gene. AD, autosomal dominant; AR, autosomal recessive; XD, X-linked dominant; PMA, 

progressive  muscular  atrophy;;  IBMPFD,  inclusion  body  myopathy  with  Paget’s  disease  and  frontotemporal  dementia;;  POAG,  primary 

open-angle glaucoma; SMA, spinal muscular atrophy; DENN, differentially expressed in normal and neoplasia.



 

 

 

 

 
 

 

Figure 1: ALS-causing SOD1 mutations. Adapted from Fujisawa et al., 2012 [36]. Schematic 

depicting SOD1 mutations. Primary sequence for wild-type SOD1 is depicted. Color change 

denotes exons, exon 1, 3 and 5 (black) and 2 and 4 (red). Secondary structure displayed below, 

β  strands  (light  blue  arrows)  and  α  helix (dark blue hexagon).      
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to 20% of FALS, and 1-2% of SALS cases [37]. Due to a founder effect, about 50% of North 

American ALS patients carry the A4V mutation [38]. The second most prevalent mutation in 

North America is I113T. In contrast, the H46R mutation is more prevalent in Japan, with about 

40% of SOD1-FALS patients carrying this particular mutation [38]. The population of 

Scandinavia has a high prevalence of the recessively inherited D90A mutation [12].  

Genotype-phenotype predictions in ALS are difficult to make as the clinical presentation 

is quite heterogeneous. Exceptions include the A4V mutation, which is characterized by a short 

survival period, typically one year after diagnosis [39]. The H46R, D90A, G27R and D110Y 

mutations usually display slow disease progression with patients surviving 10 to 15 years after 

diagnosis [38-41]. Patients with SOD1 mutations usually have a younger age of onset, 

predominance of lower motor neuron involvement (limb-onset), and a lack of cognitive or 

behavioural difficulties [25].  

 

1.4.2.  Trans active response DNA binding protein 43 

Identification of ubiquitinated transactive response DNA binding protein 43 (TDP-43) 

in cytoplasmic inclusions within spinal cords of ALS and FTD patients [42] led shortly 

thereafter to the discovery of mutations in TARDBP as causative for ALS [43-45] and FTD [46]. 

Prior to its association with ALS, TDP-43 was identified as a transcriptional repressor of human 

immunodeficiency virus 1 (HIV-1) [47]. Forty-seven TARDBP mutations have been described 

[46]. ALS causing TARDBP mutations are inherited dominantly, and are mainly clustered in the 

prion like domain. They make up approximately 4% of FALS cases and 1% of SALS cases. 

Typically, FALS cases with TDP-43 mutations present with earlier age of onset, with symptoms 

usually starting in the upper extremities and a long disease course [20]. 
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TDP-43 is a highly conserved, ubiquitously expressed protein of 414 amino acids [48]. 

TDP-43 has a predominantly nuclear localization, although it can shuttle between the nucleus 

and cytoplasm [49]. Structurally, TDP-43 contains two ribonucleic acid (RNA) recognition 

motifs (RRM), that can bind RNA and deoxyribonucleic acid (DNA), a C-terminal glycine-rich 

prion-like domain [50], an N-terminal nuclear localization sequence (NLS), and a nuclear export 

sequence (NES) located in RRM2 [51]. Recently, TDP-43’s  previously  ignored  N-terminus has 

garnered attention and is now considered important for TDP-43 aggregation [52-55].  

TDP-43 is part of a family of proteins referred to as heterogeneous nuclear 

ribonucleoproteins (hnRNPs) that are involved in multiple stages of RNA processing. TDP-43 

also binds DNA and is involved in transcription. TDP-43 functions in RNA splicing, regulating 

the splicing of cystic fibrosis transmembrane conductance regulator (CFTR) [56] and 

apolipoproteinA-II (APOA2) [57]. In addition, TDP-43 is involved in the generation of 

microRNA, RNA transport, translation and the formation of stress granules [49]. TDP-43 binds 

approximately 6000 mRNA transcripts in the brain and decreasing the level of TDP-43 

expression affects the splicing and abundance of hundreds of RNAs [58]. Therefore the precise 

physiological role of TDP-43 in the central nervous system (CNS) is quite complex. 

It is still unknown whether mutations in TARDBP result in disease by either a loss or a 

toxic gain of function, or even a combination of a nuclear loss of function and a cytoplasmic 

gain of function. In either case, TDP-43 levels are tightly regulated [59-61] via auto regulation 

by self-splicing and/decreased translation [58, 62].  
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1.4.3.  Fused in Sarcoma/Translocated in Sarcoma 

In 2009, mutations in the FUS gene, located on chromosome 16p11.2, were linked to 

ALS [63, 64]. The protein Fused in Sarcoma/Translocated in Sarcoma (FUS) was first 

investigated as an oncogene in liposarcoma [65]. The discovery of a second mRNA binding 

protein connected to ALS garnered much excitement, and confirmed the importance of mRNA 

processing in neurodegeneration.  

FUS is a 526 amino acid protein. Structurally, it is composed of an N-terminal 

transcriptional activation domain, an RRM, three Arg-Gly-Gly (RGG1-3) repeat domains, a 

zinc-finger motif, a NES, and a C-terminal non-classical NLS [66, 67]. FUS also contains two 

predicted prion domains, in the N-terminal Gln-Gly-Ser-Tyr (QGSY) region and in the C-

terminal RGG2 domain [50]. Under physiological conditions FUS is localized to the nucleus, 

although like TDP-43, it has the ability to shuttle between the nucleus and cytoplasm [68]. FUS 

functions in many cellular processes including DNA repair, transcriptional regulation, 

microRNA processing, splicing and stress response [67]. FUS, like TDP-43, also binds 

thousands of mRNA targets in the brain, and deletion of FUS leads to alterations in the splicing 

and abundance of hundreds of mRNAs [69]. Interestingly, the majority of binding targets of 

TDP-43 and FUS are distinct [69].    

Of the approximately fifty reported dominantly inherited FUS mutations [25], the 

majority are missense, however deletions, insertions and mutations in the three prime 

untranslated region  (3’UTR)  are  also  documented  [67]. Most FUS mutations are found in the 

zinc-finger motif, RGG2 and RGG3, and the NLS [67]. The others are in the QGSY-rich domain 

and RGG1 [67]. Mutations in FUS account for about 4% and 1% of FALS and SALS cases, 

respectively [25]. In addition to ALS, FUS mutations cause or increase the risk for essential 
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tremor and FTD [70-72]. Clinically, FUS mutations associate with a younger age of onset (less 

than 40 years old [25]), a bulbar presentation and shorter disease course. The P525L mutation 

has an extremely early onset, often in childhood, with an aggressive progression [73, 74]. 

Similar to TDP-43, whether FUS mutations cause ALS by a way of loss of function or gain of 

a toxic function remains an area of intense investigation. 

 

1.4.4.  Chromosome 9 open reading frame 72 

In 2011, two groups independently identified a hexanucleotide (GGGGCC or G4C2) 

repeat expansion in the non-coding region of the chromosome 9 open reading frame 72 

(C9ORF72) gene on chromosome 9p21 [35, 75]. This finding sparked considerable excitement 

in the field, as the C9ORF72 expansion was responsible for over one third (~40%) of FALS 

cases, and about 7% of SALS cases [37], thereby constituting the most frequent cause of 

genetically inherited ALS. In addition, the C9ORF72 expansion is the first intronic expansion 

linked to ALS [37]. The C9ORF72 expansion is also associated with approximately 25% of 

familial FTD cases and 6% of sporadic FTD [76], again strengthening the premise that ALS and 

FTD constitute a disease spectrum.   

Epidemiologically, the C9ORF72 expansion is most prevalent in European populations 

and correlates with early onset, typically bulbar, cognitive and behavioural changes, as well as 

increased incidence of neuropsychiatric illness [11, 20]. Similar to other nucleotide repeat 

expansion  disorders  like  Huntington’s  disease,  ataxias,  and  myotonic  dystrophy,  the  number  of  

repeats is critical to pathogenesis [77]. Healthy people have between 2 to 30 hexanucleotide 

repeats in C9ORF72, whereas ALS patients have between 700 to 2400 repeats  [20]. The number 

of repeats has been characterized in a number of tissues, and is larger in neuronal tissues than 
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in the blood [78, 79]. A firm correlation of expansion length with disease phenotype has not yet 

been established [80].  

The function of chromosome 9 open reading frame 72 (C9ORF72) remains elusive. 

Unlike the other major FALS linked proteins, SOD1, TDP-43 or FUS, C9ORF72 was unknown 

before its association to ALS. Bioinformatic studies reveal homology to differentially expressed 

in normal neoplastic cells (DENN) domain proteins, which primarily function as Rab-Guanine 

Exchange Factors (GEFs) [81]. These proteins play a prominent role in membrane trafficking, 

including endocytosis and autophagocytosis [82]. C9ORF72 interacts with several Rabs (Rab1, 

Rab5, Rab9 and Rab11) as well as parts of the autophagic machinery, including ubiquilin-2 and 

microtubule-associated protein 1A/1B-light chain 3 (LC3)-positive vesicles [83], supporting its 

putative role in membrane trafficking.  

Despite not knowing the precise physiological role of the C90RF72 gene product, there 

are three proposed mechanisms of pathogenicity. Collectively, decreased levels of the C9ORF72 

transcript in ALS patient lymphoblasts [75] and the finding that Danio rerio and Caenorhabditis 

elegans loss of function models show axonal degeneration of motor neurons and locomotor 

defects [84, 85], point towards haploinsufficency as a cause of disease. Conversely, gain-of-

function models based on toxicity of RNA or dipeptide proteins generated by repeat associated 

non-ATG (RAN) translation are also suggested. In repeat diseases, translation can occur at 

various sites of the repeat, as opposed to the ATG initiation site, although the mechanisms are 

currently unclear, RNA structure likely plays a role in RAN-translation [86].  RNA foci are 

found in the brains and in induced pluripotent stem cell (iPSC)-differentiated neurons derived 

from patients with C9ORF72 expansions [87, 88]. RNA foci may trap certain RNA-binding 

proteins, causing a loss in their respective functions [89]. RNA foci and other cellular defects 
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are reversed when iPSC-differentiated neurons are treated with antisense oligonucleotides 

(ASO) against the G4C2 expansion [87]. RAN generated di-peptides containing (antisense: Pro-

Arg, Pro-Ala, Gly-Pro, and sense: Gly-Ala, Gly-Arg, Gly-Pro) cytoplasmic aggregates have also 

been detected in C9ORF72 patient brains [88, 90]. Recently, a study examined all three 

pathogenic hypotheses simultaneously. The Pro-Arg dipeptide, in particular, is extremely toxic 

to primary mouse cortical and motor neurons. Expression of the C9ORF72 expansion is also 

toxic to primary neurons, while knock-down of the C9ORF72 transcript had no effect on cell 

survival [91]. Interestingly, RNA and dipeptide related toxicity are linked, as the toxicity of Pro-

Arg aggregates and the C9ORF72 expansion are synergistic [91]. The idea that these two 

mechanisms of toxicity may converge is in agreement with the finding that both RNA foci and 

dipeptide aggregates are present in post-mortem tissue of ALS patients [90]. 

 

1.4.5.  Rare Variants 

Reviews of ALS genetics are rapidly out-dated due to the high speed in which novel 

genes are discovered. Newly discovered genes include, OPTN [92], VCP [93], UBQLN2 [94], 

DAO [95], hnRNPA2B1/A1 [96], CHCHD10 [96], MATR3 [97] and TBK1 [98], to name a few. 

These genes and their protein products will be instrumental in revealing novel pathways 

involved in ALS, although they are rare causes of ALS [37]. Several of these genes are causative 

for other diseases including FTD, primary open angle glaucoma (POAG), and inclusion body 

myopathy with early-onset Paget disease and frontotemporal dementia (IBMPFD). 
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1.4.6.  De novo mutations 

De novo mutations are the subject of intense research as of late and are linked to many 

neurological conditions, including autism [99]. De novo mutations are not inherited from parent 

to child, rather they occur through genetic copying error or during cell division [100]. De novo 

mutations of previously known ALS genes SOD1 [101] , and FUS [102-106] are found SALS 

cases. Exome sequencing of ALS trios (affected patients, and non-affected parents) identifies a 

mutation in SS18L1 (Synovial sarcoma translocation gene on chromosome 18-like component 

of neuron-specific nBAF chromatin remodeling complex) or CREST, a gene encoding a 

calcium-regulated transcriptional activator [107]. While this constitutes an interesting finding 

that implicates chromatin remodelling as a novel pathway in ALS, the pathogenicity of all de 

novo mutations requires further validation [3].  

 

1.4.7.  Genetic risk factors 

Twenty-three percent of SALS cases are proposed to be the result of a genetic defects 

[108]. Identified genetic modifiers include PGRN, KIFAP3, EPHA4 and UNC13A, although 

they require further validation [3]. A yeast screen of potential modifiers of TDP-43 toxicity finds 

poly-(A)-binding protein (Pab1p)-binding protein (PBP1) as a potent enhancer of toxicity [109]. 

The human orthologue is Ataxin-2. Mutations in ATX2 lead to a CAG expansion that causes 

Spinocerebellar ataxia type 2 (SCA2). ALS patients have a greater number ATX2 CAG repeats 

than healthy controls, but less than SCA2 patients [109], thereby implicating intermediate ATX2 

repeat length as a potential genetic modifier of ALS.  
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1.5. Pathology 

A pathological hallmark of ALS is the presence of intracellular protein inclusions in 

the soma and axons of neurons. Inclusions found in ALS patients can be placed into three 

categories, skein-like, bunina bodies, and hyaline, based on morphology and the identity of 

proteins found within the inclusion [110].  Skein-like and hyaline inclusions usually contain 

ubiquitin, while bunina bodies are ubiquitin negative [111]. Skein-like inclusions and bunina 

bodies are found in all ALS cases. SOD1, TDP-43 and FUS localize to skein-like inclusions 

while hyaline inclusions, containing SOD1, are mostly limited to SOD1-mediated FALS 

[112].   

The protein inclusions found in the brain and spinal cords of ALS patients contains 

ubiquitinated proteins and the majority (~97%) of these inclusions are composed of TDP-43. 

Neurons from ALS patients have an accumulation of TDP-43 in the cytoplasm and a loss of 

nuclear TDP-43 [49]. TDP-43 present within inclusions is hyperphosphorylated, ubiquitinated 

and cleaved to generate C-terminal fragments [49] and recently found to be acetylated. TDP-43 

inclusions are found in neurons and occasionally in glial cells in the brain (hippocampus and 

neocortex) as well as in spinal cord motor neurons [48]. That TDP-43 inclusions are found in 

the majority of ALS patients, even without TDP-43 mutations, suggest its involvement in almost 

all ALS cases. FUS immunoreactive cytoplasmic inclusions are present in less than 1% of ALS 

cases, and segregate with patients carrying mutations in FUS [63, 64]. TDP-43 inclusions are 

not found in these individuals, which may indicate that FUS acts downstream of TDP-43 [37] 

or by independent mechanisms. FUS inclusions are prominently cytoplasmic, although nuclear 

inclusions are also sometimes observed [113], and are present in neurons and less frequently in 

the glia [64]. Patients with the C9ORF72 expansion also have TDP-43 and sequestosome 1 



 

15 

(SQSTM1) or p62 inclusions. These inclusions are increasingly found in the frontal region, and 

in hippocampal neurons [114]. With the identification of new genes linked to ALS, their 

associated protein are increasingly studied for their presence in patient inclusions. Optineurin 

and ubiquilin-2 have been found within inclusions in some sporadic ALS cases [115]. The 

prevalence of these inclusions as well as their overlap with TDP-43 positive inclusions, or other 

protein inclusions remains to be fully characterized.  

SOD1 inclusions are present in patients that carry a genetic defect in SOD1, which 

represents roughly 2% of all inclusions found in ALS patients [49]. SOD1 is found in both skein-

like and hyaline inclusions [116, 117].  TDP-43 containing inclusions are not usually found in 

patients with SOD1-mediated ALS [118], implying SOD1-mediated FALS may be distinct. 

SOD1 positive inclusions are reported in some sporadic ALS patients [116, 117], however the 

validity of this finding is currently under debate [119]. The incorporation of SOD1 into 

inclusions implies that it is aggregated and likely misfolded. In the following sections mutant 

SOD1 folding/misfolding and aggregation will be discussed in depth. Furthermore, the literature 

confirming the prescence of misfolded SOD1 in ALS patient inclusions will examined.  

 

1.6. The role of SOD1 in ALS pathogenesis 

1.6.1. Function 

SOD1 is a ubiquitously expressed, well conserved metalloenzyme that binds copper and zinc 

[120]. Its principle function is to convert superoxide into hydrogen peroxide [27]. 

2O2- + 2H+ →  H2O2 + O2 

SOD1 is mainly cytosolic [121], although a small portion localizes to the intermembrane space 

(IMS) in mitochondria [122], where as in the cytosol, its main function is to convert the free 
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radical superoxide into hydrogen peroxide [27]. In addition to the cytosol and IMS, SOD1 is 

also reported to localize to the nucleus [123], peroxisomes [124], endoplasmic reticulum (ER) 

and Golgi apparatus [125]. SOD1 is an abundant protein, especially in the CNS where it 

constitutes 1-2% of total soluble protein [126]. SOD1 belongs to a family of three proteins 

(SOD1-3) with the same function. SOD2, is found in the mitochondrial matrix, and unlike 

SOD1, binds manganese instead of copper and zinc [127]. SOD3 is found in the extracellular 

matrix and like SOD1, also requires copper and zinc for its enzymatic activity [127].    

SOD1 mutations were initially suspected as being causative for ALS due to a loss of 

function resulting in the accumulation of reactive oxygen species (ROS), however, the 

observation that many SOD1 mutants retain their dismutase activity at levels comparable to 

wild-type SOD1 refuted this claim [128]. Furthermore, SOD1 null mice do not develop 

symptoms resembling ALS [129]. In contrast, transgenic animals over-expressing mutant 

human SOD1 die early from a progressive paralytic disease [130], providing strong evidence 

that SOD1 mutations cause a toxic gain of function in ALS. Although SOD1 null mice do not 

develop ALS, and live to a reasonably old age, they are hypersensitive to axotomy [129] and 

cerebral ischemia [131] indicating that they have abnormal phenotypes associated with both 

motor neurons and neurons in general. A partial loss of SOD1 function may be involved in 

SOD1-linked ALS [29].    

Recently, some non-canonical functions for SOD1 have come to light. Mutant SOD1 

binds  the  3’UTR  of  vascular  endothelial  growth  factor  (VEGF),  a  neurotrophic  factor  for  motor 

neurons, causing destabilization of the transcript and loss of VEGF expression [132]. Similarly, 

mutant SOD1 regulates low molecular weight neurofilament (NEFL)  mRNA  through  its  3’  UTR  

resulting in a loss of protein expression in neuronal cells [133]. Correction of the SOD1 mutation 
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in iPSC-derived motor neurons using transcription activator-like effector nucleases (TALEN)-

mediated homologous recombination rescued the loss of NFL expression [134]. SOD1 is also 

reported to act as a transcription factor. In response to high levels of ROS, SOD1 translocates 

to the nucleus to increases the expression of genes related to oxidative stress resistance and 

cellular repair [135]. High levels of respiration causing production of oxygen and glucose, lead 

to SOD1-mediated stabilization of a group of proteins that downstream result in the repression 

of respiration [136]. These non-traditional functions of SOD1 clearly indicate there is much 

more to be discovered about the signalling functions of this molecule, as it regulates gene 

expression at multiple levels. Furthermore, how SOD1 is transcriptionally regulated remains to 

be fully explored, but uncovering the factors that modulate its expression could be vital for 

therapeutics aimed at changing SOD1 expression. 

 

1.6.2.  Structure, folding and post-translational modifications 

Several post-translational modifications are required to form the mature SOD1 protein. 

Following translation, SOD1 is loaded with zinc by an unidentified mechanism, then copper by 

the copper chaperone for superoxide dismutase (CCS), which also facilitates the formation of 

an intramolecular disulfide bond between Cys57 and Cys146, and finally SOD1 forms a 

homodimer [137]. SOD1 can acquire copper by a CCS-independent pathway, involving reduced 

glutathione [138]. CCS may also regulate SOD1 activity in response to oxidative stress [139]. 

Zinc binding structurally organizes the immature polypeptide, while copper binding is 

responsible for SOD1 activity [140, 141]. 

Structurally, the SOD1 homodimer is arranged as an eight-stranded Greek key beta 

barrel, with an immunoglobulin-like fold [142]. SOD1 has two loops: the zinc-loop (residues 
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49-83)  located  between  β-strands 4 and 5 and the electrostatic loop (residues 121-142) which is 

formed  between  β-strands 7 and 8. Both loops contribute to the active site, where the superoxide 

anion interacts with copper to be reduced [142].  

SOD1 is an unusually stable protein capable of resisting denaturation at high heat (SOD1 

has a melting temperature of approximately 92°C), whereas most proteins unfold between 40-

60°C [143]. This stability is reflected in the ability of the mature SOD1 protein to withstand 

high concentrations of denaturants, 6M guanidine chloride and 10M urea, detergents, 4% 

sodium dodecyl sulfate (SDS), and treatment with 1 mg/mL proteinase K [144-147]. The 

stability of SOD1 is attributed to its metal occupancy, disulfide bond formation, and 

dimerization, which are all interdependent [110, 148]. Absence of metals will promote 

dissolution of the disulfide bond [149]. SOD1 without metals or an intact disulfide bond cannot 

form dimers [148, 150 {Arnesano, 2004 #703, 151], whereas presence of the metals and 

disulfide bond will promote dimerization [152].    

The high stability of wild-type SOD1 is rather surprising given that almost any mutation 

leads to disease. Indeed, an intense area of investigation is to determine similarities and 

differences in the biochemical properties amongst the various mutant proteins, although it 

remains possible that there is no one common property [141]. Several mutants have a decreased 

thermostability, approximately 5-10°C lower than wild-type SOD1, comparable to apo SOD1 

[153]. However, a number of mutants also have stabilities that are similar to wild-type SOD1 

[154]. Furthermore, most mutants have wild-type-like activities [155, 156] and with the 

exception of the metal binding mutants, there are very few structural differences compared to 

wild-type SOD1 [157-160]. These findings suggests that the majority of mutant SOD1 is well 

folded. Examination of SOD1 folding in a cell-free rabbit reticulocyte lysate assay reveals 



 

19 

SOD1 mutants are unable to fold as efficiently as wild-type SOD1, although many mutants were 

able to eventually reach a well-folded state, as determined by resistance to proteinase k digestion 

[141]. This delay in folding kinetics leads to the accumulation of a pool of 

immature/intermediate SOD1 forms, which have decreased stability and may negatively affect 

a diverse array of cellular functions [141].    

SOD1 lacking its complement of metals has a drastically reduced stability, as evidenced 

by a decreased melting temperature 50 to 59°C [161]. SOD1 with its proper complement of 

metals is referred to as holo, whereas SOD1 in the demetalated state is referred to as apo. Probing 

the metalation and activity status of recombinant mutant SOD1 proteins demonstrates that 

several mutants do not contain their full complement of metals and some lack dismutase activity, 

suggesting that copper is missing from the active site [156]. Soluble wild-type and mutant 

(G37R, H46R/H48Q and G93A) SOD1 from the brains and spinal cords of transgenic mice 

contain the proper complement of metals, except for H46R/H48Q, which lacks copper binding 

and has reduced zinc binding [162]. However, insoluble SOD1 had a low occupancy of metals 

[162]. Due to the high affinity of SOD1 for copper and zinc, the authors propose loss of metals 

was not probable in vivo and the origin of demetalated insoluble SOD1 originates from immature 

peptides which have yet to incorporate metals [162]. In support of this proposal, in-cell NMR 

experiments document that a portion of mutant SOD1 protein exists in an unstructured state 

incapable of zinc binding. Furthermore, toxic oligomers likely originate from this precursor 

[163]. Zinc can also aberrantly bind immature forms of SOD1 (apo SOD1 dimers, monomers 

and reduced monomers) at both the zinc and copper sites thereby leading to a pool of misfolded 

SOD1 [164]. Expression of CCS decreases the pool of unstructured SOD1 species suggesting 
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that in addition to its function in copper loading, it may also act as a chaperone [163] thereby 

decreasing levels of immature SOD1 [163].   

Reduction of the disulfide bond in apo SOD1 substantially decreases the melting 

temperature from 52 °C [154] to 43°C [153], indicating the disulfide bond provides additional 

stability for SOD1 structure. Mutant SOD1 is more prone to reduction than wild-type SOD1 

[149] and reduced SOD1 is destabilized compared to holo SOD1 [165].    

 As an alternative to the theory that SOD1 mutations retard protein folding kinetics 

leading to increased levels of unstable immature precursors, ALS mutations may predispose the 

protein to misfold in response to stress that the wild-type protein would normally withstand. 

One such stress is oxidation. SOD1 is exposed to ROS as part of its normal function and 

oxidative stress has been linked to ALS [166]. Increased levels of oxidative stress are 

documented in tissues from ALS patients [167, 168] as well as SOD1 mouse models [169]. 

Oxidation of SOD1 mutants causes destabilization of the protein mediated by oxidation of metal 

binding histidine residues [170]. Furthermore, oxidation leads to release of bound metals and 

exposure of hydrophobic residues, which is further enhanced when SOD1 is mutated [171]. 

Oxidation of either wild-type or mutant SOD1 leads to monomerization, followed by protein 

destabilization [172]. Treatment of SOD1 with denaturants causes unfolding with metal 

depleted monomers as an intermediate, thus confirming the plausibility of this precursor as an 

intermediate in SOD1 unfolding [173, 174].  

 

1.6.2.1  SOD1 aggregation 

Immature forms of SOD1 caused by the loss of one or more post-translational 

modifications, or genetic mutation, destabilizes the protein structure and likely underlies the 
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formation of aggregates [110]. Indeed, mutant SOD1 forms inclusions within spinal cord motor 

neurons in both FALS patients with SOD1 mutations and SOD1 rodent animal models [175-

179]. One such subset of aggregates  have  a  fibrillar  appearance  and  are  composed  of  β-sheets 

[180]. Interestingly, fibrils have the ability to self-regulate, once a fibril is formed it has the 

ability to nucleate or seed fibrils from properly folded protein [181, 182]. 

 Fibrils are found in numerous neurodegenerative diseases including   Parkinson’s,  

Huntington’s  and  Alzheimer’s  disease  [182]. The presence of fibrils in SOD1-mutated FALS 

remains debated, as reports of fibrils in spinal cords are conflicting [119, 183]. In ALS rodent 

models,  SOD1  inclusions  stain  positive  for  Thioflavin  T,  a  molecule   that  upon  binding  to  β-

sheets exhibits enhanced fluorescence [184]. Based on Thioflavin T fluorescence, mutant and 

apo SOD1 readily form fibrils in vitro [152, 185]. Moreover, structural studies demonstrate 

ALS-linked mutations and apo SOD1 form fibrils [158, 186, 187]. In silico analysis of the SOD1 

sequence reveals four regions predicted to fibrillize [188]. Two C-terminal segments of SOD1, 

residues 101-107 and 147-153, accelerate fibril formation of apo wild-type and mutant SOD1 

in vitro [188]. It has been proposed that metal deficient and disulfide reduced SOD1 would only 

be required for the nucleation of fibril formation, followed by incorporation of more stable forms 

of SOD1, due to the self-seeding property of fibrils [110]. Thus, implying an initially small pool 

of unstructured SOD1 could spontaneously increase over time. Treatment of apo reduced wild-

type SOD1 aggregates with proteases and subsequent analysis by mass spectrometry reveals 

three protease resistant peptides making up the core of the SOD1 aggregates. SOD1 mutants use 

some of these same regions, but have distinct cores. Distinct aggregate structures would affect 

the solubility and possibly toxic potentcy [189].  
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Whether or not SOD1 aggregates are toxic and by what mechanisms remains undefined. 

SOD1 monomers [190], oligomers [191] and aggregates [192] have all been proposed to 

mediate toxicity. Similarly, soluble SOD1 versus insoluble SOD1 is suggested to underlie 

SOD1-linked toxicity [193]. Regardless of what the toxic species is in vivo, there is consensus 

that misfolding of SOD1 protein is the initiating event. 

 

1.6.2.2. Additional post-translational modifications 

 In addition to the post-translation modification required for the proper folding of SOD1, 

several other modifications have been described that can modify SOD1 aggregation propensity 

or SOD1 protein levels. The maturation of SOD1 consists of removal of the initiating 

methionine and acetylation of the N-terminal residue [194]. A recent study suggest that 

acetylsalicylic acid acetylates several lysine residues in mutant apo SOD1 which prevents its 

association into amyloid like fibrils [195]. Whether SOD1 is acetylated within cell culture, 

animal models, or in ALS patients remained unknown. In response to increased oxidative stress, 

wild-type and mutant SOD1 are glutathionylated at Cys111, which causes destabilization of the 

SOD1 dimer [196, 197]. Phosphorylation at Thr2 and Thr58 or Ser59 in SOD1 is reported in 

human erythrocytes [197]. SUMO (small ubiquitin-like modifier) proteins are a family of 

protein that are post-translationally and reversibly attached to proteins to modify their transport, 

regulation, stability, and response to stress [198]. SOD1 is sumoylated at Lys9 and Lys75 by 

both SUMO1 and SUMO2/3 [199, 200]. Sumoylation increases SOD1 stability and the 

formation of aggregates [199, 200]. Taken together, these findings provide evidence that SOD1 

is post-translationally regulated in multiple ways, however the relevance of many of these 

modifications in ALS pathogenesis remains uninvestigated. 



 

23 

Insoluble SOD1 from the spinal cords of symptomatic SOD1G93A mice was found to be 

mono and oligoubiquitinated [201]. Ubiquitination was observed in the spinal cord but not 

hippocampus, and is confined to Lys48, suggesting proteasome-mediated degradation of SOD1 

[201]. Several E3 ubiquitin ligases are reported to ubiquitinate SOD1 for degradation, including 

E6-AP [202], Dorfin [203], neuronal homologous to E6AP carboxyl terminus (HECT)-type 

ubiquitin-protein isopeptide ligase (NEDL1) [204], and the ER-associated E3 ubiquitin ligase 

Gp78 [205]. Several of these E3 ubiquitin ligases, such as E6-AP and Dorfin, are found within 

mutant-SOD1 inclusions [202, 203].   

 

1.6.3. SOD1 animal models  

The first transgenic mouse model of ALS (SOD1G93A) was developed by expressing 

SOD1 mini-genes, containing human genomic fragments driven by the endogenous SOD1 

promoter and regulatory regions. This mouse develops a progressive and fatal paralysis that 

closely resembles ALS [130]. Many other transgenic models over-expressing human SOD1 

missense mutations have been developed, as well as three C-terminal truncation mutations and 

several experimental mutations [130, 177, 179, 184, 206-215] (Table 2). The SOD1G93A mouse 

is the most extensively studied, and for the time being is the gold-standard for testing therapeutic 

agents [25]. The SOD1G37R and SOD1G85R models are the second most frequently used mouse 

models. In addition two rat models exist, expressing the G93A [216] and H46R [217] mutation 

in human SOD1 (Table 3). 
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Table 2    
Transgenic SOD1 mouse models    

Mutation Disease onset 
(months) Reference 

A4V a 8 Deng et al., 2006 
G37R 4 to 6 Wong et al., 1995 

G37R b * 11 to 13 Boillee et al., 2006 

H46R 5 Chang-Hong et al., 
2005 

H46R/H48Q 4 to 6 Wang et al., 2002 
H46R/H48Q/H63G/H120G 8 to 12 Wang et al., 2003 

L84V 5 to 6 Tobisawa et al., 2003 
G85R 8 to 14 Brujin et al., 1997 

G86R c 3 to 4 Ripps et al., 1996 
D90A 12 Jonsonn et al., 2006 
G93A 3 to 4 Gurney et al., 1994 
L126X 7 to 9 Wang et al., 2005 
L126X 11 Deng et al., 2006 

L126delTT 15 Watanabe et al., 2005 
G127X d 8 Jonsson et al., 2004 

 

Wild-type * non symptomatic Tu et al., 1998 
 
 

Table 2: Transgenic SOD1 mouse models. Adapted from Turner and Talbot 2008 [206]. . 

Double transgenic for SOD1WT (a). SOD1 gene floxed (b). Mouse gene (c). Homozygous for 

mutation (d). Animals used in this thesis (*). 
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Table 3    
Transgenic SOD1 rat models    

Mutation  Disease onset 
(months) Reference 

G93A * 3.5 to 4 Howland et al., 2002 
H46R 4 to 5  Nagai et al., 2001 

   
Wild-type *  non-symptomatic Chan et al., 1998 

 
 
Table 3: Transgenic SOD1 rats models. Adapted from Turner and Talbot 2008 [206]. 

Animals used in this thesis (*).   
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Characterization of SOD1G93A mice reveals disease onset at 3 months (higher levels of 

transgene expression lead to earlier disease onset) with weakness, and weight loss due to muscle 

atrophy that progresses to paralysis and then death at about 4 months [130] (Fig. 2). Denervation 

of neuromuscular junctions begins around 47 days, with axon loss at 80 days and motor neuron 

loss at 100 days [218, 219]. Other prominent pathological features include fragmentation of the 

Golgi apparatus [219], mitochondrial morphological alterations [220, 221], SOD1 positive 

aggregates [176], gliosis of astrocytes and microglia [222]. Although the SOD1G93A rats have 

not been characterized as extensively as the mouse modeld, they share many common features 

including an age dependent muscle atrophy progressing to paralysis (~3.5-4 months), motor 

neuron loss and gliosis [216, 223, 224] (Figure 3). Characterization of disease progression in 

the SOD1G93A rat model is challenging as there exist colony differences [224, 225]. Therefore 

careful reporting of disease onset, surivial and major pathological hallmarks are required for 

each colony.    

Small SOD1 animal models exist, however they receive far less attention than rodent 

models. Expression of mutant SOD1 in Danio Rerio causes dose dependent axonopathy, motor 

neuron loss, muscle atrophy, and these fish have less endurance and decreased survival, 

compared to wild-type controls [226, 227]. Expression of mutant or wild-type SOD1 in 

Drosophila motor   neurons   decreases   the   flies’   ability   to   climb,   causes   defects   in   neural  

electrophysiology, accumulation of SOD1 in neurons, and induces stress in surrounding glial 

cells, but does not lead to motor neuron loss or death [228]. The lack of specificity of phenotype 

between mutant and wild-type could indicate toxicity of wild-type SOD1. C. elegans models of 

ALS expressing mutant SOD1 selectively in neurons or muscle demonstrate modest locomotion 

defects and aggregation of SOD1, but normal survival [229, 230]. 
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Figure 2: Timeline of selected histopathological and clinical changes relevant to disease 

in SOD1G93A mice. Adapted from Bendotti and Carri 2004 [231], Fischer et al., 2004 [218] 

and Turner and Talbot et al., 2008 [206]. Mitochondrial morphology and structure are altered 

prior to motor neuron loss and other hallmarks of disease.   
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Figure 3: Timeline of selected histopathological and clinical changes relevant to disease 

in SOD1G93A rats. Data pooled from Howland et al., 2002, [216] (orange), Matsumoto et al., 

2006 [223] (purple) and Thompsen et al., 2014 [224] (red). Peak body weight: the point at 

which rats begin to loose weight due to muscle atrophy; Gait-impairment: the point at which 

animals being to limp; End-stage: the point at which the rat cannot right itself; NMJ: 

Neuromuscular junction.      
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1.6.4. Misfolded SOD1 

Mutant SOD1 adopts a similar structure to wild-type SOD1 [157-160], however a 

portion of mutant SOD1 adopt a non-native  “misfolded”  conformation,  as  demonstrated  by  

loss of Proteinase K resistance [232, 233{Vande Velde, 2008 #2, 234]. It is increasingly 

appreciated that SOD1-mediated disease pathogenesis is a result of misfolded SOD1. In an 

effort to specifically study misfolded SOD1, several groups have developed conformation 

specific antibodies that selectively target certain conformations of SOD1 (reviewed in [33, 

235]). These antibodies were generated by immunizing animals with either apo SOD1G93A 

protein(A5C3, B8H10, C4F6 and D3H5) or SOD1 peptides consisting of residues that are 

normally buried within the folded protein, Disease specific epitope (DSE2 3H1 and DSE1a 

10C12), SOD1 exposed dimer interface (SEDI), unfolded SOD1 (USOD), mutant SOD1 

specific antibody clone (MS758), AJ10 and a series of polyclonal peptide antibodies produced 

by Forsberg and colleagues (Fig. 3).  Collectively, these antibodies recognize epitopes only 

available when SOD1 adopts a non-native conformation. These tools have allowed the field to 

probe the spatial and temporal localization of misfolded SOD1 as well as examine 

mechanisms to modulate its abundance. While initially designed as therapeutics, their 

potential is just now emerging. Hopefully these reagents will allow the field to answer why  

motor neurons selectively degenerate in SOD1-mediated FALS and in SALS as a whole, and 

by what mechanisms.      
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1.6.4.1. Misfolded SOD1 in SOD1-mediated FALS 

Misfolded SOD1 antibodies SEDI, USOD, C4F6, AJ10, DSE2 and DSE1a label 

inclusions, mostly hyaline and skein-like, in SOD1-mediated FALS patient spinal cords, but not 

controls [119, 236-239] . The polyclonal peptide antibodies made by Forsberg and colleagues 

detect misfolded SOD1-immunoreactive inclusions in some FALS patients, and surprisingly in 

two patients with another motor neuron disease, spinal bulbar muscular atrophy (SBMA) [240]. 

Despite some reactivity of the SOD1 peptide antibodies in controls, the misfolded SOD1 

conformational antibodies are specific for SOD1 caused FALS and confirm that non-native 

misfolded SOD1accumulates in spinal cord of patients.  

The SEDI antibody preferential labels neurons within the ventral horn, as well as motor 

neuron axons, and axonal processes in the spinal cords of several ALS mouse models, but not 

the dorsal spinal cord  [241]. In agreement, the C4F6 antibody preferentially labels the ventral 

spinal cord of SOD1G93A mice [236]. In contrast, the AJ10 antibody labels motor neurons in the 

ventral spinal cord and sensory neurons of the dorsal root ganglia in SOD1G93A mice [241]. This 

group also found extensive degeneration of dorsal sensory neurons, which has not been widely 

reported in this model [242], and previously reported no AJ10 labelling in the dorsal spinal cord, 

thereby casting some confusion on whether misfolded SOD1 is truly found in sensory neurons 

[239]. Misfolded SOD1 as detected by the D3H5 and AJ10 antibodies is found in neurons of 

the cortex [224, 239, 243].



 

 

Table 4        

Misfolded SOD1 specific antibodies                 

Antibody Epitope                   Mitochondrial 
Localization 

Reactive for FALS tissue 
Reactive for SALS tissue Therapeutic References 

SOD1 non-SOD1 

A5C3 Exon 4 + nd nd nd - Gros-Louis et al., 2010; Vande Velde et al., 2011; 
Sexena et al., 2014 

B8H10 Exon 3 + nd nd nd nd 
Gros-Louis et al., 2010; Ezzi et al., 2010; Parone et 

al., 2013; Patel et al., 2014; Patel et al., 2015; 
Isrealson et al., 2015 

C4F6 Exon 4 - + nd + nd 

Urushitani et al., 2006; Bosco et al., 2010; 
Prudencio et al., 2011; Brotherton et al., 2012; 

Ayers et al., 2014; Brown et al., 2014; Rotunno et 
al., 2014; Xu et al., 2015; Redler et al., 2014  

D3H5 Exon 2 nd nd nd nd + Gros-Louis et al., 2010; Patel et al., 2014;                          
Saxena et al., 2014 

DSE2 3H1 & 
DSE1a 10C12 residues 125-142 + + + + nd 

Vande Velde et al., 2008; Isrealson et al., 2010; 
Grad et al., 2011; Pokrishevsky et al., 2012; Grad 

et al., 2014;  

SEDI residues 143-151 + + nd - + 
Rakhit et al., 2007; Liu et al., 2009, 2012; Kerman 
et al., 2010; Prudencio et al., 2011; Mulligan et al., 

2012 

USOD residues 42-48 nd + nd - nd Kerman et al., 2010; Mulligan et al., 2012 

MS758 residues 6-16 nd nd nd nd nd Fujisawa et al, 2012 

peptides residues 4-20, 57-72, 131-
153 nd + nd + nd Forsberg et al., 2010 

AJ10 residues 29-57                                              + + nd - nd Sabado et al., 2013; Sabado et al., 2014 

 

Table 4: Misfolded SOD1 specific antibodies. Adapted from Pickles et al., 2012 and Rotunno and Bosco, 2014 [33]. Not 
determined (nd); positive results (+); negative result (-).  



 

 

The SEDI antibody labels both neurons and occasionally astrocytes in SOD1 mouse 

models [241], whereas the D3H5 predominately labels motor neurons, with occasional labelling 

in astrocytes and microglia at advanced age [243]. Glial cells were not significantly labelled 

with the misfolded SOD1 specific antibody AJ10 either [239]. A systematic evaluation of 

misfolded SOD1 accumulation in glial cells has not been done for any misfolded SOD1 specific 

antibodies. Therefore, the question of whether misfolded SOD1 expression in glia contributes 

to non-cell autonomous toxicity remains open.  

 

1.6.4.2. Misfolded SOD1-linked toxicity 
 
The C4F6 antibody recognizes both a sequence specific epitope (G93A mutation) when 

denatured and a conformational epitope of mutant SOD1 and wild-type SOD1 oxidized at Cys 

111, in native conditions [244]. Application of recombinant mutant SOD1, but not wild-type 

SOD1, significantly inhibit anterograde axonal transport in isolated squid axoplasm [244]. 

Hydrogen peroxide oxidized wild-type SOD1 recapitulated the defects seen by mutant SOD1, 

indicating that mutant and misfolded wild-type SOD1 share the ability to inhibit vesicle 

transport [244]. This same assay was employed in another study revealing that SOD1 mutants 

inhibit anterograde transport of vesicles through the p38 (mitogen activated protein) MAP 

kinase pathway [244, 245]. Two groups have reported the epitope to which the C4F6 antibody 

binds. Through mutagenesis and structural alignment, the Borchelt group found that the C4F6 

epitope minimally contains residues 90-93, which are located in the beta-turn of the loop 

between beta sheets 5 and 6 [246]. The Bosco group, through chemical cross-linking, mass 

spectrometry and mutagenesis, identify residues 92-96 as critical for binding by the C4F6 

antibody [247]. Exposure of this epitope is modulated by the zinc binding and electrostatic 
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loops, as removal of the loops greatly increases C4F6 binding [247]. Exposure of the C4F6 

epitope correlates with SOD1 toxicity to microglia [247]. Thus, C4F6-reactive misfolded SOD1 

is linked to both defective axonal transport and non-cell autonomous toxicity. 

  The SEDI and B8H10 antibodies identify misfolded SOD1 in microsomal 

fractions from SOD1 mouse models [248, 249], thereby potentially linking misfolded SOD1 to 

the endoplasmic reticulum. A5C3-reactive misfolded SOD1 and ER marker binding 

immunoglobulin protein (BiP) also known as 78 kDa glucose-related protein (GRP-78) co-

localize in motor neurons from SOD1G93A mice, placing misfolded SOD1 at the ER [250]. 

Interestingly, misfolded SOD1 levels (as detected by A5C3 and/or D3H5) increase with 

age paralleling levels of the endoplasmic reticulum (ER) stress response protein, BiP in 

SOD1G93A mouse motor neurons. Treatment with ER-stress inducing drugs thapsigargin and 

tunicamycin both increase levels of misfolded SOD1 [250]. In contrast treatment with 

salubrinal, which inhibits eukaryotic translation initiation factor 2A (eIF2A) phosphatases and 

attenuates ER-stress, decreases the levels of misfolded SOD1 and delays disease progression 

and the appearance of other disease markers [251]. Strengthening the connection between 

misfolded SOD1 and the ER, 124 of 132 SOD1 mutants bind to the ER protein Derlin-1 

(degradation in endoplasmic reticulum protein), via residues 6-16. Immunization of rats with a 

peptide containing the Derlin-1 interacting domain produced the misfolded SOD1-specific 

antibody clone 78 (MS785). MS785 recognizes almost all SOD1-Derlin-1 interacting mutants. 

Derlin mediates an ER stress response to regulate cellular processes when zinc levels are low 

[252]. 
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Figure 4: Misfolded SOD1 specific antibodies. Adapted from Pickles et al., 2012 [235]. A) 

Epitopes recognized by misfolded SOD1 antibodies mapped onto the SOD1 structure. Structural 

features  are  as  indicated:  β-strand  (black),  loops  (pink),  α  helix  (blue),  disulfide  bonds  between  

Cys57 and Cys146 (S), copper-binding residues His46, His48, His63 His120 (red circles) and 

zinc-binding residues His63, His71, His80 and Asp83 (His, purple circles and Asp, purple 

square). B) Three dimensional reconstruction of SOD1 homodimer (PBD: 2C9V) showing the 

location of DSE1a/ SEDI (red), A5C3/C4F6 (blue), USOD (green), B8H10 (purple).    
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Collectively these studies strongly suggest misfolded SOD1 is at the heart of toxicity in 

SOD1 linked FALS, as it has been linked to several major proposed models of toxicity, 

including axonal transport defects, ER stress and non-cell autonomous toxicity.   

    

1.6.4.3. Motor neuron vulnerability 

A major questions in ALS research is why SOD1 toxicity specifically causes motor 

neuron degeneration, or put another way, why are motor neurons particularly vulnerable? Motor 

neuron death follows a temporal sequence, with fast twitch fatigable (FF) motor neurons 

degenerating first, followed by fast twitch fatigable resistance (FR) motor neurons, and then the 

smaller slow (S) motor units in SOD1G93A mouse models [253]. This pattern is likely consistent 

in humans, as the twitch force of FF motor neurons decreases the earliest in SALS patients [254]. 

Why FF are preferentially lost in ALS remains elusive, although it is likely they have intrinsic 

properties rendering them more vulnerable than other neuronal populations. 

In the SOD1G93A mouse model, FF motor neurons selectively exhibit ER-stress [251]. 

Misfolded SOD1 (as detected by A5C3 and/or D3H5) accumulates in FF motor neurons and 

parallels levels of the ER stress marker BiP, as determined by retrograde labeling via the 

gastrocnemius muscle in SOD1G93A mice [250]. ER stress-causing agents selectively exacerbate 

misfolded SOD1 accumulation in motor neurons, although ER stress proteins are elevated in all 

cell types [250]. Indicating a motor neuron specific vulnerability whereby misfolded SOD1 

accumulates upon ER stress activation.  

Macrophage migration inhibitory factor (MIF) was identified as the cytosolic chaperone 

of SOD1 that is abundant in liver, but not spinal cord [249]. Although motor neurons express 
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high levels of MIF transcript, protein levels are low. Increasing MIF expression in neuronal cells 

led to a diminution of misfolded SOD1 in a dose-dependent manner and augmenting MIF levels 

in murine motor neurons by viral infection led to increased cell survival [249].     

Together these two studies indicate motor neurons are intrinsically less equipped to 

handle misfolded SOD1. Motor neurons as opposed to other neuronal populations are prone to 

misfolded SOD1 accumulation in stressed conditions. Moreover, motor neurons lack 

chaperones, MIF and likely others that could regulate misfolded SOD1 levels. 

 

1.6.4.4. Modulating levels of misfolded SOD1 

Misfolded SOD1 antibodies are frequently used to monitor levels of the toxic protein 

species, as corollaries of survival or improved performance. Immunization of SOD1G37R mice 

with recombinant apo SOD1G93A results in a 30 day increase in survival, with a corresponding 

decrease in C4F6-reactive misfolded SOD1 [255]. B8H10-reacive misfolded SOD1 levels are 

reduced in SOD1G93A mice treated with Withaferin A, an inhibitor of nuclear factor-kappa B 

(NF-ĸB),   compared   to   vehicle control [256]. Withaferin A treated animals live longer, had 

decreased signs of neuroinflammation and higher counts of motor neurons [256]. Decreasing 

levels of SOD1 in corticospinal motor neurons in the brain by injection of AAV9 encoding short 

hairpin RNA (shRNA) targeted against SOD1 decreases D3H5-reactive misfolded SOD1, and 

increases survival by 20 days compared to SOD1G93A rats injected with AAV9 encoding GFP 

[224]. Neuronal activity is shown to modulate misfolded SOD1 levels, as enhancing motor 

neuron excitability pharmacogenetically in SOD1G93A mice decreased misfolded SOD1 levels 

whereas inhibition of activity augmented misfolded SOD1 accumulation in motor neurons 

[250]. iPSC-derived motor neurons from an ALS patient with a SOD1 mutation are intrinsically 
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hyperexcitable compared to  motor neurons that were genetically corrected [257]. The models 

used, an in vivo mouse model over-expressing mutant SOD1 versus an in vitro human model 

with only one copy of mutant SOD1, were very different and could possibly account for the 

inconsistencies. Conversely, motor neurons could increase activity in order to compensate for 

mutant SOD1 toxicity. Although not a treatment per se, gene editing to correct a SOD1 mutation 

in ALS patient iPSC-derived motor neurons causes a loss of A5C3 antibody-reactivity [134].        

 

1.6.5. Non-cell autonomous toxicity of SOD1 

For many years motor neurons were the primary focus of ALS research as they are the cell 

type that selectively degenerates. Increasingly, many non-neuronal cell types are now 

considered intimately linked with motor neuron death and disease.  

Generation of transgenic mice expressing mutant SOD1 under the control of cell-type 

specific promoters for motor neurons [258-260] and astrocytes [261] were generally 

unsuccessful at provoking motor neuron death. Furthermore, the development of chimeric mice 

that expressed mutant SOD1 in motor neurons, but not in non-neuronal cells, resulted in 

increased survival of the animals, indicating the importance of glial cells in modulating disease 

course [262]. 

Selectively reducing expression of mutant SOD1 in a cell specific fashion led to a novel 

understanding of the contribution of each cell type to disease onset and progression and the 

hypothesis that SOD1 may exert non-cell autonomous toxicity [263, 264]. Collectively these 

experiments reveal that SOD1 expression in motor neurons [265] and oligodendrocytes [266] 

mediates disease onset and expression of mutant SOD1 in astrocytes and microglia affect 

disease progression [265, 267]. Surprisingly, this approach has also revealed that decreased 
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expression of dismutase active SOD1G37R in Schwann cells accelerates disease, likely due to 

decreased dismutase activity [268]. Removal of SOD1 in endothelial cells which form part of 

the blood-CNS barrier of the brain and spinal cord or muscle, had no effect on disease [269, 

270]. T lymphocytes are also implicated in ALS pathogenesis. Although the CNS is thought of 

as an immune privileged area, T cells are detected post-mortem in the spinal cords of SALS 

patients [271], as well as in the spinal cords of SOD1 mouse models [272]. Several studies 

document that a compromised immune system decreases the lifespan of SOD1G93A mice [273, 

274], whereas addition of healthy T effector or T regulatory cells prolongs survival [275]. The 

increased survival afforded to ALS animal models likely involves the ability of T regulatory 

cells to modulate microglia [276]. Perisynaptic Schwann cells, glial cells located at the 

neuromuscular junction, exhibit improper coding activity in response to endogenous activity in 

SOD1G37R mice [277], thus adding another cell-type as a culprit of toxicity in ALS.  

In an effort to determine how microglia and astrocytes expressing mutant SOD1 cause 

motor neuron degeneration, a number of in vitro studies have employed primary co-cultures of 

motor neurons and glial cells from various sources. Mutant SOD1 expressing microglia from 

ALS animal models are toxic to wild-type motor neurons due to release of cytokines and free 

radicals [278, 279] whereas modulation of microglia by secretion of the cytokine interleukin 4 

(IL-4) by T cells is protective [280, 281]. Astrocytes from SOD1 mouse models are toxic to 

wild-type motor neurons derived from both animal models [282] and human embryonic stem 

cells (hESC) [283, 284]. Astrocytes isolated post-mortem from FALS (with SOD1 mutations) 

and SALS patients increase the death of mouse motor neurons compared to astrocytes from a 

healthy individual [285]. A fully humanized co-culture study demonstrates that astrocytes 
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derived from SALS patients are toxic to hESC-derived motor neurons, and further identifies that 

receptor interacting-1 protein (RIP1) mediates motor neuron death via necroptosis [286]. 

Despite a large body of evidence indicating that glial cells are important in ALS, the 

mechanisms remained undefined. Whether glial cells influence disease in other forms of FALS 

is only now emerging. 

 

1.6.6. SOD1 and sporadic ALS 

While SOD1 inclusions are a typical hallmark of FALS cases with underlying SOD1 

mutations, SOD1 positive inclusions are found in some SALS cases [116, 117]. Additional 

studies are required to reinforce this finding. Despite SOD1 being highly stable, lack of the 

metal co-factors and the reduction of the disulfide bond leads to the formation of fibrils and 

aggregates [152, 287]. Metal-depleted wild-type SOD1 can be immunoprecipitated by the 

misfolded SOD1 specific antibodies D3H5, MS785 (lack of zinc) [36, 243] and SOD1G93A mice 

immunized with recombinant apo SOD1WT live longer than mice treated with vehicle alone 

[288]. Taken together, modified wild-type SOD1 can mimic structural features of misfolded 

SOD1. Treatment of N2a cells expressing SOD1WT with hydrogen peroxide causes SOD1 

ubiquitination, same as is observed for mutant SOD1 [289]. Oxidized SOD1WT protein applied 

to cultured motor neurons induces toxicity equivalent to that of mutant SOD1 [289]. In SALS 

patient lymphoblasts, oxidized SOD1 is detected in a subset of patients with bulbar onset [290]. 

Like mutant SOD1, oxidized SOD1 interacts with Bcl-2 causing a toxic conformational shift 

that alters mitochondrial morphology [290]. Oxidation of Cys111, a residue known to be 

important for SOD1 stabilization and toxicity [291, 292], underlies the ability of the misfolded 

SOD1 specific antibody C4F6 to recognize SOD1WT [244]. Suppressing SOD1 expression in 
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astrocytes, derived from post-mortem tissue of both FALS and SALS patients, leads to a dose-

dependent decrease in toxicity when co-cultured with murine motor neurons [285]. These 

findings add to the accumulating evidence that wild-type SOD1 is central to ALS. However, 

another study found that decreasing SOD1 levels in astrocytes from SALS patients had no effect 

on motor neurons derived from human embryonic stem cells [286]. 

C4F6-reactive misfolded SOD1 was detected in 4 of 9 sporadic ALS spinal cords by 

immunohistochemistry, and no misfolded SOD1 immunolabeling was found in controls (17 

cases) [244]. Misfolded SOD1 isolated from SALS tissue and perfused into a squid axoplasm 

assay inhibited axonal transport, and the transport defect was reversed with the addition of C4F6 

antibody [244]. Taken together these experiments demonstrate that misfolded SOD1 is present 

in SALS patients. Yet two additional studies were unable to detect C4F6-reactive misfolded 

SOD1 in SALS cases (a combined 50 cases), even when multiple epitope retrieval techniques 

were tested [236, 246]. It is not apparent why conflicting results were obtained. One could 

speculate that variability in collection/processing of tissue could be at play, or loss of antibody 

affinity or specificity between the first study and subsequent studies. Regardless of the cause of 

the discrepancy, a consensus on this issue has yet to emerge. SALS patient iPSC-derived motor 

neurons may be an ideal system in which to unequivocally determine if misfolded SOD1 is 

found in SALS. They would provide a framework where many patient cell lines prepared under 

equivalent conditions could be evaluated. Misfolded SOD1 has already been detected in iPSC-

derived motor neurons from FALS patients demonstrating the feasibility of this approach [134].  

DSE2 and DSE1a antibodies detect misfolded SOD1 in SALS patients in two separate 

studies (a combined total of 48 cases), but not in neurological or non-neurological controls [238, 

293]. Interestingly, misfolded SOD1 was found in non-SOD1 mediated FALS. Analysis of 
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SALS patients with TDP-43 pathology also had limited amounts of misfolded SOD1 reactivity. 

Misfolded SOD1 was also detected in a FALS patient with the FUSR521C mutation with an 

absence of TDP-43 inclusions. In cell culture models simultaneously overexpressing SOD1WT 

with FUS or TDP-43 resulted in the detection of misfolded SOD1 [238]. This finding remains 

to be independently confirmed, but is particularly intriguing given that it provides a link between 

RNA binding proteins and SOD1, which are not thought to act in the same pathway. The SOD1 

peptide antibodies positively label misfolded SOD1 in several SALS cases, as well as disease 

controls, leading to doubt regarding the specificity of the antibody [240]. Misfolded SOD1 was 

not found in SALS cases using the USOD, SEDI or AJ10 antibodies [119, 239] 

Considerable excitement and controversy surrounds the finding of misfolded wild-type 

SOD1 in SALS patient material. If so what is the magnitude of SOD1 contribution to SALS? 

These answers will greatly impact the broader utility of therapeutics aimed at modulating total 

levels of SOD1 or just misfolded SOD1. 

 

1.6.7. Propagation of mutant SOD1 

The spread of ALS throughout the neuroaxis is reminiscent of prion disease, which 

involves the self-propagation of a pathogenic protein [294]. Increasing evidence supports that 

SOD1 and TDP-43 behave as prion-like proteins in that they can each cause misfolding of their 

native counterparts [294]. In vitro evidence suggests this is possible, as both wild-type and 

mutant SOD1 are capable of seeding fibrils and aggregates [110]. Spinal cord homogenates from 

wild-type and mutant SOD1 animal models, but non-transgenic littermates cause recombinant 

wild-type and mutant SOD1 to form fibrils [295]. This is specific to SOD1 as spinal cord 

homogenates  from  a  Huntington’s  disease  mouse  model  or  a  human  patient  with  FTD  do  not  
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seed SOD1 fibrils [295]. As compelling as these data are, they do not directly identify SOD1 as 

prion-like molecule since these experiments used complex homogenates, containing nucleic 

acids, cytokines and other factors, any of which could have elicited SOD1 fibrillation. 

Transfection of mutant SOD1G85R and SOD1G127X into neuronal cells lines causes endogenous 

wild-type SOD1 to misfold as demonstrated by detection with misfolded SOD1 antibodies 

DSE2 and DSE1a. This finding identified mutant SOD1 as the necessary factor for misfolding 

[232]. Moreover, incubation of recombinant SOD1G127X and SOD1WT in a cell-free system 

caused SOD1WT to become misfolded, suggesting that mutant SOD1 is sufficient to induce 

misfolding [232]. Injection of spinal cord homogenates from paralyzed SOD1G93A animals into 

the spinal cords of post-natal day (P) P0 SOD1G85R-YFP (which do not develop paralysis due to 

sub threshold levels of mutant SOD1) mice resulted in paralysis  in 6 of 10 injected mice and 

correlated with the presence of SOD1 inclusions in the spinal cord [296]. Interestingly, injection 

of homogenates from SOD1WT mice caused paralysis in 1 of 3 animals, again reasserting that 

misfolded wild-type SOD1 can be pathogenic [296]. Introduction of homogenates from 

paralyzed recipient SOD1G85R-YFP mice into naïve SOD1G85R-YFP mice led to an early-onset 

paralysis in all animals tested [296]. This is the first in vivo evidence that mutant/misfolded is 

transmissible, although with the caveat that spinal cord homogenates, containing multiple 

factors besides mutant/misfolded SOD1, were utilized. 

Another feature of prion-like proteins is the ability to spread from cell to cell. The 

mechanism of propagation from cell to cell depends on the extracellular release of mutant SOD1 

aggregates or exosomes containing misfolded SOD1 which are able to enter nearby cells by 

micropinocytosis [293, 297]. Mutant SOD1 can be secreted extracellularly through its 

interaction with chromogranins [298]. Increasing levels of Chromogranin A in neurons 
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2.2. Abstract  

Methods to detect and monitor mitochondrial outer membrane protein components in 

animal tissues are vital to study mitochondrial physiology and pathophysiology. This protocol 

describes a technique where mitochondria isolated from rodent tissue are immunolabeled and 

analyzed by flow cytometry. Mitochondria are isolated from rodent spinal cords and subjected 

to a rapid enrichment step so as to remove myelin, a major contaminant of mitochondrial 

fractions prepared from nervous tissue. Isolated mitochondria are then labeled with an antibody 

of choice and a fluorescently conjugated secondary antibody. Analysis by flow cytometry 

verifies the relative purity of mitochondrial preparations by staining with a mitochondrial 

specific dye, followed by detection and quantification of immunolabeled protein. This technique 

is rapid, quantifiable and high-throughput, allowing for the analysis of hundreds of thousands 

of mitochondria per sample. It is applicable to assess novel proteins at the mitochondrial surface 

under normal physiological conditions as well as those proteins which may become mislocalized 

to this organelle during pathology. Importantly, this method can be coupled to fluorescent 

indicator dyes to report on certain activities of mitochondrial subpopulations and is feasible for 

mitochondria from the central nervous system (brain and spinal cord) as well as liver. 
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accelerated death in SOD1G37R mice and increased levels of B8H10-reactive misfolded SOD1 

[299].  

Together, these studies indicate that mutant SOD1 causes native SOD1 protein to 

misfold, thus behaving like a prion. Moreover, this property of SOD1 can explain how 

misfolded SOD1 propagates from cell to cell and eventually region to region. Future studies 

will elucidate the precise mechanisms of transmission. Immunization with misfolded SOD1 

specific antibodies, in addition to lowering the burden of misfolded SOD1, have the potential 

to limit cell to cell spread and therefore slow/halt disease progression. 

 

1.6.8. SOD1-mediated toxicity 

In the 22 years since the identification of SOD1 mutations as causative for ALS, several 

targets and pathways have been implicated in SOD1 toxicity. The most prominent include 

glutamate excitoxicity, induction of ER stress, inhibition of the proteasome, mitochondrial 

dysfunction, secretion of SOD1 and microglial activation, induction of extracellular superoxide 

by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, altered axonal transport, 

disruption of the blood-brain-barrier, and dysfunction of autophagy [264] (Figure 5).  

 

1.6.8.1. Mitochondria as a target for SOD1 toxicity  

 Mitochondria are principally known to produce ATP through oxidative phosphorylation. 

However, they also participate in a number of other cellular functions, including signalling, 

apoptosis and calcium handling.  A mitochondrion is composed of distinct compartments, the 

outer mitochondrial membrane (OMM), the intermembrane space (IMS), the inner  
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Figure 5: Proposed  mechanisms  of  toxicity  in  SOD1-­mediated  ALS.  Adapted  from  Ilieva  et   

al.,  2009  [264].  A)  Excitotoxicity.  B)  ER  stress.  C)  Inhibition  of  the  proteasome. 

D)  Mitochondrial  dysfunction.  E)  Extracellular  release  of  mutant  SOD1.  F)  Superoxide   

production.  G)  Altered  axonal  transport.  H)  Synaptical  vesicle  defects.  I)  Disruption  of  blood-­ 

spinal  barrier.  J)  Dysfunction  of  autophagy.     
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mitochondrial membrane (IMM), the cristae space, formed by the folding of the inner membrane 

and the matrix. Mitochondria have their own genetic material encoding thirteen polypeptides, 

which are part of the oxidative phosphorylation machinery. Given the polarity and high activity 

of motor neurons, they are thought to be especially vulnerable to mitochondrial dysfunction 

[300] and to SOD1 mediated toxicity (Figure 6).   

 

1.6.8.1.1. Mitochondrial morphology  

The observation that mitochondrial morphology is altered in SALS patients led to the 

hypothesis that mitochondria are linked with disease. Ultrastructural analysis of post-mortem 

spinal cords of SALS patients show aggregated, swollen mitochondria with cristae 

disorganization in the anterior horn [301, 302]. In addition, granular fibril structures associate 

with mitochondria [303]. Mitochondrial abnormalities are also evident in the motor cortex [304] 

and surprisingly in dorsal root ganglion cells [305]. Motor neurons derived from iPSCs of FALS 

patients with SOD1 mutations confirm post-mortem findings, that mitochondria have a 

disorganized structure, appear swollen, and clustered together in neurites [306]. Correction of 

the SOD1 mutation using zinc-finger nucleases rescued the mitochondrial phenotype.  

Similar morphological defects were mirrored in the spinal cords of ALS mouse models, 

mostly SOD1G93A, but also SOD1G37R, SOD1G85R and SOD1L126X [208, 220, 221, 307-313]. A 

longitudinal study of mitochondrial ultrastructure reveals swollen, vacuolated mitochondria, 

and the frequent appearance of mega mitochondria, in spinal cords of SOD1G93A mice [221]. 

Quantification reveals fewer, but larger mitochondria. Mitochondrial morphological 

abnormalities are also observed at the neuromuscular junction (NMJ) [221]. Mitochondrial 

structure in both the spinal cord and pre-synaptic terminal of the NMJ is altered as early as P7  
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Figure 6: Mutant SOD1 and mitochondria in ALS. Mutant SOD1 associated with the OMM 

in tissues affected by ALS and is also imported into the IMS. Outlined are the mechanisms by 

which mutant SOD1 is propped to damage mitochondria, including altering levels of 

mitochondrial fission and fusion proteins, altering permeability of the outer membrane, blocking 

the protein import machinery of the mitochondria, translocase of outer membrane (TOM) and 

translocase of inner membrane (TIM) complezes, interaction with mitochondrial proteins, Bcl-

2, VDAC and MITOL, altering bioenergetics (including the productions of ATP, 

transmembrane potential and generation of superoxide), decreasing calcium buffer and halting 

transport of mitochondria to axons. Together, these mechanisms are propsed to disturb cellular 

function leading to motor neuron death that is characteristic of ALS.   
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[221]. Using a mouse model with motor-neuron restricted expression of mitochondrial-targeted 

EGFP, crossed to SOD1G37R and SOD1G85R mice reveals increased spherical mitochondria 

compared to controls in motor neuron somata [310]. In the motor neuron axons of SOD1G85R 

mice, mitochondria are elongated pre-symptomatically, and mitochondrial elongation is 

exacerbated with symptom progression [310]. Together these studies clearly demonstrate that 

mitochondrial morphology is significantly disturbed in both human disease and animal models. 

Mitochondria are dynamic organelles that fuse and divide forming a network or existing 

as individual entities [314]. Mitochondrial morphology is controlled by a balance of proteins 

mediating fission, dynamin-related protein 1 (Drp1) and fission 1 (Fis1) and proteins resulting 

in fusion, mitofusin 1 and 2 (Mfn1, Mfn2) and optic atrophy 1 (Opa1) [314]. Levels of these 

proteins are tightly regulated, as mitochondrial morphology is linked to organelle function 

[315]. Therefore, one way to affect morphology would be to dysregulate the balance of fission 

and fusion proteins. Alterations in mitochondrial morphology could arise by other means, 

including ionic homeostasis, although this has yet to be investigated in the context of ALS.     

Transient transfection of mutant SOD1 in NSC-34 cells results in swollen mitochondria 

[316]. In agreement with this, mitochondrial fragmentation, determined as a decrease in length 

was observed in both the soma and dendrites of NSC-34 cells stably expressing mutant SOD1 

[317]. NSC-34 and SH-SY5Y cells expressing mutant SOD1 show increased mitochondrial 

fragmentation, swelling, cristae disorganization, decreased levels of fusion protein Opa1 and 

increased levels of fission protein Drp1 [318]. An imbalance towards increased fission is 

corroborated in the SOD1G93A mouse models, as levels of Opa1 and Mfn2 decrease with age in 

the anterior spinal cord, whereas fission proteins remain constant [319]. Actual mitochondrial 

fusion rates are lower in SOD1G93A motor neuron cultures compared to controls [320]. 
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Moreover, mitochondrial length is decreased in the distal axons for SOD1G93A motor neurons 

[320] and sciatic nerves [321]. These disturbances were cell type specific, as cortical neurons 

from SOD1G93A animals had properties similar to controls [320].  

Collectively, these results suggest that mutant SOD1 causes mitochondrial 

fragmentation, likely via decreased mitochondrial fusion mediated by an imbalance of fusion 

and fission proteins, as well as mitochondrial swelling and cristae disorganization. How mutant 

SOD1 alters mitochondrial fusion, or the imbalance of fission and fusion remains unknown, 

despite being an important avenue of research. 

 

1.6.8.1.2. Mitochondrial transport 

Early on, defects in axonal transport were linked to ALS [322, 323], and the observations 

that mitochondrial distribution was also altered in ALS mouse models led credence to the 

proposition that defects in mitochondrial transport may be a relevant disease mechanism [310, 

313, 324]. Motor neurons from SOD1G93A mice show decreased anterograde transport, causing 

depletion of mitochondria in axons [325]. Furthermore, the decrease in transport is associated 

with mitochondrial damage, namely depolarization and mitochondrial rounding [325]. Altered 

mitochondrial movement, both in the anterograde and retrograde directions is found in NSC-34 

cells expressing mutant SOD1, thereby affecting the density of mitochondria in neurites [317]. 

In a follow-up study, the same authors, now using motor neurons expressing mutant SOD1 show 

retrograde axonal transport was selectively affected, and attributed this to reduced velocity and 

frequency of movements. This was selective for the transport of mitochondria as the movement 

of membrane bound organelles was not affected by mutant SOD1, and cell type-specific as 

cortical neurons exhibited normal mitochondrial transport [320]. Both anterograde and 
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retrograde transport of mitochondria is decreased in motor neurons from SOD1G93A rats [326]. 

Expression of mutant SOD1 with a dominant negative form of Drp1K38A inhibits fission leading 

to partial rescue of mitochondrial fragmentation and a full rescue of transport defects [326]. 

These data intriguingly link morphology and transport. In vivo imaging of sciatic nerves reveals 

mitochondrial retrograde transport defects appear first, followed by defects in anterograde 

transport [321], while another group claims that mitochondrial movement in both directions is 

affected [327]. Motor neurons-derived from iPS cells from an ALS patient with an SOD1 

mutation had fewer motile mitochondria and this phenotype is rescued by gene editing to correct 

the mutant SOD1 allele [306]. Unfortunately, the direction of mitochondrial movement was not 

assessed in this study. 

Synaptaphilin (SNPH) is a docking receptor for mitochondria. Decreased docking as a 

consequence of genetic deletion of SNPH leads to increased mitochondrial mobility. Crossing 

of SOD1G93A mice with SNPH-null mice increases axonal mitochondrial mobility in dorsal root 

ganglia (DRG) neurons, but does not prolong survival, preserve motor neuron counts or 

attenuate neuroinflammation [328]. Imaging of nerve explants from SOD1G93A mice confirms 

transport defects, but this was not specific to mutant SOD1 as slowed transport was also 

observed in SOD1WT mice [329]. Conversely, mitochondrial transport in SOD1G85R mice is 

comparable to wild-type (non-transgenic) mice [329]. These results imply motor neuron death 

is not necessarily a consequence of axonal transport defects, given that transport defects are 

detected in wild-type animals with intact motor neurons, and no transport defects were found in 

SOD1G85R mice, where there is substantial age-dependent motor neuron loss. Moreover, it 

provides evidence that different mouse models, expressing different SOD1 mutations (with 



 

50 

different activities) can yield varying results. Collectively, these findings imply decreased 

mitochondrial motility/transport is insufficient to cause motor neuron death. 

 

1.6.8.1.3. Mitochondrial calcium handling 

 Calcium acts as an intracellular signalling molecule to regulate multiple cellular 

functions. Calcium signalling is modulated by transient increases in cytosolic calcium 

concentration, which are normally kept low by releasing calcium extracellularly or 

sequestering it in the ER and mitochondria [330]. Therefore, mitochondria’s  ability  to  buffer  

cytosolic calcium is vital to proper calcium signalling and cell survival and has emerged as a 

relevant disease mechanism in ALS.  

Mitochondrial calcium buffering defects are reported in a number of different ALS 

models, including neuronal cell culture lines [331], isolated brain and spinal cord mitochondria 

derived from SOD1 mice [332], and within brain slices extracted from SOD1G93A mouse models 

[333, 334]. The inability to buffer cytosolic calcium is suggested to be a result of a reduction of 

the mitochondrial calcium uniporter to uptake calcium into the mitochondria [334]. Muscle fiber 

mitochondria from SOD1G93A mice also have increased amounts of calcium [335]. Calcium 

defects are selective for spinal cord and brain mitochondria, as calcium buffering in liver 

mitochondria is unaffected [332]. Similarly, calcium defects are only observed in vulnerable 

hypoglossal neurons, but not oculomotor neurons which are resistant to degeneration in ALS 

[333]. Increased mitochondrial calcium levels precede accumulation of calcium in the ER and 

cytosol in motor neurons of dissociated mouse dorsal root ganglia cultures, implying that 

alterations in calcium buffering could originate from dysfunctional mitochondria [336].  
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Cyclophilin D (CyPD) is a component of the mitochondrial permeability transition pore, 

which allows calcium to enter mitochondria [337]. Numerous studies have crossed CyPD null 

mice to SOD1 mice to determine if enhanced mitochondrial buffering capacity can attenuate 

disease. Early studies did support this hypothesis as SOD1G93ACyPD-/- female mice had an 

increased lifespan [338]. A second study reports female SOD1G93A mice had an increased 

survival compared to male mice, however crossing into a CyPD null background resulted in a 

decreased survival for female mice, now comparable to their male counterparts [339]. The 

survival rate in female SOD1G93ACyPD-/- mice was mechanistically linked to 17b-oestradiol, 

which decreased calcium retention in brain mitochondria only when CyPD was present [339]. 

Yet another study examined deletion of CyPD in three different ALS mouse models (SOD1G93A, 

SOD1G37R, and SOD1G85R) and reported no effect on survival, despite increased calcium 

buffering in isolated spinal cord mitochondria [340]. These studies offer conflicting results, 

which may be attributed to the different genetic backgrounds of the CyPD-/- lines used 

(C57/BL/6 versus C57BL/6J) [339, 340]. However, it does question the relevancy of calcium 

buffering with respect to mitochondrial dysfunction in ALS. 

 

1.6.8.1.4. Mitochondrial Bioenergetic defects 

Five multi subunit complexes (Complex I-V) located in the IMM make up the electron 

transport chain (ETC). Electrons from the citric acid cycle flow through each complex 

eventually producing oxygen and energy in the form of ATP. During this process protons are 

pumped out of the matrix into the IMS creating a separation of charge and generating a 

transmembrane potential across the IMM. This membrane potential drives ATP synthesis 

through the terminal complex of the ETC [341].  
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Decreases in complex I activity and reduced ATP/ADP ratios are documented in 

lymphoblasts from SALS patients [342]. Oxygen consumption and electron transport activity 

are globally reduced [343] in the SOD1G93A mouse, or specifically reduced in complexes I and 

IV [344] or in only complex IV [345], in the spinal cord and/or brain. Conversely, no change in 

ATP levels in isolated brain and/or spinal cord mitochondria from pre-symptomatic SOD1G93A 

mice [332], or rats [346]. In cultured neuronal cells, defects in electron transport chain activity 

are reported with associated diminution of ATP levels [347], and specifically complex I and IV 

defects are found [316]. Overall across many ALS models there is decreased mitochondrial 

activity.  

 As mitochondrial transmembrane potential and energy production are linked many 

groups use membrane potential as a read-out for mitochondrial function. Mitochondrial 

transmembrane depolarization is linked with mutant SOD1 expression in  primary neurons [320, 

325, 336], motor neuron terminals [348] and cultured neuronal cell lines [349]. Interestingly, 

mitochondrial transmembrane potential in the proximal segment of motor neurons of SOD1G93A 

mice are hyperpolarized compared to SOD1WT mice, while more distal mitochondria are 

depolarized, thereby revealing compartment specific differences in mitochondrial bioenergetics 

[320]. Differences in mitochondrial morphology are also documented in cell body versus axon 

[310]. Further comparison of somatic and synaptic mitochondrial dysfunction is warranted and 

could reveal compartmental specific mitochondrial alterations. No difference in transmembrane 

potential is observed in isolated spinal cord mitochondria from SOD1G93A and SOD1WT rats 

[346]. Conversely, mitochondrial hyperpolarization is reported in NSC-34 cells transiently 

expressing mutant SOD1, compared to cells transfected with wild-type SOD1 [350]. 

Lymphoblasts from SALS patients are hyperpolarized compared to healthy controls [351]. 
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Discrepancies in how mutant SOD1 affects mitochondrial transmembrane potential may be 

attributed to the varying model systems used, in vivo versus in vitro, as well as the specific 

experimental conditions.  

 Mitochondria produce superoxide from complex I and complex III as a by-product of 

oxidative phosphorylation [352 224]. Inefficiencies in the electron transport chain typically lead 

to increased superoxide production. In neuronal cells lines expressing mutant SOD1, 

mitochondrial superoxide is elevated [349, 353]. Isolated mitochondria from the spinal cord and 

brain of SOD1G93A rats produce higher levels of reactive oxygen species compared to 

mitochondria isolated from their non-transgenic littermates [354]. Mitochondrial derived 

superoxide could lead to increased oxidative stress in ALS. In fact, levels of oxidative stress 

markers, such as protein carbonyls, lipid peroxidation and DNA damage are elevated in SOD1 

mouse models [169, 355-357] and in neuronal tissue from ALS patients [168].   

While the bulk of what is known about mitochondrial impairments in ALS, has focused 

on whole tissue or neurons, relatively little effort has been made to identify non-neuronal 

mitochondrial dysfunction. In fact, mitochondrial dysfunction in astrocytes may also participate 

in disease. Astrocyte mitochondria from SOD1G93A rats have decreased electron transport 

activity, decreased transmembrane potential, and increased superoxide production compared to 

controls [358]. Co-culture of motor neurons with astrocytes pre-treated with mitochondrial 

toxins (rotenone, antimycin A, sodium azide, flurocitrate) results in diminished motor neuron 

survival, demonstrating astrocytes with defective mitochondria cannot adequately support 

motor neurons [358]. Astrocytes from SOD1G93A rats are less able to sustain motor neurons than 

astrocytes from non-transgenic animals, however treatment with mitochondrially targeted 

antioxidants (ubiquinone and carboxy-proxyl nitroxide) resulted in significantly increased 
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motor neuron survival to levels comparable to controls [358]. Lastly, motor neurons (expressing 

either mutant or wild-type SOD1) co-cultured with SOD1G93A astrocytes have decreased 

mitochondrial transmembrane potential and elevated mitochondrial calcium levels [359]. 

Collectively these studies indicate that mitochondrial dysfunction in astrocytes causes toxicity 

to motor neurons. Moreover, defective astrocytic mitochondria can induce mitochondrial 

abnormalities  in motor neurons in vitro.  

 

1.6.8.1.5. Altered mitochondrial protein import  

Given the mitochondria’s unique structure, the vast majority of its protein components 

must be transported across one or two membranes. Thus, this organelle has evolved a 

mechanism to import all nuclear encoded proteins through a series of proteins in the outer and 

inner membrane [360]. Proteomic analysis of spinal cord mitochondria reveals a substantial 

increase in proteins involved in mitochondrial import, including translocase of the outer 

membrane 40 (TOM40), TOM20, and TOM22 [346]. Import of two different mitochondrial 

substrates is slowed in spinal cord mitochondria isolated from SOD1G93A rats. Addition of 

recombinant mutant SOD1, but not α-synuclein, a protein implicated in Parkinson’s disease, to 

mitochondria isolated from healthy animals significantly inhibited mitochondrial import [346].  

 

1.6.8.1.6.  SOD1 at the mitochondria 

Clearly, the presence of mutant SOD1 negatively impacts multiple aspects of 

mitochondrial function, but how does this mainly cytosolic protein deleteriously affect 

mitochondria? Mutant SOD1 may damage mitochondria directly, as a small portion of SOD1 

localizes to the mitochondrial IMS under normal physiological conditions [122]. In agreement 
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with this, numerous studies demonstrate SOD1 is localized to mitochondria in the SOD1G93A 

mouse [309, 343, 361, 362]. Biochemical studies find SOD1 in the IMS [363, 364] and 

demonstrate that IMS-targeted SOD1 in the absence of cytosolic SOD1 is protective against 

oxidative damage in yeast [364]. That SOD1 is found in the IMS is particularly interesting given 

the lack of a mitochondrial targeting sequence (MTS) [365]. However, there is precedence for 

proteins localizing to mitochondria in the absence of a MTS. For SOD1, this is likely due its 

interaction with CCS, as several studies show localization of SOD1 in the IMS is CCS-

dependent [364, 366]. CCS is a substrate of the mitochondrial intermembrane space assembly 

(Mia40)-essential for respiration and vegetative growth (Erv1) import pathway. In this pathway, 

proteins with disulfide bonds diffuse freely across the outer membrane through the translocase 

of the outer membrane (TOM) proteins. CCS then interacts with oxidized Mia40, forming 

disulfide bonds with CCS, and eventually leading to a fully folded oxidized CCS. Mia40 is 

reoxidized by Erv1. Mia40 and Erv1 constitute a disulfide relay system, which fold proteins in 

the IMS, resulting in their retention (or trapping) in the IMS [367]. Erv1 is re-oxidized by 

transferring electrons from oxygen or cytochrome c, thus coupling the Mia40-Erv1 system to 

oxidative phosphorylation [368]. SOD1 must be in its reduced apo state to enter mitochondria 

[366] and all of four cysteine residues are required for import [369]. In N2a cells, wild-type 

SOD1 localization to the IMS is dependent on CSS, Mia40 and Erv1 activity or redox state, 

which is regulated by oxygen levels and respiratory chain activity. Conversely, this regulation 

is absent for SOD1 mutants [369]. Mutant SOD1 has a tendency to accumulate to high levels 

in/on mitochondria compared to SOD1WT in NSC-34 cells [347]. Therefore, more mutant SOD1 

is associated with mitochondria, and is no longer regulated by normal physiological parameters. 

As a proof of principle, IMS-targeted mutant SOD1 in NSC-34 cells causes significant 
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mitochondria defects, mitochondrial fragmentation, decreased cell viability, transport defects, 

and sensitivity to stress [317, 370]. A mouse model expressing IMS-targeted mutant SOD1 in 

an SOD1-null background shows impaired mitochondria respiratory chain activity and calcium 

handling defects, motor neuron loss, decreased motor function, and weakness, however NMJs 

remained innervated [371]. Thus, mutant SOD1 present only in the IMS causes mitochondrial 

damage, but is insufficient to cause the full presentation of ALS. 

SOD1 is reported to be in mitoplasts, mitochondria stripped of outer membrane, and 

localizing to the mitochondrial matrix [372]. However, this finding has yet to be replicated and 

there is no mechanism known for SOD1 import into the matrix. Lastly, accumulation of mutant 

SOD1 on the mitochondrial surface is also reported [234, 373, 374]. The conformational specific 

antibodies, SEDI [248], DSE2 [233, 234, 249], A5C3 [310], and AJ10 [239]) detect misfolded 

SOD1 at the mitochondria, revealing this organelle as an and intersecting point for misfolded 

SOD1. DSE2-reactive misfolded SOD1 selectively associates with the cytoplasmic face of the 

outer mitochondrial membrane in SOD1G93A rat spinal cords [234], and motor neuron 

mitochondria, from SOD1G85R and SOD1G37R are labelled by the misfolded SOD1 specific 

antibody A5C3 [310]. Furthermore, the SOD1 chaperone MIF precludes misfolded SOD1 

association to liver mitochondria [249]. 

Given that SOD1 molecule destined for import into the mitochondria must traverse the 

OMM in the apo reduced state, it is possible that mitochondria are a collection point for 

unfolded/misfolded SOD1.  
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1.6.8.1.7. Mitochondrial aggregates 

SOD1 aggregation at the mitochondria is described in both cell culture and animal 

models and in various mitochondrial compartments (OMM, IMS, and matrix) [207, 318, 370, 

372-374]. How these aggregates perturb mitochondrial function remains speculative at best. In 

recent years, numerous studies, outlined below, suggest that mutant SOD1 disrupts lipid 

membranes, and intriguingly many studies focus on mitochondrial membranes. When mutant 

SOD1 is added to a reconstituted lipid membrane, it forms a tetrameric functional pore, in which 

ions can pass [375]. This same phenomenon is also observed for the amyloid beta peptide in 

Alzheimer’s   Disease   [376]. Wild-type and mutant SOD1 readily form fibrils and expose 

hydrophobic regions, when incubated in reducing conditions and high temperatures. Addition 

of SOD1 fibrils (both wild-type and mutant) to rat liver mitochondria cause a loss of membrane 

integrity [377, 378]. Using atomistic molecular dynamics simulations, both the electrostatic and 

zinc binding loops of apo SOD1 are predicted to bind phospholipid bilayers and suggest SOD1 

insertion could further seed aggregation [379]. Nuclear Magnetic Resonance (NMR) studies 

reveal that mutant, zinc-depleted wild type and reduced wild-type SOD1 anchor in lipid bilayers 

by forming energetically favorable alpha-helixes [380]. These data support earlier work 

demonstrating that misfolded SOD1 behaves like an integral membrane protein in spinal cord 

mitochondria from SOD1G93A rats [234].  α-synuclein can also adopt a helical configuration in 

lipids [381]. Taken together, mutant SOD1 has the capacity to destabilize lipid membranes with 

the potential of causing numerous deleterious consequences. 
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1.6.8.1.8. Mitochondrial interacting partners  

Identifying protein interactors at the mitochondria may be key to unravelling how 

mutant/misfolded SOD1 contributes to disease. To that end, several interactors of 

mutant/misfolded SOD1 at the mitochondria are reported. Mutant SOD1 and to a lesser extent 

wild-type SOD1, interact with B cell lymphoma 2 (Bcl-2) at the mitochondria in N2a cells, 

SOD1G93A mice and human FALS patient material [374]. This interaction induces a 

conformational change in Bcl-2, exposing the normally buried pro-apoptotic BH3 domain [382]. 

Exposure of the BH3 domain causes the SOD1/Bcl-2 complex to interact with VDAC1, leading 

to decreased permeability of the mitochondrial membrane to ADP, and downstream to 

mitochondrial hyperpolarization and decreased cellular viability [350]. Using SOD1 blocking 

peptides it was determined that the SOD1/Bcl-2 complex is mediated by the amino acid stretch 

encoded by exon 2 of SOD1. Addition of the exon 2 peptide in NSC-34 cells expressing 

SOD1G93A reduces Bcl-2 binding and rescues mitochondrial dysfunction. Similarly, addition of 

the exon 2 peptide increases ADP permeability in isolated spinal cord mitochondria from 

SOD1G93A mice [350]. Therefore, the ability of the exon 2 peptide to block the interaction of 

SOD1 with Bcl-2 suggests mutant SOD1 must be in a non-native misfolded conformation that 

exposes all or some residues located in exon 2 to interact with Bcl-2. Interestingly, the epitopes 

of D3H5 and USOD are localized to exon 2 of SOD1 [33, 235]. One could speculate that Bcl-2 

would co-immunoprecipitate with both of these antibodies. Moreover, it would be tempting to 

speculate that D3H5 or USOD could be used interchangeably with the exon 2 peptide to rescue 

mitochondrial dysfunction induced by mutant SOD1. 

DSE2-reactive misfolded SOD1 interacts with the voltage dependent anion channel 1 

(VDAC1), an outer mitochondrial membrane protein important for the movement of substrates 
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across the membrane [233]. In vitro functional studies demonstrate that recombinant mutant 

SOD1, but not wild-type SOD1, decreases VDAC1 conductance in a reconstituted lipid bilayer. 

Furthermore, ADP levels are reduced in the spinal cords of ALS animal models [233]. However, 

crossing SOD1G37R mice with VDAC1 null mice results in accelerated disease and shortened 

survival [233]. Other misfolded SOD1 binding partners at the mitochondrial surface are 

expected, as DSE2-reactive misfolded SOD1 associates with spinal mitochondria in ALS animal 

models even in the absence of VDAC1 [346].  

In COS-7 cells, MITOL/MARCH5, a mitochondrial outer membrane-resident ubiquitin 

ligase, ubiquitinates mutant SOD1, but not wild-type SOD1 [383]. Over-expression of MITOL 

in N2a cells causes the proteasome-dependent degradation of mutant SOD1 and slightly 

decreases ROS production, whereas knock down of MITOL enhances ROS production, and 

decreases both ATP levels and cell viability [383]. The in vivo significance of this interaction 

and in the context of disease has yet to be determined [383].  

An interaction between mutant SOD1 and lysyl-tRNA synthetase (KARS) was initially 

found using a yeast-two hybrid screen [384]. In COS-7 cells and SOD1 mouse models, mutant 

SOD1 interacts with the mitochondrial targeted form of this protein, mitoKARS [385]. Mutant 

SOD1 and mitoKARS form aggregates on the mitochondrial surface prior to mitoKARS import, 

effectively causing decreased mitochondrial translation [385]. In addition, expression of both 

mutant SOD1 and mitoKARS alters mitochondrial morphology and decreases cell viability 

[385]. 

Collectively, these studies strongly implicate aberrant protein interactions with 

mutant/misfolded SOD1 at the mitochondrial surface in the disruption of various pathways, 

including membrane permeability, protein degradation and protein synthesis.   



 

60 

 

1.6.8.1.9. Mitochondrial targeted interventions  

Several cell culture studies successfully show that mitochondrial targeted interventions 

can reverse mutant SOD1-mediated mitochondrial damage. In neuronal cell lines, over-

expression of mutant SOD1 and dithiol glutaredoxin (Grx2), a protein localized in the 

mitochondrial matrix, increases SOD1 solubility, rescues mitochondrial morphology, restores 

the balance of fission and fusion proteins, preserves mitochondrial function and increases cell 

survival [318]. The mechanisms by which this matrix protein affects SOD1, which is mostly 

localized to the IMS or OMM, remains unidentified. Treatment of SOD1G93A rat motor neurons 

with sirtuin 3 (SIRT3), an NAD-dependent protein deacetylase, or peroxisome proliferator-

activated receptor gamma, coactivator 1 alpha (PGC1-α) rescues fragmentation and reduces 

mitochondrial transport defects attributed to mutant SOD1 [326]. In vivo experiments have been 

less clear in demonstrating that improving mitochondrial function has any benefit with regards 

to disease onset and/or progression. Several anti-oxidant compounds reduce astrocyte toxicity 

to motor neurons including mitochondrial targeted catalase [359]. However introduction of 

catalase to SOD1G93A mice did not result in any benefit in terms of survival [386]. SOD1G93A 

mice administered dichloroacetate (DCA), a drug that stimulates pyruvate dehydrogenase 

complex activity, had increased NMJ innervation, higher motor neuron counts and led to an 

extension of survival by two weeks compared to untreated mice [387]. In complementary in 

vitro experiments, DCA improves mitochondrial respiration in astrocytes [387]. Increasing 

levels of PGC-1α  in  muscle  of  SOD1G93A mice led to increased mitochondrial biogenesis and 

activity and animals had improved strength and endurance, but there was no effect on survival, 

supporting the view that mutant SOD1 expression muscle does not contribute to disease. 
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Nevertheless, increasing PGC-1α   in   the   spinal cord of SOD1 animal models may be viable 

experimental approach [388]. As mentioned previously, modulating calcium buffering capacity 

through CyPD gene deletion produces mixed results, with the latest study showing no effect on 

survival. Ablation of CyPD improves mitochondrial morphology, ATP synthesis, partially 

rescues motor neuron loss and decreases levels of misfolded SOD1. However, it did not rescue 

muscle denervation or axonal degeneration [340]. Thus suggesting that even low levels of 

misfolded SOD1 are sufficient to modulate disease.  

 

1.7. Therapeutics  

At present, riluzole is the only approved drug for the treatment of ALS, and its efficacy 

is limited, resulting in a 3-6 month extension of life [389]. That only one compound is available 

after 50 years of trials and testing of over 150 drugs/therapies [390], is disappointing to say the 

least. Many features of ALS make it challenging to find treatments. It is a rare heterogeneous 

disease, with a short survival time and no known biomarkers [25]. Furthermore delivering a 

compound or other active agents into the spinal cord requires invasive delivery methods [391].  

Several trials in various phases are currently testing compounds that target a variety of 

disease related mechanisms; mitochondrial dysfunction, neuroinflammation, and autophagic 

flux [392]. In addition, cell replacement therapy using mesenchymal stem cells (MSC) isolated 

from bone marrow or blood, and neural stem cells (NSC), isolated from fetal tissue, have been 

investigated for their ability to support degenerating cells in the spinal cord by releasing trophic 

support or immune modulatory factors. Both MSC and NSC are effective at prolonging survival 

in SOD1 animal models [393, 394]. Human trials have demonstrated the feasibility and safety 

of these treatments. However, the efficacy remains unknown and larger scale studies are 
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required [395-397]. MSC administered intravenously were later found in the spinal cord, 

suggesting that invasive delivery methods can be circumvented [395]. iPS cells are a recent 

technology  where   a   patient’s   own   fibroblasts   can  be   expanded   and  differentiated   ex vivo to 

replace motor neurons in the brain or spinal cord [398]. This approach is challenging given that 

motor neurons must project axons long distance and reform functional connections with muscle 

[390]. Despite this, these cells are useful as models of disease and for high throughput screening 

of drug compounds [391].  

Another active area of therapeutics is antisense oligonucleotides (ASO), single-stranded 

oligonucleotides that duplex with mRNA, thus rendering the ASO-bound mRNA to be degraded 

by the endonuclease RNAse H [399]. ASO therapy is currently under consideration for FALS 

patients with C9ORF72 expansion, as numerous studies reveal decreased expression of 

C9ORF72 has favourable outcomes [87, 400]. Application of this approach to C9ORF72 

patients should be done cautiously as it is still under debate whether the disease mechanism is 

loss of function or gain of function and knowledge on cellular functions of C9ORF72 is still 

limited. 

 

1.7.1. Reducing levels of SOD1 

ASO may also prove effective for SOD1-mediated FALS. As a proof of principle several 

groups demonstrate that decreasing SOD1 protein through various RNA interference 

approaches has beneficial effects on survival in SOD1 animal models [401-403]. Furthermore, 

clinical trials indicate that intrathecal delivery of ASO is tolerated and relatively safe [404]. 

Further trials are required to definitively conclude if treatment with ASO against SOD1 

decreases SOD1 expression in the spinal cord, to what level and whether this will prove 
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beneficial to patients. Another point of consideration is whether a systemic decrease in SOD1 

could have negative consequences for ALS patients, especially because it is likely that we have 

yet to uncover the entirety of pathways where SOD1 is implicated. At present, this treatment 

would target FALS patients with SOD1 mutations, however mounting evidence suggests that 

SOD1 is involved in SALS and could therefore be applied to more patients.  

Many other therapeutic interventions are under consideration, including reduction of 

misfolded SOD1 using delivery of misfolded SOD1 specific antibodies by conventional delivery 

methods or virus-meditated delivery.  

 

1.7.2. Reducing levels of misfolded SOD1  

Some of the SOD1 conformational antibodies have been efficacious in pre-clinical 

animal models. Passive immunization of SOD1G93A mice with misfolded SOD1 antibodies 

A5C3 and D3H5, led to divergent outcomes with regards to survival. Immunizing with the A5C3 

antibody produces no effect on survival, whereas the D3H5 antibody extended survival 6-9 days, 

depending on the duration of immunization and when the treatment was started [243]. Increased 

survival as well as increased innervation at the NMJ and attenuation of gliosis in the spinal cord 

correlated with decreased levels of B8H10-reactive misfolded SOD1 following immunization 

[243]. Incorporation of the variable chains of the misfolded SOD1 antibody D3H5 into an 

adeno-associated virus (AAV) vector encoding secretable single-chain fragment variable (scFv) 

antibody and administered to SOD1G93A mice via intrathecal injection results in increased 

survival, up to 40 days [405]. Importantly, survival correlated with virus titer in animal spinal 

cords [405]. Animals receiving the viral vector encoding scFv D3H5 had decreased gliosis, 
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increased maintenance of motor neurons and decreased levels of B8H10-reactive misfolded 

SOD1 [405].  

SOD1G37R and SOD1G93A mice actively immunized with the SEDI-peptide (residues 

143-151) show an increased survival of 40 and 12 days, respectively [190]. Mice treated with 

the SEDI-peptide have decreased gliosis, a higher preservation of motor neurons, decreased 

levels of misfolded SOD1 and a nearly complete loss of oligomeric SOD1 complexes within the 

spinal cord [190]. 

Decreasing levels of SOD1 in corticospinal motor neurons in the brain by injection of 

AAV9 encoding short hairpin RNA (shRNA) targeted against SOD1 decreases D3H5-reactive 

misfolded SOD1, and increases survival by 20 days compared to SOD1G93A rats injected with 

AAV9 encoding GFP [224].   

Collectively these results indicate that misfolded SOD1 is a viable therapeutic target. 

Moreover, decreased misfolded SOD1 level associates with prolonged lifespan and attenuation 

of disease markers.  

 

1.8. Overview and rationale for thesis  

ALS-linked mutations in SOD1, lead to the misfolding of the SOD1 protein. In an effort 

to specifically identify non-native conformations of SOD1, several groups have generated 

misfolded SOD1 antibodies that recognize epitopes exposed only when SOD1 adopts a non-

native conformation (reviewed in [33, 235]). In addition to the detection of misfolded SOD1, 

these antibodies have proven efficacious at reducing misfolded SOD1 levels in pre-clinical 

models and are therefore a viable therapeutic option for SOD1-mediated ALS [190, 243].   
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Mitochondrial morphological abnormalities are one of the earliest features of disease in 

SOD1G93A mice and multiple aspects of mitochondrial physiology are disrupted in both mutant 

SOD1 cell culture and animal models (reviewed in [406]). Misfolded SOD1 localizes to the 

cytoplasmic face of spinal cord mitochondria, and more specifically to motor neuron 

mitochondria, in ALS rodent models [234, 310]. We hypothesize that the presence of misfolded 

SOD1 at the surface of spinal cord mitochondria negatively impacts mitochondrial function and 

thus contributes to the disease process. 

Herein, we describe a novel flow cytometric assay whereby mitochondria isolated from 

rats or mice are immunolabeled with an antibody of interest and simultaneously probed for 

aspects of mitochondrial function, including size/volume, transmembrane potential and 

superoxide production. Uniquely, this method allows us to independently assess the function of 

mitochondrial subpopulations (Chapter 2: Immunodetection of outer membrane proteins by 

flow cytometry of isolated mitochondria). 

 The application of this method to rodent models of ALS (SOD1G93A rats and SOD1G37R 

mice) using the misfolded SOD1 antibody B8H10, reveals two spinal cord mitochondrial 

subpopulations, one with misfolded SOD1 deposited at the surface versus another without. This 

permitted a comparative analysis of mitochondrial volume, transmembrane potential and 

superoxide production (Chapter 3: Mitochondrial damage revealed by immunoselection for 

ALS-linked misfolded SOD1).  

Data from our group and others suggest that there exists multiple misfolded SOD1 

species with varying biochemical properties [407, 408]. We hypothesize that there exists a 

continuum of misfolded SOD1 species with varied localizations, properties and potencies. 

Moreover, misfolded SOD1 antibodies have the potential to tease out such differences, and 
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ideally identify toxic misfolded species versus more benign conformations. Using a combination 

of approaches, including our novel flow cytometric assay, we compare the differences between 

AMF7-63 and B8H10-reactive misfolded SOD1 (Chapter 4: ALS-linked misfolded SOD1 

species have divergent impacts on mitochondria). 
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Chapter  2   

 

Immunodetection of outer membrane proteins by flow 
cytometry of isolated mitochondria 

 

Pickles, S., Arbour, N., Vande Velde, C. Immunodetection of outer membrane proteins by 
flow cytometry of isolated mitochondria. J Vis Exp., 2014 September 18; (91): e51887. 
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If different forms of misfolded SOD1 can have unique protein interactors, perhaps their 

biochemical properties are also distinct. Prudencio et al., found that SEDI-reactive misfolded 

SOD1 forms inclusions, while C4F6-reactive misfolded SOD1 has a diffuse localization, and is 

likely more soluble, leading the authors to conclude that misfolded SOD1 adopts multiple 

misfolded conformations [408]. B8H10, DSE2 and AMF7-63-reactive misfolded SOD1 form 

aggregates in both spinal cord homogenates and isolated mitochondria from symptomatic 

SOD1G93A rats, although fibrils are predominantly detected with the DSE2 and AMF7-62 

antibodies (Chp. 4). Using a panel of SOD1 peptide binding antibodies two different strains of 

misfolded aggregates were detected in SOD1 mouse spinal cords [407]. One strain correlated 

with earlier disease onset and decreased survival, therefore demonstrating different potencies of 

these two strains [407]. Conversely, C4F6-reactive misfolded SOD1 is not found in aggregates 

(Chp. 4), consistent with low C4F6-reactivity to SOD1 in oligomeric complexes from HEK293 

lysates [457] and its localization in soluble fractions both in vitro and in vivo [236, 408]. The 

relative solubilities of AMF7-63 and B8H10-reactive misfolded SOD1 conformers has yet to be 

evaluated, and remains a potential explanation for the increased toxicity of AMF7-63-reactive 

misfolded SOD1. 

The effectiveness of the misfolded SOD1 antibody D3H5 as a therapeutic versus the failure 

of the A5C3 antibody [243], adds to the evidence that misfolded SOD1 assumes a continuum of 

misfolded states. One could speculate that immunization with the A5C3 antibody did not reduce 

the levels of B8H10-reactive misfolded SOD1 as effectively as the D3H5 antibody. It remains 

unknown whether immunization with either antibody decreased B8H10-reactive misfolded 

levels at the mitochondria and/or mitigated mitochondrial damage. A5C3 weakly associates 

with spinal cord mitochondria (Chp. 4). It is tempting to speculate that its weak localization at 
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2.3. Introduction 

Mitochondria are highly dynamic organelles that undergo multiple rounds of fission and 

fusion, are transported to sites of high energy demand and respond rapidly to physiological 

stimuli [409]. Since it is increasingly recognized that mitochondria within different tissues, even 

different cellular compartments, have distinct functional profiles, new methods are needed to 

identify these distinct mitochondrial subsets. 

Microscopy provides a means whereby individual mitochondria can be visualized and 

the presence of a protein at or in mitochondria can be determined by immunofluorescence[234]. 

However, quantitative analysis by this method is labor intensive and is more suitable for 

experiments using immortalized or primary cell lines. The study of individual mitochondria 

derived from tissue is significantly more difficult and most methods do not allow for easy 

identification of mitochondrial subsets concurrently with the evaluation of mitochondrial 

function [410]. 

In order to address this hurdle, a novel method to immunolabel mitochondria isolated 

from rodent tissues and subsequently analyzed by flow cytometry has been developed. This 

allows for the rapid detection and quantification of proteins localized to the mitochondrial outer 

membrane, which compared to analysis by microscopy, is much less labor intensive and permits 

the analysis of thousands of mitochondria in a single sample. This assay can be applied to 

monitor the fate and relative amount of mitochondrial outer membrane proteins that are thought 

to be constitutively present at the mitochondria, the recruitment of proteins to the mitochondrial 

surface, or the detection of proteins mislocalized to the mitochondria in pathological conditions. 

Moreover, the incorporation of conventional fluorescent indicator dyes permits the simultaneous 

evaluation of certain aspects of mitochondrial function in distinct mitochondrial subpopulations. 
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2.4. Protocol  

Animals used in this study were treated in strict accordance to a protocol (N08001CVsr) 

approved   by   the   Centre   de   Recherche   du   Centre   Hospitalier   de   l’Université   de   Montréal  

(CRCHUM) Institutional Committee for the Protection of Animals which follows national 

standards as outlined by the Canadian Council on Animal Care (CCAC). 

 

Prepare all reagents required to perform this protocol (Table 1). All other details regarding 

equipment, supplies and suppliers can be found in Table 2. 

 

I. Collection of rat spinal cord 

I.i. Deeply anaesthetize the rat (Sprague Dawley) with 4% isoflorane. Verify anaesthetization 

by a lack of reflex upon pinching of the forepaw. Euthanize the rat by decapitation via guillotine. 

This method of euthanasia is preferred over others which might distort the spinal cord. 

 

I.ii. Cut the skin of the back to expose the spine. Cut the spinal column with bone scissors just 

above the pelvic bone. Visualize the opening of the vertebral column. 

 

I.iii. Insert a 10 mL syringe, with a 200 µL pipette tip (attached via melting slightly over flame), 

filled with Phosphate Buffered Saline (PBS), into the vertebral column. 

 

I.iv. Flush out the spinal cord by applying a medium amount of pressure to the plunger. 
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Buffer Composition Step used Comments 

Homogenization Buffer (HB) 

210 mM Mannitol 

II.i-II.viii Protease inhibitors can 
be added  

70 mM Sucrose 
10 mM Tris  pH 7.5 
1 mM EDTA 

HB+ KCL 
HB, as above with 
the addition of 50 

mM KCl 
II.iii Protease inhibitors can 

be added  

M-Buffer 

220 mM Sucrose 

III.iii-III.ix 

Protease inhibitors can 
be added. This buffer 
is supplmented with  

succinate a complex II 
substrate and rotenone 

and inhibitor of 
complex I to prevent 

reverse electron 
transport. 

 68 mM Mannitol 
10 mM KCl 
5 mM KH2PO4 
2 mM MgCl2 
500 µM EGTA 
5 mM Succinate 
 5 µM Rotenone 
10 mM HEPES pH 
7.2 
0.1 % fatty-acid 
free Bovine Serum 
Albumin 

 

Table 1: Buffer Compositions. 
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Name of Material/ 

Equipment Company Catalog 
Number Comments/Description 

Rats Charles River Strain code 400 

Adult (9 weeks to 18 weeks) male or 
female rats can be used for the isolation 
protocol. Weight of rats is dependent on 
gender and age (males between 300 to 
500 g and females between 200 to 350 

g) are typically used. 

Dounce homogenizer Kontes Glass Co.  885450-0022 Duall 22 
Microcentrifuge Thermo Scientific  Sorvall Legend Micro 17 R 

Ultracentrifuge tubes Beckman Coultier 344057 Transparent, thin walled  
Sorvall Ultracentrifuge Thermo Scientific  Sorvall WX UltraSeries 

AH-650 rotor and buckets   Thermo Scientific   

Opti-prep Axis-Shield 1114542 Iodixanol, density gradient medium 

Fatty acid free Bovine 
Serum Albumin Sigma A8806 Must be fatty acid free for mitochondria 

Sodium succinate dibasic 
hexahydrate   Sigma S9637  

Rabbit anti-Mitofusin2 
antibody Sigma M6319  

Rabbit IgG Jackson Immuno Research  011-000-003  
Anti-Rabbit IgG PE eBioscience 12-4739-81  

Micro titer tube Bio-Rad 223-9391 For sample acquisition by flow 
cytometry  

MitoTrackerGreen (MTG) Invitrogen M7514 100 nM: Ex490 nm/Em516 nm 
TMRM Invitrogen T668 100 nM: Ex548 nm/Em574 nm 
CCCP Sigma C2759  

MitoSOX Red Invitrogen M36008 5 µM: Ex540 nm/Em600 nm 
Antimycin A Sigma A8874  

LSR II flow cytometer BD   
BS FACSDiva Software BD   

FlowJo TreeStar Inc.   Software used for analysis 

BCA protein assay kit   Pierce/Thermo Scientific 23225 
Bradford assay is not recomended as it 

is not compatible with high 
concentrations of SDS 

 

Table 2: Materials.  
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I.v. If any blood is present on the spinal cord, rinse with PBS before proceeding to the next 
step.  

 

Note: This method has also been validated for brain and liver. If including these tissues, 

collect half the brain from the euthanized rat and a piece of liver equal in weight to the spinal 

cord. All other steps remain identical. 

 

II. Isolation of spinal cord mitochondria (adapted from Vande Velde et al.[411] 

II.i. Collect the whole intact spinal cord and place in 5ml glass homogenizer with 5 volumes 

(~3.25 ml) Homogenization Buffer (HB). For optimal recovery of isolated mitochondria, 

perform all steps on ice or in cold room. Homogenize tissue by hand until no large pieces of 

tissue remain, approximately eight strokes. Place homogenate in two (2 mL) or three (1.7 mL) 

microcentrifuge tubes. Centrifuge 1300 x g for 10  mins  at  4  ˚C  in  a  benchtop  microcentrifuge. 

 

II.ii. Recover supernatant and place in a 5mL ultracentrifuge tube. Add 750 µL (~0.5 

volumes) HB to the pellet-containing microcentrifuge tube and gently resuspend the pellet. 

Repeat centrifugation and resuspension steps two more times. Pool all supernatants (S1a and 

S1b) into the same 5 mL ultracentrifuge tube above. This step serves to remove small debris. 

 

II.iii. Centrifuge pooled S1 using an ultracentrifuge equipped with a swinging bucket rotor 

and centrifuge  at  17,  000  x  g  for  15  mins  at  4  ˚C. 

 

II.iv. Keep supernatant (S2) for further processing if the cytosolic fraction is of interest (for 

example for Western blot analysis). Resuspend the pellet (P2), the crude mitochondrial fraction, 
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in 4 mL HB+50 mM KCl. Centrifuge  17,  000  x  g  for  15  mins  at  4  ˚C  in  a  swinging  bucket  rotor.  

Discard the supernatant and gently resuspend the pellet (P3) in 800 µL HB. 

 

Note: Mitochondria are washed with HB+50mM KCl to remove any non-specific 

mitochondrially-associated contaminants.  

  

II.v. In a new 5 mL ultracentrifuge tube, add 200 µL Iodixanol (density gradient medium).  

 

II.vi. To this tube add, 800 µL of resuspended pellet (P3), thereby creating a final concentration 

of 12% Iodixanol. Mix the contents of the tube gently via pipetting with a P1000. Centrifuge in 

an ultracentrifuge equipped with a swinging bucket rotor at  17,  000  x  g  for  15  mins  at  4  ˚C.   

 

Note: Liver does not contain myelin and therefore this step is not necessary if only the liver is 

being processed. However, if liver is being processed concurrently with CNS mitochondria, it 

is recommended to treat all tissues equally. 

 

II.vii. Aspirate the layer of myelin at the top of the tube and carefully remove and discard the 

supernatant. Pellet may be loose. Resuspend the pellet in 4 mL HB. Centrifuge again at 17, 000 

x  g  for  10  mins  at  4  ˚C.  Discard  the  supernatant  and  resuspend  the  pellet  in  4  mL  HB.  Repeat  

the centrifugation and remove the supernatant. 

 

II.viii. Resuspend the final pellet (P7) in 100-200 µL HB and transfer to a 1.7 ml 

microcentrifuge tube. This sample contains isolated mitochondria. 
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II.ix. Proceed to protein quantification. Dilute samples and the standard curve in 2% sodium 

dodecyl sulfate (SDS) to ensure adequate solubilization of mitochondria during protein 

quantification. 

  

III. Immunolabeling of isolated mitochondria for flow cytometry 

 

III.i. For each staining mix to be tested, pipette 25 µg of isolated mitochondria into a 1.7 mL 

microcentrifuge tube. Include an unstained sample in each experiment; and for each antibody, 

be sure to include a sample for the appropriate isotype control. 

 

III.ii. Centrifuge  at  17,  000  x  g  for  2  mins  at  4  ˚C  in  a  bench-top microcentrifuge. 

 

III.iii. Remove supernatant and resuspend isolated mitochondria in 50 µL Mitochondria Buffer 

(M Buffer) supplemented with 10% fatty-acid  free  BSA  for  15  mins  at  4  ˚C  (blocking  step). 

 

Note: During  labeling,  perform  incubations  in  a  refrigerator  at  4  ˚C.   

 

III.iv. Add primary antibody (rabbit anti-Mfn2, 20 µg per mL) to tube and incubate for 30 mins 

at  4  ˚C.  

 

Note: Determine optimal concentration of each antibody empirically by titration. Due to 

variability in concentration and/or purity, different lots of the same antibody from the same 
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manufacturer may lead to different results; therefore titration is needed for each new lot of 

antibody. 

 

III.v. Wash out unbound primary antibody: Centrifuge  at  17,  000  x  g  for  2  mins  at  4  ˚C. 

Remove the supernatant and gently resuspend the pellet in 200 µL M Buffer. Centrifuge at 17, 

000 x g for  2  mins  at  4  ˚C. Remove supernatant and resuspend the pellet in 50 µL M Buffer. 

 

III.vi. Add secondary antibody (Donkey anti-rabbit IgG Phycoerythrin (PE), 0.5 µg per ml) to 

tube  and  incubate  samples  for  30  mins  at  4  ˚C,  protected  from  light.   

 

III.vii. Wash  out  unbound  secondary  antibody:  Centrifuge  at  17,  000  x  g  for  2  mins  at  4  ˚C. 

Remove the supernatant and resuspend the pellet in 200 µL M Buffer. Centrifuge at 17, 000 x 

g  for  2  mins  at  4  ˚C. Remove supernatant and resuspend the pellet in 500 µL M Buffer. 

 

III.viii. To ensure events are in fact mitochondria, stain isolated mitochondria with a 

mitochondria specific fluorescent dye for 15 mins at room temperature, protected from light. If 

staining of other functional parameters (mitochondrial transmembrane potential or superoxide 

production) is desired, proceed to step IV. If not, proceed to step V for acquisition. 

 

Note: It is important to verify that the emission spectra of the secondary antibody is 

compatible with that of the functional dyes. For example, if verifying mitochondrial purity 

with a commercial dye with spectral properties similar to FITC and transmembrane potential 

with Tetramethylrhodamine methyl ester (TMRM), a viable secondary antibody would be 
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allophycocyanin (APC: Ex650 nm/Em660 nm). Add compensations controls, i.e. a sample 

immunolabeled or stained with a single fluorophore, when applicable. 

 

III.ix. Transfer to a tube suitable for loading flow cytometer. (To facilitate the small sample 

size, a microtiter tube is placed inside 3 ml flow cytometer tube.) Keep samples on ice and 

proceed immediately to flow cytometer for acquisition. 

 

IV. Assaying mitochondrial transmembrane potential and mitochondrial 

superoxide production by flow cytometry 

 

IV.i. Verify that isolated mitochondria have an intact transmembrane potential by staining with 

100 nM TMRM (Ex548 nm/Em574 nm)[412], at step 3.8, for 15 mins at room temperature, 

protected from light. For comparison of transmembrane potential between samples and 

populations, use of lower/non-quenching concentrations of TMRM (1 to 30 nM), may be more 

appropriate [413]. 

 

IV.ii. As a control for TMRM staining, stain isolated mitochondria with 100 nM TMRM in the 

presence of 100 µM carbonyl cyanide m-chloro phenyl hydrazine (CCCP), a mitochondrial 

uncoupler that will depolarize mitochondria. The concentration of CCCP required to depolarize 

the mitochondria may be less if lower concentrations of dye are used. 

 

IV.iii. Verify that isolated mitochondria produce mitochondrial superoxide by staining with an 

appropriate mitochondrial superoxide indicator [414], also at step 3.8, for 15 mins at room 



 

78 

temperature, protected from light. 

  

IV.iv. As a control for mitochondrial superoxide production, stain isolated mitochondria with 

dye in the presence of 10 µM Antimycin A, an inhibitor of complex III of the respiratory chain 

that will augment mitochondrial superoxide production. 

 

IV. Acquisition and analysis of immunolabeled isolated mitochondria by flow 

cytometry 

 

IV.i. Instrument set up: Switch voltages from linear to log mode to facilitate analysis of 

isolated mitochondria and set voltages (FSC: 450; SSC: 250). Ensure that events are collected 

in FSC-A (area) mode as well as FSC-W (width) and FSC-H (height), to be able to exclude 

doublets (ie. two events, passing through the detector at the same time) in analysis post-data 

collection. Set the number of events to be collected to 100, 000. Acquire compensation 

controls, if applicable.  

 

IV.ii. Data acquisition: Before data acquisition, avoid vortexing samples. Instead mix by 

gently tapping tube. Initially collect events at a low pressure, during gating. Gate on total 

population. Adjust voltages of histograms accordingly, usually the peak of the unstained 

sample will correspond to the second decade (102). Once gates are established, and samples 

are being processed, the pressure can be switched to high. 
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IV.iii. Analysis: Visualize doublets by plotting FSC-W versus FSC. Identify singlets and 

doublets. Gate on singlets. Select the mitochondrial population by gating on events that are 

stained positively with a mitochondrial-selective dye. 

 

IV.iv. Determine background labeling from isotype control. Using the isotype control sample, 

determine the percentage of the mitochondrial population labeling positive for Mfn2 antibody. 

 
2.5. Representative results   
 

Mitochondria derived from rat spinal cords can be immunolabeled with an antibody 

targeted to Mitofusin2 (Mfn2), a protein implicated in the fusion of the outer membrane of 

mitochondria[415]. Following isolation and labeling with a Mfn2 specific antibody and a 

fluorescently conjugated secondary antibody, mitochondria are processed by flow cytometry 

(Fig. 1). Following data acquisition, samples are analyzed using flow cytometry analysis 

software, by first visualizing all collected events on a dot plot (Fig. 2A). Doublets and singlets 

are differentiated when the events are plotted in FSC, width (W) versus area (A) (Fig. 2B). Once 

singlets are selected, gate the mitochondrial population via FSC/SSC (Fig. 2C), and verify the 

number of events staining positive for mitochondria-specific dye by co-plotting a histogram of 

the unstained sample with a sample stained with the mitochondria-specific dye. To determine 

the mitochondrial events, place a gate at the intersection of the two peaks (Fig. 2D). For spinal 

cord preparations, typically >90 % of the events are positive for the mitochondria-specific dye. 

For other tissues such as liver, ~98 % of the events will label with the dye (data not shown). 

After selecting only events that label positively for the mitochondria-specific dye, determine 

background labeling with the isotype control by selecting a gate (Mfn2+) that includes 1 % or  
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Figure 1: Schematic of isolation, immunolabeling and analysis of mitochondria. Step 1: 

Collect tissue and homogenize. Step 2: The isolation procedure contains eight centrifugation 

steps. Myelin, a major containment of central nervous system tissue is removed by diluting 

mitochondria in Iodixanol (density gradient medium) and centrifuging, resulting in the myelin 

floating to the top of the tube, while the mitochondria are pelleted. Step 3: Following isolation 

and quantification, mitochondria are blocked, labeled with primary antibody and washed. A 

secondary antibody conjugated to a fluorophore is then added. Unbound antibody is washed out. 

Step 4: At this point fluorescent dyes that report on mitochondrial purity, or mitochondrial 

function can be added. Step 5: Mitochondria are now ready to be analyzed by flow cytometry. 
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less isotype labeling (Fig. 2E, left). Apply this gate uniformly to all samples labeled with 

antibody Mfn2 to determine the percentage of mitochondria with Mfn2 present on the outer 

mitochondrial membrane (Fig. 2E, right). In this experiment, 30% of mitochondria derived 

from spinal cord label positive for Mfn2. It is important to note here, that although Mfn2 is 

considered to be a ubiquitously expressed mitochondrial outer membrane protein, it has not been 

previously quantified. Moreover, an immunocytochemical analysis of Mfn2 in cultured cells 

shows a non-homogenous labeling of individual mitochondria[416]. Of note, the antibody in 

this study was generated using a synthetic peptide to the N-terminus (amino acids 38-55). There 

is a predicted splice variant of Mfn2 lacking the first 302 amino acids, although this variant has 

yet to be confirmed experimentally (UniProt database). Thus, this assay is unable to detect 

alternatively spliced Mfn2 lacking the N-terminal sequence, given the antibody used.  

Mitochondrial   transmembrane   potential   (ΔΨm) and superoxide production can be 

assessed in this assay. Across the inner mitochondrial membrane, there is a separation of charge 

which drives ATP production via oxidative phosphorylation. TMRM is a cationic dye that 

accumulates within the mitochondria in a membrane potential dependent manner[412], and 

therefore can be used as a reporter of mitochondrial transmembrane potential. The majority of 

mitochondria (95%) are TMRM positive after staining, compared to the unstained control (Fig. 

3A). However, when the uncoupler CCCP is added there is a significant decrease in the number 

of mitochondria able to retain TMRM (Fig. 3A). CCCP allows the free passage of ions across 

the inner mitochondrial membrane, essentially destroying the separation of charge and 

depolarizing the membrane. 

Mitochondria release superoxide as a normal byproduct of oxidative phosphorylation 

from complex I and III of the electron transport chain. Mitochondrial superoxide can be 
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Figure 2: Strategy for the analysis of isolated mitochondria by flow cytometry. The 

Forward Scatter (FSC) and Side Scatter (SSC) voltages must be adjusted for small events, using 

both parameters in logarithmic mode. FSC width (FSC-W) data must be collected to exclude 

doublets. Note, on most flow cytometers, the default setting for FSC and SSC is linear mode. 

A) Visualize all collected events on a dot plot. B) Doublets, two mitochondria passing by the 

laser at the same time, can be distinguished from singlets by plotting FSC versus FSC-W (linear 

mode). Events are excluded if the FSC-W value is more than twice the mean FSC-W value of 

the majority of events, ie. those that are part of the dense cloud. Events under this threshold are 

gated as singlets. C) Again, visualize the events in a dot plot, and gate on the remaining events. 

D) Plot a histogram of the unstained sample (solid, grey, filled) and sample stained with a 

mitochondrial specific dye (MSD: solid, green). Gate the events staining positive for the MSD 

(MSD+). E) Histogram of the isotype control, rabbit IgG (dashed, black) and Mfn2 labeled 
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sample (solid, pink). Set  the  gate  so  as  to  yield  ≤  1%  Mfn2+ on the isotype control peak and 

apply this same gate to experimental sample to determine the percentage of events labeling 

positive for Mfn2 (Mfn2+). 
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Figure 3: Assaying mitochondrial   transmembrane   potential   (ΔΨm) and superoxide 

production in isolated mitochondria by flow cytometry. A) Under basal conditions all active 

mitochondria will label with TMRM (solid, black), compared to unstained control (solid, grey, 

filled) because the dye accumulates in mitochondria with a transmembrane potential. Addition 

of the protonophore CCCP (dashed, blue) dissipates the transmembrane potential causing the 

mitochondria to depolarize and retain less dye compared to basal conditions. Data is reported as 

the   delta  mean   fluorescent   intensity   (ΔMFI),  which   is   the  mean   fluorescent   intensity   of   the  

unstained control subtracted from the mean fluorescent intensity of the sample. B) Under basal 

conditions, mitochondria produce superoxide as a by-product of oxidative phosphorylation. This 

mitochondrial source of superoxide can be assayed with a mitochondrial superoxide indicator, 

(MitoO2-: solid, black) compared to unstained control (solid, grey, filled). Addition of the 

complex III inhibitor, Antimycin A (dashed, orange) results in increased superoxide production, 

compared with basal levels. Data is reported as percent of cells staining positive for the MitoO2- 

indicator. 
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measured via a membrane permeable dye that is targeted to mitochondria and becomes 

fluorescent following a reaction with superoxide [414]. Functional mitochondria produce a basal 

amount of superoxide compared to unstained samples (Fig. 3B). Addition of the complex III 

inhibitor Antimycin A yields an increase in superoxide, as seen by a rightward shift in 

florescence and a higher number of mitochondria (typically ~10% ) that are fluorescent with 

this mitochondrial superoxide indicator dye (Fig. 3B). 

 

2.6. Discussion  
It is increasingly evident that mitochondria are key players in both normal physiology 

and disease. While immunoblotting can determine which proteins are found within 

mitochondria or at the mitochondrial surface in a certain condition, this method reports on the 

average of the entire population. This method cannot yield information about relative 

abundances of mitochondrial subpopulations or subsets. While it has been previously assumed 

that all mitochondria are created equally, the field is increasingly recognizing that mitochondria 

within a cell have extensive variability in terms of morphology and/or function [417]. 

Fluorescent microscopy approaches do take into account the heterogeneity of 

mitochondria. However, quantification of this type of data is labor intensive. Furthermore, this 

approach is better suited to studies using cultured cells, as labeling of mitochondria in vivo/in 

situ is difficult due to the excessive number of mitochondria present, making differentiation of 

individual organelles inherently difficult. In most immunocytochemistry protocols, it is also not 

possible to simultaneously label outer mitochondrial membrane proteins and assess 

mitochondrial function due to the cellular permeabilization step required for antibody labeling. 

The current method works with isolated mitochondria, and thus does not require a 
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permeabilization step. In addition, the visualization of individual mitochondria is only possible 

via electron microscopy which is not amenable to the analysis of mitochondrial function. That 

being said, we recognize that isolation of mitochondria from tissue leads to disruption of the 

mitochondrial network and this could affect some elements of mitochondrial function. However, 

comparisons of functional aspects of isolated mitochondria from tissues that are processed 

similarly remains valid. 

This method of immunolabeling of tissue-derived isolated mitochondria and subsequent 

analysis by flow cytometry allows for a rapid and quantifiable method to detect and monitor the 

presence of a protein located on the outer membrane. Detection of a highly abundant 

mitochondrial protein (like Mfn2) is possible with this technique. Similarly, this method can 

detect low abundance proteins that are only deposited on the mitochondrial membrane in 

disease, like misfolded SOD1 in the context of Amyotrophic Lateral Sclerosis (ALS)[418]. In 

addition, this method could be useful to monitor those proteins which transiently associate with 

the mitochondrial surface as part of their normal function. Examples include Dynamin-Related 

protein-1 (Drp1), a cytosolic protein that is recruited to the mitochondria to promote 

mitochondrial fission [419] and tumor necrosis factor receptor-associated factor 6 (TRAF6), 

which translocates to mitochondria to augment mitochondrial reactive oxygen species as a part 

of an innate immune response [420]. 

At present this technique is amenable only to proteins located at the mitochondrial 

surface, as standard permeabilization protocols for intracellular labeling require a detergent 

which disrupts the structural integrity of mitochondria. While a number of possible reagents 

have been tried (unpublished), further optimization of the immunolabeling protocol is still 

needed to make this protocol amenable to detecting intra-mitochondrial components. 
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This technique has broad applications and can be used to detect the presence or 

recruitment of one or more proteins to the mitochondria under different experimental paradigms. 

Furthermore, mitochondria can be co-labeled with two different antibodies, as well as with 

fluorescent indicators [418]. Other fluorescent probes could also be incorporated to characterize 

additional aspects of mitochondrial function. For example, commercially available dyes to 

monitor mitochondrial pH [421], calcium uptake with Calcium green-5N [422], and ATP levels 

[423] are possible.  
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3.1. Author Contributions 

Contribution: SP preformed majority of experiments. LD assisted in flow cytometry 

experiments on rats and mice, and in immunohistochemistry experiment. SLP collected some 

tissue from rats for immunohistochemistry. SC preformed initial pilot experiments on patient 

cells, which were redone by SP. RHB and GR contributed patient cells lines. SP analyzed data 

in consultation with NA and CVV. SP and CVV wrote the manuscript.   

 

3.2. Abstract  

Mutant superoxide dismutase 1 (SOD1) selectively associates with spinal cord 

mitochondria in rodent models of SOD1-mediated amyotrophic lateral sclerosis. A portion of 

mutant SOD1 exists in a non-native/misfolded conformation that is selectively recognized by 

conformational antibodies. Misfolded SOD1 is common to all mutant SOD1 models, is uniquely 

found in areas affected by the disease, and is considered to mediate toxicity. We report that 

misfolded SOD1 recognized by the antibody B8H10 is present in greater abundance in 

mitochondrial fractions of SOD1G93A rat spinal cords compared to oxidized SOD1, as 

recognized by the C4F6 antibody. Using a novel flow cytometric assay, we detect an age-

dependent deposition of B8H10-reactive SOD1 on spinal cord mitochondria from both 

SOD1G93A rats and SOD1G37R mice. Mitochondrial damage, including increased mitochondrial 

volume, excess superoxide production and increased exposure of the toxic BH3 domain of Bcl-

2 tracks positively with the presence of misfolded SOD1. Lastly, B8H10 reactive misfolded 

SOD1 is present in the lysates and mitochondrial fractions of lymphoblasts derived from ALS 

patients carrying SOD1 mutations, but not in controls. Together these results highlight 

misfolded SOD1 as common to two ALS rodent animal models and familial ALS patient 
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lymphoblasts with four different SOD1 mutations. Studies in the animal models point to a role 

for misfolded SOD1 in mitochondrial dysfunction in ALS pathogenesis. 

 

3.3. Introduction  

Amyotrophic Lateral Sclerosis (ALS) is a late onset neurodegenerative disease 

characterized by the loss of motor neurons [263]. Twenty percent of familial cases are due to 

mutations in superoxide dismutase 1 (SOD1) leading to the gain of an unknown toxicity. 

Mitochondria have long been considered a target of SOD1 toxicity due to reports of abnormal 

mitochondrial morphology in both patients [424] and animal models [307, 312, 361]. Several 

aspects of mitochondrial function are reported as disturbed in ALS models including decreased 

electron transport activity [343, 425], deregulated calcium handling [332, 336], impaired protein 

import [346], increased exposure of the Bcl-2 BH3 domain [382] and diminished conductance 

of the voltage-dependent anion channel (VDAC1) [233]. Whether such mitochondrial 

abnormalities actively contribute to the initiation or progression of ALS pathology, or rather are 

affected secondarily, remains unresolved. 

SOD1 associates with mitochondria in an age-dependent and tissue-selective manner in 

multiple SOD1 rodent models and in ALS patient material harbouring SOD1 mutations [234, 

373, 374]. A portion of SOD1 does localize to the intermembrane space (IMS) [363], but forced 

localization of SOD1 to the IMS is inadequate to provoke sufficient mitochondrial damage so 

as to yield motor neuron loss or paralysis [371]. While a proportion of mutant SOD1 protein is 

tightly bound to the cytoplasmic face of the outer membrane of spinal cord mitochondria [234], 

whether such surface-bound mutant SOD1 contributes to disease pathogenesis remains an open 

question. To date, studies demonstrating mitochondrial dysfunction, whether in vivo or in vitro, 
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report on the total mitochondrial population. However, only a portion of mitochondria have 

mutant SOD1 deposited on their outer membrane, leading to uncertainty as to which 

mitochondrial damage is linked to the association of mutant/misfolded. 

A subset of SOD1 within spinal cord samples from ALS patients and SOD1 rodent models 

exists in an altered/non-normal conformation as demonstrated by a series of conformation 

restricted antibodies [119, 232, 234, 240, 243, 244, 248]. Increasing evidence suggests that these 

alternative forms, collectively referred to as misfolded SOD1, underlie the inherent toxic nature 

of SOD1 mutations [236, 244] as it is enriched in the motor neurons of both ALS rodent models 

and patient samples [240, 243, 244]. We previously demonstrated that mitochondrial-associated 

SOD1 is misfolded [234] and localized within motor neurons in vivo [310]. It remains undefined 

what type of mitochondrial damage is associated with this pool of mitochondrial-associated 

misfolded SOD1.  

Using an antibody specifically detecting a misfolded form of SOD1, the clone B8H10, we 

provide evidence that B8H10-reactive misfolded SOD1 robustly associates with a subset of 

mitochondria isolated from SOD1 rodent models but not from wild-type controls. Moreover, 

this antibody identifies a subset of damaged spinal cord mitochondria in both SOD1G93A rats 

and LoxSOD1G37R mice. Mitochondrial defects appear prior to disease onset, clinical disease 

symptoms, gliosis and motor neuron loss. We also demonstrate for the first time that spinal cord 

mitochondria with surface-bound misfolded SOD1 have increased labelling for the toxic BH3 

domain of Bcl-2, elevated production of mitochondrial superoxide, and deregulated volume 

homeostasis. Lastly, we demonstrate B8H10-reactive misfolded SOD1 is present in 

lymphoblasts derived from ALS patients with SOD1 mutations and not in controls. 
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3.4.Results  

3.4.1. Differential detection of misfolded SOD1 on mitochondria by conformation-

restricted antibodies 

Recent progress in the field is marked by the development of a number of antibodies targeted to 

non-native   conformations   of   SOD1,   termed   collectively   as   “misfolded   SOD1”.   One   such  

antibody, the mouse monoclonal C4F6 antibody, has been shown to preferentially recognize 

H2O2-oxidized SOD1 [244] while the reactivity of other misfolded SOD1 specific monoclonal 

antibodies, such as A5C3, B8H10 and D3H5, to particular SOD1 subtypes remains undefined. 

B8H10 has been used to effectively monitor misfolded SOD1 in a SOD1G93A mouse model 

following passive immunization with the D3H5 antibody, targeted to a different epitope of 

misfolded SOD1 [243]. Importantly, decreased levels of B8H10-reactive misfolded SOD1 

correlated positively with increased survival, increased motor neuron counts and attenuated 

gliosis in these D3H5-treated animals [243]. Thus, we sought to determine if B8H10 and C4F6 

were equally able to detect misfolded SOD1 in subcellular fractions enriched for spinal cord 

mitochondria isolated from symptomatic SOD1G93A rats. Interestingly, immunoprecipitation 

with B8H10, but not C4F6, robustly detected misfolded SOD1 in mitochondrial and cytosolic 

fractions from these animals (Fig. 1A). Since C4F6 has not been previously published in an 

immunoprecipitation assay, we considered that the antibody may not be well suited for this 

application and thus performed non-denaturing gel analysis for an independent evaluation of the 

mitochondrial association of misfolded SOD1 with these reagents. Specifically, we loaded a 

titration of purified mitochondria from the same animal on non-denaturing gels and blotted with 

B8H10 and C4F6. In this assay, densitometry determined that B8H10 immunoreactivity was 

detected 1.7 times more readily in mitochondrial fractions compared to C4F6 (Fig. 1B). 
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Mitochondrial and cytosolic fractions were verified by immunoblotting with VDAC and Hsp70, 

respectively (Fig. 1D). To ensure that the C4F6 antibody was indeed able to recognize 

SOD1G93A protein and oxidized wild-type protein as published, we treated recombinant mutant 

and wild-type SOD1 protein with H2O2, as previously described [244]. As a control, we also 

treated the recombinant proteins with Ethylenediaminetetraacetic acid (EDTA), another agent 

which has been previously published to provoke SOD1 misfolding, presumably via chelation of 

the zinc co-factor that is necessary for the structural integrity of SOD1 [243]. Note, this method 

also likely chelates the copper which is required for dismutase activity, but is not considered 

essential for SOD1 toxicity [209]. In agreement with previously published data, the C4F6 

antibody robustly detects recombinant SOD1G93A protein and H2O2 treated wild type protein, 

albeit with much lower affinity to the latter. (Note the increased exposure time of immunoblots 

for recombinant SOD1WT compared to recombinant SOD1G93A protein). C4F6 had only minor 

reactivity for untreated and EDTA-treated wild-type protein, confirming the published 

specificity of this antibody for SOD1G93A mutant protein and oxidized wild-type protein (Fig. 

1C). Collectively, these data suggest that these two antibodies recognize distinct SOD1 

conformers with B8H10, but not C4F6, recognizing a conformer that demonstrates enhanced 

association with mitochondria. 
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Figure 1: Preferential detection of B8H10 reactive misfolded SOD1 associated with 

mitochondria. The capacity of B8H10 and C4F6 antibodies to detect misfolded SOD1 was 

compared using mitochondrial and cytosolic protein fractions isolated from spinal cord of 

symptomatic SOD1G93A rat or recombinant SOD1 using different conditions. A) 

Immunoprecipitation of cytosolic or mitochondrial fractions from a symptomatic SOD1G93A rat 

with B8H10 or C4F6 misfolded SOD1 specific antibodies and blotted for SOD1. Input is 2 µg 

of each fraction. Upper and lower bands corresponds to human (hSOD1) and rat SOD1 (rSOD1), 

respectively. Experiment shown is representative of three independent trials. B) Non-denaturing 

gel of cytosolic fraction (5 µg) or increasing amounts of the mitochondrial fraction (25, 50 and 

80 µg) blotted with misfolded specific antibodies B8H10 and C4F6. Bottom: Denaturing gel 

showing total amount of SOD1 present. Experiment shown is representative of three 

independent trials. C) Non-denaturing gel of recombinant SOD1 proteins (6 µg) treated with 

EDTA or H2O2, to demonstrate specificity of C4F6 antibody for SOD1G93A protein and oxidized 
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SOD1WT protein. Note the specificity of the C4F6 antibody for SOD1G93A protein (1 minute 

exposure) compared to labelling of SOD1WT protein (30 minute exposure). Bottom: Denaturing 

gel showing total SOD1 present. D) Immunoblotting of cellular fractions for VDAC and Hsp70 

confirmed identity of mitochondrial and cytosolic fractions, respectively. 
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3.4.2. Immunodetection of mitochondrial-bound misfolded SOD1 by flow cytometry 

Misfolded SOD1 associates with the mitochondrial surface of spinal cord mitochondria 

[233, 234]. We hypothesized that the presence of misfolded SOD1 may negatively affect key 

aspects of mitochondrial function. Given the prominence of a B8H10-reactive misfolded SOD1 

species associated with SOD1G93A rat spinal cord mitochondria, we exploited this property to 

develop a quantitative flow cytometric assay whereby the function of mitochondria bearing 

misfolded SOD1 could be directly and selectively assessed using fluorescent immunodetection 

with B8H10 coupled with indicator dyes. In this assay, isolated mitochondria derived from the 

spinal cords of SOD1G93A rats, are first selected/gated according to light scattering properties 

(Fig. 2A). Secondly, mitochondrial identity is confirmed via positive labelling with the 

mitochondria-specific, membrane potential independent fluorescent probe MitoTracker Green 

(MTG; Fig. 2B). These criteria demonstrate that 92.3 ± 1.5% (n=13) of collected events 

represent mitochondria. Of this mitochondrial population, selected based on MTG labelling, the 

B8H10 antibody selectively identifies a subset of spinal cord mitochondria with surface-bound 

misfolded SOD1 (B8H10+) in samples from symptomatic SOD1G93A rats but not age-matched 

transgenic SOD1WT rats which express comparable total levels of human SOD1WT protein, or 

non-transgenic littermates (Fig. 2C). Analysis of multiple similarly-aged animals indicates that 

14.5 ± 0.6% of SOD1G93A spinal cord mitochondria label positively for B8H10, while only 0.6 

± 0.1% and 0.5 ± 0.1% are detected in SOD1WT and non-transgenic rats, respectively (Fig. 2D). 

Importantly, preparations of liver mitochondria from the same SOD1G93A animals exhibited 

negligible levels of misfolded SOD1 labelling (0.5 ± 0.2%; p<0.0001, n=3 animals per 

genotype). Misfolded SOD1 was also minimal in liver mitochondria from SOD1WT (0.6 ± 0.2%) 
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and non-transgenic rats (0.4 ± 0.1%) (Fig. 2D). Collectively, these data establish a novel 

cytofluorometric assay to detect misfolded SOD1 and are in agreement with previous work 

documenting the association of misfolded SOD1 to be preferentially enriched on spinal cord 

mitochondria [233, 234]. 

 

3.4.3. The deposition of misfolded SOD1 onto spinal cord mitochondria is age-

dependent and occurs just prior to disease onset 

Previous work using immunoprecipitation and immunofluorescence demonstrated 

qualitatively that misfolded SOD1 is associated with mitochondria in late-staged/symptomatic 

ALS animals [233, 234, 310]. In order to refine these observations, we used B8H10 detection 

via flow cytometry to quantitatively assess the amount and kinetics of misfolded SOD1 

deposition on the surface of spinal cord mitochondria in the SOD1G93A rat model. We analyzed 

spinal cord and liver preparations from 36 animals spanning pre-symptomatic to symptomatic 

stages (8-18 weeks) (Fig. 2E). In our cohort, misfolded SOD1 was appreciably detected on the 

surface of spinal cord mitochondria starting at 14 weeks, with a progressive age-dependent 

increase in the percentage of spinal cord mitochondria labelling for B8H10 over time (Fig. 2E). 

Misfolded SOD1 was not significantly detected on the surface of liver mitochondria from the 

same animals (Fig. 2E). Using a least square regression model, age was determined to have a 

significant effect on the association of misfolded SOD1 to spinal cord mitochondria (p<0.0001), 

but not liver mitochondria (p<0.6227). 

By monitoring our colony with biweekly measurement of body weight and observation 

of clinical/phenotypic disease behaviour, we determined that the deposition of misfolded SOD1 

onto mitochondria occurs just prior to disease onset, as defined by peak body weight (Fig. 2F). 
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This definition is objective and reliable, having been applied in other ALS animal models [426]. 

At the time of disease onset, animals display a normal gait, normal hindlimb spread reflex, and 

have full motility. In our SOD1G93A rat colony, onset was observed at 15.3 weeks (107 ± 1.5 

days, n=43) while the symptomatic stage, as determined by observation of gait defects, 

including limping or hopping, occurs at 18.0 weeks (126 ± 1.8 days, n=42) (Fig. 2G). These 

data demonstrate that misfolded SOD1 is associated with the surface of spinal cord mitochondria 

just prior to disease development in the SOD1G93A rat model. The timing of misfolded SOD1 

association to mitochondria may suggest its involvement in disease onset. 
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Figure 2: Detection of mitochondrial-bound misfolded SOD1 by flow cytometry. 

Mitochondria were isolated from spinal cord and liver of SOD1G93A, SOD1WT and non-

transgenic rats and characterized by flow cytometry. A) Isolated mitochondria are first gated by 

size (forward side scatter, FSC) and granularity (side scatter, SSC). B) Mitochondria are then 

selected by staining with MitoTracker Green (MTG, black, dashed) a mitochondrial specific 

dye, compared to unstained control (grey, filled). C) Mitochondria that label positive for B8H10 

(B8H10+), compared to background labelling with isotype control (IgG1), are selected and 

mitochondrial function of the two-subpopulations (B8H10+ vs. B8H10-) can then be compared. 

D) Quantification of B8H10+ mitochondria derived from spinal cord (black) or liver (white) of 

symptomatic SOD1G93A rats (18.0 ± 1.1 weeks) and age-matched SOD1WT (17.6 ± 0.8 weeks) 

and non-transgenic rats (16.9 ± 0.9 weeks). Data is represented as percentage of B8H10+ 
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mitochondria (mean ± SEM), n=3 animals per genotype and tissue, *** p < 0.0001. E) By flow 

cytometry the amount of mitochondria labelled with the B8H10 antibody increases over time in 

spinal cord (black circle), but not liver (white square) samples derived from SOD1G93A rats. 

Animals with greater than 1% of mitochondria labelling positive for B8H10 (boxed) were 

included in the functional analysis. n=4-7 animals per time point. F) Weight curve of SOD1G93A 

females rats were weighed and evaluated bi-weekly (n=4-10 per time point). G) Disease onset 

and symptomatic phase for all SOD1G93A rats used in this study. In our colony, onset of disease, 

as defined by reaching peak body weight, corresponds to 15.2 weeks (107 ± 1.5 days, n=43) and 

the appearance of symptoms, namely gait defects, occurred at 18.0 weeks (126 ± 1.8 days, 

n=42). Based on these observations the association of misfolded SOD1 with mitochondria 

begins prior to disease onset.  
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3.4.4. B8H10+ mitochondria have disrupted mitochondrial volume homeostasis 

Animals displaying B8H10+ labelling   of   ≥1%   of   the   total   collected   events,  

corresponding to a minimum of 1000 individual mitochondria, were included in subsequent 

functional analyses (Fig. 2E, boxed points). Specifically, subpopulations of mitochondria either 

coated with misfolded SOD1 (B8H10+) or not (B8H10-) were independently gated and 

compared for mitochondrial volume/size. Using flow cytometry, the intensity of light scattered 

at small angles from an incident laser beam, referred to as forward light scatter (FSC), is 

proportional to particle volume and thus can be used to estimate particle size [427, 428]. By this 

measurement, B8H10+ mitochondria demonstrate an increased volume/size compared to 

B8H10- mitochondria within the same preparation (Fig. 3A). Quantification of the geometric 

means of FSC revealed that the B8H10+ mitochondrial subpopulation was 1.5 to 2.0x larger 

than B8H10- mitochondria. This observation was present at 14 weeks, the earliest time point 

where mitochondria labelled positive for B8H10-reactive misfolded SOD1 and persisted 

throughout the course of the disease (Fig. 3B; p<0.0001). These data were confirmed with the 

mitochondrial-specific and potential-independent dye MitoTracker Green where increased 

mean   fluorescent   intensity   (ΔMFI)  reflects   increased  mitochondrial  uptake  of   the  dye  which  

positively correlates with volume [429] (Fig. 3C). Starting at 14 weeks, B8H10+ mitochondria 

displayed   ~3.0x   higher   ΔMFI,   a   measure   of   the   average   fluorescent   intensity   of   each  

mitochondrion, compared to B8H10- mitochondria (Fig. 3D; p<0.0001). Overall, these results 

show that mitochondria bearing misfolded SOD1 have a greater mitochondrial volume 

compared to their counterparts not carrying such protein. 
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Figure 3: Mitochondria with misfolded SOD1 associated have a greater 

mitochondrial volume. Mitochondria isolated from spinal cords of SOD1G93A rats at different 

time points were characterized by flow cytometry. A) Representative histogram of FSC of 

B8H10+ mitochondria (solid line) versus B8H10- mitochondria (dotted line) of a symptomatic 

SOD1G93A rat B) Quantitation of geometric mean of FSC of B8H10+ mitochondria (black) and 

B8H10- mitochondria (white) relative to total population (mean ± SEM) at 14 and 15 weeks of 

age and symptomatic SOD1G93A rats. C) Representative histogram of B8H10+ (solid line) and 

B8H10- (dotted line), mitochondria stained with MTG, compared to unstained control (grey, 

filled). D) Delta mean fluorescent intensity (ΔMFI) of MTG staining of mitochondrial sub-

populations relative to total population (mean ± SEM). *** p < 0.0001 
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3.4.5. B8H10+ mitochondria produce excessive superoxide in the absence of 

depolarization 

Our method of surface labelling isolated mitochondria does not include membrane 

permeabilization and thus preserves mitochondrial integrity. Thus, this methodology permits 

the use of membrane-permeable fluorescent indicators dyes to assess key features of 

mitochondrial function. Superoxide is a natural by-product of normal mitochondrial respiration 

arising from complexes I and III of the mitochondrial electron transport chain (ETC), being 

released asymmetrically to both sides of the inner membrane [352]. The superoxide released to 

the matrix-side is essentially trapped due to the inherent impermeability of the inner membrane 

to superoxide and is efficiently detected by the fast-reacting membrane-permeable fluorescent 

indicator dye MitoSOX Red. MitoSOX Red becomes fluorescent following reaction with 

superoxide [352, 430, 431] as demonstrated by increased fluorescence following treatment with 

the complex III inhibitor Antimycin A (Fig. 4A). To determine if mitochondrial superoxide 

levels are perturbed by the association of misfolded SOD1, we performed simultaneous B8H10 

labelling and MitoSOX Red staining. A greater percentage of B8H10+ mitochondria labelled 

with MitoSOX Red compared to B8H10- mitochondria (Fig. 4B). Beginning at the earliest time 

point at which B8H10+ mitochondria were detected (14 weeks) and continuing to the 

symptomatic phase, an average of 1.9 times more B8H10+ mitochondria demonstrated elevated 

superoxide production, even when data were normalized for the increased size of B8H10+ 

mitochondria (Fig. 4C; p<0.05 and p<0.01). These data indicate that mitochondria coated with 

misfolded SOD1 produce excessive amounts of superoxide. Within the B8H10+ population, a 

positive correlation was noted between enlarged mitochondria (high FSC) and elevated 

superoxide levels (Fig. 4D). 
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Figure 4: Mitochondria with misfolded SOD1 associated exhibit an increased production 

of mitochondrial superoxide but retain a normal transmembrane potential. Mitochondria 

isolated from spinal cord of SOD1G93A at different time points were characterized by flow 

cytometry for superoxide production and mitochondrial transmembrane potential. A) 

Mitochondrial superoxide can be assayed with MitoSOX Red. Addition of the complex III 

inhibitor Antimycin A (AA) causes an increase in superoxide production (dashed line), 

compared to basal levels (solid line), and unstained control (grey, filled). B) Representative 

histogram of mitochondrial superoxide production of B8H10+ (solid line) and B8H10- (dashed 

line) mitochondria from the spinal cord of a symptomatic SOD1G93A rat. C) Quantification of 
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percentage of MitoSOX+ mitochondria in the B8H10+ (black) and B8H10- (white) populations, 

relative to MTG staining and the total mitochondrial population. D) Representative dot plots 

demonstrating that the B8H10+ population has a higher percentage of larger mitochondria (as 

determined by FSC) that produce excessive mitochondrial superoxide (as measured by 

MitoSOX Red). E) Histogram demonstrating that mitochondrial transmembrane potential can 

be assayed with TMRM. Under basal conditions almost all mitochondria stain positive for 

TMRM (solid line), but transmembrane potential is dissipated with the addition of the 

protonophore CCCP (dashed lined). F) Quantification of ΔMFI of TMRM staining of B8H10+ 

and B8H10- mitochondria relative to MTG staining and the total mitochondrial population. * p< 

0.05; ** p < 0.01. 
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Mitochondrial  transmembrane  potential  (ΔΨm) refers to the separation of charge across 

the inner mitochondrial membrane and is essential to drive ATP production via oxidative 

phosphorylation. Isolated spinal cord mitochondria were simultaneously labelled for misfolded 

SOD1 with B8H10 antibody and stained with tetramethylrhodamine (TMRM). TMRM is a  

cationic dye that rapidly and reversibly equilibrates across the mitochondrial membrane in a 

voltage-dependent manner according to the Nernst equation [432]. This can be demonstrated by 

treatment with the potent protonophore, Carbonyl cyanide m-chlorophenyl hydrazone (CCCP) 

which   results   in   a   significant   dissipation   of   ΔΨm (Fig. 4E). While disturbances in ROS 

production are often linked to mitochondrial depolarization [433], we observed ΔΨm to be 

comparable between B8H10 sub-populations when data are normalized for size (Fig. 4F). These 

observations indicate that mitochondria carrying misfolded SOD1 have normal membrane 

potential. Conversely, superoxide production is increased suggesting that targeted 

mitochondrial damage tracks with the mitochondrial association of misfolded SOD1.   

 

3.4.6. Increased exposure of Bcl-2 BH3 domain in mitochondria coated with misfolded 

SOD1 

It has recently been proposed that mutant SOD1 damages mitochondria by inducing a 

conformational change in the anti-apoptotic protein Bcl-2 [382]. Specifically, the binding of 

mutant SOD1 to Bcl-2 results in its conversion into a pro-apoptotic protein due to exposure of 

the normally hidden BH3 domain. Using our flow cytometry assay, we performed simultaneous 

antibody labelling for misfolded SOD1 and the toxic BH3 domain of Bcl-2 on spinal cord 

mitochondria of SOD1G93A rats. Labelling for the BH3 domain of Bcl-2 was low in the total 

mitochondrial population as illustrated by a representative animal (Fig. 5A, 2.7 ± 0.5%, n=3), 
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However, analysis of B8H10+ mitochondria demonstrated a 10-fold enrichment for the toxic 

BH3 domain of Bcl-2 (27.9 ± 3%) compared to B8H10- mitochondria which demonstrated 

negligible BH3 labelling (0.8 ± 0.3%) (Fig. 5B, C; p<0.01). Thus, spinal cord mitochondria 

coated with misfolded SOD1 are enriched for Bcl-2 protein in a toxic conformation. 

 

3.4.7. B8H10 labels misfolded SOD1 within motor neurons prior to gliosis and clinical 

disease 

In an effort to determine the cellular origin of the mitochondria detected by our flow 

cytometric assay, we performed immunofluorescent labelling with B8H10 of lumbar spinal cord 

sections of a similar time course of SOD1G93A rats. Here, B8H10 extensively labels motor 

neurons identified by ChAT staining starting at 14 weeks (Fig. 6A, top row), in agreement with 

previous work in mice [243]. Moreover, B8H10 labelling was evident prior to astrogliosis and 

microglial activation, as marked by IbaI and GFAP, respectively (Fig. 6B, C). Counts of lumbar 

motor neurons using cresyl violet staining (Fig. 6D) demonstrated a loss of 47% of motor neuron 

cell bodies at the symptomatic stage, corresponding to approximately 18.0 weeks (Fig. 6E; 

p=0.0207) but not at 14 and 15 weeks, time points at which elevated B8H10 staining is observed. 

Taken together, B8H10 deposition on motor neuron mitochondria occurs prior to key 

pathological features of disease, including motor neuron loss and glial activation. 
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Figure 5: Increased Bcl-2 BH3 domain exposure on mitochondria bearing misfolded 

SOD1. A) Representative dot plot of spinal cord mitochondria from a symptomatic SOD1G93A 

rat labelled with a Bcl-2 antibody specific for the BH3 domain. The population labelling positive 

for exposure of the BH3 domain (BH3+, 2.7 ± 0.5%, n=3), was assessed in comparison to the 

isotype control (0.8 ± 0.01%) and represented as mean ± SEM. B) Mitochondria were also 

labelled with the B8H10 antibody. A representative histogram reveals that the B8H10+ (solid 

line) population has a higher amount of BH3+ mitochondria compared to the B8H10- (dashed 

line) population. C) Quantification of BH3+ mitochondria from B8H10+ (black) and B8H10- 

(white) mitochondria, (mean ± SEM, n=3). ** p< 0.01. 
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3.4.8. Dysfunction of B8H10+ mitochondrial subset in a second SOD1 model 

To demonstrate that the reported observations are common in ALS pathogenesis, and not 

confined to the SOD1G93A rat model, we also examined a time course of LoxSOD1G37R mice. 

These mice develop nearly identical muscle atrophy, motor neuron loss, and gliosis but on an 

extended time span of ~12 months [265]. Using these mice, we demonstrate a similar time-

dependent deposition of misfolded SOD1, as detected by B8H10, on the surface of SOD1G37R 

spinal cord mitochondria (Fig. 7A). Moreover, B8H10+ labelling positively correlates with 

increased mitochondrial volume (Fig. 7B, C; p<0.0001) and excess superoxide production (Fig. 

7D) to similar degrees as observed in SOD1G93A rats (FSC: 1.8-fold,  MTG  ΔMFI:  2.2-fold and% 

of MitoSOX Red+ mitochondria: 1.5-fold), indicating that these are common features of 

mitochondrial damage in mutant SOD1 ALS models. Importantly, in LoxSOD1G37R mice, these 

changes occurred as early as 8 months, a point at which animals are clearly pre-symptomatic 

and lack any overt pathogenic changes (36). Due to mouse sample limitations, we were unable 

to assess mitochondrial polarization status. B8H10-reactive misfolded SOD1, and its ability to 

identify dysfunctional mitochondria, are a common feature of two ALS rodent models. 
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Figure 6: Accumulation of misfolded SOD1 in motor neurons begins prior to gliosis and 

motor neuron loss. Immunohistochemical analysis of SOD1G93A and SOD1WT rat spinal cords 

at different time points. Transverse sections of the lumbar spinal cord were stained and analyzed 
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accordingly. A) Sections were stained with anti-B8H10 (green) and co-labelled with ChAT (red) 

demonstrating presence of misfolded SOD1 in motor neurons beginning at 14 weeks. B) 

Sections were stained with anti-Iba-I (marker of macrophages/microglia) or C) anti-GFAP 

(astrocyte marker) to assess activation of microglia and astrocytes, respectively. D) 

Representative image of spinal cord sections stained with cresyl violet. E) Motor neurons in the 

anterior horn were counted and averaged per section (mean ± SEM, n=3-5 per group). Scale bar 

=  100  μm. * p < 0.05. 
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3.4.9. B8H10 immunoreactivity in ALS patient cells 

Transformed lymphoblastoid cell lines derived from five ALS patients expressing four 

different SOD1 mutations (H48Q, D83G, G93V, and I113T) were analyzed on non-denaturing 

gels for the presence of misfolded SOD1. B8H10 positively identified misfolded SOD1 to 

differing extents in five patient cell lines while no signal was detected in cells derived from three 

healthy controls (Fig. 8A). Eight additional controls were screened to verify that the B8H10 

signal was in fact due to misfolded mutant SOD1, and indeed no B8H10 reactivity was detected 

(Fig. 8B). We also analyzed ten sporadic ALS patient cells but, if B8H10-reactive misfolded 

SOD1 is present in these lines, it was below the level of detection (Fig. 8C). To assess if B8H10-

reactive misfolded SOD1 was associated with mitochondria in this cell type, mitochondria were 

magnetically isolated and immunoblotted for the presence of misfolded SOD1 with B8H10. 

Magnetic bead isolation avoids any potential artefact from co-sedimenting aggregates. Indeed 

mitochondria from patients with SOD1 mutations labelled modestly for B8H10, while 

mitochondria isolated from a healthy individual did not (Fig. 8D). However, the amount of 

misfolded SOD1 on mitochondria appeared to be insufficient to induce any appreciable 

elevation in superoxide production when measured on the whole population (data not shown).  
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Figure 7: Mitochondrial-associated misfolded SOD1 tracks with mitochondrial damage in 

SOD1G37R mouse model. A) The number of spinal cord (black circle), but not liver (white 

square) mitochondria that label positive for B8H10 increases with age. Each dot represents an 

individual mouse. Animals with greater than 1% of mitochondria labelling positive for B8H10 

(within black box) were included in the functional analysis. B) Quantification of the geometric 

mean of FSC of B8H10+ mitochondria (black) and B8H10- mitochondria (white) relative to the 

total   population.  C)  Quantification   of  ΔMFI  of  MTG  of  B8H10+ mitochondria and B8H10- 

mitochondria relative to the total population. D) Quantification of the percentage of MitoSOX+ 

mitochondria in each mitochondrial sub-population relative to the total population. * p < 0.05, 

** p < 0.01, *** p < 0.0001. 
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Figure 8: Misfolded SOD1 detection in ALS patient cells. Cell lysates were prepared from 

lymphoblastoid cell lines derived from healthy controls, non-ALS disease controls, sporadic 

ALS patients or familial ALS patients identified with SOD1 mutations and screened for B8H10-

reactive SOD1. A) Non-denaturing gel of lysates from healthy controls (control1-3), and ALS 

patients identified with SOD1 mutations (H48Q, D83G, G93V, and I113T) were tested for 

reactivity with the B8H10 antibody targeted against misfolded SOD1. Recombinant SOD1G93A 

protein (100 ng) served as a positive control to verify detection of misfolded SOD1. Bottom: 

Denaturing gel blotted for total SOD1 and Actin served as loading controls. B) Healthy controls 
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(2) and non-ALS diseased controls (1 individual with insomnia, 2 individuals with obsessive 

compulsive disorder and 4 individuals with sleeping disorders) were screened for B8H10-

reactive misfolded SOD1. Bottom: Denaturing gel blotted for total SOD1 and Actin served as 

loading controls. C) Sporadic ALS patients (SALS1-10) were screened for B8H10-reactive 

misfolded SOD1. Mutant SOD1 patients (H48Q and D83G) and three controls are included as 

positive and negative controls, respectively, for the B8H10 antibody. Bottom: Denaturing gel 

blotted for total SOD1 and Actin served as a loading control. D) Isolated mitochondria from one 

healthy control and two ALS patients carrying SOD1 mutations (D83G and H48Q) were probed 

for B8H10 reactivity on non-denaturing gels. Bottom: Denaturing gel blotted for total SOD1, 

Hsp70 and Hsp60 which serve as controls for the cytoplasmic and mitochondrial fractions 

respectively. Actin serves as a loading control. 
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Regardless, these data highlight that the association of misfolded SOD1 to mitochondria is 

central to ALS as it is found in both rodent models and human patient material.  

 

3.5. Discussion  

Our ex vivo analysis of SOD1G93A rat spinal cord mitochondria with surface bound 

misfolded SOD1 (B8H10+) reveal several aspects of mitochondrial dysfunction that correlates 

positively with disease. Using a novel quantitative approach, we report that B8H10+ 

mitochondria exhibit increased volume compared to their B8H10- counterparts, have elevated 

superoxide levels, and enhanced exposure of the toxic BH3 domain of Bcl-2. Increased 

mitochondrial volume could arise from either mitochondrial swelling or increased 

mitochondrial fusion. Our findings that mutant/misfolded SOD1 associates with increased 

mitochondria volume are in line with histological examination of the spinal cords of ALS 

patients [301] and mutant SOD1 transgenic animals [307, 309, 310, 434], where swollen and 

aggregated mitochondria have been observed. Similarly, neuron-like cell lines and primary 

motor neurons also exhibit swollen mitochondria following mutant SOD1 expression (8,40,41). 

In our previous studies, we found significant morphological changes of motor neuron 

mitochondria in both axons and cell bodies [310]. The significance of this increased volume/size 

is unclear but could be due to defects in ionic homeostasis causing mitochondrial swelling, 

altered fission/fusion dynamics causing larger mitochondria, or defective autophagy, resulting 

in the inability to clear large or swollen mitochondria.  

In support of ionic homeostasis dysfunction, VDAC1 conductance is reportedly 

impaired by mutant SOD1, effectively disrupting normal ionic homeostasis [233]. However, it 

has also been reported that mutant SOD1 is associated with spinal cord mitochondria even in 
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the absence of VDAC1 [346]. Also, given that the genetic deletion of VDAC1 in the 

LoxSOD1G37R background yielded an accelerated disease phenotype, it is unclear how VDAC1 

is a required mediator of misfolded SOD1 toxicity [233]. The model proposed by Israelson and 

colleagues predicts that altered VDAC conductance will decrease metabolites entering the 

mitochondria, resulting in decreased ATP synthesis and a depolarization of mitochondrial 

transmembrane potential [233]. However, we find mitochondrial transmembrane potential of 

isolated mitochondria to be unaffected by the presence of misfolded SOD1 (Fig. 4) and ATP 

synthesis is reported to be unchanged [346]. While there is clearly some ambiguity about the 

importance of VDAC in disease pathogenesis, it is noteworthy that in liver mitochondria, 

increased mitochondrial superoxide can be triggered by VDAC closure [435]. Moreover, VDAC 

has been shown to regulate the release of mitochondrial superoxide to the cytosol in certain 

cases [436, 437]. Additional experiments will be needed to resolve this issue. 

 A previous report using human neuroblastoma cells overexpressing various SOD1 

mutations documented increased superoxide levels but the mechanisms involved were not 

identified [353]. From our analysis of mitochondria isolated from mutant SOD1 animal models, 

we find that misfolded SOD1 bearing mitochondria specifically produce very high levels of 

superoxide weeks before disease onset (Fig. 4 and 7). Mitochondria are the principle cellular 

generators of ROS and mitochondria are equipped with a mitochondrial superoxide dismutase 

(SOD2) to detoxify superoxide generated by mitochondria. While SOD2 can attenuate toxicity 

in cell culture [353], the role of SOD2 in mutant SOD1 mouse models is less clear [438]. 

However, the mitochondrial redox system has been strongly implicated in ALS. In cell culture, 

SOD1 mutant proteins were found to associate with mitochondria and causes a shift to an 
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oxidizing redox environment [347]. Recently, mutant SOD1 was shown to activate p66Shc, a 

protein involved in controlling mitochondrial redox in neuronal-like cells [439].  

We also examined whether the presence of misfolded SOD1 on mitochondria correlated 

with the conversion of Bcl-2 to a toxic conformation. In our experiments, we demonstrate for 

the first time that a robust proportion of mitochondria bearing misfolded SOD1 exhibit positive 

labelling for the BH3 domain of Bcl-2. Although this is not a direct test of an interaction between 

Bcl-2 and misfolded SOD1, it is compatible with the view that exposure of Bcl-2’s  BH3  domain  

is deleterious to mitochondrial function [382], as we demonstrate that B8H10+ mitochondria are 

functionally impaired compared to their B8H10- counterparts. Interestingly, in vitro experiments 

have shown that glutathione interacts with Bcl-2 in the BH3 groove, as BH3 mimetics disrupt 

this interaction [440]. BH3 mimetics also disrupt mitochondrial glutathione levels and decrease 

the ability of isolated mitochondria to import glutathione [440]. That we find both increased 

levels of the toxic BH3-exposed Bcl-2 conformer and increased superoxide suggests that 

misfolded SOD1 may cause an alteration in mitochondrial redox causing increased levels of 

superoxide in vivo.  

For the first time we show in vivo that misfolded SOD1 association to mitochondria 

correlates positively with increased mitochondrial volume, superoxide production, and the 

presence of a toxic conformer of Bcl-2. Although our methods are currently unable to 

differentiate if misfolded SOD1 directly causes the damage or is recruited to mitochondria 

following damage, both scenarios are possible, and are currently under evaluation in our lab. 

For misfolded SOD1 as the cause, over expression of mutant SOD1 in cell culture has been 

shown to associate with mitochondria and cause increased ROS production [353].  
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 We place the deposition of misfolded B8H10+ SOD1 onto the mitochondrial outer 

membrane as early as 14 weeks in the SOD1G93A rat and 8 months in SOD1G37R mice, which is 

prior to disease onset. Our analysis of pathological hallmarks in the rat model shows that 

misfolded SOD1 protein is robustly detected within the motor neurons of the ventral spinal cord 

at time points prior to gliosis and significant motor neuron loss. Levels of mitochondrially 

associated misfolded SOD1 peak at the symptomatic stage, despite the loss of motor neurons, 

and decreased B8H10 immunoreactivity in spinal cord sections. This is consistent with a 

previous report in SOD1G93A mice where misfolded SOD1, as detected by the misfolded SOD1 

specific antibody D3H5, was increased in spinal cord despite motor neuron loss [243]. This 

apparent paradox could be explained if the levels of misfolded SOD1 present in each individual 

cell increases over time, and this subsequently provokes misfolded SOD1 enrichment at the 

mitochondria. In support of this, it has been reported that that the level of human mutant SOD1 

in the spinal cords of SOD1G93A rats increases in an age-dependent manner, peaking at end-stage 

[216]. Knowledge that mitochondrial damage occurs pre-symptomatically may be instrumental 

in deciding when misfolded SOD1 and/or mitochondrial-targeted therapeutics will be most 

efficacious. That diminution of B8H10-reactive SOD1 in the spinal cords of SOD1G93A mice 

following passive immunization with misfolded SOD1 antibody, clone D3H5, correlated 

positively with survival, suggests this form of misfolded SOD1 is intimately linked to the 

toxicity of mutant SOD1 [243]. We theorize that therapies aimed at decreasing B8H10-reactive 

misfolded could prevent or decrease its association with spinal cord mitochondria and 

subsequent mitochondrial damage. 

Accumulating evidence suggests that misfolded SOD1 mediates ALS pathogenesis [243, 

244]. However, the field fails to completely understand which biological pathways are disrupted 
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by the presence of these non-native SOD1 proteins. Our initial experiments guided us to select 

B8H10 for the mitochondrial function experiments, but also suggested that more than one form 

of misfolded SOD1 exists. This concept is supported by recent data from others [236, 408]. 

Here, using the SOD1G93A rat and SOD1G37R mouse model, we find B8H10-reactive misfolded 

SOD1 is associated with spinal cord mitochondria. In contrast, little C4F6-reactive SOD1 was 

detected in these same samples. Within our cohort, one symptomatic rat and two symptomatic 

mice exhibited mitochondria-associated B8H10-reactive misfolded SOD1 that was below our 

threshold. These outliers raise the question: if mitochondrial damage is central to disease, how 

can these animals which lack appreciable levels of misfolded SOD1 associated to the 

mitochondria, exhibit symptoms? We propose two possible hypotheses. First, mitochondrial 

damage may still be central to disease, if other conformers of misfolded SOD1 are also 

associated to mitochondria. Previous work has shown that at least three other misfolded SOD1 

antibodies detect SOD1 at the mitochondria: SEDI [248], DSE2 [234], and A5C3 [310]. 

Alternately, there may be non-mitochondrial mechanisms of misfolded SOD1 toxicity. It has 

been demonstrated that the C4F6 antibody recognizes recombinant wild-type SOD1 oxidized 

by H2O2 [244]. In this same study, addition of oxidized wild-type SOD1 or mutant SOD1 altered 

axonal transport in a squid axoplasm model. Perfusion of the C4F6 antibody in this system 

corrected the axonal transport defect induced by oxidized/misfolded SOD1. Given this evidence, 

we feel it is likely that distinct SOD1 conformers may differentially influence cellular 

mechanisms. Specifically, B8H10-misfolded SOD1 links to mitochondrial-based modes of 

pathogenesis, while we propose that C4F6-misfolded SOD1 impacts axonal transport but not 

mitochondria. 



 

122 

Lastly, we detected B8H10-reactive misfolded SOD1 in patient-derived lymphoblasts, a 

cell type generally considered to be unaffected by disease. While the rationale of why misfolded 

SOD1 is detected in these cells is not readily apparent, it is consistent with work by others using 

the recently described MS785 antibody which demonstrates an altered SOD1 conformer [36] as 

well as another study indicating the presence of an over-oxidized SOD1 conformer [290] in 

these same cells. Combined with our data from ALS animal models, B8H10-reactive SOD1 is 

common to six different SOD1 mutations, emphasizing that this conformation of misfolded 

SOD1 may be especially relevant for SOD1-mediated toxicity. However, the amount of 

misfolded SOD1 detected on mitochondria from patient lymphoblasts was insufficient to induce 

any appreciable elevation in superoxide production when measured on the whole population 

raising the possibility that mitochondrial dysfunction and toxicity may be dependent on intrinsic 

cell type characteristics and/or the level of mitochondrial-associated misfolded SOD1. We 

speculate that long lived cells, such as motor neurons, may be predisposed to damage resulting 

from the association of misfolded SOD1 onto mitochondria, whereas rapidly turned over cells 

(e.g. cells in the liver) may not acquire sufficient levels of SOD1 association or are unaffected 

by such mitochondrial association (e.g. lymphoblast cells). Our data suggests this is plausible, 

given that the number of mitochondria carrying B8H10-reactive SOD1 increased with age in 

the animal models. As a final thought, while lymphoblasts may not be the appropriate cell type 

for mechanistic studies probing mitochondrial dysfunction in relation to misfolded SOD1, these 

cells are easily accessible and thus may offer a potentially useful way by which to monitor 

misfolded SOD1 levels, disease progression, efficacy of therapeutics and/or a priori selection 

of patients for particular clinical trials. 
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3.6. Materials and methods 

Animals: SOD1G93A and SOD1WT transgenic rats and LoxSOD1G37R mice have been 

previously described [216, 265, 441]. In some experiments, non-transgenic littermates were 

used. SOD1G93A rats were monitored with biweekly weight measurements and observation. In 

order to limit the impact of genetic drift inherent to transgenic lines, all SOD1G93A rats used to 

breed the colony were maintained until end-stage in order to validate disease course and thus 

ensure  that  only  progeny  of  animals  which  developed  symptoms  “on-time”  were  selected  for  

subsequent breeding. Rats presenting with forelimb paralysis were eliminated from the colony 

and the study. Animals of both sexes were used. LoxG37R mice were also similarly followed 

and monitored for disease. Animals were treated in strict adherence with approved protocols 

from the CRCHUM Institutional Committee for the Protection of Animals and the Canadian 

Council on Animal Care (CCAC).  

Antibodies: For Western Blot: human specific rabbit anti-SOD1 (Cell Signalling), rabbit 

anti-Cu/Zn SOD (Stressgen), mouse anti-VDAC1 (Calbiochem), mouse anti-Hsp70 (Chemicon) 

and mouse anti-Hsp60 (BD Biosciences) were used. For immunoprecipitation and native gels: 

misfolded SOD1 monoclonal antibody B8H10 (Medimabs and JP Julien lab), and misfolded 

SOD1 monoclonal antibody C4F6 (Medimabs) were employed. For flow cytometry, misfolded 

SOD1 monoclonal antibody B8H10 (Medimabs), mouse anti-IgG1 (BD Biosciences), rabbit 

anti-BH3 Bcl-2 antibody (Abgent) and rabbit IgG (Jackson ImmunoResearch) were purchased. 

For immunofluorescence, rabbit anti-IbaI (Wako) and rabbit anti-GFAP (Dako) were used. 

Flow cytometry of isolated mitochondria: Spinal cord and liver mitochondria were isolated 

from mice and rats exactly as previously described [234]. Mitochondria (25 µg) were re-

suspended in M Buffer (220 mM sucrose, 68 mM mannitol, 10 mM KCl, 5 mM KH2PO4, 2 mM 
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MgCl2, 500 µM EGTA, 5 mM succinate, 2 µM rotenone, 10 mM HEPES pH 7.2, 0.1 % fatty 

acid-free BSA). For labeling with antibodies, mitochondria were first blocked with M buffer 

supplemented with 10% fatty acid-free BSA for 15 minutes at 4ºC. Mitochondria were then 

incubated with primary antibody for 30 minutes at 4ºC, washed once with M buffer, and then 

incubated with allyphycocyanin-conjugated fluorescent secondary antibody for 30 minutes at 

4ºC. MitoTrackerGreen (MTG, 100 nM; Invitrogen) was used to confirm mitochondrial identity. 

Tetramethylrhodamine Methyl Ester (TMRM, 100 nM; Invitrogen) was used to assess 

mitochondria  membrane  potential  (ΔΨm) and MitoSOX Red (MitoSOX, 5 uM; Invitrogen) to 

quantify mitochondrial superoxide. The protonophore carbonyl cyanide m-chlorophenyl 

hydrazone (CCCP,   100  µM;;   Sigma)  was   used   as   a   control   for  ΔΨm measurements, and the 

complex III inhibitor, Antimycin A (AA, 100 uM; Sigma) was used as a control for 

mitochondrial superoxide production. 100, 000 events were acquired on a LSR II flow 

cytometry (BD Biosciences). Mitochondria were gated according to light scatter, after doublets 

were excluded, then MTG staining and labelling with B8H10 were assessed. All flow cytometry 

data were analyzed with FlowJo (Treestar, Ashland, Oregon). Dyes and antibodies selected 

exhibited distinct spectral properties with minimal to no overlap. Where necessary, 

compensation was applied according to single-color control samples. CCCP and Antimycin A 

treated samples were included in every experiment to confirm that the dyes functioned as 

expected. An isotype control sample was also included in every experiment to ensure the 

specificity of the B8H10 antibody. 

Immunoprecipitation, immunoblotting, and native gel analysis: Isolated mitochondria were 

solubilized and immunoprecipitated as previously described [234]. Samples for native gel 

analysis were prepared with 2X loading buffer (Invitrogen), separated by PAGE on 12% Tris-
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Glycine Gels (Invitrogen) in running buffer (Invitrogen) and transferred to PVDF membrane 

(BioRad). Densitometry was performed with ImageJ. For denaturing gels, nitrocellulose was 

used. 

Immunofluorescence. Animals were transcardially perfused with 4% phosphate-buffered 

paraformaldehyde (FD NeuroTechnologies). Tissues were subsequently dissected, post-fixed 

for 2 hours, cryoprotected, and then embedded in OCT (TissueTek). 30 µm floating spinal cord 

sections were cut from the lumbar region (L4-L6; corresponding to the lumbar enlargement) to 

make sure that all animals are adequately compared, and labelled with B8H10, Iba-I or GFAP, 

as previously described [243] or cresyl violet [442]. Immunofluorescent images were captured 

by confocal microscope (Leica SP5; 20x objective, 1.7 NA) and processed with Leica LAS AF 

software and/or PhotoshopCS4 (Adobe). Images of cresyl violet stained sections were captured 

on a Leica DM600B light microscope. Motor neurons, determined by size and location in ventral 

horn from twenty lumbar sections per animal were counted, spaced at 90µm intervals. 3-5 

animals per group were evaluated.  

Patient cells: Lymphocytes were isolated from peripheral blood samples using standard 

protocols and then immortalized with Epstein–Barr virus [443]. In all experiments, controls 

(four healthy donors, seven non-neurodegenerative donors (insomnia, sleeping disorders, 

obsessive-compulsive disorder), ten sporadic ALS, and mutant SOD1-ALS (H48Q, D83G, 

G93V, and two I113T) cells were thawed at the same time and cultured in Iscove's Modified 

Dulbecco's Medium supplemented with 10% FCS, 300 IU/mL penicillin, 300 µg/mL 

streptomycin, and 0.5% fungizone. Isolation of mitochondria from lymphoblasts was done using 

the   Mitochondrial   Isolation   Kit   (Miltenyi   Biotec,   Germany),   as   per   the   manufacturer’s  

instructions. Protocols were approved by the ethics committee on human experimentation of the 
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Center  Hospitalier  de  l’Université  de  Montréal.  All  patients  gave  written  informed  consent  prior  

to collection of patient information and blood. 

Statistics: Student’s   t-test was used to determine that B8H10 labelling of spinal cord 

mitochondria is significantly different from B8H10 labelling of liver mitochondria from 

SOD1G93A rats. A least square regression model was used to determine that time (age of animal) 

had an effect on misfolded SOD1 association to spinal cord, but not liver mitochondria in the 

SOD1G93A rat model. ANOVA was used to evaluate differences in B8H10+ and B8H10- 

mitochondria subpopulations in rat and mouse models and motor neuron counts in 8 week and 

symptomatic rats. Student’s t-test was also used to analyze differences in B8H10+ and B8H10- 

mitochondrial subpopulation for BH3 labelling. * p < 0.05, ** p < 0.01 and *** p < 0.0001. 
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4.2. Abstract 

Approximately 20% of familial ALS is caused by mutations in superoxide dismutase 

(SOD1), which leads to misfolding of the SOD1 protein, resulting in a toxic gain of function. 

Several antibodies have been generated that are specific for the misfolded form of the protein, 

and have been used as therapeutics in pre-clinical models. Misfolded SOD1 selectively 

associates with spinal cord mitochondria in SOD1 rodent models. Using the SOD1G93A rat 

model, we found that SOD1 conformational antibodies AMF7-63 and DSE2-3H1 labeled a 

distinctive fibrillar network concentrated in the anterior horn; while A5C3, B8H10, C4F6 and 

D3H5 labeled motor neurons as well as puncta in the neuropil. There is a time-dependent 

accumulation of misfolded SOD1 at the surface of spinal cord mitochondria with AMF7-63+ 

mitochondria having increased volume compared to B8H10+ mitochondria. Furthermore, 

AMF7-63, DSE2-3H1 and B8H10 detect misfolded SOD1 incorporated into aggregates from 

spinal cord homogenates and isolated mitochondria, while C4F6-reactive misfolded SOD1 is 

absent. Mutant SOD1 lacking its metal cofactors has an increased binding affinity to naïve 

mitochondria and misfolded SOD1 antibodies B8H10 and DSE2-3H1 readily detect 

demetalated mutant and wild-type SOD1. Together, these data suggest that there exists more 
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than one non-native species of misfolded SOD1 that damage mitochondria to varying degrees. 

Conformational antibodies are invaluable tools to identify and characterize the continuum of 

misfolded SOD1 species with regards to biochemical characteristics and toxicity. This 

information is highly relevant to the further development of these reagents as therapeutics. 

 

4.3. Introduction 

 The defining feature of the neurodegenerative disease Amyotrophic Lateral Sclerosis 

(ALS) is the loss of upper motor neurons in the cortex and lower motor neurons in the brain 

stem and spinal cord [20]. Loss of motor neurons leads to denervation resulting in muscle 

weakness, atrophy and eventual paralysis. Despite identification of the first gene linked to 

familial ALS (FALS), Superoxide Dismutase 1 (SOD1) [26], over twenty years ago, and the 

discovery of many more ALS genes since, the causes of motor neuron degeneration remain 

unknown.  

 Mutations in SOD1 account for 15 to 20% of all FALS cases, and approximately 3% of 

sporadic ALS (SALS) cases [37]. SOD1 mutations universally lead to conformation changes 

within the native protein structure, causing the acquisition of a toxic function [130]. Several 

antibodies have been developed to specifically target these altered conformations, termed 

misfolded SOD1 (reviewed in [33, 235]). Animals immunized with SOD1G93A protein lacking 

its metals (apo) generated antibodies named as A5C3, B8H10, C4F6, and D3H5. Other 

antibodies, such as DSE2-3H1, SEDI, USOD, and a series of polyclonal peptide antibodies 

produced by Forsberg and colleagues, were produced via immunization with peptides comprised 

of amino acids that are normally inaccessible in the well folded protein. All of these antibodies 

recognize epitopes that are exposed only when SOD1 adopts a non-native conformation induced 
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either by mutation, loss of its zinc cofactor, and/or oxidation [243, 244]. While many of these 

were developed with the intent to be potential therapeutics, these reagents have also become 

valuable tools with which to track the toxic form of SOD1. Misfolded SOD1 is detected 

predominantly within the motor neurons of ALS animal models [234, 243, 250, 310, 444]. In 

humans, various antibodies report on misfolded SOD1 in neurons of FALS patients as well as 

SALS patients, although this latter finding remains controversial [119, 240, 244, 246]. In pre-

clinical research using mutant SOD1 animals, it is now appreciated that reducing misfolded 

SOD1 levels via immunization significantly increases survival [190, 243], providing additional 

support that misfolded SOD1 lies at the root of SOD1-mediated ALS [190, 243]. 

Despite consensus in the field that misfolded SOD1 is central to disease pathogenesis, it 

remains unknown how misfolded SOD1 causes motor neuron death. Misfolded SOD1 has been 

implicated in the induction of ER stress [36, 250], defective axonal transport [244], and 

mitochondrial dysfunction [233, 234, 310, 444] in SOD1 mediated ALS disease models. 

Multiple aspects of mitochondrial physiology are disrupted in mutant SOD1 cell culture and 

animal models including morphology [307, 309, 312], ATP generation [343], calcium handling 

[336], axonal transport [321] and protein import [346]. Interestingly, misfolded SOD1 directly 

associates with mitochondria derived from affected, but not unaffected tissues [234]. The 

selective association of misfolded SOD1 to spinal cord mitochondria has just recently been 

attributed to a lack of the putative chaperone macrophage migration inhibitory factor (MIF) in 

this tissue, and more specifically motor neurons. 

Recent evidence suggests that multiple non-native/misfolded SOD1 species may exist 

[407, 408]. Consistent with this concept, we have previously reported that the B8H10 antibody 

detects misfolded protein in both cytosolic and mitochondrial fractions prepared from SOD1G93A 
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spinal cords while the C4F6 antibody exclusively detects cytosolic misfolded SOD1 [444]. 

Other work in cultured cells made to overexpress mutant SOD1 indicates that the C4F6 antibody 

recognizes soluble mutant protein, whereas SEDI preferentially detects mutant SOD1 within 

inclusions [408]. Additionally, a series of polyclonal SOD1 peptide antibodies identify two 

different   forms   of   SOD1   aggregates   (or   “strains”)   in   mutant   SOD1  mice   based   on   epitope  

accessibility, with one such aggregate-type/strain correlating with an earlier age of onset [407]. 

Together these data suggest that multiple forms of misfolded SOD1 are possible. 

We hypothesized that if more than one form of misfolded SOD1 exists, there may be 

conformer-specific differences in localization, potency and/or pathomechanistic consequences. 

Using a panel of misfolded SOD1 antibodies, we evaluated misfolded SOD1 localization, ability 

to induce mitochondrial toxicity and incorporation into aggregates. Herein, we report that the 

misfolded SOD1 antibody DSE2-3H1 labels motor neurons and robustly detects fibrils in the 

anterior horn of SOD1G93A spinal cords, a finding that is confirmed by a second independent 

antibody raised with the same immunogen (AMF7-63). Other misfolded SOD1 antibodies, 

A5C3, B8H10, C4F6 and D3H5 localize to motor neurons and numerous neuropil puncta. 

Despite their different labelling patterns within the spinal cord, both B8H10 and AMF7-63 

antibodies immunolabel spinal cord mitochondria in a time-dependent manner. However, the 

finding of AMF7-63-reactive misfolded SOD1 at mitochondria correlates with a more severe 

dysregulation of mitochondrial volume. 
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4.4. Results 

4.4.1. Misfolded SOD1 specific antibodies DSE2 and AMF7-63 detect fibrils in the 
spinal cord of SOD1G93A rats 
 

Lumbar spinal sections of symptomatic SOD1G93A rats were labelled with a panel of 

misfolded SOD1 specific antibodies to evaluate whether multiple antibodies targeted to non-

native/misfolded conformations of SOD1 yielded a universal pattern under identical conditions. 

In symptomatic SOD1G93A rats, all of the misfolded SOD1 specific antibodies tested (A5C3, 

B8H10, C4F6, D3H5, DSE2-3H1, and AMF7-63) labelled motor neurons as marked by choline 

acetyltransferase (ChAT) (Fig. 1A). Antibodies DSE2-3H1 (mouse monoclonal) and AMF7-63 

(rabbit monoclonal) are raised against the same epitope located in the electrostatic loop (amino 

acids 125-142) of SOD1 which is normally inaccessible in the well-folded SOD1 structure 

[234]. In symptomatic animals, both antibodies intensely labelled the anterior horn albeit with 

varying affinities, with AMF7-63 demonstrating a more intense labelling (Fig. 1A). This is 

consistent with a 105-fold enhanced affinity for the immunogenic peptide (N. Cashman, 

unpublished data). The labelling resembled a network of fibril-like structures, with some motor 

neuron soma being obviously labelled. In general, the fibrillar pattern detected by DSE2 and 

AMF7-63 was so robust, it was often difficult to discern individual motor neurons. These two 

antibodies also revealed a fibrillar network in pre-symptomatic animals (14 and 15 weeks old) 

(Fig. 1B). A similar pattern was also observed with SEDI, but since this antibody required 

antigen retrieval, while the other antibodies did not, we did not pursue this further (Fig. S1A). 

In contrast, fibrils were only occasionally detected in sections labelled with misfolded SOD1 

antibodies A5C3, B8H10 and C4F6, but not D3H5, in pre-symptomatic as well as symptomatic 

animals. Instead, we noted that A5C3, B8H10, C4F6 and D3H5 antibodies homogenously 

labelled motor neuron soma, and this was accompanied by numerous small puncta observed 
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throughout the neuropil. As expected, none of the antibodies detected any signal in lumbar spinal 

cords of age-matched rats expressing comparable levels of human wild type SOD1 (SOD1WT), 

thereby confirming antibody specificity, nor was there non-specific labelling in IgG controls or 

sections stained with secondary antibody alone (Fig. S1B, C). To determine if misfolded SOD1-

positive fibrils reflected dendritic accumulations of misfolded SOD1, sections were co-labelled 

with AMF7-63 and the dendritic marker MAP2 (microtubule associated protein 2). However, 

no co-localization between AMF7-63 and MAP2 was detected, suggesting that misfolded SOD1 

fibrils were not confined to dendrites (Fig. 1C). However, partial colocalization between 

ubiquitin and DSE2-3H1 and AMF7-63 was observed (Fig. 1D). These initial studies indicate 

that misfolded SOD1 antibodies can be broadly considered as two distinct groups: A5C3, 

B8H10, C4F6, and D3H5 which label motor neurons and numerous puncta throughout the 

neuropil; and AMF7-63 and DSE2-3H1 which also label motor neurons but also intensely reveal 

fibril-like structures. These data suggest that more than one type of misfolded SOD1 species 

may exist in vivo. 

 To determine if these seemingly different misfolded SOD1 conformations could co-exist 

within the same motor neuron, spinal cord sections were co-labelled with AMF7-63 and B8H10. 

A partial co-localization of these two antibodies within ChAT-positive motor neurons was 

frequently observed (Fig. 1D), suggesting that these antibodies recognize apparently distinct 

non-native SOD1 species within the same neurons. In addition, we observed neurons that 

labelled with AMF7-63 uniquely (i.e. void of  B8H10), and vice versa. 
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Figure 1: Misfolded SOD1 antibodies have distinct labelling patterns in SOD1G93A rat 

spinal cords. Immunohistochemistry for misfolded SOD1 in SOD1G93A lumbar spinal cords. A) 

Lumbar sections of a symptomatic SOD1G93A rat were stained with misfolded SOD1 specific 

antibodies A5C3, B8H10, C4F6, D3H5, DSE2-3H1 and AMF7-63 (green), and co-labelled with 
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ChAT (blue). B) The AMF7-63 antibody (green) detects fibrils in pre-symptomatic, 14 and 15 

week, SOD1G93A rat spinal cords. Sections were co-labelled with ChAT (blue). C) Symptomatic 

SOD1G93A rats labeled with AMF7-63 (green) and MAP2 (red) or D) B8H10 and DSE2 (red) 

and ubiquitin (blue). E) Lumbar labeled with misfolded SOD1 antibodies AMF7-63 (blue), 

B8H10 (green), and co-labelled with ChAT (red). Two to three animals of each genotype were 

analyzed. Scale bar = 100 µM.  
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SUPPLEMENTAL FIGURE 1: Misfolded SOD1 specific antibodies do not label SOD1WT. 

A) Lumbar spinal cord sections of a symptomatic SOD1G93A rat and age-matched SOD1WT were 
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labelled with misfolded SOD1 specific antibodies A5C3, B8H10, C4F6, D3H5, DSE2-3H1 and 

AMF7-63 (green) to determine specificity of antibodies to misfolded SOD1. B) No non-specific 

labelling as determined by IgG controls (mouse and rabbit), or incubation with secondary 

antibody alone, was detected.  
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4.4.2. AMF7-63 detects misfolded SOD1G93A at the mitochondrial surface 

 Several misfolded SOD1 specific antibodies (DSE2-3H1, A5C3, B8H10, SEDI) 

recognize misfolded SOD1 protein deposited at the mitochondrial surface [233, 234, 248, 310, 

444]. However, this is not a universally shared feature of misfolded SOD1 as conformers 

recognized by C4F6 are primarily cytosolic and little to no mitochondrial association [444]. 

Thus, we sought to determine if AMF7-63-reactive misfolded SOD1 also associates with 

mitochondria. Misfolded SOD1 antibodies A5C3, B8H10, DSE2-3H1 and AMF7-63 were used 

to immunoprecipitate misfolded SOD1 from spinal cord mitochondria isolated from 

symptomatic SOD1G93A animals (Fig. 2A). As previously published, B8H10 and DSE2-3H1-

reactive SOD1 were robustly detected in mitochondrial fractions [234, 249, 444] (Fig. 2A). 

AMF7-63 detected similar amounts of misfolded SOD1 (Fig. 2A). A5C3, which we have 

previously demonstrated to label misfolded SOD1 on axonal mitochondria [234] also detected 

misfolded SOD1 within mitochondrial fractions, but to a lesser extent than the other antibodies 

(Fig. 2A). The specificity of the AMF7-63 antibody was confirmed by immunoprecipitation of 

spinal cord homogenates and isolated mitochondria from symptomatic SOD1G93A rats as well 

as age-matched SOD1WT rats. As expected, AMF7-63 immunoprecipitated misfolded SOD1 

exclusively from SOD1G93A rat spinal cord homogenates and mitochondria, but not similar 

preparations from livers (Fig. S2). A non-specific band migrating just above SOD1 was also 

detected in all cases where the AMF7-63 antibody was used for immunoprecipitation, regardless 

of whether misfolded SOD1 was detected. 

We wondered if the presence of AMF7-63-reactive misfolded SOD1 conformer 

negatively impacted mitochondrial function. To this end, we employed flow cytometric 

detection of isolated spinal cord mitochondria immunolabelled with the misfolded SOD1  
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Figure 2: B8H10 and AMF7-63 reactive misfolded SOD1 is present in SOD1G93A spinal 

mitochondrial fractions. A) Immunoprecipitation for misfolded SOD1 in  isolated SOD1G93A 

mitochondria with A5C3, B8H10, DSE2 3H1 and AMF7-63. Mouse (mIgG) and rabbit IgG 

(rbIgG) serve as controls. Input is 10 µg isolated mitochondria. Upper bands and lower bands 

correspond to human (hSOD1) and rat (rSOD1) SOD1, respectively. Immunoprecipitation with 

the AMF7-63 resulted in a non-specific band (*) just above human SOD1, regardless of 

misfolded SOD1 status. Experiment shown is representative of three independent trials. B) 

Immunolabelling of isolated spinal cord and liver mitochondria with misfolded SOD1 antibody 
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AMF7-63 from symptomatic SOD1G93A rats and controls (aged matched SOD1WT and non-

transgenic rats) by flow cytometry. Misfolded SOD1 positive labelling is determined by 

comparing to isotype control (rabbit IgG for AMF7-63) of SOD1G93A sample. Percentage of 

misfolded SOD1+ events is shown for each tissue and genotype in a representative sample. C) 

Quantification of AMF7-63+ events in spinal cord (green circle) or liver (black square) of 

symptomatic SOD1G93A rats, and age- matched SOD1WT and non-transgenic rats. Data is 

represented as percent of misfolded AMF7-63+ mitochondria (mean ± SEM), n=4 animals per 

genotype per tissue. D) Comparison of spinal cord mitochondrial labelling positive for AMF7-

63 (green, circle) or B8H10 (blue, square) in pre-symptomatic (10 and 14 weeks) and 

symptomatic SOD1G93A rats by flow cytometry. Data is represented as percentage of misfolded 

SOD1+ mitochondria (mean ± SEM), n=4-11 animals. * P < 0.05. 

  



 

141 

 
 
antibodies AMF7-63 and B8H10 [445]. Using early symptomatic SOD1G93A rats, we established 

that AMF7-63 preferentially detected misfolded SOD1 on isolated spinal cord mitochondria 

compared to liver, a tissue that is unaffected in ALS (Fig. 2B). Significantly more individual 

spinal cord mitochondria (as marked by the indicator dye MitoTracker Green, MTG) from 

SOD1G93A rats labelled for AMF7-63 (6.6 ± 1.9%) compared to SOD1WT (0.1 ± 0.03%) and 

non-transgenic (0.2 ± 0.03%) animals (Fig. 2B, C). As expected, AMF7-63-reactive misfolded 

SOD1 was barely detectable on liver mitochondria from any group (SOD1G93A: 0.1 ± 0.1%; 

SOD1WT: 0.3 ± 0.02%; non-transgenic: 0.1 ± 0.2%), confirming specificity of misfolded SOD1 

for affected tissues (P < 0.001, n=4 animals per genotype) (Fig. 2B, C). Similarly, B8H10+ 

mitochondria were robustly detected in mitochondrial preparations from symptomatic 

SOD1G93A spinal cords (6.1 ± 0.4%) but not SOD1WT (0.4 ± 0.2%) or non-transgenic cords (0.4 

± 0.1%) (P < 0.0001, n=3 animals per genotype) (Fig. S3A, B). There was no substantial B8H10 

labelling of liver mitochondria from any of the models (Fig. S3A, B). 

At an early symptomatic stage, both AMF7-63 and B8H10 antibodies detected 

misfolded SOD1 at the surface of spinal cord mitochondria. Thus, we asked whether there was 

a temporal difference in the accumulation of these two conformers. Spinal cord mitochondria 

from 10 and 14 week old SOD1G93A rats were processed for labelling with B8H10 and AMF7-

63. While no mitochondrial signal for either antibody was detected at 10 weeks, comparable 

labelling was detected in mitochondria from 14 week animals (AMF7-63+: 1.5 ± 0.6%; B8H10+: 

2.1 ± 0.5%). Higher proportions of mitochondria labelled for misfolded SOD1 at the early 

symptomatic stage, demonstrating a significant age-dependent accumulation of each misfolded 

SOD1 conformer at the mitochondrial surface (P < 0.0001). Comparison of the relative amounts  
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SUPPLEMENTAL FIGURE 2: Misfolded SOD1 antibody AMF7-63 specifically identifies 

mutant SOD1 in spinal cord but not liver from SOD1G93A rats. The capacity for misfolded 

SOD1 antibody to detect misfolded SOD1 in homogenates or isolated mitochondria from spinal 

cords and livers was assayed by immunoprecipitation. Rabbit IgG (IgG) serve as controls. Input 

is 10 µg of homogenate or isolated mitochondria. Upper bands and lower bands correspond to 

human (hSOD1) and rat (rSOD1) SOD1, respectively. 
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SUPPLEMENTAL FIGURE 3: Misfolded SOD1 B8H10 specifically identifies misfolded 

SOD1 on the surface isolated mitochondria from spinal cord but not liver of SOD1G93A 

rats. A) Immunolabelling of isolated spinal cord and liver mitochondria with misfolded SOD1 

antibody B8H10 from symptomatic SOD1G93A rats and controls (age-matched SOD1WT and 

non-transgenic rats) by flow cytometry. Misfolded SOD1 positive labelling is determined by 

comparing to isotype control (mouse IgG1) of SOD1G93A sample. Percentage of misfolded 

SOD1+ events is shown for each tissue and genotype in a representative sample. C) 

Quantification of B8H10+ events in spinal cord (blue circles) or liver (black squares) of 

symptomatic SOD1G93A rats, and age- matched SOD1WT and non-transgenic rats. Data is 

represented as percent of misfolded B8H10+ mitochondria (mean ± SEM). ** P < 0.01, n=3 

animals per genotype per tissue. 

  



 

144 

 
of AMF7-63+ (5.2 ± 1.1%) and B8H10+ (6.9 ± 0.6%) subpopulations yielded no significant 

differences (Fig. 2D). Collectively, these data would argue that there is no preferential temporal 

accumulation of these two forms of non-native SOD1 conformers at the mitochondrial surface. 

Given these latter data, one might argue that the antibodies are detecting the same 

conformer in vivo. Thus, to address this, we analyzed our data to determine if it was possible to 

detect B8H10-labelled mitochondria void of AMF7-63 labelling, and vice versa. By 

simultaneously immunolabelling isolated mitochondria with both AMF7-63 and B8H10, we 

were able to discern four distinct mitochondrial subpopulations: i) double negative (AMF7-63-

B8H10-); ii) AMF7-63 only (AMF7-63+B8H10-); iii) B8H10 only (AMF7-63-B8H10+); and iv) 

double positive (AMF7-63+B8H10+) (Fig. 3A). Therefore, the total AMF7-63+ subpopulation 

consists of both B8H10+ and B8H10- mitochondria. Indeed, 70 ± 4% of AMF7-63-coated 

mitochondria also labelled for B8H10 (Fig. 3B). Similarly, just under half of the B8H10+ 

subpopulation also labelled for AMF7-63 (43 ± 8%) (Fig. 3B). That a proportion of 

mitochondria label positive with both misfolded SOD1 antibodies, while others label for only 

one conformer, suggests that AMF7-63 and B8H10 recognize distinct misfolded SOD1 species. 

 From 14 weeks to the early symptomatic stage, there was a significant time dependent 

increase in the percentage of misfolded SOD1 labelled mitochondria for all three misfolded 

SOD1+ subpopulations (P < 0.01) (Fig. 3C). The relative amounts of the three subpopulations 

with surface-bound misfolded SOD1 revealed no significant differences between them at 14 

weeks. Interestingly, between 14 weeks and the early symptomatic stage, the proportion of 

AMF7-63+B8H10+ and B8H10+ mitochondrial subpopulations nearly doubled, whereas the 

AMF7-63+ subpopulation remained roughly constant (Fig. 3C). At the latter time point, there is 

a significantly higher percentage of AMF7-63-B8H10+ than AMF7-63+B8H10- mitochondria (P  
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Figure 3: Four distinct mitochondrial subpopulations revealed by simultaneously 

immunolabelling with AMF7-63 and B8H10 misfolded SOD1 antibodies. A) Flow 

cytometric analysis of isolated spinal cord mitochondria from symptomatic SOD1G93A animals 

labelled with AMF7-63 and B8H10. Analysis only includes events previously gated for MTG 

staining (MTG+). Percentage of misfolded SOD1+ events is shown for each subpopulation in a 

representative experiment. B) Subdivision of AMF7-63+ mitochondria into B8H10+ (blue) and 

B8H10- (white) subpopulations and B8H10+ mitochondria into AMF7-63+ (green) and AMF7-

63- (white) subpopulations. Data is represented as percentage of misfolded SOD1+ mitochondria 

of that subcategory, n=11 animals. C) Quantification of AMF7-63+ (green, circle), AMF7-

63+B8H10+ (black, square) and B8H10+ (blue, triangle) mitochondrial subpopulations from 

spinal cords of 14 week and early symptomatic SOD1G93A rats. Data is represented as percent 

of misfolded SOD1+ mitochondria (mean ± SEM), n=4-11 animals per subpopulation. ** P < 

0.01.   
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< 0.01) (Fig. 3C). These data suggest there is a either preferential removal of the AMF7-

63+B8H10- subpopulation or disturbed removal/enhanced accumulation of B8H10-coated 

mitochondria. 

  



 

147 

4.4.3. Mitochondria with surface-bound AMF7-63-reactive SOD1 have an enlarged 
volume and produce increased amounts of superoxide 
 

A distinct advantage of the flow cytometry based method to detect mitochondrially-

associated misfolded SOD1 is that it permits the simultaneous coupling of fluorescent indicator 

dyes to report on mitochondrial function. Since a temporal difference in mitochondrial 

association between the two misfolded SOD1 conformers was not detected, we hypothesized 

that perhaps they may exhibit variable toxicity towards mitochondria. Thus, we evaluated select 

aspects of mitochondrial function in the AMF7-63+ subpopulation. Mitochondrial size/volume 

was assessed by flow cytometry on the basis of the intensity of forward light scatter (FSC) of 

individual mitochondria [428, 446]. Quantification of the FSC normalized to the total population 

indicate that mitochondria bearing AMF7-63 reactive misfolded SOD1 from 14 week and early 

symptomatic SOD1G93A animals were significantly larger than non-coated mitochondria (P < 

0.001) (Fig. 4A). Intriguingly, the AMF7-63+ subpopulation was also significantly larger than 

the B8H10+ only subpopulation when animals began exhibiting early symptoms (P < 0.0001) 

(Fig. 4A). 

MTG can be used not only to identify mitochondria, but also to report on mitochondrial 

volume.   Specifically,   dye   uptake  measured   by   the   delta   mean   fluorescent   intensity   (ΔMFI)  

correlates with mitochondrial volume as the dye accumulates within mitochondria independent 

of the mitochondrial transmembrane potential [429]. In agreement with our FSC data, AMF7-

63+ and B8H10+ subpopulations   have   a   significantly   higher   ΔMFI compared to uncoated 

mitochondria at both time points (AMF7-63+, P < 0.0001; B8H10+, P < 0.01), with AMF7-63+ 

mitochondria taking up more dye compared to B8H10+ mitochondria (P < 0.0001) (Fig. 4B). 

Together, these data indicate that the association of AMF7-63-reactive misfolded SOD1 

conformers with the mitochondrial surface correlates with enlarged mitochondria. 



 

148 

Superoxide is produced as a natural by-product at complex I and complex III of the 

electron transport chain during oxidative phosphorylation [352]. We evaluated the levels of 

mitochondrial superoxide produced by the AMF7-63+ and B8H10+ subpopulations using 

MitoSOX Red, a mitochondria specific superoxide indicator [430, 431]. Following 

normalization for size differences, the three mitochondrial subpopulations were significantly 

different at both time points (P < 0.05). Further comparison revealed that the AMF7-63+ and 

B8H10+ subpopulations were not significantly different, only the AMF7-63+ subpopulation was 

significant compared to the unlabelled subpopulations (P < 0.05). (Fig. 4C). These changes 

were   independent   of   mitochondrial   transmembrane   potential   (ΔΨm) which were unchanged 

between subpopulations (Fig. 4D). Taken together, these data suggest that there is variable 

mitochondrial damage associated with different conformers of misfolded SOD1. Specifically, 

AMF7-63-reactive misfolded SOD1 is associated with more severe deregulation of 

mitochondrial volume homeostasis, while superoxide production is equivalent to B8H10-coated 

mitochondria. 

Since mitochondrial size/volume was significantly higher in AMF7-63+ mitochondria 

compared to those bearing B8H10-reactive SOD1, we examined the AMF7-63+ subpopulation 

in the absence of confounding B8H10+ mitochondria. No significant differences were found 

between the three mitochondrial subpopulations, although mitochondria with AMF7-63 on their 

surface had a trend toward increased volume (Fig. 4E, F). 
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Figure 4: Presence of AMF7-63 reactive misfolded SOD1 at mitochondrial surface 

coincides with increased mitochondrial volume. Flow cytometric analysis of isolated spinal 

cord mitochondria from 14 week and early symptomatic SOD1G93A rats labelled with misfolded 

SOD1 specific antibodies AMF7-63 and B8H10. Analysis includes only events previously gated 

for MTG staining (MTG+). A) Quantification of the geometric mean of FSC of AMF7-63+ 
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(green) B8H10+ (blue) and negative (white) mitochondrial subpopulations relative to total 

population in 14 week and symptomatic SOD1G93A rats. B) Quantification of delta mean 

fluorescent  intensity  (ΔMFI)  of  MTG  staining  of  mitochondrial  sub-populations relative to total 

population. C) Quantification of percentage of MitoSOX+ mitochondria from mitochondrial 

subpopulations relative to total population. Each subpopulation was normalized for MTG 

staining.   D)   Quantification   of   ΔMFI   of   TMRM   staining   of   mitochondrial   subpopulations  

relative to total population and normalized to size/MTG. n=4-5 animals per time point. E) 

Quantification of the geometric mean of FSC of AMF7-63+ (green), AMF7-63+B8H10+ (black) 

and B8H10+ (blue) mitochondrial subpopulations relative to negative (AMF7-63-B8H10-) 

subpopulation. F) Quantification of geometric mean of  delta  mean  fluorescent  intensity  (ΔMFI)  

of MTG staining of misfolded SOD1+ subpopulations relative to negative subpopulation. n=4-

5 animals per time point. Not significant (ns), * P < 0.05, ** P < 0.01, **** P < 0.0001.  
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4.4.4. Misfolded SOD1 conformers are present in mitochondrial aggregates 

 Given that B8H10 and AMF7-63-reactive misfolded SOD1 disturbed mitochondrial 

volume to varying degrees, we speculated this may be attributed to differences in biochemical 

properties. Certain misfolded SOD1 specific antibodies are reported to detect 

aggregates/inclusions [407, 408], therefore we examined the incorporation of misfolded SOD1 

into aggregates in both total spinal cord homogenates and isolated mitochondrial fractions. A 

size exclusion filter assay, which retains proteinaceous aggregates larger than 200 nm on a 

cellulose acetate membrane [178], was performed on homogenates and isolated mitochondria 

from spinal cords of pre-symptomatic (10 week) and early symptomatic SOD1G93A rats as well 

as age-matched SOD1WT animals. Given that this assay is performed in non-denaturing 

conditions, we reasoned that the misfolded SOD1 conformational antibodies should retain their 

specificity. In agreement with this, misfolded SOD1 antibodies B8H10, DSE2-3H1 and AMF7-

63 preferentially labelled homogenates of SOD1G93A spinal cords but not controls (Fig. 5A). 

Moreover, these three antibodies demonstrated more intense immunoreactivity for 

mitochondrial samples (which were enriched via buoyant density so as to eliminate artefact from 

co-pelleting aggregates) (Fig. 5A). Furthermore, the formation of aggregates was disease/age-

dependent, with robust labelling of homogenates and isolated mitochondria from early 

symptomatic animals, but little to no labelling at 10 weeks. Note, the C4F6 antibody did not 

detect aggregates in homogenates or isolated mitochondria at any age (Fig. 5A), consistent with 

reports by others that C4F6 recognizes soluble misfolded SOD1 [236, 408]. Western blots 

confirm equivalent SOD1 expression between samples (Fig. 5B). These results suggest that  
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Figure 5: AMF7-63 and B8H10 antibodies detect misfolded SOD1 in spinal cord 

aggregates. A) Size exclusion filter-trap assay of homogenates or isolated mitochondria from 

spinal cords of pre-symptomatic (10 week) and symptomatic SOD1G93A rats or age-matched 

SOD1WT controls, blotted for misfolded SOD1 specific antibodies B8H10, DSE2-3H1, AMF7-

63 and C4F6. Data is representative of three independent trials. B) Homogenates and isolated 

mitochondria immunoblotted for SOD1 to verify expression levels. Actin and VDAC serve as 

loading controls.  
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distinct misfolded SOD1 conformers recognized by B8H10, DSE2-3H1, and AMF7-63, but not 

C4F6, are enriched at spinal cord mitochondria. 

 

4.4.5. Preferential recognition of demetalated and reduced recombinant SOD1 

 To determine if the misfolded SOD1 specific antibodies have a particular affinity to 

certain gross perturbations in SOD1 structure, demetalation, aggregation or reduction of the 

intra-molecular disulfide bond, recombinant wild-type and various SOD1 mutants (G93A, 

G85R, and A4V) were spotted onto a nitrocellulose membrane and blotted with misfolded 

SOD1 antibodies B8H10 and AMF7-63 under native conditions. SOD1 proteins that were 

properly folded in a native structure have both copper and zinc bound as well as an intact 

(oxidized) disulfide bond between Cys57 and Cys146, and are referred to as holo SOD1. 

Extended incubation of this protein in ambient conditions can generate aggregated holo protein. 

Note, recombinant holo SOD1WT does not aggregate, and thus buffer (Buf) was applied to the 

membrane at that position. Protein lacking both metal cofactors is referred to as apo SOD1. A 

reduced apo form of the protein also lacks the crucial Cys57-Cys146 disulfide bond. Regardless 

of genotype, both AMF7-63 and B8H10 had an increased preference for apo and apo reduced 

proteins (Fig. 6A). Fully denatured protein served as a positive control. 

 To determine if apo SOD1 mutants had a preferential association with isolated 

mitochondria, we performed an in vitro mitochondrial binding assay. Briefly, recombinant 

human SOD1 proteins were incubated with non-transgenic spinal cord mitochondria, and after 

washing away unbound protein, mitochondria were recovered and analyzed by western blot for 

the presence of human SOD1. Recombinant SOD1G93A protein showed an increased binding to 

mitochondria compared to SOD1WT protein. Treatment with EDTA, to chelate the metal  
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Figure 6: Misfolded SOD1 specific antibodies show preferential avidity for demetalated 

(apo) SOD1. A) Recombinant SOD1 proteins (WT, G93A, G85R and A4V) were produced (1) 

with its full complement of metals (holo); (2) with its full complement of metals and aggregated 

(holo agg); (3) lacking metals (apo); and (4) lacking metals and a reduced Cys57-Cys146 

disulfide bond (apo reduced) were spotted onto nitrocellulose and probed for misfolded SOD1 

with AMF7-63 (top) and B8H10 (bottom). Left: Quantification of dot blots, data represented as 

fold change normalized to holo wild-type (WT) SOD1, and expressed as mean +/ SEM), n=3-4 

replicates. B) In vitro mitochondrial binding assay. Recombinant SODWT (white) and SOD1G93A 

(black) was incubated with spinal cord mitochondria from a non-transgenic rat, washed and 

subjected to analysis by western blot. Recombinant SOD1 was either left untreated or incubated 

with EDTA or H2O2 before addition to mitochondria. Left: Quantification normalized to 

SOD1G93A binding. * P < 0.05, ** P < 0.01, n=5.    

  



 

156 

cofactors of SOD1, resulted in significantly increased binding of SOD1G93A (Fig. 6B, C). 

SOD1WT displayed a trend toward increased binging to mitochondrial following treatment with 

EDTA (Fig. 6B, C). Treatment with hydrogen peroxide, previously published to oxidize SOD1 

[244], did not significantly affect the ability of either recombinant wild-type or mutant SOD1 to 

associate with mitochondria (Fig. 6B, C). Taken together, misfolded SOD1 antibodies B8H10 

and AMF7-63 preferentially detect apo and apo/reduced misfolded SOD1, and this form of 

mutant SOD1 has an increased association with mitochondria in vitro. 

 

4.5 Discussion 

4.5.1. Misfolded SOD1 specific antibodies recognize distinct non-native SOD1 confomers 

Misfolded SOD1 antibodies partition into distinct patterns with A5C3, B8H10, C4F6 

and D3H5 antibodies predominantly labelling misfolded SOD1 in motor neurons and numerous 

puncta within the neuropil. In contrast, the DSE2-3H1 and AMF7-63 antibodies labelled an 

extensive fibrillar network, within which motor neurons were often visualized. Fibrils are a 

subset of aggregates  composed  of  β-sheets observed in many neurodegenerative diseases [182, 

447]. Whether SOD1 forms fibrils in SOD1-mediated FALS cases, remains controversial [119, 

183]. However, inclusions found in the spinal cords of SOD1 animal models contain fibrils that 

stain  positive  for  Thioflavin  T,  a  fluorescent  molecule  that  fluoresces  upon  binding  to  β-sheets 

[152, 184]. Interestingly, fibrils have the propensity to seed aggregation in vitro [447], and apo 

reduced wild-type and mutant SOD1 readily form fibrils in vitro [152]. The C-terminal segment 

of SOD1 including residues 147-153, was previously identified to accelerate fibril formation of 

wild-type and mutant SOD1 lacking metal cofactors in vitro [188]. The epitope for the misfolded 

SOD1 specific antibodies AMF7-63 and DSE2-3H1 (residues 125-142) is adjacent to this fibril 
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forming segment, and thus is concordant with our observation that these antibodies robustly 

recognize fibrillized misfolded SOD1 protein. The epitope for the misfolded SOD1 antibody 

SEDI (residues 143-153) wholly encompasses this fibril forming segment. Indeed, fibrils were 

detected when antigen retrieval was used. However, the SEDI antibody does not detect fibrils 

in patient material, as evidenced by a lack of labelling of serial sections with Thioflavin T or 

Congo Red (another molecule that detects fibrils) [119].  

The A5C3, B8H10, C4F6, and D3H5 antibodies exhibit a distinctly different pattern 

from DSE2-3H1 and AMF7-63. Despite their similarity, evidence is emerging that there are 

differences. For example, A5C3 and B8H10-misfolded SOD1 localize to mitochondria whereas 

as C4F6 does not. These data would seem to suggest that misfolded SOD1 specific antibodies 

recognize distinct misfolded SOD1 species. That B8H10 and AMF7-63 only partially co-

localized in some neurons, but also individually labelled other neurons strongly supports that 

there are indeed multiple non-native misfolded SOD1 conformers in vivo, and that the available 

antibodies are capable of differentiating them. 

 

5.5.2. AMF7-63-reactive misfolded SOD1 correlates with increased mitochondrial 
size/volume 
 

That several misfolded SOD1-reactive conformers converge at the mitochondria 

highlights mitochondrial dysfunction as an important disease mechanism in ALS. To date, 

misfolded SOD1 antibodies SEDI [248], DSE2-3H1 [233, 234], A5C3 [234] and B8H10 [444] 

detect misfolded SOD1 at the surface of spinal cord mitochondria. In this report, we now add 

the AMF7-63 antibody to this list. In a single spinal cord, AMF7-63- and B8H10-reactive 

misfolded SOD1 conformers were detected both separately and together on distinct 

mitochondrial subpopulations. 
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AMF7-63+ mitochondria have increased size/volume compared to B8H10+ 

mitochondria, and exhibit a trend toward elevated superoxide production. However, separation 

into distinct subpopulations, AMF7-63+, AMF7-63+B8H10+, or B8H10+ mitochondria yielded 

no significant differences between the groups in terms of mitochondrial size/volume, although 

AMF7-63+ and AMF7-63+B8H10+ showed a trend toward increased volume. That the AMF7-

63+ and B8H10+ mitochondrial subpopulations demonstrate differences in mitochondrial 

size/volume suggest that these antibodies recognize distinct misfolded species that elicit 

disparate degrees of damage, with AMF7-63 reactive misfolded SOD1 correlating with 

increased potency. The misfolded SOD1 antibody DSE2 has been shown to interact with 

VDAC1 [233], a mitochondrial outer membrane protein important for ionic homeostasis [448]. 

Recombinant mutant SOD1 inhibits VDAC1 conductance in a reconstituted lipid bilayer [233]. 

Another group, not focusing on misfolded SOD1, reports that the interaction of mutant SOD1 

and Bcl-2 and corresponding exposure of pro-apoptotic BH3 domain is necessary for Bcl-2 to 

alter VDAC permeability [350]. It remains unknown whether misfolded (DSE2-3H1 or B8H10 

reactive) interact with Bcl-2. However, B8H10-reactive misfolded SOD1 and the pro-apoptotic 

form of Bcl-2 preferentially accumulate on the same mitochondria, but this is not indicative of 

a direct interaction. Furthermore, a portion of B8H10+ mitochondria also contain AMF7-63-

reactive SOD1 on their surface. Therefore, DSE2-3H1-reactive SOD1 could have an increased 

association with the pro-apoptotic Bcl-2/VDAC complex, resulting in altered mitochondrial 

ionic homeostasis. Future knowledge of the interactome of each misfolded SOD1 conformer 

may provide insight into the differential toxicity exhibited between AMF7-63 and B8H10-

reactive misfolded SOD1. 



 

159 

We speculated that AMF7-63-reactive misfolded SOD1 may be prone to aggregation, as 

fibrils are composed of insoluble, ordered oligomeric chains [449]. However, both B8H10 and 

AMF7-63 labelled aggregates in spinal cord homogenates and isolated mitochondria. Therefore, 

the increases in mitochondrial size/volume elicited by AMF7-63-reactive misfolded SOD1 

cannot be due solely to its participation in aggregates at the mitochondrial surface. We cannot 

exclude the possibility that AMF7-63-reactive misfolded SOD1 is included in aggregates of 

differing size/properties compared to the B8H10-reactive conformer. Nor can we exclude the 

possibility that the solubility of these two forms of misfolded SOD1 may differ so as to account 

for the increased toxicity. C4F6-reactive misfolded SOD1 is not detected in aggregates by this 

assay, consistent with reports that this antibody recognizes a soluble form of misfolded SOD1 

[193, 408].  

There is considerable debate over whether SOD1 monomers [190], oligomers [191] or 

large aggregates [192] mediate toxicity. A caveat to these studies is they have focused on 

cytosolic SOD1. Mitochondria are vulnerable to proteotoxic stress [450], particularly 

aggregated protein [451] and thus, have developed multiple layers of quality control 

mechanisms to combat this form of stress [452]. Mutant SOD1 has been reported to form 

aggregates in the matrix of brain mitochondria from ALS animal models [372] and at the surface 

of mitochondria of cells over-expressing mutant SOD1 [385]. Whether these internal- or 

surface-localized aggregates contain misfolded SOD1 or cause mitochondrial dysfunction was 

not determined. However, several recent studies suggest that aggregated SOD1 can perturb 

mitochondrial membrane integrity in vitro [377, 378].  
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5.5.3. Demetalated SOD1 is preferentially detected by misfolded SOD1 antibodies 
AMF7-63 and B8H10 
 

Although broadly considered as a cytosolic protein, a small portion of SOD1 is localized 

to the mitochondrial intermembrane space (IMS) in normal physiological conditions [122]. In 

order for SOD1 to be imported into mitochondria, it must be in its apo reduced form [366]. 

Given this, a pool of apo SOD1 at the mitochondrial surface is expected. Interestingly, in our in 

vitro mitochondrial binding assay, apo SOD1 readily associated with the outer mitochondrial 

membrane. Import of mitochondrial substrates is slowed in spinal cord mitochondria from 

SOD1G93A [346], and the regulation of mutant SOD1s import into mitochondria is altered [369], 

therefore apo mutant SOD1 on route to the IMS may be accumulating at the outer mitochondrial 

membrane and disturbing normal mitochondrial physiology. Both AMF7-63 and B8H10 

detected recombinant apo and apo reduced SOD1 more readily than recombinant holo and holo 

aggregated SOD1. Detection had no dependence on mutational status as wild-type and mutant 

SOD1 (A4V, G85R, G93A) were equally labelled. Conversely, DSE2-3H1 and AMF7-63 were 

generated by immunizing animals with a C-terminal fragment of SOD1 (residues 125-142), 

which is localized to the electrostatic loop [234], implying that exposure of this epitope occurs 

when SOD1 lacks its metal cofactors. Indeed, apo SOD1 has reduced structural stability when 

lacking its metals [153, 161].  

 

5.6. Conclusion 

Conformational antibodies targeted to misfolded SOD1 show promise not only as 

therapeutics for ALS, but also as valuable tools with which to probe the mechanisms of 

misfolded SOD1 toxicity. These antibodies have revealed that multiple non-native species of 

misfolded SOD1 exist to contribute to motor neuron degeneration, possibly via distinct 
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mechanisms [453, 454]. Our study further supports this premise and highlights that variable 

potency/toxicity of different SOD1 species is possible. This finding may have profound 

implications for therapeutics aimed at neutralizing misfolded SOD1. 

 

5.7. Materials and methods 

 Animals: SOD1G93A and SOD1WT transgenic rats have been previously described [216, 

441]. Non-transgenic littermates were used in some experiments. Early symptomatic is defined 

as animals that have a noticeable gait defect, hopping or limping.  Both male and female rats 

were used. Animals were treated in strict adherence with approved protocols from the 

CRCHUM Institutional Committee for the Protection of Animals and the Canadian Council on 

Animal Care (CCAC). 

 Antibodies: Rabbit anti-Cu/Zn SOD (Enzo Life Sciences), rabbit anti-SOD1 (Cell 

Signalling), mouse anti-VDAC1 (Calbiochem), mouse anti-actin (MP Biomedicals), were used 

for immunoblots. Mouse anti-misfolded SOD1 monoclonal antibodies D3H5 (generously 

provided by Dr. J-P Julien), A5C3, B8H10 and C4F6 (Medimabs), DSE2-3H1, rabbit anti-

misfolded SOD1 monoclonal antibody AMF7-63 and rabbit polyclonal antibody SEDI 

(generously provided by Dr. J. Robertson) were used for blotting, immunofluorescence and flow 

cytometry. Mouse and rabbit IgG (Jackson Immunoresearch Labs) and mouse anti-IgG1 (BD 

Biosciences) were used as controls. Goat anti-mouse allophycocyanin-conjugated (BD 

Pharmingen), goat anti-rabbit PE (eBioscience) and goat anti-rabbit PE-Cy7-conjugated (Santa 

Cruz) secondary antibodies were used for flow cytometry studies. For immunofluorescence, 

goat anti-ChAT (Millipore), mouse anti- MAP2 (Sigma), rabbit anti-GFAP (Dako), and rabbit 

anti-ubiquitin (Dako) were used. 
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 Flow cytometry of isolated mitochondria: Spinal cord and liver mitochondria were 

isolated from mice and rats [234], and prepared for analysis by flow cytometry exactly as 

previously described [444, 445]. 

 Immunoprecipitation, and immunoblotting: Isolated mitochondria were solubilized and 

immunoprecipitated as previously described [234]. Briefly, 50 µg of mitochondria was 

incubated with 15 µL Protein G magnetic beads (Invitrogen), overnight at 4 degrees with 

rotation. Protein G beads were previously incubated with misfolded SOD1 antibody, as per 

manufacturer’s  instructions.  Immunoprecipitated  proteins  were eluted from the beads in 2.5X 

Laemmli sample buffer and electrophoresed on 15 % Tris-Glycine gels, and subsequently 

transferred to nitrocellulose. 

 Immunofluorescence. Animals and sections were prepared as previously described 

[444]. Sections were labelled with anti-misfolded SOD1 antibodies, as previously described 

[444]. Briefly, sections were washed 10 minutes at room temperature in PBS, then 

permeabilized for 10 minutes at room temperature in PBS with 0.4 % TX-100. Sections were 

blocked with 2 % normal donkey serum (Sigma), 2 % bovine serum albumin (Sigma), in 0.4 % 

TX-100/PBS for 1 hour at room temperature. Primary antibodies were incubated overnight at 4 

degrees in blocking solution. Appropriate secondary antibodies were added in blocking solution 

for 1 hour at room temperature and subsequently mounted, using ProLong anti-fade reagent 

(Invitrogen). Immunofluorescent images were captured by confocal microscope (Leica SP5; 20x 

objective, 1.7 NA) and processed with Leica LAS AF software and/or PhotoshopCS4 (Adobe).   

 Filter-trap assay: 20 µg of spinal cord homogenates or isolated spinal cord mitochondria 

in PBS were filtered onto 0.22 µM cellulose acetate membrane (GE Healthcare), for 1 hour at 

room temperature, using the Bio-Dot Microfiltration Apparatus (Bio-Rad). Wells were washed 
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twice with PBS, the membrane was removed from the apparatus and then blocked 1 hour at 

room temperature and immunoblotted with misfolded SOD1 antibodies. Isolated mitochondria 

for these experiments were prepared by a method in which mitochondria were floated to their 

buoyant density as to avoid any possible co-sedimentation with aggregates, as previously 

described [234]. 

 Dot Blot of recombinant SOD1 protein: 1 µg of recombinant SOD1 protein, produced 

as previously described [455, 456], in TBS (20 mM Tris, 500 mM NaCl, 1mM EDTA pH 7.5) 

was filtered onto nitrocellulose membrane (BioRad), for 1 hour at room temperature using the 

Bio-Dot Microfiltration Apparatus (Bio-Rad). Wells were washed twice with TBS, and the 

membrane was removed from the apparatus and blocked in TBS-T (as above plus 0.05 % 

Tween-20) with 1 % bovine serum albumin (BSA) for 30 minutes at room temperature, and 

immunoblotted with misfolded SOD1 antibodies. Primary and secondary antibodies were 

incubated in blocking buffer. For non-native samples, 5 % v/v BME, and 0.5% v/v SDS was 

added, and samples were heat denatured by incubation for 5 minutes at 95 degrees Celsius. 

 In vitro mitochondrial binding assay: 50 µg of isolated spinal cord mitochondria 

(2µg/µL) from non-transgenic rats were incubated with 3 µM baculovirus-produced SOD1WT 

and SOD1G93A recombinant protein, purified as previously described [156], for 20 minutes at 37 

degrees in HB Buffer (210 mM Mannitol, 70 mM Sucrose, 10 mM Tris pH 7.5, 1 mM EDTA) 

[156]. Mitochondria were washed once with HB buffer and then re-suspended in HB and 4X 

Laemmli sample buffer and subjected to SDS-PAGE and immunoblotted with an antibody to 

human SOD1 (Cell Signaling). To determine if modification of SOD1 structure would alter its 

binding to the mitochondrial surface, the protein was incubated with 5.5 mM EDTA or 10 mM 

hydrogen peroxide in PBS overnight at 4 degrees or room temperature, respectively, with 
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protease inhibitors (Roche). EDTA and hydrogen peroxide were removed and replaced by PBS 

by dialysis with Slide-A-Lyzer Mini dialysis devices (Pierce). Untreated samples were treated 

equivalently. 

 Statistics: Two-way ANOVA was used to determine the interaction between groups and 

time for percentage of misfolded SOD1+ mitochondrial subpopulations over time and 

differences in AMF7-63+, B8H10+, and negative mitochondrial subpopulations over time. 

Sidak’s  multiple  comparison  test  was  used  to  determine  differences  between  misfolded  SOD1+ 

groups. One-way ANOVA was used to determine differences in AMF7-63+, AMF7-63+B8H10+ 

and B8H10+ subpopulations. * P < 0.05, ** P < 0.01 *** P < 0.001, **** P < 0.0001. 
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5.  Discussion 

5.1. Misfolded SOD1, Bcl-2 and VDAC1  

SOD1G93A rats accumulate B8H10-reactive misfolded SOD1 on the surface of spinal cord, 

but not liver mitochondria. The timing of B8H10-reactive deposition occurs just prior to 

symptoms, and before other hallmarks of disease [444]. Mitochondria with B8H10-reactive 

misfolded SOD1 on their surface have an increased volume, produce elevated levels of 

superoxide and have augmented levels of the pro-apoptotic form of Bcl-2 compared to 

mitochondria without misfolded SOD1 [444]. Misfolded SOD1 specific antibody DSE2 

interacts with the voltage dependent anion channel 1 (VDAC1) and in vitro functional studies 

demonstrate that recombinant mutant SOD1, but not wild-type SOD1, decreases VDAC1 

conductance in a reconstituted lipid bilayer. Although not focusing on misfolded SOD1, another 

group shows the interaction of mutant SOD1 with Bcl-2 is upstream of the altered VDAC1 

permeability, therefore the conformational change of Bcl-2 induced by mutant SOD1 mediates 

toxicity and mitochondrial dysfunction [350]. B8H10-reactive misfolded SOD1 and the pro-

apoptotic form of Bcl-2 accumulate on the same mitochondria, which have altered volume 

homeostasis and elevated superoxide levels [444]. VDAC1 has been shown to regulate both 

mitochondrial ionic hemostasis and the release of superoxide to the cytosol [436, 437, 448].  

Taken together, this indirectly places misfolded SOD1, Bcl-2, and VDAC1 in the same complex 

at the mitochondrial surface, causing decreased outer membrane permeability to ADP (shown 

in [233, 350]), increased superoxide production (shown in [444] and proposed in [406]), as well 

as other possible downstream consequences such as decreased ATP production and increased 

calcium signaling (proposed in [406]). Whether VDAC1 and Bcl-2 interact with B8H10-
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reactive misfolded SOD1 remains to be established. An argument against toxicity arising solely 

from a complex of misfolded SOD1/Bcl-2/VDAC1 is that SOD1G37R mice have an accelerated 

disease course and shortened survival when bred on a VDAC1 null background [233]. The 

authors state that further loss of VDAC1 conductance could sensitize mitochondria to SOD1-

induced mitochondrial damage as well as to other mechanisms of disease [233]. To prove if this 

complex is disease relevant in vivo, mutant SOD1 mice could be immunized with the exon 2 

peptide to determine if disease onset is delayed and survival extended. In addition to survival, 

evaluation of the interaction of BH3 exposed Bcl-2 confomer with VDAC1, ADP accumulation 

in mitochondria, and misfolded SOD1 (B8H10 and DSE2-reactive) accumulation at 

mitochondria will indicate the importance of this putative complex in disease.  

 

5.2. Selective accumulation of misfolded SOD1 in tissue and cells  

The B8H10 antibody detects misfolded SOD1 in lymphoblastoid cells from five FALS 

patients with four different SOD1 mutations, but not healthy controls, disease controls, or 

sporadic ALS patients [444]. Likewise, MS758-reactive misfolded SOD1 is detected in 14 

FALS patients with 11 different SOD1 mutations [36]. However, evidence from SOD1 animal 

models indicates that misfolded SOD1 is selectively present in affected tissues [248], and is 

enriched in ventral versus dorsal spinal cord [236]. Why then is misfolded SOD1 found in 

patient lymphoblasts? It remains possible it is an artifact due to immortalization of these cell 

lines, as misfolded SOD1 has not yet been reported in peripheral blood drawn from ALS patients 

or animal models. However, it also suggests that all cell types have the capacity to produce 

misfolded SOD1. These results are consistent with oxidized wild-type SOD1 found in SALS 
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patient lymphoblasts [290]. Very little B8H10-reactive misfolded SOD1 is associated with 

isolated mitochondria from FALS patient lymphoblasts, and superoxide levels and 

mitochondrial transmembrane potential are comparable to controls [444]. Perhaps SOD1 

association with mitochondria and subsequent toxicity depends on intrinsic cell-type specific 

factors. In fact, a recent publication identified the chaperone, MIF which inhibits the association 

of misfolded SOD1 with mitochondria [249]. MIF levels are abundant in liver, but not spinal 

cord cytosol. Perhaps MIF is not highly expressed in lymphoblasts thereby causing 

accumulation of misfolded SOD1. Alternatively, other motor neuron specific characteristics, 

such as their long-lived nature, may predispose these cells to increased association of misfolded 

SOD1 as opposed to cells in the liver, which are rapidly turned over.  

 

5.3. A continuum of misfolded SOD1 species 

Recent evidence suggests there are multiple misfolded SOD1 species, with distinct 

localizations, biochemical properties and disease mechanisms. Misfolded SOD1 specific 

antibodies may provide us the unique opportunity to tease out these differences and determine 

which misfolded SOD1 species contribute to disease. C4F6-reactive misfolded SOD1 is absent 

from spinal cord mitochondrial fractions [444], whereas B8H10, A5C3, DSE2, and a novel 

antibody with the same epitope as DSE2, AMF7-63 all readily detect non-native/misfolded 

SOD1 in these same mitochondrial fractions (Chp. 4). Therefore, C4F6-reactive misfolded 

SOD1 cannot contribute to mitochondrial dysfunction in ALS. Rather, evidence suggests that it 

is involved in disruption of axonal transport [244]. These results imply that misfolded SOD1 
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specific antibodies detect misfolded SOD1 conformations that have unique properties, such as 

association to spinal cord mitochondria. 

AMF7-63-reactive misfolded SOD1, like B8H10, preferentially associates with isolated 

spinal cord, but not liver mitochondria (Chp. 4). Interestingly, a subpopulation of mitochondria 

have both B8H10 and AMF7-63-reactive misfolded SOD1 deposited on their surface. B8H10 

and AMF7-63-reactive SOD1 segregated onto distinct mitochondrial subpopulations (Chp. 4). 

The presence of AMF7-63-reactive misfolded SOD1 on the mitochondria, regardless of the co-

occurrence of B8H10-reactive misfolded SOD1, correlated with a larger mitochondrial volume 

and a trend towards enhanced superoxide production, compared to mitochondria with only 

B8H10-reactive misfolded SOD1. These results suggest that there are at least two distinct non-

overlapping forms of misfolded SOD1 associated to the mitochondrial OMM, and indicate that 

individual forms of misfolded SOD1 may have distinct potencies. 

Returning to the hypothesis that the misfolded SOD1/Bcl-2/VDAC1 complex is an 

important agent of mitochondrial damage, could AMF7-63-reactive misfolded SOD1 

preferentially interact with Bcl-2 and VDAC1 versus B8H10-reactive misfolded SOD1? DSE2-

reactive misfolded SOD1 is a known interactor of VDAC1, and the AMF7-63 misfolded SOD1 

antibody recognizes the same epitope as the DSE2 antibody [233]. B8H10+ mitochondria have 

increased levels of BH3-exposed Bcl-2 on their surface [444], although this does not prove a 

direct interaction. B8H10+, BH3-exposed Bcl-2+ mitochondria may also be AMF7-63+, 

although this remains to be confirmed. Alternatively, unidentified protein interacting partners 

of AMF7-63 or B8H10-reactive misfolded SOD1 at the mitochondrial surface could mediate 

differential potencies. 
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mitochondria accounted for its inability to modify disease course in SOD1 mouse models. 

Monitoring misfolded SOD1 association to mitochondria following treatment of SOD1 mouse 

models with misfolded SOD1 antibodies or ASO will provide evidence that mitochondrial 

damage is crucial for disease. 

Collectively, multiple lines of evidence suggest that misfolded SOD1 assumes a spectrum 

of non-native conformations. Furthermore, these disparate misfolded SOD1 confomers may 

have different biochemical properties, localization, interacting partners, and participate in 

diverse disease mechanisms. C4F6-reactive misfolded SOD1 alters axonal transport [244], 

MS758-reactive misfolded SOD1 is linked to ER stress [36] and B8H10-reactive and now 

AMF7-63-reactive misfolded SOD1 correlate with mitochondrial damage (Chp. 3-4). 

Misfolded SOD1 antibodies are effective tools to differentiate misfolded SOD1 confomers and 

decipher common versus unique properties between misfolded SOD1 species. Do other 

misfolded SOD1 conformers known to associate with mitochondria, SEDI [248] and A5C3-

reactive misfolded SOD1 [310], cause comparable damage and exhibit the same toxicity? 

Moreover, does misfolded SOD1 mediate other impairments in mitochondrial function, calcium 

handling, import, axonal transport, or ATP production? Categorizing the mitochondrial damage 

associated with each misfolded SOD1 confomer is of importance, but the ultimate goal is 

elucidating the mechanisms behind misfolded SOD1 toxicity. To that end, characterizing the 

misfolded SOD1 interactome for each misfolded SOD1 confomers would provide candidates to 

investigate. In addition, this approach could provide potential therapeutic targets aimed at 

reducing misfolded SOD1 association to mitochondria and ensuing mitochondrial damage. 
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5.4. Deficient mitochondrial import of SOD1 

Metal deficient, apo SOD1, is structurally destabilized [152], readily forms fibrils [188] and 

is preferentially recognized by misfolded SOD1 specific antibodies B8H10 and AMF7-63 (Chp. 

4). To be imported into mitochondria, SOD1 must be in its apo form [110, 152]. Metal depleted 

mutant SOD1 binds spinal cord mitochondria with greater affinity than mutant holo SOD1 

(Chp. 4). SOD1 destined for mitochondrial import is synthesized as a polypeptide, and requires 

Hsp90/Hsp70 to supply the unfolded unmodified protein for import [458]. Given decreases in 

mitochondrial import in the SOD1G93A rat model [346] and that mutant SOD1 has altered 

regulation of import in neuronal cell lines [369], it is tempting to speculate that apo mutant 

SOD1 on route to the IMS is instead trapped at the OMM, either through aberrant protein 

interactions, including, but not limited to Lysyl-tRNA synthestase [385], Bcl-2 [374], MITOL 

[383] and/or VDAC [233] or by direct interaction with the lipids in the membrane [377, 378]. 

When in contact with lipid membranes apo SOD1 aggregates [459]. SOD1 aggregates and fibrils 

seed further fibrillation of natively folded SOD1 [295]. Therefore, apo SOD1 deposition at the 

mitochondrial OMM could lead to a feed-forward cascade of aggregation. Indeed, B8H10 and 

AMF7-63-reactive misfolded SOD1 are present in mitochondrial aggregates (Chp. 4). In 

addition to this seeding effect, CCS import and therefore SOD1 import is controlled by 

respiratory chain activity. Blocking complex III with Antimycin A results in increased 

mitochondrial localization of both CCS, and mutant SOD1 [369]. Defects in mitochondrial 

respiration have been documented in mutant SOD1 models [343-345], although not usually at 

complex III. Decreased respiration could drive mitochondrial import of SOD1, and increased 

retention of misfolded SOD1 at the mitochondrial surface, leading to more damaged 
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mitochondria. In support of this, the percentage of mitochondria with misfolded SOD1 on their 

surface increases with age in SOD1G93A rats, peaking when animals are symptomatic [444].   

 

5.5 Relevance of misfolded SOD1 specific antibodies B8H10 and AMF7-63 in ALS 

Both misfolded SOD1 specific antibodies, B8H10 and AMF7-63, detect a toxic form of mutant 

SOD1 that associates with damaged mitochondria in SOD1 rodent models, thus emphasizing their 

relevance in ALS pathogenesis (Chp. 3-4). Future efforts should aim to further characterize both B8H10 

and AMF7-63-reactive misfolded SOD1 in terms of sub-cellular localization, mechanism(s) of toxicity 

and biochemical properties. Determining if B8H10 or AMF7-63-reactive misfolded SOD1 interact with 

other organelles would provide insight into what cellular process are specifically affected by these SOD1 

species. Ultimately knowing what pathways are disrupted will aid in identify therapeutic targets. 

Furthermore, determining the biochemical properties, solubility, propensity to oligomerize or aggregate 

and protein interactors of specific misfolded SOD1 species may provide beneficial for the design of small 

molecule inhibitors of misfolded SOD1.  

B8H10-reactive misfolded SOD1 was identified in lymphoblasts from five SOD1-linked FALS 

cases suggesting this form of misfolded SOD1 is relevant in human disease (Chp.3). The presence of 

AMF7-63-reactive misfolded in SOD1-mediated cases FALS cases should be evaluated to determine if 

this form of misfolded SOD1 is also implicated in human disease. The presence and relative abundance 

of both B8H10 and AMF7-63-reactive misfolded should be evaluated in spinal cords collected post-

mortem from SOD1-linked FALS patient as well as iPSC derived motor neurons, to determine how 

common each of these misfolded SOD1 species are. Although B8H10-ractive misfolded SOD1 was not 

identified in lymphoblasts from SALS patients (Chp. 3), determining whether either B8H10 or AMF7-

63 antibodies detect misfolded SOD1 in spinal cord tissue from SALS cases would be informative. 

Furthermore it could provide insight into whether SOD1 in relevant to SALS.   
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To date, no study has demonstrated that treatment with either B8H10 or AMF7-63 antibodies will 

provide any therapeutic benefit in vivo. Therefore a priority in future studies should be to treat SOD1 

mouse models with B8H10 and AMF7-63 and evaluate survival, motor neuron preservation, attenuation 

of gliosis, neuromuscular junction innervation as well as association of misfolded SOD1 to mitochondria 

and mitochondrial damage. Given that both B8H10 and AMF7-63-reactive misfolded SOD1 are linked 

to damaged mitochondria (Chp. 3-4) and that reduction of B8H10-reactive misfolded SOD1 levels 

correlated with increased survival following treatment with another misfolded SOD1 antibody, it is likely 

these antibodies will also prove to be therapeutically viable. Multiple lines of evidence suggest that there 

are multiple species of misfolded SOD1 (Chp.4) [407, 408] perhaps necessitating reduction of many 

species of misfolded SOD1. Immunization with a cocktail of misfolded SOD1 antibodies targeting 

diverse SOD1 species with differing biochemical properties and mechanisms of toxicity may be more 

efficacious than treating with a single antibody. Proof of this hypothesis could be easily evaluated in 

SOD1 rodent models by comparing survival times and various makers of disease in animal immunized 

with one antibody (just B8H10 or AMF7-63) versus animals immunized with a combination of both 

antibodies (B8H10 and AMF7-63). Results presented in this thesis are summarized in Figure 1. 
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Figure 1: Summary of findings. Adapted from Pickles et al., 2012 [235]. Epitopes recognized by 

misfolded SOD1 antibodies used in this these mapped onto the SOD1 structure.  Structural features are 

as  indicated:  β-strand  (black),  loops  (pink),  α  helix  (blue),  disulfide  bonds  between  Cys57  and  

Cys146 (S), copper-binding residues His46, His48, His63 His120 (red circles) and zinc-binding 

residues His63, His71, His80 and Asp83 (His, purple circles and Asp, purple square). SC, spinal 

cord OMM, outer mitochondrial membrane; +, positive finding; -, negative finding; n.d, not 

determined.   
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5.6. A mitochondrial (mito)-centric view of ALS 

 Mitochondria disturbances are a prominent feature of SOD1-mediated FALS, and likely 

SALS as well [290, 342, 351]. Evidence from non-SOD1 mediated FALS models suggests that 

mitochondria may also be relevant. It is tempting to speculate that mitochondrial dysfunction 

contributes to all ALS. 

 

5.6.1. Transactive response DNA binding protein 43 kDa 

Although TDP-43 has a predominantly nuclear localization, it is also found in anterior 

horn neuron mitochondria of SALS patients as well as controls, signifying a role for TDP-43 in 

both normal physiology and in ALS pathology [460]. TDP-43 co-localizes with mitochondrial 

targeted fluorescent protein in axons and dendrites of rats over-expressing wild-type or mutant 

TDP-43, and both endogenous TDP-43 and exogenous TDP-43 is present in mitochondrial 

fractions from NSC-34 cells [461, 462]. It remains to be determined in which mitochondrial sub 

compartment TDP-43 is located. 

Examination of tissue from several rodent models expressing wild-type or mutant TDP-

43 reveals clusters of mitochondrial aggregates with altered morphology, including 

disorganization of cristae and vacuolization [463-467]. These abnormalities are also evident in 

cell culture models [462, 468]. TDP-43WT transgenic mice have increased levels of 

mitochondrial fission proteins, Fis1, and phosphorylated Drp-1, and decreased levels of Mfn1 

[464, 465]. Reduction in mitochondria at the NMJ are observed in TDP-43WT mice, indicative 
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of deficits in mitochondrial transport [463]. Indeed, mitochondrial transport is compromised in 

the sciatic nerves of TDP-43A315T mice [469], with retrograde transport  affected first, followed 

by anterograde transport [321]. Transport defects are accompanied by decreased mitochondrial 

length and mitochondrial clustering [321]. TDP-43A315T mice were compared to non-transgenic 

littermates, rather than mice expressing wild-type TDP-43, therefore the results should be 

interpreted with some caution as over-expression of wild-type TDP-43 can cause deleterious 

effects [470]. Mitochondrial transport dynamics are also altered in rat motor neurons expressing 

mutant and wild-type TDP-43, more so with mutant expression, and when levels of TDP-43 are 

depleted [461]. However, another study finds no difference in mitochondrial transport in mouse 

cortical neurons expressing wild-type or mutant TDP-43 [471]. Mitochondrial transport defects 

could be cell type specific as previously documented in cases of SOD1-mediated transport 

defects [320].  

Wild-type and mutant TDP-43 expression in NSC-34 cells is linked to bioenergetics defects 

[467, 468], decreased membrane potential [462, 468], and increased reactive oxygen species 

production [462]. In yeast, TDP-43 expression causes peri-mitochondrial aggregated foci of 

TDP-43, which correlate with cytotoxicity [472]. Decreasing mitochondrial respiration 

genetically and pharmacologically improves cell survival, while increasing mitochondrial 

respiration decreased cell survival, implying mitochondrial respiration is linked to cell death 

possibly through ROS production [472]. One study tenuously linked TDP-43 and mitophagy, 

the selective removal of mitochondria by an autophagy like process, based on the observation 

that LC3-phosphatidylethanolamine conjugate (LC3-II) levels, a marker of the autophagosome, 

are increased in mitochondrial fractions of cells expressing TDP-43 [462]. TDP-43 binds Parkin 

mRNA [58, 462]  and SALS patient motor neurons with cytoplasmic TDP-43 inclusions have 
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reduced levels of Parkin [69]. Moreover, Parkin ubiquitinates TDP-43 [473], thus providing 

evidence of a functional interaction between TDP-43 and Parkin. The link to mitophagy remains 

unknown, but it is possible TDP-43 modulates Parkin in the cytoplasm and/or at the 

mitochondrial surface. Interestingly, C-terminal fragments of TDP-43, commonly localized to 

TDP-43 positive inclusions in ALS patients, localize to mitochondria and lead to alterations in 

morphology, increased ROS production and defective mitophagy [462]. As many of these 

defects can be attributed to both wild-type and mutant TDP-43 expression, it is difficult to assess 

their relevance to disease. It is possible that many of the observed mitochondrial defects are 

simply artifacts of TDP-43 over-expression. Studies exploring the physiological role of TDP-

43 with regards to mitochondria functional are required to dissect its true relevance. Few studies 

have examined mitochondrial function when TDP-43 levels are depleted, and this approach 

could begin to unravel whether TDP-43 is required for normal mitochondrial function. 

Nevertheless, it is possible that depletion of TDP-43 from the nucleus and accumulation in the 

cytoplasm causes a toxic gain of function of which the mitochondria are a possible target.  

 

5.6.2. Vesicle–associated membrane protein-associated protein B   

ALS associated VAPB mutation P56S disrupts anterograde transport of mitochondria 

via disruption of the interaction between mitochondrial motor proteins and tubulin as a 

consequence of increased cytosolic calcium [474]. VAPB interacts with the OMM protein. 

protein tyrosine phosphatase-interacting protein-51 (PTP1P51) at the mitochondria and 

mitochondria-associated membranes (MAMs) [475]. MAMs are domains where the 

mitochondrial outer membrane and the ER are in close proximity and actively held together by 
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tethering complexes [476]. These domains are important for phospholipid transfer and calcium 

signalling [476]. The PTPIP51-VAPB interaction regulates the formation of MAMs and mutant 

VAPB disrupts mitochondrial calcium uptake following release from the ER. Importantly, TDP-

43 modulates this interaction [475, 477]. 

 

 

 

5.6.3.  Fused in sarcoma  

Transgenic rats over-expressing FUSR521C have aggregated and damaged spinal cord 

mitochondria. The lack of an appropriate control (FUSWT transgenic rats) makes it difficult to 

determine if these observed mitochondrial morphological defects can be specifically attributed 

to mutant FUS expression [478]. Expression of mutant FUS in motor neurons of dissociated 

mouse spinal cord cultures results in shorter mitochondria compared to wild-type FUS [479]. 

Despite hints that mutant FUS could impact mitochondrial functions it has yet to be fully 

characterized.   

 

5.6.4. Valosin-containing protein  

VCP, also known as p97 is implicated in ALS, but was first known to cause Inclusion body 

myopathy with early-onset Paget disease and frontotemporal dementia (IBMPFD). VCP is a 

member of the AAA+-ATPase protein family and has diverse functions including, but not 

limited to autophagy, vesicle transport, endoplasmic-reticulum-associated protein degradation 
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(ERAD) and of relevance here, mitochondria quality control [480]. VCP functions in the outer 

mitochondrial membrane associated degradation (OMMAD) by ensuring ubiquitinated proteins 

are brought to the proteasome [481]. VCP is linked to mitophagy, as it is recruited to depolarized 

mitochondria to remove Parkin-ubiquitinated Mfn1 and Mfn2 from the mitochondrial surface 

for degradation by the proteasome [482, 483]. Mitophagy is inhibited in mouse embryonic 

fibroblasts expressing either a disease associated mutant or an inactive mutant of VCP, leading 

to the accumulation of aggregated mitochondria [483]. Fibroblasts from patients with VCP 

mutations have decreased membrane potential, increased ROS production, and decreased ATP 

levels [484], as well as increased levels of glycolysis [485].  

 

5.6.5. Optineurin 

OPTN mutations were first identified in primary open-angle glaucoma (POAG) [486], 

and only later associated with ALS [92]. Optineurin is an autophagy receptor and is therefore 

able to bind both ubiquitin and LC3. Recently, Optineurin has been linked to mitophagy. 

Optineurin is recruited in a Parkin-dependent manner to damaged mitochondria [487]. At the 

mitochondria, Optineurin interacts with ubiquitinated proteins to recruit LC3 and form the 

autophagomsome [487]. Decreasing Optineurin levels inhibits the recruitment of LC3 thereby 

inhibiting mitochondrial degradation. This phenotype can be rescued by expressing wild-type 

Optineurin, but not mutations associated with ALS [487].    
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5.6.6. p62/Sequestosome 1 (p62/SQSTM1) 

p62 also interacts with ubiquitinated proteins and LC3, functioning in protein 

degradation through both the proteasome and autophagy [488]. Several mutations in p62 are 

reported in FALS and SALS cases [489]. p62 is connected to mitophagy, and likely serves to 

cluster mitochondria, following Parkin-dependent recruitment to damaged mitochondria [490, 

491]. In addition to involvement in mitophagy, p62 is linked to mitochondria in non-stressed 

conditions. MEFs depleted of p62 have fragmented mitochondria, decreased mitochondrial 

transmembrane potential, and decreased ATP production, attributed to decreased import of the 

mitochondrial transcription factor TFAM [492]. 

 

5.6.7. Coiled-coil helix coiled-coil helix domain 10 

Mutations in CHCHD10 are found in ALS as well as FTD, cerebellar ataxia and 

mitochondrial myopathy [96, 493-496]. CHCHD10 is a nuclear-encoded mitochondrial protein 

of unknown function that resides in the IMS of mitochondria [96]. Although several ALS genes 

(SOD1, TARDP, FUS, VCP, OPTN, VABP, p62) are reported to disturb mitochondrial function, 

this is the first bona fide mitochondrial localized (but nuclear encoded) ALS gene, therefore 

reaffirming the importance of a mitochondrial contribution to ALS pathogenesis. Indeed, 

expression of mutant CHCHD10 in HeLa cells causes mitochondrial fragmentation and cristae 

disorganization [96]. Determining the exact function of CHCHD10 and how mutations cause 

disease will be an important area of future research. Members of the CHCHD protein family are 

also linked to mitochondria. CHCHD3 localizes to the IM, facing the IMS, and knock-down in 

HeLa cells causes mitochondrial fragmentation by modulation of Opa1 and Drp1 levels. In 
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addition, lack of CHCHD3 decreases respiration leading to diminution of ATP production, and 

disorganization of cristae [497]. Furthermore, CHCHD3 interacts with both Opa1 and Mitofilin 

[498, 499], two proteins involved in cristae formation [315]. Interestingly, CHCHD3 is imported 

into mitochondria and is properly folded by interaction with Mia40, the same protein that 

mediates SOD1 mitochondrial import [498]. If CHCHD10 also interacts with Mia40 for proper 

folding and retention within the IMS, it is possible that mutations cause its improper localization 

or regulation [500]. However, mislocalization due to pathological mutations has yet to be 

reported [96]. Proteomic analysis of NSC-34 cells expressing SOD1G93A reveal CHCHD3 is 

down regulated [501], perhaps indicative of a direct or indirect interaction of SOD1 with 

CHCHD proteins or involvement in a common pathway. CHCHD6 also interacts with Mitofilin 

[499], and knock-down causes defects in cristae morphology and decreased ATP production 

[502]. Finally, CHCHD2 is associated  with  Parkinson’s  disease  [503]. Functional studies reveal 

it participates in mitochondrial respiration [504, 505], and is a negative regulator of apoptosis 

through interaction with Bcl-xL [506]. 

 

5.7.  Novel avenues of research  

Several mechanisms of mitochondrial dysfunction are recapitulated in other genetic models 

of ALS, morphological alterations, bioenergetics dysfunction, mitochondrial transport and 

calcium handling defects. However, several novel mechanisms of mitochondrial dysfunction 

not previously identified in SOD1 mediated FALS have been linked to other mutations, 

including mitochondria-ER connection via MAMs (also linked to calcium handling), and 
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mitophagy. Perhaps mutant/misfolded SOD1 is also involved in these pathways and negatively 

regulates various aspects of mitochondrial physiology.   

 

5.7.2. Mitochondria-associated membranes 

Given misfolded SOD1s penchant for association with membranes of both the 

mitochondria [233, 234, 248, 310, 444] and likely the ER [248, 249], it is reasonable to predict 

that misfolded SOD1 also localizes to MAMs. Two reported protein interactors of 

mutant/misfolded SOD1 are MAM proteins, VDAC1 [507], and MITOL [508], therefore 

strengthening a possible link between misfolded SOD1 and MAMS. VDAC1 dysfunction in 

ALS has already been documented to result in decreased levels of ADP [233, 350]. VDAC1 

also regulates calcium influx from the ER into the mitochondria [509], therefore SOD1 mediated 

decreases in VDAC1 conductance could be hypothesized to limit mitochondrial calcium 

buffering. Whether VDAC does indeed cause mitochondrial calcium handling defects has yet 

to be evaluated in the context of ALS.   

In vitro, MITOL ubiquitinates SOD1 to facilitate its proteosomal degradation. While this 

remains to be confirmed in vivo, it is also known that MITOL ubiquitinates Mfn2 so as to 

mediate Mfn2 oligomerization, which is crucial for mitochondrial-ER tethering and therefore 

MAM formation [508]. We can speculate that MAM formation is disturbed in ALS and evaluate 

whether there are differences in expression of MAM proteins in SOD1 models. If indeed 

misfolded SOD1 is present at MAMs, does it interact with other resident MAM proteins? 

Furthermore, it remains untested whether MAM functions, such as calcium handling and lipid 

synthesis are disturbed in ALS models. Addition of misfolded SOD1 antibodies to restore MAM 
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structure and function would be a valuable experiment that would be highly suggestive that 

misfolded negatively impacts MAMs. With regards to calcium handling it may be difficult to 

dissect the contribution from mitochondria versus MAMs. In fact, it could be possible that 

mitochondrial attributed calcium handling defects may be partially caused by altered function 

of MAMs. MAM function is reportedly increased in cells derived from Alzheimer Disease 

patients and well as post-mortem brain tissue [510, 511]. Of interest, MAMs may also play a 

role in ER-stress and autophagy, two pathways strongly implicated in ALS pathogenesis [512, 

513]. 

 

5.7.3. Mitophagy 

Mitophagy is the selective removal of mitochondria by autophagosomes [514]. This 

pathway was originally described in the elimination of depolarized mitochondria involving the 

accumulation of PTEN-induced putative kinase 1 (PINK1) on the mitochondrial outer 

membrane. Parkin is recruited to the mitochondria and is phosphorylated by PINK1 thereby 

activating its E3 ubiquitin ligase activity. Once activated, Parkin ubiquitinates various 

mitochondrial substrates (Mfn1, Mfn2 and VDAC1) for both ubiquitin mediated proteasome 

degradation and autophagosome recruitment. Autophagosomes are then brought to the lysosome 

to be degraded [514].  

Three ALS-linked proteins, Optineurin, VCP and p62 are implicated in various aspects 

of mitophagy. TDP-43 damaged mitochondria could be a substrate for mitophagy, however the 

link is less well established. Surprisingly, mitophagy in the context of SOD1-mediated 

mitochondrial damage has not yet been investigated. Multiple lines of evidence indicate that 
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mitochondria are damaged in ALS. Why then are they not eliminated by mitophagy? Failure or 

inefficiency of the mitophagy system may result in the accumulation of damaged mitochondria 

that are observed in SOD1G93A rats (Chp. 3-4). Furthermore, if mitochondrial damage is 

unavoidable, augmenting mitophagy could be another viable approach to target mitochondrial-

mediated damage involved in ALS. 

Levels of PINK1 are increased in SOD1G93A mouse spinal cord motor neurons [515], but 

decreased PINK1 mRNA levels are documented in muscles in the same model, as well as in 

human SALS muscle tissue [516]. Accumulation of PINK1, and LC3-II on the surface of crude 

mitochondria is increased in human neuronal cells expressing mutant SOD1 when compared to 

wild-type SOD1 [318], indicating mitochondria exposed to mutant SOD1 could be a substrate 

for mitophagy. Unfortunately, this study did not investigate Parkin recruitment, or clearance of 

damaged mitochondria. Increased levels of LC3-II are documented in ALS animal models [517, 

518], as well as the presence of lysosomes and autolysosomes surrounding mitochondria [519]. 

p62 levels increase with age in SOD1G93A mouse spinal cord, and p62 along with ubiquitinated 

SOD1 are found in spinal cord aggregates [520]. Mutant SOD1 interacts with p62 and this 

interaction facilitates the formation of aggregates which are engulfed by autophagosomes [521]. 

p62 is a proposed adaptor for the autophagosome formation in mitophagy [522], although the 

autophagosome can form independently of p62 [490, 491]. Collectively, these results suggest 

activation of mitophagy in ALS, yet it also indicates autophagy as a whole is upregulated in 

SOD1 animal models, consistent with many recent reports [523]. The classical paradigm of 

mitophagy involves recognition of depolarized mitochondria, which is not consistently reported 

in mutant SOD1-mediated mitochondrial damage. However, mitophagy is activated by other 

forms of damage, including increased ROS production [524], mitochondrial (mt) DNA 
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mutations [525], and misfolded protein in mitochondria [526]. Increased ROS production and 

misfolded proteins are widely documented in mutant SOD1 models, whereas a consensus on 

whether mutant SOD1 causes increased mitochondrial (mt) DNA mutations has yet to emerge 

[527-530]. Nevertheless, damaged mitochondria observed in SOD1 models are likely a substrate 

for mitophagy.   

Further studies should determine if mitophagic flux is disturbed in ALS, and if so at what 

point in the pathway. Do disturbances in mitochondrial import [346] seen in ALS rat models 

affect PINK1 accumulation on mitochondria? An aberrant interaction between misfolded SOD1 

and PINK1 at the mitochondrial surface could lead to decreased removal of mitochondria by 

mitophagy. In the same vein, misfolded SOD1 could also interact with Parkin. This interaction 

could be deleterious in both the cytosol and at the mitochondrial surface, in the former case 

leading to decreased recruitment of Parkin to mitochondria, and in the latter affecting 

ubiquitination and recruitment of autophagosome. Autophagosome recruitment could also be 

affected by misfolded SOD1 interacting with p62 or LC3-II. Furthermore, increased p62 and 

LC3-II levels could be indicative of an increased autophagic response to compensate for 

decreased targeted removal of damaged mitochondria. 

Mitophagy in neurons is less straightforward than in immortalized cell lines, has distinct 

kinetics [531] and only affects a subset of mitochondria [524] so as to not completely deplete 

neurons of their main source of energy. Interestingly, PINK1 and Parkin activation lead to the 

degradation of Miro, an adaptor protein important for mitochondrial transport, and arrest of 

mitochondria in axons. It is possible that the mitochondrial transport defects (both anterograde 
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and retrograde) in mutant SOD1 models is due to PINK1/Parkin mediated halting of 

mitochondrial movement. 

 

5.7.4. Mitochondrial unfolded protein response (UPRmt) 

Mitochondria are vulnerable to proteotoxicity due to exposure to high amounts of ROS that can 

disturb protein folding, structure, and cause mtDNA mutations. Furthermore the electron 

transport chain is formed of both nuclear and mitochondrial subunits which must be assembled 

in precise stoichiometries as to not leave orphaned subunits [532]. For these reasons, 

mitochondria have developed an unfolded protein response (UPRmt) analogous to that of the 

cytoplasm and ER, which when activated causes increased expression of mitochondrial 

chaperones and proteases. This pathway is extensively characterized in C. elegans. The 

accumulation of unfolded proteins in the mitochondria results in cleavage of these proteins into 

peptides by the mitochondrial matrix protease ClpP. Peptides are exported out of the 

mitochondria by HAF-1, and signal to the transcription factor activating transcription factor 

associated with stress-1 (ATFS-1). ATFS-1 has both a mitochondrial targeting sequence, and a 

nuclear localization sequence. Under basal conditions, ATFS-1 is imported into mitochondria 

and degraded by another matrix protease, Lon. During stress, a portion of ATFS-1 fails to be 

imported into mitochondria, and translocates to the nucleus where it activates other transcription 

factors, which upregulate the expression of mitochondrial chaperones and proteases [532].  

The mammalian UPRmt is not as thoroughly characterized, but misfolded protein 

accumulation in the mitochondrial matrix results in an up regulation of mitochondrial 

chaperones and proteases, via the transcription factor CHOP. CHOP is activated by c-Jun N-
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terminal kinases (JNK activation) of c-Jun. A distinct UPRmt for misfolded proteins in the IMS 

involves AKT phosphorylation and activation of estrogen  receptor  α  (ERα), which increases 

levels of IMS protease Htra2, the chaperone Nuclear respiratory factor-1 (NRF1), as well as the 

proteasome [532]. The signalling mechanism of how unfolded proteins in the matrix are sensed 

and transmitted remains unknown, and no mammalian counterpart for ATFS-1 has yet been 

found. 

UPRmt has yet to be studied in the context of ALS, yet several lines of evidence provide 

the rationale that mutant/misfolded SOD1 at the mitochondria could activate UPRmt. Mutant 

SOD1 targeted to the mitochondria matrix causes cytochrome C release, leading to apoptosis 

and death in N2a cells [533]. UPRmt was not assessed directly in this study and except for one 

report, SOD1 is not known to localize to the matrix. Nonetheless, mutant SOD1 in the matrix 

does lead to mitochondrial stress. Mitochondrial import is decreased in mitochondria from 

SOD1G93A rats, compared to SOD1WT rats [346]. In C. elegans decreased mitochondria import 

results in ATSF-1 nuclear localization and activation of gene expression to cope with 

mitochondrial stress. This is reminiscent of accumulation of PINK1 on the mitochondrial 

surface, due to decreased import leading to mitophagy. Decreased mitochondrial import may be 

a common mechanism by which mitochondria cope with stress or damage [534]. Gene 

expression profiling of iPSC-derived motor neurons from FALS patients reveals approximately 

60% of the genes most down regulated are related to mitochondrial function [306]. Gene 

ontology analysis, demonstrates mitochondrial respiration and translation as pathways that are 

significantly down regulated [306]. A decrease in translation by treatment with cyclohexamide 

is protective to yeast during mitochondrial dysfunction [535]. Furthermore, decreased 

mitochondrial translation by knock down of mitochondrial ribosomal protein S5 (Mrps5) 
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activates the UPRmt, by causing a mitochondria-nuclear protein imbalance [536]. Taken 

together, the data suggests that the balance of cytosolic and mitochondrial translation is tightly 

regulated. If not, UPRmt is activated. Alternatively, if mitochondria are damaged, decreased 

cytosolic translation is beneficial by relieving the stress of incorporating newly synthesized 

nuclear-encoded mitochondrial proteins into an already taxed organelle. At present, attenuation 

of mitochondrial translation is not implicated in the UPRmt response, as it is in the UPRER [532]. 

The same study that showed mitochondrial ribosomal genes downregulated in mutant SOD1 

motor neuron derived iPSCs also found that markers of UPRER were upregulated [306]. 

Traditionally, the ER and mitochondrial act as discrete organelles and their respective unfolded 

protein response are specific and not co-activated [532]. However, with the discovery of an 

actual physical interactions between the ER and mitochondria, MAMs, the field is rethinking 

possible cross regulation between the ER and mitochondria. In fact, PERK may mediate 

signaling through CHOP to both the ER and mitochondria, providing a possible connection 

between both mitochondria and ER unfolded protein responses [537]. Mitochondria from SOD1 

FALS patient motor neurons derived from iPSCs are dysfunctional and have decreased 

expression of genes involved in mitochondrial translation, implicating possible activation of 

UPRmt, although this was not examined directly. Lastly, UPRmt is activated by depletion of 

mtDNA, deletions in electron transport genes [538], accumulation of misfolded proteins, 

inhibition of mitochondrial proteases and altered mitochondrial translation [536]. Mutant SOD1 

has already been shown to cause accumulation of misfolded proteins in mitochondria, may cause 

mtDNA mutations, and leads to upregulation of ROS. 

Whether mutant/misfolded SOD1 activates the UPRmt should be verified in C.elegans 

models, mammalian cells, and in iPSC-derived motor neurons. Up regulation of mitochondrial 
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chaperones and proteases is an appropriate readout of UPRmt activation. The focus should be on 

the IMS protease Htra2, as SOD1 localizes to the IMS. At present, it is not known how SOD1 

(wild-type or mutant) is cleared from the mitochondrial interior. The expression of IMS 

localized SOD1 upon over-expression or knock-down should be evaluated to determine if Htra2 

is the protease responsible for mitochondrial SOD1 degradation. 

The combined evidence that matrix or IMS targeted mutant SOD1 causes mitochondrial 

damage, mitochondrial import is decreased in ALS animals models, and mitochondria ribosomal 

proteins and likely mitochondrial translation is down regulated in FALS patient motor neuron 

derived iPSCs, strongly implicates that the UPRmt is triggered in these model systems. A 

systematic investigation could reveal mechanistic insights into how mutant SOD1 damages 

mitochondria.   

 

5.8.  Mitochondria in SALS 

Mitochondrial morphological abnormalities, bioenergetics defects and various forms of 

mitochondrial damage have been documented in SALS post-mortem tissue or cells [290, 342, 

351]. However, until recently, the field has lacked an appropriate model to thoroughly 

interrogate mitochondrial dysfunction in SALS. With the development of iPSC-derived motor 

neurons, screening for disturbances in mitochondrial morphology, bioenergetics, protein import, 

axonal transport, calcium handling, MAM formation or function, mitophagy, UPRmt, and 

vulnerability to mitochondrial stress, compared to cells from healthy controls or isogenic/gene-

edited controls should be undertaken. These studies would provide clear answers as to whether 
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mitochondrial dysfunction is a common disease mechanism, relevant to the most abundant 

disease type, sporadic ALS.  

   



 

 

Conclusion 
ALS is a devastating disease for both patients and their caregivers. To date, there is no 

treatment that significantly prolongs the lifespan of patients, despite countless clinical trials. A 

better understanding of why specifically motor neurons succumb to degeneration and the 

mechanisms leading to their death, would greatly improve the development of targeted clinical 

interventions. A portion of ALS cases are linked to mutations in SOD1, leading to misfolding 

of this protein. It is increasingly appreciated that misfolded SOD1 mediates toxicity in SOD1-

mediated FALS. Thus several conformational antibodies that specifically detect misfolded 

SOD1 have been generated. We have shown that several of these antibodies detect misfolded 

SOD1 localized to spinal cord mitochondria, and more precisely to motor neuron mitochondria.  

In an effort to determine how the presence of misfolded SOD1 at the mitochondrial 

surface impacts mitochondrial function in ALS rodent models, we developed a novel flow 

cytometric method. This method allowed us to identify two mitochondrial subpopulations, based 

on immunolabelling with the misfolded SOD1 specific antibody, B8H10. The decision to select 

this antibody was based on previous findings that decreased levels of B8H10 were associated 

with increased survival in SOD1 mouse models, following immunization with another 

misfolded SOD1 antibody [243]. B8H10-reactive misfolded SOD1 accumulates on SOD1G93A 

rat spinal cord mitochondria beginning at 14 weeks, just prior to disease onset, and reaches 

highest levels when rats become symptomatic. B8H10+ mitochondria are of larger volume and 

produce more superoxide compared to B8H10- counterparts. In addition, the presence of 

B8H10-reactive misfolded SOD1 at mitochondria correlates with increased levels of the pro-

apoptotic, BH3 domain-exposed form of Bcl-2. Pre-symptomatic deposition of misfolded SOD1 
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at the mitochondria, and increased mitochondrial volume and elevated superoxide levels are 

recapitulated in the SOD1G37R mouse model. Collectively, these results indicate that B8H10-

reactive misfolded SOD1 tracks with mitochondrial damage. B8H10-reactive misfolded SOD1 

is detected in lymphoblastoid cells derived from ALS patients with SOD1 mutations, but not 

SALS patients or controls. Together these results indicate B8H10-reactive misfolded SOD1 is 

a common feature of both ALS rodent models and human disease.     

From this study we also observe B8H10, but not C4F6-reactive misfolded SOD1 in 

mitochondrial fractions, suggesting differing localization of misfolded SOD1 species. Similarly, 

a report from another group comparing the SEDI and C4F6 antibody reactivities in a cell culture 

model of mutant SOD1 expression suggest different misfolded SOD1 species may have 

different biochemical characteristics [408]. The SEDI antibody detects misfolded SOD1 in 

insoluble inclusions whereas the C4F6 antibody recognizes soluble misfolded SOD1 [408]. 

Exposure of certain SOD1 epitopes as recognized by a series of SOD1 peptide antibodies 

identified different strains of SOD1 aggregates in SOD1 mouse models [407]. One such strain 

was suggested to have enhanced toxicity as increased amounts of this form of SOD1 aggregate 

correlated with earlier time of onset and a faster disease progression [407]. Together, these data 

indicate there are multiple forms of misfolded SOD1 species that can be differentiated based on 

binding to different misfolded SOD1 antibodies. In an effort to better characterize misfolded 

SOD1 species, we used a panel of misfolded SOD1 antibodies to label SOD1G93A spinal cord 

sections. Misfolded SOD1 antibodies DSE2 and AMF7-63, both targeted to the same of epitope 

of SOD1, labeled motor neurons as well as fibrils in the anterior horn. Misfolded SOD1 

antibodies A5C3, B8H10, C4F6 and D3H5, all raised against apo SOD1G93A protein, 

predominantly labeled motor neurons and puncta in the neuropil. Interestingly, double labelling 
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with AMF7-63 and B8H10 antibodies yielded a partial co-localization, again suggestive of two 

distinct species of misfolded SOD1. With the exception of C4F6, all of the misfolded SOD1 

antibodies indicated a pool of misfolded SOD1 is localized to the surface of spinal cord 

mitochondria. Immunolabelling and flow cytometric analysis of spinal cord mitochondria with 

both AMF7-63 and B8H10 antibodies revealed AMF7-63+ mitochondria had a larger 

mitochondrial volume, but similar superoxide levels compared to the B8H10+ subpopulation, 

implying that these antibodies recognize separate misfolded SOD1 species, with differing 

toxicities. Analysis of subpopulations of just AMF7-63+, B8H10+ or mitochondria with both 

misfolded SOD1 species, AMF7-63+B8H10+ yielded no volume difference, although 

mitochondria with AMF7-63-misfolded SOD1 on their surface had a trend toward increased 

volume. The presence of AMF7-63 alone on mitochondria cannot directly be linked to increased 

mitochondrial volume. Both AMF7-63 and B8H10-misfolded SOD1 are found in mitochondrial 

aggregates and partially co-localize with ubiquitin in SOD1G93A rat spinal cords. Differences in 

mitochondrial volume cannot be explained by incorporation of diverse misfolded species into 

aggregates. Alternatively, the size of misfolded SOD1 aggregates, solubility of misfolded SOD1 

species, or interacting partners of different misfolded SOD1 species may account for altered 

potencies. All of these elements should be investigated to better understand the differences 

between misfolded SOD1 species. 

Taken together, multiple misfolded SOD1 species converge at the mitochondria, and two 

such species correlate with increased mitochondria volume and superoxide levels. Future efforts 

should be aimed at characterizing if other misfolded species localize to the mitochondria and if 

they are also associated with damage. In the current set of studies, we have focused on 

mitochondrial volume, superoxide production and transmembrane potential, however mutant 
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SOD1 has been linked to many other aspects of mitochondrial dysfunction which have yet to be 

examined in mitochondria coated with misfolded SOD1. In addition, understanding the 

mechanisms of how misfolded SOD1 exerts its toxic effects at the mitochondria could 

potentially lead to targets for future therapies.  

Mitochondria have been implicated in non-SOD1 mediated FALS, as well as SALS, 

demonstrating the universality of mitochondria dysfunction in ALS. The protein products of the 

ALS-linked genes, TDP-43, VCP, p62, OPTN, VAPB and CHCHD10 have implicated new 

aspects of mitochondrial function in disease, including MAMs and mitophagy, which have yet 

to be explored in the context of SOD1 mutations. Finally, it is hoped that fully understanding 

the various pathways regulating mitochondrial physiology will provide crucial information for 

the development of viable therapeutics for ALS.    
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SOD1. With these tools, the fi eld has gained some 
insights as to how and where mutant SOD1 exerts 
its toxicity. Moreover, some of these very same tools 
have demonstrated potential to be utilized as vaccines 
for ALS. This review summarizes these recently 
developed reagents and focuses on how mitochon-
dria are a target for misfolded SOD1 toxicity.   

 Antibodies to misfolded SOD1 

 SOD1-containing inclusions have long been a prom-
inent point of discussion in cellular and rodent 
 models of SOD1-mediated ALS (4 ! 6). Further-
more, there have been several in vitro studies using 
recombinant SOD1 protein aimed at dissecting the 
folding and maturation pathway(s) of SOD1 so as to 
defi ne the process by which these inclusions arise 
(7 ! 10). Whether detected by immunohistochemis-
try, immunoblotting or physical chemistry methods 
in vivo or in vitro, it is now appreciated that muta-
tions in SOD1 increase the propensity for misfolded 
species of SOD1 to accumulate during the disease 
process (5). In the past few years, several new anti-
bodies have been developed to specifi cally recognize 
misfolded SOD1, a term that is meant to represent 
alternative conformers of SOD1 that have escaped 
the normal maturation process and are suspected to 
be important to ALS pathogenesis (Figure 1).  

  Introduction 

 While the majority of ALS cases do not have an 
 obvious genetic cause, 10% of all cases are domi-
nantly inherited and referred to as familial. Of these 
familial ALS cases, a proportion is due to mutations 
in the gene encoding superoxide dismutase-1 
(SOD1). More than 150 mutations in SOD1 have 
been identifi ed as causative for ALS (http://alsod.iop.
kcl.ac.uk). This large number of mutations, mostly 
single amino acid substitutions, is exceptional as 
the protein is comprised of only 153 amino acids. 
Some mutations (e.g. SOD1-G85R) signifi cantly 
alter the structure of the protein causing a loss of 
dismutase activity, while others yield a protein with 
dismutase activity at or exceeding wild-type levels 
(e.g. SOD1-G93A and SOD1-G37R). It is now 
appreciated that SOD1 mutations cause ALS by an 
unknown toxic gain of function (1,2). While many 
pathways have been proposed (reviewed recently by 
(3)), no consensus has emerged. In recent years, it 
has been recognized that a subset of SOD1 molecules 
either does not fold properly or fails to retain their 
normal structure. Collectively, the fi eld refers to these 
alternate conformations of SOD1 as misfolded and, 
generally speaking, are considered to be equivalent. 
In an effort to study these non-normal potentially 
noxious SOD1 species, many groups have developed 
antibodies designed to specifi cally detect misfolded 
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 SEDI 

 The SEDI antibody, a polyclonal antibody raised 
against an epitope that is normally inaccessible in the 
homodimer, was the fi rst antibody developed to detect 
a misfolded conformation of SOD1 (11). The SEDI 
antibody is targeted to residues 143 ! 151 of human 
SOD1 within the dimer interface. Specifi cally, using 
in vitro assays SEDI positively detects recombinant 
SOD1 protein denatured with urea or oxidized via 
hydrogen peroxide (11). However, due to the loca-
tion of the epitope within the dimer interface, SEDI is 
unable to distinguish misfolded SOD1 independent 
of monomeric forms of SOD1. This is an interesting 
caveat given that that metal-defi cient (apo) mono-
meric SOD1 could itself be toxic since apoSOD1 is 
now considered as a precursor to  aggregate formation 
(12 ! 14). Nevertheless, immunoprecipitation and 
immunohistochemistry with the SEDI antibody pro-
vided the fi rst demonstration that misfolded SOD1 
was present in the spinal cords of pre-symptomatic 
mutant SOD1 mice (11). By immunohistochemistry, 
SEDI labels SOD1 aggregates within motor neurons 
and axons of SOD1 transgenic mice (11) and within 
the hyaline  conglomerate inclusions found in spinal 

neurons of SOD1-mediated (but not non-SOD1) 
familial ALS patients (15).   

 USOD 

 A second polyclonal antibody targeted to unfolded 
SOD1, and thus referred to as USOD, was raised 
against residues 42  !  48 located within the hydro-
phobic core of the protein and includes two of the 
four histidine residues required to coordinate copper 
binding (16). USOD recognizes only highly unfolded 
SOD1 molecules, as the epitope is not accessible in 
the dimer or monomer. ELISA assays demonstrate 
the specifi city of USOD for unfolded, demetallated 
SOD1 but not for folded, metallated SOD1 (16). 
Like SEDI, USOD also labels large inclusions within 
the spinal cord motor neurons of familial SOD1 ALS 
cases (16).  

 Peptide polyclonals 

 A series of polyclonal antibodies raised against sev-
eral small peptides spanning nearly the entire SOD1 
structure have also been developed. These SOD1 
peptide antibodies are referred to by their location 

  Figure 1.     Antibodies recognizing misfolded SOD1 conformers. (A) Epitopes recognized by the various antibodies for detection of 
misfolded SOD1 antibodies are mapped to the SOD1 structure: A9G3 (burgundy), D3H5 (brown), USOD (green), B8H10 (purple), 
A5C3 and C4F6 (blue), DSE2 (yellow), SEDI (red), DSE1a (light red) and SOD1 peptide antibodies (orange). Features of the SOD1 
structure are indicated as a linear diagram:  β  strands (black), loops (pink), alpha helix (light blue), disulphide bond mediated by 
Cys57 and Cys146 (S), copper-binding residues His46, His48, His63 and His120 (red circles) and zinc-binding residues His63, 
His71, His80 and Asp83 (purple circles and square). (B and C) Three dimensional reconstructions of the SOD1 homodimer (PDB: 
2C9V) showing the locations of some of the misfolded SOD1 antibodies. Metals have been omitted for clarity.  
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 Misfolded SOD1 and ALS 3

in SOD1: residues 4  !  20, 24  !  39, 43  !  57, 57  !  72, 
80  !  96 and 131  !  153 (17). In addition, the Mark-
lund group has developed the apoSOD1 antibody 
using denatured and demetallated SOD1 as immu-
nogen (18). All of these antibodies have been shown 
to be specifi c for misfolded/denatured SOD1 in vivo, 
by either immunohistochemistry, ELISA or immu-
noblotting of human ALS patient samples (17,18). 
Collectively, the development of polyclonal antibod-
ies directed to non-native SOD1 conformers has 
been an important step in the proof-of-principle that 
non-native or misfolded forms of SOD1 exist and 
can be uniquely detected.   

 Monoclonals 

 In order to further the fi eld towards possible 
 diagnostic and/or future therapeutics premised on 
misfolded SOD1, the development of additional 
tools was needed. The Disease Specifi c Epitope 
monoclonal antibody, referred to as DSE2, detects 
misfolded SOD1 in the spinal cords and motor 
neurons of various transgenic mutant SOD1 rodent 
models (19,20). DSE2 was raised against amino 
acids 125  !  142 within the electrostatic loop which 
has increased fl exibility in the context of the mutant 
protein (21). Importantly, this epitope is normally 
inaccessible in well-folded SOD1 (21). Recently, a 
new antibody DSE1a, targeted to residues 145  !  151 
of the SOD1 dimer interface, similar to the SEDI 
epitope except with a cysteic acid replacing Cys146, 
was described (22) .

 Additional monoclonal antibodies were raised 
against human apoSOD1-G93A recombinant protein 
(23). Characterization of these reagents revealed that 
each clone possesses a varying affi nity for different 
SOD1 mutations, highlighting the potential that each 
antibody may react with a different conformation of 
misfolded SOD1 (23)  –  a point we will revisit later. 
Building on earlier data demonstrating extracellular 
secretion of mutant SOD1 (24) and an active immu-
nization approach to remove extracellular SOD1 
(25), the Julien group furthered their hypothesis using 
these reagents in a passive immunization approach. 
Specifi cally, SOD1-G93A mice passively immunized 
with D3H5, which maps to exon 2, at clinical onset 
(85 days) extended survival by six days (23). Earlier 
and longer treatments with D3H5 yielded a nine-
day extension of life span demonstrating potential 
dose dependence. Importantly, immunization with 
these antibodies resulted in a decrease in the abun-
dance of misfolded SOD1 as detected with another 
of these antibodies, B8H10 targeted to exon 3, and 
correlated well with a trend (however, not signifi -
cant) towards preservation of L5 motor axons and 
neuromuscular junctions, compared to sham controls 
(23). Notably, the correlation of reduced misfolded 
SOD1 load and improved motor neuron survival and 
function is reminiscent of an active  immunization 
approach in SOD1-G37R mice vaccinated with 

metal-free human SOD1-G93A protein. Here, 
the misfolded SOD1 monoclonal antibody, C4F6, 
raised against SOD1-G93A and mapping to residues 
80  !  118 encoded by exon 4 (26), was used to show 
that the burden of misfolded SOD1 but not total 
SOD1 levels, were reduced in vaccinated SOD1-
G37R mice (25). Collectively, these data provide sup-
port to the concept that the generation of misfolded 
SOD1 is an important element in ALS pathogenesis. 
Finally, it is curious that passive immunization with 
another antibody in the panel (A5C3) that also maps 
to exon 4, did not yield a signifi cant extension in 
survival (23). It remains unknown whether this anti-
body failed to extend survival because it was unable 
to reduce levels of misfolded SOD1 like D3H5, or 
because it reduced the levels of a benign or less toxic 
species of misfolded SOD1. This observation raises 
again the notion that perhaps not all misfolded SOD1 
conformations are the same and/or that misfolded 
SOD1 proteins are not of equal toxicity.   

 Other 

 Finally, and unexpectedly, an antibody for the 
P2X 4  adenosine triphosphate receptor recognizes a 
low molecular weight protein in the SOD1-G93A 
transgenic mice (27). Mass spectrometry and bio-
chemical characterization identifi ed this protein 
species as SOD1 and immunohistochemistry sug-
gested that this protein was preferentially present in 
neurons, but not glial cells, of mutant SOD1 mice 
(27). Most interestingly, intracerebral injection of 
this presumably misfolded SOD1 species isolated 
with the P2X 4  antibody into mouse brains caused 
robust microglial and astrocytic activation, both fea-
tures of ALS pathology (27). If the injected SOD1 
was indeed pure of any contaminant, this work is 
then actually a novel demonstration that misfolded 
SOD1 is toxic in vivo. Inspection of the sequences 
of SOD1 and P2X 4  reveals that residues 34  !  53 of 
SOD1 (residing in the hydrophobic core and thus 
buried in native SOD1) bear a high similarity to the 
P2X 4  immunizing peptide. Interestingly, this region 
includes the epitope for USOD.     

 Misfolded SOD1 without mutations? 

 One of the most exciting fi ndings in ALS research 
is the realization that wild-type human SOD1 
(SOD1-WT) may play a role in ALS pathogenesis. 
The fi rst suggestion of this came from cell culture 
experiments where neuroblastoma cells were made to 
transiently express SOD1-WT and then treated with 
hydrogen peroxide (28). Here, oxidized SOD1-WT 
was both ubiquitinated and associated with chaper-
one proteins, just as is observed for mutant SOD1 
(28). Moreover, SOD1-WT oxidized in vitro and 
then added to motor neurons cultures was found 
to induce toxicity equivalent to SOD1-G93A (28). 
This was the fi rst evidence that the SOD1-WT, if 
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misfolded, could exert toxicity equivalent to mutant 
SOD1. Since then, additional experiments have 
demonstrated that metal-depleted SOD1-WT is 
well detected by immunoprecipitation with D3H5, 
providing evidence that the structure of demetal-
lated SOD1-WT mimics that of mutant SOD1 (23). 
Most recently, Bosco et al. confi rmed that oxida-
tion of SOD1-WT with hydrogen peroxide induced 
a misfolded conformation of SOD1 that was readily 
detectable by C4F6 (26). Additional characterization 
of this misfolded SOD1 species determined it to be 
oxidized at Cys111, a free cysteine residue located at 
the surface of SOD1, that is known to be readily oxi-
dized in vitro as well as in SOD1 mice (26,29). Previ-
ous studies indicate that Cys111 plays an important 
role in stabilizing the SOD1 protein (29,30). C4F6 
recognizes exon 4 of SOD1-G93A, which is home 
to both the G93A mutation and Cys111. Together, 
the G93A mutation and the oxidation of Cys111 
create an alternate conformation for which C4F6 
has a robust affi nity (26). That oxidized/misfolded 
SOD1-WT may participate in disease pathogen-
esis was demonstrated in an in vitro transport assay 
where oxidized/misfolded recombinant SOD1-WT 
or SOD1 protein isolated directly from sporadic ALS 
patient spinal cords inhibited the axonal transport of 
membrane-bound vesicles in giant squid axoplasm. 
Signifi cantly, this effect was completely reversed by 
perfusing C4F6 into the assay (26). 

 C4F6 detects misfolded SOD1 within spinal 
cord motor neurons of approximately 40% of the 
sporadic ALS patients examined, with a complete 
absence of signal in both neurological controls and 
non-SOD1 familial ALS cases (26). It remains to be 
demonstrated if C4F6 labels SOD1-mediated famil-
ial ALS cases. However, other studies using either 
SEDI or USOD have failed to detect misfolded 
SOD1 in sporadic ALS cases by either immunohis-
tochemistry or immunoprecipitation (15,16). This 
apparent contradiction may be due to technical dif-
ferences in the fi xation and/or processing of patient 
tissue, as has been suggested (26), or could refl ect 
the possibility that more than one conformer of mis-
folded SOD1 exists. To that end, A9G3, another 
antibody produced by Julien et al. and mapping to 
exons 1 and 2 of SOD1, does not detect misfolded 
SOD1 in the same sporadic ALS case demonstrating 
robust C4F6 reactivity (26). In a separate study 

using the full panel of Marklund ' s polyclonal SOD1 
peptide antibodies described earlier, SOD1 inclu-
sions were positively detected within the soma of 
motor neurons of sporadic and familial ALS cases, 
as well as some spinal bulbar muscular atrophy 
(SBMA) patients, by both immunohistochemistry 
and immunoblot (17). However, SOD1 immunore-
active material was also found in a few neurological 
and non-neurological control patients, making it dif-
fi cult to be defi nitive in this study (17). Nevertheless, 
the idea to use a panel of antibodies that collectively 
span 80% of SOD1 sequence is a strength to this 
study, as it increases the likelihood to detect multiple 
non-native SOD1 conformations. Additional studies 
using the various misfolded SOD1 antibodies on the 
same tissue are required to more fully evaluate this 
possibility, and more patients need to be examined 
to establish the frequency of misfolded SOD1 in 
sporadic ALS. Moreover, data acquired with C4F6 
highlights that misfolded SOD1 may also exist in a 
soluble form, whereas SEDI and USOD seem to 
 preferentially label inclusions  , which are presumably 
insoluble. However, at present we summarize that 
misfolded SOD1 has been detected in sporadic ALS 
patients with the following antibodies: SOD1 pep-
tide polyclonals and C4F6, but not with A9G3, 
SEDI or USOD (Table I). That SOD1-WT exists in 
a misfolded conformation (which is shared by mutant 
SOD1) in sporadic ALS validates the utility of the 
SOD1 models both for dissection of disease mecha-
nisms and for therapeutic development with wide 
applicability to the majority of ALS cases. Future 
studies to understand ALS pathogenesis should be 
focused on identifying those mechanisms impacted 
by misfolded SOD1 conformers.   

 Mitochondria: a target of misfolded SOD1 

 The evidence presented above demonstrates that 
misfolded SOD1 can exist in non-native confor-
mations, resulting from improper folding (due to 
mutation) or aberrant post-translational modifi ca-
tions (oxidation). From these seminal observations, 
several questions ensue. Which conformation(s) of 
misfolded SOD1 confers a toxic gain of function? 
Alternatively, is there a continuum of toxic SOD1 
structures? Also, if there is more than one misfolded 
SOD1 species, do they act on the same mechanism? 

  Table I. Summary of misfolded SOD1 antibodies in post mortem human tissue.  

Antibody

Familial ALS

Sporadic ALS Controls   SOD1 Non-SOD1

SEDI Yes, 5 cases   (IHC, IP) No, 1 case   (IHC, IP) No, 13 cases   (IHC, IP) No, 4 cases   (IHC, IP)
USOD Yes (IHC) n.d. No No
SOD1 peptides Yes   (IHC) Yes   (IHC) Yes, 29 cases   (IHC) Yes, 2/44 cases with SBMA (IHC)
C4F6 n.d. No, 1 case   (IHC) Yes, 5/9 cases   (IHC) No, 17 cases   (IHC)
A9G3 n.d. n.d. No, 1 case   (IHC) n.d.

   n.d.: not determined; IHC: immunohistochemistry; IP: immunoprecipitation.   
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In an effort to answer some of these questions, we 
present recent work identifying mitochondria as a 
target of misfolded SOD1. 

 SOD1 is considered to be a primarily cytosolic 
protein. However, it has long been known that a 
small portion of SOD1 is found to be localized 
within mitochondria in certain tissues (31). Several 
studies have now reported mutant SOD1 to be asso-
ciated with mitochondria derived from spinal cords 
of both mutant SOD1 mice and SOD1-mediated 
familial ALS samples (19,32  !  34). An important 
refi nement to this observation is the demonstration 
that misfolded SOD1 has a preferential affi nity for 
mitochondria, as demonstrated by multiple antibod-
ies, which we will elaborate upon here. 

 Using the SEDI antibody, misfolded SOD1 
was detected in fractions enriched for spinal cord, 
but not liver, mitochondria isolated from all three 
main SOD1 models (SOD1-G37R, SOD1-G85R, 
and SOD1-G93A) (11). The relative amount of 
 misfolded SOD1 was particularly prominent in 
SOD1-G85R spinal cords. This mitochondrial asso-
ciated SOD1 was absent at pre-symptomatic ages 
and in age-matched SOD1-WT animals express-
ing SOD1 at comparable levels. The localization of 
misfolded SOD1 to spinal cord mitochondria was 
independently verifi ed using the DSE2 antibody 
(19). Here, misfolded SOD1 was uniquely associ-
ated with spinal cord mitochondria, but not other 
membranes from the same tissue in several trans-
genic SOD1 animals including SOD1-G85R and 
SOD1-G127X mice and SOD1-G93A and SOD1-
H46R rats (19).  Moreover, the claim of specifi c mis-
folded SOD1 association with mitochondria, rather 
than non-specifi c copelleting as had been previously 
proposed (35), was strengthened due to the use of 
buoyant density centrifugation in which mitochon-
dria are enriched via fl oatation upwards through a 
gradient to their buoyant density, rather than down-
ward  pelleting. This work also further defi ned that 
 misfolded SOD1 is associated with the cytoplasmic 
face of the mitochondrial outer membrane with 
 alkali-sensitivity properties similar to an integral 
membrane protein (19). It should be mentioned here 
that while SOD1 has also been reported to be local-
ized to the intermembrane space, (as expected) (36), 
matrix (34), and inner membrane (37), these studies 
did not focus on misfolded SOD1. Importantly, this 
study demonstrated that the mitochondrial associa-
tion of misfolded SOD1 is a common property in 
SOD1-mediated ALS rodent models. Moreover, 
the amount of mitochondrial-associated misfolded 
SOD1 was similar in all models examined despite 
broad variability in overall transgene expression lev-
els, suggesting the possibility that there is a potential 
limiting factor to this association (19). 

 So what is the limiting factor? Is there an outer 
mitochondrial protein, for example, that is in limited 
supply and for which misfolded SOD1 has a 
 particular affi nity? To this end, several groups have 

reported mitochondrial proteins that interact with 
mutant SOD1, including VDAC1 (20), Bcl-2 (33,38), 
MITOL (39), and mito-KARS (40). Of this list, an 
interaction with misfolded SOD1, as detected by 
DSE2, has been demonstrated only for VDAC1 
(voltage dependent anion channel 1), a mitochon-
drial outer membrane protein important for the 
movement of metabolites across the outer membrane 
(20). The interaction with the anti-apoptotic outer 
membrane protein Bcl-2 is potentially interesting, 
since Bcl-2 can modulate VDAC1 function (41  !  43). 
Moreover, while both wild-type and mutant SOD1 
can interact with Bcl-2, only the mutant protein 
induces a conformational change in Bcl-2 (38). The 
interaction between mutant SOD1 and MITOL, an 
E3 ubiquitin ligase anchored in the outer membrane 
that can directly ubiquitinate SOD1, was demon-
strated in a neuronal cell culture model but remains 
to be confi rmed in vivo (39). Finally, while Bcl-2, 
MITOL, and VDAC1 are all outer mitochondrial 
proteins, mito-KARS (mitochondrial lysyl-tRNA 
synthetase) is an enzyme required for protein trans-
lation that is localized internally to mitochondria, so 
its signifi cance remains unclear. Much work remains 
to identify novel interacting partners of misfolded 
SOD1 at the mitochondrial surface, and to confi rm 
the relevance of previously characterized partners in 
ALS pathology. 

 In vitro functional studies convincingly demon-
strate that the conductance properties of VDAC1 in 
spinal cord mitochondria are reduced in the  presence 
of recombinant mutant SOD1 (20). While this pro-
tein was not pre-treated so as to intentionally yield 
misfolded protein, ADP uptake into mitochondria 
was reduced, and similar results were obtained with 
mitochondria from symptomatic SOD1-G93A rats 
(20). Collectively, these experiments suggest that 
VDAC1 function is impaired by the presence of mis-
folded SOD1 and mediates its toxicity. Surprisingly, 
however, SOD1-G93A with a genetic deletion of 
VDAC1 accelerated disease onset and shortened 
survival (20). Clearly, these results demonstrate that 
misfolded SOD1 at the mitochondrial outer mem-
brane can have deleterious functional consequences 
relevant to disease initiation and/or progression, but 
additional mechanisms are expected. Furthermore, 
that a large amount of mitochondrially associated 
SOD1 persists in the spinal cords of SOD1-G93A 
on a VDAC1-null background (44) suggests that 
additional targets and mechanisms impacted by 
 misfolded SOD1 at the mitochondrial surface remain 
to be identifi ed. 

 At present, there are few studies that have reported 
on mitochondria uniquely within the motor neu-
rons. However, mitochondrial function is frequently 
considered to be intimately linked to mitochondrial 
morphology. To this end, we have recently reported 
on the morphology and distribution of motor neuron 
mitochondria in mutant SOD1 mice using a new 
transgenic reporter mouse, Hb9-MitoEGFP (45). 
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These mice have motor neuron-restricted expres-
sion of mitochondrially targeted EGFP. Using these 
mice, into which two different SOD1 mutations 
were introduced (SOD1-G37R and SOD1-G85R), 
we demonstrated that A5C3 detected misfolded 
SOD1 on motor neuron mitochondria in both ani-
mal models concurrent with the development of 
symptoms. A5C3 immunoreactivity was especially 
noted to be colocalized with axonal mitochondria 
of spinal cord axonal exit zones, descending tracts, 
and L5 ventral roots (45). The fi nding of misfolded 
SOD1 within motor neurons in this study is con-
sistent with reports of misfolded SOD1 detected 
in spinal motor neurons, as early as 30 days and 
throughout disease progression in the SOD1-G93A 
mouse model with DSE2, A5C3 and D3H5 (20,23). 
Moreover, colocalization with misfolded SOD1 to 
the mitochondria indicates that this organelle may 
play a particularly important role in motor neuron 
susceptibility to ALS. 

 Motor neuron mitochondrial morphology is 
altered in SOD1 mutants compared to controls. In 
short, mitochondria distribution within the motor 
neuron axon was markedly altered in SOD1-G37R 
mice, with major mitochondrial accumulations at 
distinct locations along the peripheral extending 
axon (45), similar to what has been reported in 
teased fi bre preparations from SOD1-G93A mice 
(46). Mitochondria from SOD1-G37R mice were 
increasingly rounded, whereas mitochondria from 
SOD1-G85R mice were more tubular and elongated 
as early as six months, which is a full six months 
before disease manifests (45). These results demon-
strate that misfolded SOD1 is localized to motor 
neuron mitochondria in vivo and mitochondrial 
morphology and connectivity is affected early within 
the course of the disease. Whether these morpho-
logical changes are due to impairment of the fi ssion/
fusion machinery remains to be determined. 

 Mitochondria have largely been accepted as one 
of the possible targets of mutant SOD1, but there is 
no consensus on how mitochondria are affected. The 
challenge is to identify what other functional defects, 
besides VDAC1 conductance and mitochondrial 

morphology, are caused by the presence of misfolded 
SOD1. Various aspects of mitochondrial dysfunction 
have been reported in ALS including mitochondria 
respiration (47,48), reactive oxygen species produc-
tion (49), calcium handling (50,51), protein import 
(44), and pro-apoptotic Bcl-2 conformational 
changes (38). Further evaluation of these pathways 
and others, with a focus on assaying only those mito-
chondria coated with misfolded SOD1, would be 
benefi cial to dissecting out the mechanisms impacted 
in ALS. Given that the forced localization of mutant 
SOD1 within the mitochondrial intermembrane 
space (and anchored to the inner membrane via 
fusion with the transmembrane domain of mitofi lin) 
was insuffi cient to recapitulate ALS-like disease in 
rodents (52), a focus on surface accumulated mis-
folded SOD1 is appropriate. In addition, developing 
strategies to block the interaction of misfolded SOD1 
with mitochondria (e.g. antibodies, blocking pep-
tides) would be useful to assess the role of misfolded 
SOD1 as a driving force in ALS pathogenesis and/
or be of therapeutic interest. We have recently vali-
dated B8H10 to label mitochondria, as detected by 
fl ow cytometry (Pickles  &  Vande Velde, unpublished). 
Thus, misfolded SOD1 at the mitochondrial surface 
can be detected by antibodies directed to exons 3  !  5 
(Table II). Further studies are required to determine 
if mitochondrially associated SOD1 can be recog-
nized by antibodies targeted to exons 1 and 2 and/
or defi ne a mitochondrial interacting domain.   

 Conclusion 

 Antibodies developed for the recognition of mis-
folded SOD1 have ushered in a new area of ALS 
research. To date four different antibodies (SEDI, 
DSE2, A5C3 and B8H10), by three methods (immu-
noprecipitation, immunofl uorescence and fl ow 
cytometry) have shown that misfolded SOD1 is 
indeed localized to the mitochondrial outer mem-
brane, and consequently affects key aspects of mito-
chondrial biology, conductance and morphology. 
It is an interesting time to refl ect on our defi nition 
of misfolded SOD1. As stated earlier, we collectively 

  Table II. Summary of misfolded SOD1 association with mitochondria.  

Misfolded SOD1 
antibody Method SOD1   Mutation Reference

SEDI Immunoprecipitation G93A
  G85R

(11)

DSE2 Immunoprecipitation
  Immunohistochemistry

G93A
  G37R
  H46R
  G85R
  G127X
  G37R

(19,20)
  (20)

A5C3 Immunohistochemistry G37R
  G85R

(45)

B8H10 Immunoprecipitation  &  
Flow cytometry

G93A
  G37R

Pickles  &  Vande Velde, 
unpublished
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refer to non-native or alternate conformations of 
SOD1 as misfolded and the fi eld largely considers 
them to all be equivalent. However, this assumption 
may be fl awed. To date, we have no evidence that the 
term  ‘ misfolded SOD1 ’  refers to a single species. 
It remains possible that some conformations may 
prove to be more toxic than others or alternatively 
toxic via different mechanisms. Moreover, the data 
summarized here suggest that perhaps multiple con-
formers do exist within a spectrum of toxic potency. 
Using the tools that are now available, there are 
many outstanding questions to be explored. Which 
SOD1 conformers are toxic? What is the origin and 
timing of noxious misfolded SOD1? At what level do 
these misfolded species elicit damage and motor 
neuron death? Also, going one step further, which of 
the collection of misfolded SOD1 antibodies detects 
the most toxic conformer(s) and thus is most useful 
for elucidating the mechanisms of SOD1 toxicity 
and the development of therapeutics? The current 
data, incorporating our new knowledge of misfolded 
SOD1, which we now know to be a component of 
both familial and sporadic disease, points once again 
to mitochondria as an important convergence point 
in ALS pathogenesis.           
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Endo-MitoEGFP mice: a novel transgenic mouse with 
fluorescently marked mitochondria in microvascular 

endothelial cells 
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Abstract

Blood vessel-specific fluorescent transgenic mice are excellent tools to study the development of the vasculature and
angiogenic processes. There is growing interest in the biological processes relevant to endothelial cells but limited
tools exist to selectively evaluate subcellular functions of this cell type in vivo. Here, we report a novel transgenic
animal model that expresses mitochondrially targeted enhanced green fluorescent protein (EGFP) via the Hb9
promoter, a homeobox transcription factor with limited known involvement in the vasculature. Random integration of
the transgene, containing the entire mouse Hb9 promoter, was found to be expressed in a variety of vascularised
tissues. Further inspection revealed that Mito-EGFP localizes to the endothelial cells (ECs) of a subset of
microvascular blood vessels, especially in the central nervous system (CNS), heart, spleen, thymus, lymph nodes
and skin. We demonstrate the utility of this novel transgenic mouse, named Endo-MitoEGFP, in the detection,
imaging, and isolation of microvascular ECs and evaluation of EC mitochondrial function isolated from adult animals.
These transgenic mice will be useful to studies of ECs in development, physiology, and pathology.
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Introduction

Transgenic reporter mice are important tools to study
biological processes. Fluorescent transgenic mice have been
previously developed to study blood vessels (Tie2-GFP) [1]
and the lymphatic system (Prox1-GFP) [2]. A recent description
of Prox1-GFP mice, a homeobox transcription factor that has
widespread CNS expression [3], was also found to have unique
expression in the lymphatic system and was excluded from
blood vascular endothelial cells [2]. These models allow for
studies in vivo, as well as the possibility for cell isolation. The
current paradigm to achieve cell-specific expression of a
reporter protein uses transcription factors, many coming from
the homeobox family. Indeed, these transcription factors often
serve as cell fate markers, however our understanding of their

expression and regulation in development or in adult tissues is
not complete. In fact many homeobox proteins with “neuronal
restricted” expression have been found to also be expressed in
other tissues and cell types [4–6].

In the current report, transgenic mice with a novel
vasculature expression pattern were created by random
integration of cDNA encoding mitochondrially targeted EGFP
under the control of the homeobox transcription factor Hb9, a
well-established specification factor for motor neurons.
Mitochondrial localization of EGFP was achieved via the
inclusion of the mitochondrial targeting sequence of a subunit
of the electron transport chain fused to EGFP. We provide
immunofluorescent, immunoblot and flow cytometric analysis of
these mice, establishing unexpectedly, the expression of EGFP
within ECs of vessels and have aptly named these mice Endo-
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MitoEGFP. We propose that the Hb9 promoter has come under
altered or previously uncharacterized regulation during random
integration of the transgene, leading to a novel expression
pattern. We predict that the isolation and evaluation of
mitochondrial function from ECs will be greatly aided by the
use of the Endo-MitoEGFP transgenic model. Moreover, this
model provides a unique opportunity to study the contribution
of mitochondria to EC development, normal physiology, and in
pathological conditions. Our data demonstrate the experimental
usefulness of this novel transgenic model.

Results and Discussion

A transgene encoding mitochondrially targeted EGFP
(MitoEGFP) expressed from the promoter of the mouse
homeobox transcription factor Hb9 was introduced via
pronuclear injection and randomly integrated into the mouse
genome as expected (Figure 1A). Hb9 is typically expressed in
post-mitotic motor neurons of the spinal cord during
development, is required for the maintenance of motor neuron
identity, and as such, is well regarded as a marker for motor
neurons [7,8]. During the initial characterization of founder mice
which genotyped positively for the transgene, it was noted that
while several founders had the expected motor neuron-
restricted expression of EGFP-labelled mitochondria [9], one
founder exhibited a unique expression profile which extended
beyond the central nervous system (CNS). Specifically,
transgene mRNA was detected at high levels in brain, spinal

cord, and heart with lesser amounts detectable in
gastrocnemius muscle, kidney, spleen and lung and was
largely absent in liver (Figure 1B). Evaluation of EGFP protein
levels revealed a similar pattern with the highest levels
detected in the brain, spinal cord, spleen, lymph nodes, thymus
and skin (Figure 1C). Modest EGFP expression was detected
in muscle, heart, lung, and intestine, but was absent by
immunoblot in liver and kidney (Figure 1C).

To determine the cell type in which EGFP protein was
expressed, we examined native EGFP expression in a panel of
tissues via confocal microscopy. During embryogenesis, EGFP
expression was detected in the motor cortical strip and spinal
cord, as expected for Hb9 (Figure 2A). However, in adult
mouse spinal cord EGFP expression was absent from motor
neurons and other spinal neurons, as evidenced by the lack of
co-localization of EGFP with NeuN or unphosphorylated
neurofilament (SMI32), pan-neuronal and motor neuron
markers, respectively (Figure 2B, 2C). EGFP expression was
also absent from astrocytes as marked with the astrocytic
marker GFAP (Figure 2D). During this initial analysis, we noted
that EGFP was expressed in a speckled pattern within
filamentous looking structures resembling blood vessels. Given
the high level of EGFP expression in the brain, heart and
spleen we examined these tissues and determined that this
pattern was reminiscent of the vascular endothelium (Figure
2E). Co-labelling with caveolin, the vessel matrix protein
laminin and EC marker p120-catenin [10,11], demonstrated
EGFP localization to the vasculature/ECs in the brain (Figure

Figure 1.  EGFP expression is not restricted to central nervous system, but is also expressed in vascularized tissues.  (A)
Schematic of pHb9-MitoEGFP transgenic construct, with mitochondrial targeting sequence of Cytochrome c Oxidase subunit VIII.
(B) RT-PCR of EGFP mRNA from a panel of tissues of transgenic (+) and non-transgenic littermates (-). Actin serves as a loading
control. (C) EGFP protein levels detected via immunoblotting in a panel of tissues isolated from transgenic (+) and non-transgenic
littermates (-). SOD1 serves as a loading control. n=3-4 animals.
doi: 10.1371/journal.pone.0074603.g001
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2F–H). EGFP was primarily localized to small parenchymal
vessels, mainly capillaries, with only modest labelling of larger
vessels and was undetectable in the ECs lining the arteries and
larger meningeal vessels.

To further prove that EGFP expression was restricted to
ECs, splenic ECs were isolated from transgenic animals and
labelled with fluorescently conjugated PECAM-1 antibody and
analyzed by flow cytometry. PECAM-1 is expressed at the
surface of ECs and is a well-recognized EC marker [12]. Two
distinct cell populations were identified based on light
scattering properties and ECs were identified by their larger
size and positive cell surface labelling for PECAM-1 (Figure
3A). Within the splenic EC population, 81.3 ± 5.8% stained
positive for PECAM-1 and 74.0 ± 10.5% of these cells also
expressed EGFP (Figure 3B), indicating that a majority of ECs
within the spleen express EGFP. While the analysis of brain
ECs by flow cytometry was not possible due to low EC yields
from brain, we did observe that EGFP was enriched in brain
EC fractions as demonstrated by immunoblotting for the
junctional protein p120 [13] (Figure 3C).

In order to verify that EGFP protein was targeted to
mitochondria as expected, mitochondria were isolated from
brain, spinal cord and spleen via differential centrifugation. As
expected, EGFP was predominately localized to fractions
enriched for mitochondria in all tissues examined (Figure 4A).
SOD1 and VDAC serve as markers for the cytosolic and
mitochondrial fractions, respectively. EGFP expression in
spleen mitochondria was also examined by flow cytometry.
Spleen homogenates, containing every cell in the spleen
including endothelial cells, were processed for mitochondrial
isolation. Mitochondria were initially selected based on size, as
reflected by forward and side light scatter (FSC, SSC), and
positive labelling with the mitochondria specific dye
MitoTracker Red (MTR) (Figure 4B). An average of 83.5 ±
4.7% of the total events collected were MTR+, and thus
mitochondria. Of these, 16.5 ± 4.1% of these events exhibited
EGFP expression (Figure 4B). To demonstrate the utility of this
model for the evaluation of endothelial mitochondrial function,
isolated spleen mitochondria were labelled with fluorescent
indicator dyes reporting on different aspects of mitochondrial
function by flow cytometry, and mitochondria that expressed
EGFP were selected for evaluation (Figure 4C). [In these
experiments, mitochondrial identity was confirmed in a
separate sample using MitoTracker Green, a dye that
selectively accumulates in mitochondria (data not shown)]. The
separation of charge across the mitochondrial inner membrane,
referred to as the mitochondrial transmembrane potential
(∆Ψm) is generated by the pumping of hydrogen atoms out of
the matrix by members of the electron transport chain. This
proton gradient is essential for the production of ATP, and thus
serves as an excellent way to evaluate mitochondrial function.
The fluorescent dye Tetramethylrhodamine, methyl ester
(TMRM) is selectively taken up by mitochondria in proportion to
the mitochondrial transmembrane potential. In our experiments,
nearly all EGFP+ spleen mitochondria are TMRM+ (89.6 ±
0.8%), as expected for healthy mitochondria (Figure 4D).
EGFP+ mitochondria also responded characteristically to
Carbonyl cyanide m-chlorophenyl hydrazone (CCCP), a

protonophore that allows the hydrogen ions to pass freely
across the inner mitochondrial membrane, thereby collapsing
the electrochemical gradient, causing depolarization and a
corresponding decrease in TMRM fluorescence.
Experimentally, this is reflected in a decreased percentage of
mitochondria (43.0 ± 4.0%) falling within the gate previously
determined by TMRM staining (Figure 4D). The mitochondrial
transmembrane potential of EGFP+ mitochondria was not
significantly different from EGFP- mitochondria within the same
sample or from non-transgenic littermate controls. Similarly, the
response to CCCP was unaltered by the presence of EGFP
(data not shown).

Mitochondria normally produce superoxide as a by-product
of oxidative phosphorylation. Mitochondrial superoxide can be
specifically measured with MitoSOX Red, which produces a red
fluorescent signal when oxidized. As expected, EGFP+

mitochondria produce superoxide (66.5 ± 2.7% fall within the
predetermined gate). An increased proportion of mitochondria
label positively with MitoSox Red when mitochondria are
treated with the complex III inhibitor antimycin A (AA; 75.2 ±
1.4%) (Figure 4E). As was observed above, a comparison of
superoxide production of EGFP+ mitochondria and EGFP-

mitochondria from non-transgenic littermate controls revealed
no statistically significant difference (data not shown). Taken
together, these mice represent a novel tool with which to
evaluate key functional features of endothelial mitochondria
isolated from vascularised tissues.

Hb9 is a well described homeobox transcription factor best
characterized for its role in motor neuron development and in
axonal pathfinding for a subset of neurons [7,14,15]. This
promoter has been extensively used to generate motor neuron
restricted EGFP expression in other transgenic models
including mice, fly, zebrafish and chick [7,14]. During the
characterization of a similarly intended transgenic line [9], we
serendipitously generated the Endo-MitoEGFP model, where
expression of EGFP within mitochondria was absent from the
intended cell type but presented with a novel microvascular
pattern consistent with expression within a subset of
endothelial cells. Although Hb9 is often considered exclusively
as a marker of motor neurons, it is well published that Hb9 is
widely expressed in the endoderm during development which
gives rise to the respiratory and digestive tubes. Furthermore,
Hb9 is essential for early differentiation of the dorsal gut
epithelium into pancreatic tissue and is also detected in
differentiated beta cells [16,17]. An early characterization of the
Hb9 transcript in human tissues reported expression in colon,
small intestine, pancreas, lymphoid tissues and a range of
hematopoetic cell lines [18]. Interestingly, Hb9 expression is
also well reported in human bone marrow, especially in CD34+

cells, and it becomes downregulated following differentiation
[18,19]. Therefore, expression of Hb9 is not solely restricted to
motor neurons and is more broadly expressed in other tissues
during development and adulthood.

The mechanism(s) which regulate Hb9 expression are not
fully understood, especially in non-motor neuron cell types [20].
Interestingly, Hb9 expression was increased 12.5 fold in
primary human endothelial cells derived from umbilical vein
following treatment with the pro-angiogenic sulfated steroid,
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Figure 2.  EGFP is expressed in endothelial cells (EC) of blood vessels.  (A) Low power magnification of 12.5 day old embryo.
Scale bar represents 250 µm. High power magnifications of lumbar spinal cord sections showing expression of EGFP (green) does
not co-localize with (B) NeuN (red), a pan-neuronal marker. (C) unphosphorylated neurofilament, SMI32 (red), a motor neuron
marker or (D) expression of the astrocyte marker GFAP (red). Scale bar represents 75 µm. (E) Higher power magnifications of brain
(left), heart (middle) and spleen (right) sections, showing EGFP expression (green) and transmitted light (DIC). Scale bar represents
25, 10 and 5 µm for the brain, heart, and spleen, respectively. Brain sections showing expression of EGFP (green), and (F) EC
marker caveolin (red), (G) matrix marker laminin (red) and (H) junctional protein p120 (red). Nuclei are marked by TOPRO-3 (blue).
Scale bar represents 15 µm (F and G) and 105 µm (H). n=2 animals.
doi: 10.1371/journal.pone.0074603.g002
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sokotrasterol, suggesting a novel role for Hb9 in endothelial cell
sprouting and/or angiogenesis [21]. In addition, it is noteworthy
that the development of the vascular and neuronal systems are
closely coupled in their genesis and branching/path formation
[22–24]. In fact, the vascular and nervous systems are the first
tissue systems specified during development [24]. The
coordinated and concomitant expression of a variety of
homeobox factors is required for angiogenesis in the CNS [22].
Homeobox factors are also required for formation of the
cardiovascular and lymphatic system. For example, several
genes in the HOX gene cluster including HOXA5, HOXA11,
HOXB1, HOXB7, and HOXC9, are expressed during the
development of the cardiac system; and Prx1 is involved in
both cardiac and lymphatic tissue development [4]. In fact,
arteries follow the path of nerves in embryonic limb skin, due to
expression of VEGF in peripheral nerves and Schwann cells
which induces arterial marker expression in endothelial cells
[25]. Ablation of peripheral nerves due to genetic deletion of
Neurogenin 1 and 2 yields defects in artery branching [25]. Isl1,
another homeobox protein is also involved in the specification
and maintenance of neuronal identities (especially motor
neurons) [26], is now also well known to be expressed during
development in the second heart field, giving rise to key
structures within the heart [5,6]. In addition, embryonic stem
cells expressing Isl1 in vitro can differentiate into cardiac
progenitors as well as endothelial cells [27], leading to
speculation that the expression of this transcription factor may
be more widespread than previously believed [28]. Indeed, a
careful characterization of Isl1 reporter mice led to the
discovery that Isl1 cells are present in the endothelium of the
aorta and in umbilical vessels [28]. Taken together, these
studies demonstrate the connection between homeobox
transcription factors, the development of the vasculature and
endothelial cells. We propose here that random integration of

the Hb9 promoter in the Endo-MitoEGFP mouse has come
under novel or previously uncharacterized regulation leading to
expression in a subset of ECs within a variety of vascularized
tissues. We speculate that like Isl1 and other homeobox
transcription factors, Hb9 may play a dual role in motor neuron
identity and development of the vascular system.

Conclusions

In summary, we report the development of Endo-MitoEGFP
mice which feature mitochondrial-restricted expression of
EGFP in microvascular ECs. These mice will be instrumental in
examining the role and function of mitochondria in EC
development, normal adult physiology, and potentially in
certain pathologies such as arthrosclerosis, diabetes, multiple
sclerosis, Alzheimer’s disease, and amyotrophic lateral
sclerosis.

Materials and Methods

Generation of transgenic mice
Animals used in this study were treated in strict accordance

to a protocol (N08001CVsr) approved by the Centre de
Recherche du Centre Hospitalier de l’Universite de Montreal
(CRCHUM) Institutional Committee for the Protection of
Animals which follows national standards as outlined by the
Canadian Council on Animal Care (CCAC). The transgenic
vector pHb9-MitoEGFP was generated by introducing the
mitochondrial targeting sequence of Cytochrome c Oxidase
subunit VIII into pHb9-EGFP (Dr. Sam Pfaff, Salk Institute) via
standard cloning techniques. Transgenic founders (from F1
C57Bl/6 parental mice) were generated by pronuclear injection
of a 10 kb NotI-PacI fragment containing pHb9-MitoEGFP. Five

Figure 3.  EGFP expression is detected in ECs via flow cytometry.  (A) Representative dot plot of ECs isolated from spleens of
transgenic mice. The EC population was selected based on size and labelling with PECAM-1. (B) The majority of splenic ECs
express EGFP and PECAM-1. (C) Western blot of brains homogenates (H), as well as soluble (S1) and insoluble (S2) fractions from
lysates of ECs isolated from CNS vessels of transgenic animals and immunoblotted for EGFP and p120. n=3 animals.
doi: 10.1371/journal.pone.0074603.g003
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founders were identified via PCR, one of which gave a staining
pattern that resembled the vasculature. These mice, referred to
as Endo-MitoEGFP, were backcrossed with C57Bl/6 for eight
generations with each generation yielding a consistent
expression pattern. Genotyping was done via PCR, using the
following primers: 5’-TCTTCTTCAAGGACGACGGCAACT-3’
and 5’-CCTTGATGCCGTTCTTCTGCTTGT-3’, as previously

described [9]. Mice with the expected motor neuron-restricted
transgene expression have been published elsewhere [9].
Animals were treated in accordance with Canadian Council for
Animal Care (CCAC) and the Centre de recherche du Centre
hospitalier de l’Université de Montréal (CRCHUM) guidelines.

Figure 4.  EGFP is expressed within mitochondria.  (A) Homogenates (H), cytosolic protein (C) and purified mitochondria (M)
were collected from the brain, spinal cord and spleen of transgenic mice and probed for EGFP via immunoblot. SOD1 and VDAC
serve as controls for cytosol and mitochondria, respectively. (B) Mitochondria were isolated from the spleens of transgenic and non-
transgenic mice. Left: Mitochondria were gated according to their light scattering properties (forward scatter, FSC; side scatter,
SSC). Middle: Gated mitochondria were stained with MitoTracker Red (MTR, black, dashed) and compared to unstained (grey,
shaded) mitochondria. Right: MTR+ mitochondria from transgenic (black, unshaded) and non-transgenic (grey, shaded) mice were
analyzed for EGFP expression. Data presented is representative of three independent experiments. (C) Mitochondria from
transgenic (black, unshaded), and non-transgenic (grey, shaded) mice were analyzed for EGFP expression. (D) The
transmembrane potential of EGFP+ mitochondria was assayed using TMRM. Mitochondria were left, unstained (grey, filled), treated
with TMRM, basal conditions (blue), or treated with the protonophore CCCP (red). (E) Mitochondrial superoxide production of EGFP
+ mitochondria, was assayed using MitoSOX Red. Mitochondria were left, unstained (grey, filled), treated with MitoSOX Red under
basal conditions (green), or treated with the complex III inhibitor Antimycin A (orange). C, D, E are from the same sample and are
representative of three independent experiments.
doi: 10.1371/journal.pone.0074603.g004
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RT-PCR
RNA was extracted using the RNAeasy kit (Qiagen) and

reverse transcribed with QuantiTect (Qiagen). Resulting cDNA
was processed for standard PCR using the following primer
sets: EGFP 5C: 5’-TCTTCTTCAAGGACGACGGCAACT-3’;
EGFP 3C: 5’-CCTTGATGCCGTTCTTCTGCTTGT-3’; β-actin
exon 5 F: 5’-CGTTGGCATCCACGAAACTA-3’; β-actin exon 6
R: 5’-AGTACTTGCGCTCAGGAGGA-3’.

Immunoblotting
Adult mice were euthanized with isofluorane and then

transcardially perfused with cold PBS prior to tissue collection.
Tissues were homogenized in 5 volumes of lysis buffer (50 mM
Tris pH 7.5, 1 mM EDTA, 150 mM NaCl, 1% NP-40, 1% SDS,
and protease inhibitors). Cleared tissue lysates (25µg), isolated
brain ECs (10µg) or mitochondrial and cytosolic fractions were
subjected to SDS-PAGE and immunoblotted with an in-house
polyclonal anti-EGFP antibody generated against the full-length
protein (Covance), SOD1 (Stressgen), VDAC (Calbiochem)
and p120 (BD Biosciences).

Immunofluorescence
Animals were transcardially perfused with 4% phosphate-

buffered paraformaldehyde (FD NeuroTechnologies). Tissues
were subsequently dissected, post-fixed for 2 hours,
cryoprotected, and then embedded in OCT (TissueTek). Ten
micron sections collected directly on slides were blocked with
3% BSA in 0.2% Triton X-100/PBS, labelled with, SMI32
(Covance), NeuN (Millipore), GFAP (DAKO) diluted in blocking
buffer. Antibodies were visualized via fluorescently conjugated
anti-mouse or anti-rabbit secondary antibodies (Texas Red;
Jackson Immunochemicals). Stainings for caveolin (Santa
Cruz), laminin (DakoCyomation), and p120 (Santa Cruz) were
done on sections from PBS-perfused mice. Slides were fixed
with cold ethanol prior to immunolabelling. Coverslips were
sealed using ProLong Antifade reagent (Invitrogen) and
analyzed with a confocal microscope (Leica SP5; 63x oil, 1.7
NA) and processed with Leica LAS AF software and/or
Photoshop CS4 (Adobe).

Isolation of splenic and brain ECs
Transgenic animals were processed as previously described

to isolate spleen and CNS vessels [13]. Briefly, tissues were
dissected, minced and homogenized. Homogenates were
washed with Hanks Balanced Salt Solution (HBSS) and
centrifuged in 30% dextran (Sigma) at 4 000 x g for 30 min. For
brains, the myelin layer was discarded and the pellet containing
the ECs was washed and processed for western blot. Cells
were lysed in 10 mM HEPES, 100 mM NaCl, 2 mM EDTA, 1%
Triton X-100, pH 7.4 with protease inhibitors, using a 21G
needle. Soluble proteins (S1) were obtained by collecting the
supernatant after centrifugation at 15 000 x g. Insoluble
fractions (S2) were resuspended in buffer with 1% SDS,
sonicated, and then centrifuged at 15 000 x g. For spleens the

pellet which contains vascular components was washed in
HBSS and processed for flow cytometry.

Isolation of mitochondria
For western blotting, mitochondria were isolated exactly as

previously described [29]. For flow cytometry, mitochondria
were isolated from spleen homogenates via differential
centrifugation (17 000 x g) in homogenizing buffer (HB: 210
mM Mannitol, 70 mM Sucrose, 10 mM Tris, 1 mM EDTA, pH
7.5).

Flow cytometry
Splenic ECs were labelled for expression of PECAM-1 at the

cell surface with monoclonal PECAM-1 APC (BD Bioscience)
or isotype control in FACS Buffer (1% Fetal Bovine Serum,
0.1% sodium azide in PBS). EC’s were first gated according to
size by light scattering properties (FSC/SSC), then PECAM-1
and EGFP expression were examined. Mitochondria (25 µg)
were labelled with MitoTrackerRed (MTR, 100 nM; Invitrogen)
to confirm mitochondrial identity in HB Buffer. Native EGFP
fluorescence was detected without antibody. For mitochondrial
functional assays, mitochondria (25 µg) were incubated in M
Buffer (220 mM sucrose, 68 mM mannitol, 10 mM KCl, 5 mM
KH2PO4, 2 mM MgCl2, 500 µM EGTA, 5 mM succinate, 2 µM
rotenone, 10 mM HEPES pH 7.2, 0.1% fatty acid-free BSA).
Tetramethylrhodamine Methyl Ester (TMRM, 100 nM;
Invitrogen) was used to assess mitochondrial transmembrane
potential (∆Ψm) and MitoSOX Red (MitoSOX, 5 µM; Invitrogen)
to quantify mitochondrial superoxide levels. The protonophore
carbonyl cyanide m-chlorophenyl hydrazone (CCCP, 100 µM;
Sigma) was used as a control for ∆Ψm measurements, and the
complex III inhibitor, Antimycin A (AA, 100 µM; Sigma) was
used as a control for mitochondrial superoxide production.
Mitochondria were gated according to light scatter, after
doublets were excluded, then EGFP+ events were selected,
and levels of TMRM and MitoSOX Red were evaluated. Dyes
and antibodies selected exhibited distinct spectral properties
with minimal to no overlap. Where necessary, compensation
was applied according to single-color control samples. ECs and
mitochondrial samples were processed on a LSR II flow
cytometer (BD Biosciences). All flow cytometry data was
analyzed with FlowJo (Treestar, Ashland, OR).
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