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Résumé

Cette these est une collection de trois articles en économie de 'information. Le premier
chapitre sert d’introduction et les Chapitres 2 a 4 constituent le coeur de 'ouvrage.

Le Chapitre 2 porte sur 'acquisition d’information sur I'Internet par le biais d’avis de
consommateurs. En particulier, je détermine si les avis laissés par les acheteurs peuvent tout
de méme transmettre de I'information a d’autres consommateurs, lorsqu’il est connu que
les vendeurs peuvent publier de faux avis a propos de leurs produits. Afin de comprendre si
cette manipulation des avis est problématique, je démontre que la plateforme sur laquelle
les avis sont publiés (e.g. TripAdvisor, Yelp) est un tiers important a considérer, autant
que les vendeurs tentant de falsifier les avis. En effet, le design adopté par la plateforme a
un effet indirect sur le niveau de manipulation des vendeurs. En particulier, je démontre
que la plateforme, en cachant une partie du contenu qu’elle détient sur les avis, peut parfois
améliorer la qualité de I'information obtenue par les consommateurs. Finalement, le design
qui est choisi par la plateforme peut étre lié a la facon dont elle génere ses revenus. Je
montre qu'une plateforme générant des revenus par le biais de commissions sur les ventes
peut étre plus tolérante a la manipulation qu’une plateforme qui génere des revenus par le
biais de publicité.

Le Chapitre 3 est écrit en collaboration avec Marc Santugini. Dans ce chapitre, nous
étudions les effets de la discrimination par les prix au troisieme degré en présence de
consommateurs non informés qui apprennent sur la qualité d’'un produit par le biais de
son prix. Dans un environnement stochastique avec deux segments de marché, nous
démontrons que la discrimination par les prix peut nuire a la firme et étre bénéfique
pour les consommateurs. D’un coté, la discrimination par les prix diminue 'incertitude
a laquelle font face les consommateurs, c.-a-d., la variance des croyances postérieures est
plus faible avec discrimination qu’avec un prix uniforme. En effet, le fait d’observer deux
prix (avec discrimination) procure plus d’information aux consommateurs, et ce, méme si
individuellement chacun de ces prix est moins informatif que le prix uniforme. De I'autre
coOté, il n’est pas toujours optimal pour la firme de faire de la discrimination par les prix
puisque la présence de consommateurs non informés lui donne une incitation a s’engager
dans du signaling. Si 'avantage procuré par la flexibilité de fixer deux prix différents est

il



contrebalancé par le cotit du signaling avec deux prix différents, alors il est optimal pour la
firme de fixer un prix uniforme sur le marché.

Finalement, le Chapitre 4 est écrit en collaboration avec Sidartha Gordon. Dans ce chapitre,
nous étudions une classe de jeux ou les joueurs sont contraints dans le nombre de sources
d’information qu’ils peuvent choisir pour apprendre sur un parametre du jeu, mais ou
ils ont une certaine liberté quant au degré de dépendance de leurs signaux, avant de
prendre une action. En introduisant un nouvel ordre de dépendance entre signaux, nous
démontrons qu’un joueur préfere de 'information qui est la plus dépendante possible de
I'information obtenue par les joueurs pour qui les actions sont soit, compléments stratégiques
et isotoniques, soit substituts stratégiques et anti-toniques, avec la sienne. De méme, un
joueur préfere de l'information qui est la moins dépendante possible de l'information
obtenue par les joueurs pour qui les actions sont soit, substituts stratégiques et isotoniques,
soit compléments stratégiques et anti-toniques, avec la sienne. Nous établissons également
des conditions suffisantes pour qu’une structure d’information donnée, information publique
ou privée par exemple, soit possible a 1’équilibre.

Mots-Clés: Apprentissage, Acquisition d’Information, Structure d’Information Endogene,
Design d’Information, Jeux de Signaling Stochastique, Discrimination par les Prix au
Troisieme Degré, Complémentarités Stratégiques, Commerce Electronique, Plateforme
Internet
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Abstract

This thesis is a collection of three essays in economics of information. Chapter 1 is a
general introduction and Chapters 2 to 4 form the core of the thesis.

Chapter 2 analyzes information dissemination on the Internet. Online platforms such as
Amazon, TripAdvisor or Yelp are now key sources of information for modern consumers.
The proportion of consumers consulting online reviews prior to purchasing a good or a
service has grown persistently. Yet, sellers have been accused of hiring shills to post fake
reviews about their products. This raises the question: Does the presence of shills make
reviews less informative? I show that the answers to this question depend on the way
the platform presents and summarizes reviews on its website. In particular, I find that
withholding information by garbling the reviews benefits information dissemination by
inducing the seller to destroy less information with manipulation. Next, I show that the
platform’s choice regarding how to present reviews hinges on its revenue source. Indeed,
a platform that receives sales commissions optimally commits to publishing information
differently from a platform that receives revenues from advertisements or from subscription
fees. Incidentally, such platforms have contrasting impacts on the amount of information
that is transmitted by reviews.

Chapter 3 is co-authored with Marc Santugini. In this chapter, we study the impact
of third-degree price discrimination in the presence of uninformed buyers who extract
noisy information from observing prices. In a noisy learning environment, it is shown that
price discrimination can be detrimental to the firm and beneficial to the consumers. On
the one hand, discriminatory pricing reduces consumers’ uncertainty, i.e., the variance of
posterior beliefs upon observing prices is reduced. Specifically, observing two prices under
discriminatory pricing provides more information than one price under uniform pricing
even when discriminatory pricing reduces the amount of information contained in each
price. On the other hand, it is not always optimal for the firm to use discriminatory pricing
since the presence of uninformed buyers provides the firm with the incentive to engage in
noisy price signaling. Indeed, if the benefit from price flexibility (through discriminatory
pricing) is offset by the cost of signaling quality through two distinct prices, then it is
optimal to integrate markets and to use uniform pricing.



Finally, Chapter 4 is co-authored with Sidartha Gordon. In this chapter, we study a class
of games where players face restrictions on how much information they can obtain on a
common payoff relevant state, but have some leeway in covertly choosing the dependence
between their signals, before simultaneously choosing actions. Using a new stochastic
dependence ordering between signals, we show that each player chooses information that
is more dependent on the information of other players whose actions are either isotonic
and complements with his actions or antitonic and substitutes with his actions. Similarly,
each player chooses information that is less dependent on the information of other players
whose actions are antitonic and complements with his actions or isotonic and substitutes
with his actions. We then provide sufficient conditions for information structures such as
public or private information to arise in equilibrium.

Keywords: Learning, Information Acquisition, Endogenous Information Structure, Infor-
mation Design, Noisy-signaling Game, Third-degree Price Discrimination, Complementari-
ties, Online Commerce, Internet Platform
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Chapter 1

Introduction



Our time can definitely be characterized as an information era. The large diffusion
of broadband access to the Internet, the increasing popularity of social networks and the
proliferation of smartphone users are, among others, some of the phenomena that promote
this tremendous production of information. As anecdotal proof, “There will be more words

on Twitter in the next two years than contained in all books ever printed.”!

Means of digital communication and the growing number of information sources should
enable economic agents to make better choices by giving them more (and better) oppor-
tunities to learn about the variables relevant to the decisions they need to make. Yet,
new problems arise and old ones persist. According to Carl Hausman, an expert in media,
society and ethics, some of the new problems created by the Digital Age are that the
increased speed of communication makes it more likely for errors to occur, that plagiarism
is difficult to define and to control, and that all the personal data scattered on the Internet

make us vulnerable to security breaches and privacy invasion.?

From an economic viewpoint, there are two issues related to the acquisition of information
and learning that are not new, but that our inter-connected world makes more acute. The
first issue concerns the asymmetric distribution of information among economic agents and
its impact on markets’ outcomes and welfare. It is true that information asymmetries have
always existed. But, diffusion of new technologies and the rise of the Big Data Era help to
feed existing inequalities and to create new ones. The second issue concerns the necessity
of choice in this vast pool of information resources. The question is not trivial as there are
generally more information sources available than what the economic agents, constrained

by time-money-ability, can actually learn from.

This thesis is a collection of three essays in economics of information that target these two
topics. In particular, the aim of these essays is to analyze how economic contexts and differ-

ent incentives shape the way individuals acquire, produce and use their information.

Chapter 2 and Chapter 3 form the first part of the thesis. In these chapters, I study
the first issue just outlined which is the asymmetric distribution of information among
economic agents. Information asymmetries are central to many economic situations and

it is important to understand how market aggregates, such as prices or market shares,

'Rudder (2014), Dataclysm: Who We Are (When We Think No One’s Looking), p.59.
2Hausman, C. (2014) Retrieved on April 13, 2015, from: http://carlhausman.com/2014/02/24/
ethical-problems-in-the-digital-era-problems-we-didnt-even-know-we-had/.



are affected by this phenomenon. Whether or not uninformed individuals can learn by
observing market aggregates, what the quality of the information they retrieve is and
how their well-being varies with the depth of asymmetries are some of the fundamental

questions to address.

In this thesis, one relevant asymmetry that I study is the one that exists between consumers
and firms. Indeed, consumers and firms are unequally informed and this gap keeps getting
larger. As proof, this Big Data Era in which we live makes it easy for firms to accumulate
tons of data on their customers and to carry out complex and extensive analysis of
this tremendous amount of information. Chapter 2 and Chapter 3, while analyzing the
functioning of markets with asymmetrically informed agents, focus particularly on theses
asymmetries among firms and consumers. The aim is to understand how informative
some observable economic variables are for consumers when some other protagonists of
that same market can influence these variables. I study two particular instances of the
phenomenon: in the first instance, I study situations where consumers learn about products
from consumer-generated content, in the second, I study situations where consumers learn

about products from their price.

More specifically, Chapter 2 is entitled Can You Trust What You Read on the Internet?
Designing Platforms to Deal with Shill Reviews and examines learning from consumer-
generated content. Prior to purchasing a good or a service, it is now common for consumers
to consult user-reviews and ratings on online platforms such as Amazon, TripAdvisor or
Yelp. Whether feedbacks on the experience of anonymous buyers actually inform consumers
is a relevant question. Indeed, the anonymity that prevails on the Internet makes it easier
to counterfeit one’s identify and to hide one’s conflict of interest. For instance, sellers can
pay individuals to post fake positive reviews about their products on the platforms with
the purpose of manipulating consumers’ beliefs. Can consumers rely on these reviews then?
In other words, does the presence of fake reviews make the reviews less informative? And
if it is the case, can we do something about it? In Chapter 2, I look into theses questions
by analyzing the informational design of these Internet platforms taking in consideration

that sellers can manipulate reviews.

In particular, I show that the informativeness of reviews does not depend only on the

presence of fake reviews, but also on the way the online platform presents reviews, that is



how it publishes and summarizes them on its website. Unsurprisingly, I find that review
manipulation can have a negative impact on the information that is disseminated to
consumers. More interesting, however, is the solution that platforms can implement to
deal with the destruction of information by fake reviews. I establish that publishing all
the reviews’ content is not systematically the design that conveys the more information
to consumers. A platform by voluntary withholding information on the reviews’ content
may improve the overall informativeness of reviews. In the end, the way the platform
chooses to present information and how it addresses the issue of review manipulation can
be linked to its source of revenues (i.e., sales commissions, advertisements or subscription
fees). Hence, my analysis shows that at least two factors, how platforms conduct business
and how sellers manipulate reviews, have a determinant impact on the consumers’ ability

to rely on reviews.

Next, the third chapter of this thesis entitled Noisy Learning and Price Discrimination:
Implications for Information Dissemination and Profits is co-authored with Marc Santugini
and analyzes a situation where consumers learn from prices. In this chapter, we investigate
the common commercial practice of third-degree price discrimination in the presence
of informational asymmetries among consumers. Third-degree price discrimination is a
practice that has gained in popularity in the Digital era with the shift from brick-and-
mortar stores to the online marketplace: it is easier for firms to accumulate information on
consumers and thus, easier to charge different prices in different consumer segments. Market
segmentation seems to advantage firms and to disadvantage consumers in the first place.
But, this is not necessarily the case. In the paper, we show that if some of the consumers
are uninformed about the characteristics of the good (which are known by the firm), then
price discrimination can be detrimental to the firm and beneficial to the consumers — a
result somewhat opposite to that known for complete information. On the one hand, we
find that it is not always more profitable for the firm to use discriminatory pricing since
the presence of uninformed buyers provides the firm with the incentive to engage in noisy
price signaling. Indeed, if the benefit from price flexibility (through discriminatory pricing)
is offset by the cost of signaling quality through two distinct prices, then it is optimal
not to segment the markets and to set the same price. On the other hand, a firm facing
two demand segments can use third price discrimination to transmit more information to

consumers. Indeed, since there are two prices for the good, uninformed consumers can



retrieve more information about the characteristic of the good. This remains true even
when discriminatory pricing reduces the amount of information contained in each price in

comparison to the amount of information contained in the uniform price.

Then, the second part of the thesis consists of Chapter 4 which is entitled Information Choice
and Diversity: The Role of Strategic Complementarities and is written in collaboration
with Sidartha Gordon. There, we analyze the process of information acquisition, that is,
how economic agents make their choice of information and what the resulting information
structure is. As mentioned before, in face of the vast pool of information sources available,
the issue of information choice arises unlike never before. Indeed, where should one obtain
his information? If individuals choose the same sources of information, then they learn
(and know) similar things, and thus, are more prone to take similar actions. If they don’t
choose the same sources of information, then coordination through decentralized markets
— whether it is desirable or not — is likely to be more difficult. This goes far beyond than
consumers buying decisions, say individuals learning about what the best car to buy is.
It extends to countries, central banks, major investors, corporations and so on. Hence,
information choices are relevant from the perspective of the agent himself, but also from
the perspective of the aggregate economy, and part of the explanation of many economics
phenomena relies on information decisions. Most models in economics assume a stylized
information structure that abstracts from the process by which individuals come to possess
some piece of information. In contrast, we study a model where the information structure
is the result of choice and not simply a given of the economy. Doing so furthers our
understanding of individual information choice when agents are interacting strategically

with each other.

When the players’ source choices are different, we could say that information in the economy
is diverse, and when the source choices are the same, then we could say that information
is rather homogenous. The objective of Chapter 4 is then to characterize the extent of
information diversity and to understand what its determinants are. This is crucial as
economies with diverse and homogenous information may differ dramatically in terms
of outcomes. More specifically, in this chapter, we study a class of games where players
face restrictions on how much information they can obtain on a common payoff relevant
state, but have some leeway in covertly choosing the dependence between their signals,

before simultaneously choosing actions. We obtain a characterization of the extent of



information diversity by providing conditions under which the player obtain information
from similar sources. In particular, we show that each player chooses information that
is more dependent on the information of other players whose actions are either isotonic
and complements with his actions or antitonic and substitutes with his actions. Similarly,
each player chooses information that is less dependent on the information of other players
whose actions are antitonic and complements with his actions or isotonic and substitutes

with his actions.

In the end, the general objective of this thesis is to further our understanding of the
impact of strategic interactions on the type of information that economic agents choose to
acquire and of the impact of information asymmetries on the outcomes of different markets.
Studying the process of information acquisition and the resulting quality of information is

crucial as information is the keystone of every decisions agents make.



Chapter 2

Can You Trust What You Read on
the Internet? Designing Platforms to
Deal with Shill Reviews



2.1 Introduction

User-generated content, such as ratings and product reviews, plays an important role in the
decision of modern consumers.! Not only do reviews guide consumers’ choices in electronic
marketplaces, they also provide information about products, such as restaurants and movies,
purchased outside the online world. Although some reviews are posted on personal blogs
and online newspapers, the bulk is posted on dedicated informational platforms. Some of
the most popular platforms are Amazon for books and electronics, Yelp for restaurants and

other local services, Expedia for hotels and TripAdvisor for hotels and restaurants.

A concern for consumers is that the credibility of reviews can be undermined by the
manipulation of reviews by sellers. Because the reviewing process is practically anonymous,
consumers have very limited information on individuals who write reviews. Consequently,
the sellers can easily hire shills® to post fake positive feedbacks for their products. Anecdotal
evidence suggests that this practice, although illegal, is common.? Sometimes, shill reviews
are easy to detect, but it is the exception rather than the rule. Most of the time, it is

4 For this reason,

difficult for consumers to distinguish a real review from a fake one.
it is commonly believed that manipulation makes it harder to extract information on

products.

This raises a series of questions: Is manipulation necessarily harmful to consumers? Could
reviews be more informative when they are manipulated? If fake reviews impair information
transmission, can we do something about it? When answering these questions, I show that

the platform hosting the reviews plays a crucial role in the analysis.

First, the platform has a role to play because it chooses how to present the reviews and

how to summarize their content on its website. For instance, a platform can display the

'Reviews have been shown to be influential in the consumers’ decision process (Chevalier and Mayzlin,
2006; Jiang and Wang, 2007; Kwark et al., 2014; Luca, 2011).

2 A shill is an accomplice of a seller who acts as an enthusiastic customer to entice or encourage others.

3For instance, some years ago, Amazon revealed the email addresses from book reviewers by mistake
and it was apparent that most of them originate from authors and publishers of the books. Fiverr.com,
a site on which individuals sold services for 5%, also contains a large number of ads offering to write
positive/negative reviews for a product of your choice. At last, 16 percent of restaurant reviews on the
platform Yelp are tagged as potentially fraudulent (Luca and Zervas, 2013).

4Li and Hitt (2008) even show that it is erroneous to deduce that a review is false because the opinion it
conveys is extreme.



entire set of consumer reviews or only a selection. It can also publish summary statistics
like the average review and the reviews’ distribution. The decision of what to publish is
a design choice for the platform.® The design is important because consumers, who are
seeking to buy a given product and who are imperfectly informed on that product, heavily
rely on the information disclosed by the platform. In this paper, I show that the rule used
to summarize content indirectly affects the informativeness of reviews by affecting the

extent of seller manipulation.

Then, the second reason why the platform is an important player is because its source of
revenues might influence its decision regarding which information design to adopt. Indeed,
what (and how much) the platform allows the consumers to learn is intricately related to
how it conducts business. In general, the platform can collect revenues in different ways
from consumers, sellers, or third parties such as advertisers. In the paper, I concentrate
on three business models that are common in the industry: revenues may come from
commissions that sellers pay after an item listed on the platform is sold, from advertisers
who buy advertising space from the platform, and finally from consumers who pay a fee to
subscribe to the platform. In this paper, I show that the platform’s business model can be

linked to its design choice and thus, to the informative content of reviews.

My analysis builds on the following model. A continuum of consumers considers buying a
product for which the quality is either high or low, but is private information of the seller.
To guide prospective consumers, it is assumed that previous buyers have left reviews of the
product on an Internet platform. More specifically, it is assumed that these reviews can be
summarized by some statistic that I call the review statistic. In order to try to increase
sales, the seller can exert effort to manipulate reviews, effort which results in an inflation
of the review statistic. It is assumed that the extent of the seller’s manipulation cannot be

verified by consumers nor by the platform.

At the heart of the analysis lies the platform’s design for presenting reviews, that is, the
signal the platform chooses to publish about the review statistic. In the current paper,
I concentrate on two design possibilities. The first possibility consists of the platform
publishing the review statistic directly. The second possibility consists of the platform

publishing only a binary label saying either that the product is “recommended” or that it is

5Throughout the paper, the design of the platform refers to functional design rather than visual design
such as aesthetic factors or layout considerations.
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“not recommended”. The product is recommended if the review statistic exceeds a certain
threshold, which is predetermined by the platform. In this case, the signal published by
the platform is coarser and is not a sufficient metric of the consumer reviews. To put it
simply, the platform has the choice to disclose all the information it holds to consumers, or

to use a coarse binary label that only partially discloses its information.
In this setting, I investigate two questions:

1. First, taking the possibility for review manipulation into account, which design

maximizes information dissemination to consumers?

2. Second, taking the possibility for review manipulation into account, which design

generates the most profits for the platform?

To address question 1., one needs to determine what the seller’s optimal level of manipulation
effort is for each design. Section 2.6 accomplishes this task while focusing on pure
manipulation strategies for the seller. In particular, it is established that if the platform is
using the design that shows the review statistic, then uniquely two outcomes can occur in
equilibrium: either the consumers completely learn the quality, or they learn nothing more
than what they already knew. Instead, if the platform is using the coarse design with the
binary label, then partial learning of the quality may also be possible in equilibrium. In
itself, this eventuality of partial learning with the binary label design does not mean much.
But, by comparing the outcome in terms of learning for the design that shows the review
statistic to the outcome for the design with the binary label, one can observe the following:
for some parameters, the design showing the review statistic is associated to no learning,
whereas the design with the binary label is associated to partial learning. This means that
the design where the platform discloses all that it knows does not systematically transfer
more information to consumers than the binary label design. Paradoxically, this implies
that the platform by voluntary withholding information (the review statistic) may improve

the overall informativeness of the reviews.

In the context of sender-receiver games, it has already been noted that more noise in a
signal (coarser signal) may lead to more information being revealed to the receiver (Blume
et al., 2007; Goltsman et al., 2009; Gordon and Nodelke, 2013; Armin, 2014). In these

papers, the mechanism at play is that noise has a strategic effect which is to induce the
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sender to reveal more information than what he otherwise would. In the current paper,
noise has a slightly different strategic effect. To see this, one need to observe first that,
contrarily to a standard signaling game, here the fake reviews (the sender’s message)
are combined with the genuine reviews (an exogenous message). This combination of
messages implies that a sender can not only produce information, but can also destroy
information. Then, in the model, it may be possible that the platform by using the coarse
design actually changes the equilibrium of the manipulation game such that the seller
destroys less information than what he otherwise would if the platform were to use the
design that directly shows the review statistic. In other words, by using the design with a
binary label instead, the platform weakens the low-quality seller’s incentives to manipulate
reviews, which is at the source of information destruction. The main reason behind the
result is that the marginal return to manipulation is smaller with the binary design than
with the design that reveals the review statistic. Another reason is that manipulation
might be more costly with the binary label design: It is necessary that a seller manipulates
the reviews to a minimum in order to reach the threshold at which the platform switches

from the “not recommended” label to the “recommended” one.

Next, the second question of the paper is related to the design that is preferred by the
platform. In particular, in Section 2.7 the design becomes an endogenous choice for the
platform. More precisely, I analyze the equilibrium of the game where the platform commits
first to a design and then the seller decides on his level of manipulation effort. My analysis
shows that a platform receiving advertising revenues can be considered as similar to a
platform receiving subscription fees in the sense that both seek to provide information
with maximal value for the consumers. A platform that receives commissions, however, is
concerned with the maximization of the number of sales, an objective that does not a priori
coincide with the maximization of information value. Thus, the analysis splits in two in
treating the case of a transactional platforms separately from a non-transactional platform.
A platform is said to be transactional when it receives revenues from sales commissions,
and non-transactional when it receives revenues from advertising or from subscription

fees.%

6For example, platforms that could be considered as transactional are Airbnb, Amazon, Etsy, and Expedia,
and platforms that could be considered as non-transactional are Angie’s List, City Search, Rotten
Tomatoes, TripAdvisor and Yelp.
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The question of the optimal design choice for a non-transactional platform can be directly
addressed using the results of the first part of the paper. In seeking to maximize the
information value, the platform may prefer to use the design that reveals the review statistic,
may prefer to use the one with the binary label, or may be indifferent between the two.
And so, because of the seller’s manipulation incentives, the platform may prefer to deprive

the consumers of information even though it cares about information quality.

The case of a transactional platform is not as straightforward, in part because one needs
to assess how the sales maximization objective relates to the value of information. In
other words, does more information translate into larger sales, at least in expectation?
Surprisingly, under some conditions the answer is no. This is because more information
could mean that there is better evidence pointing to a high quality, in which cases sales
will be high, but also that there is better evidence pointing to a low quality, in which
cases sales will be low. A transactional platform would ideally want to (but can’t) avoid
revealing information that would lead consumers to learn that product quality is low. Given
the model’s specification, it turns out that the platform prefers reviews to be completely
uninformative. Note that this last result can be seen as a special case of Kamenica
and Gentzkow (2011). That is, the platform (the sender) never benefit from transferring
information to consumers (the receiver) since its payoff function is concave in the consumers
prior beliefs. In terms of design, this implies that it is always optimal for the platform to
commit to using the binary label design with a very low threshold for recommendation so

that the label “recommended” is always published for sure.

Overall, my analysis shows that manipulation is one factor among others that can affect
how informative reviews are. Ultimately, how platforms conduct business, or more generally
their own incentives when choosing how to design information on their website, has also a

determinant impact on consumers’ ability to rely on consumer reviews.

The remainder of the paper is structured as follows. In Section 2.2, I discuss the related
literature and the contribution of the paper. The model is presented in Section 2.3, which
is followed by the definition of some important concepts in Section 2.4. In Section 2.5, as a
benchmark, I analyze the informational properties of the different designs in the absence of
manipulation. In Section 2.6, after characterizing the equilibrium of the manipulation game,

I compare the informational properties of the different designs when there is manipulation.



13

In Section 2.7 follows the analysis of the optimal design choice of the platform in relation

to its business model. Finally, Section 2.8 concludes.

2.2 Related Literature

The idea that a seller can interfere with — or at least influence — the learning process of
consumers on the Internet is relatively new, but takes root in the well established literature
on social learning. The literature has explored various ways in which sellers can affect the
information conveyed through online reviews. When consumers arrive sequentially or can
strategically decide of the date of their purchase, the sellers can influence learning with an
appropriate choice of prices (Bose et al., 2008, 2006; Bhalla, 2012; Papanastasiou and Sava,
2014; Ifrach et al., 2013; Debo et al., 2013). Other papers also explore how to optimally
determine the product launching sequence (Liu and Schiraldi, 2012; Bhalla, 2008) or the
supply decision (Bar-Isaac, 2003; Sgroi, 2002; Papanastasiou et al., 2014) to channel how
consumers learn from reviews. These papers focus on important aspects for sellers, but
omit the two-sided platform that is inherent to most electronic transactions. By contrast,
I consider the platform as a strategic agent and I abstract from the pricing and supply

decision of the seller to concentrate on his manipulation decision.

Two related issues are analyzed throughout the paper: (a) the impact of manipulation
on information dissemination and how it depends on the platform’s design, and (b) the
kind of design a platform wants to use depending on its business model for generating

revenues.

The first issue is related to the literature on costly noisy signaling (e.g., Matthews and
Mirman, 1983; Kyle, 1985; Harrington, 1986; Carlsson and Dasgupta, 1997). Indeed, since
consumers infer the quality of a seller’s product from observing reviews, manipulation is

like a noisy signaling device. In the model, signaling is noisy for two reasons.

First, the fake reviews (the seller’s message) are combined with exogenous real reviews
that are noisy because of an exogenous shock. Hence, consumers being uninformed on
quality and the realized shock on genuine reviews cannot, in general, perfectly infer quality
from the reviews they observe. That is, it is possible that, even in a separating equilibrium,

the final reviews observed by consumers convey only partial information. This echoes to
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the literature starting with Kyle (1985) or Matthews and Mirman (1983). It is worth
mentioning that the seller is also uninformed on the realized shock. Consequently, he has
imperfect control over the reviews actually observed by consumers.” Although the seller
knows how the platform transfers information to consumers, he knows only the distribution
of genuine reviews. Therefore, the seller can only conjecture the distribution of final reviews

when deciding how to manipulate.

The second reason why signaling is noisy in the model is because the platform can choose
to garble the reviews. In using the binary design, the platform adds (non-additive) noise
and sends a coarser signal of the reviews. Thus, the platform, in choosing a design, actually
makes a choice on the amount of noise that it finds optimal acknowledging the seller’s
manipulation and the consumers’ learning process. This question of the optimal level
of noise has been exploited in different contexts in sender-receiver games (e.g. Blume et
al., 2007; Goltsman et al., 2009; Armin, 2014) or in the design of search platform (Eliaz
and Speigler, 2015). Harbaugh and Rasmussen (2013) also explore the optimal level of
noise in a certification game and show that a certifying agency by using a coarse grading
scheme will maximize information. The mechanism at play is that it induces more firms
to be certified. Recently, another example is Gordon and Nédelke (2013). They analyze
a signaling model with lying cost where the sender’s message gets combined with noise
and show that noise can improve information transmission. My work differs from theirs,
not only because the type of noise is different, but also because in their case, the sender’s
message is not combined with an exogenous signal. Indeed, here, the noisy genuine reviews
(to which the sender’s message is added) act as an exogenous signal and are essential to
my results: without genuine reviews, a low-quality seller cannot mimic the high genuine
reviews and the interaction between the seller and consumers boils down to a standard

costly signaling game.

This paper is also related to the signal-jamming literature (e.g. Riordan, 1985; Fudenberg
and Tirole, 1986; Mirman et al. 1994). This stream of literature generally assumes that
firms, in order to mislead each other, manipulate prices or output by distorting them from
some myopic optimal counterparts. In the current paper, the seller manipulates reviews to

influence consumers, not his rivals.

"The fact that the seller does not perfectly control the signal is in contrast with the standard noisy signaling
literature (e.g., Heinsalu (2014) for a survey).
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To my knowledge, manipulation of consumer reviews has not been the center of many
theoretical papers. Nicollier and Ottaviani (2014), in a work in progress, propose a dynamic
game to investigate how prices, reviews and manipulation affect each other, but do not
consider the platform. Dellarocas (2006) is closest to my work and has studied manipulation
from a number of points of view, except that he does not introduce the platform and its
design choice. Dellarocas work is particularly insightful as it applies to situations with
multiple sellers. Under specific distributional assumptions for the reviews (that are not
always satisfied in my model), he shows that if sellers’ equilibrium manipulation strategies
are monotonically increasing (decreasing) in quality, then manipulation increases (decreases)
the information value of reviews to consumers. Instead of focusing on the comparison
of the information value of reviews with and without manipulation, when considering
multiple design, what becomes interesting is to compare the effect of manipulation on the
information value across the different designs. In that respect, it is in order to reiterate one
of the important results of this paper, which is to show that, when there is manipulation,
the a priori less informative design may disseminate more information in the end than the

a priori more informative design.

The second issue the paper is addressing relates to the platform’s choice of information
structure, which is generally known as information design. On that account, the Bayesian
persuasion literature is particularly relevant. Indeed, one can see the platform and
consumers’ interaction as being akin to a game of Bayesian persuasion of the like of
Kamenica and Gentzkow (2011). In the absence of review manipulation, the model can be
seen as a particular case of their Bayesian persuasion game. The platform pre-commits
to a signal rule on the reviews’ content that is passed on to consumers. Yet, my model
goes a step further by adding the seller as a third player and giving him the opportunity
to distort the signal received by consumers. An information structure with an exogenously
given information value could become less (or more) informative because of the seller’s
manipulation. Thus, this means that in order to control the information structure, the
platform needs to anticipate the direction and the extent of the seller’s distortion when

choosing the design.

Despite their practical importance, it appears that platform informational design and
review manipulation have seldom been analyzed together. Two relative exceptions are
Mayzlin et al. (2014) and Che and Horner (2014). Mayzlin et al. (2014) conduct an
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empirical analysis of manipulation by hotels and take advantage of a disparity in platform
design between Expedia and TripAdvisor regarding who can post a review. They find that
the distribution of reviews for independent hotels and their competitors tend to differ on
the two platforms and interpret this difference as a sign that TripAdvisors’ reviews are
more likely to be fraudulent. They exploit the link between the platforms’ organization and
the incentives to manipulate the reviews, but do not endogenize the design. As for Che and
Horner (2014), they analyze how a platform making product recommendations can control
information revelation to agents to incentivize their experimentation with a product. Thus,
they address the design of a recommendation platform, but leave out of their analysis the
seller and the possibility for review manipulation. Their work also differs from mine with
respect to what the platform is allowed to do. In their case, the platform can manipulate
the information published on the product, whereas in my model, the platform commits to

transfer information truthfully.

Finally, this paper is also related to a number of streams of literature in marketing
and computer science. For instance, Dai et al. (2012) consider the optimal rule for the
computation of the average reviews on Yelp to address the fact that not all reviews are
equally informative. Related to the design of online information systems are also Dinerstein
et al. (2014), Fradkin (2014), Ghose et al. (2013), Hajaj and Sarne (2013, 2014). Horton
(2014) analyzes the design of search algorithms, and Dellarocas (2005) and Li and Hitt
(2010) analyze the design of reputation systems.

2.3 Model

There are three categories of players: a seller of a product, consumers buying the product,
and an online platform (which is independent from the seller) where consumer reviews are

posted.

The game lasts for three periods, t € {0,1,2}. At date 0, the platform chooses how to
display the contents of the consumer reviews on its website. I call this choice the design
of the platform. At date 1, a generation of early consumers buys the product and, after
purchasing, post honest reviews about their experience with the product. The seller has

the opportunity to engage in review manipulation by hiring shills to post fake positive
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=0 t=1 t=2

The platform makes Early consumers leave reviews The late consumers observe
a design choice S(-) for which a statistic is « S(a+ m) and decide
whether or not to buy
The seller chooses his level of
manipulation effort m

The platform observes a + m
and publishes the signal S(a + m)

Figure 2.1: Timeline of the Game

reviews. The platform then collects real and fake reviews indistinctly and publishes a
signal about the content of the reviews according to the design chosen in ¢ = 0. At date 2,
a generation of late consumers observes the signal posted by the platform, updates beliefs
about product quality and then decides whether or not to buy the product. Figure 2.1

summarizes the timeline.

In the following, I provide the complete game description and, alongside, more details
about the seller, the consumers and the consumer reviews. The platform and its design

choice are discussed formally at the end of the section.

2.3.1 Game Description
The seller’s product has an exogenous quality of #, which is the realization of the binary
random variable § € {fy, 0.} with 0 < 0, < 0y < 1 and P(d = 0y) = q € (0,1).8 The

seller knows the realization of 6. All consumers and the platform know ¢, but not the

realization of 6.

2.3.1.1 At date 0

The platform chooses the design:

At date 0, the platform commits to a design: for any set of reviews (to be collected at

date 1) the platform is committed to publish some signal of this set. In other words,

81 adopt the following notational rules: (a) a tilde is used to distinguish a random variable from its
realization, i.e., & denotes a random variable, and z its realization, and (b) the notation P(y) is used to
denote the probability of the event y.
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the platform decides on a rule to summarize reviews on its website and cannot change it

afterward. It is assumed that this choice is common knowledge among all players.

In general, a design for the platform is a signal S that maps the consumer reviews to a
set of messages M. The platform chooses the rule S as well as the messages space M
itself. Hereafter, I use (M, S) to designate a general design, and use s to denote the
realization of a particular signal. Section 2.3.2 specifies the designs that are considered in

the paper.

2.3.1.2 At date 1

Date-1 Consumers post reviews:

For the purpose of this paper, I assume that the generating process of genuine consumer
reviews is exogenously given. I also assume that there exists some statistic «a(-) of the
consumer reviews that is informative of the product quality.” More specifically, it is
assumed that «(-) depends on the quality of the product 6 € {6;,0y}, a constant b, and a

shock A, as follows

ald) = 6+b+ A\ (2.1)

The higher the quality is, the higher is a. Moreover, the statistic a fluctuates randomly
around 6 due to the presence of a shock.'® This shock is the realization of the random
variable \ which is uniformly distributed on [—b, b], where (fg —601)/2 < b < 1—0. "

9Dellarocas (2006) and Mayzlin et al. (2014) also assume that the review process is exogenous. The
statistic a could be the average review, the number of reviews, and so on. There are two reasons why
there is no need to exactly specify what «a is. First, because the reviews process is assumed exogenous
and consequently, it does not really matter for the manipulation and design decisions. Second, because
there is some disagreement in empirical papers regarding which aspects of reviews are influential. Some
studies shows that the level of online reviews have a significant effect on sales, while other studies show
that it is the volume of reviews that significantly influence sales (See e.g. Chintagunta et al., 2010).

10T his shock to the quality & might be the result of a fluctuation in the production process. For instance,
in the category of manufactured goods, fluctuation in the quality of inputs used has an effect on the
quality of the output. In the case of service goods, variation in the staff might impact the quality of the
customer service. Ifrach and al. (2013) also suggest that this time-dependent random fluctuation could
be the result of a change in the popularity of the product across time.

HThe constraint (0 — 0)/2 < b is imposed in order to have a situation with adverse selection. See
footnote 12. The constraint b < 1 — @y is imposed such that for date-2 consumers P(@; 2 = 1]0,v;) < 1.
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Figure 2.2: The support of o(fy) and «(fr)

Thus, conditional on #, &(#) is a random variable that is uniformly distributed on [, 6 4 20].

Figure 2.2 depicts the support of the distribution of «a(-) for each possible quality.'?

The seller manipulates reviews:

At date 1, simultaneously with date-1 consumers posting reviews, the seller decides on a
level of manipulation effort in order to improve the reviews. I assume that the marginal
cost of production is independent of quality and normalized to 0 and that the product’s
price is exogenously fixed (cf. Remark 1 in Section 2.3.3). Hence the only decision that

the seller takes is how much effort to exert to manipulate reviews.

Specifically, the seller’s manipulation strategy is denoted by m(-) and is a function of the
product quality . Manipulation is assumed to have a positive linear impact on the review
statistic a.!® That is, instead of the statistic a(-) of genuine reviews, it is only the statistic
a™(-) = a(-) + m(-) that can be observed.

In the reality, manipulation is costly because the seller must pay individuals to write false
reviews, but also because it could be revealed that the seller has hired shills which would
result in some reputation costs for the seller.'* In accordance with Dellarocas (2006) and
Mayzlin et al. (2014), I assume that the cost of manipulation is quadratic in the amount
of manipulation. This implies that more false reviews are more costly. For z € {H, L}, 1

assume that the cost of the manipulation strategy m(6.,) is ¢, -m(6,)* with ¢, € (0, 1].

12 The assumption that b > (6 — 01)/2 implies that the distributions of &(fy) and &(f1) overlap on a
portion of their support so that observing a realization « is not always sufficient to recover the value of 6.

B3Mayzlin et al. (2014) and Dellarocas (2006) also analyze manipulation through its effect on some statistic
of genuine reviews and they also make the assumption that manipulation has a linear impact on this
statistic.

MMayzlin at al. (2013) provide a detailed discussion on the cost of manipulation.
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The platform publishes a signal:

Then, it is at date-1 that the platform publishes a signal about the content of the reviews
according to the design chosen at date 0. In the model, I assume that this boils down
to publishing a signal about a™. Given (M, S) is the design chosen at date 0 and
a™(-) summarizes the set of reviews it has received, the platform publishes the signal
S(a™) = s € M. Date-2 consumers will use the platform signal on o™ to learn about

product quality.

2.3.1.3 At date 2

Date-2 consumers make their buying decision:

At date 2, the seller faces a new generation of consumers. The total mass of consumers is
normalized to one, and the consumers are assumed to be heterogeneous in their taste for
the product. Specifically, the taste v; of consumer i is the realization of a random variable

0; which is uniformly distributed on [0, 1].

Date-2 consumers make a once-and-for-all decision to buy the product or not. If consumer
chooses not to buy the product, he obtains an outside option that yields zero utility. If
consumer ¢ purchases the product, he obtains a net utility, i.e., gross utility net of the price,
of 40 € {—1,1} with P(@;2 = 1|0,v;) = Ov; + b. The probability of a high utility, i.e.,

u; 2 = 1, depends, on the quality of the product 6, but also on the consumer’s type v;.

Date-2 consumers are rational Bayesian decision makers, and buy or forgo the product
on the basis of their individual taste, the signal published by the platform and their
conjectures on the seller’s manipulation.!® As the game ends at date 2, there is no need for
the late consumers to post reviews and thus no need for the seller to manipulate reviews
at date 2.

5For simplicity, it is assumed that consumers rely solely on the signal published by the platform to
update their beliefs. This is imposed to capture the following feature of the industry. Platforms provide
consumers with convenient access to a large collection of reviews, and consequently to a tremendous
amount of information. For that matter, it is not unusual for consumers to be exposed to more reviews
than they can (want to) process. Because they are competing with each others for consumers’ attention,
the platforms seek to reduce the time consumers spend browsing the reviews. To do so, the platforms
publish simple summary information about the reviews’ content. Dai et al. (2012) also argue that
because of consumer inattention, the method the platform chooses to aggregate information is especially
important.
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2.3.2 Two Simple Designs

It is now time to be more explicit on the different designs that I consider in this paper.
Given o™ is the observed review statistic, the platform needs to decide which signal to

display about o™.

The class of designs (M, S) is large as there is an infinite number of possibilities for M
and S. Therefore, I impose restrictions on the design space. Specifically, the set of feasible

designs is constrained to the following two transformations of a™(-) :

i. The first possibility for the platform is to report o™ directly. In this case, the signal
follows the rule
Sera™ = a™. (2.2)

ii. The second possibility is to publish that the product is recommended by posting a
“thumbs up” I'5 or that the product is not recommended by posting a “thumbs
down” I 2 according to the rule

s if " >T

2.3
IL2 otherwise, (2:3)

Sp(a™; T) = {
where T" > 0 is chosen by the platform. This design can be interpreted as whether or
not the platform recommends the product with 7" being the threshold for recommen-

dation.

To simplify the terminology, I refer to the design (supp(a™),S.), where supp(a™) is
the support for a™, as defined in 7. as the continuous design. I refer to the design
{1z, 2}, 5,(;T)) defined in ii. as the binary design. At last, since implementing a
design boils down to writing a computer code only, I assume that both designs are equally

costly for the platform.

2.3.3 Remarks

Before proceeding with the characterization and analysis of the equilibrium, a few comments

about the assumptions of the model are in order.
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Remark 1. The product’s price is exogenously fixed. There are two reasons for this
assumption. First, if the seller were to set its price, since he knows product quality, it would
be possible for him to signal quality through the price he chooses. This adds an unnecessary
layer of complexity to the model. Second, control over the price implies that the seller can
control the mass of consumers who buy in date-2. Thus pricing and manipulation decisions
can be considered as substitutes. I shut down the price channel so as to concentrate on the

seller’s manipulation decision.

Remark 2. In practice, review manipulation does not only consist of adding fake positive
reviews. A seller might also bribe an unsatisfied buyer to change his negative review into a
positive one, he might also try to preempt a negative review with a discount conditional on
a good review being written. Another possibility is to have some of the negative reviews
removed. Some platforms allow the sellers to dispute the negative reviews (ultimately, it
is in the platform’s discretion to remove them or not). Although these different types of

manipulation may have different costs, I do not make the distinction in the model.

Remark 3. At date 1, when choosing his manipulation strategy m(-), the seller knows the
deterministic rule used by the platform, but he does not know the realization of the shock .
That is, the seller only knows E[«(6)|6]. Since he does not know «(f), he is uncertain
about which signal realization will be published after having manipulated the reviews. It
can be said that the seller imperfectly controls the platform signal. Nevertheless, for any
realization of the shock )\, the seller is inflating the review statistic by the same amount.
In other words, the seller shifts the support of the distribution of &(#) to the right. This

new random variable is denoted by & ().

2.4 Preliminaries

2.4.1 Consumers’ Threshold

In order to simplify the exposition of a number of equations and results afterwards, I start

with the derivation of date-2 consumers’ optimal strategy.

Since all date-2 consumers have the same information (the platform’s signal) on product

quality, it is without loss of generality to restrict the consumers’ strategy to the class
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of threshold strategies. That is, if a consumer with individual preferences v chooses to
buy the product, then all consumers with individual preferences v’ > v must also find it
profitable to buy the product. In this sense, there exists © € [0, 1] such that ¢ is the type
of the consumers for which the expected utility of buying the product is equal to 0. This
optimal threshold will be a function of the signal realization, and thus, depends on the

platform design choice and the seller’s manipulation effort.

Lemma 2.1. Assume that the platform design is (M, S) and the consumers’ conjecture on
the seller’s manipulation strategy is the function m®(-). Assume further that upon observing
signal s € M, q(s,m®; (M, S)) is the posterior beliefs updated through Bayes’ rule. Then,
it is optimal for a date-2 consumer with type v; to buy the product if and only if

1—2b
2(9L + (0m — 01)q(s, me; (M, S))) |

v; > 0(s,m% (M, S9)) = (2.4)

Proof. All proofs are relegated to Appendix A.3. O]

[ refer to 9(s, m®; (M, S)) as the consumers’ threshold given the platform’s design is (M, 5),

the signal s has been observed and the manipulation strategy m¢ is conjectured.

2.4.2 The Value of Information

A recurrent theme in the paper is to determine which design between the continuous and
binary designs disseminates more information to consumers. The criterion used for the
comparison of the different designs is the value of information for date-2 consumers. The
value of information measures the extend to which consumers’ decisions are improved
by extracting information from reviews from the situation where no such reviews are

available.

Given the consumers’ threshold is 0(s, m¢; (M, S)) as given in Equation (2.4), and the
seller’s manipulation strategy is the function m(-), the value of information at date 2 for a

consumer with type v; is denoted IV;(v;, 0, m; (M, S)) and is given by

IVi(vi, 0,m;5 (M, S)) = E[ Ly, >0(30m).me ;M5 [vi; (M, S)] = B[t L, a0y 0], (2.5)
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where 0(q) is the threshold as defined in (2.4) when posterior beliefs equal prior beliefs.
This value is the difference between consumer i’s ex ante expected utility when beliefs are
updated using the platform signal and his expected utility given his prior belief ¢q. For
some consumers, the value of information will always be zero. This is the case when a
consumer makes the same decision with or without reviews, i.e., he never buys or he always

buys.

Then, the aggregate value of information for date-2 consumers is denoted by IV (0, m; (M, S))

and is

1
IV(0.m; (M.S) = [ 1Vi(w, 0,m: (M, $))dv

1

1
= /0 E[aiﬂ{viZﬁ(é(m),me;(M,S))}|Ui; (M,S)]d?]z _/() E[ﬂlﬂ{ylzﬁ(q)}]vz]dvz

In Equation (2.7), the first term can be considered as the average ex ante expected utility of
consumers. The second term can be considered as the average expected utility of consumers
given the prior belief. Notice also that this second term is independent of the platform’s

design choice.

The aggregate value of information depends on the consumers’ posterior beliefs, through
0(s(m), m; (M, S)), which in turn are influenced by the design the platform is using and
the seller’s manipulation strategy. Hereafter, when I refer to the value of information, it is
as defined in (2.7).

2.5 A Benchmark

This section provides an analysis of the informational properties of the continuous and
binary designs assuming that there is no manipulation of reviews. In addition to providing
a benchmark to which compare the designs’ informational properties when accounting
for manipulation, the case of no manipulation allows me to illustrate the updating of
consumers’ beliefs in a simple context. Sections 2.5.1.1 and 2.5.1.2 present the posterior
beliefs for the continuous and binary designs, respectively. Section 2.5.2 compares the

value of information between these two designs.

(2.6)

(2.7)
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Figure 2.3: Posterior beliefs with the continuous signal

2.5.1 Informational Properties

2.5.1.1 Continuous Design: Posterior Beliefs

When the platform uses the continuous design (assuming no manipulation), the signal
observed by the consumers is the realization of &(-) which takes a continuum of values
between 67, and 0y +2b. A very high realization allows the consumers to learn that product
quality is 0y, a very low realization allows them to learn that it is 6, but a moderate

realization does not convey any information.

Let g.(«) denote consumers’ posterior beliefs upon seeing a signal «. Given the binary
specification for product quality, g.(«) is just the bayesian updated probability that § = 0.
Then, Lemma 2.2 specifies the possible values for ¢.(«) and Figure 2.3 shows specifically

what the posterior beliefs are as a function of «f-).

Lemma 2.2. For all o € [0,0y + 2b], when the platform uses the continuous signal, the

posterior beliefs are
0, if a€|f,0n)
¢(o) =4q, if a€lfy, 0+ 20 (2.8)
1, if a€ (0, +2b,0g + 20b].

Thus, before « is realized, the posterior beliefs are the random variable §.(«) with support
{0,4,1}. To compute the value of information, one needs only to determine the probability

of the events ¢.(a) =y for y € {0,¢,1}.
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a(h)
0L 0+ 2b

a(12;T) € (0,9) a(V5;T) =1

Figure 2.4: Posterior beliefs with a binary signal
2.5.1.2 Binary Design: Posterior Beliefs

Turning next to the the binary design, it is important to notice that the consumers’
posterior beliefs depend on the signal realization, but also on the level of the threshold T'.
For any T' > 0, the signal consumers can observe takes a value in the set {lﬁé, 2 }. Upon
observing the realization I’= and the realization I2, assume that 0 ( = ;T) and gp( INERVA )

denote the posteriors beliefs, respectively.

Lemma 2.3. Assume that the platform is using the binary signal. For all threshold T > 0, if
P([@)P(lﬁ%) > 0, then the posterior beliefs are q,(1- 2;T) € [0, q] and (V& T) €q,1].

IfP(s) = 0 for some s € { I 2, 5} and P(s') = 1 for s’ # s, then the posterior beliefs are
w(s;T) = o and q(s';T) = q, where o denotes that out-of-equilibrium beliefs need to be
defined.

Figure 2.4 illustrates an example where the threshold 7" is moderately high. In this case,
consumers expect that a high quality can be fully revealed with positive probability. That
is, by seeing the realization I'Z, it is revealed that 6 = 6y, i.e., qb(lﬁé;T) = 1. They

cannot, however, expect to know that 6 = 0, for sure upon seeing the realization I3, i.e.,

a(F2:;T) € (0,9).

Once again, before « is realized, the posterior beliefs are the random variable G, (s;T)
with a support in [0,1]. To compute the value of information, one needs to obtain the
probability of the events s = K2 and s = I’2. The former occurs with probability
qGu(T) + (1 — ¢)GL(T) and the latter with probability ¢(1 — G (T)) + (1 — ¢)(1 — GL(T))
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where G,(T) is given by

GZ(T):IP’(SZ@wx):min{max{Tz_ex,O},l}, ve{LH}. (29

2.5.2 Comparison of the Two Designs

In this section, I compare the properties of the posterior beliefs for the continuous and the

binary design. From Lemma 2.2 and Lemma 2.3 follows Proposition 2.1.

Proposition 2.1. Let G.(-) and ¢,(-;T) be the random posterior beliefs when the platform
is using the continuous and the binary design with a threshold T > 0, respectively. Assume

further that P(@)P(l}@) > 0, then
a) for all a such that qe(a) = q, q.(@) < (15 T) and qe(o) > qo(B2;T);

b) P(Ge(a) € {0,1}) > P(g(s(); T) € {0,1}).

Proposition 2.1 reveals that there is an asymmetry between the two types of designs in
terms of information transmission. With the continuous design, either the consumers learn
everything or they learn nothing more than what they already knew.'® Proposition 2.1a)
establishes that when consumers learn nothing with the continuous design, i.e., g.(«a) = g,
then the platform, by using the binary design instead, would allow consumers to extract
some information by observing the signal. Besides, Proposition 2.1b) shows that the
continuous design is more likely to fully reveal product quality than the binary design.
Hence, both types of design have their advantage: With the binary design, information
is transmitted in more instances. However, with the continuous design, full revelation of

product quality is more likely.

Proposition 2.2, however, establishes that the binary design’s signal is a garbling of the
continuous design’s signal in the sense of Blackwell. In other words, the signal conveyed

by a binary design is coarser (noisier) than the signal conveyed by the continuous design.

16This hinges on the use of the uniform distribution and the identical length of the supports of a(fp) and
a(QL).
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Proposition 2.2. For all threshold T' > 0, the binary design’s signal is a garbling of the

continuous design’s signal.

Instead of computing explicitly the value of information for the binary and continuous
design, and then compare which one is greater, one can use Proposition 2.2 to determine
which design is more informative for consumers. Indeed, by Blackwell’s theorem (e.g.,
Blackwell, 1953; Crémer, 1982), Proposition 2.2 implies that the continuous design’s signal
is more informative than the binary design’s signal for all concave utility functions. Hence

it is the case for the particular utility function of the model.

2.6 The Manipulation Game

Let me now proceed with the analysis of the manipulation game. Throughout this
section, I assume that the platform has (non-strategically) committed to the design (M, S)
and that the seller needs to decide on how much effort to exert to manipulate reviews.
More specifically, while date-1 consumers are leaving a set of reviews summarized by the
random variable &, the seller with quality 6, is choosing a manipulation effort level m(6,)
for x € {L, H}. In this case, I determine the manipulation effort exerted by the seller in a

perfect Bayesian Nash equilibrium (PBE) of the game.

The section begins with the equilibrium definition in Section 2.6.1. Section 2.6.2 outlines
some results on the effect of manipulation on posterior beliefs. Section 2.6.3 and 2.6.4
establish the seller’s equilibrium manipulation effort when the design is continuous and
binary, respectively. In doing so, a series of questions is addressed. Namely, do both types
of seller necessarily manipulate reviews in equilibrium? Does a low quality seller exert
more manipulation effort? Is it possible that consumers be better off with than without
manipulation? Finally, in Section 2.6.5, I determine which design conveys more information

to consumers given the seller’s optimal manipulation effort.

2.6.1 Equilibrium Definition

The game is a Bayesian game in which the state of the world is either 85 or 0, i.e., the

possible product qualities. The design is fixed to (M, S) before the game starts. The
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consumers form beliefs on product quality given the signal realization and the strategy
played by the seller. A PBE specifies the consumers’ buying threshold 9(s) € [0, 1]
for all signal s € M and the seller’s manipulation strategy (m(6;),m(0y)) € RZ. In
equilibrium, conditional on the design used by the platform, it is required that consumers
maximize expected utility and the seller maximizes expected profits. Definition 2.1 gives

the requirements a tuple {(9(s))sem, (m(0r), m(0y))} must meet to form a PBE.
Definition 2.1. Let (M, S) be the design the platform is using. Then, the profile of pure
strategies {(@*(3))56/\4, (m*(0r), m*(QH))} is a PBE if and only if

1. At date 2, given m* = (m*(01), m*(0g))

0*(s) € inf{v € [0,1] : E[u;(v,m"; (M, S))|s] >0} Vse M; (2.10)

2. At date 1, for 0, with x € {H, L}, given (0*(s))sem such that demand is 1 — 0*(s),

]E[l _ @*(é(m*))} —em(6,)? > E{l _ @*(E(m))] — eym? (2.11)

for all m > 0, where 5(m*) is the signal sent by the platform given m*(0,) and §(m)

is the signal sent by the platform given m.
3. Date-2 consumers’ posterior beliefs are computed using Bayes’ rule, whenever possible.

Definition 2.1 specifies that Bayes’ rule must be used to compute the consumers’ posterior
beliefs whenever possible, but there are no requirements on out-of-equilibrium beliefs.
Hence, it is necessary to specify posterior beliefs when Baye’s rule is vacuous. Specific
assumptions on the beliefs off the equilibrium path are made in conjunction with the

equilibrium derivation.

2.6.2 The Effects of Manipulation on Information Dissemina-
tion

The seller with product quality 6, must choose how much effort to exert to shift the
distribution of a(f,). With a slight abuse of notation, let m, denote the manipulation
effort level for the seller with product quality 6,, for z € {H, L}. Specifically, suppose

that the consumers’ conjecture on the seller’s manipulation efforts is m¢ = (mg, m$;), such
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that consumers’ posterior beliefs upon seeing the signal s are ¢(s, m¢) and they adopt the
threshold strategy 0(s, m®) as given in (2.4). Then, the seller with product quality 6, has
to solve the following maximization problem

max E[1 — 9(3(m), m°)|0., (M, S)] — c,m?, (2.12)

m>0

taking into consideration the platform design (M, .S), how m affects the signal §(m), and

the consumers buying threshold 9(5(m), m¢).

The seller is choosing m before knowing the realization of the shock A. Thus, he expects
that a(6,) takes a value between 6, and 6, + 2b. By exerting effort to improve reviews,
the seller shifts the support of a(6,) by m,, the level of manipulation. Specifically, the

distribution for a™(6,) is

a™(0) ~ Ul +my, 0, +2b+m,]. (2.13)

As the level of manipulation effort is restricted to positive levels of m, the distribution
of a™(6,) first-order stochastically dominates the distribution of a(6,). In other words,
higher realizations of the review statistic are more likely when reviews are manipulated,
and this is why the seller expects to gain from manipulation. In fact, the reason for the
gain from manipulation depends on the seller’s type. On the one hand, a seller with a
high quality product wishes to manipulate since it allows him to pull the distribution of
a™(0y) farther away from o (1) and to separate himself from a low-quality seller. On
the other hand, a seller with a low quality product wants to manipulate because it allows
him to move the distribution of o™ () closer to the one of o (fy), and so, to mimic a

high-quality seller.

Without manipulation, higher signals are associated to a higher demand for the product.
Whether the same relation holds with manipulation, however, depends on whether the
consumers believe that a higher signal realization is associated with a higher quality. This

is the issue I now turn to by addressing the impact of manipulation on beliefs.

As sophisticated rational Bayesian agents, date-2 consumers are aware of the seller’s incen-
tives to manipulate reviews and they understand that a seller with a high quality product

manipulates reviews for a different reason than a seller with a low quality product. More
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Figure 2.5: A case ruled out in equilibrium

specifically, date-2 consumers form conjectures m¢ = (m$,mg;) about the manipulation
efforts of the seller in order to extract information on product quality contained in the

platform’s signal. In equilibrium these conjectures are correct, i.e., m¢ = (mj, m%;).

A relevant issue is then to understand how manipulation affects information dissemination.
To address this question, a first useful step is to present a feature of every pure strategy
equilibrium. Lemma 2.4 states that, even though the seller can manipulate reviews,
the nature of the information provided by the platform’s signal cannot be distorted
in equilibrium: Higher signals are always associated with a higher expected product

quality.

Lemma 2.4. Suppose that (m},mj;) is an equilibrium in pure strategies of the manipulation
game for a given design. Then, the posterior beliefs that 0 = Oy are increasing in the signal

realization. That is,

a) with the continuous design, for any realizations s,s’ € [0,1] such that s < &', if

P(s|mj,m};) > 0 and P(s'/m},mj;) > 0, we have g.(s,m*) < q.(s',m*);

b) with the binary design, if P(1'&|m%, m%) > 0 and P(pz|my, my) > 0, we have
@12, m5T) < (15, m*T).

Lemma 2.4 does not imply that the equilibrium level of manipulation has to be monotonic
in the seller’s quality type. It implies only that the support for & () cannot be farther
to the right than the support for & (0y). To understand why this situation is ruled out,
suppose that my and my, are such that the support for & (0y) and &™(0;) are as given in
Figure 2.5 and that the platform is using the continuous design. It is necessary that m; > 0

for this to happen. In this scenario, consumers associate low signal realizations to high



32

quality and high signal realizations to low quality. Then, there exists a profitable deviation
for the low-quality seller. By decreasing my, the low type economizes on manipulation
costs. Additionally, the deviation increases the low-quality seller’s expected revenues since
a part of the support of @™ () is now in the region where beliefs are that quality is high,

ie., g.(a™) = 1.

Lemma 2.4 turns out to be useful when discussing the impact of manipulation on information

dissemination.

Effect of m on the distributions’ overlap O

To analyze whether manipulation generally enhances or lessens the information conveyed
by reviews, it is useful to introduce O as the overlap of the distributions &(0r) and &(0y)
with O = 2b — (QH - QL)

To put it simply, O is the interval of values for which it is impossible to distinguish 6y
from 6. If O =0, then it is always possible to distinguish the quality type. The greater
is O, the more difficult it is to distinguish 6y from 6.

With O as the overlap without manipulation, let O™ be the overlap when the seller exerts
manipulation effort, with'”

om = (2.14)

2b— (g —0r) — (myg —my) ifOg+my <0, +20+mp <0y +2b+mpyg
{O otherwise

The level of the difference my — my then determines whether O™ is greater or smaller
than O. By comparing myg to my, one can assess the impact of manipulation on infor-
mation dissemination. If my > my, this means that @(6y) and &(6;,) have more possible
realizations in common. Therefore, we can conclude that manipulation impairs information
dissemination since the two distributions are more difficult to distinguish. If m; < my,
this means that &(0y) and &(0r) have less possible realizations in common. And so, we can
conclude that manipulation improves information dissemination since the two distributions

are easier to distinguish.

1"When 0 +myp <0y +2b+ myg < 0, + 2b+ my, the overlap is O™ = 2b + (QH — 9L> + (mH — mL).
Lemma 2.4, however, implies that this can never occur in equilibrium.
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Effect of m on the distribution of the posterior beliefs

Another way to analyze the impact of manipulation on the information conveyed by reviews
would be to examine how the mean and the variance of the posterior beliefs’ distributions

are affected by the seller’s manipulation effort.!®

Consider first the mean of the posterior beliefs. With Bayesian consumers, it is a well-know
property that the posterior beliefs have the martingale property.'® That is, the mean of
the posterior beliefs is equal to the prior beliefs: E[G.(a™, m)] = E[g(s,m;T)] = g. This is
true independently of the manipulation effort (my,my). When turning to the variance
of ¢.(a™,m) and G¢y(s,m;T), the level of my and m are, however, important. Let V(7)
denote the variance of a random variable ¢, then Proposition 2.3 characterizes the impact

of manipulation on the variance of the posterior beliefs.

Proposition 2.3. For g € {G.(a"™,m), g (s(a™,m); T)} and a pair of manipulation efforts

(mp,myg) such that Lemma 2.4 is satisfied,

0,) if 0 +myp <0y +myg <0 +2b+my, then

oV (g) ov(7)
> < 2.1
o 0 and am, = 0, (2.15)
b) if Oy +myg =0, +my, then
oV (g) ov(7)
> > .
r—— 0 and am, 0, (2.16)

c) otherwise, a marginal increase in my or in my, has no impact on the variance.

Figure 2.6 illustrates all three cases. Case a) of Proposition 2.3 applies to the situations
where the support of @™ (fy) and &™ (1) overlap, but where the support of &"(0y) is
farther to the right. Case b) illustrates situations where the supports completely overlap.
Finally, case ¢) concerns the situations where the support of &™(0y) and &™(6) do not

overlap at all.

In all cases, given that the mean of the posterior beliefs is the prior ¢, when the variance
of the posterior beliefs increases, so does the informativeness of the platform signal.

Indeed, suppose the variance is 0, then this means that posterior beliefs stays at ¢ for

18See Appendix A.2 for the effect of manipulation on posterior beliefs.
19See for instance Vives (2008), p.389.
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Figure 2.6: Illustrations of Proposition 2.3

every realization s occurring with positive probability. Hence, there is no learning at all.
Therefore, a higher variability in the beliefs is associated to higher chances to learn product

quality and so, to more information.

Proposition 2.3 implies that manipulation by a high-quality seller increases the informative-
ness of reviews. It becomes easier to distinguish between the distributions of manipulated
reviews than to distinguish between the distributions of original reviews. By contrast,
manipulation by a low-quality seller decreases the information conveyed by reviews. It
becomes more difficult to distinguish between the distributions of manipulated reviews than
to distinguish between the distributions of original reviews. The only exception is when
the two distributions overlap completely, where, in this case, an increase in manipulation

effort from any type increases information.
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So far, I have been analyzing the impact of manipulation for any given pair of efforts
(mp,myg) and not specifically the pairs that can be sustained in an equilibrium. To
completely determine how manipulation affects the information conveyed by reviews, one
could compare the posterior beliefs’ distribution at (my,my) = (0,0) to the posterior
beliefs’ distribution at an equilibrium profile (mj,mj;). With this in mind, I solve for the
equilibrium of the manipulation game for each design, that is, for the continuous design in

Section 2.6.3 and for the binary design in Section 2.6.4.

2.6.3 Continuous Design: Equilibrium of the Manipulation Game

For this section, assume that the platform commits to using the continuous design, that
is, it collects o™ and publishes it without further modification. Then, the objective is to
characterize the pair of manipulation effort levels (my, my) that can occur in a PBE of

the game.

Before presenting the equilibrium, let me discuss the specification of out-of-equilibrium
beliefs. For any pair of manipulation effort levels (mp, my), consumers can observe a
realization o € A(myp,mpy) = [0, +my, 0 +myp + 20| U [0y + my, 05 + myg + 2b], and so
it is required that out-of-equilibrium beliefs be specified for all s € [0,00) \ A(mg, my).
By Lemma 2.4, it is the case that in equilibrium 6, + m; < 0y + my, which implies
max{a: o € A(mp,my)} =0y +mpg +2b and min{a : a € A(mp,my)} =0, +my. To
simplify the analysis, I make the following refinement on admissible out-of-equilibrium
beliefs: for all s > Oy + my + 20, then P(§ = Oy|s) = 51 € [0,1], and for all s < 07, +my,
then P(0 = Oy|s) = 32 € [0,1].%°

Proposition 2.4 characterizes the pair of manipulation effort levels (my, mg) that can occur
in a PBE of the game.?!

20Lemma 2.4 does not specify the relation between 6y + my + 2b and 0y + mpy. In the case where
0 +mp +2b < 0 +mp, I assume that for all s € (0, +myp +2b,0g + mpy), P(0 = 0yls) = B3 € [0,1].

21T show in Proposition 2.7 that a PBE in mixed strategy exists in the manipulation game with the
continuous design. Here, I concentrate on PBE in pure strategies.



36

Proposition 2.4. Assume that the platform commits to using the continuous signal.
Let 0(g.(a™,m)) be the consumers’ threshold and D(q.(a™,m)) = 1 — 0(q.(a'™,m)) be
the demand for the product when the posterior beliefs are q.(a™,m). Then, a pair of
manipulation effort levels (m},m3;) is an equilibrium in pure strategy only if either a), b)
or ¢) holds, with

a) mj >0, mj; >0, such that

D - D D(g)—D
mi =0 — 0, +ml, and m} € l (ﬁlibcm @), (Q)Alb% (52)1 ,(2.17)

for x € {H,L}, where [31, s are the out-of-equilibrium belief specifications with
p1€[0,1] and 0 < 35 < q.

b) m; >0, mj; =0, such that

D(B1) — D(q) D(q) — D(B)
4bCL ’ 4bCL

my =0y —0, and m*LE[

] . (2.18)

where (1, Ba are the out-of-equilibrium belief specifications with 0 < 1 < ¢, and
0<pBy<gq.

c) my =0, mjy; >0, such that

mi; € (Qb — (0 —01), W]. (2.19)

Proof. See Appendix A.4. O

The proposition states that, given the continuous design, in an equilibrium manipulation
efforts (mj,m};) necessarily take form a), b) or ¢). Note, however, that multiple equilibria

may exist.

The focus of this section is on information dissemination. Thus, an important implication
of Proposition 2.4 concerns what the consumers’ posterior beliefs are after observation of

the platform signal given the manipulation efforts of the seller.
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Figure 2.8: Continuous Design: Consumers fully learn product quality

Corollary 2.1. Assume that the platform is using the continuous design. If (m},mj;) is

an equilibrium in pure strategies of the manipulation game and

a) (m},m3;) is as described in Proposition 2.4a) or 2.4b), then consumers learn nothing
more than what they already knew, i.e., q.(a™, m) = q for all & (-) on the equilibrium

path;

b) (m5,mly) is as described in Proposition 2.4c), then consumers fully learn product

quality, i.e., ¢.(a™,m) € {0,1} for all &™(-) on the equilibrium path.

More specifically, when consumers learn nothing, it is because the signal supports are the
same under both product qualities (see Figure 2.7). When they fully learn the quality
it is because the signal supports do not overlap at all (see Figure 2.8). In other words,
either manipulation allows the low type to obfuscate the signal completely, or manipulation

allows the high type to separate itself perfectly.

The set of necessary and sufficient conditions on parameters for which (m},m};) as
described in Proposition 2.4 are equilibria of the manipulation game are given in the proof
of Proposition 2.4 in Appendix A.4. A determinant parameter is, of course, the marginal
cost of manipulation for each type of seller. Perfect revelation of quality can occur only
if the high type seller separates itself completely from the low type seller. And so, it is

necessary that the high-quality seller manipulates the reviews to such an extent that the
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Figure 2.9: Binary Design: Five Zones for T’

low-quality seller finds it too costly to imitate him, even partially. In the other case, in
order to imitate perfectly the high type and to obfuscate the signal, the seller with a low
quality needs to manipulate a lot given that the initial support for &(6;) is farther to the
left than the initial support for @(fy). In this case, the high-quality seller continues to

manipulate because failure to do so would penalize him even more.

At last, one could remark that Proposition 2.4 rules out as an equilibrium any situations
where (mp,my) is such that the supports for @™ (6;) and &™(0y) overlap partially. The
reason is that the low quality seller always has a profitable deviation in this case (c.f.
Appendix A.4).

2.6.4 Binary Design: Equilibrium of the Manipulation Game

Consider now the case where the platform commits to using the binary signal and fixes
the threshold to some level T' > 0. The level of T jointly determines the probability that
the signals I 2 and I’ are published, and thus the probability that the demand for the

product is high or low, respectively.

In general 7' > 0, but it is useful to divide the positive real line into different subintervals
in order to organize the discussion. More specifically, I identify five zones denoted T;
to Ts where T5 = [0,0), Ta = [01,0u), Ts = [05,0L + 2b), To = [0 + 2b,0y + 2b) and
T = [0 + 2b, 00). Figure 2.9 depicts these different zones.

There exists a significant difference between the continuous and the binary designs: small

levels of manipulation do not have the same impact on the platform signal. When the
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platform chooses the continuous design, the seller, by adding fake reviews, shifts the support
for @™(0,) to the right. No matter how small the level of manipulation is, the seller knows
that it is sufficient to affect the signal realization. In other words, the distribution of &™(6,)

first-order stochastically dominates the distribution of &(6,) for any m(-) and any 6,.

In comparison, when the platform is using the binary design, it is still true that &™(6,,) first-
order stochastically dominates &(6,). Yet, it is possible that small levels of m, makes no
difference to the binary signal realization. For instance, suppose the platform’s threshold T
is such that 6, + 2b < T. This implies that without manipulation, i.e., for m, = 0, the
platform never publishes the signal I’5 when product quality is #,. Suppose next that the
seller chooses m, = ¢ instead of 0. Then, if ¢ is so small such that 6, + 2b+ ¢ < T, then
manipulation changes nothing to the platform’s signal. The probability with which the

signal realization is I'S is still 0.22

Consequently, the set of manipulation effort levels where the seller has an impact on the
platform signal has a greatest lower bound (which is not a minimum). For x € {H, L},
this greatest lower bound is denoted m,(T) = max{T — 2b — 0,,0}. Specifically, all

m, € (0,m,] yield exactly the same platform signal distribution as m, = 0.

Similarly, it is possible to define a least upper bound of manipulation effort (which is a
maximum), m,(T) = max{T — 6,,0}. Because the platform publishes the signal I'S with
probability 1 if m, > m,(T"), there is no point in choosing an effort level above m,(T).
Note that my(T) < m;(T) and My (T) < m(T) for all T.

All levels of manipulation effort m, such that m, < m,(T") or such that m, > m,(T) are
never best responses and can be eliminated from the choice set of the seller. And so, after
elimination of the strictly dominated strategies, the set of manipulation effort for a seller
with quality 6, that remains is {0} U (m,(T), m.(T)] for x € {H, L}. The value of m,(T)
and m,(T') are determined by the threshold 7. Hence the value of T' plays a crucial role in

the equilibrium analysis.

Suppose that the consumers’ conjecture on the seller’s manipulation efforts is m¢ = (m§, m%),

such that consumers’ posterior beliefs upon seeing the signal s € {IL2, lﬂé} are qy(s,m%T)

22 Another possibility where manipulation does not change the platform’s signal distribution is when the
threshold T is such that T" < 0,. In this case, there is no need to manipulate as the signal I'E is
published with certainty for the seller with type x.
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and they adopt the threshold strategy o(s,m¢) as given in (2.4). Then, the aggregate
demand is D(gy(s,m®T)) =1 — 0(s,m®). And so, the expected profits of a seller with
quality 0, are given by

—cym? + D(Qb(@ame§T))

+ min {max {9“? 20 ;bmf - 0} , 1} (D(q,,( 1’5, m;T)) — D(gy (K2, mS; T))). (2.20)

For m, € (m,(T),m,(T)), the profits are concave in m, with a local maximum at

s D(g(15,m*T)) — D(qp(1 2, m T))
¥ 4bc,,

. (2.21)

Therefore, for a seller with quality 6, the candidates for a best-response are {0, 7, m.(T")}
where 7, is given by (2.21). Hence, there are potentially up to nine pairs (m, my) of
manipulation levels that are candidates for a pure-strategy equilibrium. But, before
going further, a remark on m, is warranted. In accordance with Definition 2.1, a profile

(0" (12 ), o*( '), (m3, m*H)} where some type = chooses m} = m,(-) is an equilibrium
only if m, is the solution to

AL — D(qb(ﬁiéum$7m—zaT>> - D(qb(ﬂ@/ﬁlﬂzam—fwT))
v 4bc,, ’

(2.22)

that is, Equation (2.21) where m¢ is replace by the actual /,. Hence the value for 7, is a
fixed point of Equation (2.22).

Proposition 2.5 determines for which threshold 7" each pair (my, mg) € {0,7m.(-), M (T)} x
{0,751 (-),my(T)} can be an equilibrium of the manipulation game.?® The conditions
provided in the proposition are necessary, but they are not sufficient, i.e., if a pair is an
equilibrium, then it satisfies the conditions. The complete set of sufficient conditions, that
is the ones on the parameters (q, 0,0y, cr, cy,b), are very cumbersome and are only given
in Appendix A.5.2.24

231

show in Proposition 2.7 that a PBE in mixed strategy exists in the manipulation game for any 7" with
the binary design. Here, I concentrate on PBE in pure strategies.

2 Notice that for a given a set of parameters (q, 0,0z, cr,cr,b, T), it is possible for more than one pair
(mr,mpg) of manipulation effort levels to be an equilibrium.
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To read the proposition, let 7, (gs(s, m,T)) be the solution to (2.22). Consider further
that, for the seller with quality 6,, m.(T) denotes the maximal level of manipulation,
and that M, (gy(s,m;T)) denotes a moderate level of manipulation, that is, a level in the
interior of (m,(T),m,(T")]. Refer also to Figure 2.9 for the definition of 7; to 7s.

Proposition 2.5. Assume that the platform is using the binary design with a threshold T .
Then, a pair (mp,myg) € {0,m(-), m(T)} x {0,745 (-), my(T)} of manipulation efforts

is an equilibrium only if the threshold is as specified in the following table:

’ (mp,mpy) H 0 ‘mH(qb(s,m,T)) ‘ my(T) ‘
0 {71, 75} {71, T2} {71, T2}
mr(g(s,m,T)) | Ta (.7, Tt {0 T, T} |
m(T) Ts 0 {7, 75, T3}

The table reads as follows. Take a pair (my, mpy), say (0, g (7). Then, the pair (0, Mg (7))
is an equilibrium strategy only if the threshold 7" € {77, 72}. Note again, however, that
T € {T1, T2} is not sufficient for (0, Mg (7)) to be an equilibrium.

Let me now highlight some important features of the proposition. First, as soon as the
threshold is low enough for a seller with quality 6, to get the platform to publish the
signal I'& with probability between 0 and 1 without manipulation, then it is optimal for
this seller to always manipulate the reviews to some extent. This is because, in this case,
the greatest lower bound on the level of manipulation m, reduces to 0 and so even a small
amount of manipulation shifts the support of the platform’s signal to the right.?> This is
the case for the seller with quality 6y for T' € {75, T3} and for the seller with quality 6,
for T' € {73, T4}

Next, when T is so low such that the platform publishes the signal I’s with probability 1
even when type 6, does not manipulate, then m, = 0 is the unique optimal level for the
seller. This is the case for the seller with quality 85 when T € {74, 75} and for the seller
with quality 6;, when T € Ts.

Intuitively, it is optimal for a seller to choose the maximal level of manipulation, m,(T),

only if ¢,, the marginal cost of manipulation, is small enough. Otherwise, a seller chooses a

25 A shift of the distribution to the right is beneficial for the high-quality seller as it allows him to separate
himself from the low-quality seller. A shift of the distribution to the right is beneficial for the low-quality
seller as it allows him to mimic the high-quality seller.
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moderate level of manipulation, or no manipulation if the benefits are relatively low when
compared to the costs. I refer to cost as being sufficiently low/high without being explicit
on what the exact requirements are. Once again, refer to Appendix A.5.2 for the conditions

for the existence of a pure-strategy equilibrium for each type of manipulation pairs.

A common perception is that a low-quality seller has more incentives to manipulate the
reviews than a high-quality seller since it is the low-quality seller that wants to mimic the
reviews of the high-quality seller. The current paper shows that it is possible that the
low-quality seller manipulates more than the high-quality seller, but it is also possible that
the high-quality seller actually manipulates more than the low-quality seller. The fact that
the equilibrium manipulation levels are not necessarily monotone in the seller’s quality

type is also a feature of the continuous design.

Another (related) feature shared by the two designs is that different amounts of information
are revealed for different pairs of manipulation levels sustainable in equilibrium. Let
K,(my;T) be the probability that the platform publishes the signal IC2 when the seller’s

quality is #, and its manipulation level is m,. More specifically,

T—0,—m
K,(m,. T) = Pr(s = 1= |6,,m,.T) = mi 2% M nU gl (2
(my, T) r(s = 12 |0z, m,, T) = min {max{ 5 0} } (2.23)

The fact that conjectures are correct in equilibrium together with Bayes’ rule imply that the
posterior beliefs can be written using K, (m,,T"). More specifically, for 0 < K (mp,T) < 1
and 0 < KH(mH,T) < 1,

,m,T) = 2.24
wE ) = R T) + (L= @) Kz T) 224
(1= Kg(mg,T))

Vs, m,T) = ¢ = Kn(ma, . (295
W) = Kt 1) + 0 —q) - (= Kelmn 1)) %)

In particular, when K (mp,T) = 1, these reduce to
(b2 m,T) = ¢ R\, and ¢(I'e, m,T)=1 2.26

and when Ky(mpy,T) =1, to

¢ (1’5, mT) = a and ¢, (IK2,m,T)=0. (2.27)

g+ (1—q)(1—Kp(mg,T))
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Corollary 2.2 uses (2.24) to (2.27) to link the posterior beliefs to the manipulation effort
levels. Again, refer to Figure 2.9 for the definition of 7y to Ts.

Corollary 2.2. Assume that the platform is using the binary design with a threshold T .

If (m3,m3;) is the seller’s pure-strategy in an equilibrium of the manipulation game, then

the posterior beliefs (qy(1 2, m*,T), qb(lﬁé,m*,T)) are given in the following table:

| (my,my) | 0 \ () \ mp(T) \
0 EZZ; %2% (a,(1°2, (0,7m),T), q) (0,1)

mr(-) 0,¢) (K5, (1,0), 7)) | (@(b 2, (e, mu),T), (K5, (p,mm),T)) | (0,q) (VE, (p,mu),T))

mp(T) (0,q) 0 (o,q)

The symbol o is used to denote beliefs that are off the equilibrium path.

Two properties of the consumers’ learning trajectory need to be emphasized. First, when
both types of seller choose not to manipulate the reviews, consumers learn nothing more
than what they already knew. This happens in two types of situations: when the threshold
is so high that it is too costly to engage even in the minimal level of manipulation, and
when the threshold is so low that there is simply no need to manipulate the reviews. There
is also no learning in equilibrium as soon as the low type manipulates to its maximal effort
level m (7).

Second, for every other possible equilibrium strategy (mp, mg), consumers revise their
beliefs about product quality. In particular, it can be the case that consumers learn product
quality perfectly after observing the platform signal. That is, full separation of the quality
types is possible and it occurs when the pair (0,74(-)) is an equilibrium strategy for the
seller. This particular case is possible when the threshold is high enough such that the
low-quality seller prefers not to manipulate and the high-quality seller chooses its highest

level of manipulation effort.

2.6.5 The Design’s Impact on Information Dissemination

In order to analyze the design’s influence on the overall dissemination of information, it

is necessary to compare the consumers’ learning trajectory with a continuous design to
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the case of a binary design. Before tackling this comparison, I briefly discuss whether

manipulation jeopardizes the transmission of information to consumers.

2.6.5.1 With Manipulation versus No Manipulation

It is often advocated that a platform hosting reviews should try to eliminate manipulation
because it deteriorates information quality and is detrimental to consumers. This is a
path taken by computer scientists, among others, who try to develop algorithms to filter
out suspicious reviews (e.g., Yang et al., 2007; Ott et al., 2011). The results of Sections
2.6.3 and 2.6.4 establishes that manipulation can be eliminated in equilibrium with the
binary design only for very specific threshold levels. Indeed, unless the platform is using
the binary design with a very high or very low threshold, there is always a type of seller
that finds it optimal to exert a positive level of manipulation effort. In other words, the
only way for the platform to eliminate manipulation in my model is not to transmit any

information whatsoever.

Corollary 2.3. In equilibrium, review manipulation is completely eliminated only if the
platform uses the binary design and fizes the threshold to T € {T1,Ts}.

If T €Ty (75) and no type of seller manipulates the reviews, then the platform publishes
the signal I3 ( Iﬁé) with probability 1. In this case, the posterior beliefs are equal to the
prior so that the consumers learn nothing from the reviews and the value of information
provided by the platform is zero for all consumers. Hence, a platform that eliminates
manipulation must accept that this also comes at the price of eliminating the informative

content of reviews.

For this reason, one can argue that manipulation is not necessarily bad for information
dissemination. After all, Proposition 2.3 does state that it is the manipulation efforts of a
low quality seller that deteriorate information, not those of a high-quality seller.?® As it

turns out, it is possible that consumers learn more when the seller manipulates reviews

26Generally, manipulation of reviews is a device that can increase or decrease the amount of information
that is transmitted to consumers. The fact that informativeness can vary in both direction is due to the
presence of the genuine review which act as an exogenous signal. Without genuine reviews, information
can only be improved.
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than when he cannot. One particular instance of this result is when perfect separation of

quality types occurs in equilibrium.

Corollary 2.4. Assume that the platform is using the continuous design. Then, there exists
an open set of parameters (0r,0y,q,cr,cy,b) such that a pair (m5, m%;) of manipulation
efforts allowing for perfect revelation of quality is a perfect Bayesian equilibrium of the

manipulation game.

Assume that the platform is using the binary design. Then, there exists an open set of
parameters (01,0, q,cp,cy,b,T) with T € {T1, T2} such that a pair (m5*, mi;) of manipu-
lation efforts allowing for perfect revelation of quality is a perfect Bayesian equilibrium of

the manipulation game.

This corollary means that consumers do not necessarily make poor choices on the basis of
fake reviews. Indeed, they may end up with perfect information, and this allows them to

make the best possible decision.

2.6.5.2 Continuous Design versus Binary Design

In Section 2.5.2, the benchmark case of no manipulation is analyzed and it is noted that the
continuous design is necessarily more informative than the binary design. In this section, I
perform the same kind of analysis and compare the informational properties of the binary

and continuous design, but this time accounting for manipulation.

As noted at the end of the last section, manipulation is not necessarily bad for consumers
as it may be possible that they fully learn the product quality. The next lemma relates
this positive outcome of manipulation to the type of design that the platform is using.
In particular, it establishes that the binary design is less likely to be associated to an

equilibrium with complete learning.

Lemma 2.5. If complete learning cannot occur in equilibrium with the continuous design,

then it cannot occur with the binary design either.

From Lemma 2.5 alone, it would be tempting to conclude that the continuous design
has an advantage over the binary design in terms of information dissemination. Yet, it

remains to determine what is the information flow associated to each design when complete
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learning is not possible. Proposition 2.6 shows how the continuous design compares to the
binary design with a threshold T for all events, including events where complete learning

is impossible.

Proposition 2.6. Let & and Ep .1 be the set of equilibria in pure strategies of the manip-
ulation game with a continuous and binary design with threshold T', respectively. Moreover,
let (m§,mS$;) € Ec and (mh,mb;) € Ep.r be the elements that are associated with the highest

information value in Ec and Eg r, respectively. Then, the following situations are possible:

a) (m$,m$;) is associated to the same information value than (m%,mb;)

b) (m$,m$;) is associated to a greater information value than (m%, m%);

c) (m$,m$;) is associated to a lower information value than (m%,mb).
Cases ¢) is of particular interest because it is in direct contradiction with the result
established in Section 2.5.2. It says that, because of the seller’s manipulation efforts, the
platform can transmit more information to consumers by using the coarser signal of reviews.
To understand how this is possible, there are two effects to consider when moving from the

continuous design to the binary design: a direct effect and an indirect effect.

The Direct Effect
On the one hand, when garbling the reviews with the binary design, the platform has

a direct negative effect on the information content of the platform signal. That is, it is
possible that the realization consumers would observe with the continuous signal can reveal
perfectly product quality. But, by using a binary signal instead, the platform turns out to
only transfer partial information on product quality. Figure 2.10 depicts an instance where
the realization s would reveal that § = 8y with the continuous design, but where a binary

design with a threshold above s only transfers partial information.

The Indirect Effect
On the other hand, by garbling the reviews, the platform has an indirect effect on

information dissemination. This indirect effect operates through the seller’s strategic
choice of manipulation efforts (an effect that is inexistent in the benchmark case of no
manipulation). Proposition 2.6-¢) is true when this indirect effect is positive and over-

compensates for the direct negative effect.
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Figure 2.10: The realization s would reveal that 6 = 6y

The indirect effect has a positive impact on information dissemination if the seller is
deterred from obfuscating the reviews as much as he would otherwise if the platform
were to use the continuous signal. To see this, fix the parameters (6r,0x,q,cr,cy,b,T)
and suppose that (m$,m$;) and (m4, m%,) are equilibria in pure strategies of the game
with a continuous and binary design with threshold T, respectively. Then, by comparing
mé — mS to m% — mb one can assess which design is most detrimental to information

dissemination.

With the continuous design, when complete learning is impossible, the only other equilibrium
outcome (with pure strategies) is that nothing is learned (cf. Corollary 2.1). That is, the low-
quality seller destroys all the information and obfuscates the signal completely. Specifically,

the equilibrium manipulation efforts (m§,m$;) have the feature that m$, —mg < 0.

With the binary design, depending on the threshold 7', even though complete learning is
impossible, there may exist an equilibrium in pure strategies associated to partial learning.

The form of this equilibrium strategy is either (0,75(-)), (r(-),0), (mp(-), g (-)) or

(. (), my(T)). Each of these equilibrium candidates has the feature that m% —mf% >

c c : b b : c c
m§; —m$. Moreover, not only the difference m3, —mj can be less negative than m§, —mg,

it can even become positive. When m%, — m{ is negative but less negative than m$ — ms,

the seller is deterred to some extent from clouding the reviews. When, instead, m% — m}
becomes positive, the seller is now even incited to increase the information transmitted by

reviews.

The reason why the low type is restrained from exerting too much manipulation effort with
the binary design is that the marginal return to manipulation is smaller than with the

continuous design. Indeed, with the continuous design, consumers see the review statistic
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', which varies continuously and ranges from very low level to very high level. By exerting
effort to manipulate reviews, a low-quality seller is trading off chances that o™ () be very
low, which is associated with low posteriors, for chances that o (6;) be very high which is
associated to high posteriors. This procures the seller the largest possible marginal gain.
Figure 2.11 illustrates the gain for the low-quality seller when he deviates from my, to
m’, > my. The yellow area at the left of the figure (where posteriors are 0) is the portion
of the support for a™(f;) that is replaced by the yellow area (where posteriors are 1) at

the right of the figure following the deviation.

With the coarser binary design, consumers see only whether the product is recommended
or not, which can be seen only as a moderately good or moderately bad signal. By
exerting effort to manipulate reviews, a low-quality seller is now trading off chances to
get the signal ILz, which is associated to moderately low posteriors, for chances to get
the signal =, which is associated to moderately high posteriors. The marginal return to
manipulation is thus smaller than with the continuous design. As a result, the low-quality
seller is deterred from clouding the reviews with the binary design. Figure 2.12 illustrates
the gain for the low-quality seller when he deviates from mj, to m’ > my. The yellow area
at the left of the figure (where posteriors are g,(I-2,m;T)) is the portion of the support
for ™ (@) that is replaced by the yellow area (where posteriors are ¢,(1°5,m;T)) at the
right of the figure following the deviation.

Another aspect explaining the result is that, with the binary design, there may be a
minimum level of manipulation effort the seller needs to engage in to get over the threshold
T with some positive probability. This minimal level of manipulation implies that there
are minimal costs to incur if a seller wants to manipulate. In other words, there is a fixed

cost to pay and the higher the threshold is, the higher the fixed cost is. Of course, such



49

E 0
0+ mpy , Ou -Ii- 2b+mpy &
| | |
I | T | I
6L +mr i Or +2b+mr
< 7; ; >
R R >
a(®, m;T) € (g,1) i (&, m;T) € (¢,1)

Figure 2.12: Marginal return with the binary design

a fixed cost tempers the incentives to exert manipulation efforts for both type of sellers.
The low-quality seller, however, is penalized more severely as, even if ¢, is the same as cy,
the highest-end of his support for o™ (6;) is farther away from T. Therefore, a low-quality
seller that would want to destroy information would have to incur a much higher cost with
the binary design than with the continuous design. It can be suboptimal for him to do so

in the former case while it is not in the later.

In a nutshell, the impact of the platform design on information dissemination is the
following. Without manipulation, the continuous design always maximizes the value of
information. When manipulation is taken into account, the design that maximizes infor-
mation dissemination can differ dramatically from the one when there is no manipulation.
Indeed, if the seller can engage in manipulation, better information may be transmitted
through the binary design as it channels manipulation in such a way that less information

is destroyed.

2.7 The Platform’s Design Choice

2.7.1 The Role of the Business Model

The last section makes the important point that the design used by the platform has an

impact on the seller’s manipulation efforts and, therefore, on the quality of information
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that is conveyed to consumers. A fundamental question is then related to what the optimal
design is from the platform’s perspective. After all, a platform is not a benevolent agent

and chooses a design in order to maximize its own profits.

In this section, I link the way a platform’s revenues are generated, i.e., its business model,
to its choice of design. In particular, I focus on three business models that are common in
the industry: a platform that obtains revenues from selling advertising space on its website,
a platform that generates revenues from user-paid subscriptions, and a platform that
receives commissions from sellers.?”28:2% [ classify platforms in two categories depending
on their business model. A platform that generates revenues through sales commissions
is called a transactional platform and one that generates revenues though advertising or

subscription fees is called a non-transactional platform.

Transactional and non-transactional platforms, because they differ in their way of generating
revenues, may seek for a design with different characteristics. Consider first the case of
a non-transactional platform. One can claim that, in this case, the platform cares about
providing information with a maximal value for date-2 consumers. Indeed, the higher the
value (quality) of information for consumers, the higher the number of consumers who
visit the site and the longer they browse on the website. Thus, the platform’s ability to
attract advertisers or subscribers is positively correlated with the quality of information.3°
Therefore, it can be assumed that a non-transactional platform seeks to maximize the

value of information for consumers.

Next, consider the case of a transactional platform. If the platform collects a commission

fee on each item sold by the seller, then commissions are proportional to the number of

2"For example, the biggest revenue source for Yelp comes from local advertisers. According to Forbes, in
2014, the local ads business accounts for over 75% of Yelp’s stock value. Retrieved from http://www.
forbes.com/sites/greatspeculations/2014/02/07/yelp-earnings-revenue-growth-keeps-up/.

28 Angie’s List and Consumers’ Checkbook are examples of platforms that require the consumers to pay to
subscribe to the site to read reviews.

29The Amazon Market Place operates under the commission scheme. The sellers must pay Amazon referral
fees and selling fees. The online-marketplace Etsy, which specializes in crafts and other artistic items by
artisans, charges 3.5% of the value of the sale when an item sells. Finally, Expedia charges a fee to the
hotels for each booking.

30Gtrictly speaking, the consumers are not making the choice to visit the platform or not in the model.
But it could be argued that if the consumers expect to obtain valuable information, then they have
incentives to visit the platform’s site. If they expect, however, to learn invaluable information, it makes
sense to assume that they will turn to other learning mechanisms.
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sales. Hence it can be assumed, at least on a short-term horizon, that a transactional

platform seeks to maximize the number of sales.?!

In Section 2.7.2, I show that the information maximization objective of a non-transactional
platform and the sales maximization objective of a transactional platform drive the platform
toward completely different designs. In other words, transactional and non-transactional

platforms value the informativeness of reviews differently.

The results in Section 2.7.2 should, however, be interpreted as observations on the platform’s
incentives on a short-term horizon. Indeed, the analysis of a platform’s design choice from
a long-term perspective is complicated in at least two ways. First, one needs to account for
how the design choice in the first period influences traffic in subsequent periods. Second,
one also needs to consider that review manipulation in the first period has an impact on
the mass of consumers who buy the product, which has an effect on reviews that are left
in subsequent periods. To keep the model simple, I focus on the short-horizon case alone
and do not consider what the optimal design is when agents, including the platform, are

forward-looking.

2.7.2 A Partial Characterization of the Optimal Design

Once the design is endogenous, the platform becomes the first player to move in the game
(c.f. timeline in Figure 2.1). Its design decision is taken at the ex ante stage, that is
before o™ (-) is realized. In order to choose the design it prefers, a platform needs to answer
the following questions: Which binary design is appropriate? In other words, what is the
best level for the threshold 77 Then, is the binary design better than the continuous
design?

By moving first in the game, the platform acts as a Stackelberg leader and its design
choice influences the manipulation in which the seller engages in. Note that how the seller
manipulates reviews is independent of the platform’s business model. In particular, by

choosing the continuous design, any type of platform induces the seller to manipulate in

31Notice that maximizing the number of sales is not necessarily the same as maximizing the seller’s profits
since the latter incurs a cost for manipulating reviews. The platform, by contrast, only gets the benefits of
manipulation (if any), but does not have to incur the cost. Consequently, the seller’s and a transactional
platform’s interests are perfectly aligned only if it is impossible to manipulate the reviews.
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such a way that only two outcomes are possible: Either consumers learn product quality, or
they learn nothing (c.f. Corollary 2.1). By choosing the binary design, any type of platform
can induce the seller, through its choice of T, to adopt different levels of manipulation that
generate an array of consumer posterior beliefs, from complete learning to no learning (c.f.
Corollary 2.2).

One comment is now warranted about the platform’s optimization problem. The plat-
form can decide on what its optimal design is if and only if there exists a profile
{(9(5))sem, (mp,mpg)} (or a mixed strategy profile) that is a PBE according to Defi-
nition 2.1 when the design is continuous, as well as when it is binary for any 7. The
existence of an equilibrium, however, is not straightforward because (a) the seller’s payoff
function is not always quasi-concave, and (b) the consumers’ payoff function is discontinu-
ous for some of the seller’s strategy profile. Indeed, a discontinuity in consumers’ payoff
exists every time a pair (my, my) of manipulation efforts implies that a signal s occurs
with zero probability, a case that requires the specification of out-of-equilibrium beliefs.
Despite such discontinuities, using a result due to Reny (1999), it is possible to show that

an equilibrium exists for each design.

Proposition 2.7. For any design choice (M, S) € {(supp(am), Se), ({152, 5}, S; T))},

there exists a Perfect Bayesian Equilibrium (in mized strategies) of the manipulation game.

Yet, even with the existence issue for the manipulation game being settled such that
a mixed-strategy equilibrium for the continuous and binary design are guaranteed to
exist, a complete characterization of the platform’s optimal design remains beyond the
scope of this paper for two reasons. The first reason is that in order to compare the
informational properties of a mixed-strategy equilibrium of the continuous design to the
ones of a mixed-strategy equilibrium of the binary design, it is required to know the exact
mixed strategies which is not a straightforward task. The second reason is that multiple
equilibria of the manipulation game exist and so, to characterize the optimal design, it is
necessary to understand how the parameters affect which equilibria may arise. This issue
is also very complex and could, at best, be approached by performing extensive numerical

simulations.

In case of equilibrium multiplicity in the manipulation game for a given design, I adopt

the best-case approach of Kamenica and Gentzkow (2011) and Taneva (2014) and select
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the equilibrium which yields the highest expected payoffs to the platform. That is, the
one that maximizes the value of information in the case of a non-transactional platform
and the one that maximizes the expected number of sales in the case of a transactional

platform. The platform’s problem can then be summarized by the following steps:

1) Take the continuous design. Then, characterize the set of all (9(-), (mr, my)) that can
be sustained in a PBE of the manipulation game. In case of equilibrium multiplicity,

select (the) one that maximizes the platform’s expected payoff.

2) Fix T € [0,7] and take the binary design.®? Then, characterize the set of all
(0(+), (mr, mp)) that can be sustained in a PBE of the manipulation game. In case
of equilibrium multiplicity, select (the) one that maximizes the platform’s expected

payoff.
3) Repeat Step 2) for all T € [0,7].%

4) Among all (9(-), (mp, mg)) identified in steps 1), 2) and 3), select (the) one design
that is associated to a pair (0(-), (mr, mpy)) for which the expected value of the

platform’s objective function is maximal.
The complete definition of an equilibrium can be found in Appendix A.1.

Although I do not provide a complete characterization of the platform’s optimal design,
some interesting features of this choice can still be presented, particularly by contrasting

the choice of a transactional platform to the choice of a non-transactional platform.

2.7.2.1 Transactional Platform

In Section 2.7.1, it is argued that a transactional platform’s objective is the maximization
of sales. In contrast to the case of a non-transactional platform, a transactional platform’s

objective is not stated in terms of preference in information provision. Thus, this raises

32For all T > T, the only equilibrium of the manipulation game is (mz, mg) = (0,0). More specifically,

T = max{Ty, Ty} where T, = max{\/1/cy + 01,1/8bcy, + 0y, + 2b} for x € {L, H}.

33There is no need to check for T' > T since, in this case, the only equilibrium of the manipulation game
is (mz,my) = (0,0). This implies that the outcome for a threshold T' > T' can be reproduce with the

binary design with a threshold 7".
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the question of whether or not such a platform benefits from providing information to

consumers.

In order to determine what a transactional platform’s preferences regarding information
provision are, I use one of the results of Kamenica and Gentzkow (2011) about Bayesian
persuasion. Indeed, the question of how much information the platform wants to transfer
to consumers is akin to the question Kamenica and Gentzkow ask about conditions under
which a Sender benefits from persuading a Receiver. Remark 1 in their paper is specifically
relevant. Indeed, reinterpreted in the context of my model, their remark implies that a
platform never benefits from transferring information to consumers if its expected revenues
are concave in the consumers prior beliefs. It turns out that given the model’s specific

assumptions, expected revenues for a transactional platform are concave in the prior q.

Proposition 2.8. A transactional platform does not benefit from transferring information
to consumers. That is, its expected revenues are at their highest when the posterior beliefs are

equal to the prior beliefs and at their lowest when consumers obtain complete information.

The fact that consumers have the opportunity to fully learn product quality when there
is manipulation does not benefit the platform. In fact, perfect revelation of quality is
the worst possible scenario for a transactional platform. That is, any other posterior
beliefs that are possible given the seller’s optimal strategy, according to Corollary 2.1 or to

Corollary 2.2, would generate more revenues for the platform.

There are three specific designs that produce the no-learning equilibrium outcome in the
manipulation subgame: (a) by using the binary design and setting a threshold 7" < 6,
(b) by using the binary design and setting a threshold 7' > 6y + 2b and (c) by using the
continuous design so that a low-quality seller exerts manipulation effort g — 0 + my,
where my is the high-quality seller manipulation effort.3* Note that the designs in (a), (b)
and (c), although they have the same posterior beliefs structure, are different in terms of

levels of manipulation they induce. Still, the platform is concerned by manipulation only

34 Although the design described in (a) is always associated with an equilibrium in the manipulation game
such that there is no-learning, it is not always the case however that an equilibrium with no-learning of
the kind described in (b) or (c) exists. For the binary design, even though the threshold is very high, if
the manipulation cost is too low for some type, then this seller will choose to exert positive manipulation
effort. The conditions guaranteeing that an equilibrium with (mg, mz) = (0,0) when T > 05 + 2b exists
are given in Appendix A.5.2.1. For the continuous design, see Appendix A.4.2.
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because it affects the posterior beliefs of the consumers. Therefore, it is without loss for

the platform to choose a binary signal with a very low threshold 7' < 0.

Corollary 2.5. Assume that the platform is transactional. Then, it is always optimal for

the platform to commit to using the binary design with T < 0.

Corollary 2.5 implies that in equilibrium, when the platform is transactional, consumers

obtain no information from reviews. Corollary 2.6 formalizes this claim.

Corollary 2.6. If {(M*,S5*),0*(-),m*(-)} is a PBE, then consumers’ posterior beliefs are
qs+(s;m*) = q for all s € M* on the equilibrium path.

2.7.2.2 Non-Transactional Platform

A non-transactional platform seeks to maximize the value of information for date-2 con-
sumers. In contrast to the case of a transactional platform, the possibility that information

be complete as a result of the seller’s manipulation efforts now benefits the platform.

Proposition 2.9. In the absence of manipulation, it is optimal for a non-transactional
platform to use the continuous design. With manipulation, it is not necessarily optimal for

the platform to commit to using the continuous design.

In the case of a non-transactional platform, when manipulation is taken into account,
the optimal design can differ dramatically from the one when there is no manipulation.
Without manipulation, the continuous design is strictly more informative and thus, it is
always optimal for the platform. If the seller can exert effort to manipulate reviews, the
platform might be better off by using the binary design instead. The reason is that, as
Proposition 2.6 has established, the binary design with its coarser message space channels

manipulation in such a way that less information is destroyed.

Assuming the cost of manipulation is the same for both quality types, one can find a
sufficient condition under which the continuous design continues to be optimal for a

non-transactional platform even when there is manipulation.
Lemma 2.6. Assume that c¢; = cy = ¢ and that demand is D(y) when posterior beliefs

arey. Then, if g — 0y, — 2b + W > 0, it is optimal in the game with manipulation

for the platform to commit to using the continuous design.
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Note that the condition is only sufficient and the continuous design might continue to be

optimal for a larger set of parameters.

In short, when the platform conducts business by receiving advertising revenues or subscrip-
tion fees, none of the possible designs are dominant nor dominated in general. Providing
comprehensive information on the reviews by using the continuous design or only par-
tial information by using the binary design can both be optimal for different parameter

sets.

2.8 Conclusion

As consumers increasingly rely on reviews to guide their decisions, it becomes important to
examine whether such content can be trusted and what factors can impact the information
content of reviews. Sellers trying to game the system by posting fake reviews for themselves
is a first-order concern. Nonetheless, my work suggests that the economic incentives of
the platform hosting the reviews also play an important role. Indeed, to understand how
much of a problem manipulation is, one need to consider the strategic interaction between
platforms and sellers, as the choice of how to present information has an influence on the

extent of manipulation.

Two questions are at the core of this paper. First, which design maximizes information
transmission given reviews can be manipulated? Second, what is the relation between the
platform’s business model and its design choice? My analysis establishes that the answer to
the first question is not necessarily the design that provides the maximal details on reviews.
In some situations, because of review manipulation, the platform induces more information
to be revealed by voluntary disclosing less on the reviews’ content. The binary design
(which wastes information) turns out to be beneficial as it induces the seller to destroy less
information with manipulation in the end. As for the second question, this work shows
that a platform collecting revenues from advertising or subscription fees and a platform
collecting revenues from sales commissions differ in their incentives for choosing a particular

design, as they have different preferences regarding information dissemination.

More generally, the current work also establishes that online platforms should not be

considered as neutral third parties. The way they conduct business has a crucial importance
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for the information obtained by consumers. On that account, one could say that the adverse
selection problem faced by consumers can become more acute with certain types of platforms,
i.e., transactional ones. This observation is particular relevant to the regulation of Internet
markets. Competition agencies, which are concerned with sellers hiring shills to boost
their reviews, should perhaps be also interested in monitoring transactional platforms

35 Indeed, even though it could be argued

more closely than non-transactional ones.
that competition across transactional platforms will put upward pressure on information
dissemination, one can be worried that in response, platforms will try to collude to weaken

these pressures.

Finally, I see several extensions of the model that would further our understanding of
information transmission on the Internet. First, it would be interesting to explore which
design maximizes social welfare. The answer to that question is not clear since (a) consumers
and the platform have aligned preferences only if the platform is non-transactional, and (b)
it is not clear how the seller’s profits are related to the amount of manipulation. Indeed,
Dellarocas (2006) suggests that sellers are trapped in a rat-race and that they are the ones

that have the more to gain from the limitation of review manipulation.

Second, the result that a transactional platform prefers to reveal as little information as
possible is largely driven by the specificities of the model. It would be interesting to see
what happens for a more general model. One might also wonder what would happen if
the platform is allowed to use more complex signal rule, say rules with more than one
threshold. Third, it would be worthwhile to extend the model to include several platforms
and several sellers where both platforms and sellers compete for consumers. Multi-homing,
i.e., consultation of reviews on multiple platforms, is a phenomenon that could appear to
influence platforms’ incentives to provide information and seller’s incentives to hire shills.
In addition, there is also the issue that with competition, a seller can boost its own reviews
but can also denigrate a competitor’s product. It would be interesting to address this

possibility in future research.

At last, as I have already mentioned, this paper focuses on the short-term horizon. When
the long-term comes into play, an important consideration is that review manipulation,

by affecting who buys today, will affect who will post review in the next period. A seller

35See the announcement of Canada’s Competition Bureau at http://www.competitionbureau.gc.ca/
eic/site/cb-bc.nsf/eng/03782.html
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needs to acknowledge this additional effect. On top of that, the analysis of a dynamic
model would also make it possible to explore more complex, yet important, design issues

like the need for a differential treatment of newer and older reviews.



Chapter 3

Noisy Learning and Price
Discrimination: Implications for
Information Dissemination and
Profits
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3.1 Introduction!

As long as there is some easily observable characteristic (e.g., age, income, or geographic
location) by which a firm can group buyers and arbitrage can be prevented, it is possible
for the firm to segment markets and engage in (third-degree) price discrimination. An
important question is whether market segmentation is beneficial for society. The welfare
analysis on market segmentation has generally been undertaken under the assumption
of complete information on the part of consumers.? In this case, the welfare effects are
ambiguous. One has to weight the losses of consumers in low-elasticity markets against
the gains of those in high-elasticity markets and the gains of the firm. Moreover, one has

to consider that discriminatory pricing may lead to the opening of new markets.

In the case of incomplete information, little is known about the effect of market segmentation
on welfare and especially on consumers’ well-being. This is relevant since the differences
among the segmented groups might concern not only tastes, but also information regarding
the quality of the good. For instance, with the spread of online commerce, it becomes easier
for a firm to introduce a product in a new market. Consumers in the new market might have
tastes for the product that differ from consumers’ tastes in the original market and they
might have less information because of the novelty of the brand. Another example is the
case of a prescription drug readily available in the US which is introduced in a developing
country. In addition of being able to pay less for the drug, consumers in the developing

country might be less informed about the effectiveness of the prescription drug.?

The introduction of asymmetric information among buyers leads naturally to the issue
of the informative role of prices. Indeed, prices have been shown to be instrumental in

disseminating information to market participants (Grossman, 1989).* One of the purpose

I This chapter is co-authored with Marc Santugini. We thank Masaki Aoyagi, Sidartha Gordon, and Josel
Santugini for helpful comments.

2See Armstrong (2006) for a survey on price discrimination. See Schmalensee (1981) and Tirole (1988) for
a detailed discussion on third-degree price discrimination.

3The implementation of drug information centers is a primary concern in many developing countries
(Flores Vidotti, 2004). Proper sources of information on drugs are not easily accessible in developing
countries. There are several reasons for the absence of information: inadequate translation in local
languages, prohibitive cost to acquire information, and even customers’ unawareness on how to obtain
information.

4Several studies have provided conditions under which privately-held information by firms becomes public
through prices, beginning with perfectly competitive markets (Kihlstrom and Mirman, 1975; Grossman,
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of this paper is to study the effect of market segmentation on the informational content
of prices. Specifically, does discriminatory pricing provide less or more information to
the uninformed buyers? If it were not for the endogeneity of prices, it could be argued
that an increase in the number of price-signals due to market segmentation yields more
information to the uninformed buyers (i.e., more precise posterior beliefs). However, since
the firm sets prices, the distribution of the price-signals (i.e., the informational content)
does depend on whether the firm uses discriminatory pricing. There is thus a trade-off.
Price discrimination generates more price-signals, but each of these signals might be less

precise.

To study the effect of discriminatory pricing on the dissemination of information via
market prices, we consider the simplest model of third-degree price discrimination of a
monopoly selling a homogeneous good to two separate markets. In one of the markets,
some buyers do not know the quality of the good. Yet, the presence of informed buyers
makes it possible for prices to disseminate information. Under noisy demand, we show
that market segmentation alters the informational content of price-signals received by the
uninformed buyers. Specifically, discriminatory pricing have informational benefits over
uniform pricing, i.e., the posterior beliefs of the uninformed buyers have a smaller bias and

a lower variance.

The introduction of incomplete information also raises questions on the profitability of
third-degree price discrimination from the firm’s perspective. It is the second purpose of
this paper to address this issue. In an environment of complete information, it is always
profitable for a monopoly to segment markets with different demands and to engage in
third-degree price discrimination. The reason is that setting different prices — a lower price
in the market segments with greater price elasticity and a higher price in those with lower
price elasticity — allows the firm to capture more of the consumer surplus. However, it is
not known whether market segmentation is systematically profitable for the firm under

incomplete information.

In this paper, by endogenizing the firm’s decision to segment or integrate the market, we

show that, when confronted with uninformed buyers, market segmentation is not necessarily

1976, 1978; Grossman and Stiglitz, 1980) and continuing with imperfectly competitive markets (Wolinsky,
1983; Riordan, 1986; Bagwell and Riordan, 1991; Judd and Riordan, 1994; Daughety and Reinganum,
1995, 2005, 2007, 2008a,b; Janssen and Roy, 2010; Daher et al., 2012).
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the more profitable pricing strategy. This is because the firm faces a trade-off when choosing
to segment or integrate the markets. On the one hand, market segmentation yields more
flexibility and the ability to capture a greater share of the consumer surplus. On the other
hand, market segmentation implies that the firm signals quality with two prices instead of
one. Hence, two prices are distorted from their complete information counterpart, whereas
only one price is when markets are integrated. If the signaling cost (due to the distortion
in the prices) is higher under market segmentation than under market integration, then it
is possible that the loss due to signaling outweighs the benefit from price flexibility. We
find that the higher the number of informed buyers, the more similar the market segments
have to be for market integration to be the more profitable option. We also find that it is
more likely that market integration be optimal when uninformed buyers are numerous and

originate from the market segment with the higher willingness to pay.

The remainder of the chapter is organized as follows. Section 3.2 surveys the literature.
Section 3.3 presents the informational benefit of discriminatory pricing for the uninformed
buyers. Section 3.4 studies the profitability of discriminatory pricing. Finally, Section 3.5

concludes.

3.2 Literature

We contribute to a large literature on third degree price discrimination, starting with
the classic work of Pigou (1920). The reminiscent question with market segmentation is
related to the conditions under which price discrimination raises welfare. For instance,
Schmalensee (1981) and Varian (1985) identify when an increase in output is necessary
for an increase in welfare, whereas Nahata et al. (1990), instead on focusing on output,
concentrate on the price effects of discrimination. By contrast, Aguirre et al. (2010) and
Cowan (2013) identify sufficient conditions for price discrimination to increase welfare.
More recently, Bergemann et al. (2015) show that there is always a way to segment the
market such that the combination of consumer and producer surplus satisfy the following:
(i) consumer surplus is nonnegative, (ii) producer surplus is at least as high as profits
under the uniform monopoly price, and (iii) total surplus does not exceed the efficient

surplus.
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We depart from this literature in two ways. First, by introducing price discrimination in an
environment where some buyers have incomplete information. Second, by concentrating on

the signaling aspect of prices instead of on the welfare effects of price discrimination.

We are the first, to our knowledge, to analyze the issue of market segmentation in a
stochastic environment with learning. There is, however, a small but growing literature
on learning in a stochastic setting. Matthews and Mirman (1983) study a limit pricing
environment. Judd and Riordan (1994) and Mirman et al. (2014b) study noisy learning in
the monopoly case whereas Mirman et al. (2014a, 2015) study the informational role of
prices in competitive markets. ? study how the communication strategy in a sender-receiver
game affects the amount of information that is transmitted given that communication is
inherently noisy. It is interesting to note that the use of noisy signaling models is growing,
maybe partly because recent experimental work suggests that the stochastic environment
in signaling maps better into the behavior of experimental subjects (de Haan et al., 2011;
Jeitschko and Norman, 2012).

In this paper, we contribute to the literature on noisy signaling by studying the informational
role of prices in the presence of market segmentation. The noisy environment enables us to
study thoroughly the effect that market segmentation has on the informational content of
prices. In a noiseless environment, the firm reacts to the informational externality, but
has limited control over the flow of information. In other words, in equilibrium, either the
unknown quality is not revealed and uninformed buyers revert to their prior beliefs, or it
is fully revealed. Hence, under noiseless demand, whether the firm uses discriminatory

pricing has no particularly meaningful effect on the posterior beliefs.

The second issue we tackle in this paper relates to the profitability of market segmentation
for the firm. Whether market integration is optimal is closely related to the question
of whether uniform pricing for differentiated goods is optimal. In both problems, the
benefits of the increased price flexibility need to be compared to the costs of charging
different prices. Some recent papers (McMillan, 2007; Orbach and Einav, 2007; Chen, 2009;
Chen and Cui, 2013; Richardson and Stéhler, 2013) study such question in the context of
differentiated goods. The present paper contributes partially to this strand of the literature
by identifying a cost to charging different prices in a signaling context. Hence, we provide

a glimpse to what incomplete information can yield when goods are differentiated.
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At last, our work is related to several papers in international economics investigating the
non-optimality of charging different prices for different markets (Friberg, 2001; Asplund and
Friberg, 2000). However, these papers do not study the optimality of market segmentation
(or integration) in a noisy signaling environment. Friberg (2001) studies whether a firm
selling in regions with different currencies should segment the markets with an emphasis
on the impact of the exchange rate, whereas Asplund and Friberg (2000) focus on the
transportation cost from one region to another.> We do not explore these issues here, but

rather provide an information-based reason for the profitability of market integration.

3.3 Information Dissemination

In this section, we study the effect of discriminatory pricing on information dissemination,
i.e., how much buyers learn about quality from observing price(s). To that end, we
present a model in which a firm sells a good to two segmented markets. We first solve
for the equilibrium under discriminatory pricing as well as the benchmark equilibrium of
uniform pricing. We then study the effect of discriminatory pricing on the dissemination

of information.b

3.3.1 Set Up

Consider a firm selling a good of quality x> 0 in two markets: market A and market B.
The firm chooses at which prices she sells the good in each market. That is she chooses
P, and Pg. We assume arbitrage can be prevented such that it is possible to segment the
two markets using third-degree price discrimination. In this section, we assume that the
decision to segment the markets or not is exogenous. In other words, we abstract from the

question of whether market segmentation is profitable.

>Other papers such as Friberg (2003), Friberg and Martensen (2001) and Gallo (2010) study the profitability
of market segmentation in the context of a duopoly.

61n this section, market segmentation is set exogenously. The profitability of market segmentation on the
firm is discussed in Section 3.4 when market segmentation is endogenized, i.e., the firm decides whether
to segment or to integrate the markets.
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In market A, all buyers are informed, i.e., they know u. Aggregate demand in market A is
given by
Qa(Pa, pt,ma) = p— Pa+1a (3.1)

where 714 is a demand shock that is unobserved by the buyers. The difference in demand
between markets A and B is two-fold. A first difference concerns information. Unlike
market A, market B is composed of both informed and uninformed buyers. Specifically,
a fraction A\ € [0, 1] of the buyers knows p and thus a fraction 1 — A does not know p.
Although the uninformed buyers have prior beliefs about p, they also extract partial
information about quality from observing prices, i.e., prices are noisy signals. That is, upon
observing prices, the uninformed buyers’ posterior mean for quality is [ xé(:v|PA, Pg)dz
where & (| P4, Pg) is the posterior p.d.f. of fi given P4 and Pg.” A second difference is that
conditional on u, the buyers in market B have a reservation price yu where v > 0 reflects
the disparity in demand between the two markets (unless v = 1).® Aggregate demand in

market B is thus given by
QB(PB>M,€('|PA, Pg),np) = ANy —Pp)+(1-2X) (7/x§($|PA, Pp)dr — PB) +np (3.2)

where 7 is a demand shock that is unobserved by the buyers and [ z€ (x| Pa, Pg)dz is the
posterior mean of p. The updating of beliefs reflects the learning activity of the uninformed

buyers.

Next, we describe the firm’s maximization problem. For simplicity, the firm’s marginal
cost is assumed to be zero. In addition of knowing the quality pu, the firm has complete
information about demand, i.e., both 14 and ng are known to the firm. This informational
asymmetry between the buyers and the firm conveys the idea that the firm knows more

about demand than the buyers do.

We consider two cases. First, under discriminatory pricing, using (3.1) and (3.2), the firm’s

maximization problem is

max {Pa - Qa(Pa, .na) + P - Q(Ps, 11, §(-|Pa, Ps),np) } - (3.3)

Pa,Pp

"Note that é(«|PA, Pg) is the general expression for posterior beliefs upon observing two signals. If there is
no market segmentation, then the uninformed buyers receive two identical signals, i.e., P = P4 = Pg. In
that case, posterior beliefs can be simplified to £(-|P).

8The assumption that market A has only informed buyers is without loss of generality. All results continue
to hold if we assume a fraction A4 of buyers is uninformed in market A and a fraction Ap in market B.
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Second, under uniform pricing, the firm sets one price, i.e., P = P, = Pg, and the
uninformed buyers receive only one signal. Using (3.1) and (3.2), the firm’s maximization

problem is
mgX{P' (QA(RM,??A) + QB(PaM,é<'|P)77]B))}~ (3.4)

Before proceeding with the definition and characterization of the equilibrium, we discuss
the distributional assumption for prior beliefs and the random demand shocks.
Assumption 3.1. Prior beliefs are i ~ N(p, ai), with p > 0. Distributions of demand

shocks are fja ~ N(0,07),7p ~ N(0,07) such that E[fja7ip] = 0.

The demand shocks are known to the firm, but unobserved by the buyers, which implies that
the prices cannot fully reveal quality since they also depend on unobserved demand shocks.
We rely on the fact that the family of normal distributions with an unknown mean is a
conjugate family for samples from a normal distribution.” With the normality assumption,
we obtain a unique linear equilibrium, i.e., an equilibrium in which the uninformed buyers’
updating rule is linear in the price-signals. Although negative demand shocks can yield
a negative price or a negative posterior mean, the values of the parameters of the model
can be restricted to ensure that the probability of such events be arbitrarily close to zero.
Moreover, it turns out that, for any parameters, equilibrium values for mean prices are

always positive.

3.3.2 Equilibrium

First, consider the situation in which the firm uses discriminatory pricing (D). The
equilibrium consists of the firm’s price strategies, Pp 4(,14,18) and Pp g(it,m5,14);
the distribution of the price-signals conditional on any quality z, ¢} (Pa, Pg|x); and the
uninformed buyers’ posterior beliefs about the quality upon observing any prices { P4, P},
é;‘)(x\PA, Pp).1% In equilibrium, the posterior beliefs are consistent with Bayes’ rule and

the equilibrium distribution of prices.

9Normal assumption combined with linear demand yields closed-form equilibrium values and makes the
analysis tractable by focusing on the mean and variance of price and posterior beliefs. See Grossman
and Stiglitz (1980), ?, Judd and Riordan (1994), Mirman et al. (2014a,b, 2015) for the use of normal
distributions to study the informational role of prices in problems without market segmentation.

10T he variable p refers to the true quality whereas x is used as a dummy variable for quality.
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Definition 3.1. For any p > 0, the tuple {PﬁA(/L,nA,nB), P g (1, mB,M4),

&5(Pa, Psl-), (| Pa, PB)} is a noisy signaling equilibrium with discriminatory pricing if,

1. Given é;‘)(-\PA, Pg), and for any na and ng, the firm’s price strategies are

{ P54 m1am8), Ph (1t n,ma) } =arg max {PA - Qa(Pa, 11,14)

+ Pa- Qu(Po.puEp(1Pa, Po) i) ). (35)

2. Given the distribution of {fa, e}, &(Pa, Pplz) is the p.d.f. of the random price-

signals {PaA(x,ﬁA, nB), PaB(x,ﬁB,ﬁA)} conditional on any quality x.

3. Given ¢5,(Pa, Pg|-) and prior beliefs £(-), the uninformed buyers’ posterior beliefs
about quality upon observing Py and Pp is ji|Pa, Pg with the p.d.f.

§(2)pp(Pa, Pplx)

Toen £@)05(Pa, Polydar” © ° €% (3.6)

&5(x|Pa, Pp) =

Using Definition 3.1, Proposition 3.1 characterizes the noisy signaling equilibrium when
the firm engages in third-degree price discrimination. Specifically, the price strategies and
the posterior beliefs (as a function of the price-signals) are provided. The joint distribution

of the price-signals is immediate from Assumption 3.1, (3.7), and (3.8).
Proposition 3.1. Suppose that markets are segmented. For X € [0, 1), there exists a noisy
signaling equilibrium with discriminatory pricing.'* In equilibrium,

1. Given quality p and demand shocks {na,np}, the firm sets prices

pr ) 020 = NP+ (2= 2050 (1= N) + 89\ — )
P 4= 3PP(1= A7 — 4557(1 = )
(2 —2057(1 — A))na + 619(1 — A)ns

4—01292(1 = N2 — 4657(1 = \) (3.7)
and
. ~2057(1 = A) 4+ (677(1 = A) + 29\ + 67v(1 — AN)na + 2np
Pp g1t 15,14) = T 6220 N — 451 = ) . (3.8)

1When A = 1, all buyers are informed and no updating rule needs to be specify. In this case, there exists
an equilibrium with equilibrium prices Pp, 4 (11, n4,n8) = (1 +n4)/2 and Pp, p(p,np,m4) = (Y +18)/2,
which are equal to (3.7) and (3.8) evaluated at A = 1, respectively.
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2. Given any observation {Pa, Pg}, the uninformed buyers’ posterior beliefs are

o202
| Pa, Pg ~ N [ 6y + 61 Pa + 05 P, : :
,UD| A, I'B <o+ 14174 + 09 Baag+(1+72/\2)ai> (39)
Here,
2
po
0y = 1 , 3.10
* a2+ 02(1 472N (3-10)
202
0] = = , 3.11
! o2+ o2(1+72N) (3.11)
5 — 27()\05(03 + 202) — oﬁ(l ) | (3.12)
2 (02 4+ 02(1+92N))(02 + o2(1 +2A(2 = N)))
Proof. See Appendix B.1. O]

Next, we define and characterize the noisy signaling equilibrium in the benchmark model

in which the firm uses uniform pricing (U).

Definition 3.2. For any p > 0, the tuple {PJ([L, nA,nB),¢z,(P|-),§§,(-|P)} is a noisy

signaling equilibrium with uniform pricing if,

1. Given éi“,(|P), and for any na and ng, the firm’s price strategy is

Fyy(p:ma, 1) = arg max {P (Qa(P, . na) + Qp(P, 11,61 P),m5) ) } (3.13)

2. Given the distribution of {fa,Np}, ¢&3,(P|z) is the p.d.f. of the random price-signal

Pi(x,n4,7p) conditional on any quality x.

3. Given ¢ (P|-) and prior beliefs £(-), the uninformed buyers’ posterior beliefs upon
observing any P is i*| P with p.d.f.

§(x)oy(Plx)

Sl P) = e e (Pl

VaoelkR (3.14)

Proposition 3.2 characterizes the noisy signaling equilibrium when the firm does not price
discriminate. The distribution of the price-signal is immediate from Assumption 3.1 and
from Equation (3.15).
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Proposition 3.2. Suppose that markets are not segmented. For X € [0,1), there exists a

noisy signaling equilibrium with uniform pricing.*? In equilibrium,
1. Given quality p and demand shocks {na,np}, the firm sets the price

. Boy(L —=A) + (1 +7yA\)p+na+n
Py, ma,ms) = 021 4)_2(@7(1_)” S (3.15)

in markets A and B.

2. Given any observation P, the uninformed buyers’ posterior beliefs are

fi|P ~ N | B + B P 20,0 (3.16)
Hu 0 1 7203] g +/\7)203 . )
Here,
2p0§
5 = , 3.17
& 202 + 02(1+9 + A +72)) (3.17)
4(1+~N)o?
b= s 1( ; il )z%a eI (3.18)
Un+ap( + 7+ Y -7 )
Proof. See Appendix B.1. O

From (3.7), (3.8), and (3.15), equilibrium prices are linear functions of the quality p as
well as demand shocks 14 and ng. Although prices are informative about quality, the
presence of unknown demand shocks prevents the buyers from learning the exact value
of quality, i.e., price is partially revealing of quality. Hence, noise in demand allows us to
study the impact of pricing strategies (discriminatory vs. uniform) on the dissemination of

information.3

As a first step to study the impact of pricing strategies, one can notice that the amount of

information conveyed by the price(s) depends on the pricing strategy adopted by the firm.

12When A = 1, all buyers are informed and no updating rule needs to be specify. In this case, there exists
an equilibrium with P (u,na,n8) = (1 + ) +na +np)/4 which is equal to (3.15) evaluated at A = 1.

13In our model, if demand shocks are known to buyers, then quality is perfectly inferred from observing
the price(s) under both uniform and discriminatory pricing.
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Remark 3.1. The pricing strategy chosen by the firm alters the amount of information

conveyed by the price-signal(s). More specifically, for s € {A, B}
1. VGT[PL*{(/]? NA, 773)‘ NA, 773] = Var[Pﬁ,s(laa 14, 773)‘ 1A, UB];

2. Var[Fj(u,na,m8)| p] < Var[Pp (1,74, 78)| 1.

Remark 3.1 is important since it means that the pieces of information from which the
buyers learn can have a lower quality when the firm uses discriminatory pricing. Indeed,
on the one hand, observation 1. establishes that, conditional on demand shocks 14 and g,
the price-signal under uniform pricing is more sensitive to quality p than the price-signal
in segment s under discriminatory pricing. It is thus easier to distinguish between different
qualities under uniform pricing. On the other hand, observation 2. establishes that,
conditional on quality u, the price-signal under uniform pricing is less sensitive to the
demand shocks (n4,7p) than the price-signal in segment s under discriminatory pricing. In
other words, there is less noise in the price-signal under uniform pricing. Taken together,
these observations imply that the price-signal with uniform pricing is a better signal than

the price-signal from market segment s under discriminatory pricing.

Yet, one cannot already conclude that uniform pricing is better for the dissemination of
information to uninformed buyers. The reason is that when the firm segments the market,
uninformed buyers obtain two price-signals instead of one. Hence, there is a trade-off: the
uniform price-signal is better, but there are two signals when markets are segmented. In
the next section, we show that, in spite of this trade-off, discriminatory pricing induces

more learning.

3.3.3 Comparison of Pricing Strategies

We now compare discriminatory and uniform pricing for the dissemination of information.
We consider two aspects to measure the amount of information conveyed by prices: the

bias of the posterior mean and the posterior variance.
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3.3.3.1 Bias of the Posterior Mean

The bias of the posterior mean measures the distance between the true quality p and the
uninformed buyers’ mean posterior evaluation of this quality. For instance, consider that
discriminatory pricing is used by the firm and that p is the true quality. A posteriori,
upon seeing P4 and Pp, uninformed buyers believe that quality has a mean E[i5,|Pa, Pg.
Then, on average, the posterior mean is [, p. Elfi5|Pa, Pp]¢p(Pa, Pplp)dPadPp and the
expected bias denoted by B, is the average distance between the true quality p and the

uninformed buyers’ mean evaluation of this quality.

Using Proposition 3.1, the expected bias under discriminatory pricing is the absolute value

of the difference between the unconditional posterior mean for quality and the true quality
u, ie.,
5=\, ,. EliiblPa, Palop(Pa, Palu)dPadPa — . (3.19)

Consider next that uniform pricing is used by the firm. Then, the expected bias under

uniform pricing follows similarly, from Proposition 3.2, and is defined as

B, =| [ Bl Pléi(PludP - | (3.20)

Proposition 3.3 establishes that the expected bias of the posterior mean is always smaller
under discriminatory pricing than under uniform pricing. In other words, with third-degree

price discrimination, the buyers are, on average, closer to the truth.'*

Proposition 3.3. From (3.19) and (3.20),|B5| < |B|.

Proof. From (3.7), (3.8), and (3.9),

pol 4 pu(1+~y°X*)o},

Elip|Pa, Pelop(Pa, P, dP,dPg = . 3.21
o 1P Pal6b (P PoludPadPe = S5 (3:21)
From (3.15) and (3.16),
2002 + (1 4+ y\)?0>
Eli;, | Plo;,(Plpw)dP = 1 £ .22

14Tn the particular case of p = u, the posterior mean of quality is on average unbiased regardless of the
pricing regime, i.e., |B5| = |B;;| = 0.
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Plugging (3.21) into (3.19) and (3.22) into (3.20) yields the results. O

From Proposition 3.3, we can conclude that observing two signals instead of one reduces the
expected bias of the posterior beliefs. However, for specific realization of demand shocks
{na,np}, posterior beliefs might be closer to the true quality with uniform pricing than with
discriminatory pricing. Thus, in order to compare the quality of information dissemination
under the two pricing regimes, we need to discuss the effect of price discrimination on the

variance of the posterior beliefs.

3.3.3.2 Posterior Variance

Upon observing the price-signal(s), uninformed buyers believe that quality is normally
distributed with a mean and a variance as given in (3.9) or in (3.16). We now study the

effect of the firm’s pricing strategy on this posterior variance.!®

The size of the posterior variance is related to the uninformed buyers’ learning speed.
More specifically, the smaller the posterior variance is, the faster is the learning speed and
the more information is conveyed to uninformed buyers. The reason is that the posterior
variance tells us how likely it is that values far from the posterior mean be the actual true
quality. For instance, if one were to construct a 95% confidence interval for the value of the

true quality, the size of this interval would be determined by the posterior variance.

Proposition 3.4 states that the posterior variance for quality is always greatest under
uniform pricing. Hence, price discrimination provides more information to the uninformed
buyers, i.e., the posterior beliefs for quality are less variable. Equation (3.23) characterizes
the variance differential. Note that the presence of both demand uncertainty and prior
uncertainty are necessary for market segmentation to have an effect on the informational
content of prices. If there is no prior uncertainty (i.e., 03 — 0), then there is no reason
to learn from prices. Moreover, if there is no unknown demand shock (i.e., 02 — 0), then
observing more prices does not provide more information to the uninformed buyers since

the uninformed buyers can infer exactly the true quality regardless of the pricing strategy.

5 Note that the posterior variance of the posterior beliefs, the object studied in this section, is different
from the posterior beliefs’ variance where the posterior beliefs is taken as a random variable.
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Proposition 3.4. For A € [0,1), from (3.9) and (3.16),

(1 —=yA)olo),

= > 0. 3.23
(02 + (1 +7%2A%)02)(202 + (1 +A\)%02) — (3.23)

Before discussing Proposition 3.4, it is worth considering three special cases of (3.23).
Consider first the benchmark case of full information with two identical markets, i.e.,
v = XA = 1. Hence, for an uninformed outsider, market segmentation yields no gain in
precision of the posterior beliefs. Next, consider two special cases for which discriminatory
prices provide more precise posterior beliefs. If A =1 and v € [0, 1), then discriminatory
prices provide better information to an uninformed outsider. The fact that two signals
about two fully informed markets be available makes the posterior beliefs more precise.
In other words, the market price is more informative to outsiders.'® Finally, if v = 1 and
A € (0,1), then preferences over the good are the same between the two markets, but some
buyers in market B are uninformed. In the presence of uninformed buyers, segmenting a
market into two identical markets provides more precise information to the uninformed

buyers.!”

We now discuss Proposition 3.4. This discussion builds in part on Remark 3.1 outlining
the fact that the variance of a price-signal changes with the pricing regime. Yet, in spite of
changes in the variances of the price-signals, the gain in precision due to discriminatory
prices always holds. On the one hand, discriminatory pricing (compared to uniform pricing)
implies that the buyers receive two signals instead of one. Hence, holding everything
else constant, price discrimination provides more signals and increases the precision of
the posterior beliefs. On the other hand, since the firm sets prices, the variance of the
price-signals are endogenous. In particular, it is possible for the variance of the price-signals
to increase as a consequence of market segmentation. Hence, there is a trade-off. Price
discrimination offers more signals but each of these signals might be less precise. Although
there is a trade-off, it turns out that third-degree price discrimination always reduces
the variance of the posterior mean for quality even when each price-signal becomes less

precise.

¥Given A = 1, from (3.9) and (3.16) we have V[i*] = o207 /(07 4 (1 +~°)07) and V[i*] = 20707 /(207 +
(1+7)%07) respectively.

"Given v = 1 and X € (0,1), from (3.9) and (3.16), we have V[i*] = o207/(c2 + (1 + A\?)o?) and
V[a*] = 20205 /(207 + (1 + X)?07), respectively.
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We finish this section with a comparative analysis on (3.23). Specifically, we show how the
parameters of the model mitigate or reinforce the positive effect of discriminatory pricing
on the variance of the posterior beliefs. Remark 3.2 presents the effect of noise on the

variance differential.
Remark 3.2. From (3.23), for A € [0,1),

(Vi) = Vi

o0, D5y (3.24)

An increase in the variance of the prior beliefs always increases the variance differential.
Specifically, from (3.24), if the prior beliefs are very precise, then the differential in the
posterior variance stemming from the observation of two price-signals instead of one is
relatively small. Since the uninformed buyers are quite certain that the true quality lies
within a constraint interval, the firm’s signaling activity does not play a prominent role as
the informational reaction to the price-signals is small, i.e., 57 and {d7, 05} are small. On
the other hand, if the prior beliefs are very diffuse, the firm’s signaling activity matters
a lot and the differential in information that two price-signals convey instead of one is

significantly more important.

Next, consider the effect of the proportion of informed buyers and the differential in demand
on (3.23). From (3.23), notice that only the product Ay matters for the variance differential.
Since v > 0 and A € [0, 1), two cases can occur, that is, Ay < 1 and Ay > 1. Remark 3.3
concentrates on the case Ay < 1 and states that the larger the proportion of informed
buyers is and the lesser the differential in buyers’ valuation is, then the smaller is the

variance differential coming from market segmentation.

Remark 3.3. From (3.23), for A € [0,1) and v € (0,1],

] <0 (3.25)

and

<o, (3.26)

From (3.25), as A increases, under both uniform pricing and third-price discrimination,
the posterior beliefs become less volatile as the price-signals incorporate more information

from the mere fact that a larger proportion of buyers knows the true quality pu. However,
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the posterior variance decreases more rapidly when the uninformed buyers observe a single
price-signal rather than two price-signals. This means that the benefit on the flow of
information arising from a signal of a better quality is subject to some form of decreasing
return. From (3.9) and (3.16), 87 > 7 + 5. Hence, the uninformed buyers are always
more sensitive to an improvement in the quality of a price-signal (due to more informed
buyers) under uniform pricing than under discriminatory pricing. This higher sensibility

translates into a higher decay rate of the posterior variance.

Next, we investigate the effect of the parameter v on the variance differential in (3.23).
From (3.26), an increase in 7 reduces the benefit from observing two price-signals rather
than one. Recall that « is an indicator of how elastic is market B relative to market A,
i.e., as v — 1, the two market segments are more similar to each other. Hence an increase
in 7, by homogenizing the two markets, implies that P, and Ppg incorporate and convey a
more similar content to the uninformed buyers.'® Therefore, as v — 1, the uninformed
buyers gain less from observing a second price-signal as it contains little supplementary

informative content.!”

3.4 On the Profitability of Discriminatory Pricing

We now extend the model by allowing the firm to either segment or integrate the two
markets.?? Our model has now two stages. In a nutshell, at the first stage, the firm decides
whether or not to split the market into two separate markets. Then, at the second stage,
the firm uses uniform pricing if there is market integration and discriminatory price if there
is market segmentation. In either case, the firm takes into account the fact that prices can

provide partial information about quality to the uninformed buyers.

18Using the criterion of mutual information MI(P4, Pg) = —log(1 — p*)/2 where p is the correlation
coefficient between P4 and Ppg, then we have M I (]5A, ]53) /07 > 0 such that the mutual information of
PA and ]53 increases with 7.

9Comparative static in the case Ay > 1 is more complicated. Overall, results of Remark 3.3 continue to
hold if Ay is sufficiently high.

20Gince we are studying third-degree price discrimination, arbitrage is assumed to be impossible.
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3.4.1 Preliminaries

The demand side is unchanged, that is, demands in market A and B are given by (3.1)
and (3.2), respectively. Except for the quality parameter p and the demand shocks 74 and
np, all the other parameters of the model (including the uninformed buyers’ prior beliefs

and the distribution of the demand shocks) are common knowledge.

The timing is as follows. At the first stage, the firm does not know the quality, nor
the demand shocks and decides whether or not to segment the markets by comparing
the expected profit under discriminatory pricing with the expected profit under uniform
pricing, rationally anticipating quality, the demand shocks as well as the learning activity
of the uninformed buyers.?* Formally, let M € {4, D} be the firm’s decision in the first
stage. If M = U, then the markets are integrated and pricing is uniform. If M = D,
then the markets are segmented leading to discriminatory pricing. At the second stage,
after observing quality and the demand shocks, the firm sets the price(s). The uninformed
buyers observe the segmentation decision, but do not know the quality nor the demand
shocks.?? Upon observing the price(s), the buyers update beliefs (if uninformed), and

purchase the good. Figure 3.1 summarizes the timeline.

Firm observes {u,na, np}.
Conditional on M,
Firm chooses M € {U,D}. firm sets {Pa, Pg} or P.
L @ @ >
| Buyers observe price(s),
! update beliefs (if uninformed),
\ and purchase the good.

Stage 1 Stage 2

Figure 3.1: Timeline

21 This reflects the idea that the firm faces some uncertainty in demand before making a decision about
market segmentation. If the firm knows p before making the segmentation decision, then its choice, if not
independent of p, signals information to the uninformed buyers. In order to abstract for the increased
complexity of having both prices and segmentation decision acting as signals, we assume that the firm
learns p only after her segmentation decision is made.

22The fact that the buyers do not observe the demand shocks conveys the idea that the firm knows more
about demand than the buyers do. Moreover, this informational asymmetry enables prices to provide
partial (noisy) information about the quality of the good.
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We now describe formally the behavior of the firm at each stage.?> We begin with the
second stage. If the markets are not segmented, then the firm sets one price. Using (3.1)
and (3.2) evaluated at P = P4 = Pp, stage-2 maximization problem (given M = Uf) is the
same as in (3.4). If the markets are segmented, then the firm sets a price in each market.
Using (3.1) and (3.2), given that the firm has decided to segment the market at stage 1,
stage-2 maximization problem (given M = D) is the same as in (3.3). Note that from (3.3)
and (3.4), the firm’s expected profits are influenced by the uninformed buyers’ posterior

mean or equivalently by the p.d.f. &(:|P) and &p(-|Pa, Pg).

At the first stage, the firm decides whether to use discriminatory or uniform pricing strate-
gies. Formally, let the tuple {{Py(s, na, 1), {Pp.a(1t;14,18), Pp.5 (1,18, 14) } 1, {€&u(-|Pa, Pp)
ép(-|P)}} define a profile of strategies at the second stage. Specifically, Py(j1,1m4,15) is
the firm’s price strategy under uniform pricing and {Pp _a(t, 4, m8), Pp.s(it,15,m4)} i8
the firm’s price strategy under discriminatory. The terms &(-|P) and &p(+|Pa, Pg) are
the uninformed buyers’ posterior beliefs under uniform pricing and discriminatory pricing,
respectively. Given these strategies and posterior beliefs at stage-2, the expected profits of

the firm under uniform pricing and discriminatory pricing are

B[ (72, 714, 718)] = B | By (i, 714, 71) - <QA(Pu(/1,77A, iB), i, fla)
+ QulPylfi i ). s (1P iac ) ) ) | (3:27)

and

E[lLp(fi, 14, 718)] = E[Pp a(ft; 714, T1B) - Qa(Pp A(f1, T4, 71B), fi; a)] + E[Pp p(/i, 7B, 71a)
fla), i

’ QB(PD,B(/]7 nB, g ( |PD,A(/17 N4, ﬁB)? PD,B(Ma nB, 7714)) B)]
(3.28)

respectively. Here, E[-] is the expectation operator over {ji, 74,75} where a tilde sign is

used to distinguish a random variable from its realization.

23 A definition of the perfect Bayesian equilibrium is provided in Appendix B.2.
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Let {M*,{F(1t,n4,18),{Pp 4 (1:1.4,m8): Pp 5 (1:18,14)}}, {& (| Pa, Ps),é5(-|[P)}} be a per-
fect Bayesian equilibrium. Then, using (3.27) and (3.28), at the first stage the firm chooses
not to split the two markets (i.e., M* = U) if and only if

E[Ha(ﬁaﬁAvﬁB)] > E[H*D(ﬂ7ﬁA7ﬁB)] (329)

3.4.2 Comparisons of Profits

We now provide conditions under which (3.29) holds. Specifically, we show that the presence
of uninformed buyers (inducing the firm to engage in noisy signaling) makes it possible for

the firm to obtain higher expected profits by not segmenting the market.

In order to do so, we need to obtain the equilibrium profits for each possible state in stage-2
(i.e., M € {U,D},V (11,ma,np)) and then take the expectation with respect to (f, 74, 75)
to obtain stage-1 expected profits. Proposition 3.5 gives the expected profits for M = U
and M =D.

Proposition 3.5. Given M = U and given M = D, there exists an equilibrium in the
second stage characterized by Proposition 3.1 and Proposition 3.2, respectively. Then,

stage-1 expected profits are

1. For M =U,

(L+7)*(p+ o)) + 207
8

E[IL (2,74, 18)] = — (1= X)¥;, (3.30)

e S (R LEE RGNV M .
8 202+ (1+7)(1+ 7/\)03)
2. For M =D,
E[II5 (1, 7a, i5)] = 4+ 72)0}? %) £ 20 (1 — N2, (3.32)
where
o — Vou(oy + 21+ Nojon + 42 (1+ P N)oi(e® + 07)) (333

4 (o8 +2(1+ V0202 + (1 +9%)(1+7202)o)
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P’I"OOf. It follows from {PE,A(NJ nAa, nB)7 P’B,B(M7 1B, nA>7 QS;)(PA? PB")7 éik)(|PA7 PB)} in
Proposition 3.1 and from {sz(,u, NAsNB), ¢Z(P|),ézj(|P)} in Proposition 3.2. O

Proposition 3.5 shows that regardless of the firm’s decision to segment or integrate the
markets, the first-stage expected profits are the sum of two components. The first component
is the full-information expected profits, i.e., when all buyers are informed (i.e., A = 1). The
second component is a distortion that emanates from the firm’s need to signal quality via
prices. Indeed, in order to signal the quality of the good to the uninformed buyers, the firm
alters prices. This distortion in prices translates into a loss in expected profits. Formally,
from (3.31) and (3.33), —V;, < 0 and —¥7}, < 0 denote the loss in expected profits (due to

signaling) under no market segmentation and market segmentation, respectively.

Using Proposition 3.5, we show that when there is noisy signaling, it is possible that the
firm prefers not to segment the market. Taking the difference in profits between (3.32)
and (3.30) yields

(1 - 'V) ép + U;L) 4 % . ( i )\)2(\1173 _ \I}Z{) (3.34)

When (3.34) is positive (negative), the firm prefers to (not to) segment the markets.
Consider first the benchmark case of full information when all buyers are informed, i.e.,
A = 1. If every buyer is informed, then it is always profitable for a firm to segment the
market. Indeed, in that case, there is no loss in expected profits due to signaling. Using
two prices instead of one always yields higher expected profits for two reasons: a) because
using two prices allows the firm to set prices that are more appropriate for each market
segments, this is captured by the first term in (3.34), and b) because, by setting two prices
instead of one, the firm accounts for the specific demand shocks in each market segment

and not only for the average shock, this is captured by the second term in (3.34).

Remark 3.4. If A =1, then

E[HZ*J(/L ﬁAv ﬁB)] < E[H*D(ﬂ7 ﬁA7 ﬁB)]

Remark 3.4 implies that a necessary condition for the firm to prefer not to segment the

market is the presence of uninformed buyers, which is related to the loss (due to signaling) in
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Figure 3.2: Shaded area indicates ¥, < U7, with p = 10.

expected profits. Indeed, in order to offset the benefit from price flexibility (by segmenting
the market), it is necessary (but not sufficient) for the loss in expected profits under market
segmentation to be greater than the loss in expected profits under no market segmentation.
For A € [0,1), it is possible that W}, > Uy,. Figure 3.2 depicts the region of the parameters
space {\, 7y} corresponding to U}, > Uy,.

Proposition 3.6 establishes the condition under which the firm chooses not to segment the
market. Condition (3.35) compares the gains and losses in expected profits from integrating
the markets. Intuitively, the firm faces a trade-off. On the one hand, market segmentation
yields more flexibility and the ability to capture more of the consumer surplus. On the
other hand, the firm also has to incur a signaling cost, i.e., the distortion needed to signal
quality via prices depends on whether the market is integrated or segmented. Specifically,
the firm does not segment the market if there is a reduction in cost due to signaling which

is greater than the loss from price flexibility. While there is always a loss from giving
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up price flexibility, whether there is a reduction in cost due to signaling depends on the

parameter values.
Proposition 3.6. If A € [0,1), then, at the first stage, it is optimal for the firm not to
segment the market (i.e., M* =U) if and only if

(L—7)2(p* + 02) + 207
3(1—\)?2

Up — Wy = (3.35)

where U}, and U}, are given by (3.31) and (3.33), respectively.

It is convenient to depict the condition stated in Proposition 3.6. Figure 3.3 illustrates
Proposition 3.6 by showing regions of the parameters space {\, v} corresponding to M* = U
for some 02 and 0’2. The firm chooses not to segment the markets when the fraction of
informed buyers is low enough and the reservation price on market B is either almost
similar to the one of market A, or higher. In terms of the parameters, this implies that A
is low and + is not too low. This is consistent with the decomposition of expected profits
provided in Proposition 3.5. Indeed, as noted, the firm faces a trade-off between a benefit

from price flexibility and a cost from having to signal quality from prices.

The farther ~ is from 1, the greater the gain from price flexibility and splitting the market
since markets A and B are very different. That is, the first component in (3.34) is increasing
in (1—7)2 The firm will prefer not to segment the market and to avoid the double signaling

cost when the price-signals are worthy for a large mass of buyers (for low values of \).

When the two markets are identical, i.e., v = 1, market integration can turn out to be
the optimal pricing regime for the firm.?* In fact, this is the situation in which market
integration is the most susceptible to be profitable since the benefit from price flexibility is,

in this case, at its lowest.

24There is still a difference between the two markets because there are some uninformed buyers in market
B.
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Figure 3.3: The shaded area shows M* = U for p = 10.
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3.5 Conclusion

In this paper, we have studied the common commercial practice of third-degree price
discrimination in the presence of consumer learning using prices as informative signals of
quality. Understanding the implications of price discrimination is particularly important
since the practice has gained in popularity with the shift from brick-and-mortar stores to
the online marketplace as it is easier for firms to accumulate information on consumers

and thus, easier to charge different prices to different consumer segments.

In this particular paper, we study the effect of market segmentation on the informational
content of prices and highlight that it can be beneficial for consumers and detrimental for
the firm. More specifically, we find that market segmentation improves the informational
content of the price-signals, which benefits the uninformed buyers by yielding more precise
posterior beliefs. Since the introduction of noise precludes complete learning, the uninformed
buyers continue to face uncertainty about the product’s quality. In future work, it would

be interesting to study the effect of risk-aversion under incomplete learning.

One caveat is however in order. That is, our analysis implicitly assumes that both markets
are served whether pricing is discriminatory or not. In general, price discrimination makes
it profitable to serve markets that would otherwise not be served with uniform pricing.
In order words, discriminatory pricing may lead to the opening of new markets. In the
presence of uninformed buyers, uniform pricing might make it more likely to exclude the
buyers of one of the markets. The reason is that the informational externality generally
leads to an increase in the mean prices. Hence, the benefit of market segmentation (in
terms of accessibility of the good) is enhanced by the presence of uninformed buyers. See
Appendix B.3.

Our second contribution is to show that market segmentation is not necessarily optimal for
the firm. Under complete information on the demand side, a monopoly obtains a higher
expected profit by charging different prices for market segments having different price
elasticities. We show that this conclusion does not hold because of the firm’s need to
engage in price signaling. Therefore, we outline an important difference regarding the effect

of market segmentation between complete and incomplete information environments.
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An extension of the model would be to assume the firm already knows p when choosing
whether to segment the market or not. In this case, her best-response would be to segment
the market only when p is above some function of the parameters. Consequently, her choice
together with the price-signal(s) will convey information to uninformed buyers. Instead of
following a normal distribution, the uninformed buyers’ posterior beliefs will now follow a
truncated normal distribution. Whether an equilibrium exists in this case is a question we

leave for future research.



Chapter 4

Information Choice and Diversity:
The Role of Strategic
Complementarities
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4.1 Introduction!

Economic agents are often exposed to more information than they can process. They are
also often surrounded by more information sources than their limited cognitive abilities
enable them to pay attention to (Sims 2003, 2005, 2006). The increase of information flows
and the proliferation of information sources has accelerated in the Digital Age. As Google’s
CEO Eric Schmidt stated it in 2010, every two days now we create as much information

as we did from the dawn of civilization up until 2003.2

This plethora of information sources is perceived as enabling individuals to make better
choices by giving them the possibility to learn about various variables relevant to their
decision making. In the theory of decision making under uncertainty, various orderings and
measures have been developed that allow a decision maker to rank information structures,
and the general conclusion of this research is that, for a decision maker, more information

is always better.

When many agents interact, information choice is complicated in at least two ways. The first
complication is that in a strategic context, information choice becomes a strategic decision,
and the value of the various information choices depends on other agents’ information
choices, as it is the case for any strategic decision. The second complication is that more
information is not always better, because in some games, ignorance has commitment

value.

In this paper, we study the strategic choice of information, together with the strategic
choice of actions. Our focus is not on the quality, quantity or precision of the information
acquired —those are the main issues in decision making and remain important in a strategic
context—, but on the diversity of the information that agents choose to acquire, which is
meaningful only in a model with many agents. Information is diverse if agents choose to
acquire dissimilar information and it is homogenous if agents choose to acquire similar
information. In our framework, diversity is an endogenous outcome that results from

economic fundamentals, such as the payoffs of the agents.

! This chapter is co-authored with Sidartha Gordon.
2Siegler, MG. (2010, August 4). Eric Schmidt: Every 2 Days We Create As Much Information As We Did
Up To 2003. Retrieved from http://techcrunch.com/2010/08/04/schmidt-data/
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Information asymmetries have played an important role in many economic models in
many different fields, including industrial organization, the economics of organizations,
political economy, macroeconomics and financial economics. As a first step to understand
the influence exerted by information on action choices, the models assume an exogenous
information structure. But soon, questions arise on where the information structure comes
from, who chooses it and how and why they choose it. In an influential paper, Morris and
Shin (2002) initiate a literature on the preferences of the central bank (or the planner)
over the macroeconomic information structure. In the context of an auction, Bergemann
and Pesendorfer (2007) consider the joint design problem of a seller choosing the rules of
an auction and the precision of the information of the bidders, in order to maximize his
expected profits. Similar questions have been asked in other contexts and a literature on
information design has emerged that seeks, more generally, to describe for a given game or
for a game to be designed, all possible outcomes a planner could achieve by choosing the
players’ information structure (Gentzkow and Kamenica, 2011; Bergemman and Morris,
2013; Taneva 2014).

Another approach, the one we adopt, is to model the information structure as the result of
the agents’ decentralized information choices. Until recently, the literature that followed
this path restricted attention to the acquisition of private information and was exclusively
concerned with the strategic decision of how much private information (in terms of
information quantity, quality or precision) agents choose to acquire when interacting with
others. Hellwig and Veldkamp (2009) and Myatt and Wallace (2010) depart from this
tradition by allowing agents to acquire potentially public or correlated information in a
model of a beauty contest with a continuum of symmetric agents. These authors note that
in a strategic context, information about an unknown payoff relevant parameter is at the
same time information about what other players know. In these model, actions are either
strategic complements or strategic substitutes and agents play actions that are increasing in
their signal. The authors make the informal observation that when actions are complements,
agents would like to know what the others know and when actions are substitute, they
would prefer not to know what the others know, but to have independent information. Thus
they make a claim about the players’ preferences over information dependence. At the
same time, in both papers, the authors establish a complementarity inheritance result: the

sign of the complementarity in actions is passed on to the complementarity in information
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precisions. If actions are complements, precisions are also complements. If actions are
substitutes, precisions are also substitutes. Last, the authors claim that players’ preferences

over information dependence reflect the players’ preferences over action dependence.

Although complementarity inheritance has been noted in several models, all these models
are very similar in that they rely on very similar functional forms and distributions. It
has been shown that the result is not robust to even slight deviations from the models in
which it holds. For example, Jimenez-Martinez (2013) consider the same functional forms
as Hellwig and Veldkamp (2009), but assumes two players instead of a continuum, and
obtains that complementarity inheritance only holds in a subset of the parameter space.
Szkup and Trevino (2014) consider a model that departs from Hellwig and Veldkamp
(2009)’s only in that they assume binary actions instead of a continuum. They find that
while actions are strategic complements in their model, information precisions need not be

complements.

In our view, although complementarity inheritance is related in some way with the
players’ preferences over information dependence, these are two rather different phenomena.
First, complementarity inheritance is a result on preferences over information precision.
Preferences over information precision are tricky for two reasons. First, because they mix
two different considerations: (i) whether the player wants or not to know more on the
uncertain variable; (ii) whether the player wants or not to know what the other players
know. Second, because the uncertainty about the other players’ knowledge is not held fixed
when varying the other players’ precisions: it increases as the other players choose a greater
precision. Thus, a positive complementarity in precisions, i.e. the fact that following an
increase in the information precision by the other players, the remaining player also prefers
to increase his precision in reaction, could be due to various reasons. First, it could be
that the remaining player is now more willing to know the state more precisely; Second, it
could be that he is now more willing to know what the other agents know more precisely;
Finally, it could be that he is now more uncertain about what the others know and as a
result, is willing to compensate the uncertainty by increasing his own precision. Of course,

it could also be some complicated combination of the three reasons we just listed.

This confusion arises even if the players acquire signals that are independent conditional

on state realizations. Indeed, when a player acquires private information on the state, he
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cannot avoid acquiring information on what the other players know, because what they
know is correlated with the state. This implies that the issue of precision choice cannot be

fully isolated from the players’ preferences over information dependence.

It is however possible to study the players’ preference over dependence, and the consequences
of these preferences on choice and equilibrium, in isolation from the choice of precision.
In this paper, we disentangle the two issues and concentrate on the issue of information
diversity. We build a model where the only information choice each player has is one
between signals that are all equally informative on the state, but are diverse in the sense
that they are not perfectly correlated with each other. The amount of information a player
can acquire is fixed, perhaps endogenously determined at an earlier stage, but exogenously
given from the perspective of the game.? Therefore, the only motive driving the players’
information choices is whether they want or not to observe the same signal as this or the

other player.*

We show that there exists a general link between complementarities in payoffs and the
players’ preferences over information, and that the equilibrium structure can be linked
to strategic complementarities in a large class of models, without relying on particular
functional forms, distributional assumptions, nor a continuum of agents. Our result is
robust in these dimensions, but it requires the amount of information that each player

acquires to be held fixed.

We distinguish two components in the choice made by a player. The first one is which
signal he chooses to observe. The second one is his action strategy, namely the function
that maps the signal he obtains to his actions. One feature of the equilibrium that plays a
crucial role are the monotonicity properties of equilibrium action strategies. In general,

equilibrium action strategies need not posses any monotonicity property, but in some

3This assumption is relatively reasonable in many applications. Firms usually set budgets to information
gathering activities, individuals subscribe to newspapers and magazines on a year-term basis, etc.
Van Nieuwerburgh and Veldkamp (2009) show how this assumption is not restrictive using a duality
argument.

4In our model, the players’ information choice is akin to a location choice in some abstract information
space in which positive dependence can be thought of as an incomplete ranking of distance. By choosing
their signals, agents determine the information diversity, in the same way as firms determine the level
of brand diversity or geographical dispersion in a market by choosing their brand or their location, as
captured in the Hotelling and Salop firm location models.
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games they do. Even when this is the case, these properties depend on the information

structure.®

The problem we study is a complex one: equilibrium action strategies depend on the
information structure the players believe in, but the equilibrium information structure
depends on the action strategies they expect. We connect player’s preferences over
information, their equilibrium information choices and the equilibrium information diversity
to two types of payoff complementarities: positive or negative complementarities between
own action and others’ actions, and positive or negative complementarities between own

action and the unknown state.

It is useful to decompose our analysis in two parts. First, we need to understand how the
information structure determines action strategy monotonicity properties. Second, we need
to understand how the interplay between these monotonicity properties and the payoff
complementarities in actions shapes the players’ preferences over signals and information

structures.

For the first part, we show that for any exogenous information structure, if complementari-
ties between own action and state are strong and complementarities between actions are
weak, there exists a Nash Bayesian equilibrium in action strategies where action strategies
are monotonic in a way that agrees with the state complementarity between own action
and state: if this complementarity is positive, the action strategy is increasing and if it is
negative, the action strategy is decreasing. Although action complementarities may work
against these monotonicities, if they are weak, they do not prevent the existence of such
an equilibrium. When the dominance of state complementarities over action complemen-
tarities is sufficiently strong, an equilibrium where action monotonicity agrees with state
complementarities exists, regardless of what the information structure is. In some special
cases, studied in particular by Van Zandt and Vives (2007), action complementarities
work in the same direction as state complementarities. This is the case for example if all
complementarities, action and state, are positive. In this case, a monotone equilibrium

that agrees with state complementarities can be obtained under weaker assumptions.

A large literature studies, for games with exogenous information structures, which fundamentals (in
particular, which information structures) guarantee the existence of equilibria where all players’ action
strategies are increasing in their type (Athey, 2001; McAdams, 2003; Van Zandt and Vives, 2007, Reny,
2010).
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For the second part, we study the players’ preferences over signals. These preferences are
hedonic: a player does not prefer one signal over another per se. Instead the preference
depends on what signals the other players choose, on how they react to their signal,
and on the dependence properties between the different signals. We show that these
hedonic preferences depend on the interplay between action strategy monotonicities and
complementarities in actions. More precisely, we show that the preference of a player
between two signals depends on which of the two signals is more dependent on (or more
similar to) the signals of a certain group of players the agent would like to be informationally
close to, and less dependent (or less similar to) the signals of another group of players the
agent would like to be informationally far away from. The action strategies of two players
are isotonic if they move in the same direction with their signals and antitonic if they
move in opposite directions. We show that each player seeks to be informationally close to
players whose actions are either isotonic and complement with his own, or antitonic and
substitute with his own, and informationally far away from players whose actions are either

antitonic and complement with his own, or isotonic and substitute with his own.

We obtain our results for a general class of payoff functions and distributions. With the
functional forms and distributions that are usually studied in the literature (e.g. linear
and quadratic payoff functions, Gaussian distributions), dependence boils down to the
conditional correlation between the signals. To tackle the general case, we define a new
notion of statistical dependence between signals. In the case of two players, our dependence
ordering between signals coincides with familiar orderings (supermodular, concordance,
positive orthant dependence orderings), but in the case of three agents or more, our

dependence ordering is novel and of independent interest.

Assembling the two parts of the analysis, we provide sufficient conditions for certain
monotonicity patterns and information structures to arise in equilibrium, as well as
sufficient conditions for these structures to be the most plausible ones in equilibrium. In
particular, we show that if all complementarities (state and action) are positive and public
information is feasible, there exists an equilibrium where information is public. In this
case, knowing what the other knows allows a player to know a lot on the action of that
other player. It is perhaps not surprising that the players choose to obtain the highest

level of information by having perfectly correlated information.
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However, if all state complementarities are positive, but all action complementarities are
negative, and state complementarities sufficiently dominate action complementarities, then
there exists an equilibrium where information is as private as possible. It may seem
surprising that not knowing what the other players know is better. The reason is that this
allows a player to rely more on his signal, without incurring the cost of playing an action

that covariates positively with the other players’ actions.

Along the way, we show by an example, that equilibrium information structures can be
inefficient in an ex ante sense. Interestingly, efficiency can sometimes be restored if the
players observe the others’ signal choice (but not their realizations). This is because,
in this case, the agents internalize some payoff relevant decisions that are ignored when
information choice are not observed. In particular, a deviation in information has an effect
on actions that is absent when information choice are not observed. These reactions in
the action stage may sometimes serve to discipline the players from choosing a suboptimal

information structure in the information acquisition stage.

The paper is structured as follows. In Section 2, we present the model. In Section 3, we
illustrate all of our results with a simple example. In Sections 4, we introduce definitions
that are needed in the analysis of the general case, in particular our new ordering of signal
conditional dependence. Section 5 presents the core results of the paper. In Section 6, we
show how our model can be applied to different situations. In Section 7, we conclude with

a more precise discussion of the literature.

4.2 The Model

In this section, we define a Bayesian game with information choice. Let I = {1,..., N}
be a finite set of players. In the game, each player ¢ chooses an action a; € A; C R. An
action profile is denoted a = (ay, ..., ay) . The players’ payoffs depend on a, but also on
some unknown state of the world § € R. Each player has a von Neumann-Morgenstern
utility function wu; (a, ). Actions are chosen simultaneously, but prior to choosing an
action, each player chooses a piece of information about # and observes this information.
The information structure is therefore endogenous. We now describe how players choose

information.
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From the players’ point of view, before they acquire information, the state of the world 6
is the unknown realization of a random variable ©, whose support is 7" C R. A signal is a
finite support random variable X, which is correlated with the state, and therefore may
carry payoff-relevant information, but does not itself directly enter the players’ payoffs.
Each player i has a set X; of signals he can potentially observe, but he can only choose
exactly one signal X; € X;, of which he observes the realization z; € R. For simplicity, we
assume that all the signals that a player can potentially observe have the same finite support
X; and in addition, we assume without loss of generality that this support is symmetric
around zero, i.e. —X; = X;.% Let X ={J; X; be the set of all available signals for all players,
X = (Xy, ..., Xy) be a profile of signal choices and x = (z1,...,xy) be a profile of signal
realizations. Let F' be the joint cdf of the random vector (O, (X; : X € X)). The tuple
(X1, ..., Xy, F) is the signal structure of the game. A Bayesian game with information
choice is defined by the tuple I' = (I, (A4, ..., An), (ug, ..., un) , (Xq, ..., Xn, F)) .

The game unfolds as follows in two stages. Initially all players start with the common
prior F, which can be thought of as Nature’s mixed strategy. In the first stage, each player
1 simultaneously chooses a signal X; € X;. In the second stage, each player i privately
observes his own signal realization z;, and then simultaneously chooses an action a;,
without having observed the other players’ first stage choices, nor the other players’ signal

realizations.

In the normal form of this game, a pure strategy for player 7 is a pair (X;, ;) in X; x Af"xx".
The first component in the pair is the signal X; chosen by player ¢ in stage 1. The second
component in the pair is the player’s action strategy «;, a mapping that determines
player i’s action choice, given the realization x; he observed and the source X; he chose.
In most of the paper, we will restrict attention to pure strategies.” For simplicity and
without loss of generality, given the focus on pure strategies, we restrict attention to action

strategies in AZ&, such that the action chosen by each player only depends on his signal

6The finite support assumption is made to simplify the exposition, and to avoid uninteresting technical
complications. We conjecture that our results extend to the case where X is infinite. The symmetry
assumption is without loss of generality, because the problem is invariant, under any increasing trans-
formation of the set X; and any finite set X; can be transformed into a symmetric set. The assumption
simplifies notations later on.

"We consider mixed strategies in Appendix C.5.
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observation.® A strategy profile (X, a) = (X;, ), is a full-fledged Nash-Bayesian
equilibrium if for all ¢ and all (X, o)) # (X;, ;) , we have

Eo x (u; (a; (Xi),a_; (X_;),0)) > E@,X{,X,i (i (0 (X)), i (X4), ©)).
Our goal is to understand what type of information structure can arise in a Nash-Bayesian
equilibrium of a Bayesian game with information choice I', and how the equilibrium
information structure relates to the equilibrium action strategies. Of course, both questions
are very broad, and could be analyzed from a variety of angles. Important considerations
in a player’s choice of a signal could be how informative on 6 the different available signals
are, how costly they are, or which aspects of @ they reveal.” We do not consider this type
of choice here. Instead, we focus on the choice of signal conditional dependence: does a
player want his signal to depend, conditionally on #, on the other players’ signals or not?
In order to eliminate the other motives, and to concentrate on the conditional dependence
motive, we assume that a player has access to signals that are all equally informative on
the state in the sense of Blackwell. Namely, for each 4, not only the support of all signals
in X; is the same, but in addition the joint marginal distribution of ® and X is the same

for all signals X in X;.10

Given this restriction, the only remaining degree of freedom the players have when choosing
their information is the conditional dependence of their signals with each other. The goal
of the paper is to study which dependence patterns between players’ signals can arise in
a Nash Equilibrium. We interpret these dependence patterns in terms of informational
diversity. We also relate the dependence patterns with the monotonicity properties of action
strategies and the payoff complementarities in actions. For some information structures,
we provide sufficient conditions on the primitives of the model, which ensure that this

information structure is chosen by the players in some equilibrium of the game.

8With pure strategies, it is without loss of generality to restrict attention to action strategies a; that do
not depend on X;. Indeed, holding a strategy profile for the other players (X_;,a_;) fixed, any joint
distribution over 7' x AY induced by some profile (X, ) such that a; depends on X;, can also be induced
by some other profile (X;, o, «_;) such that o) does not depend on X;.

9For example, one signal could reveal §’s sign, whereas another could reveal #’s absolute value.

10Tn particular, if all players have access to the same signals, i.e. all the sets X; are equal to X, then our
assumption is that all signals in X are equally informative on 6 in the sense of Blackwell.
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In the rest of the paper, we refer to I' as the game with endogenous information structure,
that is the game where the players choose which signal to observe. We also refer to ['x as
the game with an exogenous information structure such that the profile of signal observed

by the players is X.

In Section 4.3, we first examine the questions in a simple example and provide complete
answers in this context. We then show in Section 4.5 that several of the insights gained
from studying the example can be generalized to a large class of games, and do not rely on

specific payoffs nor on a particular information structure.

4.3 An Illustrative Example

To fix ideas, we start with a simple example.!! Suppose that N = 2, X; = Xy = { X7, X7/}

and player ¢ chooses an action a; € R. The payoffs of the game are
U; (a, 9) = —CLZZ + Zbiaaiaj + Qbigaie -+ K (&j, 9) (41)

where b;, and b are real numbers for i € {1,2} and K (-,-) is a function that does not
affect the set of Nash-Bayesian equilibria, but may have an effect on welfare. The parameter
b;, captures the level of strategic interaction between player i’s and player j’s actions
and the parameter b;9, the strategic interaction between player i’s action and the state.

Positivity implies action complementarity and negativity, action substitutability.

The information structure is as follows. The random vector (6, X, X;;) is distributed in
{-1, 1}3 according to a probability distribution function such that the vectors (0, X;) and

(0, X;7) have the same joint marginal distribution given by

X, =—-1|1X,=1
_ 1—¢ €
e

N ‘

for ¢ € {I, 11} and where € € (0,1/2).

1One could also consider the normal quadratic payoff setting to illustrate our results. Such an example,
however, is not strictly speaking a special case of our model, because the support of the signals is infinite.
Note, that the finiteness assumption is made to keep the exposition simple, not for more fundamental
reasons.
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Moreover, we assume that P( = —1) = P(f = 1) = 1/2, and that the joint distribution of
two signals, conditional on © = 0 € {—1,1} is given by the following matrix:
Xn=0|Xi#0

Xr=0|(1-¢)P|e(l—¢).
Xr#60|e(1—¢) e?

Fixing signal choices X; € { X, Xy} for i = 1,2, the ex ante expected payoff of player i
given the profile of signal choice X is
Ee x (ui(a(X),0)) =
P(X; = —1) - (P(X; = 1|X; = ~D)E(u(®, i (-1, 05 (1)) X; = =1)
FP(X; = ~11X; = ~DEi(0, i (-1), a5 (-1))[X; = =1))  (4.2)

HP(X; = 1X; = DE(wi(0,a; (1), 5 (1)) X; = 1)),

where P(X; =z|X; =2) =11 X; = X, and P(X,;, = 2| X; =2) =1 -2¢(1—¢) if X; # X;.
By taking the first-order condition to (4.2) with respect to «; (1) and «; (—1) for i = 1,2
and then solving for (o (—1), a1 (1),a5(—1), a2 (1)), we can compute the equilibrium in
the second-stage, that is, once the information structure is fixed. In particular, we obtain
a; (—1) = —a; (1) and

(bzg + bwbjg [QP( = I’|X = .I‘) — 1])

) = b P (X, —x|X — o) — 1

(1—2¢). (4.3)

Because «; (—1) = —q; (1), the number «; (1) equals the slope of the action strategy of
player i, and its sign indicates whether this strategy is increasing or decreasing in his

signal.

To avoid non generic trivial cases, we will assume that for all 7, j € {1,2}, such that i # j,
we have big +biabjo # 0, biabja 7 1, big+biabje (1 — 26)* # 0 and bigbja (1 — 26)* # 1. These
conditions ensure that (a) for any profile of pure signal strategies (X7, X3), a unique pure
Nash-Bayesian equilibrium exists in the action game with exogenous information structure
(X1, X3), and (b) that in this Nash-Equilibrium, each player’s action strategy is strictly

monotonic: either it is strictly increasing, or it is strictly decreasing.
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A look at Equation (4.3) shows that whether player i’s action strategy is strictly increasing
or strictly decreasing in his signal depends on b;,, the level of strategic complementarity, b,

the level of state complementarity and P(X; = x| X; = x), the information structure.

The profile of action strategies (aq, az) is said to be strictly isotonic if both players’s actions
are either strictly increasing (o; (1) > 0) or strictly decreasing («; (1) < 0). This occurs
when blg +b1ab29 (ZP <X2 = .I"Xl = ZC) — 1) and b29 +b2ab19 (2P (Xl = .I"XQ = LE’) — 1) have

the same sign.

4.3.1 Information Choices

We turn now to the information choice stage of the game. The main question that motivates
our work is to understand which assumptions about the payoffs are necessary for information
diversity to emerge as a result of the players’ individual choice. The binary example allows

us to illustrate very clearly the main contribution of the paper.

Fixing the action strategies to (a1, az), where the «; are the odd functions given by (4.3),

the expected payoff for player ¢ can be written as

Eo x(u;(a(X),0)) = 2b, CP(X; = z|X; = x) — 1) a; (1) a; (1) + Constant. (4.4)

In the rest of this section, we perform a partial analysis where (a1, as) is fixed to the
expression given in (4.3). Once (a1, aq) is fixed, player i’s information choice determines
P(X,; = z|X; = x) and which one is optimal depends on the monotonicity of actions
strategies (the sign of «; (1) a; (1)) and on the strategic motive in actions (the sign of b;,).
In our example, since the players have access to exactly the same signal, the information
structure is either public, if both players observe the same signal, or private, if the players

observe different signals.

4.3.1.1 Conflict on the Information Structure

A first observation is that whenever the players have conflicting preferences over the
information structure, which is this context means that one of the two players would prefer

the information to be public, while the other would prefer it to be private, there cannot
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be an equilibrium of the endogenous information game that is in pure strategies. This is
because the players are playing a game akin to Matching Pennies in the first stage. The

players have conflicting preferences over the information structure when by,b9, < 0.

Proposition 4.1. In the binary quadratic example, if bi,bae < 0, players have conflict-
ing preferences over the information structure. In this case, the game with endogenous

information acquisition does not have an equilibrium in pure strategies.

However, it can be shown in a more general context, that this game always has an
equilibrium in mixed strategies.!? In the rest of the analysis of the binary quadratic
example, we will restrict attention to the case where players agree on the information

structure they like best, that is, we assume that b,b9, > 0.

4.3.1.2 Agreement on the Information Structure

Proposition 4.2 characterizes the equilibrium information structure when (o, ) is fixed.
With isotonic action strategies, a low value for P(X; = z|X; = x) is desirable for player i
only if b;, < 0, i.e., when actions are substitutes. With antitonic action strategies, a low
value for P(X; = z|X; = x) is desirable for player i only if b;, > 0, i.e., when actions are

complements.

Proposition 4.2. In the binary quadratic example, let biaby, > 0 and let (X, (aq, ) be

a pure Nash-Bayesian equilibrium of the game. Then,
1. Xi=Xs only if oy (1) ag (1) byy > 0 fori=1,2.
2. X1 # Xy only if oy (1) g (1) by <0 fori=1,2.

The result in Proposition 4.2 leads us to a more general phenomenon, which we will analyze

in greater generality in Theorem 4.4.

A general feature of games with endogenous information structure is that multiple equilibria
can exist. For instance, it can be the case that the players choose to acquire the same
signal, so that they hold public information, but that the actual signal they observe can be
either one contained in the set X. This type of multiplicity is trivial since the dependence

pattern among the players’ signals is the same for all equilibria. More interesting is the fact

12Gee Appendix C.5.
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that non-trivial multiplicity can also occur with endogenous information choice. One such
example would be a game where two types of equilibria can be sustained, an equilibrium
where the players choose the same signal and another one where the players choose different

signals.

Theorem 4.1. In a game with endogenous information choice, non-trivial multiple equi-

libria can exist.

Basically, Theorem 4.1 establishes that the dependence pattern in information choice is
not always uniquely pin down by action complementarities. We prove Theorem 4.1 using
our binary quadratic example. More specifically, we construct an example with strategic
substitutability in actions and complementarities in a player’s action and the state and
show that both public and private information can be sustained in some equilibrium of the

game.

4.3.2 Ex-ante Constrained Inefficiency of the Equilibrium Infor-
mation Structure

Next, we use the binary quadratic example to show that, under certain conditions, the
players’ equilibrium signal choices do not result in the information structure a planner
would design. We compare the equilibrium of the endogenous information game (in
cases covered by Proposition 4.2) with an auxiliary game in which the planner chooses
the information structure. In particular, we assume the planner chooses between either
(X1, X1) or (X7, X/r), then this information structure becomes common knowledge, and
the players simultaneously choose actions in a noncooperative manner. Of course, it is
not necessarily obvious what the preferences of the planner should be. In order to avoid
this difficulty, we focus on the case where the two players have symmetric payoffs, given
by

u; (0,a) = —ai + 2b,a;a; + 2bpa;0 + 2bg,a;6 + Qbaaa?. (4.5)

This is a special case of Equation (4.1) considered before, when the players have symmetric
payoffs and with K(a;,0) = 2bg,a;6 + 2baaa§. The terms in K(a;,6) capture an externality
that does not affect the Nash-Bayesian equilibrium in the game with endogenous infor-
mation choice, but contributes to determine which information structures are constrained

efficient.
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Since the players’ payoffs are symmetric, the unique equilibrium is also symmetric. We
may then safely assume that the planner maximizes the expected payoft of player 1. Given
a profile of signal choices (X7, X5) and action strategies a as in (4.3) , the ex ante expected

utility of player 1 is written as

Eo x(ui(a(X),0)) = 2b,2P( Xy =z|X1=2)— 1)y (1) as (1) — (a1 (1))2
+2baq (a2 (1)) + 2bpay (1) (1 — 2¢)
HAbgaars (1) (1 — 2¢) (4.6)

Player 1 would optimize his signal choice by considering that he has a direct impact on the
first term through a change in P(X3 = x| X; = ). On the other hand, the planner, when
pondering over which information structure to impose, considers that player 1’s utility,

also depends indirectly on P(Xy = 2| X; = x) as this term enters a; (1) and ay (1).

Therefore, the social planner, since he knows the signal choices, uses a different expected
payoff function when maximizing welfare, and thus, would not necessarily choose the

Nash-Bayesian equilibrium for the signal choice structure.

Theorem 4.2. A pure Nash-Bayesian equilibrium (X, «) of the game with endogenous

information acquisition need not be constrained ex-ante Pareto efficient.

Note that Theorem 4.2 applies to every game that fits the description of our model in
Section 4.2 and not just the particular binary quadratic example. Essentially, the reason
for the inefficiency is that the planner will take into consideration the impact of the signal
choices on the actions when making a choice on the information structure, an effect that
the players do not individually consider. This result suggests that policy intervention is
sometimes beneficial in markets for information. In a decentralized system, players may
choose either too similar or too dissimilar information, and policy intervention can help to

mitigate this type of inefficiency.

In the main model, we make the assumption that signal choices of the first stage are
not observed by the players. This is important, since it implies that a deviation from
equilibrium play does not affect the other player’s action choices in the second stage: the

choice of signal and actions are strategically simultaneous. One can imagine situations
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where signal choices are observable. For example, a company may sign a contract with a

market research firms and this may be observable by all other companies.

Interestingly, this difference can have important effects. To see this, consider again the
case of two symmetric players. In this case, both players in stage 1 face the problem of the
planner, which we analyzed earlier. As we showed, the planner’s solution may be disjoint
from the set of Nash equilibria of the game where signal choices are unobservable. We can

thus deduce the following result.

Theorem 4.3. Suppose the players publicly observe the profile of signal choices. Then, any

pure Nash-Bayesian equilibrium (X, ) of the game is constrained ex ante Pareto efficient.

In this alternative model where the players publicly observe the profile of signal choices,
the actions in the second stage are functions of the profile of signal choices. Therefore,
a shift of signal by a player has an impact on the other players’ actions, which is in
turn acknowledged by the deviating player. So it turns out that allowing for the public
observation of information choices induces the players to internalize the impact of their

signal choice and to behave as the planner would want them to.

Theorem 4.3 suggests that an intervention that mandates players to publicly disclose
their sources of information may sometimes be desirable, in that it could help to mitigate
excessive information similarity or dissimilarity that may result from a decentralized market

for information.

4.4 General Case: Preliminary Definitions

In this Section, we introduce the concepts that are needed in order to generalize some of the
insights obtained in the example studied in Section 4.3. We first introduce monotonicity
properties, then strategic complementarities in actions. Last, we introduce a new partial
order on a set of information structures, the “dependence ordering,” which compares the
positive dependence between a single player’s signal and all the other players’ signals across

information structures.
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4.4.1 Monotonicity Properties of Action Strategies

For any action strategy «; : X —R, we say that «; is increasing if for all z;, x; € X', we
have x; < ) = «a; (x;) < o (2}), and that «; is strictly increasing if for all z;, 2} € X,

we have x; < 2 = «a; (x;) < o () . We say that «; is (strictly) decreasing if —aq; is

(strictly) increasing.

A profile of action strategies « is (strictly) monotonic if for all i, the action strategy «; is
either (strictly) increasing or (strictly) decreasing. It is (strictly) isotonic if either, for all

i, the action strategy « is (strictly) increasing, or for all i, a; is (strictly) decreasing.

We also want to encompass the cases where the action profiles are (strictly) monotonic, but
not necessarily (strictly) isotonic. For any vector m € {1, —1}I , we say that the profile of
action strategies « is (strictly) m-monotonic if for all i, the function m;«; is (strictly)
increasing. In particular, for any vector m, a (strictly) m-monotonic profile of action
strategies « is (strictly) isotonic if, for all ¢, the m; have the same sign. Fixing a player 1,
a profile of action strategies « is (strictly) antitonic for ¢ if it is (strictly) m-monotonic,

and m satisfies m; = —m; for all j # 1.

4.4.2 Strategic Complementarities in Actions

Let a_;; € RI\M} be the action strategies of players I\ {i,j}. We say that player i
has (strict) positive complementarities in actions with player j # i, if for all
a, < al, and all a_; ; € RI4I} the difference u; (af, aj,a_; ;) — w; (al, a;,a_; ;) is (strictly)
increasing in a;. We say that player i has (strict) negative complementarities in
actions with player j # i, if for all a} < a/, and all a_;; € RIMW} | the difference
w; (a],a;,a_; ;) — u; (a},a;,a_; ;) is (strictly) decreasing in a;. We say that player ¢ has
(strict) positive complementarities in actions if he has (strict) positive complementarities
with all the other players. We say that he has (strict) negative complementarities in actions

if he has strict (negative) complementarities with all the other players.!3

13In a complete information game in which the best response function of player 7 is well defined, if u; has
positive (negative) complementarities in actions with player j, his best response function is increasing
(decreasing) in a; (Topkis, 1998; Milgrom and Roberts, 1994).
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Although these definitions can be used to describe many situations, we are interested in
a richer class of payoff functions where each player may have a (strict) positive comple-
mentarity in actions with some players and a (strict) negative complementarity with some
other players. The complementarity properties of a payoff function u; are encoded by a
complementarity vector ¢! = (c;'»)jel e {-1, 1}1 with ¢! = 1. We say that player i has
(strict) c’-complementarities in actions if he has (strict) positive complementarities
in actions with all players j # 7 such that cé» = 1 and (strict) negative complementarities in
actions with all players j # ¢ such that c; = —1. In particular, the case where ¢’ = (1,...,1)
corresponds to the case of a player that has a (strict) positive complementarity in actions.
Similarly, the case where ¢, = (—1,...,—1) corresponds to the case of a player that has a

(strict) negative complementarity in actions.!®

4.4.3 Conditional Dependence Orderings

We now introduce a family of weak partial ordering on a set X; of signals accessible to
player i, the “conditional dependence orderings.” Each such ordering is indexed by some
fixed profile of the other player’s signals X _; and compares across the signals X; accessible
to player ¢ the positive dependence between X; and X_;. These orderings play a central

role in all the results in Section 4.5.

This notion requires the following definition. For any £ > 1, a subset L C X kis an
increasing subset of X* if for all z,2/ € X%, such that x < 2/, 2 € L = 2/ € L.

Equivalently, L is an increasing subset if its indicator function 1, (x) is increasing.

Definition 4.1 (weakly greater conditional dependence). Let i € I and let X_; be a
profile of signals for all players different from i. For all X! and X[ in X;, we say that X
depends at least as much as X! on X_; conditionally on ©, if for all (0,x), and

all increasing set L C X"\ we have

P(X!>a2| X, €L, 0=0>P(X!'>2|X €L, ©=0).15

141f the payoff u; is twice continuously differentiable, then player i has c¢’-complementarities in actions if
and only if cj agzg&] (a) > 0 for all j # i and all a, and he has strict complementarities in actions if this
inequalities hold strictly, almost everywhere. But we do not assume that payoffs have this regularity
property.

I5We provide an equivalent definition, based on the notion of multivariate first order stochastic dominance
in Appendix C.1.
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For each profile X_; of signals chosen by the other players, this defines a weak partial order

over the signals accessible to player .

Similarly, we define a larger class of weak partial orders over X;. It enables us to compare,
for two signals X/ and X/, whether one signal depends more on some other player signal,

but less on another player’s signal than the other.

Definition 4.2 (weakly greater conditional di-dependence). Let i € I and d' € {—1,1}".
For all X! and X!' in X;, we say that X! d'-depends at least as much as X! on X _;

conditionally on O, if for all (0, z), d:X! depends at least as much as d:X! on (d;Xj) L
j#i

For each profile X _; of signals chosen by the other players, and for each dependence vector

d’, this defines a weak partial order over the signals accessible to player .16

Our interpretation of weakly greater conditional d’-dependence is that player i’s signal X/
depends at least as much on the signals of the players j such that di = d; and at most as
little on the signals of the players j such that d} = —dz'-, as player i’s signal X', conditional
on 6. Note that weakly greater conditional dependence is precisely the special case of

weakly greater conditional d’-dependence, when df = ... = d% € {—1,1}.

For the two weak partial orders defined in this subsection, a strict partial order is defined
as follows: we say that X depends more than X! on X_; if X/ depends as much as X/

on X_;, and X! does not depend as much as X/ on X_;.

4.5 Equilibrium Information Structures

In this section, which is the core of the paper, we determine which information structures
can be part of a full-fledged Nash-Bayesian equilibrium of the game with information

choice.

The analysis is in two steps, each subdivided in two sub-steps. In the first step (Sections

4.5.1 and 4.5.2), we assume that action strategies are m-monotonic, for some exogenously

16Gimilarly to Definition 4.1 (respectively to Definition 4.2), one can define a weakly greater unconditional
dependence (respectively d’-dependence) partial ordering, which is weaker than the orderings in this
definition. Only the conditional versions play a role in the paper, because we are interested in information
structures, not in random variables.



105

fixed vector m. The action strategies themselves may not be fixed, but their monotonicity is.
We show in Section 4.5.1 that together with m, the complementarities in actions determine
preferences over conditional dependence between own and others’ signals. For each pair
(,7) of players, we determine whether player i wants his signal to be as conditionally
dependent as possible on player j’s signal, whichever this signal is, or as independent as
possible of this signal, whichever this signal is. The answer to this question depends on
the action complementarities between ¢ and j for player ¢« and on the monotonicities m;

and m;. More precisely, it only depends on the sign of the product mimjcz».

We then characterize in Section 4.5.2 the set of signal profiles which are “compatible” with
the maximization of the preferences over conditional dependence described in Section 4.5.1,
while still holding the monotonicity vector m of the action strategies fixed. Throughout
this first step, the problem we study is akin to the study of a “location game,” where
a finite number of players choose a location from a set of possible locations, and have
preferences over locating close to of far from each of the other players, except that the
“locations” are in fact the signals and the distance is replaced by our notion of conditional

dependence.

In the second step (Sections 4.5.3 and 4.5.4), we proceed to endogenize the monotonicity
vector m, so as to obtain a full-fledged Nash-Bayesian equilibrium of the Bayesian game
with information choice, where both the information structure and the action strategies
are jointly determined. In Section 4.5.3, we provide sufficient conditions for a signal profile
X to be part of an equilibrium. The way this works is that if the Bayesian game I'x with
exogenous information equilibrium X admits an equilibrium « in m-monotonic strategies,
such that in addition, X is compatible with « in the sense of the characterization of
Section 4.5.2; then an equilibrium (X, ) turns out to be a full-fledged equilibrium, and
then, it follows from this that X is the signal profile of some equilibrium. In Section 4.5.4,
we provide conditions under which the equilibrium information structure is essentially
unique, in the sense that all (possibly multiple) equilibria have the same information

structure.
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4.5.1 Preferences for Conditional (In)Dependence

We now show how the monotonicity m of action strategies and the complementarities in
actions for a given player jointly determine this player’s preferences over the conditional
dependence between his own and other players’ signals. Throughout Section 4.5.1, we
suppose that a monotonicity vector m € {—1, 1}1 is fixed and that players are restricted to
play second stage action strategies that are m-monotonic. The restriction to m-monotonic
action strategies for some given m is a step in the analysis, but in some cases, the restriction
may follow from the primitives. For example, the restriction could result from an external

constraint, or from iterative elimination of never best-response action strategies.

4.5.1.1 Preferences for Conditional Dependence

We are now ready to present our characterization of the preferences for conditional

dependence.

Theorem 4.4. Let i € I and let ¢ be a complementarity vector for i. Fiz a monotonicity

profile m € {—1, 1}1 and a profile of signals X _;.

(i) Suppose that u; has c'-complementarity in actions. Suppose that X! and X!' are two
signals in X; such that X| di-depends at least as much on X_; as X! does, where d

is the conditional dependence vector such that

d; = m;m;c, (4.7)
for all j € T\ {i} and d: = 1. Then for any profile of pure m-monotonic action

strategies o, player i finds signal X! at least as good as signal X' :

Ee x;x_, (ui (i (X)), ai (X=),0)) =2 Eeo xv x_, (ui (o (X7), ami (X=y),©)).
(4.8)

(ii) If, in addition, u; has strictly c'-complementarity in actions, and X! d'-depends
more on X_; than X! does, then for any profile of pure strictly m-monotonic action

strategies o, player i strictly prefers signal X to signal X[ :

Eo xrx_; (wi (i (X)), (X5),0)) > Eo xr x_, (wi (i (X]), - (X4),0)).
(4.9)
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Part (7) in Theorem 4.4 is tight in the sense that if X/ and X! do not satisfy X! d'-depends
at least as much on X _; as X, where d' is player i’s most preferred dependence vector under
m-monotonic action strategies and c’-complementarity in actions, then a payoff function
u; with ¢’-complementarity in actions and an m-monotonic profile of action strategies can
be found, such that the inequality (4.8) does not hold. Part (7i) is also tight, in a similar
sense. In other words, the d’~-dependence ordering over signals is the weakest ordering for
which the inequalities (4.8) and (4.9) hold.

In a nutshell, Theorem 4.4 states that player ¢ prefers a signal that is

- as conditionally dependent as possible on the signals of players who belong to one of
two groups: first, the players whose actions are complement to his own and whose
monotonic strategy varies in the same direction as his own; and second, the players
whose actions are substitute to his own and whose monotonic strategy varies in the

direction opposite to his own;

- as conditionally independent as possible of the signals of players who belong to one
of two groups: first, the players whose actions are complement to his own and whose
monotonic strategy varies in a direction opposite to his own; and second, the players
whose actions are substitute to his own and whose monotonic strategy varies in the

same direction as his own;

Moreover, part (i) of Theorem 4.4 simplifies in the four following cases:
a. If player i has a positive complementarity in actions, i.e. ¢/ = (1,...,1), and « is

isotonic, i.e. m = (1,...,1) or m = (—1,..., —1), then player i prefers a signal that is

as conditionally dependent as possible on X _;.

b. If player 7 has a negative complementarity in actions, i.e. ¢', = (—1,...,—1), and «
is isotonic, i.e. m = (1,...,1) or m = (—1, ..., —1), then player ¢ prefers a signal that

is as conditionally independent as possible of X _;.

c. If player ¢ has a positive complementarity in actions, and « is antitonic for 1, i.e.
m; = —m,; for all j # 4, then player ¢ prefers a signal that is as conditionally

independent as possible of X_;.

d. If player ¢ has a negative complementarity in actions, and « is strictly antitonic for

1, then player ¢ prefers a signal that is as conditionally dependent as possible on X _;
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Part (i) of Theorem 4.4 also simplifies is a similar way in the analogous four cases. Theorem

4.4 motivates and justifies the following definition.

Definition 4.3. For any ¢ € I, any monotonicity vector m and any complementarity
vector ¢, let player i’s most preferred dependence vector under m-monotonic
action strategies and c'-complementarity in actions be the vector d* such that for
all j € 1, the equation (4.7) holds.

4.5.1.2 Link with the Literature on Dependence Orderings

Before we proceed with the rest of the analysis, we shall now pause and discuss how
Theorem 4.4 relates to the literature in applied probability, which studies dependence

orderings and the logical relations between them.

Part (i) in Theorem 4.4 can be viewed as a generalization of a classic result in this
literature, due to Tchen (1980). This scholar compares, for N-variate random vectors with
fixed marginals, two dependence orderings: the Positive Quadrant Dependence ordering
(PQD) and the Supermodular Dependence ordering (SPM). While it is well known that
SPM dependence implies PQD dependence, Tchen shows that in the case N = 2, PQD
dependence also implies SPM dependence, i.e. the two are equivalent.'” In contrast, for
N > 3, PQD dependence no longer implies SPM dependence. Miiller and Scarsini (2003)

provide a counterexample in the case N = 3.18

One difference between the two cases, which in our view is crucial for the difference in results,
is that while in two dimensions, dependence only involves a single pair of components (1, 2),
in three dimensions, it involves three pairs of components: (1,2), (2,3) and (1, 3). In other

words, it becomes a measure of multilateral dependence (or interdependence).

The paradigm in the applied probability literature is to conceive dependence orderings as

multilateral dependence between multiple univariate components. Our result departs from

"For definitions of SPM and PQD, see the Appendix C.4. See Miiller and Stoyan (2002, Theorem 3.8.2)
for related results.

80One way implications between various interdependence orderings and some equivalences have been
obtained for the case N > 3. They are reviewed by Strulovici and Meyer (2012), who also establish new
implications (see also Christofides and Vaggelatou, 2004; Miiller and Stoyan, 2002; and Hu, Miiller and
Scarsini, 2004).
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this paradigm by defining dependence between two components of a multivariate random

vector, one of which is itself multivariate.

In applied probability literature, different concepts of dependence relate to our definition
of dependence between an univariate and a multivariate components.! These are called
concepts of setwise dependence (e.g. Chhetry et al., 1989) and can be seen as generalizations

of the positive upper (lower) orthant dependence concept.?

The various concepts of setwise dependence describe the dependence between random
vectors, while disregarding the dependence between the univariate components within
each of these vectors. In our particular problem, we only need to study the dependence
between the signal choice of a given player and the choices of other players, not the
dependence patterns among these other players’ signals. Although such concepts of setwise
dependence between vectors have been studied, we are not aware of any work studying

setwise dependence orderings, such as the one we define.

Our Theorem 4.4 can be viewed as an extension of Tchen’s result to the more general
setwise case. Indeed, our concept of dependence is an appropriate generalization of
PQD dependence in a setwise setting, and the inequality (4.8) is also an appropriate

generalization of SPM dependence.?!

More specifically, in the special case where the
state © is deterministic, N = 2, i = 1, o; and s are the identity functions (so that

my =my = 1) and ¢! = (1,1), we obtain the following result.

Corollary 4.1 (Tchen, 1980). Suppose that uy has (1,1)-complementarity in actions. Fix
a signal Xy € Xo. Suppose that X1 and X{ are two signals in Xy such that X| depends at
least as much as X; on Xy. Then player 1 finds signal X| at least as good as signal X,

EX{,Xz (ul (XLXQ)) > EXLX2 (Ul (Xl,XQ)) .

9We thank Marco Scarsini for pointing us to this literature.

200me such concept in Chhetry et al. (1989) is setwise positive upper (lower) orthant dependence, SPUOD
(SPLOD). The set (X7, ..., Xj) with X; a p; x 1 vector in RY is said to be setwise positively upper (lower)
orthant dependent if for all z; € RY, ¢ =1,..,k,

PN {Xe > ()} > L P X > ()]

21 An appropriate name for this generalization of the SPM dependence ordering would be Increasing
Differences dependence ordering.
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This Corollary is a reformulation of Tchen’s result, because (1,1)-complementarity in
actions coincides with supermodularity for a function of two variables, and the assumption
that X depends at least as much on X5 as X7 is equivalent to the assumption that (X7, X»)
is at least as PQD dependent as (X3, X) in the bivariate case.

Another way in which Theorem 4.4 extends Tchen’s result is not mathematical, but purely
conceptual. Our comparison dependence orderings are conditional on the state ©. While
this does not raise any mathematical difficulty, it allows us to interpret our dependence
ordering as similarity between information sets, rather than between the components of a
random vector. Similarly, inequality (4.8) indicates a preference for an information set over
another. This generalization enables us to interpret Theorem 4.4 as telling us, between two
pieces of information, which one a player prefers to have, depending on his preferences
over actions, when one piece is more (or less) similar than the other to the other players’

information.

We believe that both our new bilateral (conditional) dependence ordering for multivariate
distributions and the extension of Tchen’s result in Theorem 4.4 are of independent interest,
and that they are likely to have applications in economics, in addition to the particular one
we study in this paper. We now return to the analysis of Bayesian games with information

choice.

4.5.2 Equilibria of the Information Choice Game

Every Bayesian game with information choice I' and every fixed profile of action strategies
« induce an information choice game I',, which is the normal form in which each players
i € I chooses a signal X; € X; and receives the payoffs Eg x (u; (o; (X;),a—; (X_;),0)),

where « is the fixed profile of action strategies.

We now use part (ii) in Theorem 4.4 to obtain a characterization of the equilibria of the
information choice game I', when « is a strictly m-monotonic action strategy profile, for

some monotonicity vector m.
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Corollary 4.2. Let (cl,...,cN> be a profile of complementarity vectors. Suppose that
for each i, player i has strict ¢'-complementarities in actions. Suppose that (X, ) is a
full-fledged Nash-Bayesian equilibrium profile in pure strategies. Suppose that o is strictly
m-monotonic, for some monotonicity vector m. Then for all i, there exists no signal X
that d*-depends more on X_; than X;, where d' is player i’s most preferred dependence

vector under m-monotonic action strategies and c'-complementarity in actions.

In some cases, by this result, Nash-Bayesian equilibrium conditions imply that m-monotonicity
of action strategies together with c¢i-complementarity in actions pin down an essentially
unique information structure. Whether or not this is the case depends on the geometric

structure of the signal structure. We now study this question in more detail.

4.5.2.1 Most d'-dependent Signals

The first set of situations where monotonicity pins down the information structure is when
the dependence preference of each player are to some extent independent on the information
choices of the other players. For example, if there are two players and both have access to
two different signals X; and X7, none of these signals is intrinsically more public than
the other. For each player, the more public signal is the signal the other player chooses.
Yet, in many contexts, the different available signals do not possess that kind of symmetry.
Some signals are unambiguously more public than others, some are unambiguously more
private than others. We push this idea even further and introduce the concept of a most

d'-dependent signal, independently of the signals chosen by others.

For any signal structure (Xy,...,Xy), any distribution F' and any dependence vector d’,
and for all X; in X;, we say that X is the most d’-dependent signal in X; if X has
the property that, for all signal profiles X_;, the signal X is a greatest element of the “as
d’-dependent on X_; as” weak partial order on X;. In plain words, the signal X} provides
player 7 with information that is more d*-dependent on the other player’s signals, than any
other signal player ¢ could choose to observe, regardless of what signals the other players

choose to observe. In particular, for d* = (1,...,1), we call this signal player i’s most
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public signal and for d’; = (—1,...,—1), for d*; = (d});4 we call this signal player i’s

most private signal.??

We obtain the following direct implication of Corollary 4.2 (a direct implication of Theo-
rem 4.4).

Corollary 4.3. Let (cl,...,cN> be a profile of complementarity vectors. Suppose that
for each i, player i has strict ¢'-complementarities in actions. Suppose that (X, «a) is a
full-fledged Nash-Bayesian equilibrium profile in pure strategies. Suppose that « is strictly
m-monotonic, for some monotonicity vector m. Suppose that for all i € I, player i has
a most d'-dependent signal in X;, where d' is player i’s most preferred dependence vector
under m-monotonic action strategies and c'-complementarity in actions. Then X; must be

a most d'-dependent signal in X;.

To illustrate the usefulness of this result, it is helpful to consider the following three special

cases:

1. If every player has a most public signal, and mimjc;- =1 for all 4, j such that i # j,
then in any Nash-Bayesian equilibrium in which actions are strictly m-monotonic,

every player must be choosing his most public signal.

2. More specifically, if every player has a most public signal and strict positive comple-
mentarities in actions, then in any Nash-Bayesian equilibrium in which actions are

strictly isotonic, every player must be choosing his most public signal.

3. If every player has a most private signal, and m;m;c’ = —1 for all 7, j such that ¢ # j,

i
4 =
then in any Nash-Bayesian equilibrium in which actions are strictly m-monotonic,

every player must be choosing his most private signal.

Of course, whether or not Corollary 4.3 has bite hinges upon whether there exists or not a
most d-dependent signal for each player i. The answer to this question depends on the

geometry of the signal structure X.

22Most d’-dependent signals in X; need not be unique, but they are payoff-equivalent under m-monotonic
action strategies. See the last paragraph of Section 4.5.4. If two different players i and j both have a
most public signal, then it must be that the intersection X; N X; has at most (essentially) one element.
Moreover, if this intersection is indeed nonempty, its (essentially) unique element is both i’s and j’s most
public signal.
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To gain intuition, it is helpful to visualize the information choice game (where action
monotonicities are held fixed) as a location game in a spatial setting. For each player 1,
the set X, is the analog of a set of admissible locations where this player can locate. Each
player’s preferences over locations only depends on where the other players locate. He
wants to be close to some of them and far away from some of them. The preferences of
player i are summarized by the vector d'. For each j # i, if d;'» =1, call j a friend of i,
and if d; = —1, call j an enemy of 7. Note that j may be a friend of 7, while 7 is an enemy
of j. Then each player ¢ wants to locate as close as possible to all his friends and as far
as possible from all his enemies. Corollary 4.3 says that if each player has a location X;
that minimizes distance with all his friends and maximizes distance with all his enemies,
regardless of where all of them locate, then player ¢ must choose this location in any Nash

equilibrium in pure strategies.

In Appendix C.2 we show how to construct examples of signal structures X that admit a

most public signal, a most private signal and a most d’-dependent signal.

One case of interest where Corollary 4.3 does not apply is when the signal structure is
symmetric, i.e. when X; = ... = Xy. In this case, except in degenerate cases, players do
not have most d’-dependent signals. But, in the symmetric case, we can still obtain sharp

predictions in the case where N = 2.

If N =2 and the two players have strict positive (negative) complementarities in actions, in
any pure Nash-Bayesian equilibrium, whose actions are strictly isotonic (antitonic for both
players) they choose to acquire essentially the same information. We say that (X, Xs) is

public information if the event X; = X, has probability one.

Corollary 4.4. Suppose that N = 2, that X1 = Xy and suppose that the payoff func-
tions u; have strict positive (negative) complementarities in actions, for i = 1,2. Let
(X1, Xo, a1, 0) be a pure full-fledged Nash-Bayesian equilibrium of the game. If « is
strictly isotonic (antitonic for both players), the equilibrium information structure must be

public information.*

Note that, under the assumptions of Corollary 4.4, the equilibrium is never unique: if

(X1, X1, 01, 0) is a full-fledged Nash-Bayesian equilibrium, then for any X;; € X, the

231t is worth noting that Corollary 4.4 does not generalize to the case of three players or more.
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profile (X7, X7, a4, az) is also a Nash-Bayesian equilibrium. But all of these equilibria
are payoff equivalent. The players higher order beliefs are also the same across all the

equilibria. In the example of Section 4.3 we referred to this as trivial multiplicity.

Corollary 4.4 describes a case where the two players “agree” on the information structure
they want. In the case of a symmetric signal structure with two players, this agreement
is necessary. Indeed, in the case where they do not agree, it is easy to see that no
equilibrium in pure strategies can exist, even when, for any information structure X, the
game with exogenous information structure X admits a Nash-Bayesian equilibrium in pure
strategies. This was illustrated in the example studied in Section 4.3, but it is a more

general phenomenon.

Corollary 4.5. Suppose that N = 2, that X1 = Xy and contain at least two signals whose
realizations are not equal with probability one, and suppose that both players have strict
complementarities in actions, but of opposing signs. There is no pure full-fledged Nash

Bayesian equilibrium (X, Xa, aq, ag) such that « is strictly monotonic.

To see why Corollary 4.5 is true, suppose for example that player 1 has a strict positive
complementarity in actions, while player 2 has a strict negative complementarity in actions.
Suppose further that action strategies are set to be strictly isotonic in the second stage.
Then, there cannot be an equilibrium in pure strategies in the first stage. This is because
player 1 wants to observe the same signal as player 2, in order to increase dependence,
whereas player 2 wants to observe a signal different from player 1, in order to decrease
dependence. Similarly, if action strategies are set to be strictly antitonic in the second
stage, there cannot be an equilibrium in pure strategies in the first stage either. This is
because player 2 now wants to observe the same signal as player 1, in order to increase
dependence, whereas player 1 wants to observe a signal different from player 2, in order to
decrease dependence. In both cases, the signal choice in the first stage of the game has
a structure a la matching pennies. No equilibrium in pure strategies exists, although (as

shown in Appendix C.5) a mixed equilibrium can always be constructed.

Note, however, that Corollary 4.5 need not hold when the signal structure is not symmetric.
For example, as shown in Corollary 4.3, and with the payoff configuration of the previous
paragraph, if player 1 has access to a most-dependent signal and player 2 has access to

a less dependent signal, then the information structure defined by these two signals is a
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(unique) candidate for an equilibrium where the strategies are strictly isotonic. Similarly, if
player 1 has access to a least-dependent signal and player 2 has access to a most dependent
signal, then the information structure defined by these two signals is a (unique) candidate

for an equilibrium where the strategies are strictly isotonic.

4.5.3 Full-fledged Equilibrium Information Structures

In general, the information structure and the actions strategies (and their monotonicity
properties) are jointly determined in equilibrium. The conditional dependence properties
between the signals chosen by the different players contribute to determine incentives to
choose actions strategies that are either increasing or decreasing in signal realizations.
Conversely, in Sections 4.5.1 and 4.5.2, we showed how the monotonicity properties of the
action strategies chosen by the players contribute to determine their incentives to choose
more or less conditionally dependent signals. In this section, we propose conditions that
guarantee that an equilibrium exists, with certain pre-specified monotonicity characteristics

and with a certain pre-specified information structure.

The key condition that guarantees existence of an equilibrium is a form of compatibility
between the monotonicity properties of the candidate action strategies and the candidate
information structure. But other conditions are required as well. In the equilibrium we
construct, the m-monotonicity of the equilibrium action strategies agrees with the state
complementarity in the players’ payoffs. For example, if for player i, the state and his
action are positive complements, his equilibrium action strategy will be increasing in
the signal. If they are negative complements instead, his equilibrium strategy will be
decreasing in the signal. Existence of such an equilibrium is established in two cases. First,
when the action complementarities are aligned with the state complementarities, and in
effect reinforce them, by giving players additional incentives to play m-monotonic action
strategies. Second, when the sign of the monotonicity of equilibrium action strategies is

predictable.
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4.5.3.1 When Action Complementarities Reinforce State Complementarities

We first provide sufficient conditions that ensure that an equilibrium exists where players
have public information (or most public information). We show that a very simple condition
ensuring this is that all players have positive complementarities, both in actions and in
state. But we also show that it is the case for a weaker condition. It only requires that the
state complementarities be aligned with the action complementarities in the sense that if
the sign of the players’ state complementarities are given by the vector m and their action

complementarities are given by the vectors (¢),;, then for all i # j, we have ¢ = m;m;.

iel s
Clearly, the situation where all (action and state) complementarities are positive is the

special case where m = (1,...,1) and ¢ = (1,...,1) for all 4.

First, when state complementarities are aligned with action complementarities, we establish,
using a result due to Van Zandt and Vives (2007), that fixing the information structure X,
the game 'y admits an m-monotonic Nash-Bayesian equilibrium . A partial intuition
for why this is true is that the monotonicity of each player i’s equilibrium strategy m;
is dictated by his state complementarity, also m;, but is further reinforced by the action

complementarities.

For example, consider the situation where all players have positive action and state
complementarity. Suppose further that each signal depends positively on the state so that
a high realization is evidence that the state is likely to be high, and that conditionally
on the state, all signals are positively dependent among each other. Thus, when a player
observes a high (low) realization, he believes that the state is high and that other players’
realizations are also high. A first-order effect is that he wants to play a high (low) action,
so that his action will be aligned with the state, which he believes to be high (low). But
there is a second-order effect, which is that he also believes that, conditional on the state,
the other players’ realizations are high (low), so that they are likely to be playing high
(low) actions. Because the action complementarities are positive, this gives an additional
reason to play a high (low) action. Since all players can realize this, there is then a third
order effect which further increases the incentive to play a high (low) action. The process

then goes on ad infinitum.

Second, we show that when state complementarities are aligned with action complementar-

ities, and players choose either a public or a most public information structure X, and play
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an m-monotonic Nash-Bayesian equilibrium a* of the game I'x, no player can strictly gain
by deviating to another strategy (X/, o)) # (Xl-, X ) . To establish this, we first argue that
assuming by contradiction that the deviation (X, «}) is a profitable deviation, there exists
another deviation (X, o) that is even better, where « is m;-monotonic. But in this case,
we can show that the deviation (Xj, o) is even better, so it must be profitable, which

contradicts the fact that a” was an equilibrium of the game I'y in the first place.

The precise conditions that guarantee the existence of an equilibrium where dependence

among signals is maximized (most public signals are chosen) are the following.

Theorem 4.5. Let N > 2. Let m be a monotonicity vector and let (ci)iel be the profile of

complementarity vectors such that for all i, j, cé = m;m;. Suppose that
i. For eachi € I, u; has ¢ -complementarities in actions.
1. For each i € I, u; has m;-complementarities in a; and 0.

iii. For all x; < xf, the distribution of 0 conditional on X; = x} first order stochastically

dominates the distribution of 8 conditional on X; = x;.

iv. For every profile X, all i and all x; < x}, the distribution of X_; conditional on
X; = &} first order stochastically dominates the distribution of X_; conditional on

Then for any profile X of signal choices such that for each i, the signal X; is most dependent
on X _; in X, there exists an m-monotonic action strategy profile o such that (X, a) is a

full-fledged Nash-Bayesian equilibrium for the game.

The following result is a direct implication of Theorem 4.5.

Corollary 4.6. Let N > 2. Suppose that conditions (i) to (iv) of Theorem 4.5 hold. In
addition, suppose that a public (most public) signal profile exists. Then for any public
(most public) information signal profile X, there exists an m-monotonic action strategy

profile a such that (X, «) is a full-fledged Nash-Bayesian equilibrium for the game .



118

4.5.3.2 When Monotonicity of Action Strategies Is Predictable

We now move away from the case where action complementarities reinforce state comple-
mentarities and consider cases where action complementarities may create incentives for
the players to play actions that vary in the direction opposite to the one which agrees with
the state complementarity. In that case, it is not possible to predict in general whether the
action strategies of any full-fledged Nash-Bayesian equilibrium will be m-monotonic for

any particular monotonicity vector m.

Nevertheless, in some context, we may have enough information to know that in equilibrium,
action strategies are m-monotonic for some pre-specified vector m. For example, it could
be that all profiles of action strategies o that are not m-monotonic are strictly dominated,

or do not survive iterated elimination of strictly dominated strategies.

One natural reason why m may be predictable is that each player i could have an m;-
complementarity in state which is strong enough that it dominates any potential higher
order effect and that it single-handedly determines the monotonicity of equilibrium action
strategies. For example, in an symmetric Cournot duopoly, where firms 1 and 2 should
produce a larger quantity when the state is high and a lower quantity when the state is
low, the negative action complementarity creates a contrarian incentive. But if this second
order effect and all other higher order effects are negligible compared to the first order
effect, it could be predictable that equilibrium action strategies are increasing in signal

realizations.

Alternatively, the monotonicity of action strategies could be predictable for other reasons.
For example, in the same setting, it could be that firm 1’s complementarity in state
dominates firm 1’s (negative) action complementarities, so that this firm always plays an
increasing action strategy in any equilibrium. In contrast, firm 2 could have a (negative)
action complementarity that is much stronger than its positive complementarity in state.
This and the fact that firm 1 plays an increasing action strategy in any equilibrium could
imply that firm 2 plays a decreasing action strategy in any equilibrium. As a result, in any

equilibrium, the action strategy profile is (1, —1)-monotonic.

When the monotonicity of action strategies is predictable in this sense, and under the

assumption that each player ¢ has c¢-complementarities in actions, in light of Theorem 4.4,
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a natural candidate X may emerge for an equilibrium information structure: one that
has the property that for each i, X; is most d’-dependent on X_; than any other signal
in X;, where d’ is agent i’s most preferred dependence vector under m-monotonic action
strategies and c¢’-complementarities in actions (defined in Equation (4.7)). Our main
result in this section provides a simple sufficient condition for this candidate to form a
full-fledged Nash-Bayesian equilibrium, together with some m-monotonic action strategy
«. The condition imposes that for any player i, and for any signal deviation X/, in the

game [’ X! X_i» player ¢ has at least one best response to a_; that is m;-monotonic.

The logic at play here is the same as in Theorem 4.5. There, because action complementar-
ities reinforce state complementarities, monotonic equilibrium action strategies are known
to exist. We thus obtain d;'- = mimjcg =1-1-1for all ¢ and j and the natural candidate
that emerges is any information structure where positive dependence is maximized for all
players. The same condition on deviations to other signals X as the one stated in the
previous paragraph can then be obtained from primitives and is sufficient to establish that

this candidate is indeed an equilibrium.

The difference now is that, both existence and the condition on deviation to signals
X/ are assumed rather than derived from primitives, and therefore need to be verified
directly. But the result shows that this approach can be adapted beyond the case where

complementarities reinforce each other.

For any strategy profile (X, «), we say that the action strategy «; is a best response for
player i in game I'y, if for all x;,
a; (z;) € argmax Eg x (w; (a;,0—; (X_;),0) | Xi; = ;).

a;€A;

Theorem 4.6. Let N > 2. Let m be a monotonicity vector. For each i, let ¢' be a
complementarity vector, and let d* be agent i’s most preferred dependence vector under
m-monotonic action strategies and c-complementarities in actions. Let (X, a) be a strategy

profile such that:
i. For each i, the payoff of player i has c*-complementarities in actions.

it. For each i, X; is most d*-dependent on X_; in X;.
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11i. The profile a is an m-monotonic Nash-Bayesian equilibrium of the game I'x.

w. For each i and each X, in the game Uxs x_,, player i has a best response af to the

action profile a_; that is m;-monotonic.
Then, the profile (X, «) is a full-fledged Nash-Bayesian equilibrium of the game T'.

Note that assumptions (ziz) and (iv) are not on primitives, but they could be derived
from assumptions on primitives: for example, one could assume that only m-monotonic
profiles survive iterated elimination of strictly dominated strategies (and existence of a
Nash-Bayesian equilibrium of game I'x could be established using Kakutani’s fixed point
theorem). However, we feel that in practice, both assumptions (iii) and (iv) are much
less restrictive than those assumptions on primitives, and can often be easily checked
in most applications. The scope of our result is thus larger than if we imposed those

assumptions.

4.5.4 Conditions for A Unique Full-fledged Equilibrium Infor-
mation Structure

We would now like to provide conditions under which the information structure is essentially
the same in all full-fledged Nash-Bayesian equilibria. In fact, this question is already

answered in Corollary 4.3, which only needs to be reformulated and reinterpreted.

In the reformulation, the key assumptions we make are (i) that for all information structures
X, all Nash-Bayesian equilibria are strictly m-monotonic for some monotonicity vector
m such that there is a profile of dependence vectors (dl, o dN ) where each d' is agent
1’s most preferred dependence vector under m-monotonic action strategies and his actual
¢-complementarities in actions and (i7) that each agent has a most d’-dependent signal in
X;. When this holds, then all full-fledged Nash-Bayesian equilibria of the game must have

an information structure where each agent chooses a most d‘-dependent signal in X.

Again, as in Section 4.5.3.2; the predetermined monotonicity m in assumption (i) could be

the resulting balance of a number of contrarian forces.
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Corollary 4.7. Let N > 2. Suppose that for each i, player i has c'-complementarities in
actions. Suppose for any signal profile X, all Nash-Bayesian equilibria of the game I'x are
strictly m-monotonic, for some m such that there exist vectors (dl, e dN> such that for
all v, d' is player i’s most preferred dependence vector under m-monotonic action strategies
and ¢ -complementarities in actions. Suppose that each player i has a most d'-dependent
signal in X;. Then in any full-fledged Nash-Bayesian equilibrium (X, «) of the game T, for

each i, the signal X; is a most d*-dependent signal in X;.

Although the formulation and the interpretation is different, this result is formally equivalent
to Corollary 4.3. Strictly speaking, Corollary 4.7 does not pin down a unique information
structure, because each player ¢ may have multiple most d’-dependent signals. But most
d'-dependent signals are interchangeable when actions are played according to a strictly
m-monotonic profile «, in the sense that if X and X’ are two signal profiles, each made
up of (possibly distinct) most d’-dependent signals X; and X/, where for each i, d' is
player ¢’s most preferred dependence vector under m-monotonic action strategies and his
¢'-complementarities in actions, then (X', o) is also a full-fledged Nash Bayesian equilibrium

of the game and all players obtain the same expected payoff in both equilibria.

4.6 Applications

In this section, we now illustrate how the model can be applied to different contexts.

4.6.1 Currency Speculation

This example is adapted from the model of currency speculation of Morris and Shin
(1998), to which we add information choice. The game is played between N agents. Each
agent ¢ decides whether (a; = 1) or not (a; = 0) she speculates against a currency. The
bank then observes the realization of the number n of agents who speculate and the
realization 6 € {6y, ...,0,}, with 0; < ... < 6,, of an uncertain but relevant fundamental
state O. It defends the currency if and only if n < 6. If this condition holds, the attack

is “unsuccessful” and it is “successful” otherwise. The payoff of an agent who chooses to
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speculate is m — b8 — K, with # > 0, b > 0 and K > 0 if the attack is successful and — K if

it is unsuccessful. The payoff of not speculating is 0.

Before deciding whether or not to speculate, each of the agents ¢ chooses a single signal X;
from a common set of accessible signals X; = X. Suppose that assumptions (éi7) and (iv)
of Theorem 4.5 hold, so that high realizations of any of the accessible signals are associated

with high realizations both of the state and of the other accessible signals.

In this game, all agents have negative complementarities in state and positive complemen-
tarities in the other agents’ actions: if other agents are more likely to attack, the agent is

more willing to attack.

All assumptions of Theorem 4.5 are satisfied. Therefore we know that at least one full-
fledged Nash-Bayesian equilibrium exists, where all agents choose to observe the same (i.e.
public) signal. Doing so enables them to perfectly coordinate: whenever the realization of

the public signal is lower than some threshold, all agents attack.?*

An implication is that unanimous attacks followed by devaluation sometimes occur even

for high realizations of the fundamental.

These unanimous attacks are a poor signal of the fundamental, since they only reflect part
of the information of one signal, and ignore the information contained in all the other

signals that the agents choose not to observe.

In this equilibrium, the movements of the currency are essentially driven by random

realizations of a signal used by speculators for coordination purposes.

While such an equilibrium may be detrimental to society, it may be good for speculators.
But in a version of the model, this “herding on the same signal” equilibrium may be bad

for the speculators themselves.

Following Goldstein, Ozdenoren and Yuan (2011), consider instead a setting where the

central bank does not observe the realization of © at all, nor does it observe a signal

24Under our assumption that the set of accessible signals X; is the same for all speculators, we cannot rule
out other information structures in equilibria. Under the alternative assumption that each speculator ¢
has a unique most public signal in X;, an argument in the spirit of Corollary 4.7 can be used to establish
that for an open set of parameters, a unique information structure arise in all full-fledged Nash-Bayesian
equilibria, such that all agents choose their most public signal (possibly the same one).
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of it, and where n does not directly enter its decision on whether or not to defend the
currency. Suppose instead that the central bank learns about the state from the occurrence
and potentially also from the size of an attack, and that it defends the currency peg
if and only if E(© | n) > 0. Taking again the bank’s decision rule as given, the agents
play a coordination game with information choice, the payoffs of which are endogenous,
since they depend on which signal action strategies the bank expects them to play. For
the same reasons as in the previous model, there exists an equilibrium where all agents
choose to observe the same signal. This implies that a unanimous attack is a weak signal
that the realization of the fundamental is low. Consider the case where E (0©) > 0 and
E(© | X; <z*) > 0, where x* is the threshold realization of the common signal below
which the agents choose to attack. Then, when observing an attack, the bank does not
find evidence in favor of abandoning the peg convincing enough, because the unanimous

attack only reflects the information of one signal.

Because of the excessive similarity in speculators’ information, the bank chooses to always
defend the currency. Consequently, attacks are never successful and therefore they never

occur in equilibrium.

What happens in this case is that, while individually, each speculator has an incentive to
observe the same signal as the others, their collective interest is that the bank expects
them to acquire diversified information. The equilibrium is however determined by their
individual interest. From the speculators’ point of view, informational diversity is a public

good that they under-provide in equilibrium.

The above analysis can also be applied to technology adoption in the presence of positive
network externalities, or the problem of collective action in a revolutionary movement. In
both cases, complementarities imply that players might observe the same signal so that

the aggregate action is not a good aggregator of all available information.

4.6.2 Other Applications

In each of the following examples, 6 is an uncertain parameter with support {—1,1}, with
P(© = —1) = P(© = 1) = 1/2. Moreover, available signals are X = (X1, ..., X1) with
L > N, each with support in {—1,1} such that the random vector (6, X,) is distributed in
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{—1,1}? according to a joint marginal distribution given by

Xp=-1]X,=1

H
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0=-1
O=1

(4.10)
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for all X, and ¢ € (0,1/2).

The signals X, are independent, conditional on any realization of #. Conditional on

0 € {—1,1}, two signals (X, X,) have the joint distribution

X, =0 | X, 46
X,=0|(1—¢)?|(1—¢) (4.11)
X, #0|(1—¢)e g2

Given the information structure, when two players observe the same signal, their signal’s
realization is the same with probability one. When two players do not observe the same

signal, their signal’s realization is the same with probability 1 — 2¢(1 — ¢).

4.6.2.1 Supply Chains

Suppose there is a supply chain with 1 manufacturer (denoted M) and 2 retailers (denoted
Ry and Ry). The manufacturer chooses the wholesale price w, and retailer R;, the markup p;
over the wholesale price. Final prices are w 4+ p; and w + py. The demand for retailer R;
is

Qi(piypj, w; 0) = A+ b0 + \j(w + p;) — (w+ p;), (4.12)
where b; > 0, A > b; and 0 < \; < 1 for ¢ = 1,2. All three players are uncertain on the
intercept of the retailers’ demand function 6 and have access to the signals (X7, ..., X1).

Retailer R;’s profits function is given by
g, (pi, pj, w; 0) = pi - (A+ b + Ni(w + p;) — (w + p;)), (4.13)
for ¢ = 1,2, and the manufacturer’s profits function is given by

HM(w,pi,pj; 9) =w- (QA + (bl + bg)e — (1 — )\1)}?2 — (1 — )\g)pl —{—w()\l + )\2 — 2)) (414)
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The vector encoding action complementarities is ¢ = (cﬁ;’,, ey = (1, —1) for retailer R;,

and ¢ = (¢, i) = (=1, —1) for the manufacturer.

It is natural to look for an equilibrium where (p1, p2, w) are strictly increasing in 6, so that
the action strategies are strictly m-monotonic with m = (mg,, mg,, my) = (1,1,1). Then,
assuming that m describes the monotonicity of equilibrium action strategies, Theorem 4.4
implies that the players’ dependence preferences are obtained by combining the monotonicity
and the complementarity vectors, such that d = (d%_, di) = (1,—1) for retailer R; and
dM™ = (dy,d}.) = (=1, —1) for the manufacturer. Hence, the retailers prefer to observe
the same signal and the manufacturer a signal different from the one observed by the

retailers.

4.6.2.2 Beauty Contests

Suppose a set [ of players interacts in a beauty contest game. Two versions of the beauty
contest model can be found in the literature. In both versions, each player ¢ € I chooses an
action and his payoff depends on the others” average action a = % (Zje i} aj) . Version 1

(as in Myatt and Wallace (2011)) assumes the payoff function
wi(as, a;0) = —(1 = 7r)(a; — 0)* = r(a; — a)?,
while version 2 (as in Hellwig and Veldkamp (2009)) assumes the payoff function
ui(ag, a;0) = —(a; — (1 — )0 — ra)?,

where r € (—1,1). In both versions, all players have positive complementarities in actions
if » > 0 and negative complementarities in actions if » < 0, and they all have positive

complementarities in state.

For both versions, given the information structure is fixed, a player’s best response in
action is o;(z;) = (1 — r)E(O|z;, X)) + rE(alz;, X).

If r is sufficiently small (such that 1 — r is big enough), then the best response will be
increasing in the signal’s realization for all players. Then, by Theorem 4.6, the situations

where all players play action strategies that are strictly increasing in state and i) all players
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observe the same signal if » > 0, and ii) all players observe different signals if » < 0 are

equilibria of the game with an endogenous information structure.

4.6.2.3 Technological Spillovers

Suppose a set I of players have the possibility to exert effort in developing a new technology.
A player chooses his level of effort a; to the development of this technology. The cost of
effort a; is ca?, with ¢ > 0, while the benefit for each individual is ((K a; +b0) > jer aj) ,
with b > 0 so that the payoff of player 7 is

u;i(a;0) = ((Kai +060) > aj> — ca?.
jel
The effort exerted by the other players has a positive impact on player i’s payoft. Hence,
all players have positive complementarities in actions and positive complementarities in
state. When all players observe the same signals, there exists an equilibrium where all
players choose an effort level that is increasing in their signal if b is large enough. Then,
Theorem 4.6 ensures that the situations where all players choose a strictly increasing action
strategies and all choose to observe the same signals is still an equilibrium of the game with
an endogenous information structure. Therefore, information acquisition on the state is

suboptimal from a social viewpoint since acquired information will be homogenous.

4.6.2.4 Policy Choice in Federations

This example is adapted from Loeper (2011). Assume there is a set I of jurisdictions and
that each of them needs to decide on a policy. A jurisdiction’s policy choice is a;, and its
payoff is
ui(a;0) = —(a; — 52‘09)2 - Zﬁz‘j(ai - aj)27
J#i

where [ is jurisdiction ¢’s alignment preference with the state § and 3;; € (—1,1) the
coordination externality that jurisdiction j imposes on i. Jurisdiction i has positive (nega-
tive) complementarities in state when 3,y > (<) 0 and positive (negative) complementarity

in actions with jurisdiction j when f;; > (<) 0.
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A player’s action best response is

oy BBl + 35 5iiEla|i]
oil@i) = (1+ 354 Biy) '

When all jurisdictions have positive (negative) complementarity in state and positive
complementarity in actions, such that the action complementarities are aligned with the
state complementarities, Theorem 4.5 ensures that there exists an equilibrium where policy
choices are increasing (decreasing) in the signal and all jurisdictions observe the same signal.
In this type of equilibrium, the vector of policy choices would not be very informative on

the fundamental 6, since all policies will be based on the same signal.

Consider next the case where all jurisdictions have negative (positive) complementarity in
state and negative complementarity in actions. Suppose further that when it is exogenously
determined that all jurisdictions observe different signals then, in this case, there exists
an equilibrium where policy choices are decreasing (increasing) in the signal. Then,
Theorem 4.6 implies that observing different signals is still an equilibrium in I'; the
game with endogenous information choice, when all jurisdictions have sufficiently negative

(positive) complementarity in state.

4.6.2.5 Imperfect Competition
These examples are adapted from Jiménez-Martinez (2013).

Cournot: Consider a set [ of firms interacting in an oligopoly and competing in Cournot.
Let the aggregate demand function be given by P(q,...,q1;60) = A+ b0 — 6(q1 + ... + q1),
with b >0, § > 0.

Each of the firms sets a quantity ¢;, ¢« = 1, ..., I assuming the marginal cost is constant and

equals to ¢; > 0 for each firm. Firm ¢’s payoff is
ui(qi, q-i;0) = (A +00 —6(q1 + ... +ar) — Ci>Qi'

In this context, the firms have negative complementarities in actions and positive comple-

mentarities in state.
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Thus Theorem 4.6 implies that when condition iv) holds, which is the case if b is large
enough (and ¢ is small enough relative to the other parameters), there exists an equilibrium
where all firms choose different signals and play a quantity strategy increasing in their
signal. In particular, the price P is very informative on the state since it aggregates the

information of NV independent signals.

Bertrand: Consider next an oligopoly where two firms produce a differentiated product
and compete in Bertrand. Each of the two firms ¢ = 1, 2 sets a price p; for its product and
faces the linear demand @Q; = by + 0160 — y(p; — p;) with by > 0, by > 0 and v > 0. Each

firm ¢ has a constant marginal cost c;.

Firm ¢’s profits function is then

Uz‘(pz‘aij 0) = (bo + b6 — V(Pz‘ - pj)) (pi — Ci)'

The firms have positive complementarities in actions and positive complementarities in
states. Thus, since state and action complementarities reinforce each other, Theorem 4.5
implies that there exists an equilibrium where both firms choose the same (public) signal
and choose a price strategy that is increasing in the signal. In this case, the quantity
Q1 + Q)2 only reflects the information contained in one signal and does not aggregate all

the information potentially available.

4.7 Related Literature

We contribute to the applied probability literature on dependence orderings. We explain

this contribution in section 4.5.1.2.

Regarding decentralized information acquisition, the most commonly studied framework is
a two stage game where players start with a common prior on some unknown common

value state that affects all players’ payoffs.?® In the first stage, each player makes an

%58ee Li, McKelvey and Page (1987), Vives (1988), Hellwig and Veldkamp (2009), Myatt and Wallace
(2011), Szkup and Trevino (2014), Yang (2014), and many others. Veldkamp’s monograph (2011) and
Hellwig, Kohls and Veldkamp (2013) provide excellent surveys on the widely studied special case of
the beauty contest games with a continuum of actions and players, quadratic payoffs and a Gaussian
information structure, and their applications to macroeconomics and finance. Our paper covers a larger
class of models, since we do not rely on specific functional forms and allow for a finite number of players.
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information choice (for example, the precision of the signal he receives) that determines
the information on the state that he has when entering the second stage. In the second
stage, players simultaneously choose an action. Two different extensive forms have been
considered, depending on whether the choices made at the first stage are observed or not.
In some models, the acquisition is publicly observed. The game is then an extensive form
game where each profile of information acquisition choices defines a subgame, and in each
subgame, the information structure is common knowledge: in these games, acquisition is
overt. In other models, the choices of the players in the first period are not observed before
actions are taken. Acquisition is then covert. A game where information acquisition is
covert is essentially static, as it is equivalent to one where all players simultaneously choose
both their information and a commitment to an action strategy that maps the signal they
will observe to the action they choose. The difference between overt and covert information
acquisition is in the way a deviation in the first stage is treated: Under overt acquisition,
a deviation on information choice is commonly observed, and the information structure
is common knowledge in the second stage subgame following the deviation; Under covert
acquisition, players form a belief of what the information structure is in the second stage,
and this belief is correct in equilibrium. But whenever a player deviates, all other players’
belief on the information structure is incorrect. It should be noted that in games with a
continuum of players (Hellwig and Veldkamp, 2009; Myatt and Wallace, 2011; Szkup and
Trevino, 2014), where players’ payoffs only depend on the statistical distribution of the
other players’ actions, the two forms of acquisition are equivalent. Thus, there is no need
to make a distinction in this case. The distinction matters only for games with finitely
many players. In this paper, we derive results that apply to games with covert acquisition
and finitely many players, and to games with covert or overt acquisition and a continuum
of players. The case where acquisition is overt and the number of players is finite is also

considered but only in section 4.7.3.

4.7.1 The Motive Inheritance Result

The main focus in the literature has been on the player’s choice of amount of information
(their signal’s precision for signals that are independent conditional on the state), and
on the acquisition of private information. A central question in this context is whether

the players’ amount of information acquisition are complements, substitutes, or neither
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complements nor substitutes. With finitely many players, the question is meaningful only
when acquisition is overt. With a continuum of players, the question is meaningful for
both overt and covert acquisition, since the two are in this case equivalent. Li, McKelvey
and Page (1987) study a Cournot market with finitely many firms and overt acquisition.
The unknown common value state is the demand intercept and the information structure
satisfies certain conditions. Actions are substitutes and they find that the precision levels
of the private information acquired in the first stage are substitutes as well.?¢ Vives (1988)
obtains a similar result in the case of a continuum of players. Assuming as well a continuum
of players, Hellwig and Veldkamp (2009) obtain a similar result in the context of a beauty
contest game, where actions can be either substitutes or complements. They find that when
actions are substitutes, acquisition levels are substitutes and when actions are complements,
acquisition levels are complements: the strategic motive in actions is inherited by the
acquisition game. All of these papers assume an unbounded continuum of actions (the real

line), quadratic payoffs, and a Gaussian information structure.

In spite of the large number of contexts where the inheritance result is confirmed, it
does not generalize to the larger class of all games with strategic complementarities or
substitutabilities. In particular, the unbounded continuum of actions, the continuum of
players and a Gaussian information structure seem to be crucial for the result. Even with
unbounded actions, quadratic payoffs and a Gaussian information structure, but only two
players (as in the case of a differentiated Bertrand game, which the author uses as an
example), Jimenez-Martinez (2013) shows that it only holds for some parameters: when
the complementarity in actions is strong, levels of acquired precision may be substitutes.
And even with a continuum of players, quadratic payoffs, a Gaussian information structure,
but binary actions, i.e. a global game, Szkup and Trevino (2014) present a model where

the actions are complements but the acquired precision levels are not.

In contrast with this literature, we do not allow players to choose how much information
they acquire. We hold the amount of information fixed. Instead, we let them choose

whether the information they acquire is private or public. More generally, we allow players

20Hwang (1993) exploits this result in a duopoly to derive various comparative statics results. Hwang
(1995) studies a similar model but focuses on payoff comparisons between different market structures
and different ways in which the levels of information precision of the firms is set. Bergemann, Shi
and Valiméki (2009) obtain conditions under which information acquisition levels are substitutes or
complements, in a VCG auction with interdependent valuations. Their setting differs from the common
value models listed here in several ways.
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to choose the level of conditional dependence between their signals. We show that another
type of inheritance result holds: complementarity in actions implies a preference for
positive informational dependence, and substitutability in actions implies a preference for
informational independence. But unlike the motive inheritance result on precision, our
dependence inheritance results hold for all games where actions are strategic complements
or substitutes and do not rely on specific functional forms, provided that the second stage
strategies are monotonic (which is a possibility in some games, and an implication of

Nash-Bayesian equilibrium in a subset of these games).

4.7.2 Public and Private Information

The issue of the role of public and private information is a central one in the entire literature
on endogenous information structures. Morris and Shin (2002) for example, show that in a
beauty contest game with a continuum of players, when the planner (the central bank)
increases the precision of public information, it can be detrimental to welfare, because

players rely less on their private information.

In the context of information acquisition, Hellwig and Veldkamp (2009) and Myatt and
Wallace (2011) let players choose whether the information is private and potentially public.
They provide models where public information is an equilibrium outcome of players choosing
to observe the same potentially public signals. Thus in their models, unlike Morris and
Shin (2002), public information is not provided by an external third party, but is the result
of the market forces themselves. We follow up on this idea, and go one step further. While
their model has private and potentially public signals (public signals are the potentially
public ones that all players chose to observe), in a version of our model, all signals are
potentially public: a private signal is one that only one player chose to observe, while a

public signal is one that all players chose to observe.

Like Morris and Shin (2002), Hellwig and Veldkamp (2009) are interested in the marginal
value of additional public information compared to an initial situation. But because no
information is intrinsically public or private, what they really look at is the marginally value
of additional potentially public information. They make the important observation that
marginal value of acquiring more potentially public information is kinked at some profiles

that they call symmetric. At a symmetric profile, defined as one where all players observe
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the same potentially public signals, if a player deviates and observes one more potentially
public signal, he obtains additional information that in effect is private, since nobody else
observes it. If he instead drops one of his potential signals, he decreases his own access to
public information. This asymmetry and discontinuity causes multiple equilibria that differ
in the level of public information. In Myatt and Wallace (2011), public information obtains
when all players pay a substantial amount of attention to the same signal. An implication
of this assumption is that players who hold public information are necessarily well informed
players. In both of these two papers, the problem of the division of information between
private and public (and everything in between) is intrinsically intertwined with the more
widely studied issue of the amount of information that the players acquire. In Hellwig
and Veldkamp (2009), it is because of the question they choose to ask, and in Myatt and
Wallace (2011), it is in the way they define public information.

In contrast, we choose to completely disentangle the two issues. At the risk of making the
model seem less realistic (because in practice, economic agents often face the choice of how
much information to acquire), we hold the amount of information fixed by assuming that
all signals an agent can choose to observe are equally informative of the unknown state:
they all have the same joint marginal distribution with the state. By doing so, we isolate
the issue of the partition of the information structure between public, private and neither
private nor public information, from the issue of the amount of information. Doing so
enables us to identify a robust force and to obtain general results that hold for a large class
of games, not only the Gaussian-quadratic model with a continuum of actions and players.
As we argued earlier, no such result holds when the issue of the amount of information is

not excluded, even when only private information can be acquired.

Our assumption that players are restricted in the amount of information they acquire
(formally, the joint marginal distribution between their own signal and the state is fixed,
no matter what signal they choose) can be thought of as a form of rational inattention.
Players are limited in how much information they can acquire, (Sims, 2003, 2005, 2006),

and thus face a choice of what to observe.
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4.7.3 Inefficiency of Equilibrium Under Hidden Information Ac-
quisition

A number of papers are dedicated to the analysis of inefficiencies in the collection of
information and in the use of that information when the information structure is exogenously
given. Angeletos and Pavan (2007) for instance, study a model with a continuum of players,
quadratic payoff and a Gaussian information structure, where each player observe a private
and a public signals. By comparing the equilibrium use of information to an efficiency
benchmark (the best society could achieve keeping information decentralized), they show
that information use can be inefficient when the incentives to coordinate actions and the
social value for coordination are different. The welfare impact depends on the degree of

strategic interaction and on its nature (complementarity or substitutability).

Angeletos and Pavan (2007)’s finding is recurrent in the literature. Morris and Shin (2002)
among others also show that an increase in the amount of public information can impair
welfare. This, however, does not hold necessarily if information is a choice for the players.
Chahrour (2012) proposes a model of endogenous information acquisition where public
information can still have a detrimental effect. In the model, a central authority chooses
both how many signals to divulge and their precisions. He finds that the authority always
chooses the highest possible precision and releases a positive but finite number of signals.
An important result is that too many signals can cause the players to decrease the amount

of information they acquire which in turn decreases welfare.

Colombo and Femminis (2008, 2011), on the other hand, are examples where endogenizing
the information structure makes additional public information beneficial for welfare. By
allowing the players to choose the precision of their private signals once the central authority
has announced the precision of the public signal, they show that the precisions of private
and public signals are strategic substitutes. Moreover, if the cost of public information
is lower than the cost of private information, then increasing the precision of the public
information increases welfare. While Colombo and Femminis (2008, 2011) investigate
the welfare implications of public information provision on incentives to acquire private
information, Llosa Gonzalo and Venkateswaran (2012), by considering models different
from the beauty-contest type, study how different links and externalities among players

affect the acquisition process of private information.
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Existing work allows the players to choose the level of information precision. In this paper,
our approach was different. Indeed, we take the analysis in an other direction by keeping
the amount of information fixed and focusing instead on information dependence. We show
that covert information acquisition sometimes leads to inefficiencies when there are payoff
externalities that are not reflected in the players’ equilibrium choice. Interestingly, we
show that these inefficiencies can sometimes be eliminated when information acquisition is

overt.
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A.1 Equilibrium Definition for the Game with En-
dogenous Design

The game with an endogenous design is a Bayesian game in which the state of the world
is either 0y or 6, i.e., the possible product qualities. Only the seller knows the product
quality. Consumers form beliefs on product quality given the signal realization and the

strategies played by the seller and the platform.

A perfect Bayesian equilibrium (PBE) specifies the platform design choice (M, S), the
seller’s manipulation strategy m(-; (M, .S)) for each possible (M,S), and consumers’
threshold 9(s; (M, S)) for each s € M for each possible design (M, S). In equilibrium, it
is required that the seller maximizes expected profits, consumers maximize their expected
utility and the platform maximizes revenues conditional on a business model. Definition A.1
gives the requirements a tuple {(M*, S*), m*(-; (M, S)), 0*(-; (M, S))} must meet to form
a PBE.

Definition A.1. Let y € {transactional, non-transacational} be the type of the platform as
determined by its business model. Then, the tuple {(M*,S*), m*(:; (M, S)),0*(-; (M, S))}
is a PBE if
1. at date 2, given m*(-; (M, S)) and for all (M, S)
0*(s,m*) € inf{v € [0,1] : E[u;(v, S,m")|s] > 0} Vs e M; (A.1)

2. at date 1, for 0, with v € {H, L}, given ©*(-; (M, S)) and for all (M, S),
E[l — 9*(8(m*), m")] — com*(0,; S)* > E[1 — 9*(5(m), m*)] — c,m? (A.2)

for all m >0, where 1 — 0*(s, m*) is the demand for the seller’s product given signal

realization s € M;

3. at date 0, given 0*(-; (M, S)) and m*(-; (M, S))
E [Rev’(0*(5,m"), M*,8*)] > E[Rev?(0"(5,m"), M, S)] (A.3)

for all (M, S) € {(supp(am),56>, ({[@, H@},Sb( ; T), T > O)}, where RevY(-)

is the platform’s revenues fonction;

4. posterior beliefs are computed using Bayes’ rule, whenever possible.



148

A.2 The Effects of Manipulation on Consumers’ Pos-
teriors Beliefs

Effect of m on §.(a™, m)

When the platform is using the continuous design, the posterior beliefs take a value in
{0,¢,1} (cf. Lemma 2.2), and this does not change when the seller manipulates the reviews.
What changes is the probability of observing a realization of the platform’s signal that
leads consumers to form each level of posterior beliefs. Therefore, one could say that
manipulation impacts the distribution of the posterior beliefs, but not the support of this

distribution, i.e., only P(g.(a’™,m) = y) for y € {0, ¢, 1} changes.

Effect of m on gy(s,m;T)

When the platform is rather using the binary design with a threshold 7', manipulation affects
both the distribution of the posterior beliefs and the support of this distribution. Not only
do the respective probabilities that the posterior beliefs are g( I's, m; T) or (B z,m;T)
change, so do the value of g( 1=, m; T) and qy(I52,m;T). More specifically, the value of
(15, m; T) and g, Iz, m; T) change with mpy and my, according to Lemma A.1.

Lemma A.1. For all manipulation pairs (mp, my),

O (1’5, m; T) Ogp(b 2, m;T) _

>0 A4
ompy - ’ ompy - ( )
and Ogp(1'5,m; T) <0 Oqp(1 2, m;T) >0. (A.5)
omr, omp,
Proof. Fix the pair of manipulation levels to (my,my). For x € H, L, let
T—-60,—m
K T) =Pr(s = = mi — 0,1 A.
2(my, T) r(s = I 2|0, m,;) = min {max{ 5 ,O} , } , (A.6)

be the probability that the platform signal be Iz when quality is 6, and manipulation m,.
Then, 0K, (m,,T)/0m, < 0.

According to Bayes’ rule,

q
(15, m;T) = Ko (A7)
0+ (=) (=G )
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and
q
(B2, m;T) = FACTRIRAR (A.8)
0+ (- 0) (5EGeT)
Therefore,
aQb(n%:m;T) _ 8qb(ﬂi§7maT)aKH(mH7T)>o (A9)
8mH GKH(mH,T) (9mH o .
g (e, m; T) _ gy (K5, m; T) 8K (my,T) <o (A10)
omy, OKp(mp,T) omy,
The results for the effect of my and myp, on ¢,(IX2,m; T) follow similarly. n

All else equal, the higher is the level of manipulation of the high-quality seller, the higher
are the beliefs that the product has a high quality upon seeing the realization 'S . The
reason is because it is now more likely that a™(8y) > T and so more likely that the
signal I'=is published when product quality is high. Incidentally, it is also the case that it
is less likely that a™(0y) < T, which lowers the beliefs that the product has a high quality
upon seeing the signal realization IK2. The intuition is the reverse for the impact of the

low-quality seller’s manipulation.

A.3 Proofs

Lemma 2.1: Assume that the platform design is (M, S) and the consumers’ conjecture
on the seller’s manipulation strategy is the function m®(-). Assume further that upon
observing signal s € M, q(s, m¢; (M, S5)) is the posterior beliefs updated through Bayes’
rule. At date 2, consumer with type v; decides to buy the good if and only if E[;|v;, s] > 0.

Given the intrinsic quality’s binary structure, a consumer buys if and only if

Elt;|vi,s] = q(s,m* (M, S)) (P(u; = 1|0g) — P(u; = —1{0x))

+(1 —q(s,m% (M, S))) (P(u; = 1|0) — P(u; = —1|6z)) (A.11)
= q(s,m% (M,S)) (@pv; +b— (1 —Opv; — b))
+(1 —q(s,m% (M,S))) (Orv; +b— (1 —Orv; — b)) (A.12)

= 2v;(q(s,m% (M, S))0y + (1 — q(s,m® (M, S5))0) +2b—1>0 (A.13)



150

The condition given in (A.13) can be equivalently written as

1—2b
(0L + (0 — 01)q(s,me; (M, S)))

v; > 0(s,m% (M, S)) = 5 (A.14)

I refer to (s, m¢; (M, S)) as the consumers’s threshold given they received the signal s.
That is, all consumers with a type above 9(s, m; (M, .S)) will buy one unit of the good at
date 2. This implies that the seller’s aggregate demand at date 1 is D(q(s, m®; (M, S))) =
Plv; > v(s,m® (M, S))] =1 —0(s,m (M,S)).

Note that no other strategy can be optimal for consumers.

Lemma 2.2: The result follows from Bayes’ rule. Specifically, upon seeing a(-) € [0r,0g),
the beliefs are

P(Oé (QH) € [QL,QH))]P)(Q = 9[{)

) = Ba{l) € [00,0) B0 = Ou) + Pla(0r) € r, 6 PO =) )
_ 0-¢g
 0-q+ (g —0L)-(1—q)/2b (4.16)
= 0, (A.17)

for a(-) € [0m, 0L + 20b],

(a) _ ]P)(Oé (QH) € [OH,(QL -+ 2b])]P(6 = 9H) /A 18)
e P(a(0g) € [0u, 01 + 2b))P(0 = 05) + P(a(8L) € [0, 01 + 2b))P(0 = 6y

g (0r +2b— 04)/2b

T (02— 0)/2b+ (1—q) - (6r + 26— 6)/2b (A.19)
-7 (A.20)
and for a(-) € (0, + 2b, 0y + 20],
_ P(a (0y) € (0L + 20,0 + 2b)) P(0 = Oy) o
(@) = P(a(05) € (01 + 20,05 + 28))P(0 = O5) + P(a(0y) € (01 + 2b, 05 + 20\ P(0' =01
q- 0y —01)/2b
q (0w —01)/2b+(1—q)-0 (A.22

= 1. (A.23
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Lemma 2.3: For z € {H, L}, let G,(T) be the probability that the platform publishes
the signal ILz when the seller’s quality is 6, and the threshold is 7', that is

61y = min {15501 1} e

Depending on the value of T, G,(T') reduces to

for T € [,} H [O,QL] ‘ [(QL,@H] ‘ [QH,GL—FQ()] ‘ [9L+2b, (9H+2b] ‘ [GH—FZZ?, OO)
GH(T) 0 0 (T—GH)/ZZJ (T—@H)/2b 1
GL(T) 0 [(T—61)/2b| (T—61)/2b 1 1

Then, from Bayes’ rule,

) . q(1 - Gu(T))
w(V5:T) = q(1 = Gu(T)+ (1 —q)(1 - GL(T))’ (4:29)
and
o qGu(T)
BET) = ) + (1 - )G (D) 20
Then, we have
for T e [-,-] | [0,6.] | 01,01 | [0u, 00 +20] | [0, +2b,0y +20] | [0 + 2b,00)
(1’2 > ;) CR I (Egiii‘?) g+(1—q) (:ﬁf{ﬁi_?) 611 ’
w8 T) e wra(r=gt) | eoa(i5) q

where o denotes that the signal s occurs with probability zero.

Since G(T) > Gy(T) for all T, then ¢ < ¢,(FE;T) <1 and 0 < (1 2;T) <q.
Proposition 2.1: The proof follows directly from Lemmas 2.2 and 2.3.

Proposition 2.2: By garbling of information, I mean applying a stochastic map on a signal
to create a new one. An information structure ¢’ is a garbled version of the information
structure o if ¢’ = z - o for some stochastic map z. Blackwell (1953) defined one structure

o to be sufficient to another structure o’ if ¢’ is a garbled version of o.
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The binary design’s signal can be represented by the stochastic matrix Q(T") where

| 1=-Gu(T), Gu(T)

P(K504,T), P(K2|0m,T) ] _ l i i ] . (A.27)

Q(T) = l P10, T), P(K2|0,T)

The continuous design’s signal can represented by the stochastic matrix P

o [ P(OJ(HL> > HL + 2b) ]P)(QH < OJ(QL) < GL -+ 2b) ]P)(OJ(GL) < 91{) 1

Oy —01, 0r,+2b—0x O
= [ 2(;’ 043005 eH—eL] (A.28)
2b 2b

Then, given the model’s specification, there exists a 3x2 non-negative stochastic matrix
W(T) such that Q(T) = P - W(T). The matrix W depends on the value of the threshold
T in the following way;,

T e ‘ {O,QL} ‘ [GL,QH] ‘ [GH,HL—FQI)] ‘ [9L+2b,9H—|—2b} ‘ [(9]-14—2[),00)
2b 20—0y—T T—-0g 20—0g—T T—0g 2b 0 2b 0
O —0r Og—0r Og—0r, Og—0r Og—0r O —0r, Oy —01,
w 0 0 0 0 0 0 0 0 0 0
2% 0 2% W—0,—T T—6; W—0,-T T—0p 2
O —0r, Og—0r, Og—0r, Og—0r, Og—0r Og—0r O —0r,
(A.29)

Lemma 2.4: First, consider the continuous signal. Without manipulation, it is the case
that for s’ > s, q.(s,m*) < q.(s’,m*) (cf. Lemma 2.2). With manipulation, suppose on the
contrary that 3 ' > s with P(s'|m}, mj;)P(s|m},mj};) > 0 such that g.(s) > g.(s). Given
Bayes’ rule, this is possible only if my > mpyg > 0. In this case, there exists € > 0 such that
s< s —e< s and my —e > 0. In this case, choosing mj, — ¢ instead of m is a profitable

deviation for the low-quality seller.

The case of the binary signal follows from a similar argument. Suppose g,(IX2,m*;T) >
0 ( = ,m*;T), once again, given Bayes’ rule, this is possible only if mj > mj;, > 0. Given
Lemma 2.2, demand when the signal is K2 is going to be greater than demand when
the signal is I’s . Then, decreasing my, is a profitable deviation for the low-quality seller

because manipulation cost are lower and the expected demand will be higher.
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Proposition 2.3: Fix the manipulation levels to (mg, my). When the platform uses the

continuous design, the probability mass function of ¢.(a™, m) is f(-) with

qA(my, mp) if g.(a™,m) =1

[l ge(a™,m)) =<1 — A(mypy, mp) if g.(a™,m) = ¢q (A.30)

(1 —q)A(my,my) if g.(a™,m) =0
where

W if 0, +mp <0y +myg <0+2b+my,

Almp,my) = { betmaba=miif 9y 4mp <0, +mp <0 +2b+myg  (A31)

1 otherwise.
Given the posterior beliefs” mean is ¢, the variance is
V(Ge(a™,m)) = (1- Q)qu(mH, my) + (0 — Q)2(1 —q)A(mpg,my)
= q(1 —q)A(mm,mz).
The results follow by taking the derivative of A(my, my) with respect to my and my.

When the platform uses the binary design, the probability mass function of g(s, m;T) is
£ () with
g(1 — Kg(T)) + (1 — q)(1 — K. (T)) ifs= 15

fg*(a(s,m; T)) = (A.32)
qKH(T)—i—(l —q)KL(T) if s = ﬂ@,

where the expression for Ky (T') and K (T') are given by Equation (A.6)

The variance is

V(G(s,m;T)) = (a(15,m:T) — ) (q(1 — Ku(T)) + (1 = q)(1 — Ki(T))(A.33)

+((b2,m;T) — q)* (¢Ku(T) + (1 — q)K(T))
— (1 B Q)2q2<KL(T> B KH(T))2 (A 34)
(1= @)K(T) + qKu(T))(1 = (1 = ) Kp(T) — qKu(T))
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The results follow by taking the derivative of V(g,(s,m;T")) with respect to my and my,

taking in consideration that

(A.35)

KL<T)ZKH(T) if 0 +mp <0g+mg<0r+2b+my,
KL(T)SKH(T) if Op+myg <0p+mp <60yg+2b+mpg.

Proposition 2.4: See Appendix A.4
Proposition 2.5: See Appendix A.5

Lemma 2.5: In the case of the continuous design, Appendix A.4.1 gives the condi-
tions for full revelation to occur in equilibrium. In the case of the binary design, see
Appendix A.5.2.7.

A set of conditions that is sufficient to insure that complete learning cannot occur in an

equilibrium of the continuous design is

Oy — 01, + D<1 - < 0. (A37)

When conditions (A.36) and (A.37) are true, then conditions (A.64), (A.65) and (A.66)
given in Appendix A.4.1 cannot hold.

Under conditions (A.36) and (A.37), then it is also impossible that complete learning be
an equilibrium outcome when the platform is using the binary design. To see this, first
note that the conditions given in Appendix A.5.2.7 are equivalent to the following set of

conditions:

TeT
¢ < P1)-D(0)

— 1662
= BIIDO g, o7 < DW-DO) g (A.38)

4bc
T < /POD0 | g,

TeT

sety = e < 22RO (A.39)

DW-DO) 4 g < T < /PODW 4 g,
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TeT

T e 7'2

sety = {c> % (A.41)
D()D(O +0, +20<T < ()D(0)+9H

TeT,

set; = {c< 20-DO) (A.42)

D(1)—-D(0) D(1)-D(0)
4bc +0,<T< 4bc + 0

TeT
setg = (¢ < 2L=D0O) (A.43)

16b2
DI-DO) 4 g, < T < 2W-DO) |

In other words, each set of conditions is sufficient for (0,74 (7)) to be an equilibrium such
that complete learning occurs in the game. Together the conditions in set; to setg are

necessary for complete learning to be possible with the binary design.

It is possible to show that conditions (A.36) and (A.37) are incompatible with the conditions
in sety to setg. Therefore, there cannot be complete learning with the binary design if

complete learning is not an equilibrium outcome of the continuous design.

Proposition 2.6: To prove that cases a), b) and ¢) of the proposition are possible, it is

sufficient to provide a set of parameters where those cases occur.
Note that for all cases, I impose the restriction cy = ¢f, = c.

Case a: 1 construct an example where both designs produce an equilibrium outcome with

complete learning.

When (0y,0y,q,¢,b) = (0.6, 0.65, 0.5, 0.75, 0.05), then there is an equilibrium
with (m§,m$;) = (0, 0.23) because condition (A.65) in Appendix A.4.1 holds which

insures that complete learning can occur in equilibrium with the continuous design.

For those parameters and fixing 7' = (.88, there is an equilibrium with (m%,m%;) =
(0, 0.23), because conditions (A.113), (A.114), (A.117) and (A.118) in Appendix A.5.2.7
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Case c:
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hold, which means that complete learning also occur in equilibrium with the binary

design.

I construct an example where the continuous design produces an equilibrium outcome
with complete learning, whereas the binary design is associated with partial learning

only.

When (0;,0y,q,¢,b) = (0.4, 0.48, 0.85, 0.75, 0.12), then there is an equilibrium
with (m$,m$) = (0, 0.38) because condition (A.64) in Appendix A.4.1 holds which

insures that complete learning can occur in equilibrium with the continuous design.

For those parameters and fixing 7" = 0.74 € 7Ty, the set of conditions set; to sets
(those only are relevant for 7' € 77) of Lemma 2.5 are all violated, which means that
complete learning cannot occur in equilibrium with the binary design. But, there
exists an equilibrium that induces partial learning. The pair of manipulation efforts
(mb%, m5,) = (0, 0.068) is an equilibrium. This corresponds to a pair of type (0, )
given in Appendix A.5.2.4. To check that it is the case, it is sufficient to notice
that m&; ~ 0.068 is one of the solution to (A.95) and that conditions (A.97), (A.98),

(A.101) and (A.102) in Appendix A.5.2.4 hold.

I construct an example where the only equilibrium in pure strategies with the
continuous design produces an outcome with no learning, whereas the binary design

induces an equilibrium outcome with partial learning.

When (01,05,4q,¢,b) = (0.5, 0.56, 0.65, 0.95, 0.1), conditions (A.64) to (A.66) in
Appendix A.4.1 are violated which means that complete learning cannot occur in

equilibrium with the continuous design.

The pair of manipulation efforts (m$,m§;) = (0.1, 0.04) is an equilibrium that
induces no learning because condition (A.71) in Appendix A.4.2 holds with 3; = 0.8

and [ = 0.2 as out-of-equilibrium beliefs.

For those parameters, by Lemma 2.5 we know that complete learning cannot occur
in equilibrium with the binary design. Fixing 7" = 0.8, there exists an equilibrium
with the manipulation efforts (mf%, mb%) = (0, 0.087). This corresponds to a pair of

type (0,7y) given in Appendix A.5.2.4. Indeed, mY; ~ 0.087 is one of the solution
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to (A.95) and conditions (A.97), (A.98), (A.101) and (A.102) in Appendix A.5.2.4
hold.

Proposition 2.7: The proof is detailed for the binary design, the case for the continuous

design follows similarly.

Existence with the Binary Design

Assume that the platform is using the binary design with a threshold 7" > 0. That is,
given 0, the platform observes a™(f,) and publishes a signal s € {122, 1’5} following the

{[C% if a™(0,) > T

rule

s(a™) = (A.44)

Iz ifa™(0,) <T.

The game is I' = (Z;, u;);er, where I is the set of players, Z; the pure strategy set of player
1 and u; 1 Z — R with Z = X;¢;Z; is player ¢’s payoff function.

More specifically,
o the set of players is I = {seller of type H, seller of type L, a representative consumer}

o the pure strategy set of a seller of type x € {L, H} is m, € [0,T — 0,] (note that any
mg > T — 6, is strictly dominated by T" — 6, such that it is not necessary to include

those in the set of strategies)
o the pure strategy set of the representative consumer is <@( I2), 0( @)) € [0,1)%
o Payoff of the seller of type 6,:

Given (@(5), (my, mH)), the payoff of the seller of type z is
P(s = 1510, m,)(1 — 9(K5)) + P(s = 2|05, m,)(1 — 9(12)) — cum?  (A.45)
with

P(s = 1K2[0.,m,;) = min {max{jw,()},l}, (A.46)
P(s = U5(0,,m,) = 1-P(s=I20,m,). (A.47)
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The payoff function is continuous in (1m,, m_., v(I2),v( I'5)), but, in general, it is

not quasi-concave in m,.
o Payoff of the representative consumer:

The representative consumer is choosing 9(s). Note that 1 — 9(s) can be interpreted
as the volume of units that the representative consumer is buying. Utility from
consuming a unit takes a value in {—1,1} with 6,v; + b the probability that a

particular unit is associated to a utility of 1 when quality is 6,.

Fors € {1z, = }, given (@(5), (mp,m H)) , the payoff of the representative consumer

/Z) av(s, mp, mu; T) [(1) (O +b) 4+ (1) - (1 — Ogv; — b)} dv;
+/@;)(1 — qp(s,mp, mp;T)) [(1) (Opv; +0) + (1) - (1 — Opv; — b)} dv;  (A.48)

_ <9L + (On — 00)gb(5, M, m; T)) (1—0(s)?) = (1 - 2b)(1 - b(s)) (A.49)

where qy(s,mp, myg;T) is the probability that § = 6y given that the signal s is

observed
qP(s|0m, mu)
s|0m, mu) + (1 — q)P(s|0L,mL)

a(s, mp, mm;T) = (A.50)
qP(

The representative consumer’s payoff function is not necessarily continuous. For

instance, at the profile (mp, mpy) = (T — 01, T — 0p), we have P(I 2 |0,,m,) = 0 for

x € {L, H} such that q,(I.2,mp, mpy; T) is not defined.

Equation (A.50) is undefined, and so is Equation (A.49), every time a signal s €
{5z, lf%} is observed with probability 0 for both type of sellers. These cases require
that out-of-equilibrium beliefs be specified.

Despite the discontinuity in the representative consumer’s payoff and the non quasi-
concavity of the seller’s payoff, an equilibrium in mixed strategy can be proven to exist
using Reny (1999).
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Let ®; denotes the set of probability measures on the Borel subsets of Z;. Then, extend u;
to ® = X,;c;P; by defining u;(¢) = [, u;(2)d¢ for all ¢ € ® and let I = (P;, u;);c; denote

the mixed extension of I'.

Let the index C' refers to the representative consumer and —C' to the sellers. Assume that
the sellers are playing the mixed strategy (¢, ¢pm), then the representative consumer’s

payoff from a strategy v is now
(eL + (0 — 00)Elgu (s, s, T)]) (1-v?)—(1—20)(1—v)  (A51)

where Elqy(s, mp, mu; T)] = [, @(s, mp, mp; T)dér(mr)dom(mu).
The next definitions are needed in order to present Reny (1999)’s existence theorem.

Definition A.2. (Reny, 1999) Player i can secure a payoff of § € R at z € Z, if there
exists z; € Z; such that w;(z;, 2" ;) > & for all 2’

; in some open neighborhood of z_;.

Thus, a payoff can be secured by 7 at z if 7 has a strategy that guarantees at least that

payoff even if the other players deviate slightly from z.

Definition A.3. Let u(z) = (uc(2),ur(2),un(z)) be the vector of the players’ payoff
functions at strategy profile z. The graph of the vector payoff function is {(z,u) € Z x R :

The closure of the graph of the vector payoff function is {(z,u) € Z x Rl : 3 2F —
z with u(z®) — u}.

Definition A.4. (Reny, 1999) The game I' is better-reply secure if whenever (z*,u*)
is in the closure of the graph of its vector payoff function and z* is not an equilibrium,

some player i can secure a payoff strictly above u} at z*.

The game T is better-reply secure if whenever (¢*,u*) is in the closure of the graph of
its mized extension vector payoff function and ¢* is not an equilibrium, some player i can

secure a payoff strictly above u} at ¢*.

Theorem A.1. (Reny, 1999) Suppose I' is a compact, Hausdorff game. Then I' possesses

a mized strategy Nash equilibrium if its mized extension, T, is better-reply secure.
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Hence, it is sufficient to show that I is better-reply secure to establish that an equilibrium

in mixed strategy exists.

Given (¢r, ¢m), let 9(s, ¢r, i) denotes the best response of the representative consumer

for s € {12, s}
1—2b
261+ (61— 00 Elas(s, s, s ) )

0(s, oL, ou) = (A.52)

Let Y denote the closure of the graph of the mixed extension’s vector payoff function.

Then, X can be defined as the union of two subsets:

A:{(gbau) EE:¢C(@<57¢L7¢H)) :17 ‘v’se{ﬂ@, Iﬁé}}

and its complements

A ={(¢,u) €S : T s € {1z, 1’5} with ¢c(0(s, o1, dm)) < 1}.

In other words, the set A contains the elements where the representative consumer is

playing the pure strategy given by (A.52).
Note the following two observations:

1. for any (¢,u) € ¥ and for all s € {12, e}, c(0(s, br, dox)) = 1 is always the only
best response to (¢, ¢g) (c.f. Lemma 2.1). That is, all strategies (pure or mixed) of

the representative consumer are dominated by the pure strategy in (A.52),

2. when the sellers deviate from (¢, ¢ ), the impact on the representative consumer’s
payoff is only through E{g,(s, mr, mpg;T)]. If Elg (s, mr, mu; T)]|(6,.6n) = ¥, then

for small deviations (¢, @), we have E[qy(s, mr, mu; T)l| (g ¢1,) = ¥ + €
I now show that the game I is better-reply secure.

Step 1: Take an element (¢*,u*) € A® and assume that Elgy (s, mz, mm; T)]|g: ¢1) = -
Deviations from (¢7, ¢};) means that E[g(s, mp, mu; T)]|s,.6n) = y + € for some ¢ €
[—y, 1—y|. Then for the representative consumer, for all y, the strategy ¢c (0(s, @3, ¢%)) = 1

secures him a higher payoff than ¢, as long as ¢ is small enough. In other words, there is
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always a neighborhood of (¢}, ¢3;) such that uc(9(s, %, ¢3;), @1, &) > ug for all (¢}, ¢y)
in that neighborhood.

Step 2: Take an element (¢*,u*) € A. By assumption, the representative consumer is
playing a best-response, which implies that if (¢f, ¢, ¢5) is not an equilibrium, then
there exists a type of seller # € {L, H} for which there exists ¢/, that is a better response
than ¢f to (¢f, ¢* ). As the payoff function of seller of type x is continuous in the others’
strategies, this means that there is also some neighborhood of (¢%,, ¢* ) where ¢/, secures

seller of type x a higher payoff than the payoff at (¢F, ¢}, ¢f;).

Hence, Step 1 and Step 2 prove that I is better-reply secure, and thus, that I' admits a
Nash equilibrium. Note that the equilibrium is also perfect Bayesian because subsequent

play is always optimal and beliefs are derived by Bayes’ rule.

Existence with the Continuous Design

The proof that a mixed strategy equilibrium exists when the platform is using the continuous
design follows similar steps. Given a profile of pure strategy (v, mgy, myz), the seller of type

x € {L, H} profits are given by
L(mg mopv) = —em?+ [ (1= 0(s)f(sl6,m.)ds (A.53)
while the representative consumer’s payoff for a signal s is
uc(s,v,mp,my) = (0 + Og — 01)q.(s,mp, mpy))(1 —v?) — (1 —2b)(1 —v)  (A.54)

with q.(s,mr,my) as the Bayes updated probability that § = 0y given (mp,mgy) and

design is continuous.

As with the binary design, the payoff function of seller x is continuous while the payoff
function of the representative consumer can be discontinuous since g.(s,mp, my) is unde-
fined for s such that P(s|f.,mr) = P(s|0g, my) = 0. The strategy set of the seller with
quality €, can be restricted to [0, \/1/701,] Indeed any m, > \/1/703,; yields to the seller with
quality 60, strictly negative profits for any profile {m_,,0(s)}. So, m, > \/1/c, is strictly
dominated by 0 which yields to the seller, in the worst case, profits of 0. Then, showing

that Reny (1999)’s result can be used to prove the existence of an equilibrium boils down
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to show that the game is better-reply secure. The remainder of the proof proceeds exactly

as with the binary design and is left to the reader.

Proposition 2.8: Given the consumers threshold function is (s, m), the consumers’
demand for the product is 1 — (s, m). Then the expected number of sales from a design
(M, S) is

GE (L — (5, m))|04] + (1 — QE [1 — (5, m))|6]. (A.55)

Assume that for each sale, the commission earned by the platform is a fixed percentage of
the price. Then, the platform’s expected revenues are proportional of the expected number

of sales.

At the prior ¢ and with 0(q) as the consumers’ threshold, the platform’s expected revenues
are proportional to 1 — F(0(q)), where F(-) is the uniform CDF on [0, 1]. This threshold
is 0(q) = ij—emq)’ such that 9?9(q)/0q¢®> > 0. Tt is then the case that 1 — F(9(q))
in concave in ¢q. Therefore, by Kamenica and Gentzkow (2011)’s result, a transactional

platform does not benefit from providing information to consumers.

Note that the concavity of the expected revenues hinges on the fact that 0(q) is convex
in ¢ in combination to the fact that F(-) is linear. The distribution of consumers’ type
is therefore important.! Note also that the expected profits are higher in the case where
consumers learn nothing than when consumers learn the quality perfectly, i.e., the expected

demand is higher at the prior than with full revelation

0011152 (c=egs) - -(52) (52 +) =
(A.56)

Proposition 2.9: The statement for the case with no manipulation follows from Proposi-

tion 2.2. The statement for the case with manipulation follows from Proposition 2.6.

Lemma 2.6: Appendix A.4.1 gives the condition for complete learning to occur with the
continuous design. Assume that cy = ¢;, = ¢. Then, when 0y — 6, — 2b + w >0,
it implies that there exists my € (20 — (0 — 01), W] such that Equation (A.64) is
satisfied. In turn, this means that an equilibrium inducing complete learning exists when

the platform is using the continuous design.

1One could imagine a situation where F(-) is sufficiently concave such that the result does not hold.
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A.4 Proof of Proposition 2.4

Throughout the proof, let D(y) be the consumers’ demand given posterior beliefs are y. For

an arbitrary pair of manipulation levels (my, my), there are five cases to consider.

A.

B.

C
D.

=

O, +2b+mp <0y +myg

0H+mH:9L+mL

O +mp <Og+myg <0 +2b+mg

O + 20+ mp <0 +my
Oy +myg <0 +mp <0y +2b+mpyg

Cases D and E are possible only with m; > 0 and therefore, by Lemma 2.4, they

can be eliminated as potential equilibrium candidates.

Cases C can also be eliminated: Let D(1), D(q), D(0) be the demand for the product
given posterior beliefs are 1, ¢, and 0, respectively. Assume that for out-of-equilibrium
realizations of « such that o < 67 +my, consumers’ posterior beliefs are that quality
is high with probability £, and that for a > 0y + 2b + my, consumers’ posterior
beliefs are that quality is high with probability j;.

Suppose my, > 0, then it is not profitable for the low-quality seller to increase my, if

w — 2cpmy, < 0 which is equivalent to D(Z)b;é?(m < my,. It is not profitable for
the low-quality seller to decrease my, if —w + 2c;my, < 0 which is equivalent

%fz(ﬂ?) > my. Thus, the absence of a profitable deviation requires that

%{f(m <myp < D(qgiclz(’%), which is impossible because D(1)—D(0) > D(q)—D(B2)

for all fs.

to

Suppose my, = 0, then increasing my, is a strict profitable deviation for the low type

since %I)D(O) —2¢;0 > 0.

Case A is a equilibrium candidate only if m; = 0. To see this, suppose on the
contrary that my > 0. The support of a”(61) and o™ (6y) are disjoint under case A’s
assumptions. Assume further that for out-of-equilibrium realizations of « such that

a < 0, + myp, consumers’ posterior beliefs are that quality is high with probability
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B2. Then, decreasing m;, is profitable for the low type as —W + 2cymyp >0
for all B5. By deviating, the low type cannot do worst in terms of demand, but he

economizes on the manipulation cost.

A.4.1 Case A (Complete learning)

Case A requires that my = 0 and my > 2b— (0 — 01). Fix the consumers’ conjectures to
(0, mg). Then for any realizations « € [0, 01, + 2b], the beliefs are that product quality
is low, and for any realizations o € [0y + my, 0y + 2b + my], that product quality is
high.

Assume that for out-of-equilibrium realizations of « such that o < 6, consumers’ posterior
beliefs are that quality is high with probability (s, for 0, + 2b < o < 0y + mpy, consumers’
posterior beliefs are that quality is high with probability 53, and that for o > 0y +2b+mpg
consumers’ posterior beliefs are that quality is high with probability /.

Local deviations

- For the high-quality seller, it is not profitable to increase my if %;D(l)
0, which is true for all ;. Moreover, it is not profitable to decrease my if —%—i—

2cgmpy < 0, which requires that myg < %z(ﬁ?’).

—2cgmpy <

- For the low-quality seller, it is not profitable to increase my if W —2c1,-0 <0,

which is true only if 83 = 0.

Case A remains an equilibrium candidate only if the consumers’ posterior beliefs are that
quality is high with probability 0 when 0, + 2b 4+ m; < a < 0y + my. 1 make this

assumption for the remainder of the proof.

Global deviations

For the high-quality seller, it must also be the case that my = 0 is not a profitable deviation.
Two situations can arise when my = 0: either it is possible for the high type to obtain

D(1) with a positive probability by not manipulating the reviews, either it is not.
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When the conjectured equilibrium level my is above or equal to 2b, the high type by
choosing no manipulation cannot obtain the demand D(1) with positive probability. The
expected profits are

E[IL (0); (0, my)[mpy = 2b] = D(0). (A.57)

Otherwise, when the conjectured equilibrium level mpy is below 2b, the high type by
choosing no manipulation can obtain the demand D(1) with positive probability. The

expected profits are

2b—mH

E[T1(0); (0, mp)|my < 2b] = D(0) + ( 2%

) (D(1) — D(0)) (A.58)

(A.58) is greater than (A.57) and so it suffices to show that a deviation to m/; = 0 with
payoff given by (A.58) is not profitable for the high type:

D(1) = cgm?, > D(0)+ (D(1) — D(0)) <2b—mﬂ>

2
(D(1) = D(0)) (25)—ch§, > 0

o (P20 ) 5 o

< D()-D(0)

which is true since my < T Therefore, the high-quality seller does not have a

global deviation.

For the low-quality seller, the deviations to eliminate are levels above 0. Given that
Oy + mpg > 01 + 2b, the low type has an impact on its demand by choosing m/, instead
of 0, only if 0, 4+ 2b + m/, > 0y + mpy. Moreover, there is no need to manipulate more
than 0y — 07, + my, as this levels insures that D(1) occurs with probability 1. Hence, only

deviations in (g — 0, + my — 2b,0y — 01, + my] need to be eliminated.

For m/, € (g — 0, + my — 2b,0y — 01, + my], the low type expected profits are

E[IL,(m)); (0,mg)] = D(1) — (D(1) — D(0)) ((eH —0) —m}p + mH> ,2

5 —cpmf  (A.59)

which are concave in m/ . Taking the first order condition with respect to m’, equalizing

D(1)=D(0)

to 0, and solving for the critical point, I obtain 7/ = A50s
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There are three scenarios to consider: a) m; € (g — 0, + my — 2b,0y — 0, + my|; b)
my >0y — 0, +myl; ¢) My, <0y — 6, +mpy — 2b. Scenario a) concerns the situations
where the critical point is in the set of "admissible" values for a deviation. In this case,
one needs to check that 72}, is not a profitable deviation from my = 0. Scenarios b) and c)
concern the situations where the critical point is not in the set of "admissible" values for a
deviation. In scenario b), the critical point M/ is too high, and one needs to check that
Oy — 01 + my is not a profitable deviation from m; = 0. In scenario ¢), the critical point

m’, is too low, and there is no profitable deviation from m, = 0.

Hence, to show that no profitable deviation exists, it is sufficient to show that the deviations
D(1)—D(0)

Abor and to m, = 0y — 0, + mpy are not profitable.

A
to my =

For m/, =1/, the low type profits reduce to

R Oy — 0 +m D(1) — D(0))?
E [I1, (1,); (0, mar)] = D(1) — (D(1) — (o)) ( 2= 0oy | (DW= DO g
2b 16b%¢;,
and for m’, = 0y — 0 + mpy, they reduce to
E[HL(QH — HL + mH); (mH, O)} = D(l) — CL(QH — HL + mH)Z. (A61)
Scenario a): if m} = %{f(o) is admissible, it is sufficient to check that 0 > %Cf(o),

which requires that

D(0) — (D(l) — (D(1) — D(0)) <<6H - 92Lb) +mH> n (D(11>6;22(0)) )

— (D(1) — D(0)) ((9H - 9L)2: my — 2b) - (D<11)6;2Z(0>)

(D) = D(0))

= (O —0 - >0 A.62

(Or —0L) +mu 8ber, - (A.62)

Scenario b): m} = %CD(O) is not admissible because it is too high, that is, if w >
L CL

Oy — 0, + my, it is necessary that 0 2 0y — 0 + mpy, which requires that

D(0) = (D(1) = c1(0r — O+ mu)?)
(D(1) - D(0)

= (QH—QL)+mH—
CL

>0 (A.63)
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Scenario c): m} = %{f(o) is not admissible because it is too low, that is, if %jm) <
Og — 0, + mpy — 2b, then no profitable deviation.
SUMMARY: If the out-of-equilibrium beliefs are 51, 85 € [0, 1] and 3 = 0 and that
) m (Qb — (On — 0,), PO=LO
ii)
20-D0) ¢ <9H — 0, — 2b+mH,0H 0, + mi]
or
7D(14)l;f(0) > 9[{ — QL + m}“{ AG5
* D(l)—D(O) ( . )
Op — 0L +my — /= —> =0
or
D(1) — D(0
DO =DO) g g, 4, — 20 (4.66)
4bCL

then (0,mj;), such that Case A occurs, is an equilibrium of the manipulation game with a

Continuous design.?

A.4.2 Case B (No learning)

Case B requires that g + mpy = 0, + my, or equivalently that m;, = 0y — 0, + my.

In this case, for 0g + myg < a < 0y + 2b + my, the consumers’ posterior beliefs are
equal to the prior. Assume further that out-of-equilibrium beliefs for any realizations
a < Og+mpy = 0, +my, the beliefs are that product quality is high with probability f,, and
for any realizations o > 0y +2b+my, that product quality is high with probability ;.

2Notice that when Equation (A.64) is true, then Equation (A.65) must also be true. Indeed suppose that
Equation (A.64) is true, but not Equation (A.65), then (0 —0r)+mpy > 2b—|—M and Og—0,+mpyg <

7D(1)C_LD(O) which then implies 2b + (S)bCLD(O) < \/W = (\/> D(ls)b_cf)(O)) < 0, where the

last inequality is false.
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Local Deviations

For a seller with quality 6, with = € {H, L}, it is not profitable to increase m,, if (D(51) —
D(q))/2b — 2¢,m, < 0 and it is not profitable to decrease m, if —(D(q) — D(B2))/2b +

2¢,m,; < 0. Hence if (mpy, my) are such that

D(1) — D(q) < < D(q) — D(B2)

for x € {H, L}, then no seller has a local profitable deviation.

Note that it is necessary that Sy < ¢, otherwise a type with m, > 0 can for sure profitably
deviate in decreasing m, as —(D(q) — D(B2))/2b+ 2c,m, > 0 if By > gq.

Global Deviations

D(B1)—D(q) D(g9)—D(B2)
4bcy, ) 4bcy,

Given m, € }, the expected profits of a seller are

B[, (mg); (mz, mu)] = D(q) — camy. (A.68)

The only global deviation to be eliminated is the deviation to m, = 0. If 6, +m, < 0, + 20,
it means that the seller with quality 6, by choosing not to manipulate the reviews can

obtain the demand D(q) with positive probability. The expected profits are

2b — my
2b

E[TL(0); (my, mu)ma < 2b] = D(B2) + ( ) (D(q) = D(B2))- (A.69)

If instead 6, + m, > 60, + 2b, it means that the seller with quality 6, by choosing not to

manipulate the reviews can only obtain the demand D(fs). The expected profits are

E[IL,(0); (g, mu)|m, > 28] = D(Bs). (A.70)

Because it is required that Sy < ¢, it suffices to show that the profits in (A.69) are smaller
than the profits in (A.68) to check that there is no profitable global deviations.

2b — my,

2b
2b — my,
2b

D(q) = com? — (D(Bz) + ( ) (D(q) — D(@))) >0

M@—M&%wwﬁ—( yD@—Dmeo
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—em? + (52) (Dla) = D)) 2 0

D(g)=D(B2)
1 .

beg

which is true since m, <

Now, case B can occur only if mz > 0, but it is not necessarily the case that mygy > 0 also.
Suppose that my = 0 and my = 0y — 0, so that we are still in case B. Then, there will be
no profitable deviation for the high type only if it is not better for him to increase my
which requires that (D(81) — D(q))/2b—2¢-0<0= D(p1) < D(q) = 1 <q.

SUMMARY: If out-of-equilibrium beliefs values are 8y < ¢, 81 € [0,1], and (m},m?%;)

are such that

4bcy, 4bcy

{m; c [D(Bl)—D(q)’ D(q)—D(ﬂ2)} for v € {H, L}, (A.71)

then (mj,mj;), such that Case B occurs, is an equilibrium of the manipulation game with

a Continuous Design.

If out-of-equilibrium beliefs values are 5y < ¢, 1 < ¢, and (mj,0) are such that

4bcy, ) 4bcy,
mE = QH — QL

{mi e [D(fh)—D(Q) D(q)—D(ﬂz)} (A7)

then (m?,0), such that Case B occurs, is an equilibrium of the manipulation game with a

Continuous Design.

A.5 Proof of Proposition 2.5

Throughout the proof, let D(y) be the consumers’ demand given posterior beliefs are y.

A.5.1 Equilibrium Candidates

The threshold T has a critical impact on the seller’s payoffs and on the impact of a
manipulation effort m. More specifically, for a given T' there are two important values
for m: m,(T) = max{0,T — 0, — 2b} and m,(T) = max{0,7 — 6,}. The level m,(T)
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represents the minimal level of manipulation that is needed in order for the demand to
be different from the one obtained with m, = 0. The level m,(T) represents the maximal

level of manipulation that has an impact on the demand.

Assuming consumers posterior beliefs are g,( I2; T') when they see the signal s = L2 and
Q@ I’s ;T') when they see the signal s = lﬁé, then the seller’s expected profits are

B[, (s, (:T), 7)) = min {max{e“*‘ B T,o} | 1} (Da¥5:7) - Da(13:7)
+D(qp(12;T)) — com? (A.73)

A seller with quality 6, chooses m, > 0 given the consumers beliefs are ¢,(I'5;T) or
@ (1 2;T), and demand is D(gy( I'5;T)) or D(qy(13;T)) when they see the signal I's or

I]\? .
Then,

o all levels m, € [0,m,(T)] are strictly dominated by 0. For m, = 0, expected profits

are

min {max {W,O} , 1} <D(qb(ﬂi§;T)) - D(Qb(n\?§T))) + D(Qb(n\??T))
(A.74)

o all levels m, € (m,(T),00) are strictly dominated by m, (7). For m, = m,(T),

expected profits are

D(q(V'5;T)) — cmy(T)? (A.75)

» For m, € (m,(T),m,(T)), the expected profits in (A.73) are concave in m,. Taking

—T

the first order condition to (A.73) yields the local extremum point

s _ D(a(V5:T)) — D(g(1.2: 7))
¥ 4bc,, ’

(A.76)
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and the expected profits at m, are

Dtz )+ (% 2T (Dla(E) - D7)

(D(@(V5:T)) — D(gy(12:T)))
* 16b2c, '

(A.77)

For a seller with quality 6,, candidates for a best-response are {0, 1, m,(7)}. Hence,
there are potentially up to nine pairs of manipulation levels that are candidates for an

equilibrium.

The next three lemmas are useful to find the conditions under which each candidate profile
is an equilibrium. In the remainder, I use m = m’ to denote the fact that m is at least as

good as m' for the seller.
Lemma A.2. If i, is in the set of admissible values, i.e., M, € (m,(T),m.(T)), then
My 2y (T).

Proof.

= DGl + (5T (Dl ) - Dl )
| (D(@(V5; 7)) - D(gy(K2: 7))’
16b2c,

- (D(qb(ﬂfé 1)) - Ca:mm(T)Q)

- (%57) ttrts: ) - Dty + COEETD_DOUSDI 7y
_ (\@(T o) D(Qb(ﬂ%;T)zL)b\_/cij(qb(@;T») > 0. (AT8)
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Lemma A.3. ForT > 6, + 2b,

i. me(T) 2 0 if

> .
T—0,) > ¢ (A.79)
ii. My 2 0 (provided that m, is admissible) if
D(gp(1'5: 7)) = D(gy(8.2;T)) (A.80)
Sb(T — 2b — 6,) =G ‘

Proof. i. From (A.74) and (A.75),

E[IL(m.(T))] — EML(0)] = D(gs(V5;T)) = eo(T = 0,)° = D(ay(12; 7))

ii. From (A.74) and (A.77),

(L, (1) (s )] — E[IL (0): (i my )
= D) + (5T ) (Dl@(vEiT) - Dlai: 1))
(D@ (15 1) ~ Dlgs(1:T)*

+ 16b2¢,

— D(gp(K2:T))

2
A.81)

_ (91 i T) (D5 7)) — Dlas(rz; 7)) + L2 T>1>6;2§(q”( K2
O

Lemma A.4. For 0, <T <0, + 20,
i. My 2 0 whenever m, is admissible,
i. m.(T) 2 0 if

D(qp(V2;T)) — D(q(82: 7))
2B(T — 6,)

>y (A.82)
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Proof. i. From (A.74) and (A.77),

EIIL ()] — E[1L,(0)
= D) + (5T (Dl ) - Dla(izi 1))
L (Dl@(V5;T) = Dig(12:7)))°
16b2¢,

- (P + (5T ) (D 1) - Dlaiz 1)

_ (D(gp(KE;T)) — D(g(K2;7)))>
— b T b >0 (A.83)

ii. From (A.74) and (A.75),

= D5 T) — T 0 = (D57 + (25T ) (Dl v5:) = Dl 1)

= e =07 + (152 (DG@(¥E:7) - Dla(r3:7)

D(g(KE;T)) — D(qb(n@;T») (A.84)

= —c.(T —0,) + ( 5%

The table on the next page summarizes the conditions found in the previous lemmas.
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((p)Hw " (p)Hw) 5 Hyw 10§ suoryipuo)) :usisep Areurq :z'y o[qrL,

0 L
0 "
— (Hog—1)9¥
10> ey e (e e s ba L
= (Hog—1)9¥
10> ey e g (e ey s ma L
(9z—Ho—1)av < Hy < (Ho—1)av i
(L (Hw Tw) ) B) q — (L (Hw Tw) 1) D) > > (L (Hw Tw) ) ) q — (L (Hw Tw) g1 ) D)

J1 o[qIsstupe Huy

L3
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((p)Tw (. 1)Twr) > Ty 103 SUOTYIPUO)) USISOP ATRUlq €'Y d[qR],

0 L

= (To—2)av ¥
D> (G e m - (R Ty 1B a L

= (To—2)av e
D> G e a— (e 0 a L

(95—T9—L)a¥ =7, = (To—L)av z
((Z(Hw Tw) 1) ) q — (2 (Hw Tw) 1) D) q > 1> (Zt(Hw Tw) 1) ) q — (L (Hw Tw) 1) D) q L
(95—T9—1)9¥ SDHS (To—2)av 7

(z(Hwt Twe) <) B) @ — (L (Hw Tw) 5 1) b)a

(L' (Fuwt Tw) ) ) g — (L (Hw Tw) 5 1) D) q

JU o[qsstupe Ty

L2
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The conditions presented in Table A.1 determine which profile of manipulation can be
sustained as best-responses when D(q,(E'5:T)) and D(gy( I.2; 7)) are fixed in accordance
with the consumer conjectures on my and my. For an equilibrium, more is required. More
specifically, in an equilibrium, ¢,(E'5;T) and g( I2;7T) are functions of my and my, that
are chosen by the seller and not conjectures. Hence, to be exact, g( s, T) and g,(I2;T)
should be instead written gp( s, mp, my:; T) and q,(I 2, mr, mpg; T) where

1 1

and g (K2, mp,mp;T) = :
(1—q) ( 2b4+67,+m—T ’ ’ ’ (1—q) ( T—6;,—m
1+ (2b+0§+mff—T> L+ (T—@;—mf{>

qh([[iéamlan;T) -

There are nine profiles (my, my) that are equilibrium candidates:
1. (0,0)
2. (g, 0) where 1y, solves

_ D(ay(¥5,mp,0;T)) — D(ap(8.2,m,0;T)

_ A.85
ML 4bCL ( )
3. (my,0)
4. (0,7p) where My solves
D 0 1Y) — D 0 T
my = (Qb<n%> » TV )) (Qb([[\?’a » TV )) (A86)
4bCH
5. (i, my) where my and My, solve the system
my = D(q (K5 ;mp,mpsT))—D(qu (K2 mp,mp;T))
4be
mr — D(qb(ﬁ7mL,mH;T))—g(Qb(l\?,mL,mH;T)) (A'87)
L — 4bcy,
6. (myp,mpy) where my solves
D m 1)) — D m :T
my = (qb(lﬁé’,mL,mH, )) (Qb(ﬂ@ﬂnLamHa ) (ASS)

4bCH



178

8. (7, mpy) where 1y, solves

- D(qo(V'5,my, m; T)) — D(gp(W2, mp, My T))
4bCL

(A.89)

9. (7711;,771}{)

I now proceed to give the conditions under which each candidate is an equilibrium. The

level of the threshold is determinant for the type of profiles that can be equilibrium.

Let 1.(qy(s, m, T)) be the solution to

D(q(¥5,my,my, T) — D(gp(1 2, mz,mp,T)

A 90
4be, ’ ( )

M (qp(s,m; T)) =

then, the next table summarizes the zones for which each pair can be an equilibrium:

(mp,mpy) 0 my(g(s,m,T)) | my(T)
0 {71, 75} {7, T} {T:. T2}
mr(g(s,m,T))| Ti {1, T, T3} | {7, T2, T3} |
m(T) T 0 {7, T2, Ts}

Note that the solution M, (qy(s,m;T)) in (A.90) is admissible only if it belongs to the set
(m,(T), m,(T)). Table A.2 and Table A.3 give the conditions for this to be satisfied.

A.5.2 Conditions under which each candidate is an equilibrium

A.5.2.1 (0,0)

Lemma A.4 together with the condition for the admissibility of m, imply that the high
type cannot choose my = 0 in 75 and 73 and the low type cannot choose m; = 0 in T3

and Ty. Thus (0,0) can possibly occur only in 7; and 7.

e In 71, when (mpg,mz) = (0,0) the consumers beliefs are q,(I2;7) = ¢ and
@(FE;T) = 2z € [0,1] (out of equilibrium specification). The assumption that

z < q is sufficient to insure that (0,0) is an equilibrium. For z > ¢, then

D(gp(K5;T)—D(gy (1 25T)
4bcy

i. if the deviation to m, = is admissible, then it is not

profitable when
D(z) — D(q)

<
Sb(T — 0, —2b) — °

(A.91)
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ii. otherwise, the only potentially profitable deviation is 72, and it is not profitable
when
<c, (A.92)

e In 75, no type has an incentive to manipulate the reviews since the signal I’s s

published with probability 1. The only sustainable pair is (0,0).

A.5.2.2 (fy,0)

In this case, there is no out-of-equilibrium to specify since the choice of the low type insures
that both I'Zand I 2 can be observed.

o In 7;, the entire support of the high type is below T" when mpy = 0 and the support
of the low type is partially below 7" only. Hence by Lemma 2.4, the low type can

profitable deviate by decreasing its manipulation effort.

o In 75 and 73, Lemma A.4 implies that it cannot be optimal for the high type to make

no manipulation effort.

o In 74, the entire support of the high type is above T" when mpy = 0, there is no
profitable deviation for him. It is implicit that mj is admissible because, the low

type is choosing it. Then, by Lemma A.4, there is no profitable deviation for the low
type.

A.5.2.3  (my,0)

o In 7y, the entire support of the high type is below 7" when my = 0 and the support
of the low type is entirely above T'. Hence by Lemma 2.4, the low type can profitably

deviate by decreasing its manipulation effort.

o In 75 and 73,the support of the high type is partially below 7" when mpy = 0 and the
support of the low type is entirely above T'. Hence by Lemma 2.4, the low type can

profitable deviate by decreasing its manipulation effort.

o In 7y, the entire support of both the high and the low types are below T, such that
only I’=is observed. Assume that out-of-equilibrium beliefs when seeing I£zare that
quality is high with probability z. There is no potentially profitable deviation for
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the high type. For the low type, it is necessary that z < ¢ for him not to deviate to

my, < my. Moreover, it is required that
i. ™My is not admissible
ii. my, 20
D(q) = D(2)
26(T —6r) —

A.5.2.4  (0,7y)

By Lemma A .4, the low type cannot choose my = 0 in 73 and 7;. Moreover, it is impossible

that the high type manipulates in 75. Thus (0,725) can occur only in 77 and 7s.

When (mg,mg) = (0,7uy), the consumers beliefs are ¢,(1°5;T) = 1 and

1
qb(ll\?%,an) = _ % . (A93)
1+ (%) (7w
The high type manipulation rmy is the solution to
D(1)—D N T
mH: ( ) (qb([@v(xml‘b ))’ (A94)
4bCH
which has the following closed form solution
o CHQH'Rli\/CHQ%I (CH~R%—(1—2b)(«9H—9L)(1—q)q)
my(T) = Sy (A.95)
HYHq
with R1 = 2b0L(1 - Q) + qu (T — ‘9H> .
Deviations

The low type could potentially deviate to M, or to an interior level of manipulation

where
) D(1) — D(qp(12,0,7p;T))

ML= 4bCL

. (A.96)

If the deviation to iy, is not profitable (provided that i, is admissible), then it will be

the case that the deviation 7y is also not profitable by Lemma A.2.
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The high type can deviate to 0 or to my. The assumption that my is admissible
together with Lemma A.2 imply that my is not a profitable deviation.
o In 7y, (0,7y) is an equilibrium if

— My is admissible:

D(1) = D(ay(82,0,m: T)) . D(1) = D(gp(Wz2, 0. 0ur; T))
4b(T — 6 == Ab(T = 2b — Oy) '

(A.97)

D(1) = D(gy(12,0,7p;T))
8b(T — 2b — Op) '

CH >

(A.98)

and either one of the following hold:

— My, is admissible and 0 2 7p:

D(1) — D(g,(v2,0, ;7))
Ab(T — 6;)

D(1) = D(qy(12,0,70p;T))
4b(T — 2b — 0y) ’
(A.99)

<c¢ <

D(1) — D(qy(K 2,0, 7p; 7))
8b(T —2b—0y) ’

cr > (A.100)

— 7hy, is not admissible and 0 2 7y

D(1) = D(gp(12,0,7; 1)) D(1) = D(gp(12,0,7; 1))

>cr or cr >

Ab(T — 0y) Ab(T — 2b — e(LA) o ’
e > 20 = Da(Be, 0, T)) (A.102)

(T'—6.)?

e In 75, the conditions that guarantees that the low type has no profitable
deviation from 0 are exactly the same as in 7;. For the high type to choose 1y,

it is required that
— 1ty 2 0: which is true for all ¢y > 0.

— ™My be admissible:

D(1) — D(gy(1-2,0,7p;T))
Ab(T — )

<y (A.103)
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A.5.2.5 (i, 1)

It is impossible that the high type manipulates in 74 and 75. Thus the pair (Mg, M) can
occur only in {7y, 72, T3}

Let
s 1
(:Zb( ymr,MH, T) = 1 (1=q) [ 2640, 1y T (A104)
+ q (2b+9H+mH—T)
1
(2, mp,mp,T) = O (1) (A.105)
+ 452 (7=
then the interior levels mpy and my are found by solving the system
my = D(gp (1'% ;mp,mp,T)=D(gp (12 mp,mu,T)
4bc
m _ D(qb([é?,mL7mH,T)—LD(qb(I]’C:i,mL,mH,T) (A106)
H = 4bcy,
which is equivalent to solving
_ (1=2b 1 _ 1
mrp = (8bCL> (9L+(0H—0L)qb([\?,mH,mL,T) 6L+(9H—0L)qb([L/:&?,mH,mL,T)) (A107)
mpg = (% mry,

For (7, ) to be an equilibrium, it is required that 72, be admissible and that 7, = 0
for x € {H, L}.
e In 71, the level M, is admissible if

D(ap(VE sy, s T)) — D(go(V 2, 0, T) - D(@o(V5, i, v ) — Diay(W2, 7, v T))

A0(T — 0,) == A0(T — 2b — 0,) .

A seller with quality 6, prefers m, over 0 if

< D(qy(VE 100y, s T)) — D(qp(I 2, My, mpg;T))

Al
o = Sb(T — 2b— 6,) (4.109)

o In 75, the conditions that guarantees that the low type has no profitable deviation

from 7y, are exactly the same as in 7j.

For the high type, mp is preferred to 0 for any ¢y > 0 and is now admissible if

D(q(VE ,1ng, 1 T)) — D(qy(E 2, M, mp;T))

>
= (T — 0)

. (A.110)
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o In 73, the conditions that guarantees that the high type has no profitable deviation

from mpy are exactly the same as in 7s.

For the low type, m, is admissible if

D(qy(VE g, g T)) — D(qy(8 2,1, mp; T))
4b(T — 0) '

cr >

(A.111)

and is preferred to 0 for any ¢y > 0.

A.5.2.6 (m.(T),my)

This case is not an equilibrium for any set of parameters. To see this, suppose that
the seller is choosing (mp,my) = (M, my). This implies that the support of the low
type is completely above the threshold and the the high type’s support is above only
partially. Then, we will have ¢,(I2, M, My, T) > g 'S, My, iy, T). Therefore there is

a profitable deviation for the low type which is to decrease my,.

A.5.2.7 (0,my(T))
By Lemma A .4, the low type cannot choose my = 0 in T3 and 7;. Moreover, it is impossible
that the high type manipulates in 75. Thus (0,74 (7)) can occur only in 7; and 7.

When (mp,my) = (0,mg(T)), the consumers beliefs are
qb(lﬁé,O,mH;T) =1 and ¢q(Kz,0,my;T)=0.
In other words, there is perfect revelation of quality.

Deviations

A type can potentially deviate to an interior level of manipulation m,, where

D(1) — D(0)

T (A.112)

Z:

For the low type, there will be no profitable deviation if 0 2 7 and 7, is admissible or if

0 = my and My is not admissible.
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For the high type, Lemma A.2 implies that my cannot be admissible, otherwise it is

preferred to 7. There will be no profitable deviation if My 2 0 and My is not admissi-
ble.

o In 7i, (0,mpy) is an equilibrium if

— vy is not admissible:

D(1) — D(0) D(1) — D(0)
—_— = . A1l
(T — ) M T T =2 — 0y (A.113)
—my 20
D(1) — D(0)
< —F—. A.114
n S g (A114)
and either one of the following hold:
— 7hy, is admissible and 0 2 7y
D(1) — D(0) D(1) — D(0)
— - < < ) A1l
40(T —0) — ‘= 4b(T — 2b — 0y) ( 5)
D(1) — D(0)
> T 3= 6] (A.116)
— My, is not admissible and 0 2 iy
D(1) — D(0) D(1) — D(0)
(T —0,) >cp or cp > T —2b—0,) (A.117)
D(1) = D(0)
A1l
cr > (T — (9L>2 ( 8)

o In 75, the conditions that guarantees that the low type has no profitable deviation
from 0 are exactly the same as in 7;. For the high type to choose my(T), it is

required that :

— My is not admissible:

D(1) — D(0)
L (A.119)
— myg Z 0:
D(1) — D(0)
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A.5.2.8 (mL,mH(T))

The pair (M, mg(T)) can occur in Ty, 73, and T3 with Mg (7)) > 0. In Ty, my(T) = 0 and

the pair becomes (m,0) a case already covered in A.5.2.2.
At (i, my(T)), the consumers posterior belief are
1

14+ (1;‘1) (2b+9L;‘me_T>

a(I 2, My, My, T) =0 and @15 iy, mpg, T) =

The low type level my, is the solution to

D(qy(V5 7y, Mg, T)) — D(0)

ng = A.121
mr 4bCL ) ( )
which has the following closed form solution
. —CLHL . Ro + \/CLH% (CL : R% + (1 — 2b)(9H — QL)<1 — q)q)
m; = 5 . (A122)
2¢07(1 —q)
with Ro =2b (HL(l — q) + 9Hq) — QL(l — q) (T — QL) s (A123)

Dewviations

The high type can potentially deviate to an interior level of manipulation 1y, where

.~ D(g(V5 g, my, T)) — D(O)‘

= A.124
i 4bCH ( )

By assumption that m is the chosen level by type L, " must be admissible and thus by

Lemma A.2, only the deviation to 0 needs to be checked.

For the high type, for him to choose My, Lemma A.2 also implies that /iy must not be

admissible. Then, the level Mz must be preferred to 0.
o In Ty, (Mmp,my(T)) is an equilibrium if

— My is not admissible:

Day(V% g, 1, T)) — D(O) D(a (V5 iy, T, T)) ~ D(O)

o = (T — 0n) or cn = (T — 2b — 0p7)
(A.125)
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o< D(qb(lﬁé,mbmmT)) — D(0)
H = (T — 0y)? '

(A.126)

— 1y, is admissible:

D(qp(VE ,ihp, g, T)) — D(0)

D(qy(1'5 , iy, iy, T)) — D(0)
4b(T — 6y '

Ab(T — 26— 0,)

<c <

(A.127)

D(q(V5 iy, mp, T)) — D(0)
8b(T —2b —0;) '

e < (A.128)

o In 75, the conditions that guarantees that the low type has no profitable deviation
from M, are exactly the same as in 7;. For the high type to choose my(T), it is

required that:

— My is not admissible:

D(q(¥5 iy, mpg, T)) — D(0)
4b(T — O

(A.129)

cg <

- WH(T) z 0:
s D(q(VE iy, mp, T)) — D(0)
= 2(T — O)

(A.130)

o In 73, the conditions that guarantees that the high type has no profitable deviation
from my(T) are exactly the same as in 7;. For the low type, as long as my, is

admissible than it is preferred to 0 for any ¢ > 0,

— 1y, is admissible:

D(qy(15 , iy, my, T)) — D(0)
An(T — 6y

(A.131)

L =

A.5.2.9 (mp,mg)

The pair (7, M) can only occur in 77, Tz and T3. For Ty, Ts, we have m, = 0 for at least
one z € {H, L} and the case is already covered in A.5.2.3 and A.5.2.1.
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At (M, mp), the consumers’ posterior beliefs are q,(I 2, My, My, T) = 2z and
0 ( I's, My, my, T) = q, where z € [0, ) is an out-of-equilibrium specification. Notice that
the profile (i, My ) cannot be an equilibrium for z > ¢, since there will be a profitable

deviation for both types to decrease the level of manipulation.

Deviations

A type can possible deviate to an interior level m, with m, = %C?(Z). Lemma A.2 implies

that m, must not be admissible for 7, to be chosen in equilibrium. Then, for both types,

the deviation to m, = 0 must not be profitable.
e In 7y, (M, my) is an equilibrium if for x € {H, L}

— M, is not admissible:

D(q) — D(z) D(q) — D(z)

WT =0, @ %7 (T =6, - 2b) (4.132)
— My 20
D(q) — D(z)
> .
T 2o (A.133)

o In 75, the conditions for the low type are the same as in 7;. For the high type, no

profitable deviation exist if

— 1y is not admissible:

D(q) — D(z)

—4b(T — ) > ch (A.134)
—myg 20

D(q) — D(z)

m > cH (A.135)

o In 73, the conditions for the high type are the same as in 75. For the low type, no

profitable deviation exist if

— My, is not admissible:

D(q) — D(2)
e (A.136)
— my, z 0:
D(q) — D(z)

T g 2 O (A.137)
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B.1 Proofs

Let E and V be the expectation and variance operators, respectively.

Proof of Proposition 3.1. Using Definition 3.1, we proceed in three steps. First, given
the uninformed buyers’ updating rule, we solve for the firm’s optimal price strategies.
Second, we derive the distribution of the posterior beliefs that follows from the firm’s price
strategies and the prior beliefs. Finally, we check that the uninformed buyers’s updating

rule and the distribution of the price-signals are mutually consistent.
1. Given (3.9), E[ip|Pa, Pg] = 0§ + 07 Ps + 05 Pg.
Plugging (3.1), (3.2), and E|[i},| Pa, Pg| into (3.3) yields

nax {Pa- (1 — Pa+na)
AsLI'B
+Pp - My — Pp) + (1 = X\)(v(6g + 61 Pa +65Pp) — Pp) +np)} . (B.1)

Taking the first-order conditions with respect to prices yields

Pa:pu—2Py+na+ (1 =Ny Pg =0, (B.2)
P : Myp —2Pg) + (1 — A)(y(65 + 07 Pa + 255 Pg) — 2Pg) + np = 0. (B.3)

Given the expressions for 07 and 05 given in (3.11) and (3.12), the Hessian matrix is
negative definite. Solving (B.2) and (B.3) for the price strategies yields
\ 050172 (1 = A)? + (2 = 2659(1 — A) + 519°A(1 — A)p
P’D,A(#’UA’UB> = *2 9 2 *
4 =079 (1 = A)? = 4657(1 = A)
(2 = 2057(1 = \))na + 677(1 = M

B.4
4—6292(1 — A2 — 485y(1 = \) (B4)
and
Pe )= 2057(1 = A) + (077(1 = A) +29A)u + 679(1 = A)na + 2
DB\, 1B, T]A 1= 5272 (1 = N2 — 4039(1 = ) .

(B.5)
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2. Next, given the firm’s price strategies, we solve for the buyers’ posterior beliefs.

Specifically, using the expressions for Pp 4 and Pp g, let

i o 5*5*,}/2<1 )\)2 Dy
= 2| P} - = '
ZA < D, 74, 71B) D, Dy + 07292(1 — X)2 + 26772 A(1 — )

(B.6)
_ 2—257(1=A)\ . oy(1 =N
=p+ ( D, na + D, nB; (B.7)
and
N o 20iy(1 =) Dy
Zp = <PD,B(N7 NB,7A) Do 5y (1= A) + 277 (B.8)
o1y(1 = A) _ 2 i
= + , B.9
a (5;7(1 "2 ) T s - 20 ) (B-9)
where
Dy =4 —487(1 — X) — 6729%(1 — \)?, (B.10)
Dy =2—26;7(1 = \) + 559 AM(1 = ). (B.11)

From (B.7) and (B.9), z|u = [Z4, Zg|'| 1t is jointly normally distributed. Hence, given
the prior distribution g ~ N(p, 02), the posterior distribution of quality p upon

observing z (i.e., upon observing { Py, Pg}) is

fiplz ~ N(p+ 02185 Yz — pl'), 00 — 0, 1X7'1') (B.12)

W

where 1 is a 1 x 2 vector of ones and

2 24(14+6y(A=1))2 46772 (1-1)2 9 22617(1=2) (24+627(A—1))
5 = o, +o, D? 1 o, +o, 11)1((251»;(17,\)2;27,\) (B.13)
= 2 22617(1=A) (2+327(A—1)) 2 2 (01 (1-A)"+4 ' ’
Ot O D Gl n) 121 T Ty ((512<1—x>+2w2>

Simplifying (B.12) yields

po =057 M1 = N)ah + (2 = 057°A(1 = N))ai Pa
o2+ (1+92\2)o?
(29A(L = 639(1 = X)) = 6iv(1 — A))op Py
o2+ (1 +72\%)o2

Elfip|Pa, Pp] =

(B.14)

)
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and 5 o
oo

Vi Pa, Po] = —5— (11§2A2)02' (B.15)
n u

3. Setting (B.14) equal to d; + 0 Pa + 65 Pp and solving for 45, 6] and d5 yields (3.10),
(3.11), and (3.12) Since 45, 67 and 5 uniquely exist, the posterior beliefs are normally
distributed as defined by (3.9) and are consistent with (B.14) and (B.15). Moreover,
from (3.7) and (3.8), the price-signals are jointly normally distributed.

Proof of Proposition 3.2. The proof of Proposition 3.2 follows the same steps of the

proof of Proposition 3.1. Using Definition 3.2, we proceed as follows.

1. Given (3.16), E[ay,|P] = 85 + B7P. Plugging (3.1), (3.2), and E[z},|P] into (3.4)
yields

max {P-((n—=P+na)+Ayp—P)+ (1 =XN0(5 + BiP) = P)+ns)}. (B.16)
Taking the first-order condition with respect to P yields
(L +yA)p+na+n8+ Bpy(1 = A) = 2P(2 = fiy(1 = A)) = 0. (B.17)

Given the expression for [ given in (3.18), the second-order condition holds, i.e.,
—2(2 = Bv(1 = X)) < 0. Then, solving (B.17) for the price strategy yields
_ By = A) + A+ Np+1ma +np

2. Next, given the firm’s price strategy, we solve for the buyers’ posterior beliefs.

Specifically, using P*, let

2(2 — Byy(1 = X)) By, 1a, 1s) — Bgy(1 = A)
14+

z (B.19)
Na +Np

=nt 1+9A

(B.20)

such that Z|y is normally distributed with mean p and variance 02 = 207/(1 + ).
Given the prior distribution, i ~ N(p, O’Z), the posterior belief upon observing z (i.e.,

upon observing P) is

o2 + zo? 1
POz T 20 ) (B.21)

ﬂu|ZNN< )
0% +o; 1/o2 + 1/03
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Hence, simplifying (B.21), the posterior mean and variance are

2p0% + (4= 2813(1 = \)P = By (1= N)(L+ 702
202 + (1 + \y)202

E[fi;,|P] = (B.22)

and
2 2
20770#

T 2024 (14 \y)202

Vg | P (B.23)
. Setting (B.22) equal to 5§ + 87 P and solving for 5} and ff yields (3.17) and (3.18).
Since (5 and B7 uniquely exist, the posterior beliefs are normally distributed as
defined by (3.16) and are consistent with (B.22) and (B.23). Finally, from (3.15),

the price-signal is normally distributed.

B.2 Equilibrium Definition

Definition B.1 states the Perfect Bayesian Equilibrium. The equilibrium consists of the

firm’s strategy (a segmentation decision at stage 1 and prices at stage 2), the distribution

of the price-signals conditional on any quality x, and the uninformed buyers’ posterior

beliefs about the quality upon observing any prices.! In equilibrium, the posterior beliefs

are consistent with Bayes’ rule and the equilibrium distribution of prices.

Definition B.1. The tuple {{M*, {{PZ;(M7 NA, 773)» {PIE,A(FL7 14, 773), Pg,B(lu’ NB; 7714)}}}}7
{&(:|Pa, Pg),&5(-|P)}} is a perfect Bayesian equilibrium if, for all ju > 0,

1. At stage 2,

(a) For M* =U,

i. Given ézj(|P), and for any na and npg, the firm’s price strateqy is

PL?(:“’;HA;UB) = argmgX{P : (QA(P7M7UA> + QB(Pa,U,ézj“P)J]B)) }
(B.24)

it. Given the distribution of {fa, B}, ¢5;(Plx) is the p.d.f. of the random

price-signal Pj(x,74,7p) conditional on any quality .

!The variable u refers to the true quality whereas x is used as a dummy variable for quality.
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iii. Given ¢3,(P|-) and prior beliefs £(-), the uninformed buyers’ posterior beliefs
upon observing any P is i*|P with p.d.f.

o weP)
allP) = g Plonde "R (B.25)

(b) For M* =D,

i. Given E5(-|Pa, Pg), and for any na and np, the firm’s price strategies are

{ Ph.alim4:m8), Pp g (11, n,ma) } =arg max {PA - Qa(Pas p,1a)

+ PB : QB(PB>M7£%<'|PA7PB)7UB>}'
(B.26)

i1. Given the distribution of {4, M}, ¢5(Pa, Pglz) is the p.d.f. of the random
price-signals {P{57A($,ﬁA,ﬁB),P{S,B(%ﬁB,ﬁA)} conditional on any quality

x.

iii. Given ¢h(Pa, Pg|-) and prior beliefs £(-), the uninformed buyers’ posterior

beliefs about quality upon observing P4 and Pg is fi5|Pa, Pg with the p.d.f.

. _ &(@)¢p(Pa, Pplx)
& (2| Py, Pg) = T )0 (P ol Vz € R. (B.27)

2. At stage 1,

M* = arg MIEI}{%CD} Lini=w - B[ (f1, 14, )] + Lipn=p) - E[I5(7, 04, 78)]  (B.28)

where
E[Hlj(laa ﬁAa ﬁB)] =E |:PZ/>;(I[L7 ﬁA? 773) ' (QA<PZ;</]’ ﬁA? ﬁB)a ﬂ? 77.4)
+ Qu(Pi (s ias i) i G CI P . ) i) ) | (B.29)

and

+E [Pi;,B(:ua nB, nA)

E[H%O]’ ﬁAa 773)] =K P%,A(ﬂa ﬁAa ﬁB) ’ QA(PE,A</17 ﬁA? ﬁB)? ﬂa ﬁA)

’ QB(Pg,BO]a nB, ﬁA>7 £, A’*D('|P£,A(/17 ure ﬁB)u PB,B(/L B, nA>>7 773) :
(B.30)
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B.3 Probability of Exclusion

In this appendix, we study whether the presence of uninformed buyers (or the informational
externality) decreases or increases the probability of excluding market B under uniform
pricing. In market B, the informed buyers and the uninformed buyers with unbiased
prior beliefs do not buy the good if the price is above the reservation price, i.e., P > yu.
Using (3.15), we compare the probability of such an event under the two scenarios of
complete and incomplete information, i.e., Pj(u, 74, 7p)x=1 and Fj(it, 74, 18)|re(0,1)- In
Figure B.1, the shaded area encompasses the points {7, A} for which the presence of
uninformed buyers increases the probability of exclusion, i.e., Plyu < Bj(u, fa,75)|x=1] <
Plyu < B(p, 74, 78)|ae0,1)]-> An increase in the variance of the demand shock increases

the size of the shaded area.

0.5 0.5 0.5

0.5 1’ 0.5 1 0.5 1’
(a) oy =0.1 (b) o5, =0.5 (¢) oy =1

Figure B.1: Plyp < B(1, 7, M8) [ rx=1] < Plyn < B(1t, a4, M8)|re(0,1)) in the shaded area.

*To generate Figure B.1, we set 4 =1 and o, = 1.
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C.1 Multivariate First-Order Stochastic Dominance
and Dependence Orderings

In this section, we provide equivalent definitions of our dependence ordering, based on
multivariate first order stochastic dominance, which we define next. Note that the following

definition specializes to the usual first-order stochastic dominance in the univariate case.

Definition C.1 (Multivariate first-order stochastic dominance).

i. Let f and g be two multivariate probability distribution functions (pdf) on the support
X*. We say that g first-order stochastically dominates (FOSD) f if or all

increasing L, we have

S f@) <> g(x).

zeL z€L

Moreover, we say that g strictly FOSD f if g FOSD f, but f does not FOSD g.

ii. Let X = (Xy,...,Xy) and X' = (X1, ..., X}) be two random vectors on the support
Xk We say that X FOSD X' if the pdf of X FOSD the pdf of X'. Moreover we
say that X strictly FOSD X' if X FOSDX', but X' does not FOSD X .

The following result due to Lehman (1955), Levhari, Paroush and Peleg (1975) and
Osterdal (2010) provides four alternative and equivalent definitions of multivariate stochastic

dominance.

Theorem C.1. Let X and Y be random vectors with respective pdfs f and g on the support

X% The following conditions are equivalent:
1. Y FOSD X.

1. For all decreasing L, we have

Y @)=Y g(@).

zeL z€L

iti. For all nondecreasing mapping W : X* — R, E(W (Y)) > E(W (X)).

iv. There exist two random vectors X' and Y’ with respective pdfs f and g such that 'Y’
FOSD X'.
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)))))

'''''

g(x)—f(z) = Zt: At (L (@) = Lay (@)

This enables us to provide the following definition equivalent to Definition (4.1) which
is in turn used in Definition (4.2), using the notion of multivariate first-order stochastic

dominance.

Definition C.2 (weakly greater conditional dependence). Let i € I and let X_; be a profile
of signals for all players different from i. For all X; and X! in X;, we say that X! depends
at least as much as X; on X_; conditionally on O, if for all (0,x) the conditional
pdf P(X_; | X! >z, © =0) FOSD the conditional pdf P(X_; | X; >z, © =0).

C.2 DMost Public Signal, Most Private Signal and Most
d-dependent Signal

In this section, we show how to construct two examples of signal structures (X, ..., Xy)

that admit a most public signal, a most private signal and most d-dependent signal.

Example C.1. Let I ={1,2}. Let (@,Xf,X;,X},YII,YIH,YQI,YQH) be a random vector
distributed on {—1,1}" x {0,1}" so that, the three vectors (©,X?), (©,X3) and (©, X})
are distributed as (0, X1) in the binary information structure presented in Section 4.3.
Moreover, let the random vector (Xf, X5, X5, VLYV Y YQH) be independent condition-
ally on © =0, for all 0 € {—1,1} and let the vector (@,Yf,YlH,YQI,YQH) be independent.
For each i € {1,2}, we assume that P (YZI = 1) <P (Y;H = 1) holds. Last. for each i, let

the set X; consist of two signals

X! = Xpvi+x;(1-Y/)
X = XY X; (1 Vi),
In the signal structure constructed in Example C.1, it is easily verified that for each i, the
signals (Xil,XiH) are such that X! < X!

/', regardless of what signals the other players

choose. The signal X/ is player i’s most private signal and the signal X! is player i’s

most public signal. It is also clear that one can generalize this construction to more
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than two players, where each player i has a set of signals X; = {X} ..., X"}, so that
X} <; ... =i X™. For each i, the signal is player i’s most private signal and the signal
X" is player i’s most public signal. When generalizing this construction to more than
two players and more than two signals per player, each player ¢ still has a most private
signal, namely X!, and a most public signal, namely X", but for an arbitrary dependence

vector d, it is not the case that player ¢ has a most d’-dependent signal.

We now provide an example of a signal structure (Xy, Xy, X3) for three players, such that

each of the three players i has a most d’-dependent signal, for each dependence vector d".

Example C.2. Let I = {1,2,3}. Let
<@7XTQ7X;37XTB?XT17X;27X§3>K7%7%>

be random vector such that © and the X}; have support {—1,1} and the random variable Y;
has full support {{i},{i,j},{i,k},I}. For all i,7, let the vector (@,X{'}) be distributed as
(0, X1) in the binary signal structure presented in Section 4.3. Moreover, let the random
vector

(Xt Xig, Xigo X, X Xig, V1, Y3, Vo)

be independent conditionally on © = 0, for all 0 € {—1,1} and let the vector (0,Y;,Ys,Y3)

be independent. Last. for each i, let the set X; consist of four signals defined as follows:

X;j]k} - im:ij};(ijJr;m:ik}))gk +11{m:i}j((§
T {Vi=ij} ¢i+ (vi=iky X T Lvi=iy X
X; = Lymiy X, + L=y X + L=y X
X = X}

In the signal structure constructed in Example C.2, for each player i and each dependence
vector 4, the signal X with S = { J: dé- = 1} is player ¢’s most d’-dependent signal. One

can generalize this construction to more than two players and to more signals.
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C.3 Proofs

Abusing the terminology defined in section (4.4.1), for all & > 0, and all d € {—1,1}" , we
say that a mapping ® from X* to R is (strictly) d-monotonic if it is (strictly) increasing

in each x; such that d; = 1 and (strictly) decreasing in each x; such that d; = —1.

The following Lemma is useful in the Proof of Theorem 4.4.
Lemma C.1. Let X_; be a profile of signals, and let X; and X! be signals. Letd € {—1, 1}I
be a dependence vector, with d; = 1 and let ® be a mapping from X"™\M3 to R.

i. Suppose that X| conditionally d-depends as least as much on X_; as X; does and
that ® is d_;-monotonic. Then for all z € X,

Exx . [®(Xo) [ Xi > 2] SExyx, [0(Xo) | Xi> 2] (C.1)

ii. Suppose that X! conditionally d-depends strictly more on X_; than X; does and that
O is strictly d_;-monotonic. Then for all z € X such that z # max X,

EXi,X,i [(I) (X—z) | X; > Z] < ]EXZ{’X_i [Cb (X—z) | XZI > Z] (02)

Proof of Lemma C.1: (i) By definition, since X] d-depends as least as much on
X_; as X, does, the pdf of (dej)j _; » conditional on X! > z, first-order stochastically
dominates the pdf of (d;X;), ;.
'z_) =@ ((dej>j #) . Because @ is d_;-monotonic, the function I' is increasing. Together,

conditional on X; > z. Then consider the function

and by the equivalence between (i) and (iii) in Theorem C.1, these last two claims imply
that

Ex.x [T ((d;X)),) | Xi > 2| <Bxox , [T((d;X)),.) | XI > 2],

which is equivalent to inequality (C.1).

(77) Under assumptions of point (i7), the inequalities hold strictly. |

Proof of Theorem 4.1:

Let A; x : «_; — «; be the action best-response of player ¢ under information structure

X. Then, the following lemma is useful for the proof of Theorem 4.1.
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Lemma C.2. Let (ay,a9) be a Nash Bayesian equilibrium of the game T'x with an

exogenous information structure X, such that for all v = 1,2 the following holds

1) X1 = X5 if and only if a;(1)ag(1)bie > 0
Xy # Xy if and only if aq(1)az(1)b, < 0

2) A (x,,x_,(a—;) has a sign that does not depend on X;.

Then, (X, (a1, a2)) is a Nash Bayesian equilibrium of the game I' with an endogenous

information structure.

Proof of Lemma C.2: First, for each i = 1,2, because (ai,as) is a Nash Bayesian

equilibrium of I'x, player i does not have a profitable deviation of the form (X;, af) with
ol # ;.

Suppose by contradiction that (X, (1, as)) is not a Nash Bayesian equilibrium of the
game [' with an endogenous information structure. Then this means that a player ¢ has a
profitable deviation (X, o) with X! # X;. Then, (X{, Ai,(X;,X,i)(a—i)) is an even better
deviation, thus it is also profitable. But because Az,(X;,X,i)(a—i) is of the same sign as «;,
and by 1), the deviation (Xi, AZ-,(X;X_i)(a_iD is even better and thus must be profitable.
But then, this contradicts the assumption that (aq, ay) is a Nash Bayesian equilibrium of

the game I'yx. |

We now proceed to prove Theorem 4.1. Consider the game given in Section 4.3 and assume
that bjg = 4.8,b99 = 5, b1, = —0.8, by, = —1.2 and € = 0.26.

Fix the information structure X, then by taking the first-order condition to (4.2) with
respect to a; (1) and «a; (—1) for i = 1,2, we can observe that —«; (1) = a; (—1) and that

the best response functions are

Ozl(l) = % — %O@(l) and O./Q(]_) = % — gO&l(l) if X1 = X2 (C 3)
ap(1) = 258 — 200y(1) and ap(1) = 2 — S (1) if X; # Xo

Given the information structure is X; # X, the unique equilibrium in action strategies
is ((1.9616, —1.9616), (1.85766, —1.85766)). Whereas, when the information structure is

X1 = Xs, the unique equilibrium in action strategies is ((%, —%) , (—%, %))
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Then, by checking that conditions 1) and 2) of Lemma C.2 hold using (C.3), we can
show that the profile (X, (1.9616,—1.9616), (1.85766, —1.85766)) with X; # X, and the
profile (X, (%, —%) , (—%8, %)) with X; = X, are both Nash Bayesian equilibria of the

game ['.

Proof of Theorem 4.2: It suffices to give an example where the planner chooses an
information structure that differs from what the players choose in the decentralized
game. Suppose that player i’s payoff is given by Equation (4.6) and that b, = —3,by =
1,bgy = —2,b4, = 0.75 and € = 0.25. In this case, an equilibrium exists and according to
Proposition 4.2, the players will choose to obtain private information. The social planner,

however, will prefer to impose public information. |
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Proof of Theorem 4.4: Proof of (i). Let i € I and let ¢’ be a complementarity vector for
i. Suppose that u; has ¢’-increasing differences in own and others’ actions. Let m € {—1, 1}1
be a monotonicity profile and let X_; be a profile of signals such that X; € X; for all j.
Suppose that X; and X are two signals in X; such that X/ d’-depends as least as much
on X _; as X; does, where d' is the dependence vector such that the relation (4.7) holds for

all j. Let a be profile of pure m-monotonic action strategies. We will show that
Eo x,x ; (wi (o (Xi, X4),0)) <Eo xrx_, (wi (a (X, X4),0)) (C.4)
holds.

Let 2! < ... < 2™ be the elements of X. Also, for each k € {1,..,m — 1}, and each § € T,
let @ be the function from X\ to R such that

Dy (x_;) = u; (a (zkH, x_i) ,9) — (a (zk, $_,') ,9) .

The proof is in four steps.
Step 1: The function @y is d’" ,~monotonic.

Proof of Step 1: Since for each 6, the function u; has c’-monotonic differences in z, and

the function « is m-monotonic, it follows that @ 4 is d’ ,-monotonic. [J
Step 2: For all k € {1,..,m — 1}, and all § € T, we have

Ex,x_, [Pro(X_i) | X; > 25, © = 0] <Exix_, [Pro (X_) | X[ > 25, ©=0]. (C5)

i

Proof of Step 2: By Step 1, the function @4 is d' ,-monotonic. By assumption, X d-
depends more on X _; than X; does, thus by Lemma C.1, inequality (C.5) holds. O

Step 3: For all k € {1,..,m — 1}, and all § € T, we have

m—1
ui (@ (X5, X3),0) = > Tixsny Pro (X ) (C.6)

k=0

and B
ui (@ (X[, X0),0) = D Tixsry Pro (X)) (C.7)

k=0



203

Proof of Step 3: These identities are easily verified. We leave them to the reader. [

Step 4:

E@X X [ ( (XzaX—z) ,@) | @ = 9] S ]E@’Xz{7x_i [UZ (O{ (X;,X_Z) s @) | @ = 0] . (08)

Proof of Step 4: We know that

Ex: x_; [ui (o (X, X)), 0) [ © = 6]

= Ex,x_, [z; Tix,sky (Pro (X4)) | © = ‘9]

= ZLZ__;EX X_ {ﬂ{x >k Pro (X i) | © :9}

N By [ (X0 | X > kand ©— 6P (X, > k| © — 6)
k=0

< N By [0 (X | X! > kand 0—0P(X' > k|©=68)  (C.9)
k=0

= T:__Ol Ex: x_, [ﬂ{xg>k} (Pro (X)) |©= 9]

= Ex/x_, [lez__; Lixrsry (Prp (X0)) | © = 9]

= Exix,[wi(a(X;,X),0) [0 =0

where the first and sixth equalities follow from Step 3, and the inequality follows from
Step 2 and from the assumption that (X;, ©) and (X, ©) have the same joint marginal
distribution. [J

Final Step: Since for all 0,
Ex, x_; [uwi (@(Xi, X),0) | © =0] <Exs x_, [ui (o (X}, X),0)|©=0], (C.10)
taking expectations of both sides on O, we obtain
Eo x;x_; [ui (a (X3, X)), 0)] < Eo xr x_, [ui (a (X}, X ), 0)], (C.11)

the desired conclusion. CJH
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Proof of (ii). Under the additional assumptions we will prove that the inequality (C.9) is
strict at least for some realization 6. First, Step 1 can be modified as follows. since for
each 0, the function wu; has strict ¢~-complementarities in actions, and the function « is

strictly m-monotonic, the function ®y 4 is strictly d' ;-monotonic for all § and k. Second,

because X! d-depends more than X; on X_;, there exists a realization §° and some integer
k such that the pdf P <(d§Xj) ” | diX! >k and © = 9) strictly stochastically dominates
J#i E—

the pdf P ((d;XD#i | diX! >k and © = 9) . For this realization #° and this integer k,
the inequality (C.5) holds strictly. As a result, the inequality (C.10) holds strictly as well.
Finally, since all realizations 6 of © have positive probability, the inequality (C.11) holds
strictly as well. |

Proof of Corollary 4.4: Let (X;, X3, a1,a2) be a pure Nash-Bayesian equilibrium of
the game such that « is strictly isotonic (if the payoff complementarities in actions are
strictly positive) or antitonic (if they are strictly negative) and suppose by contradiction
that X; # X, with positive probability. Then by Theorem 4.4, the deviation (X7, aq)
with X| = X5 is strictly profitable for player 1, since X| depends more on X, than Xj.

Therefore X must be public information. |

Proof of Theorem 4.5. By changing variables a, = m;a;, the game is equivalent to

one where m = (1,...,1) and all u; have increasing differences in actions and in 6. In
the continuation we will thus restrict attention to the case where m = (1,...,1) and
¢ =(1,..,1).

For any signal profile X, let I'y denote the game with exogenous information structure X,
and I' the game with endogenous information. The main result in Van Zandt and Vives
(2007) implies that there exists an increasing action strategy profile « such that in the
game ['x, the profile « is a Nash-Bayesian equilibrium of I'y. Let « be such a profile. We
will now show that the profile (X, «) is a Nash-Bayesian equilibrium of the game with

endogenous information I'.

Suppose by contradiction that (X!, «}) is a profitable deviation for player i in this game.

Let of be a player i’s best response to a_; in the game I' x!,x_;- By Proposition 11 in Van

/
)

Zandt and Vives (2007), the action strategy ! is increasing. Since (X/, o)) is a profitable

"

deviation for player ¢ from profile (X, «) in I, it follows that (X], o) is also a profitable

deviation for player i from profile (X, ) in I'. But, because X; depends more on X_; than
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X/, the same argument used in Theorem 4.4 implies that (X, o) is an at least as good
profitable deviation for player i from profile (X, «) in I". But this implies that « is a
profitable deviation for player ¢ from profile o in I"x, which contradicts the statement that
a is Nash-Bayesian equilibrium of I'y. Therefore no player has any profitable deviation

from (X, «) in I, the desired conclusion. [

Proof of Theorem 4.6. Suppose by contradiction that (X!, «}) is a profitable deviation
from (X, a) for player ¢ in this game I'. Let o/ be a pure m;-monotonic action strategy that
is a best response for player i’s to a_; in the game I'x; x_,. Such an action strategy exists
by assumption (iv) and because « is m-monotonic by assumption (ii7) . Since (X, o) is

"
)

a profitable deviation for player ¢ from profile (X, «) in I', it follows that (X}, /) is an
even better deviation in I', and is therefore also a profitable deviation for player i from
(X, ) in T'. But, because X; d'-depends more on X; than X/, and because (af,a_;) is
m-monotonic, the same argument used in Theorem 4.4 implies that (X, o) is at least
as good as (X/,af), and therefore at least as good as (X!, /). Therefore (X;,af) is a
profitable deviation for player i from profile (X, «) in I". But this implies that « is a
profitable deviation for player ¢ from profile o in I"x, which contradicts the statement that
a is Nash-Bayesian equilibrium of I'y. Therefore no player has any profitable deviation

from (X, a) in T, the desired conclusion. |

C.4 PQD and SPM Dependence

For any two random vectors X = (Xj,..., Xy) and Y = (Y7, ..., Yy) with identical marginals,

and respective cdfs F' and G, we define the following dependence orderings.

We say that X is at least as Positive Quadrant Dependent (PQD) as Y if for all
x € RY, we have
F(z) <G(x).

A function u : RY — R is said to be supermodular if for any z,y € R it satisfies
u(z) +uly) Sul@Ay)+ulzVy),

where the operators A and V denote coordinate-wise minimum and maximum respec-

tively.
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We say that X is at least as Supermodular Dependent (SPM) as Y if
Ex (u(X)) 2 Ey (u(Y))

for all supermodular functions v : RY — R.

C.5 Mixed Strategies

The results obtained in Theorem 4.4 generalize to mixed strategies, but they imply very
few restrictions for Nash-Bayesian equilibria where players play non degenerate mixed
strategies. For example, consider a game with two players and two signals, with a fixed
information structure such that both players observe each of the two signals with equal
probabilities (independent draws). Suppose that this game admits a pure Nash-Bayesian

equilibrium in action strategies (they could be pure or not).

Then it is easy to see that the game with an endogenous information structure admits a
Nash-Bayesian equilibrium, where both players randomize with equal probabilities between
the two signals. To see this, suppose that player 2 uses this strategy. From the point of
view of the player 1, the two signals are then equally informative in a Blackwell sense on
the vector (0, as), which is all he cares about. It is then a best response for him to play
this half half mixed strategy and the same argument holds for player 2. This phenomenon
is more general. A symmetric fully mixed equilibrium exists, for any number of players,
if and only if the Bayesian game where this structure is fixed admits a Nash-Bayesian
equilibrium. What is important for the result is that there are only two signals in X. A
more general result can be obtained for a larger number of signals in X, provided that
some symmetry condition, which automatically holds in the case of two signals, is imposed

on the signal structure.

Theorem C.2. Let N > 2 and X; = { X, X1} for alli € I. Consider the game with an
exogenous information structure, where each player observes X or Xy with probability 1/2
(independent draws across players). Suppose that this game admits a pure Nash-Bayesian
equilibrium in action strategies (pure or not). Then this action profile and this information
structure form a Nash-Bayesian equilibrium of the game I' where the information structure

is endogenous.






