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Résumé 

La maladie de Parkinson (PD) a été uniquement considérée pour ses endommagements sur les 

circuits moteurs dans le cerveau. Il est maintenant considéré comme un trouble multisystèmique, 

avec aspects multiples non moteurs y compris les dommages intérêts pour les circuits cognitifs. La 

présence d’un trouble léger de la cognition (TCL) de PD a été liée avec des changements structurels 

de la matière grise, matière blanche ainsi que des changements fonctionnels du cerveau. En 

particulier, une activité significativement réduite a été observée dans la boucle corticostriatale 

‘cognitive’ chez des patients atteints de PD-TCL vs. PD non-TCL en utilisant IRMf. On sait peu de 

cours de ces modèles fonctionnels au fil du temps. Dans cette étude, nous présentons un suivi 

longitudinal de 24 patients de PD non démente qui a subi une enquête neuropsychologique, et ont été 

séparés en deux groupes - avec et sans TCL (TCL n = 11, non-TCL n = 13) en fonction du niveau 2 

des recommandations de la Movement Disrders Society pour le diagnostic de PD-TCL. Ensuite, 

chaque participant a subi une IRMf en effectuant la tâche de Wisconsin pendant deux sessions, 19 

mois d'intervalle. Nos résultats longitudinaux montrent qu'au cours de la planification de période de 

la tâche, les patients PD non-TCL engageant les ressources normales du cortex mais ils ont activé en 

plus les zones corticales qui sont liés à la prise de décision tel que cortex médial préfrontal (PFC), 

lobe pariétal et le PFC supérieure, tandis que les PD-TCL ont échoué pour engager ces zones en 

temps 2. Le striatum n'était pas engagé pour les deux groupes en temps 1 et pour le groupe TCL en 

temps 2. En outre, les structures médiales du lobe temporal étaient au fil du temps sous recrutés pour 

TCL et Non-TCL et étaient positivement corrélés avec les scores de MoCA. Le cortex pariétal, PFC 

antérieur, PFC supérieure et putamen postérieur étaient négativement corrélés avec les scores de 

MoCA en fil du temps. Ces résultats révèlent une altération fonctionnelle pour l’axe ganglial-

thalamo-corticale au début de PD, ainsi que des niveaux différents de participation corticale pendant  
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une déficience cognitive. Cette différence de recrutement corticale des ressources pourrait refléter 

longitudinalement des circuits déficients distincts de trouble cognitive légère dans PD. 

Mots-clé: la maladie de Parkinson, fMRI, WCST, trouble léger de la cognition  
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Abstract 

PD was traditionally thought of as purely a movement disorder, now it is considered a multisystem 

disorder, with multiple non-motor aspects including damages to the cognitive circuits. Mild cognitive 

impairment (MCI) in PD has been linked with structural gray matter, white matter as well as 

functional brain changes. Specifically, significantly reduced activity was observed in the ‘cognitive’ 

corticostriatal loop in patients with PD-MCI vs. PD non-MCI using fMRI. Little is known regarding 

the course of these functional patterns over time. In this study we present longitudinal follow up of 

24 non-demented PD who underwent neuropsychological investigation and were separated in two 

groups - with and without MCI (MCI n=11, Non-MCI n=13) according to the MDS level 2 

recommendation for diagnosis of PD-MCI. Afterwards, each participant underwent an fMRI 

investigation by performing the Wisconsin Card Sorting Task over two sessions, 19 months apart. 

Our longitudinal results show that during planning set-shift period of the task, PD Non-MCI patients 

were engaging the normal cortical resources but they also activated more cortical areas at time 2 that 

are related to decision-making such as the medial prefrontal cortex (PFC), parietal lobe and the 

superior PFC, whilst the patients with MCI failed to engage these areas at both time points. The 

striatum was not engaged for both groups at time 2 and for MCI group at time 1. Furthermore, medial 

temporal lobe structures (MTLS) were under-recruited overtime for both the MCI and Non-MCI PD 

patients, and were positively correlated with MoCA scores over time. Parietal cortex, anterior PFC, 

superior PFC, and posterior putamen were negatively correlated with MoCA scores. These results 

reveal functional alteration along the basal ganglial-thalamo-cortical axis in early PD, as well as 

different cortical involvement levels along the course cognitive impairment. This discrepancy in 

cortical resources recruitment over time might reflect deficient circuitry distinct to cognitive 

impairment in Parkinson’s disease. 

Keywords: Parkinson’s disease, fMRI, WCST, mild cognitive impairment 
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« The dream was marvelous but the horror 

was great; we must treasure the dream 

whatever the horror; for the dream has 

shown that misery comes at last to the 

healthy man, the end of his life is sorrow. » 

Enkidu‘s death, Tablet VII 

« O Mighty King, remember now that only 

Gods stay in eternal watch. Humans come 

then go, that is the way fate decreed on the 

Tablets of Destiny. So someday you will 

depart, but till that distant day Sing, and 

dance. Eat your fill of warm cooked food 

and cool jugs of beer. Cherish the children 

your love gave life. Bathe away life's dirt in 

warm drawn waters. Pass the time in joy 

with your chosen wife. On the Tablets of 

Destiny it is decreed For you to enjoy short 

pleasures for your short days. «  

Siduri to Gilgamesh, Tablet X 
 
 

-The Epic of Gilgamesh.  

Mesopotamia, Iraq. Circa 1800 B.C. 
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1.1. Parkinson’s disease historical background 

Ever since first described in 1817 by James Parkinson in his classic publication "an 

essay on the shaking palsy", Parkinson's disease has been primarily recognized as a motor 

disorder. At the time, James Parkinson reported six cases of the disease, three of which were 

not actually examined by him, but rather casually observed in London’s streets. Detailed 

observations of the patients’ asymmetrical motor symptoms, the insidious onset and the long 

duration of disease were noted. Parkinson also noted the progression of disease; increase 

immobility, disturbances of sleep, speech and bodily functions. Though interestingly enough 

he stated "the senses and the intellects being uninjured".  

Nearly 50 years later, Charcot suggested the name "Parkinson's disease," He classified 

the disorder as "névrose", meaning a neurologic disorder without a known pathologic lesion. 

Charcot found little benefit from therapies available at the time, including belladonna and 

ergot products (Goetz 1986). But it was not until 1913, when the patholognomic feature of the 

disease "Lewy bodies" that the disease was first described. Yet, no progress in dopaminergic 

treatment was made until the 1960's (Goetz 2000) when Birkmayer and Hornykiewicz’s 

published their observations of the Levodopa's antikinetic effects on PD patients: 

"Bed-ridden patients who were unable to sit up, patients who could not stand up when 

seated, and patients who when standing could not start walking performed all these activities 

with ease after L-dopa [levodopa]. They walked around with normal associated movements 

and they could even run and jump. The voiceless, aphonic speech, blurred by pallilalia and 

unclear articulation became forceful and clear as in a normal person" (Birkmayer and 

Hornykiewicz 1961). 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234454/#A008862C5
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3234454/#A008862C5
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These discoveries opened the chances for series of subsequent open-label and double-

blinded placebo controlled levodopa trials. These trials came only to confirm both short and 

long-term benefits (Barbeau 1969; Cotzias et al., 1969; Yahr et al., 1969). While cognitive 

profile of other neurodegenerative diseases such as Alzheimer’s disease were heavily 

investigated, it was only many years later when researchers have started to look into 

the cognitive decline in PD and eventually recognize it as an early component of the disease 

(Foltynie et al 2004). 

Now, PD is now regarded as multisystem brain disease in which predisposed neuronal 

types in specific regions of the peripheral, enteric and central nervous systems become 

progressively involved by presenting neuronal loss, Lewy bodies and Lewy neuritis (Del 

Tredici et al., 2002) in the substantia nigra pars impacta which project to the dorsal striatum 

(McGeer et al., 2004), this neuronal involvement has a widespread and heterogeneous effects 

on the nervous system resulting in various clinical motor and non-motor expressions (Foltynie 

et al., 2002). Despite recent advances, much is yet unknown regarding 

the pathogenesis, characteristics and prognosis of the cognitive impairment in PD. 

1.2 Etiology 

It is unknown why the loss of nerve cells associated with Parkinson's disease occurs. 

PD is characterized by the loss of specific subsets of dopaminergic neurons in the substantia 

nigra pars compacta which project to the dorsal striatum (McGeer et al., 2004). However, PD 

is considered a multisystemic disorder in which predisposed neuronal types in specific regions 

of the peripheral, enteric and central nervous systems become progressively involved by 

presenting neuronal loss, Lewy bodies and Lewy neuritis (Del Tredici et al., 2002). The 
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neuropathology of PD is associated with alpha-synuclein-containing Lewy-Bodies (Sabbagh 

et al., 2009). Nevertheless, it has now become a fact that PD is much more than just the loss 

of nigro-striatal neurons, this morphological feature being only one aspect in the whole 

picture of the disease (Tolosa et al., 2009). A small proportion of cases can be due to known 

genetic factors such as in familial Parkinson’s disease. Many experts think that the disease is 

caused by a combination of genetic, endogenous risk factors and environmental factors, which 

may vary from a patient to another. Yet, the interactions between these factors with their 

triggering to susceptible genes are yet to be discovered (De Lau et al., 2006). 

1.2.1. Environmental factors  

Epidemiological researchers have identified several environmental factors such as; 

exposure to certain toxins or injury, rural living, well water, industrial pollution, manganese, 

smoking, saturated fatty acid rich diet and pesticides might increase the risk of developing 

PD, however, cause-effect relationship is yet to be identified. In 2009, the US Department of 

Veterans Affairs added PD to a list of diseases possibly associated with exposure to a 

synthetic neurotoxin agent called Agent Orange or MPTP (an agent used in studying 

laboratory models of PD) which can also cause immediate and permanent Parkinsonism.  

There is a chemical resemblance between MPTP and some of herbicides and insecticides. 

This resemblance suggested that an MPTP-like environmental toxin might be a cause 

of environmental cases of Parkinson disease, but no specific agent has been yet identified. 

Nonetheless, it was found that mitochondrial complex I activity is reduced in Parkinson 

disease, suggesting a common pathway with MPTP-induced Parkinsonism. Thus, 

environmental etiology in MPTP exposure can be attributed to the dopaminergic loss as in 
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well water study (Gatto et al., 2009). Luckily, cases of MPTP-induced Parkinson’s in the 

general population are very rare. It is also noted that a simple exposure to an environmental 

toxin is never enough to cause Parkinson’s.  There is an inverse association between smoking 

and PD, and coffee consumption seems to decrease the risk of PD (Liu et al., 2012). Dietary 

factors such as diet rich in polyunsaturated fatty acid and low in saturated fatty acid might 

lower the risk of developing PD; however consistent results are still missing (Kamel et al., 

2013). 

1.2.2. Genetic factors 

 PD has been traditionally considered a non-genetic disorder. However, around 15% of 

individuals with PD have a first-degree relative who has the disease (Samii et al., 2004). At 

least 5% of people are now known to have forms of the disease that occur because of a 

mutation of one of several specific genes (Lesage et al., 2009). Our understanding of genetics 

in PD is limited by several factors; the penetrance of mutations is often unknown, clinical and 

pathological expressions are variable, and presence of a genetic mutation indicates a risk for 

developing PD. Furthermore, genetic research though advancing has not been able to establish 

estimates about timing of disease onset (Stephenson et al., 2009). 

Nevertheless, in the last two decades there have been some discoveries in 

understanding the genetic causality and association with PD. The Contursi kindred family 

showed for the first time that PD could indeed be inherited (Golbe et al., 1990). Six 

generation of large family in Iowa with autosomal dominant Parkinson’s disease were studied. 

The ‘Iowa kindred’ or ‘Spellman-Muenter kindred’ family study (Devine et al., 2011) 

provided good insight regarding the genetic risk factors predisposing to Parkinson’s disease. 
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The genetic causality of Parkinson’s disease can be outlined by categorizing the genes into 

two major categories; causal and PD-associated genes. An example of causal genes is alpha-

synuclein, which is located on chromosome 4. Normally, the chromosome carries only a 

single copy of the alpha-synuclein gene, but members of Iowa kindred family with 

Parkinson’s carried three copies of the gene.  This extra dose of alpha-synuclein caused 

certain family members to develop Parkinson’s at a young age. This study proved the 

important role that the alpha-synuclein gene plays in PD because the alpha-synuclein protein 

is the main component of Lewy bodies (Lesage et al., 2009). 

1.3. Epidemiology 

Following Alzheimer's disease, idiopathic PD is the second most frequent 

neurodegenerative disorder (Rijk et al., 1997). Studies have shown that PD has increasing 

prevalence with age, with about 1 % of the population over the age of 60, and about 4 % of 

people in the highest age groups being affected by PD (De Lau et al., 2006). Furthermore, PD 

also affects 10 percent of people older than 80 years of age. This disease affects over 4 

million people over age 50, and the rates in 2005 were expected to double over the following 

2 decades (Dorsey et al., 2007). As a general estimation, PD affects around 1-4 % of the 

general population more than 60 years of age (De Lau et al., 2006). PD is about 1.5 times 

more common in men than in women. 

Gilberto Levy proposed a model for the relationship between PD and aging; he also 

noted an interaction between the effects of age and disease on non-dopaminergic structures 

(Levy et al., 2007); stating that advancing age, rather than disease duration, is the most 

important determinant of clinical progression (Levy et al., 2007). 

http://en.wikipedia.org/wiki/Lewy_body
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The Parkinson’s disease society in Canada estimates that more than 100,000 

Canadians are thought to have Parkinson’s disease. Due to the aging baby boomer population, 

this number is expected to rise dramatically. The population aged 65 and over is predicted to 

rise over 30 years from 11.6% to 23.6% (Parkinson Society Canada fact Sheet, April 2014). 

The age onset of PD is quite variable; yet, the majority of cases are being diagnosed as late as 

age of 50 those diagnosed with Parkinson’s under the age of 40 is referred to as “Young 

Onset.” It has been recently suggested that the age related Alzheimer’s type pathology and the 

age at which the disease symptoms onset are the two major factors for the PD pathology 

progression (Halliday et al., 2010). 

1.4. Neuropathology and anatomy 

 Histologically, PD is characterized by the presence of intracellular alpha-synuclein 

positive inclusions containing Lewy-bodies and Lewy neuritis (Sabbagh et al., 2009). It is 

also characterized by a subsequent reduction of dopaminergic cells in the substantia nigra pars 

compacta (Fearnley et al., 1991) and a resultant dopamine deficiency in specific nuclei of the 

basal ganglia.  

The mechanism by which this dopaminergic cellular loss occurs has not yet been well 

understood. There is speculation of several mechanisms by which the brain cells could be lost 

(Obeso et al., 2010). However, animal models have shown that the injection of synthetic α-

synuclein fibrils in mice induced Lewy body like pathology, progressive dopaminergic cell 

loss in the substantia nigra, and motor impairments. It has been also suggested that the 

abnormal accumulation of alpha-synuclein that bound to ubiquitin intracellularily might 

provide an explanation for the dopaminergic cellular loss, the accumulated insoluble protein 

http://en.wikipedia.org/wiki/Alpha-synuclein
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forming Lewy bodies throughout subcortical and cortical brain regions (Davie 2008; Schulz-

Schaeffer 2010). There are other researchers who have suggested cell-death mechanisms 

including protosomal and lysosomal system dysfunction and reduced mitochondrial activity. 

However, none of these studies has been confirmed yet (Obeso et al., 2010). Regardless of the 

different suggested mechanisms, the resulting dopaminergic deficiency subsequently explains 

the motor and cognitive dysfunction. Arguably, this explanation does not account for the full 

clinical picture seen in patients with PD (Rodriguez-Oroz et al., 2009). 

Heiko Braak presented a theory, suggesting that the distribution pattern of alpha-

synuclein develops in a topographically predictable sequence in six stages, during which 

Lewy bodies first appear in the olfactory bulb, medullar oblongata and pontine tegmentum in 

the first 3 stages, with individuals at these stages being asymptomatic. As the disease 

progresses, Lewy bodies develop in amygdalda and thalamus. According to the Braak model, 

in the final stages (Braak V-VI) areas in the basal ganglia are affected and the pathological 

process might reach the sensory association cortex, prefrontal cortex and finally the entire 

neocortex (Braak et al., 2004; Braak et al., 2006). There are conflicting opinions about this 

model and it has been criticized because it does not provide convincing evidences for the 

caudal to rostral temporal progression of the disease and for the possibility of a beginning of 

the deficits in non-dopaminergic system of the brainstem (Burke et al., 2008). Nevertheless, 

Braak’s model has been globally confirmed and validated by other investigators (Parkkinen et 

al., 2008). Furthermore, the neuropathology of synuclein has shown a potentiality to better 

understand the pathogenesis of PD. 
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Others suggested that in the earlier stages of PD, dopamine depletion is restricted to 

the putamen and dorsal caudate nucleus, originating from substantia nigra, and only later 

progresses to the more ventral parts of the striatum and the mesocorticolimbic dopaminergic, 

this results in decreased inhibition of the internal globus palidus via direct pathway and 

increased excitation of the internal globus palidus via the indirect pathway. In turn, this results 

in increased inhibition of the thalamus and reduced excitation or inhibition of the cortex, 

depends on the task performed (Rosvold 1972; Kish et al., 1988; Swainson et al., 2000; Cools 

et al., 2001). This explanation can account for the dopamine depletion evolving in a 

spatiotemporal pattern within the striatum and the terminal distribution of its cortical afferents 

to explain the cognitive impairment in PD (Monchi et al., 2010). 

1.5. Clinical Features 

1.5.1. Motor signs and symptoms 

The clinical presentation of PD is quite variable (Weiner 2008). The major clinical 

motor signs of PD are resting tremor, bradykinesia, rigidity, and postural instability (Gelb et 

al., 1999). These signs are typically unilateral in early PD. The cardinal resting tremor sign is 

the most common motor symptom in PD occurring in approximately 70% of patients 

(Jankovic et al., 1990). Tremor in the upper extremity usually starts in the fingers or thumb, as 

the disease progresses, tremor may spread to lower extremity on the same side or the other 

upper extremity before it gets generalized, albeit, it remains asymmetrical.  PD clinical 

presentation is very heterogeneous and even presents different motor subtypes according to 

the pathology and the pattern of disease progression. It has been also found that tremor-

dominant patients have a slower rate of progression and better prognosis than akinetic, or 
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non–tremor-dominant patients (Rajput et al., 1993). On the other hand, Postural gait 

instability is usually observed in later stages of the disease, it is poorly responsive to treatment 

and represents a common source of impaired balance and frequent falls (Yao et al., 2013) and 

a poor prognostic factor (Foltynie et al., 2002). 

1.5.2. Non-motor signs and symptoms 

As discussed earlier, according to Braak’s model PD begins its progression at the base 

of the brainstem long before it is detected (Braak et al., 2004). By the time patients visit the 

neurologist clinic for the first time, PD is on an already ongoing progression. The motor 

deficits present after a 40-60% of dopaminergic neuron loss in the striatum (Obeso et al., 

2000). There has been a growing notion that many non-motor symptoms might present earlier 

than the cardinal motor symptoms. The non-motor symptoms that are thought to be present in 

early stage of PD are: olfactory dysfunction, autonomic dysfunction such as constipation and 

bladder dysfunction, sleep disturbances, mood changes and cognitive dysfunction. Many of 

these could be explained by the Braak hypothesis and give rise to investigate possible signs of 

pre-symptomatic PD (Tolosa et al., 2009). 

Non-motor symptoms are common in PD. In fact, more than 50% of PD patients 

experience olfactory dysfunction such as anosmia, 35% of patients have severe hyposmia and 

14% of patients have moderate hyposmia (Hawkes et al., 1977; Muller et al., 2002). 

Depression is highly frequent in PD, occurring in up to 45% of cases (Burn 2002). In a 

longitudinal study, it was suggested that there was an increased risk of developing PD in 

subjects suffering from depression as compared to not depressed ones (Schuurman et al., 

2002). Furthermore, the great majority of PD patients develop sleep disruption, and there is 

evidence that the process usually starts at early stages of the disease (Chaudhri 2003). 

http://en.wikipedia.org/wiki/Balance_disorder
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Virtually all PD patients suffer from autonomic dysfunction represented by constipation 

(Magerkurth et al., 2005). Subtle autonomic disturbances that can at least partly be related to 

the degeneration of the vagal nerve are an early and frequent sign in PD (Micieli et al., 2003). 

Presence of these “pre-motor” signs and symptoms implicate a possibility of early detection, 

which might help in early treatment, control of debilitating prognosis and decrease morbidity.  

However, having screening tools that are cost effective added to the lack of effective 

therapeutic regimes and knowledge of course PD pathology (Stephenson et al 2009) are what 

complicate our approach to PD. 

Although long-term studies in PD have demonstrated that most patients will eventually 

develop dementia, the time of onset of dementia and the less sever cognitive deficits is 

variable (Pedersen et al., 2013). Through the usage and the interpretation of neuroimaging 

techniques, this research aims at recognizing patterns of neural activation using functional 

magnetic resonance imaging in order to better characterize and predict cognitive dysfunction. 

By providing an overview of neuroimaging findings specific to MCI, this research hopes to 

delineate a better understanding of the course of the disease at early stages. In addition, 

methodological issues involved in studying this heterogeneous population and future 

directions to continue to improve our understanding of the clinical subtypes cognitive 

dysfunction will also be highlighted and discussed. Due to the relevance of understanding 

cognitive dysfunction in PD, a separate section of this thesis is going to be dedicated to 

discuss it in depth. 
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1.6. Diagnosis 

Diagnosis of Parkinson's disease relies primarily on clinical history and neurological 

examination. The diagnosis of idiopathic PD is often challenging because the symptoms are 

generally insidious, and a list of differential diagnosis might be extensive, including other 

Parkinsonism producing disorders such as AD, Lewy-body dementia, progressive 

supranuclear palsy and parkinsonian ‘plus’ disorders such as Multiple System Atrophy and 

Progressive Supranuclear Palsy. On the other hand, as the disease takes its chronic course, the 

progress might reveal misdiagnosis. For that reason some authorities recommend that the 

diagnosis be periodically reviewed (National Collaboration Centre for Chronic Conditions in 

Great Britain 2006).  

There are several suggested diagnostic criteria by different authorities; based on the 

apparent motor signs and the response to dopaminergic treatment. However, this research has 

adopted the United Kingdom PD society brain bank criteria to diagnose participants in the 

study. These criteria require presence of slowness of movement as well as resting tremor or 

rigidity or postural instability. The other differential causes for these symptoms -if present- 

need to be ruled out as well. The UK PD society criteria also require that more than two of the 

following are identified during the onset or along the course of the disease; unilateral onset, 

tremor at rest, progression in time, asymmetric motor symptoms, response to levodopa for at 

least five years, clinical course of at least ten years and appearance of dyskinesia induced by 

the intake of excessive levodopa. (Jankovic et al., 2008)  The accuracy of diagnostic criteria 

valuated at autopsy is 75–90%, with specialists such as neurologists having the highest 

diagnosis rates of accuracy (Jankovic et al., 2008). 

http://en.wikipedia.org/wiki/Medical_history
http://en.wikipedia.org/wiki/Neurological_examination
http://en.wikipedia.org/wiki/Neurological_examination
http://en.wikipedia.org/wiki/Dyskinesia
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One of the clinical tools to evaluate the severity of PD and follow its clinical 

progression longitudinally is known as the Unified Parkinson’s Disease Rating Scale 

(UPDRS). Following the UPDRS scores over time provides insight into the patient's disease 

progression. Hoehn and Yahr (H&R) scale is another scaling system that defines PD into five 

basic stages according to the severity of symptoms. There is a little role of neuroimaging for 

PD diagnosis; anatomical MRI and CT scans used in clinical settings of PD patients usually 

appear normal. However, MRI and CT scan may be used to rule out disorders that could have 

similar symptoms and they considered the corner stone in the research field of PD. 

1.7. Treatment 

Treatment of PD is not therapeutic. It provides symptomatic relief. It encompasses 

medications that are useful for the motor symptoms. Dopamine replacement therapy such as 

Levodopa, several dopamine agonists, Monoamine oxidase (MAO) inhibitors, deep brain 

stimulation and surgery are examples of PD treatment options. The group of medication 

chosen to administer relies on the stage of the disease. For example, if the patient presents 

with initial disabilities that require medical intervention, agents such as MAO-B inhibitors or 

dopamine agonists are of choice since they provide a good symptoms control with minimal 

side effects as compared to Levodopa, Levodopa use will be delayed as much as possible. 

Nonetheless, if the patient presents with motor symptoms, and was already administered 

Levodopa, and experienced medication side effects such as wearing off and dyskinesia, the 

treatment will aim to control the dose fluctuation by using multiple regimes. Ultimately, for 

PD patients suffering from uncontrolled predominantly motor symptoms, surgical options 

including deep brain stimulation can be used.  
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Further studies have also indicated that Cholinesterase inhibitors might be useful for 

PD patients with cognitive dysfunction, agents such as Donepezil was associated with 

improvements in memory monitoring (Leroi et al., 2004). Recent studies have documented 

benefits from MAO inhibitors. MAO inhibitors have demonstrated potential neuroprotective 

effects that might slow the progression of the disease, in addition to increase dopamine levels 

in the brain. Rasagiline, a selective MAO type-B inhibitor, to PD-MCI patients may exert 

beneficial effects on certain aspects of attention and executive functions for non-demented PD 

(Hanagasi et al., 2011) and might be beneficial for the with dementia as well (Emre et al., 

2004). 
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1.8. Cognitive Dysfunction 

1.8.1. Dementia 

Dementia is a common late feature of PD. A person with PD has two to six times the risk of 

dementia compared to the general population with a dramatic impact on the quality of life and it is 

considered a risk factor to place PD patients in nursing homes facilities (Aarsland et al., 2001; 

Caballol et al., 2007). It usually occurs at late stages of the disease and the prevalence of dementia 

increases with duration of the disease (Caballol et al., 2007). Histologically, PD-dementia has shown 

a more generalized pattern of Lewy body distribution and an Alzheimer’s like pattern of 

neurofibrillary triangles and senile plaques (Dickson DV 2007). Typically PD-dementia has an 

insidious onset, and a slow progression; developing within the context of an already diagnosed PD. 

PD-dementia usually involves different cognitive domains such as attention, memory, visuospatial, 

constructional and executive domains. 

The diagnosis of PD-dementia is clinical. It relies on medical history, neurological and mental 

examination. It is important to differentiate PD-dementia from other neurodegenerative disorders 

such as dementia with Lowy bodies, the latter typical presents with dementia, vivid visual 

hallucinations and Parkinsonism. This might be quite challenging given the shared features of the two 

diseases, therefore, some authorities suggest periodic re-evaluations for diagnosis. Dementia is 

associated with a reduced quality of life in people with PD and their caregivers, increased mortality, 

and a higher probability of needing nursing home care (Carballo et al., 2007).

http://en.wikipedia.org/wiki/Quality_of_life
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1.8.2. Mild Cognitive Impairment (MCI) 

 MCI was originally a term used for description of the transitional stage between normal 

cognitive functioning and AD (Petersen 2004). Later on; it has been implemented to categorize non-

demented PD patients with cognitive dysfunction that –unlike dementia- does not intervene with their 

life style. One major challenge when attempting to understand the nature and source of this deficit, is 

the marked cognitive heterogeneity that exists amongst PD patients. Furthermore, Even among PD-

patients presenting significant cognitive deficits, there is great variability with respect to which 

cognitive domain is affected. This variability can be partially explained by the inhomogeneous 

dopamine decrease in the basal ganglia and the related circuits (Lewis and Barker 2009; Sawamato et 

al., 2008). Some of the cognitive domains that are typically affected in PD include; fronto-executive 

functions (e.g. planning and set-shifting), memory, non-frontal lobe derived dysfunctions such as 

visuospatial and language function difficulties (Janvin et al., 2003; Mamikonyan et al., 2009).  

 Single domain impairment is more common than multiple domains and within a single 

domain; nonamnestic impairment is more common than isolated amnestic deficits (Litvan et al., 

2011). Although increasing age is associated with cognitive dysfunction in PD patients, this variable 

alone, does not account for the higher prevalence of dementia in PD patients compared to the general 

population (Janvin et al., 2006). 

 MCI can be diagnosed using neuropsychological assessment tests. However, unified 

comprehensive neuropsychological testing tools were lacking. For that reason, the movement 

disorder society (MDS) initiated a task force that included guidelines to diagnose MCI. These 

guidelines also provide examples of appropriate neuropsychological testing for each cognitive 

domain (Litvan et al., 2012). The guidelines consist of two main categories of criteria; level II and I.  
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 Level I category of the MDS task force is based on an abbreviated cognitive assessment to 

detect a possible PD-MCI. The requirements for level I are impairment on a scale of global cognitive 

abilities validated for use in PD  or impairment on a limited battery of neuropsychological tests each 

assessing a domain such as attention and working memory as well as executive, language, memory, 

and visuospatial functions. Impairment must be present on at least two tests to diagnose PD-MCI by 

level I criteria. Level I criteria do not allow complete subtyping of PD-MCI and they provide less 

diagnostic certainty than level II. (Litvan et al., 2012). However, they are more suitable for clinical 

practice as well as for large-scale studies (Pedersen et al., 2013) when the comprehensive 

neuropsychological testing is not practical or unavailable. 

By level II criteria, the (MDS) task force recommends formal, comprehensive 

neuropsychological testing that encompasses at least two tests for each of the five cognitive domains 

previously listed. Impairment should be present on at least two tests, either within a single cognitive 

domain or across different cognitive domains. The use of two tests in each cognitive domain 

(minimum of 10 tests) for the level II category addresses all cognitive domains equally, can increase 

sensitivity, and allow full subtyping of PD-MCI (Litvan et al., 2012). 

Some of the validated tests of global cognitive ability in PD are the Montreal Cognitive 

Assessment, the Parkinson’s Disease-Cognitive Rating scale, Scales of Outcomes of Parkinson’s 

disease-Cognition and the Blessed Dementia Rating Scale. 
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1.9. Biomarkers for MCI 

Early interventions have the potential to exhibit better outcomes if taken place early enough 

in the course of PD. Therefore, early detection of MCI can be critical not only in treating but also in 

initiating a clinical diagnostic design to help predicting the future occurrence of PD dementia as early 

as possible. Biomarkers for PD-MCI including Cerebrospinal fluid, neurophysiology, genetics and 

neuroimaging are currently under study, their use in combination, or separately to incorporate them 

in PD-MCI criteria is to be determined.  

1.9.1. Cerebrospinal fluid (CSF) 

Proposed CSF biomarkers for PD-MCI include those which have been incorporated into 

researching criteria for AD-MCI in an effort for early detection and interventions (i.e., low beta-

amyloid -42 peptide and elevated total tau or phosphorylated tau levels), because these might be 

components of an inflammatory or oxidative stress process subsequent to the degenerative disease 

(Albert et al., 2011). While some suggested that CSF beta-amyloid -42 and tau predict cognitive 

decline in PD as well (Alves et al., 2010; Montine et al., 2010; Shi et al., 2010; Siderowf et al., 

2010); others proposed that progression from very mild MCI to more pronounced MCI was not 

reflected by these biomarkers deviations (Wallin et al., 2011). It is also concerning that variability 

between testing laboratories for CSF may limit the utility of these techniques in clinical practice 

(Zhang et al., 2007). Therefore, whether CSF biomarkers are useful in early stage PD requires further 

research.
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1.9.2. Genetics 

Genetic biomarkers that have been identified in PD patients with cognitive dysfunction 

encompassed polymorphisms related to dopamine regulating enzyme in the prefrontal cortex 

[catechol-O-methyl transferase gene (COMT Val158Met)], which affect executive function tasks 

(Foltynie 2004) and microtubule-associated protein tau gene (MAPT) H1/H1 genotype. An inversion 

polymorphism in the latter was found to be a risk factor for dementia PD patients as compared to 

normal control (Goris et al., 2007; Seto-Salvia et al., 2011) and associated with greater posterior 

cortical cognitive impairments (Williams-Gray et al., 2009). These findings tend to support the 

hypothesis that posterior as compared to frontostriatal cortical cognitive deficit may have a higher 

risk for developing dementia in PD patients (Ekman et al., 2014). Recent study in our laboratory 

revealed that VNTR DAT 1 porlymorphism has shown to play a role in cortico-striatal activation and 

cognition Habak et al., (in press). Yet, more research needs to be conducted to specify the importance 

genetic markers on the early prediction of dementia in PD. 

1.9.3. Neurophysiology 

It was reported that there were increases in slow wave activity, and a decreased alpha and fast 

wave activities at the frontal pole, frontal location specifically in patients with executive dysfunction 

also increases in the absolute and relative posterior theta amplitude have been reported (Fonseca et 

al., 2009). 

These quantitative electroencephalogram characteristics in PD-MCI might represent an 

intermediate electrophysiological state along the disrupted cognitive spectrum that could complement 

neuropsychological testing to detect MCI; however, it does not elaborate on the underlying 

pathophysiology of the disease. These biomarker findings merit replication in larger samples, with 
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particular attention to PD-MCI longitudinal follow-up of the patients to establish risks of cognitive 

decline. 

1.9.4. Neuroimaging 

This chapter will briefly describe the principles behind different examples of neuroimaging 

techniques and discuss the role of such imaging in assessing the cognitive dysfunction in PD. 

Neuroimaging shed the lights on the global consequences of the nigro-striatal dopaminergic 

degeneration. Functional imaging in the resting state as well as task-based paradigms has been 

applied to the study of cognitive dysfunction in PD because they offer a unique possibility to evaluate 

physiological responses in relation to cognitive dysfunction in PD patients. 

 Functional Magnetic Resonance Imaging fMRI is considered a corner stone for research 

publications and its use increasingly overtook other modalities such as Single Photon Emission 

Computed Tomography (SPECT) in the research field. Albeit, efforts have been made to incorporate 

neuroimaging in clinical practice as diagnostic tool for PD, and may eventually assist to develop and 

assess of new therapies. Structural and metabolic neuroimaging may provide another potential 

biomarker for PD-MCI. 
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1.9.4.1. Structural MRI 

 When a patient’s head is in the MRI scanner, it is being subjected to a strong and a uniform 

magnetic field. Subsequently, the hydrogen atom of H2O molecules in the tissue spins around itself, 

creating a small magnetic field called the magnetic moment. When subjected to the strong uniform 

larger magnetic field, the atoms align themselves along the large magnetic field, ultimately; each 

atom will spin with a certain frequency called the Larmor frequency. This spinning will be either 

parallel or anti-parallel to the large magnetic field. 

  Energy is applied at a certain radiofrequency pulse, which in turn leads to the excitation 

hydrogen atoms, flipping them out of their axis and they eventually returns, back to equibilirium 

state. The difference between the energy levels of the two states, create a signal correspondent to an 

area within the tissue investigated, this recovery from the applied magnetization is necessary to create 

the T1-weighted image.  

 Applying a radiofrequency pulse also leads the incoherent atoms to dephase themselves on the 

transverse plane, when the radiofrequency pulse is removed, the atoms loses energy to “relax” and go 

back to be phased, the difference in decay of the different amount of magnetization create the T2-

weighted image.  

 In T1 weighted image, the T1 relaxation time reflects a better image quality when the 

spinning is at Larmor frequency and the protons are bound to their surroundings. This leads to a short 

T1 relaxation time, which in turn allows for some structures to look bright (white matter). Whilst the 

T1 relaxation time is long in a tissue where the hydrogen protons are free from their surroundings, 

such as in fluid, leading to some other structures to look dark in color as in cerebrospinal fluid (CSF). 
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Thus, T1-weighted images are optimal to visualize the gray matter as it appears with intermediate 

gray signal. 

 By contrast, in T2 weighted image, the protons can move freely and remain phased for a long 

time in fluid as in CSF, resulting in a strong signal and that’s why it appears bright. Whilst in solid 

tissue, the T2 relaxation happens fast; leading to a darker image, for that reason the gray matter 

appears with a dark signal. T2-weighted images are optimal for visualizing abnormalities in the white 

matter.  

 Various techniques have been adopted to analyze structural MRI images including 

volumetric, Voxel-based densometry (VBM) and white matter density. Volumetric MRI acquisitions 

rely basically on dividing a region of interest (ROI) into voxels (3-dimentional slices usually as low 

as 1 millimeter cubic), it provides a high resolution, yet it has a high signal to noise ratio. By contrast, 

the VBM is a method used to assess density and atrophy local grey and white matter density over the 

whole brain. 

 Using VBM, reduced gray matter in the left frontal and bilateral temporal lobe regions, 

compared to PD without MCI was noted (Beyer et al. 2007); however, sample size was small and 

these differences were not significant after corrections for multiple comparisons. Volumetric MRI, 

even in non-medicated patients with early PD, has been able to identify some correlations between 

focal regions of atrophy and specific cognitive impairments (Brück et al. 2004). Left hippocampal 

atrophy was found to be associated with impaired memory, whereas prefrontal cortex atrophy was 

associated with sustained attention (Brück et al., 2004). 
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 Early work using ROI methods and visual rating showed that parkinsonian patients (including 

both PD-MCI and Lewy-body dementia) demonstrated frontal, temporal lobe and hippocampal 

atrophy in addition to frontal horn ventricular enlargement when compared to normal control (Meyer 

et al., 2007). However, the sample included those with Lewy body dementia. 

 Some studies reported medial temporal lobe atrophy in PD-MCI and non-PD MCI using 

various imaging methods (Lerch and Evans 2005; Jubault et al., 2011) in fact; cognitive impairment 

in PD was associated with structural cortical and striatal atrophy (Camicioli et al., 2009).  

  It is established that cortical atrophy does not occur in PD without a comorbid cognitive 

impairment as PD-MCI displays atrophy different from to that with PD with normal cognition, which 

is characterized by atrophy of the hippocampus, prefrontal cortex gray and white matter, occipital 

lobe gray and white matter, and parietal lobe white matter (Weintraub et al., 2011), this effect was 

stronger for patients with dementia. These findings were replicated later using cortical thickness 

measures. Atrophy in SMA, medial occipital lobe and temporal lobe were identified and merited to 

be considered in the future as markers of cognitive decline in PD patients (Hanganu et al., 2013). 

Albeit, other researchers were unable to find neither regional grey matter atrophy in newly diagnosed 

PD patients nor any association between grey matter atrophy and cognitive impairment (Dalaker et 

al., 2011). All these conflicting findings asserted the urgency to initiate a prospective study to 

evaluate structural MRI as biomarker for MCI. 

 A recent longitudinal study in our laboratory showed that the early presence of mild cognitive 

impairment in patients with Parkinson's disease was associated with a faster rate of grey matter 

thinning in various cortical regions as well as a significant diminishment of limbic subcortical 

structures (Hanganu et al., 2014). 
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 Structural ventricular changes have been also reported in PD-MCI such as posterior 

ventricular enlargement (Apostolova et al., 2010) as well as enlarged left inferior lateral ventricle and 

third ventricles (Dalaker et al., 2011) compared to PD without MCI and healthy controls; fourth 

ventricle size was highly correlated with memory in PD-MCI patients (Dalaker et al., 2011).  

1.9.4.2. Single photon emission computed tomography (SPECT) and Positron 

emission topography (PET) 

 PET and SPECT imaging use a number of radiotracers for in vivo to assess brain function. 

These techniques have been extensively used to study the dopamine system in PD. Radiolabeled 

water or glucose can used to trace the cerebral blood flow and glucose metabolism. Although not 

specifically addressing the evolution of PD-MCI early on, SPECT and PET has demonstrated a 

potential to identify preclinical metabolic changes in PD. Reduced striatal uptake of the ipsilateral as 

well as the expected contralateral affected side was discovered in PD (Schwarz et al., 2000). It also 

estimated that approximately 50% reduction in dopaminergic nigro-striatal cells is required before 

clinical expression of the motor symptoms takes place (Schwarz et al., 2000; Marek et al., 2001).  

 Executive dysfunction in PD was found to be correlated with dopamine levels in striatal and 

cortical regions utilizing fluorodopa PET imaging (Rinne et al., 2000). Studies showed impaired 

metabolism in posterior cortical regions, similar to regions that are frequently abnormal in PD-

Dementia patients (Goldman et al., 2011). These findings have opened the chances for researchers to 

investigate the underlying changes in brain activation and integrity associated with MCI using 

metabolic studies.  
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 Using 18F-flurodeoxyglucose (FDG) PET scans has shown that PD-MCI patients with 

multiple domains impaired had patterns of decreased glucose metabolism in prefrontal and parietal 

areas compared to PD non-MCI; those with a single domain affected had a similar pattern but to a 

lesser degree than in the multiple domain PD-MCI (Huang et al., 2008). In another study the PD-MCI 

group demonstrated relative hypometabolism in bilateral posterior parietal lobe and right occipital 

lobe compared to healthy controls and parietal, temporal, and occipital hypoperfusion compared PD 

non-MCI. Interestingly, compared to the amnestic MCI patients (without PD), the PD-MCI had 

greater hypoperfusion in parieto-occipital regions, whereas the amnestic MCI patients had greater 

hypoperfusion in medial temporal lobe regions (Nobili et al., 2009). These studies though had 

promising findings; they were only conducted in small cohorts with no longitudinal assessments. 

 SPECT was used to assess presynaptic dopamine integrity in a recent prospective cohort 

study, it was discovered that PD-MCI had significantly reduced presynaptic uptake of dopamine in 

the striatum (right caudate) compared to PD non-MCI (Ekman et al. 2012). SPECT can offer insight 

about various underlying reasons behind consequent pathological changes and the related altered 

activation patterns in a way that cannot be achieved with the use other neuroimaging modalities. 

However, the use of radiation, the lower spatial and temporal resolution as compared to other 

imaging modalities and cost effectiveness, impose limits on the number of scans that can be 

performed, thus on the clinical application of this technique. 

 

1.9.4.3. Diffusion tensor imagine (DTI) 

DTI measures the magnitude and direction of diffusion of H2O molecules within the brain. 

This technique can be used to infer the integrity of neuronal fiber tracts. Although not specifically 



26 
 
 

 

addressing PD-MCI, studies have shown that a reproducible pattern of degeneration in the 

microstructure of substantia nigra, thalamus, motor, premotor and supplementary motor areas with a 

positive correlation between the fractional anisotropy within the somatosensory cortex and the 

severity of Parkinson's Disease (Zhang et al., 2011).  

1.9.4.4. Functional Magnetic Resonance Imaging (fMRI) 

 fMRI takes advantage of the difference between magnetization of oxygenated and 

deoxygenated hemoglobin in order to create a signal that represents a dynamic change in neuronal 

activity related to a correspondent local blood supply increase. The neuronal activity is paired with a 

hemodynamic process, through which an increase in the blood flow takes place due to a regional 

increase in demand. This process results in a relative decrease in deoxyhemoglobin, and a subsequent 

magnetization difference that can be detected.  This difference represents a Blood Oxygenation 

Level-Dependent (BOLD) signal in a way that more neuronal activity leads to a higher increase in 

blood flow demand, which consequently leads to a more detected signal. Different tasks elicit 

different neuronal activities at different regions within the operative brain. 

 Resting-state fMRI by contrast, has emerged with a potentiality to resolve the complicated 

functional brain networking (Fox and Raichle 2007). It measures patterns of spontaneous fluctuations 

in the hemodynamic activity “at rest” when no task is performed. It relies on functional connectivity 

(the regional correlation between temporal activities of distant brain regions). The hemodynamic 

fluctuations from a selected (a priori) seed region of interest are correlated to all other brain regions 

using multivariate techniques. Only few studies have looked at resting-state PD (Wu et al., 2009; 

Helmich et al., 2010). 
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 There is little research conducted using resting-state fMRI to look into PD-MCI. However, 

cross correlation connectivity analysis has revealed a loss of integrity in the functional connectivity 

between paracingulate gyrus and precuneus as well as between the right middle frontal gyrus and the 

bilateral superior parietal lobes (Segura et al., 2013). Functional connectivity profiling of the 

subthalamic nucleus in PD patients at rest through the use of fMRI has revealed an increased 

activation of circuits between the subthalamic nucleus and cortical motor areas (Baudrexel et al., 

2011). This is believed to be a result of reduced dopaminergic input from the striatum via both direct 

and indirect feedback loops (Alexander et al. 1990). 

1.9.4.4.1. Task-based fMRI 

 Tasks linked to various cognitive processes were utilized with fMRI to implicate different 

neural mechanisms early PD patients, however, we will concentrate here on memory and executive 

tasks (involving set shifting and decision making) these are the two cognitive domains the most 

affected in early PD (Sollinger et al., 2010; Zakharov et al., 2001). 

1.9.4.4.1.1. Memory task  

Memory Impairment begins to manifest at the early stages of Parkinson's disease and presents 

as several types of dysfunction as the disease progresses (Aarsland et al., 2008). It is associated with 

nigro-striatal (Rinne et al., 2000; Cools 2006; Ekman et al., 2012) and meso-cortical (Mattay et al., 

2002; Monchi et al., 2007) dopaminergic dysfunction. Therefore, memory tasks were useful to 

evaluate the cognitive impairment in early PD. 

Delayed recall and Learning are affected early on whilst recognition memory decline is not 

apparent until the later stages of PD (Higgenson et al., 2005). By using a recognition memory 
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paradigm, a decreased deactivation of the paracingulate gyrus and precuneus were found to be 

characteristic of patients with early PD (Segura et al., 2013). And using the Free and Cued Selective 

Reminding paradigm (Buschke et al. 1997), it was recognized that in amnestic PD-MCI, episodic 

memory impairment was related to frontal-related retrieval rather than to temporal-mesial 

consolidation failure suggesting that memory deficits might be due to altered frontal-related 

executive functioning (Costa et al., 2014). 

Longitudinal studies should be performed to verify the sensitivity of the above paradigms in 

predicting dementia in PD-MCI patients. 

Using a working memory paradigm, a significant signal intensity reduction in specific striatal 

and frontal lobe sites in PD patients with cognitive impairment (with selective executive dysfunction) 

compared with those patients who were not cognitively unimpaired (Lewis et al., 2003). Further 

research revealed under-recruitment in the right dorsal caudate nucleus and the bilateral anterior 

cingulate cortices during working memory tasks in PD-MCI compared to healthy control individuals 

(Ekman et al., 2012) areas that were interestingly also shown to be significantly hypoactivated in PD 

patients during olfactory tasks (Hummel et al., 2010). 

A recent longitudinal study assessed changes in working-memory related brain responses in 

PD with and without MCI. It proposed that posterior cortical changes across time might be more 

pronounced than fronto-striatal changes in patients with PD and MCI, reflecting progression toward 

prodromal PD-dementia (Ekman et al. 2014). This was in line with previous hypothesis that cognitive 

decline might be related to neural dysfunction with posterior rather than front-striatal circuit process 

(Huange et al., 2007; Williams-Gray et al., 2007). 
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1.9.4.4.1.2. Executive task 

 Another example of the task-based fMRI is that using executive tasks to elucidate a desired 

neuronal reaction in relation to planning and execution of taking decisions. fMRI was found to useful 

early on to identify the neural locus of the selective executive deficit in a subgroup of patients with 

early PD (Lewis et al., 2003). An event-related fMRI protocol using Wisconsin Card Sorting Task 

(Monchi et al. 2000) investigated activation during distinct stages of the task in healthy young adults, 

it showed implication of two cortico-striatal loops including the ventrolateral PFC, the caudate 

nucleus, and the thalamus during planning of a set-shift, and of another including posterior PFC and 

the putamen during the execution of a set-shift (Monchi et al., 2004). 

 Using the same protocol in early-stage PD (off-medication), (Monchi et al., 2004) found a 

decrease in the activity of the VLPFC and the posterior PFC as compared to healthy age-matched 

controls who had both these regions co-activated when the striatum is needed in this task.  

 Although these cross-sectional studies have shed the lights on the anatomical and 

neurochemical bases of PD-MCI, arguably, only one longitudinal cohort used task-based brain 

responses to evaluate the underlying mechanisms and the evolution of PD-MCI (Ekman et al., 2014). 

Therefore, longitudinal cohorts studies are essential in order to better understand underlying 

mechanisms (Monchi and Stoessl 2012; Ekman et al. 2012).  
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 Considering the aforementioned work highlighting the relevance of MCI as a potential 

prodromal phase of dementia, and the limited longitudinal research on specific functional 

neuroimaging cognitive profiles in early PD; the major goal of this thesis is to longitudinally analyze 

the patterns of neural activation in early PD patients with respect to cognitive impairment, which can 

be most predictive for the future occurrence of dementia in PD. We expect that PD-MCI and PD non-

MCI to differ with respect to their patterns of activations observed with our WCST fMRI protocol at 

each time points as well as longitudinally.  

 To provide direct empirical findings to support this general hypothesis, we carried out a 

longitudinal cohort of PD-MCI and PD non-MCI patients. Their cognitive profiles were evaluated 

using a neuropsychological evaluation that was in line with the MDS task force recommendation for 

level II assessment. Participants were followed longitudinally at two time points, baseline and after 

18-months. To identify predictive markers that can distinguish between the two groups we used fMRI 

during the performance of the Wisconsin Card Sorting Task. The protocol is described in Chapter 2 

as part of an article soon to be submitted. 

 To our knowledge, this is one of the first studies that longitudinally analyze PD-MCI and PD 

non-MCI patients according to their cognitive profiles using fMRI while performing an executive 

function task. We speculate that this research has the potential to yield markers allowing for an early 

prediction of dementia in the disease. This will ultimately yield intervention and treatment strategies 

tailored to different patient cognitive profile. 
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Evolution patterns of neural activity linked to cognitive process in 

Parkinson’s disease, a longitudinal fMRI study* 
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*This article will be submitted early in the autumn to Movement Disorders. 
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Abstract 

Introduction: Mild cognitive impairment in Parkinson’s disease has been linked with 

extensive structural gray matter, white matter as well as functional brain changes. Previously we 

showed different involvement patterns of the cognitive corticostriatal loop in patients with 

Parkinson’s disease who additionally had mild cognitive impairment. Specifically, decreased activity 

has been shown in the ventrolateral prefrontal cortex and caudate nucleus during the planning of a 

set-shift. However, we have not to date investigated the longitudinal effect of the early presence of 

mild cognitive impairment in PD on neural patterns of activity. 

Material and Methods: Twenty one non-demented patients with Parkinson’s disease 

underwent a neuropsychological investigation according with level II MDS recommendation, and 

were separated in two groups - with and without mild cognitive impairment. After that, each 

participant underwent an fMRI investigation by performing the Wisconsin Card Sorting Task. The 

fMRI task was performed twice 19 months apart. 

Results: When planning the set shift, patients who were cognitively intact were using the 

normal cognitive resources (by engaging the cognitive loop), but they also activated more cortical 

areas that are related to decision making over time such as the medial prefrontal cortex, parietal lobe 

(BA 40, 7) and the superior prefrontal cortex, whilst the group of patients with cognitive impairment 

failed to engage these areas during planning the set shift. 

Discussion: Our results reveal functional alteration along the basal ganglia-thalamo-cortical 

axis in early PD. The discrepancy in cortical resources recruitment over time between cognitively 

intact and impaired patients might reflect deficient circuitry specific to cognitive impairment and 

evolution in Parkinson’s disease. 
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Introduction 

Parkinson’s disease (PD) is a neurodegenerative disease characterized by its motor symptoms 

(McGeer & McGeer, 2004). However, cognitive deficits are present early in the course of disease 

development (Foltynie, Brayne, Robbins, & Barker, 2004). The scope and intensity of these deficits 

can worsen with disease progression (Muslimović, Post, Speelman, & Schmand, 2005; Williams-

Gray, Foltynie, Brayne, Robbins, & Barker, 2007). Mild cognitive impairment (MCI) has been 

described recently in PD patients (Litvan et al., 2011) as a stage that would precede the development 

of dementia. It has been reported that up to 40% of patients with PD have MCI (Aarsland & Kurz, 

2010). Furthermore, it has been reported that patients with PD and MCI have a higher risk of 

developing dementia compared with patients who do not have MCI (Emre et al., 2007; Kehagia, 

Barker, & Robbins, 2010; Williams-Gray et al., 2007). 

Previous studies reported structural grey matter (Hanganu et al., 2013; Melzer et al., 2012; 

Song et al., 2011), white matter (Agosta et al., 2013) as well as functional (Atsuko Nagano-Saito et 

al., 2014) suggesting that PD-MCI is associated with specific functional and anatomical brain 

abnormalities.  Nevertheless, the neural mechanisms of cognitive impairment in PD patients with 

MCI are not well understood. We recently reported that PD patients with MCI exhibit reduced 

activity in the cognitive corticostriatal loop, which includes the caudate nucleus while planning a 

shift during the performance of Wisconsin Card Sorting Test (WCST) (Atsuko Nagano-Saito et al., 

2014). Applying the same methods, we found that PD patients who did not receive dopaminergic 

medication revealed a significant decrease of activation in the ventrolateral prefrontal cortex and 

caudate nucleus while planning a shift, and in the posterior prefrontal cortex, premotor cortex and 

putamen when executing the set shift (Monchi et al., 2004). Additionally, levodopa medication was 

shown to partially restore the activity in the motor loop but not the cognitive corticostriatal loop 
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(Jubault et al., 2009). However, a longitudinal study was necessary to establish the functional 

changes in these loops over time and its association with MCI. 

In the present study we applied the WCST fMRI protocol in PD patients with MCI in a group 

of PD patients at two time points. Due to the fact that PD patient with MCI has been shown to 

express faster cognitive decline that those with intact cognition, and PD patients have been shown to 

recruit new cortical connections with the cortex when compared to healthy controls (Palmer, Li, 

Wang, & McKeown, 2010), we expected that certain cortical areas recruitment present in PD-non-

MCI patients might not be present in those with MCI. 

Materials and Methods 

Subjects 

Twenty-four non-demented PD participants (mean age, 62.86 years; 11 males and 13 females) 

at stages I and II of Hoehn and Yahr were recruited for the study. All participants were diagnosed by 

movement disorders neurologists in Montreal and met the UK brain bank criteria for idiopathic PD 

(Hughes, Daniel, Kilford, & Lees, 1992) as assessed by the movement disorders neurologist (A-LL., 

SC., VS.). All patients were responsive to dopamine medication and we excluded patients with other 

comorbidities. Participants were studied twice at 19,8±2,7 months apart. In each session (at baseline, 

Time 1 and follow-up at Time 2) they underwent a functional magnetic resonance imaging (fMRI) 

during which they performed a computerized version of Wisconsin Card Sorting Task (WCST) 

(Monchi et al., 2004; Monchi, Petrides, Petre, Worsley, & Dagher, 2001). 

Participants were also asked not to take any dopaminergic medication at least 12 hours prior 

to the sessions. We chose the off-medication period due to several reasons: previous studies reported 

that dopamine loss in the ventral striatum is less severe than in the putamen and dorsal striatum 
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(Kish, Shannak, & Hornykiewicz, 1988), Levodopa medication withdrawal has a detrimental effect 

on the cognitive loop between the dorsolateral prefrontal cortex and the dorsal caudate nucleus, 

specifically with task-set switching (Cools, Barker, Sahakian, & Robbins, 2001), thus we argue that 

during WCST task PD patients will use the normal potential of the cognitive loop. All participants 

provided informed consent, which was approved by the Research Ethics Committee of the 

Regroupement Neuroimagerie Quebec. Participants received a standardized and 

validated neuropsychological assessment within two weeks of each session of fMRI scans. 

At baseline, participants were divided in two groups: those with MCI (PD-MCI, n=11) and 

those cognitively intact (PD non-MCI, n=13) based on the neuropsychological scores. The cognitive 

performance reevaluation at Time 2 revealed that two PD-MCI patients converted to non-MCI so 

they were excluded from the analysis (for a total of n=9 PD-MCI and n=15 PD non-MCI patients). 

One PD-MCI patient was excluded from the study because he could not stay off-medication for the 

necessary 12-hours period at Time 2 (for a total of n=8 PD-MCI patients). 

MCI is defined as a cognitive deficit commonly quantified as a performance level 1 to 2 

standard deviations below the population mean in one or more cognitive domains (Litvan et al., 

2012). Inclusion criteria for MCI, both for Parkinson’s disease and healthy controls, were: (i) 

objective evidence of cognitive decline: performance >1.5 standard deviations below standardized 

mean on two or more subtests within a cognitive domain; (ii) subjective complaint of cognitive 

decline by the patient or accompanying person [the neuropsychologist assessed the presence of 

various symptoms including those used by other studies (Singh-Manoux et al., 2013): forgetfulness in 

daily activities, difficulty recalling memories, difficulty retaining new information, difficulty in 

mental calculation, language difficulties, orientation difficulties]; (iii) absence of significant decline 

in daily living activities (based on clinical observations of the referring neurologists and 

neuropsychologist); (iv) absence of dementia as diagnosed by the evaluating neuropsychologist 
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[based on the Movement Disorder Society Task Force guidelines (Level I testing) for the diagnosis of 

dementia in Parkinson’s disease (Dubois et al., 2007)]; and (v) evidence of cognitive abnormalities 

that cannot be attributed to age. These criteria are consistent with the newly proposed guidelines 

(Level II, comprehensive assessment) for the diagnosis of MCI in patients with Parkinson’s disease 

by the Movement Disorder Society Task Force (Litvan et al., 2012). No significant differences were 

observed between the groups with respect to sex, age and education. Similarly, no significant 

differences existed between the groups with respect to time since diagnosis or disease advancement 

as measured by the motor part of the Unified Parkinson’s Disease Rating Scale at Time 1 (Table 2).  

Neuropsychological Assessment 

 The comprehensive neuropsychological assessment battery was the same as previously 

used by (Hanganu et al., 2014; Jubault et al., 2009; A. Nagano-Saito et al., 2014). The Montreal 

Cognitive Assessment (MoCA) (Nasreddine et al., 2005) was administered as a screening test before 

the first scanning session in case participants must be excluded based on their cognitive profile. The 

comprehensive neuropsychological evaluation, performed by a licensed neuropsychologist (Dr. 

BMC) was based on the five relevant cognitive domains suggested previously by the Movement 

Disorders Society Task-Force (Litvan et al., 2012): attention and working memory; executive 

function; language; memory; visuospatial functions (Table 1). 

Symptoms and signs of depression and anxiety were measured using the Beck Depression 

Inventory II BDI-II and Beck Anxiety Inventory (BAI) because both depression and anxiety often 

occur in PD (Gallagher & Schrag, 2012), depression and anxiety could influence cognitive 

performance and even interact with evolution of cognitive performance in a way that higher rate of 

apathy and anxiety in PD than in the general population may reflect a direct consequence of 
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the damage to the frontostriatal system and its cortical connections, resulting in both 

neuropsychiatric and neurocognitive deficits (Bogdanova & Cronin-Golomb, 2011). 

Finally, Unified Parkinson’s Disease Rating Scale (UPDRS) on PD patients at each session. 

We related the UPDRS motor subscale score, a measure of motor disease severity to our cognitive 

measures. 

Table 1.  Neuropsychological test battery according to cognitive domain. 

 

MEC, Montreal Evaluation of Communication protocol; MoCA, Montreal Cognitive Assessment 

Scale. 

 

Cognitive domain Test 

Attention and 

working memory 

Trail Making Test Part A (Reitan & Wolfson, 1985) 

Digit span test (Wechsler, 1997) 

Stroop color-word test, reading and color naming parts (Golden 

& Freshwater, 1998) 

Executive function 

Tower of London (Culbertson & Zillmer, 2005) 

Brixton (Burgess & Shallice, 1997) 

MEC, orthographic verbal fluency subtest (Joanette, Ska, & 

Côté, 2004) 

Trail Making Test Part B (Reitan & Wolfson, 1985) 

Stroop color-word test, interference part (Golden & 

Freshwater, 1998) 

Language 

Wechsler Abbreviated Scale of Intelligence, vocabulary subtest 

(Wechsler, 1999) 

Boston Naming (Kaplan, Goodglass, & Weintraub, 1983) 

MEC, semantic verbal fluency subtest (Joanette et al., 2004) 

Memory 

Rey Auditory Verbal Learning Test (Schmidt, 1996) 

Wechsler Memory Scale 3
rd

 ed., logical memory subtest 

(immediate and delayed recalls) (Wechsler, 1997) 

Visuo-spatial function 

Hooper Visual Organization Test (Hooper, 1958) 

Clock-drawing subtest of the MoCA, evaluated by scores of 

Schulman et al. (Nasreddine et al., 2005; Shulman, 2000; 

Shulman, Pushkar Gold, Cohen, & Zucchero, 1993) 



 39 

Cognitive task during fMRI 

A computerized version of the Wisconsin Card Sorting Task (WCST) (Monchi et al., 2004; 

Monchi et al., 2001) was administered using stimulus presentation software. The participants were 

fully trained on the task prior to the scanning sessions. On each trial of the task, participants have to 

match a new test card to one of the four fixed reference cards (presented in a row on the upper part of 

the screen) based either on the color, shape or the number of the stimuli in each reference card. 

Participants used a 2-button response-box with their right hand. The index button moved a cursor 

along the four reference cards, and the middle finger confirmed the choice. On each test trial, a new 

card was presented.  

The classification rule was not given to the participant and s/he had to find it using feedback 

(positive or negative) that followed each trial. On each experimental trial, participants had to find the 

proper classification rule and apply it as long as a positive feedback followed their response. A bright 

screen indicates a correct classification. A dark screen indicates an incorrect classification. On each 

control trial, the test card was identical to one of the four reference cards, therefore participants only 

had to select the twin reference card. On the control trails the screen maintains its original brightness 

throughout the feedback period. 

The first period of each trial starts with the presentation of a new test card at which point the 

participant chooses one of the four reference cards. The second period of each trial starts as soon as 

the subject makes a selection and consists of feedback conveyed through a change in screen 

brightness lasting 2300 msec. 

In the WCST blocks six consecutive correct matching responses need to be completed before 

a change in classification rule occurs. Each functional MRI run contained blocks of each of the four 

trial classification (color, shape, number, and control) presented in random order. For experimental 

WCST trial blocks, six consecutive correct matching responses were required before a change in 
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classification rule could occur. Control blocks contained eight trials.  Patients were trained on the 

task before scanning until they reached a peak in performance. 

To evaluate the pattern of activation during the different stages of the WCST, four 

experimental and two controls time periods were defined as follows: (1) Receiving negative feedback 

(RNF): the screen darkens indicating an incorrect response: a set-shift is therefore required and must 

be planned; (2) Matching after negative feedback (MNF): execution of the set-shift; (3) Receiving 

positive feedback (RPF): screen brightens: the current matching criterion must continue; (4) 

Matching after positive feedback (MPF): selection using the same classification rule as the previous 

trial; (5) Receiving control feedback (RCF): original screen brightness maintained; (6) Matching with 

control feedback (MCF): select reference card identical to test card. Each feedback period lasted 2.3 

sec. The length of each matching period depended on participant response time, which during 

scanning, averaged 2.86 secs across all participants. 

fMRI scanning 

Participants were scanned using the Siemens Tim Trio 3.0 T scanner at the Unité de 

Neuroimagerie Fonctionnelle of the Centre de Recherche de l’Institut Universitaire de Gériatrie de 

Montréal. Sessions began with high-resolution, T1-weighted, 3D volume acquisition for anatomical 

localization (repetition time, 2300 ms; echo time 2.91 ms; inversion time, 900 ms; flip angle, 90
o
; 

160 slices, flied of view, 256 x 240 mm; matrix 256 x 240; voxel size, 1 x 1 x 1 mm; 12-channel 

coil), followed by echoplanar T2*-weighted image acquisitions with blood oxygenation level-

dependent (BOLD) contrast (echo time 30 ms; flip angle 90°). Functional images were acquired over 

five runs in a single session. Volumes were acquired continuously every 2.5 s, for a total 155 

volumes within runs, and contained 36 slices (matrix size, 64 x 64 pixels; voxel size, 3.7 x 3.7 x 3.7 

mm3). 
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MRI data analysis 

Contrast analyses 

Data analysis, using fmristat (Worsley et al., 2002), was similar to previously reported 

contrast analyses (Jubault et al., 2009; Monchi et al., 2004; Monchi et al., 2001; A. Nagano-Saito et 

al., 2013; Atsuko Nagano-Saito et al., 2014). Images from each run were realigned to the third frame 

of the first run and smoothed using a 6 mm full-width half-maximum kernel. Statistical analysis was 

based on a linear model with correlated errors, where the design matrix was first convolved with a 

hemodynamic response timed to coincide with each slice (Glover, 1999). Temporal drift was 

removed by adding a cubic spline in the frame timed to the design matrix, and spatial drift, by adding 

a covariate to the whole volume average. The linear model was then re-estimated using least squares 

on the whitened data, to produce estimates of effects and their SDs at each voxel. 

The following contrasts were computed: 1. RNF vs. RPF reflecting planning a set-shift, MNF 

vs. MPF reflecting executing the set-shift, RPF vs. RCF reflecting maintaining set, and MPF vs. 

MCF reflecting matching according to the same rule. The resulting effects and SD images were then 

non-linearly transformed into standard proportional stereotaxic space (ICBM152 template) using 

anatomical MRI to template transformation parameters, using a feature-matching algorithm (Collins, 

Neelin, Peters, & Evans, 1994; Zijdenbos, Forghani, & Evans, 2002).  

 In the second step, runs and subjects were combined using a mixed-effects linear model that 

was performed by first, estimating the ratio of the random-effects variance to the fixed-effects 

variance, and then regularizing this ratio by spatial smoothing with a Gaussian filter. Both intra-

group (Time 1, Time 2) and inter-group comparisons were generated. 

Statistical maps threshold was set at p<0.05 correcting for multiple comparisons using the 

minimum between a Bonferroni correction and random field theory in the single and intergroup 
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analysis, yielding a threshold of t > 4.82 for a single voxel. Predicted peaks reaching p < 0.0001 (t > 

3.87) with a cluster size +- 40 mm3 assessed on the spatial extent of contiguous voxels, are also 

reported and identified with an asterisk (*) in the tables. A region was predicted if it had been 

identified in our previous work using this task (Jubault et al., 2009; Monchi et al., 2004; Monchi et 

al., 2001; A. Nagano-Saito et al., 2013; Atsuko Nagano-Saito et al., 2014). For group comparisons, 

predicted peaks reaching p < 0.001 (t > 3.18) with a cluster size +- 40 mm3 are also reported with 2 

asterisks (**) in the tables. 

To evaluate the effect of performance on the imaging measure over the follow-up period for the 

MCI relative to the non-MCI and for the two groups separately overtime. We focused on comparing 

MCI to non-MCI, then group MCI in both time points, group non-MCI in both time points. 

Correlation analysis 

While our sample size of PD patients with MCI did not allow us to compare impairment 

arising from a predominance of memory or executive problems, we wanted to address how individual 

ability on a cognitive performance, separately, affects patterns of activation during the various stages 

of the WCST. To do this we performed correlation analyses on the BOLD data while performing the 

WCST, using cognitive scores of Montreal Cognitive Assessment test (MoCA) (Nasreddine et al., 

2005) at the subject level. MoCA is a validated 12-minutes test for screening MCI and is a sensitive 

measure of global cognitive profile and evolution. 

These analyses were performed across all participants combined (i.e. both MCI and non-MCI 

PD patients grouped) since these measures were used to define the two groups. Only predicted peaks 

reaching p < 0.001 uncorrected are reported. To investigate the evolution of performance on the 

MoCA and imaging measures over the follow-up period for PD in Time1 and Time2, we performed a 

Time 1 vs. Time 2 comparison correlated with the difference of MoCA scores between both sessions. 
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Results 

The behavioral results during fMRI 

At Time 1 mean error rates on the control condition was 3.2  3.0 % (non-MCI) and 2.0  

1.8% (MCI), and those on the WCST were 13.7  8.4% (non-MCI) and 20.5  7.2 % (MCI). A 

mixed-design repeated measures ANOVA (task x group) indicated that there were main effect of task 

(F = 90.2, p < 0.001), but no effect of groups (non-MCI vs. MCI: F = 2.96, p = 0.101).  There was a 

significant interaction between group and task (F = 8.58, p = 0.008). Post-hoc t-test showed MCI 

made more errors in WCST, compared to non-MCI (t = 2.37; p =0.028), but no difference in control 

task (t = 1.09; p = 0.289). 

At the time 2, mean error rates on the control condition were 3.4  2.9 % (non-MCI, with n 

=15) and 3.1  2.2% (MCI, with n = 7), and those on the WCST were 13.7  8.1% (non-MCI) and 

22.2  5.6 % (MCI). A mixed-design repeated measures ANOVA (task x group) indicated that there 

were main effect of task (F = 107.2, p < 0.001), and marginal effect of groups (non-MCI vs. MCI: F 

= 3.724, p = 0.068). There was a significant interaction between group and task (F = 9.54; p = 0.006). 

Post-hoc t-test showed MCI made more errors in WCST, compared to non-MCI (t = 2.50; p = 0.021), 

but no difference in control task (t = 0.227; p = 0.829). 

When all the subjects were considered (n = 22), repeated measures ANOVA (task x time) 

indicated a significant task effect (F = 91.27; p < 0.001), but no time effect (F = 0.100; p = 0.755). 

There is no interaction between them (F = 0.051, p = 0.823). Additionally, a mixed-design repeated 

measures ANOVA (task x time x group) indicated main effect of task (F = 78.2, p < 0.001), and 

significant interaction of task x groups (F = 5.571, p = 0.35). No group effect was observed (F = 
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2.125; p = 0.169). No other main effects (including the group effect) or no interaction was observed 

(p > 0.1). 

For the MCI group, a mixed-design repeated measures ANOVA (task x time) indicated no 

main effect of time (F = 0.547, p = 0.472), and no interaction between the time (F = 0.045, p = 

0.834). 

Imaging analysis  

While all contrasts analysis results were conducted, we selectively report the comparison 

RNF vs. RPF representing planning the set shift and MNF vs. MPF representing executing the set-

shift in the tables. Those two contrasts are the most representative for the whole brain analysis for 

both PD-MCI, PD non-MCI, similarly the correlation analysis for both groups. Specifically, planning 

the set shift contrast represents the cognitive loop, while executing the set shift contrast represents the 

motor loop. 

Planning the set-shift (table 3) 

When planning the set shift at Time 1, the PD-MCI group demonstrated significant activation 

peaks in the right dorsolateral PFC and the right posterior occipital cortex. At Time 2 PD-MCI 

revealed again significant activation peaks in the right dorsolateral PFC, however right ventrolateral 

PFC and the posterior parietal cortex (Brodmann Area 40, 7) also showed activations. Longitudinal 

changes in PD MCI group across the two time points (substracting Time 1 minus Time 2), revealed 

decreased activation peaks over time in cerebellum bilaterally and the right parahippocampal gyrus 

(BA 35) as well as increased activation peaks over time in the right superior parietal cortex/precuneus 

area (area 7), right precuneus (BA 7) and the right ventrolateral prefrontal cortex. 



45 
 
 

 

By contrast, at Time 1, PD non-MCI group demonstrated significant activity in the 

dorsolateral PFC bilaterally (PFC; BA 46, 9/46), right ventrolateral PFC (BA 47/12), medial PFC 

(BA 6, 8, 32, 32/8) bilaterally, posterior left parietal cortex (BA 7, 40), fusiform gyrus/extrastrital 

cortex (BA 37) bilaterally, left precuneus (BA 7), occipital visual areas bilaterally (BA 17, 18, 19), 

and in the left cerebellum. The activation observed in the left caudate nucleus was (t=3.69) 

corresponding to p<0.0001 non-corrected. At Time 2 PD non-MCI group similarly to Time 1 

demonstrated significant activities in the dorsolateral prefrontal cortex bilaterally (PFC; BA 46, 

9/46), ventrolateral PFC/insula bilaterally (BA 47/12, 13), medial PFC (BA 6, 8, 32, 32/8), posterior 

left parietal cortex (BA7, 40), left precuneus (BA 7), occipital visual areas bilaterally (BA 17, 18, 

19), and in the right cerebellum. Additionally, at Time 2, PD non-MCI activated medial PFC 

bilaterally (BA 6, 8, 32, 32/8), left lateral premotor cortex (junction of BA 6, 8 and 44), left superior 

prefrontal cortex corresponding to the frontal eye field, however, no temporal lobe (BA 37) 

activation was noticed, and the caudate nucleus did not reach a p value even as low as p<0.01 non 

corrected at Time 2. 

Longitudinal changes in PD non-MCI group across the two time points, revealed an decreased 

fMRI BOLD-signal intensity in postcentral gyrus (BA 3) over time, on the other hand, areas such as 

the right parietal cortex (BA 40, 7), medial PFC (BA 6, 8, 32, 32/8) bilaterally, and right superior 

PFC, showed increased BOLD-signal intensity over time. 

Executing the set-shift (table 4) 

When executing the set shift, at Time 1, PD-MCI group demonstrated positive activation 

peaks in the left occipital cortex (BA 17, 18, 19) and the cerebellum bilaterally. At Time 2 however, 

PD-MCI group showed positive activation of peaks in the left parietal lobe on the angular gyrus (BA 

39). Longitudinal changes in PD-MCI group across the two time points (substracting Time 1 minus 
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Time 2) did not reveal any decremented activation peaks over time, however, regions such as 

cingualate gyrus (BA 31), left cerebellum, showed increased activtiy over time. 

By contrast, non-MCI group at Time 1 showed significant activations in the left dorsolateral 

PFC (BA 46, 9/46), medial PFC (BA 32/8) bilaterally, ventrolateral PFC (BA 47/12) bilaterally, the 

left parietal cortex (BA 40, 7), anterior PFC (BA 10) bilaterally, the occipital visual areas (BA 17, 18, 

19) and the cerebellum bilaterally. At Time 2, PD non-MCI revealed significant activation in the 

dorsolateral PFC (BA 46, 9/46) bilaterally, precuneus (BA 7) bilaterally, left superior PFC (BA 8). 

Engagement of putamen and posterior PFC was observed neither in MCI nor in non-MCI at both 

time points. 

Longitudinal changes in PD non-MCI group across the two time points revealed significant 

decrease in activation over time in hippocampus and parahippocampal gyrus (BA 19, 30) bilaterally, 

left the superior temporal gyrus (BA 22), right thalamus and left posterior/lateral thalamus. 

Furthermore, superior parietal cortex/precuneus (BA 7) bilaterally, the declive of the left cerebellum 

showed significant increased activation over time. 

Correlation analysis (table 5) 

We performed correlation analysis with MoCA scores for both MCI and non-MCI groups. 

Areas in the left occipital visual area (BA 18) and the cerebellum bilaterally were positively 

correlated with MoCA scores across the two time points for all participants . And areas in left ventral 

pallidum/amygdala, left posterior Putamen/claustrum, right anterior PFC (BA 10), right parietal 

cortex (BA 40, 7), superior/middle PFC were negatively correlated with MoCA scores across the two 

time points during planning the set-shift. By contrast, positive peaks in the right 

hippocampus/parahippocampal gyrus, ventral striatum and right cerebellum were negatively 

correlated with MoCA scores  across the two time points during executing the set-shift. 
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Discussion 

The aim of our study was to longitudinally follow up the brain neural activation of non-

demented PD patients with different level of cognitive impairment, undergoing an fMRI while 

performing the WCST. We predicted that PD-MCI and PD non-MCI would use alternative circuits in 

the brain to compensate with the cognitive decline. Our results showed that during planning the set 

shift, PD non-MCI was using the normal cognitive resources (by engaging the cognitive loop), but 

they also activated more cortical areas that are related to decision making over time such as the 

medial PFC, parietal lobe (BA 40, 7) and the superior PFC, whilst the PD-MCI group failed to 

engage these areas during planning the set shift. 

 Caudate head and body are essential to planning a novel action (DeGutis & D’Esposito, 

2007; Monchi et al., 2001; Rogers, Andrews, Grasby, Brooks, & Robbins, 2000). Fronto-striatal 

activation has been reported to be affected in those with solicited planning deficits as compared to 

those without in early PD with cognitive impairment and deficit in the dopaminergic system (Cools 

& D'Esposito, 2011; Ekman et al., 2012; Lewis & Barker, 2009). Using WCST protocol, Monchi and 

colleagues established the implication of a cognitive cortico-striatal loop including the ventrolateral 

PFC, the caudate nucleus, and the thalamus during the planning of a set-shift, and of a motor cortico-

striatal loop including the posterior PFC and the putamen during the execution of a set-shift in 

healthy young adults (Monchi et al. 2004). In cross sectional studies, MCI has shown decreased parts 

of the cognitive loop such as caudate as compared to PD non-MCI (Ekman et al., 2012; Monchi & 

Stoessl, 2012). 

Our results showed that during planning the set shift, activity in the caudate nucleus did not 

reach statistical significance at Time 2 as compared to Time 1 (t <3.87) for the non-MCI group. The 

MCI group however, did not activate the caudate nucleus at both time points during planning the set-
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shift. On the other hand, there was no involvement of putamen or posterior PFC observed in neither 

MCI nor non-MCI at both time points during executing the set-shift, both regions recruitments were 

previously reported in controls (Monchi et al., 2001) and in PD non-MCI (Nagano-Saito et al., 2014) 

during executing the set-shift. These results are consistent with the longitudinal findings that showed 

shrinkage over time in the caudate nucleus, putamen, and thalamus in PD (Hanganu et al., 2014). The 

results collectively illustrate the deterioration of the basal ganglia-thalamic function and deficient 

cognitive loop overtime for MCI group and to a lesser extent in the non-MCI group. 

Longitudinal volumetric results showing that amygdala and nucleus accumbens were the two 

structures that had a faster cortical thinning in PD-MCI, and the volume loss in these two structures 

over time correlated with MoCA scores in the non-demented PD and was driven by the PD with MCI 

group (Hanganu et al., 2014). Our results are in line with these findings, ventral striatum was 

positively correlated with MoCA scores overtime for the non-demented PD (MCI and non-MCI) 

during executing the set-shift. We predict that this is probably derived by the longitudinal volumetric 

changes in this area. 

Longitudinally, PD non-MCI revealed during the planning set-shift an increase in activity in 

multiple cortical areas related to decision making such as the medial prefrontal cortex, lateral 

premotor cortex and areas related to the frontal eye fields which plays an important role in the control 

of visual attention and eye movements (Schall, 2004) such as superior prefrontal cortex. These areas 

did not show an increase in activation overtime in MCI. Furthermore, the anterior and the superior 

PFC showed a negative correlation with MoCA scores over time during planning the set-shift. 

Over-activity of the cortex can be observed in non-demented PD while performing a cognitive 

task when the striatum is not important for the task (Monchi, Martinu, & Strafella, 2010). Areas such 

as anterior cingulate gyrus, parietal cortex and PFC have a role in the executive processes (Asari, 

Konishi, Jimura, & Miyashita, 2005; Banich, 2009; Carter et al., 1998); furthermore, the striatum 



49 
 
 

 

receives inputs from various cortical regions (Alexander, DeLong, & Strick, 1986; Parent & Hazrati, 

1995), so that nigrostriatal degeneration might virtually alter the activity of many of these regions. 

Whether this is reflecting a deterioration of the mesocortical system or even a loss of focus in 

the cortical neural activity due to a secondary dopamine deficit (Javoy-Agid & Agid, 1980; 

Sawaguchi & Goldman-Rakic, 1994) or subsequently representing a compensatory mechanism 

(Dagher, Owen, Boecker, & Brooks, 2001; Samuel et al., 1997); is yet to be determined. Hypo-

metabolic cortical areas have been reported in patients with PD and multi-domain MCI compared to 

PD non-MCI in anterior cingulate gyrus, lateral frontal, parietal, temporal, occipital cortices (Lyoo, 

Ryu, & Lee, 2010). Longitudinally MCI exhibit higher rate of cortical thinning in the temporal, 

occipital, parietal and supplementary motor area compared with both cognitively stable patients and 

healthy controls (Hanganu et al., 2014). Having said that, we speculate that due to sufficient 

cognitive resources in non-MCI PD patients, compensation can occur in many parts of the cortex. On 

the other hand, once the cognitive impairment takes place, cortical activations tend to be globally 

reduced in PD patients as they are undergoing a more extensive dopamine deficit or a mescortical 

involvement.  

Medial temporal lobe structures (MTLS) atrophy including hippocampus is considered a 

predictor in other non-PD MCI (Apostolova et al., 2010; Apostolova et al., 2006; Sencakova et al., 

2001). Postmortem data showed hippocampal involvement in cognitively intact PD patients 

(Bertrand et al., 2003).  MTLS atrophy was found in MCI as compared to non-MCI (Burke, Dauer, & 

Vonsattel, 2008; Jokinen et al., 2009; Weintraub et al., 2011) with correlation to cognitive function in 

this group (Jokinen et al., 2009).  

Furthermore, Metabolic studies reported increased hippocampal activation while motor 

planning in non-demented PD (Beauchamp, Dagher, Panisset, & Doyon, 2008; Dagher et al., 2001; 

Moody, Bookheimer, Vanek, & Knowlton, 2004) and recruitment the hippocampus for working 
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memory task while failing to engage the striatum (Ekman et al., 2014). It was suggested in a 

longitudinal PET study that the lack of mid-temporal compensatory activation might be a predictor of 

PD-dementia (Carbon et al., 2010). Our results came in line with these findings; and with our 

previous study which showed that activity in the hippocampus, anterior PFC and medial PFC were 

positively correlated with RALVT scores in non-demented PD (Atsuko Nagano-Saito et al., 2014). In 

our current study we areas in MTLS decreased in activity over time in MCI group while planning the 

set-shift and in non-MCI group while executing the set-shift. Areas in the MTLS were positively 

correlated with MoCA scores while executing the set-shift. It is a possibility that when PD patients 

are cognitively intact, they tend to recruit the medial temporal lobe structures (MTLS) including the 

hippocampus, to compensate the fronto-striatal deficit, this explanation can account for the increase 

in the hippocampal activity in early PD.  

In conclusion, our results show important neural changes in PD-MCI patients when compared 

with PD-non-MCI group. Specifically, PD-MCI failed to engage the areas of medial PFC, parietal 

lobe (BA 40, 7) and the superior PFC during planning the set shift. Yet more work in this area is 

definitely warranted. It is important to establish whether functional and anatomical changes medial 

temporal and cortical structures put the PD non-MCI at increased risk for cognitive decline and PD-

MCI at risk of dementia. 
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Figure 1:  significant activations in the contrast receiving negative feedback minus control 

feedback (planning the set-shift) Time 1 vs. Time 2. 
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Figure 2: significant activations in the contrast of matching after negative feedback minus 

control matching (Executing the set-shift) Time 1 vs. Time 2. 
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Figure 3:  significant activation peaks with correlation analysis with individual MoCA scores across 

all patients. 
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Discussion 

 Little is known regarding the course of the cognitive deterioration over time in 

PD. The primary objective of this thesis was to longitudinally assess the effect of 

cognitive decline on the evolution of neural activity in early PD. We predicted that 

alternative neural circuits are recruited in early PD to compensate with the cognitive 

decline over time. We aimed to draw an outline of a distinctive pattern of neural circuitry 

recruitment between PD MCI and PD non-MCI groups with respect to their 

neuroimaging and neuropsychological measures. 

 In the previous chapter, we reported results of analysis of PD-MCI group at Time 

1 vs. Time 2, PD non-MCI group Time 1 vs. Time 2 and correlation analysis of both 

groups with MoCA scores across both time points. We conducted other analysis, for the 

six contrast of the task, reporting them however, was beyond the limits of the article, 

these analysis include: correlation analysis of PD-MCI group across the two time points 

with the corresponding difference in MoCA scores for PD-MCI group across the two 

time points, correlation analysis of PD non-MCI group across the two time points with 

the corresponding difference in MoCA scores for PD non-MCI group across the two time 

points correlation analysis of both MCI and non-MCI groups across the two time points 

with the corresponding difference of RAVLT scores across the two time points, 

correlation analysis of both MCI and non-MCI groups across the two time points with the 

error rates of both MCI, non-MCI groups while performing WCST and PD-MCI vs. PD 

non-MCI at Time 1 and at Time 2 and finally, correlation analysis of the slope of change 

in MoCA scores with the images of both MCI and non-MCI groups at Time 1. These 
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unreported contrast analysis generally came in line with the reported analysis in the 

article and supported our hypothesis. 

 Caudate head and body are essential in planning a novel action (Rogers et al., 

2000; Monchi et al., 2001; DeGutis et al., 2007). Fronto-striatal activation was reported 

to be affected in those with solicited planning deficits as compared to those without 

solicited planning deficits in early PD with cognitive impairment and deficit in the 

dopaminergic system (Lewis et al., 2003; Cools 2011; Ekman et al., 2012). Using the 

WCST protoco, Monchi and colleagues established the implication of a cognitive cortico-

striatal loop including the ventrolateral PFC, the caudate nucleus, and the thalamus 

during the planning of a set-shift, and of a motor cortico-striatal loop including the 

posterior PFC and the putamen during the execution of a set-shift in healthy young 

adults, (Monchi et al. 2004). In cross sectional studies, PD-MCI has shown decreased 

parts of the cognitive loop such as caudate (Ekman et al., 2012; Monchi et al., 2012) as 

compared to PD non-MCI. In agreement with these previous studies, our current study 

showed that areas in the cognitive loop (Caudate and ventrolateral PFC) were positively 

correlated with RAVLT for both MCI and non-MCI groups across the two time points, in 

Time 1 and Time 2 during planning the set-shift (unreported data). 

 Our results reveal that caudate nucleus activity showed a tendency to decrease 

over time in the non-MCI group, while in the MCI group, caudate activity was not 

observed at either of the two time points. Likewise, the thalamus was not activated at 

either time points for both the MCI and the non-MCI group during planning the set shift. 

On the other hand, there was no involvement of putamen or posterior PFC observed in 
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neither the MCI nor the non-MCI group at both time points during executing the set-shift. 

These patterns of neural activity were collectively different from those previously 

observed in healthy control individuals (Monchi et al., 2004) and may reflect an over 

time deterioration of the basal gangila-thalamic function and a resultant deficient 

cognitive loop in early PD. 

 We observed that PD non-MCI individuals were not only still using some 

cognitive resources during planning the set-shift (which requires engaging the cognitive 

loop), but they rather activated more cortical areas that are related to decision making 

over time such as the medial PFC, parietal lobe (area 40, 7) and the superior PFC. Whilst 

the MCI group failed to engage these areas during planning the set shift, these areas were 

negatively correlated with MoCA scores over time across both groups and negatively 

correlated with RAVLT for both PD-MCI and PD non-MCI at Time 2 during planning 

the set-shift (unreported data). Interestingly enough, these areas were positively 

correlated with rate preservative errors participants’ committed while performing the task 

in Time 2 (unreported data). These results are consistent with the hypometabolic cortical 

areas previously observed in PD-MCI (Lyoo et al., 2010) and with the longitudinally 

observed thinning of multiple cortical areas in PD-MCI compared to cognitively intact 

PD patients and healthy controls (Hanganu et al., 2014).  

 We propose that cognitively intact PD patients engage the aforementioned cortical 

resources when these cortical areas are still operative to compensate with the functional 

changes that PD attributes on the structures needed to perform a certain cognitive task, 
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however, as cognitive impairment become more significant, PD patients tend to fail to 

recruit these cortical areas. 

 To conclude our hypothesis, we propose that failure of the PD-MCI group to 

engage cortical areas that PD non-MCI group recruited over time while performing 

WCST may draw a distinctive line between the patterns of neural activity observed in 

PD-MCI and that of PD non-MCI. Furthermore, it may reflect a predictive parameter for 

a global functional deterioration observed in PD dementia. It will be interesting to 

observe these cortical neural activation patterns at another stage of follow up (Time 3) to 

confirm this conclusion. 

  Medial temporal lobe structures (MTLS) atrophy has been heavily investigated 

and considered a predictor of dementia in AD patients with mild cognitive impairment 

(Sencakova et al., 2001; Apostolova et al., 2006b, 2010a,c). Furthermore, studies using 

structural MRI showed MTLS loss of volume in PD dementia (Nagano-Saito et al., 2005; 

Burton et al., 2004; Burton et al., 2005; Summerfield et al., 2005; Bouchard et al., 2008, 

Camicioli et al., 2003, Tam et al., 2005; Junque et al., 2005). However, whether MTLS 

atrophy can be specific to PD-MCI as opposed to non-MCI has been under debate in 

earlier studies. Some volumetric studies (Camicioli et al., 2004; Cordato, Duggins, 

Halliday, Morris, & Pantelis, 2005) did not report hippocampal atrophy in non-demented 

PD, while others did (Camicioli et al., 2003; Laakso et al., 1996) the discrepancy in these 

studies findings might be because the age of participants was younger in the studies that 

did not report hippocampal atrophy as opposed to those reported. Further work reported 

both structural (Brück et al., 2004; Jokinen et al., 2009; Weintraub et al., 2011) and 
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metabolic (Dagher et al., 2001; Moody et al., 2004; Beauchamp et al., 2008) alterations in 

PD-MCI.  

 It was of our interest to longitudinally analyze any probable implication of 

cognitive impairment in PD on the neural functional activity of MTLS in PD-MCI and 

PD non-MCI individuals. We speculated that PD is associated with specific functional 

alterations of neural activity in the areas of the MTLS over time, which possibly 

underlies the cognitive deficits related to disease evolution.  

 Engaging temporal lobe areas while performing a cognitive task to compensate 

for the compromised frontostriatal dysfunction is possible in early PD, as it has been 

reported that cognitively intact PD patients tend to activate hippocampus rather than the 

caudate nucleus while performing a spatial task (Dagher et al., 2001), and that the lack of 

the compensatory role of the mid-temporal region longitudinally might be a predictor of 

PD-dementia (Carbon et al., 2010). We propose that this over recruitment tends to cease 

along the evolution spectrum of the cognitive decline.  

 Our reported results are in agreement that when correlating change in RAVLT 

scores over time with image analysis of both MCI and non-MCI groups during executing 

the set-shift (unreported data), indicating that those who had better memory tend to 

activate MTLS for this task, and effect probably attributed to the non-MCI group as 

confirmed by correlating the RALVT scores of non-MCI group with the imaging analysis 

of non-MCI across the two time points (unreported data). It is a possibility that in early 

PD when individuals are cognitively intact the MTLS functions are preserved, and these 

areas can be recruited for the compensation process to take place. However, as the 
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disease progresses, these structures are less recruited over time. This explanation can 

account for the alteration in the MTLS neural activity that our participants expressed 

while performing our cognitive task. The decremented pattern of these alterations 

however, is consistent with the globally decremented volumetric alterations previously 

mentioned that the MTLS are experiencing over time in PD. 

 In the future, we will correlate these functional findings of the MTLS areas with 

the corresponding volumetric equivalents, in conjunction with the clinical and cognitive 

measures, to yield anatomo-functional correlates that are distinct for PD-MCI and PD 

non-MCI. And evaluate how combining these two modalities can predict the occurrence 

of dementia in PD. 

 Another possible extension of the present work will be to explore the effect of 

deep brain structures. Indeed, brain stem damage might be the first identifiable stage of 

PD neuropathology. This damage accounts for a variety of both dopaminergic and non-

dopaminergic dysfunction and that can attribute to the non-motor symptoms in PD. 

Therefore, an early detection of this damage might be helpful combined with other 

parameters in establishing a platform of an early diagnose of the disease.  

 Olfactory bulb, medullar oblongata and pontine tegmentum are the first areas to 

be affected by Lewy bodies (Braak et al., 2006). Noradrenaline is released from the 

adrenal medulla and in central nervous system noradrenergic neurons of the locus 

coeruleus. The locus coeruleues sends projections through the thalamus to cortical areas 

such as frontal, temporal and parietal areas. Therefore, a degeneration of locus coeruleus 
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might affect executive processes due to noradrenergic deficit (Vazey and Aston-Jones 

2012). Patients with PD commonly demonstrate cortical cholinergic dysfunction that is 

more pronounced in PD-dementia (Bohnen et al., 2003). In a previous work using VBM, 

at our laboratory a single cluster in the brainstem was identified, between the pons and 

the medulla oblongata, which differed significantly between PD and healthy controls 

(Jubault et al., 2009).  

 Our results are in line with these findings; we found that activity in the lateral 

posterior thalamus declined overtime in non-MCI group while executing the set-shift. 

This provides another evidence for primacy of brainstem structural abnormality in PD.  

 Areas in the posterior putamen were negatively correlated with MoCA scores 

during planning the set-shift in for both MCI and non-MCI, and also negatively, this 

result was replicated when correlating both MCI and non-MCI with the corresponding 

RAVT scores over time (unreported data). When we performed correlation analysis of 

MoCA scores with the MCI over time, we found the very same pattern (unreported data), 

This pattern was absent when correlation analysis was performed for the non-MCI group. 

Therefore, We expect that this pattern was derived by the MCI group. One possible 

explanation for this might be due to the anterior to posterior pattern of dopaminergic loss 

across the striatum, which makes early PD individuals recruit the posterior putamen 

rather than the caudate for this part of the task, because it might be the only striatal 

structure preserved as the cognitive decline evolves. 
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 Thus, considering our results, we predict that in cognitively intact PD individuals, 

the early presence of cognitive deficits accompanied by an under recruitment of MTLS 

and/or the ventral striatum, with an over recruitment of cortical areas related to decision 

making such as the medial and posterior PFC, longitudinally detected by fMRI; are more 

predictive of future cognitive decline than the presence of cognitive deficits alone.  

  Our research provides an opportunity to understand how cerebral functional 

changes affect cognition and cognitive decline over time in PD stratified by distinct 

cognitive profiles. The strength of this research lies in its longitudinal design and 

collection of numerous neuropsychological measures that helped to reveal consistent 

results, which collectively promise to yield new markers for the early prediction of 

dementia in PD.  

 Yet more work in this area is definitely warranted. It is important to establish in a 

large multifaceted longitudinal project whether functional and anatomical changes medial 

temporal and cortical structures put the PD non-MCI at increased risk for cognitive 

decline and PD-MCI at risk of dementia and to assess the role of dopamine in the 

suggested compensatory mechanism. All will ultimately improve diagnosis and prognosis 

of cognitive impairment and dementia in PD. Finally, this will inform interventions and 

treatment strategies tailored for different cognitive profiles in PD before the occurrence 

of dementia.  
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CHAPTER 4 

 

Conclusion and future directions 
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 Our study is part of a PCAN laboratory longitudinal project that aims to enhance 

our understanding of the nature and evolution of cognitive dysfunction in PD. Combined 

with other measures, this information has the potential to enhance the use of biomarkers 

such as neuroimaging clinically and can alter our understanding of the diagnosis and 

prognosis of cognitive dysfunction in PD; additionally it gives a chance to an early 

prediction of dementia in PD. This will ultimately yield intervention and treatment 

strategies tailored to this particular group of patients, targeting improving cognitive 

impairment and slowing down their deterioration. 

 Our study was longitudinal follow up of non-demented PD patients, with 

comprehensive repeated neuropsychological assessments and prospective repeated 

evaluations of participants with precise inclusive and exclusive criteria. The diagnostic 

criteria adopted were in line with the recent published PD-MCI diagnostic criteria. 

 The relatively limited PD-MCI sample was one of our study’s limitations 

considering that we encountered cognitive changes of the participants from cognitively 

impaired to normal cognition and to dementia. Small sample size affects the ability to 

generalize the findings to the general PD-population. These conversions however have 

been Previous reported in other longitudinal studies, 14 to 41 percent conversion of MCI 

to non-MCI in non-PD population (Boyle et al., 2006; Larrieu et al., 2002; Manly et al., 

2008) and in PD populations (Pedersen et al., 2013). Falling in that range, we reported 

two conversions of MCI to non-MCI across the two time points. We propose that these 

conversions could possibly be attributed to learning effect of the repeated 

neuropsychological tests or simply due to a general improvement in the global cognitive 
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condition of participants after initiation of therapy (Kehagia et al., 2010; Pedersen et al., 

2013). 

 Although the comprehensive neuropsychological tests that were used, allowed the 

subtyping of the PD-MCI and non-MCI, a larger cohorts would have given a chance to 

compare different subgroups of PD patients stratified according to their cognitive profiles 

such as those who suffer amnesic and executive or mixed profiles dysfunction, 

delineating these different profiles would have shed the lights on the related different 

outcomes that could reflect different pathological processes predictive of dementia in PD. 

 Some might argue that age might drive some effects, our MCI group was slightly 

older than PD Non-MCI group but covarrying the age at time one did not affect the 

results  (Nagano-Saito 2014). 

 Future work will focus on distinguishing which cognitive MCI subtype are most 

predictive of dementia in PD, it will also aim to distinguish between the cognitive and 

neural characteristics that are specific to PD-MCI subjects as opposed to characteristics 

shared by all MCI subjects whether due to PD or other non-PD etiologies such as AD.  

 Other longitudinal studies with longer and more repetitive follow up periods are 

warranted to further examine in a long-term perspective, the prognosis of PD-MCI, their 

pathological correlates and their influence on developing dementia. Furthermore, 

combining multiple modalities to assess PD-MCI such as resting state functional 

connectivity analysis and volumetric studies will aid to draw a bigger picture about the 
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evolution of the MCI and identify anatomical and functional MRI patterns that can be 

used in combination with the clinical and cognitive measures for the early prediction of 

dementia.
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Annex I—INFORMED Consent form for Patients with Parkinson’s disease 

participating in a research project 

At the Unité de Neuroimagerie Fonctionnelle (UNF) Magnetic Resonance Imaging 

Unit 3.0 T – Institut universitaire de gériatrie de Montréal (IUGM) 

 
TITLE OF THE RESEARCH PROJECT 

 

Investigation of cognitive and motor impairments evolution in Parkinson’s disease 

 

INVESTIGATORS 

 

Principal investigators:  Dr. Oury Monchi, CRIUGM 

     Dr. Alain Ptito, MNI 

 

Collaborators :    Dr. Antonio Strafella, University of Toronto 

     Dr. Anne-Louise Lafontaine, MNI 

     Dr. Michel Panisset, Hôtel-Dieu 

     Dr. Rick Hoge, CRIUGM 

Dr. Thomas Jubault, CRIUGM (post doc) 

     Dr. Laura Monetta, CRIUGM (post doc) 

FUNDING ORGANIZATION 

 

CIHR 

 

PREAMBULE 

 

We request your participation in a neuroimaging research project. However, before accepting to 

participate in this research project, please take the time to read, understand and consider carefully 

the following information. 

 

The goal of this study is explained to you in this informed consent form; also, the procedures, the 

advantages, the risks, the inconvenience, as well as the contact information of resource people 

you can communicate if needed.  

 

The informed consent form may contain words that you will not understand. We invite you to ask 

any questions to the researcher or members involved in the project, to explain or clarify any 

words or information. 

.1. Presentation of the research project and objective 

 

You are invited to be involved in a research project that seeks to understand the origin and the 

evolution of cognitive and motor deficits in Parkinson’s disease.  

This study will last 3 years and include 45 Parkinsonian subjects and 20 controls. The 

involvement of participants with Parkinson’s Disease in this study will last 3 years, and 2 weeks 

for the control participants. 

This research project is divided in two parts. The neuropsychological part will take place at the 

Montreal Neurological Institute in Dr. Alain Ptito’s laboratory. The neuroimaging part will take 

place at the Unité de Neuroimagerie Fonctionnelle of the Institut Universitaire de Gériatrie de 

Montréal. 
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NATURE AND DURATION OF YOUR PARTICIPATION IN THE RESEARCH PROJECT 

 

In the neuropsychological part of the study, you will be invited to the Montreal Neurological 

Institute, in Dr. Alain Ptito’s laboratory. You will be administered a series of test that will 

evaluate your language, memory, motor, planning and reasoning performances. These tests will 

last about  3 hours, and you will be allowed to take a pause.  

 

For these tests, we will ask you to refrain from taking your medication from the night before the 

session at the Montreal Neurological Institute.  

 

In the neuroimaging part of the research project, you will be invited at the Unité de 

Neuroimagerie Fonctionelle (UNF) of the Centre de Recherche de l’Institut Universitaire de 

Gériatrie de Montréal (CRIUGM). You will be administrated two MRI exams in the same day.  

We will ask you to refrain from taking your medication from the night before the session at the 

UNF. 

Once on the site, you will be trained on a task where you have to classify cards appearing 

on a video monitor. This training session will last less than 45 minutes. 

Following this, you will be administrated the first scanning session. You will execute the 

task you have been trained on inside the scanner, which will allow us to capture images of you 

brain while performing the task. The length of this first scanning session will be less than an hour.  

You will be then allowed to take your medication, and rest for a one to two hours period. 

Finally, you will be administrated another scanning session, which will allow to produce 

highly detailed images of your brain. You will only have to lay still inside the scanner, and you 

will not have any task to do. This second scanning session will last less than one hour. 

The total duration of your participation in the neuroimaging part of the project will be less than 3 

hours. 

 

You will be invited to take the same tests 18 months and 36 months after the beginning of the 

study. 

 

Since your involvement in the study implies that you do not take your medication during a certain 

amount of time, we ask you to take a taxi to come to the MNI or the CRIUGM, or that someone 

drive you on that day. 

 

WHAT IS MAGNETIC RESONANCE IMAGING (MRI) 

 

MRI is a medical technique that produces clear and detailed pictures of the brain and internal 

organs. It can also perform functional assessments. It is based on a natural force present around 

us: the magnetism. It uses a strong magnetic field generated by a large big magnet. 

 

MRI allows us to study not only the anatomy but also the function of the brain. In this case, the 

MRI permits us to see the areas of the brain which activate when a person performs a specific 

task. The task may involve motor, sensory, or cognitive components. When performing a motor 

task for example, the participant may be asked to move their fingers. During a cognitive task, a 

participant may be requested to do some mental calculations, read a word or look at photographs. 

When the participant is performing the task, there is a local increase in oxygenated blood flow in 

the brain areas responsible for the task. This local increase in oxygenated blood flow in turn 

causes a local increase in MR signal over activated brain areas and this increase in MR signal is 

detected by the MRI machine.  
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For the MRI, you must lie on a table confined to a small space inside a cylindrical machine, 

which uses magnetic fields and radio waves to take pictures of your brain. It is extremely 

important that you do not move during the procedures. The tunnel is open at both ends. The 

tunnel is well ventilated and well lit. An intercom system allows communication between the 

participant and the operator. For you comfort, you will be requested to put on an headphone, 

earplugs will be provided for hearing protection, the MRI makes a loud knocking sound when 

images are being acquired. It is important that the participant remains still during the imaging 

session. Positioning cushions will be placed around the head to help the participant maintain the 

position. No substance will be injected during the imaging session.  

 

ADVANTAGES OF THE PROPOSED STUDY 

 

There are no direct advantages from participating in this research project. However, the 

knowledge acquired will contribute to a better understanding of the origin and the evolution of 

motor and cognitive deficits in Parkinson’s disease. 

 

INCONVENIENCES OF THE PROPOSED STUDY  

 

As you stop taking the anti-Parkinsonian medication, some symptoms linked to the disease may 

reappear. Please note than when you will take back your treatment after the first scan, those 

symptoms will return to their usual level. 

 

The neuropsychological part of the research project requires a large amount of concentration, and 

you may experience fatigue. 

 

The requirements imposed by the use of magnetic resonance imaging may cause certain 

discomfort due to the need to remain still during the length of the examination and the noise 

which is generated by the MRI when images are being acquired. You may also feel a certain 

sense of stress or anxiety or a sense of claustrophobia. 

 

RISKS ASSOCIATED TO THIS RESEARCH PROJECT 

 

According to the latest knowledge there is no known health risk associated with the use of this 

technique when all the necessary steps of precaution are taken. 

 

Due to the strong magnetic field emitted by the MRI, it is necessary to take certain precautions. 

This is why before participating in a MRI session you must complete two detailed screening 

forms in order to detect any contra-indications before submitting to an examination, for example, 

a cardiac pacemaker, an aneurysm clip, a metal prostheses or cardiac valve replacement, the 

presence of metal in an eye or any part of the body, tattoos, body piercing, certain dental work or 

if you suffer from claustrophobia. Pregnant women and those who are lactating are not permitted 

to participate in an MRI research study (see annexed questionnaire). 

 

Verification of the presence of the contra-indications will be strictly reinforced by the 

technologist on duty at the Unité de Neuroimagerie Fonctionnelle. 

 

 

RISKS ASSOCIATED WITH PREGNANCY 

 

Some recent studies suggest that MRI could entail certain risks for embryo and foetus health. 
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These risks are attributed to the radiofrequency magnetic field that may cause heating, as well as 

the gradient fields that can produce a lot of noise from their interaction with the static magnetic 

field. Consequently, pregnant and breast-feeding women are excluded from the study. Women 

that could potentially become pregnant must take a pregnancy test before participating in this 

study. 

COMPENSATION IN CASE OF INJURY 

 

In the event of complications resulting from your participation in this research project, you will 

receive all the necessary medical care, at no cost. 

 

FINANCIAL COMPENSATION 

 

You will receive financial compensation for time and inconvenience: 80 dollars for the 

neuroimaging part of the research project, and 60 dollars for the neuropsychological part. 

 

REFUSAL OR WITHDRAWAL OF YOUR PARTICIPATION IN THIS RESEARCH PROJECT 

 

It is understood that your participation in this research project is voluntary and that you are free to 

withdraw from the research project without prejudice. Withdrawing from a research project will 

not affect, in any fashion, the services, care or treatment you have or will be offered. 

 

TERMINATION OF PROJECT BY THE RESEARCHER 

 

A research project may be interrupted or terminated by a researcher for any reason. 

 

ACCESS TO YOUR MEDICAL FILES 

 

Do you give permission to the individuals responsible, who are associated with this research 

project, authorization to consult your medical files? Yes      No  

 

INFORMATION RETURN AND AUTHORIZATION TO TRANSMIT THE RESULTS 

 

Research scans are not subject to any medical evaluation and the brain imaging procedures used 

in this study are neither a diagnostic test nor a treatment. However, the examination of your brain 

by magnetic resonance could highlight problems that you have not been aware of up until now. In 

the presence of any particularity of concern at the time of your examination, you will be invited to 

undergo a new examination with a scanner at 1.5 Tesla for verification. Upon the confirmation 

for an anomaly, a neurologist will forward these data to your family doctor for follow-up. 

 

I authorize the researcher of the present project to transfer the results of my evaluation to my 

family physician should there be any incidental findings that require medical attention: 

 

Yes      No  

 

Name and address of the physician: ______________________________________ 

 

CONFIDENTIALITY 
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During your involvement in the project, the principal investigator of the project and his 

collaborators will collect information about you and store it in a research file. Only information 

necessary to the research project will be collected. 

 

That information can include partial data from your medical file about your past and present 

health, your life habits as well as the results from the tests, exams and procedures that you will 

undergo during your involvement in the research project. Your file may also include information 

such as your name, gender, date of birth and ethnicity. 

 

All information collected in this project will remain confidential in the strict respect of the law. 

Personal information such as name and address will be coded. All documents will be preserved in 

locked files at the CRIUGM, in Dr. Oury Monchi’s laboratory. Only the members of the research 

team will have access to these files. MRI data will be anonymized according to standart UNF 

procedures. 

 

The principal investigator will use the data of the research project in order to meet its scientific 

purpose as described in this consent form. Personal information will be destroyed 5 years after the 

completion of the study. 

 

Should the results be published in scientific or medical journals, or shared with peers in scientific 

meetings, you will not be identified by name. Your identification and personal information will 

not be released to a third party. 

 

However, for verification purposes, an exception would be made for the Comité mixte d’éthique 

de la recherche of Regroupement Neuroimagerie/Québec (CMER-RNQ) or the funding 

organization. Members of these committees seek to respect the requirements for confidentiality. 

 

In order to protect you and to communicate with you, your identification, address, and the dates 

of your involvement in the research study will be available for one year, in a file stored by the 

principal investigator or by the research center.  

 

You are allowed to read through your research file in order to check the accuracy of information 

collected as long as this file is available. However, you will have limited access to this 

information as the study comes to an end.  

 

LEGAL RIGHTS 

 

By signing this informed consent form, you do not waive any of your legal rights nor do you free 

the researcher, the sponsor, the funding organization and the establishment where the project 

takes place of any civil and or professional responsibilities. 

 

SOURCE OF FUNDING FOR THE PROJECT 

 

The researchers were granted with funding from CIHR to conduct the present project. 

 

ACCESS TO THE RESEARCHERS 

 

If you have any questions concerning the research project or if you believe you feel that a health 

problem related to you participation in it, you are able to communicate with the researchers 
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responsible for the study: Dr. Oury Monchi, 514 340-3540, extension 4013, and Dr. Alain Ptito, 

514 398-8906. 

 

EMERGENCY PROCEDURES  

 

Please note that the Institut universitaire de gériatrie de Montréal is not a hospital that provides 

short-term care under the supervision of doctors 24 hours per day. Consequently, in case of a 

medical condition requiring an immediate action, the first care would be offered by the 

employees on site and, if necessary, actions would be taken in order to transfer you to the 

emergency service of a nearby hospital. 

 

CONTACT INFORMATION 

 

For all problems concerning the conditions in which the research project you participated in took 

place, you are able, after having discussed with the person responsible for the project, to 

communicate your concerns to the person responsible for complaints at the Institut universitaire 

de gériatrie de Montréal at the following address: The local service quality and complaints 

commisionner, Institut universitaire de gériatrie de Montréal, 4565, chemin Queen-Mary, 

Montréal (Québec) H3W 1W5. Tel. : (514) 340-3517 

 

INFORMATON ON ETHICS 

 

The comité mixte d’éthique de la recherche of Regroupement Neuroimagerie/Québec has 

approved this research project and ensures the rules of ethics will be respected during the entire 

research project. For more information, you may contact the secretary of the research ethics 

committee at (514) 340-2800 local 3250. 

If you have any questions regarding your rights as a research subject and you wish to discuss 

them with someone not conducting the study, you may contact the Montreal Neurological 

Hospital, Patient Ombudsman at 514 934-1934, ext 48306. 

If you have any other kind of comments or concerns, or need assistance regarding your 

participation as a research subject in this project, please contact the MNH Patient’s Committee, 

room 354, tel. 514 398-5358. 



 

 

107 

PARTICIPANT'S CONSENT  

 

I have read the informed consent form, especially regarding the type of my participation in this 

research project and the risk related to it. I confirm that the procedures, the advantages and 

disadvantages as well as the risks associated with the study have been explained to me, that all 

my questions have been answered to my satisfaction and that I had enough time to make my 

decision. 

 

I, freely and voluntarily consent to participate in this project. I will receive a signed copy of this 

informed consent form. 

 

__________________________________

 ______________________________

__ 

Participant's Name   Participant's Signature  

 

 

 

RESEARCHER DECLARATION 

 

I, the undersigned __________________________________________, certify: 

 

having explained to the participant the terms of the informed consent form and having responded 

to the questions which have been asked and clearly indicated the terms of participation in this 

project described here. I will provide a signed copy of the informed consent form to the 

participant. 

 

 

____________________________________

 __________________________________

_ 

 Researcher's Name or his representative  Signature of the researcher or his 

representative 

  

 

Signed at ____________________________, on the___________________________________. 
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Annex—II: PRELIMINARY SCREENING FOR MAGNETIC RESONANCE IMAGING 

STUDY (MRI) 

 
Please print 

Last name : 

 

First name : 

Date of birth : 

 

(day/month/year) 

Sex : F     M  

Weight : ___ kg  ___ lbs 

Height : ___ m  ___ pi 

 

Investigator : Identification number : 

 

 

 

In order to ensure the safety of everyone having access to the area of Functional 

Neuroimaging Unit, it is of the utmost importance that this questionnaire be 

completed by the subject and investigator  
 

1. Have you ever had any previous operation? 

 No Yes If yes, please specify the type of surgery and the date : 

Head    

Chest or heart    

Abdomen    

Arms, hands    

Legs, feet    

Vertebral column    

Eyes    

Others : 

 

   

 

2. Are you carrying any of the following :   

Pacemaker? No Yes 

Cardiac electrodes?   

Aneurysm clip?   

Cochlear protheses? Hearing aid?   

Vascular filtre or catheter?   

Neurostimulator?   

Electrical stimulator for the bones?   

Prosthetic cardiac valve?   

Metal or metallic fragments in any part of the body? (e.g. bullet, shrapnel or metal 

silvers)? 
  

Insulin pump implant?   

Orthopedic prostheses? (e.g.: nail, screw, plate)   

Artificial limb(s)?   

Permanent make-up? Tattoo(s)?   

Body piercing?   
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Magnetic or non-magnetic implant(s)?   

Diaphragm or any intra-uterine devise (IUD)?   

Denture or orthodontics devises (e.g. braces)?   

Eye implant(s) or prosthesis?   

Transdermal patches (e.g. nitroglycerin patch)   

Others : 

 

 

 

3. Are you pregnant or do you believe you are?         no   yes 

4. If any doubt, do you accept to have a pregnancy test?  no  yes  

 

5. Do you suffer from claustrophobia?             no    yes 

 

6. Have you ever been injured by metal objects    no  yes 

  (e.g: car accident, work accident, war wounds) 

    If yes, please specify: ___________________________________ 

 

7. Have you ever had previous magnetic resonance imaging test? no    yes 

 

8. Have you ever been a: 

        Mechanist?                       no    yes 

        Welder?                         no    yes 

        Heavy machinary operator?            no    yes 

        Metal worker ?                  no    yes 

 

9. Do you have any respiratory or motor disorder?      no    yes 

 

I fully understand the procedures, advantages and disadvantages of the study using magnetic 

resonance imaging which have been explained to me. Further, the application safety measures 

have been fully explained to me and all my questions have been answered to my satisfaction. I 

certify that all the information provided above are correct and exact to the best of my knowledge 

and I freely and voluntarily consent to participate in this MRI study. 

 

___________________________________   _________________ 

Signature (participant/parent/legal sponsor)       Date 

 

___________________________________   __________________ 

Signature (physician/investigator)            Date 

_   _   _   _ 

 

 

 

Espace réservé 

    Participation autorisée :  non    oui 

    Investigation:      non     oui 
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Annex III—Brodmann areas 

 
Source: http://thebrain.mcgill.ca./flash/capsules/images/outil_jaune05_img02.jpg 

 
Source: http://upload.wikimedia.org/wikipedia/commons/thumb/5/58/Gray727-

Brodman.png/480px-Gray727-Brodman.png 

  

http://thebrain.mcgill.ca./flash/capsules/images/outil_jaune05_img02.jpg
http://upload.wikimedia.org/wikipedia/commons/thumb/5/58/Gray727-Brodman.png/480px-Gray727-Brodman.png
http://upload.wikimedia.org/wikipedia/commons/thumb/5/58/Gray727-Brodman.png/480px-Gray727-Brodman.png
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Annex IV—fMRI Wisconsin Card Sorting Task in young controls 

 

 

 

 

 

 

 

 
 


