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RÉSUMÉ

Simuler efficacement l’éclairage global est l’un des problèmes ouverts les plus im-

portants en infographie. Calculer avec précision les effets de l’éclairage indirect, causés

par des rebonds secondaires de la lumière sur des surfaces d’une scène 3D, est générale-

ment un processus coûteux et souvent résolu en utilisant des algorithmes tels que le path

tracing [1986] ou photon mapping [1996]. Ces techniques résolvent numériquement

l’équation du rendu en utilisant un lancer de rayons Monte Carlo.

Ward et al. [1988] ont proposé une technique nommée irradiance caching afin d’ac-

célérer les techniques précédentes lors du calcul de la composante indirecte de l’éclai-

rage global sur les surfaces diffuses. Krivanek [2005] a étendu l’approche de Ward et

Heckbert [1992] pour traiter le cas plus complexe des surfaces spéculaires, en introdui-

sant une approche nommée radiance caching. Jarosz et al. [2012] et Schwarzhaupt et

al. [2012] ont proposé un modèle utilisant le hessien et l’information de visibilité pour

raffiner le positionnement des points de la cache dans la scène, raffiner de manière signi-

ficative la qualité et la performance des approches précédentes.

Dans ce mémoire, nous avons étendu les approches introduites dans les travaux pré-

cédents au problème du radiance caching pour améliorer le positionnement des éléments

de la cache. Nous avons aussi découvert un problème important négligé dans les travaux

précédents en raison du choix des scènes de test. Nous avons fait une étude prélimi-

naire sur ce problème et nous avons trouvé deux solutions potentielles qui méritent une

recherche plus approfondie.

Mots clé: éclairage global, cache d’irradiance, cache de radiance, synthèse d’images,

lancer de rayon, rendu photoréaliste.



ABSTRACT

Efficiently simulating global illumination is one of the most important open prob-

lems in computer graphics. Accurately computing the effects of indirect illumination,

caused by secondary bounces of light off surfaces in a 3D scene, is generally an ex-

pensive process and often solved using algorithms such as path tracing [1986] or pho-

ton mapping [1996]. These approaches numerically solve the rendering equation using

stochastic Monte Carlo ray tracing.

Ward et al. [1988] proposed irradiance caching to accelerate these techniques when

computing the indirect illumination component on diffuse surfaces. Krivanek [2005]

extended the approach of Ward and Heckbert [1992] to handle the more complex case

of glossy surfaces, introducing an approach referred to as radiance caching. Jarosz et

al. [2012] and Schwarzhaupt et al. [2012] proposed a more accurate visibility-aware

Hessian-based model to greatly improve the placement of records in the scene for use

in an irradiance caching context, significantly increasing the quality and performance of

the baseline approach.

In this thesis, we extended similar approaches introduced in these aforementioned

work to the problem of radiance caching to improve the placement of records. We also

discovered a crucial problem overlooked in the previous work due to the choice of test

scenes. We did a preliminary study of this problem, and found several potential solutions

worth further investigation.

Keywords: global illumination, irradiance caching, radiance caching, image

synthesis, ray tracing, photo-realistic rendering.



CONTENTS

RÉSUMÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . .

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Image Synthesis and Rendering . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Global Illumination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

CHAPTER 2: PREVIOUS WORK IN GLOBAL ILLUMINATION . . . 4

2.1 Monte Carlo Integration . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Variance Reduction . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Monte Carlo Ray Tracing-based Approach . . . . . . . . . . . . . . . . 5

2.2.1 Path Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Photon Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Irradiance and Radiance Caching . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Irradiance Caching . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Radiance Caching . . . . . . . . . . . . . . . . . . . . . . . . 10



2.3.3 Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.4 Record Placement . . . . . . . . . . . . . . . . . . . . . . . . 12

CHAPTER 3: HESSIAN-BASED OCCLUSION-AWARE RADIANCE CACHING 13

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Introduction and Previous Work . . . . . . . . . . . . . . . . . . . . . 13

3.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 Irradiance Caching . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.2 Radiance Caching . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Record Placement Strategies in Irradiance Caching . . . . . . . . . . . 16

3.4.1 Heuristic-based Approaches . . . . . . . . . . . . . . . . . . . 17

3.4.2 Error-Estimation-based Approaches . . . . . . . . . . . . . . . 17

3.5 Occlusion-Aware Radiance Caching . . . . . . . . . . . . . . . . . . . 21

3.5.1 Occlusion-Aware Radiance Caching . . . . . . . . . . . . . . . 22

3.5.2 Second-Order Interpolation and Extrapolation . . . . . . . . . . 24

3.5.3 Record Valid Region and Error-Metric . . . . . . . . . . . . . . 25

3.5.4 Gradient and Hessian of Spherical Harmonic Coefficients . . . 29

3.6 Compute the Outgoing Radiance . . . . . . . . . . . . . . . . . . . . . 30

3.7 Outgoing Radiance Caching . . . . . . . . . . . . . . . . . . . . . . . 31

3.7.1 View-Independent Record Placement . . . . . . . . . . . . . . 32

3.7.2 View-Dependent Record Placement . . . . . . . . . . . . . . . 32

3.8 When Assumptions are Broken . . . . . . . . . . . . . . . . . . . . . . 34

3.8.1 Demonstration on a Test Case . . . . . . . . . . . . . . . . . . 35

3.8.2 Possible Solutions . . . . . . . . . . . . . . . . . . . . . . . . 38

3.8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.9 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 42

CHAPTER 4: CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . 44



BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

I.1 Definitions of Spherical Harmonic Basis Function . . . . . . . . . . . . xi

I.1.1 Spherical Coordinate System . . . . . . . . . . . . . . . . . . . xi

I.1.2 Cartesian Coordinate System . . . . . . . . . . . . . . . . . . . xi

I.2 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

I.3 Hessian Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii



LIST OF FIGURES

1.1 An illustration of a ray tracing. . . . . . . . . . . . . . . . . . . . 1

2.1 A comparison of three sampling techiniques. . . . . . . . . . . . 5

2.2 A comparison between bidirectional path tracing and stochastic

progressive photon mapping. . . . . . . . . . . . . . . . . . . . . 7

2.3 The decomposition of global illumination. . . . . . . . . . . . . . 8

2.4 A image of Cornell Box rendered by Hessian-based irradiance

caching strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Images of Cornell Box scene rendered by Krivanek [2005]’s radi-

ance caching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Minimum hit distance strategy in radiance caching. . . . . . . . . 16

3.2 Minimum hit distance strategy in irradiance caching. . . . . . . . 17

3.3 The 2D case analyzed by Schwarzhaupt et al. [2012]. . . . . . . . 19

3.4 A reconstructed occlusion free scene for a shade point in Cornell

Box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 The improvement of error using extrapolation. . . . . . . . . . . 24

3.6 The images of simplified Cornell Box: before and after extrapolation. 25

3.7 The images of Cornell Box: before and after extrapolation. . . . . 26

3.8 A comparison of the cache schemes between the first-order error

metrics and the second-order error metric. . . . . . . . . . . . . . 27

3.9 A comparison of between incident radiance caching strategy and

outgoing radiance caching strategy. . . . . . . . . . . . . . . . . 32

3.10 A comparison of cache scheme of outgoing radiance caching strat-

egy in different scenes. . . . . . . . . . . . . . . . . . . . . . . . 33

3.11 A example of fail cases of current radiance caching algorithms. . 34



3.12 This illustration explains why this assumption will cause the arti-

fact we observed above. . . . . . . . . . . . . . . . . . . . . . . 35

3.13 An illustration of the test scene. . . . . . . . . . . . . . . . . . . 36

3.14 Images of two test scenes rendered using radiance caching. . . . . 37

3.15 A comparison of images rendered with and without the assumption

on diffuse surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.16 A comparison of images rendered with and without the assumption

on glossy surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.17 A comparison on a glossy Cornell Box scene showing how miss-

ing term affects the results. . . . . . . . . . . . . . . . . . . . . . 39

3.18 Two images illustrating the contribution from current gradient term

and the missing term. . . . . . . . . . . . . . . . . . . . . . . . . 40



LIST OF APPENDICES

Appendix I: Gradient and Hessian of Spherical Harmonic Coefficients x



LIST OF ABBREVIATIONS

BRDF Bidirectional reflectance distribution function

BSDF Bidirectional scattering distribution fuction

BSSRDF Bidirectional scattering-surface reflectance distribution function

SH Spherical harmonics



I would like to dedicate this thesis to my father who has been a constant source of

support and inspiration to me.



ACKNOWLEDGMENTS

I would like to thank Derek Nowrouzezahrai, Laurent Belcour, Pierre Poulin, and

Wojciech Jarosz for their help during my master’s project.



CHAPTER 1

INTRODUCTION

A picture is worth a thousand words. Since the beginning of human culture, visual

perception has always been one of the most important means for conveying information.

After the invention of computers, we have never stopped trying to deliver a vividly virtual

world using them.

Computer graphics (CG) is a technology used to generate images using computers.

Its development has great influence on many aspects of society and industries, such as

films and video games.

1.1 Image Synthesis and Rendering

In computer graphics, rendering (also called image synthesis) refers to the process

of generating a 2D image from a description of a 3D virtual world. This description

includes all the necessary information to synthesize realistic images with rendering al-

gorithms: geometry of objects, surface interactions with light, virtual camera, properties

of incident lighting, etc. Geometry information includes the position and shape of all

virtual objects. Camera properties include the location of the virtual camera, its view-

Figure 1.1: An illustration of ray tracing page from Wikipedia.



ing direction, and an image plane divided into pixels. Lighting information includes the

position, shape, and emission of light sources.

A rendering algorithm gathers all the aforementioned information and calculates the

color of each pixel in the final 2D image. Several algorithms have been developed such

as rasterisation, ray casting, and ray tracing.

Rasterisation. Rasterisation is the rendering technique currently used by most video

games. It geometrically projects objects from the scene onto the image plane, and mod-

ifies the pixels it affects. Usually it is faster than pixel-by-pixel approaches, but the light

transport effects that it can simulate are limited.

Ray Casting. Ray casting is a basic rendering algorithm in computer graphics. It

traces rays from the viewpoint to the scene through the image plane, and computes the

closest intersection with objects. Using the information of the intersection, it is able to

compute the contribution of this ray to the pixel in the image plane.

Ray Tracing. Ray tracing is similar to ray casting, the main difference is that ray trac-

ing recursively traces rays from the intersection of primary rays. Ray tracing generates

images by shooting rays from the camera and recursively tracing paths of rays while

simulating light transport. Ray tracing algorithms are usually used to produce more

photo-realistic images. Compared to other rendering algorithms, such as ray casting and

rasterisation, ray tracing is able to physically simulate light transport effects that are cru-

cial to generating realistic images. Unfortunately, due to the large number of rays that

need to be traced, this technique is far from interactive.

1.2 Global Illumination

Image synthesis has shifted towards a physically based rendering model where light

transport is simulated using physical rules. This involves many aspects of rendering.
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Light interaction with surfaces in the scene is usually described by the bidirectional

reflectance distribution function (BRDF). A BRDF is a 4D function that takes incident

and outgoing directions as input, thus describing the reflectance of a surface. Because

it cannot simulate phenomena such as refraction and subsurface scattering, more so-

phisticated functions have been introduced: bidirectional scattering distribution function

(BSDF) and bidirectional scattering-surface reflectance distribution function (BSSRDF).

In this thesis, we will focus on another very important aspect: global illumination.

Global illumination refers to algorithms and techniques dedicated to accurately compute

the lighting in a 3D scene.

For an arbitrary point x, the radiance scattered towards direction ωo can be computed

by the integral of the contribution from hemisphere, plus the radiance it emits. This can

be expressed mathematically using the "rendering equation" proposed by Kajiya [1986]:

L(x,ωo) = Le(x,ωo)+
∫

Ω

L(x,ωi) fr(x,ωi,ωo)(n ·ωi)dωi (1.1)

where ωi and ωo are the directions of incident lighting and towards the camera, n is

the surface normal direction, f is the BRDF, Le is the radiance emitted toward the cam-

era, and L(x,ωi) is the incident radiance from direction ωi (this term is computed by

recursively using rendering equation).

Due to the complexity of the rendering equation, global illumination is very expen-

sive to compute and nearly impossible to solve analytically. A lot of research has been

dedicated to solve this problem, and we will give an overview of the work related to this

thesis in the next chapter.
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CHAPTER 2

PREVIOUS WORK IN GLOBAL ILLUMINATION

2.1 Monte Carlo Integration

In this thesis, we heavily rely on the Monte Carlo integration to numerically approx-

imate integrals. Monte Carlo integration is proposed by Metropolis and Ulam [1949] to

estimate the integral with a set of random samples. The random samples are generated

according to the probability density function (PDF).

Given an arbitrary function f (x) we want to integrate in the subset Ω.

F =
∫

x∈Ω

f (x)dx. (2.1)

The Monte Carlo integration estimates this integration by averaging the results eval-

uated at N samples of the function f :

〈FN〉= 1
N

N

∑
i=1

f (Xi)

pdf(Xi)
(2.2)

where Xi ∈Ω are random samples generated according to the probability density function

pdf(Xi).

We can easily prove that the expectation of 〈FN〉 is equal to F , which means 〈FN〉 is

an unbiased estimator of F . This is a very important property: by increasing the number

of samples N, 〈FN〉 becomes closer and closer to F . This ensures that with a sufficiently

large number of samples we can always get an estimation with the desired accuracy.

The major advantage of Monte Carlo integration is that it converges at same rate

O(
√

N) in any number of dimensions. But in many cases this performance can be greatly

improved by a variety of techniques.



2.1.1 Variance Reduction

As a non-deterministic approach, the variance of Monte Carlo integration with a

fixed number of samples relies on the choice of PDF. A PDF pdf(Xi) = c f (Xi) pro-

portional to the function f (x) being integrated, the variance of the estimator reduces to

zero in this perfect situation. However, the computation of the normalization constant

c requires solving the integral that we want to estimate. In practice we usually choose

a PDF close to f (x) in order to reduce the variance. Unfortunately, function f (x) can

be very complex in practice, or be a combination of several functions. In this case, we

can choose a PDF proportional to a portion of f (x). For example, for the integrand is

L(x,ωi) fr(x,ωi,ωo)(n ·ωi) in Equation 1.1, a cosine-weighted hemispherical sampling

can improve the convergence rate of path tracing. Veach and Guibas [1995] introduced

multiple importance sampling to generate samples according to a complex function. We

can thus generate samples according to multiple PDFs and combine their contributions

using multiple importance sampling.

Figure 2.1: A comparison of three images rendered with Monte Carlo ray tracer from
Veach and Guibas [1995]. From left to right: sampling the light source, sampling the
BRDF, combining the samples of the light source and of the BRDF.

2.2 Monte Carlo Ray Tracing-based Approach

It is nearly impossible to analytically solve the rendering equation due to its com-

plexity. Monte Carlo ray tracing provides an unbiased approximation of its solution
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with Monte Carlo integration. It has been proven that algorithms based on Monte Carlo

ray tracing are capable of solving the rendering equation accurately with a large enough

number of samples.

2.2.1 Path Tracing

One of the most intuitive Monte Carlo ray tracing algorithms is "path tracing", pro-

posed by Kajiya [1986]. It randomly generates a large number of rays from the camera

through the pixel, and recursively traces the path of each ray until it reaches a light

source. Then the contribution of this ray is evaluated and added to the pixel. The prob-

ability of a ray hitting a light source depends on the number, size, and position of light

sources, as well as the camera parameters and the distribution of objects in the 3D scene.

A scene with small lights may need an extremely large number of rays to reach a con-

verged result.

Lafortune and Willems [1993] introduced bidirectional path tracing to adapt path

tracing to scenes containing caustic effects. It traces ray paths both from the camera and

the light source, which makes it easier to find paths from camera to light source to render

caustics much more efficiently.

Inspired by genetic algorithms, Veach and Guibas [1997] proposed the Metropolis

light transport algorithm. New light paths are generated by mutating existing paths. This

algorithm is particularly good at handling localized illumination effects but relatively

weak at caustics scenes.

2.2.2 Photon Mapping

Photon mapping, introduced by Jensen [1996] is a two-pass global illumination al-

gorithm that uses the concept of photon maps. In first pass, it traces photons emitted

from light sources and stores them on the intersected diffuse surfaces to build a photon

map. In second pass, it traces camera rays and uses the photon map built in the previous

pass to estimate the radiance by interpolating from the nearest photons. Their results

6



Figure 2.2: A comparison by Georgiev et al. [2012] between bidirectional path tracing
(left) and stochastic progressive photon mapping (right) after 30 minutes of rendering.
Stochastic progressive photon mapping produces more noisy results and cannot handle
the illumination seen in the mirror. Bidirectional path tracing fails to capture the caustics
of the vase reflected in the mirror.

show significant improvement compared to previous approaches especially in scenes

with caustics.

This approach is further improved by Hachisuka et al. [2008]. They propose a multi-

pass rendering algorithm based on photon mapping, which solves the memory usage

problem present in the original photon mapping technique. This new approach is re-

ferred as progressive photon mapping. Knaus et al. [2011] present a new formulation

of progressive photon mapping that converts it in an unbiased approach and further im-

proves memory usage by avoiding to store any local photon statistics.

2.3 Irradiance and Radiance Caching

All the previously mentioned approaches focus on how to efficiently compute the

global illumination at a given shade point. We can also accelerate rendering by exploring

the space correlation between the shade points on surfaces.

Global illumination at shade point x on a surface can be divided into two parts: direct

illumination and indirect illumination. The direct illumination at shade point x refers to

the radiance contribution directly from light source. The indirect illumination refers to

7



the radiance contributed from light bounced off other surfaces in the scene:

L(x,ωo) = Le(x,ωo)+Ldirect(x,ωo)+Lindirect(x,ωo). (2.3)

The direct component of global illumination is relatively easy to compute since we

can explicitly sample light sources from the shade points. The indirect component, on the

other hand, remains difficult to compute because of the integration over the hemisphere,

but its contribution to the final image is relatively low. Therefore, computing indirect

illumination precisely for each sample ray is not very cost-effective.

Figure 2.3: From left to right: final image with global illumination, contribution from
direct illumination, and contribution from indirect illumination.

2.3.1 Irradiance Caching

Diffuse reflection is one of the simplest and common reflection models we use in

computer graphics. A diffuse surface scatters light according to Lambert’s cosine law,

so sometimes it is also referred to as a Lambertian surface. Mathematically, the BRDF

fr of a diffuse surface equal to a constant called albedo divided by π .

Solving the rendering equation on diffuse surfaces has the advantage of taking the

BRDF term out of the integral. On diffuse surfaces we can define the irradiance E by

integrating over the hemisphere:

8



E(x,n) =
∫
Ω

Li(x,ωi)(n ·ωi)dωi. (2.4)

Then the rendering equation on diffuse surfaces can be rewritten using irradiance and

surface albedo ρ(x):

Lo(x,ωo) = Le(x,ωo)+
ρ(x)

π
E(x,n). (2.5)

Ward et al. [1988] observed that the irradiance of indirect illumination changes very

slowly on diffuse surfaces due to the integration over the hemisphere. Based on this

observation, they propose irradiance caching to accelerate the computation of indirect

illumination on diffuse surfaces. The irradiance is only accurately computed by integra-

tion in sparse locations. The results are stored in records and reused to interpolate the

irradiance when possible.

Irradiance caching greatly accelerates the computation of global illumination be-

cause the cost of interpolation is negligible compared to hemispheric integration. This

property also causes image resolution to have very little impact on computing time. By

only placing records on visible surfaces, the computing power is only invested on visible

parts of a scene. Additionally, the cached irradiance is stored separately, which frees

irradiance caching from the geometry. Another major advantage is that it can be incor-

porated easily with other global illumination algorithms; for example, Ward et al. [1988]

used it to accelerate a Monte Carlo path tracer and Schwarzhaupt et al. [2012] used it in

photon mapping.

Irradiance caching is weaker at handling scenes with complex geometry, due to over-

sampling. Tabellion and Lamorlette [2004] have addressed this issue by using simplified

geometry with irradiance caching algorithms.
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Figure 2.4: A diffuse Cornell Box scene. Left: Hessian-based irradiance caching strat-
egy. Right: the reference image rendered by path tracing with 10240 samples per pixel.

2.3.2 Radiance Caching

After the success of irradiance caching, Krivanek [2005] extended this idea to han-

dle the more complex cases of glossy surfaces, introducing an approach referred to as

radiance caching. The main idea is similar, as the incident indirect radiance is only

accurately computed and stored in sparse locations. For nearby locations, indirect illu-

mination is computed using interpolation and extrapolation.

When extending irradiance caching to radiance caching, finding an efficient way to

represent the distribution of incident radiance over the hemisphere is very important. The

representation needs to be compact, yet the value at direction ω needs to be reconstructed

easily. An efficient rotation algorithm is also necessary for radiance caching.

In Krivanek [2005]’s work, he chose spherical harmonics, and his results show that

spherical harmonics is a very good fit for radiance caching. We decided to take the same

approach, using spherical harmonics to store radiance distribution over the hemisphere.

As our work heavily relies on spherical harmonics, we will introduce them briefly in the

next section.
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Figure 2.5: Images of Cornell Box scene from Krivanek [2005]’s dissertation. Notice
the floor is a glossy surface. Left: radiance caching. Right: reference image rendered by
path tracing.

2.3.3 Spherical Harmonics

Spherical harmonics are 1D Fourier series of spherical functions defined in spherical

coordinates, widely used in the area of physics. They were first introduced by Laplace

in 1782. In computer graphics, Sloan et al. [2002] have shown that spherical harmonics

are an efficient way to approximate spherical functions.

First we define a series of functions, spherical harmonic basis functions: y0
0(θ ,φ),

y−1
1 (θ ,φ), ... , ym

l (θ ,φ), ... , yl
l(θ ,φ), where l is a non-negative integer often referred to

as the order of spherical harmonics and m is an integer between −l and l. With a set of

spherical harmonic coefficients λ 0
0 , λ

−1
1 , λ 0

1 , ... , λ m
l , ... , λ l

l , we can approximate the

value of a spherical function f (θ ,φ) in a given direction.

f (θ ,φ) =
n−1

∑
l=0

M

∑
m=−l

λ
m
l ym

l (θ ,φ). (2.6)

The coefficients can be computed by projecting the spherical function onto the basis

functions:

11



λ
m
l =

∫
Ω

f (θ ,φ)ym
l (θ ,φ)d(ω). (2.7)

Spherical harmonic rotations are often required in computer graphics, and therefore,

several algorithms have been proposed to rotate spherical harmonic coefficients. Kautz et

al. [2002] efficiently perform the y-rotation by decomposing it into a zxz rotation. In the

work of radiance caching, Krivanek [2005] accelerates spherical harmonic rotation by

approximating the y-rotation with a first-order Taylor expansion. Later Nowrouzezahrai

et al. [2012] efficiently decompose each order-l spherical harmonic basis function into a

sum of 2l +1 rotated order-l zonal harmonic lobes.

2.3.4 Record Placement

Record placement is crucial to the performance of irradiance caching and radiance

caching, it refers to how we place the records in irradiance caching and radiance caching.

Many studies have optimized the record placement; for example, in recent work by

Jarosz et al. [2012] and Schwarzhaupt et al. [2012], a more accurate visibility-aware

Hessian-based model was proposed to greatly improve the placement of records in the

scene, significantly improving the quality and performance of the previous approaches.

The goal of this master thesis is to accelerate global illumination computations on

glossy surfaces by extending the visibility-aware Hessian-based model introduced in

these aforementioned work, in the context of radiance caching.
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CHAPTER 3

HESSIAN-BASED OCCLUSION-AWARE RADIANCE CACHING

3.1 Abstract

Radiance caching is an efficient approach to accelerate the computation of global

illumination on glossy surfaces, but it suffers from the absence of an efficient and high-

quality record placement strategy. Existing approaches are far from optimal and rely

heavily on clamping to avoid excessive records around scene edges. In a recent work on

irradiance caching Schwarzhaupt et al. [2012] propose a Hessian-based occlusion-aware

approach resulting artifact free image within a reasonable render time. In this paper, we

investigate how to extend their error metric to radiance caching and study several record

placement strategies.

3.2 Introduction and Previous Work

Efficiently simulating global illumination is one of the most important open prob-

lems in computer graphics. Accurately computing the effects of indirect illumination,

caused by secondary bounces of light off surfaces in a 3D scene, is generally an expen-

sive process that is often solved using algorithms such as path tracing [1986] or photon

mapping [1996]. These approaches numerically solve the rendering equation [1986]

using computationally intensive stochastic Monte Carlo approaches.

Ward et al. [1988] propose irradiance caching to accelerate these techniques when

computing indirect illumination on diffuse surfaces. Krivanek [2005] extends the ap-

proach of Ward and Heckbert [1992] to handle the more complex case of glossy sur-

faces, introducing an approach referred to as radiance caching. In the work of Jarosz

et al. [2012] and Schwarzhaupt et al. [2012], a more accurate visibility-aware Hessian-

based model is proposed to greatly improve the placement of records in the scene for



use in an irradiance caching context, thus significantly improving the quality and perfor-

mance of the baseline approach.

3.3 Background

As presented in Section 2.3, global illumination can be divided into two parts: direct

illumination and indirect illumination. The direct part can be more easily computed, and

therefore in this chapiter we only focus on the indirect component of global illumination.

3.3.1 Irradiance Caching

Irradiance caching exploits the fact that the indirect illumination component on a

diffuse surface changes slowly across the surface due to hemispheric integration. The

main idea of irradiance caching is that we compute and store the indirect irradiance

accurately only in sparse locations in the scene. The indirect irradiance is only estimated

at the other shade points in the scene by interpolating and extrapolating the information

stored in nearby records.

Generally, the records are generated by a greedy algorithm. For a shade point x, we

first find each record where x is inside its valid region A. A valid region of a record

can be defined by the maximum distance from the record, the maximum allowed normal

change, the relative position, and other criteria. Usually the valid region corresponds to

a circle or an ellipse. If one or more records are found, the indirect irradiance Ex at x is

estimated using these records:

Ex ≈
∑i∈A wi(x)E ′i

∑wi
(3.1)

where E ′i is the irradiance estimate given by record i, and wi is the weight of record i to

location x.

If x is outside all records valid regions, indirect irradiance Ex will be accurately

computed using path tracing or another global illumination algorithm, and a new record
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will be created at the current location x.

3.3.2 Radiance Caching

Given the success of irradiance caching, Krivanek [2005] extends it to handle low-

frequency glossy surfaces, introducing an approach called radiance caching. On glossy

surfaces, the reflected radiance Lr at shade point x toward direction ωo can be computed

by integrating over the hemisphere:

Lr(x,ωo) =
∫

Ω

Li(x,ωi) fr(ωo,ωi)(n ·ωi)dωi (3.2)

where Li(x,ωi) is the incident radiance from direction ωi and fr is the BRDF.

This approach uses the similar idea from irradiance caching: try to interpolate or

extrapolate the indirect component of incident radiance from the records when possible.

Figure 3.1 shows the performance of radiance caching with a minimum hit distance

strategy in a Cornell Box composed of five glossy surfaces. To handle glossy surfaces,

Krivanek uses spherical harmonics as an incident radiance representation, which allow

fast rotation and provide a smooth approximation of incident radiance. Let λ 0
0 , λ

−1
1 , λ 0

l ,

... , λ m
l , ... , λ

lmax
lmax

be the spherical harmonic coefficients of incident radiance. Using

Monte Carlo integration, these coefficients can be computed with Equation 2.7 as

λ
m
l =

1
N

N

∑
i=1

Li(ωi)ym
l (ωi)

pdf(ωi)
(3.3)

where ym
l (ωi) is the value of the spherical harmonic basis function in direction ωi, N is

number of samples used, and pdf(ωi) is the PDF used to generate random directions ωi.

The computation of the spherical harmonic coefficients is only needed in sparse lo-

cations. For the rest of the shade points the coefficients are rotated, then interpolated and

extrapolated. Once we have expressed the incident radiance in spherical harmonics, the

incident radiance from direction ωi can be easily reconstructed with Equation 2.6. Then
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Figure 3.1: Left: the ground truth of indirect illumination generated by path tracing with
10240 samples per pixel. Middle: final image generated by a minimum hit distance
strategy radiance caching without extrapolation. Right: the cache scheme generated
using the same strategy illustrating the distribution of the records. It uses about 12K
records and 8192 hemisphere samples per record. We can observe that with high amount
of records (e.g. 12K), this basic strategy can produce relatively high quality results, but
the artifacts are still visible.

the outgoing radiance can be computed using Equation 3.2. To simplify computations,

Krivanek rewrites the integral in Equation 3.2 as the dot product of coefficient vectors if

the BRDFs are projected onto the spherical harmonic basis functions (represented with

coefficient vector Φ). Let Λi(x) denote the incident radiance spherical harmonic coef-

ficients in vector form. Then Equation 3.2 becomes the dot product of two coefficient

vectors (the cosine term is included in the BRDF):

Lo(x,ωo) = Λi(x) ·Φ(x,ωo). (3.4)

3.4 Record Placement Strategies in Irradiance Caching

In irradiance caching, most of the computing time is spent on creating records. We

usually want to use fewer records while maintaining image quality. This can be achieved

by optimizing record placement and more accurately estimating the irradiance at shade

points. In this section we will focus on the previous work that improved record place-

ment.

16



3.4.1 Heuristic-based Approaches

Intuitively, we want to place more records at locations where irradiance varies rapidly.

It usually occurs at geometrically complex locations, such as around object edges. Thus,

the size of valid regions of records needs to be reduced at these locations.

Distances between a shade point and visible surfaces can provide a rough estimate

of the geometry’s complexity. Based on this observation, several heuristics have been

tested: the minimum hit distance during hemisphere sampling can be used to derive

the maximum radius of a record. We can also use the harmonic mean distance from

visible surface to a cache location. This heuristic is derived from the split-sphere model

proposed by Ward et al. [1988].

Figure 3.2: Left: the cache scheme generated by the minimum hit distance strategy in a
diffuse Cornell Box scene. Right: the associated rendered image.

3.4.2 Error-Estimation-based Approaches

Heuristic-based approaches tend to generate an excessive number of records around

edges and corners, and cannot detect incident lighting changes. We usually need to

clamp the radii of records to adjust the record placement.
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A more sophisticated approach controls record placement by limiting the support

area A by the upper bound total error ε t of a record. It is defined by the integral of the

difference between the correct irradiance and the extrapolated irradiance (The interpo-

lated radiance is introduced in Section 3.3.1.):

ε
t =

∫∫
A
| E(xi +∆x)−E ′(xi +∆x) | d∆x (3.5)

where E(xi+∆x) is the ground-truth irradiance at xi+∆x and E ′(xi+∆x) is the irradiance

extrapolated using records.

First-Order Error

Naturally, the ground-truth irradiance can be approximated by the first-order Taylor

expansion:

ε
t <

∫∫
A
| ∇x E(xi)∆x | d∆x. (3.6)

After further simplification, we get ε t < πR2 |∇xE(xi) |. To minimize the number of

records, we need to maximize the surface area of A, while respecting the upper bound

of error εmax within the area. Then the optimal isotropic radius can be derived with a

predefined maximum error εmax:

R =

√
εmax

π | ∇xE(xi) |
. (3.7)

Second-Order Error

Jarosz et al. [2012] propose to compute the second-order derivatives of indirect il-

lumination on diffuse surfaces which leads to a new irradiance error metric. Their new

error metric can dramatically improve record placement.

The key to improving record placement is to accurately estimate the variation of indi-

rect illumination. In this Hessian-based approach, they estimate ground-truth irradiance
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using second-order Taylor expansion. The error is expressed using the 2× 2 Hessian

matrix of irradiance on the tangent plane, and is reformulated with λ1 and λ2, the two

Eigenvalues of the Hessian matrix:

ε t <
1
2

∫∫
A
| ∆xT Hx(Ei)∆x | d∆x

= 1
2

∫∫
A

(
| λ1 | x2+ | λ2 | y2) dxdy.

(3.8)

To minimize the number of records, they maximize the surface area of A, while

respecting the upper bound of error ε t within the area. By inverting Equation 3.8, they

solve the two radii along each Eigenvector of the Hessian matrix:

(
Rλ1

i ,Rλ2
i

)
=

4

√
4ε t

π

(
4

√
1
| λ1 |

, 4

√
1
| λ2 |

)
. (3.9)

Improved Error Estimation with Occlusion Information

Figure 3.3: A simple 2D case analyzed by Schwarzhaupt et al. [2012] demonstrates how
to convert a scene with occlusion to a scene without occlusion, that is radiometrically
equivalent. We can observe that for every point x on the bottom surface of both scenes,
the distribution of irradiance is exactly the same.

With second-order error, the Hessian-based model increases accuracy and perfor-

mance of irradiance caching. But the Hessian-based metric neglects visibility changes

from each record. An investigation of 2D cases indicates that a occlusion-aware Hes-

sian could further improve irradiance caching. This idea is further investigated by
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Schwarzhaupt et al. [2012], who resolve this issue and improve the robustness of ir-

radiance caching in complex scenes with occlusions.

Figure 3.4: Two images from the work of Schwarzhaupt et al. [2012]. Left: the Cornell
Box rendered with the occlusion-aware Hessian approach. Right: the converted scene
(no occlusion) for a shade point x on the floor (indicated by the red dot in the left image).

The key insight of Schwarzhaupt et al. [2012]’s approach is to convert the scene with

occlusions into a radiometrically equivalent scene without occlusion for shade point x.

Inspired by the 2D case illustrated in Figure 3.3, they construct a triangulated environ-

ment by connecting nearby stratified hemispherical samples. Assuming a triangle is

small enough so that its exiting radiance is uniform, the irradiance can be computed by

summing the contribution from each triangle:

E(x,n)≈
M

∑
j=1

L4 j F4 j(x) (3.10)

where M is the number of triangles, L4 j is the exiting radiance, and F4 j(x) is the solid

angle covered by triangle 4 j which is also referred to as a form factor. Here L4 j is

approximated by the radiance from the farthest point of the triangle to x.

The gradient and the Hessian irradiance can be easily computed by summing the
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gradient and the Hessian of the triangle form factors:

∇xE(x,n)≈
M

∑
j=1

L4 j ∇xF4 j(x), (3.11)

HxE(x,n)≈
M

∑
j=1

L4 j HxF4 j(x) (3.12)

where the gradient and the Hessian of the form factor have been derived by Holzschuch

and Sillion [1998].

3.5 Occlusion-Aware Radiance Caching

As mentioned in Section 3.3.1, instead of accelerating the global illumination com-

putation of single shade points, irradiance and radiance cachings explore the space cor-

relation of shade points: adjacent locations have similar incident lighting.

One advantage of radiance caching is that it can be incorporated with other global

illumination algorithms such as path tracing [1986] and photon mapping [1996]. It re-

duces computation time of these algorithms without losing quality of produced images.

For a long time, radiance caching suffered from many problems including the ab-

sence of an efficient record placement strategy. But recent work of Jarosz et al. [2012]

and Schwarzhaupt et al. [2012] on irradiance caching indicated that the second-order er-

ror metric could be a viable way to produce high-quality cache scheme without heavily

relying on clamping.

This idea drove us to investigate the possibility of generating optimized cache scheme

using the Hessian-based error metric. We also carefully studied the robustness of radi-

ance caching in arbitrary glossy scenes.
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3.5.1 Occlusion-Aware Radiance Caching

We develop the new radiance caching algorithm by following the work of Krivanek [2005]

and Schwarzhaupt et al. [2012], and we derive new mathematical models for visibility-

aware radiance distribution estimation.

With the observation that the incident radiance varies relatively slowly on surfaces

due to the hemisphere integral, we only perform sampling over the hemisphere to com-

pute incident radiance in sparse record locations on surfaces. We place a record if it is not

within the support area of any record. For the shade points inside the support area, the

error of estimated radiance by interpolation and extrapolation is considered within the

user-defined upper bound. An optimized record placement can improve image quality

while using the same amount of records.

As proven in Krivanek’s work [2005], spherical harmonics provide a smooth approx-

imation and fast rotations for spherical functions. We decided to follow their approach:

instead of caching scalar irradiance values, we cache spherical harmonic coefficients of

the incoming radiance.

We obtain the spherical harmonic coefficients by projecting the incoming radiance Li

from direction ωi computed with path tracing onto the spherical harmonic basis function:

λ
m
l =

∫
Ω

Li(ωi)ym
l (ωi)d(ωi). (3.13)

We follow the work of Schwarzhaupt et al. [2012] and extend the occlusion-aware

Hessian error metric mentioned in Section 3.4.2 to the radiance caching context. This

allows us to obtain an optimal record placement. Using the mechanisms of caching

and the second-order extrapolation, we are able to generate high-quality images while

avoiding the costly computation of radiance at every pixel in the image.

In order to take occlusion changes into account when the shade point is translated

on a surface, we construct a scene that is radiometrically equivalent, but without occlu-

sion. For a shade point x we first compute cosine weighted stratified sampling over the
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hemisphere. Then we study the approach of Schwarzhaupt et al. [2012]: we go through

all the samples and connect neighbors samples into triangles. In this context, the inte-

gral in Equation 3.13 is equal to the sum of the contributions from all the triangles thus

constructed.

λ
m
l =

M

∑
j=1

∫
ωi∈4

Li(x,ωi)(n ·ωi)ym
l (ωi)dωi. (3.14)

The integral in Equation 3.14 can be converted to a surface integral using a geometry

Jacobian term:

λ
m
l =

M

∑
j=1

∫
y∈4

Li(r)ym
l (r)G(x↔ y)dy (3.15)

where r = y− x, and G(x↔ y) =−(n · r)(ny · r)/ | r |4 is the geometry Jacobian term.

Considering that the triangles are small enough, we can assume that radiance L4 j

exiting from the triangle is uniform and independent of small direction changes. L4 j

is defined by the incident radiance from the vertex that is farthest from shade point x,

because it defines the radiance emitted from the objects that occluded or disoccluded

when moves the shade point. These valid assumptions were proven in previous work of

Ward and Heckbert [1992], Schwarzhaupt et al. [2012] and Annen et al. [2004].

Then Equation 3.15 can be further simplified:

λ
m
l =

M

∑
j=1

Li(r)
∫

y∈4

ym
l (r)G(x↔ y)dy. (3.16)

The above equation is still too complex to be computed analytically. Given the same

assumption that triangles are small, we can assume the term ym
l (r) is constant within the

triangle, and we can move ym
l (r) out of the integral. Let form factor F4 j(x) denote the

integral term
∫

y∈4−(n ·r)(ny ·r)/ | r |4 dy. It has been analytically computed in the work

of Holzschuch and Sillion [1998]. Then we get:
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λ
m
l =

M

∑
j=1

L4 j F4 j(x)ym
l (ωi). (3.17)

Several of our assumptions depend on the fact that the triangles are small. In practice,

in order to make the results accurate, we need to ensure that the number of hemisphere

samples is large enough (in practice we usually use more than 2K hemisphere samples).

3.5.2 Second-Order Interpolation and Extrapolation

Figure 3.5: A simple scene with a sphere and a plane. Using four fixed records, we
are able to show the error improvement using extrapolation. First, the error of linear
extrapolation is compared to the error of the first-order extrapolation. The result is shown
on the left side: green indicates that the first-order extrapolation has less errors, red
indicates that linear extrapolation produces less errors. Right: error comparison between
the first-order extrapolation and the second-order extrapolation; green indicates that the
second-order extrapolation has less errors, red indicates that the first-order extrapolation
has less errors. Image luminance of is gamma corrected to better illustrate the errors.

Given a shade point x, the spherical harmonic coefficients can be computed by inter-

polating the cached records nearby. To improve the quality of the estimation of radiance

caching, Krivanek [2005] uses the first-order Taylor expansion to extrapolate the records.

In our work, we used the second-order Taylor expansion to more accurately estimate the
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Figure 3.6: A simplified Cornell Box scene (no occlusion), the comparison between
before (left) and after (right) extrapolation with same record placement (4K records).

coefficients at point x:

λ
n
i ≈

∑i∈S wi(x)(λ n
i +∇xλ n

i ∆xi +
1
2 ∆xT

i Hx(λ
n
i )∆xi))

∑wi
(3.18)

where S is the set of all records and x is within the valid region. The incident radiance is

stored in a global coordinate system, λ n
i is the n-th spherical harmonic coefficient of the

i-th record near point x. wi is the weight of the record that depends on the distance and

normal of point x.

In practice we convert ∆xi to a local coordinate system because the Hessian matrix

that we computed in previous steps is in a local coordinate system at each record xi.

3.5.3 Record Valid Region and Error-Metric

In radiance caching, computation time mainly involves the generation of records.

Time spent on each record is constant, so reducing the number of records makes our

approach more efficient. Ideally, we should enlarge the area of the valid region for each

record so it can cover more surface area. We still need to avoid visible artifacts caused
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Figure 3.7: A Cornell Box scene. Comparison between before (left) and after (right)
extrapolation with same record placement (4K records). Notice that our approach can
automatically handle occlusion changes without producing visible artifacts.

by extrapolation errors. To balance between computation time and extrapolation errors,

we set an upper bound on error, and find the maximum area of a valid region while

respecting this maximum error.

At location x+∆x, the extrapolation error ε(x+∆x) is the difference between the

ground truth of outgoing radiance L(x+∆x) and the outgoing radiance L′(x+∆x) com-

puted with extrapolated spherical harmonic coefficients. We define spherical harmonic

coefficient error of incident radiance as εm
l :

ε
m
l (x+∆x) =| λ m

l (x+∆x)−λ
′m
l (x+∆x) | (3.19)

where λ m
l (x+∆x) is the ground truth of the spherical harmonic coefficient (which we

avoid computing) and λ ′ml (x+∆x) is our estimation of the spherical harmonic coefficient

at location x.

Recall that in the outgoing radiance computation in Equation 3.4, ε(x+∆x) can be

expressed by εm
l :

26



Figure 3.8: Comparison between cache schemes generated by the first-order (left) and
the second-order (right) error metric, with each 2K records. The second-order error
metric naturally tends to place records more uniformly across the scene and is still able
to capture radiance changes in the scene.

ε(x+∆x) =
lmax

∑
l=0

l

∑
m=−l

ε
m
l Φ

m
l . (3.20)

Φm
l only depends on the surface type and the location. We can give an upper bound

to ε(x+∆x):

ε(x+∆x)<|Φ || Λi | (3.21)

where | Λi |=
√

∑
lmax
l=0 ∑

l
m=−l

(
εm

l (x+∆x)
)2 is the norm of the error of incident radiance

coefficient vector. Here |Φ | is a precomputed constant.

The total error of a record is defined by the error integral within the valid region A:

ε =
∫∫

A
ε(x+∆x)d4 x. (3.22)

Then we can easily get:

ε <|Φmax |
∫∫

A
| Λi | d4 x. (3.23)
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By grouping | Φmax | and ε , we get an upper bound ελ = ε/ | Φmax | for the norm

of the error of incident radiance coefficient vector. In practice, we use the user-defined

parameter εmax to set the maximum value of ελ . To compute εm
l , we need the ground

truth from spherical harmonic coefficients. To avoid computing it directly, we use a

Taylor expansion to approximate it.

First-Order Approximation

The first step needs to approximate the ground truth of the spherical harmonic coef-

ficients λ m
l (x+∆x) by a first-order Taylor expansion. We use a first-order extrapolation

to estimate coefficient λ ′ml (x+∆x). Then we have:

ε
m
l (x+∆x)≈| ∇xλ

m
l ·∆x | (3.24)

where ∇xλ m
l is the gradient of the spherical harmonic coefficient λ m

l at x. The upper

bound of total error ε can be easily computed as:

ελ ≈
∫∫

A

√
∑

l=lmax
l=0 ∑

m=l
m=−l | ∇xλ m

l ·∆x |2 d∆x

≤ πR2 | ∇xλ |
(3.25)

where R is the radius of isotropic record validity region and | ∇xλ | is the norm of the

gradient of coefficient vector. This leads to the following isotropic record radius equa-

tion:

R =

√
εmax

π | ∇xλ |
. (3.26)

In practice, we compute R separately for the three RGB channels, and then choose

the minimum value.
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Second-Order Approximation

To further optimize the record placement, we use the second-order Taylor expan-

sion to approximate the ground truth and estimate the coefficients using the first-order

expansion. Here the coefficient error at location x+∆x becomes:

ε
m
l ≈

1
2
| ∆xT Hx(λ

m
l )∆x | (3.27)

where Hx(λ
m
l ) is the Hessian matrix of spherical harmonic coefficient λ m

l at x.

Applying the similar technique explained in Section 3.4.2, the upper bound of total

error ε can be expressed as follows:

ε
λ ≤ 1

2

∫∫
A

(
| u1 | x2+ | u2 | y2) dxdy (3.28)

where u1 and u2 are two Eigenvalues of a 2×2 matrix Hsum
x , where Hsum

x =∑
l=lmax
l=0 ∑

m=l
m=−l |

Hx(λ
m
l ) |. Therefore the anisotropic record radius (R1,R2) can be obtained as:

(
Ru1

i ,Ru2
i
)
=

4

√
4εmax

π

(
4

√
1
| u1 |

, 4

√
1
| u2 |

)
(3.29)

3.5.4 Gradient and Hessian of Spherical Harmonic Coefficients

To correctly place the records and extrapolate the radiance, we compute the gradient

and the Hessian of coefficients. This can be done by computing the derivative and the

second-order derivative of Equation 3.17:

∇xλ
m
l =

M

∑
j=1

L4 j ∇x(F4 j(x)ym
l (ωi)) (3.30)

Hxλ
m
l =

M

∑
j=1

L4 j Hx(F4 j(x)ym
l (ωi)) (3.31)

Here we use similar assumptions than in previous work on radiance caching: we
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assume the emitted radiance does not vary with insignificant direction changes, which

means that in scenes with specular or high-order glossy surfaces, this assumption will no

longer be valid. Ignoring this term will potentially cause artifacts which we will discuss

in detail in Section 3.8.

The two terms in Equation 3.31: ∇xF4 j and Hx(F4 j(x)) are already derived from

previous work [1998]. We only need to convert the spherical harmonic basis functions to

a Cartesian formulation, and then to compute the translation gradient and the translation

Hessian. The details and formulation are included in Appendix I. Another solution would

be to use the chain rule to derive the gradient and the Hessian from angular formulation

of basis functions. But it only works for gradient computation. The Hessian matrices

turn out to be too complex to derive analytically.

3.6 Compute the Outgoing Radiance

As mentioned in Section 3.3.2, Krivanek [2005] computes the outgoing radiance by

converting the integral to the dot product of two coefficient vectors using Equation 3.4.

His approach requires projecting the BRDF onto spherical harmonic basis functions.

He precomputes the coefficient vectors Φ for all outgoing directions by sampling the

incident and outgoing directions, and stores them in a table.

For some BRDF types, such as Phong and Lambertian, there are analytical solutions

for the spherical harmonic representation. The advantage of this approach is that it can

be computed very quickly and it is perfectly accurate. Its drawback is that the analyti-

cal results of BRDF representations are unclamped, so they will generate errors in the

outgoing radiance computations.

In our work, we use a more general approach given by Pharr and Humphreys [2010].

Let Λo denote the outgoing radiance spherical harmonic coefficients in vector form, and

Λi denote the spherical harmonic coefficients vector of incident radiance. We define a

(lmax +1)2× (lmax +1)2 matrix M called BRDF matrix:
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Λo = M Λi. (3.32)

Pharr and Humphreys [2010] give the analytical expression for M:

M j,k =
∫
S2

∫
S2

f (ωo,ωi)y j(ωi)yk(ωo)dωi dωo. (3.33)

In practice, we use Monte Carlo integration to precompute M for each BRDF type

in the scene and store it in a cache (or in a file). With the coefficient vector of outgo-

ing radiance, the outgoing radiance toward direction ωo can be easily reconstructed as

follows:

Lo(x, ωo) =
lmax

∑
l=0

l

∑
m=−l

ym
l (ωo)ω

l,m
o . (3.34)

3.7 Outgoing Radiance Caching

Until now, the information we store in each record is its incident radiance and its

translation gradient and the Hessian. Due to the fact that the record validity region is

controlled by the total error of incident radiance coefficients, this current record place-

ment strategy does not depend on the type of surface. Thus, it produces the same record

placement on different surfaces. In practice, the outgoing radiance varies slower on

diffuse and low-order glossy surfaces under the same incident lighting. Ideally, on high-

order glossy surfaces the valid region of a record should be smaller than the same record

on a diffuse or low-order glossy surface. This can be handled by storing outgoing radi-

ance instead of incident radiance. Additionally, this can reduce the uses of the BRDF

matrix M to compute outgoing radiance.
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3.7.1 View-Independent Record Placement

Naturally our first step is to adapt the error metric previously presented in Section 3.6

to outgoing radiance. According to previous sections, the spherical harmonic coefficient

vector of outgoing radiance is Λo = M Λi. The BRDF matrix M only depends on the

surface type, as the gradient and the Hessian of outgoing radiance can be easily computed

by the product of BRDF matrix and the gradient and Hessian of incoming radiance.

Figure 3.9: Left: cache scheme on the Cornell Box scene using incoming radiance
caching. Right: cache scheme on same scene with outgoing radiance caching. Both
approaches generated approximately the same numbers of records (4K and 3.6K). Com-
paring the two images, we can easily find out that outgoing radiance caching puts more
records on the glossy surface (the one facing the camera).

3.7.2 View-Dependent Record Placement

On glossy surfaces, light bouncing towards the camera can vary significantly de-

pending on the camera position. To further improve the record placement, we should

take direction ωo from record towards the camera into account instead of placing the

records according to the outgoing radiance towards all directions.

This error metric computes the integral of the difference between the correct radi-
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Figure 3.10: Both cache schemes are generated with outgoing radiance caching on dif-
ferent Cornell Box scenes. On right side the surface facing the camera is diffuse instead
of glossy (left). We can clearly observe that in the right image, fewer records are placed
on the surface facing the camera. Using the same parameters, the scene containing the
glossy surface (left) generates 3.6K records and the scene without glossy surface (right)
generates 2.9K records.

ance bounce towards the camera and the radiance computed by extrapolated spherical

harmonic coefficients

σ =
∫∫

A
| L(x+∆x,ωx)−L′(x+∆x,ωx) | dx. (3.35)

where L(xi +∆x,ωx) and L′(xi +∆x,ωx) can be computed using the spherical harmonic

coefficients.

Again, we used the Taylor expansions to estimate the total error inside the validity

region, the first order approximation of σ can be expressed as follows:

σ ≈
∫∫

A
|

lmax

∑
l=0

l

∑
m=−l

(∇xλ
m
l ·∆x)ym

l | dx

≤ πR2
lmax

∑
l=0

l

∑
m=−l

| ∇xλ
m
l | | y

m
l | .

(3.36)
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The second order approximation of σ is:

σ ≈
∫∫

A
| ∑lmax

l=0 ∑
l
m=−l

( 1
2 ∆xT Hm

l ∆x
)

ym
l | dx

=
∫∫

A
|
( 1

2 ∆xT Hsum ∆x
)
| dx

(3.37)

where Hsum = ∑
lmax
l=0 ∑

l
m=−l Hm

l ym
l , then we used the same technique in Section 3.5.3 to

compute the anisotropic radius with Eigenvalues of Hsum.

3.8 When Assumptions are Broken

Figure 3.11: A Cornell Box scene with five glossy walls (only the wall facing the camera
wall is visible) where current radiance caching algorithm fail.

In some test scenes with multiple glossy surfaces, we observed the artifacts shown

in Figure 3.11. We find that extrapolation artifacts occurred in presence of two adjacent

glossy surfaces. These artifacts may be caused by the following assumption we made
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Figure 3.12: This illustration explains why this assumption will cause the artifact we
observed above.

during the gradient and the Hessian computation in Section 3.5.4: Emitted radiance does

not vary with insignificant direction changes. We assumed that direction changes while

translating a shade point on the surface can be ignored.

This assumption is considered valid and used in all previous work about radiance

caching. We noticed that none of testing scenes of previous work has more than one

glossy surface. The validity of this assumption in more complex test scenes was never

actually tested and verified.

3.8.1 Demonstration on a Test Case

To further investigate our suspicion about this assumption, we set up two similar test

scenes consisting of only two surfaces and a point light source. The bottom surface A

captured by the camera is a glossy surface. Surface B is perpendicular to surface A:

it is not visible from the camera and it can be either diffuse or glossy. We render the

scene alternately with glossy and diffuse surface B using radiance caching. The results

are shown in Figure 3.14. We can easily observe that the second image with diffuse
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Figure 3.13: An illustration of the test scene.

surface B produces an artifact free image. Artifacts similar to Figure 3.11 appear when

we replace the diffuse surface B by a glossy surface.

To show that the artifacts are not caused by other factors in the algorithm, we created

a new radiance caching algorithm. For each hemispherical sample of a record, we store

the radiance bounce toward record along with the location, normal, and BRDF of the

hemispherical sample. At a new shade location, the indirect illumination can be written

in the form of a hemisphere integration similar to the rendering equation. We can rewrite

it into the form of surface integration with the geometry Jacobian term:

Lo(x→ e) =
∫

S
Li(y→ x) fr(e→ x→ y)G(x↔ y)dy (3.38)

where G(x↔ y) is the same geometry Jacobian term in Equation 3.15, and e is the eye

position.

Now that the locations of hemispherical samples are stored, we can use the above

formula to numerically compute the indirect illumination in this location. If the previous
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Figure 3.14: Both images are rendered using radiance caching. Left: test scene with
diffuse surface B. Right: test scene with glossy surface B.

mentioned assumption is valid then the term Li in Equation 3.38 can be approximated

by the radiance bounced from hemispherical sample toward the record location without

visible artifact. Because the normal and BRDF are also stored, the relative accurate value

of Li can also be computed with path tracing.

Figure 3.15: Left and middle: comparison of images rendered with and without the
assumption when B is diffuse. Right: the reference image rendered by path tracing. We
can observe that the three images are identical, which supports that the assumption is
valid when surface B is diffuse.

We applied the new algorithm with the assumption on two test scenes. The results
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Figure 3.16: Left two images: comparison of images rendered with and without the
assumption when B is glossy. Third image: error generated by the assumption (with
gamma correction). Fourth image: reference image rendered by path tracing. The arti-
facts of the first image indicate that the assumption fails when both surfaces in the scene
are glossy.

shown in Figure 3.15 and Figure 3.16 indicate that the artifacts remain on the two glossy

surface scene. Then we replaced the approximated Li by Li computed with path trac-

ing; the images produced with both scenes are now artifact free. Another direct proof is

Figure 3.18, we compare the contribution from the current gradient term and the miss-

ing term we will introduce in next section. Clearly, the contribution from the missing

term cannot be ignored. We can therefore conclude that the assumption of invariant radi-

ance during translation of a shade point is inappropriate on arbitrary scenes with glossy

surfaces.

3.8.2 Possible Solutions

In order to make the current radiance caching approach more robust with arbitrary

scenes, the derivation of the gradient and the Hessian in previous sections must be re-

formulated without the previous assumption. In this section we discuss two potential

solutions.

Back to Equation 3.17, its derivative and second-order derivative are:

∇xλ
m
l =

M

∑
j=1

∇x(L4 j F4 j(x)ym
l (ωi)). (3.39)
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Figure 3.17: Another comparison on a glossy Cornell Box scene, both images are ren-
dered using radiance caching. The left image is rendered with the missing angular term.
The right image is rendered without the missing angular term. Notice the artifacts around
the edges in the image on the right.

Hxλ
m
l =

M

∑
j=1

Hx(L4 j F4 j(x)ym
l (ωi)). (3.40)

In this current step, we only focus on the gradient term. Expanding Equation 3.40,

we get:

∇xλ
m
l =

M

∑
j=1

(
L4 j ∇x

(
ym

l (ωi)F4 j(x)
)
+F4 j(x)ym

l (ωi)∇xL4 j

)
. (3.41)

The first term F4 j(x)ym
l (ωi) inside the sum is the gradient term used in the current

radiance caching. The second term F4 j(x)ym
l (ωi)∇xL4 j was mistakenly believed to

be negligeable and was missing in previous computations. Despite the absence of a

thorough investigation, we found two promising approaches to compute the missing

term.

Analytical Approach. One possible solution is to use an analytical approach. Define

L(x,4) as L4 j , for the record located at x, L(x,4) can be analytically computed by

39



Figure 3.18: Left: contribution of the current gradient term toward the final image in the
scene with two glossy surfaces. Right: the contribution of the missing gradient term in
the same scene. Clearly, the contribution from the missing term cannot be ignored.

hemispherical integration:

L(x,4) =
∫

Ω

Li(4,ωi) fr(ωo,ωi)(n ·ωi)dωi. (3.42)

In the formula above, Li(4,ωi) is the incident radiance from direction ωi at the

triangle. We can safely assume that it is constant because the location of the triangle

does not change, so the derivative of Li(4,ωi) is zero. Then the derivative of L(x,4) is:

∂L(x,4)

∂x
=
∫

Ω

Li(4,ωi)(n ·ωi)
∂ fr(ωo,ωi)

∂ωo

∂ωo

∂x
dωi. (3.43)

It is very difficult to analytically compute the derivative of an arbitrary BRDF fr. To

derive Equation 3.43 analytically, we assume that the surface reflection model used is the

Phong reflection model. Let ωr denote the direction that a mirror reflected ray of light

would take from this point on the surface and let α denote the roughness of the surface.

The analytical formulation of the Phong BRDF is:
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fr(ωo,ωi) = ρ
(α +1) (ωo ·ωr)

α

2π
. (3.44)

With this assumption, the term ∂ fr(ωo,ωi)/∂ωo can be analytically derived:

∂ fr(ωo,ωi)

∂ωo
=

ρ α (α +1)
2π

ωr (ωo ·ωr)
α−1 . (3.45)

Now all we need is use Monte Carlo method to compute the integral in Equation 3.43.

Spherical Harmonic Approach. We can also avoid computing derivatives of an ar-

bitrary BRDF using spherical harmonics. First, we project the incident radiance dis-

tribution at a hemispherical sample onto the spherical harmonic basis functions to get

the spherical harmonic coefficients of incident radiance. Then, we can easily compute

outgoing radiance toward location x using the BRDF matrix M:

L(x,4) = M ΛiY (3.46)

where Λi is the spherical harmonic coefficients vector of incident radiance and Y is a

vector containing the value of spherical harmonic basis function in direction 4 → x.

The incident radiance, and the BRDF matrix are both constant, and the gradient, and the

Hessian matrix of spherical harmonic basis function is already computed, so the gradient

and the Hessian matrix are:

∇xL(x,4) = M Λi ∇xY, (3.47)

Hx(L(x,4)) = M Λi Hx(Y ). (3.48)
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3.8.3 Discussion

The spherical harmonic approach does not depend on any assumption about the sur-

face type. Compared to the analytical approach, it is able to handle arbitrary surface. But

this approach relies on accurately computing the spherical harmonic coefficients, which

requires a large amount of hemispherical samples. On the other hand, the analytic ap-

proach does not involve gradient computation for each spherical harmonic coefficients,

which can reduce computing time by a factor of (lmax + 1)2.

Both approaches above require additional hemispherical sampling to gather the in-

cident radiance information for each hemispherical sample of a record. This process is

very computationally costly, and certain optimizations or approximations are necessary.

We can potentially apply techniques such as importance sampling to reduce the number

of samples needed. We can also take only direct illumination into account for the sec-

ondary hemispherical sampling, so that we can control the computing time in the same

order of magnitude as before.

3.9 Conclusion and Future Work

In this chapter, we investigated a new radiance caching algorithm by combining and

extending the previous work on irradiance caching and radiance caching. We introduced

and discussed new error metrics based on the second-order Taylor expansion in a radi-

ance caching context. We reused the technique of Schwarzhaupt et al. [2012] to take

occlusion changes into account.

Similar to irradiance caching, the second-order Taylor expansion of radiance is used

as an approximation of the ground truth. Like previous work on radiance caching, spher-

ical harmonics are used to store the information about incident radiance distribution over

the hemisphere. We further improved the record placement with the new outgoing radi-

ance caching strategy without any additional computation time. Our results showed that

the record density can vary according to incident lighting changes on surface and also
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depends on the type of surface.

However, we discovered some visible artifacts in the images produced in some scenes.

Our further investigation showed that the assumption that the radiance scattered from

hemispherical samples remain constant inside cache valid region caused this type of ar-

tifacts. This assumption used in our and previous approaches is not valid in specific

configurations of scenes with two adjacent glossy surfaces. We analyzed the failure

cases and concluded that this assumption should be discarded to make radiance caching

robust in more arbitrary scenes. We also proposed two potential solutions to solve this

problem.

Naturally, the next step is to further investigate these two potential solutions that can

correctly compute gradient and the Hessian of radiance, and should ultimately produce

artifact-free images.
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CHAPTER 4

CONCLUSION

In this thesis, we successfully combine and extende the previous work on irradiance

caching and radiance caching. We propose a new occlusion-aware radiance caching

algorithm with new error metrics based on the second-order Taylor expansion.

Similar to irradiance caching, the second-order Taylor expansion of radiance is used

as an approximation of the ground truth. Like previous work on radiance caching, spher-

ical harmonics are used to store the information about incident radiance distribution over

the hemisphere. We also further improved the records placement with the new outgoing

radiance caching algorithm without any additional computation time. Our results showe

that record density can vary according to the incident lighting changes on a surface and

also depends on the type of surfaces.

However, we discover some visible artifacts in images produced in some scenes.

Our further investigation showed that the assumption that the radiance scattered from

hemispherical samples remain constant within record valid region, caused this type of

artifacts. This assumption used in our approach and previous approaches is not valid in

specific scene configurations with two adjacent glossy surfaces. We analyze the failure

cases and concluded that this assumption should be discarded to make radiance caching

robust in more arbitrary scenes. We propose two potential solutions to solve this prob-

lem.

The obvious next step is to conduct a more thorough investigation of the two solu-

tions that we proposed. As we mentioned in Section 3.8.2, due to the secondary hemi-

spherical sampling, both approaches cannot compute the previously ignored missing

term in the gradient computation accurately and efficiently yet. The logical first step

is to experiment with the new approaches with only direct illumination for secondary

hemisphere sampling. Then we can try to incorporate them with advanced sampling



techniques to make our approaches efficient enough to handle both direct and indirect

illuminations during the secondary hemispherical sampling.

Currently, irradiance and radiance cachings only place records on visible surfaces.

The record placement is non-recursive. If we allow records to be placed recursively,

we would be able to use records placed on a non-visible surfaces to accelerate the gen-

eration of new records. This approach could potentially accelerate global illumination

computations for indoor scenes.

Our ultimate goal is to find a caching strategy that can easily be incorporated in other

global illumination algorithms, and naturally generate optimized record placement on

all surfaces in scenes with reasonable user-defined parameter tweaking.

45



BIBLIOGRAPHY

[1] Thomas Annen, Jan Kautz, Fredo Durand, and Hans-Peter Seidel. Spherical har-

monic Gradients for Mid-Range Illumination. In Rendering Techniques, pages

331–336. Eurographics Association, 2004.

[2] Iliyan Georgiev, Jaroslav Krivanek, Tomáš Davidovič, and Philipp Slusallek. Light
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Appendix I

Gradient and Hessian of Spherical Harmonic Coefficients

In the proposed radiance caching algorithm, computing the gradient and Hessian of

spherical harmonic coefficients on the tangent plane (directions x and y) is essential. In

this Appendix, I present some details of derivation.

To compute the gradient and the Hessian matrix of coefficients we expand the gradi-

ent and the Hessian matrix of Equation 3.17:

∇xλ
m
l =

M

∑
j=1

L4 j∇x(F4 j(x)ym
l (ωi)) (I.1)

∇xλ
m
l =

M

∑
j=1

L4 j(y
m
l (ωi)∇xF4 j(x)+F4 j(x)∇xym

l (ωi)) (I.2)

Hxλ
m
l =

M

∑
j=1

L4 jHx(F4 j(x)ym
l (ωi)) (I.3)

Hxλ
m
l = A+B+C+D (I.4)

where,

A =
M

∑
j=1

L4 j∇xym
l (ωi)× (∇xF4 j(x))

T (I.5)

B =
M

∑
j=1

L4 j∇xF4 j(x)× (∇xym
l (ωi))

T (I.6)

C =
M

∑
j=1

L4 j ym
l (ωi)HxF4 j(x) (I.7)



D =
M

∑
j=1

L4 j F4 j(x)Hx(ym
l (ωi)) (I.8)

∇xF4 j and HxF4 j are computed by Holzschuch and Sillion [1998], so the terms left

to compute are ∇xym
l and Hx(ym

l ).

I.1 Definitions of Spherical Harmonic Basis Function

I.1.1 Spherical Coordinate System

First we define the spherical harmonic basis function in angular form:

ym
l =



√
1+2l Pl(cos(θ))

2
√

π
m = 0√

(1+2l)(l−m)!
(l +m)!

cos(mφ)Pm
l (cos(θ))
√

2π
m > 0

−

√
(1+2l)(l +m)!

(l−m)!
sin(mφ)P−m

l (cos(θ))
√

2π
m < 0

(I.9)

where Pm
l (x) are Legendre polynomials.

I.1.2 Cartesian Coordinate System

Then we need to define the spherical harmonic basis function in cartesian coordinate

system:

θ and φ can be computed using x, y, and z:

θ = arccos
(z

r

)
= arccos

(
z√

x2 + y2 + z2

)
(I.10)
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φ =


arccos

( x
r ∗ sinθ

)
= arccos

(
x√

x2 + y2

)
y≥ 0

2π− arccos
( x

r ∗ sinθ

)
= 2π− arccos

(
x√

x2 + y2

)
y < 0

(I.11)

Replacing the θ and φ in the angular definition, then we have:

ym
l =



√
1+2l
2
√

π
Pl

(z
r

)
m = 0

Pm
l

(z
r

) e1√
2π

cos

(
m

(
2π− arccos

(
x√

x2 + y2

)))
y < 0,m > 0

Pm
l

(z
r

) e1√
2π

cos

(
marccos

(
x√

x2 + y2

))
y≥ 0,m > 0

−P−m
l

(z
r

) e2√
2π

sin

(
m

(
2π− arccos

(
x√

x2 + y2

)))
y < 0,m < 0

−P−m
l

(z
r

) e2√
2π

sin

(
marccos

(
x√

x2 + y2

))
y≥ 0,m > 0

where,

e1 =

√
(1+2l)(l−m)!

(l +m)!
,e2 =

√
(1+2l)(l +m)!

(l−m)!
(I.12)

I.2 Derivatives

Then we compute the derivative of ym
l about x,
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∂ym
l

∂x
=



−(1+ l)
√

1+2l x z (zPl (c)− r Pl+1 (c))
2
√

π e2
3 r2 m = 0

e1√
2π

(
msinφ Pm

l (c) S
e3

−
xzC

(
(1+ l)zPm

l (c)+(−1− l +m)r Pm
1+l (c)

)
e2

3 r2

)
m > 0

e2√
2π

(
m | sinφ | C P−m

l (c)
e3

+
xz
(
(1+ l)zP−m

l (c)− (1+ l +m)r P−m
l+1 (c)

)
S

e2
3 r2

)
m < 0

with:

c =
z
r

(I.13)

e3 =
√

x2 + y2 (I.14)

C = cos(mφ), S = sin(mφ) (I.15)

The derivative of ym
l about y is:

∂ym
l

∂x
=



−(1+ l)
√

1+2l yz(zPl (c)− r Pl+1 (c))
2
√

π e2
3 r2 m = 0

− ye1√
2π

(
zC
(
(1+ l)zPm

l (c)+(−1− l +m)r Pm
l+1 (c)

)
e2

3 r2 +
mxPm

l (c) S
| sinφ | e3

3

)
m > 0

ye2√
2π

(
z
(
(1+ l)zP−m

l (c)− (1+ l +m)r P−m
l+1 (c)

)
S

e2
3 r2 −

mxC P−m
l (c)

sinφ e3
3

)
m < 0

I.3 Hessian Matrix

Computing the derivative of
∂ym

l
∂x

about x, we get
∂ 2ym

l
∂x2 .

∂ 2ym
l

∂x2 = A1× (B1 +C1) (I.16)
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where,

A1 =


e4(1+ l)

√
1+2l z m = 0

e4e1 m > 0

e4e2 m < 0

B1 =



ze5 Pl(c)+ r
(
x4− e5

)
Pl+1(c) m = 0

e11
(
e10 x2C Pm

l+2(c)− r Pm
l+1(c)

((
e5− x4)C− e8 S

))
m > 0,y≥ 0

e11
(
e10 x2C Pm

l+2(c)− r Pm
l+1(c)

((
e5− x4)C+ e8 S

))
m > 0,y < 0

−e9
(
e12 x2 P−m

l+2(c)S− r P−m
l+1(c)

(
e8C+

(
e5− x4)S

))
m < 0,y≥ 0

−e9
(
e12 x2 P−m

l+2(c)S+ r P−m
l+1(c)

(
e8C+

(
x4− e5

)
S
))

m < 0,y < 0

C1 =



(2+ l)x2 zr2 Pl+2(c) m = 0

−Pm
l (c)(e6C+ e8 e7 S) m > 0,y≥ 0

Pm
l (c)(−e6C+ e8 e7 S) m > 0,y < 0

P−m
l (c)(e8 e7C− e6 S) m < 0,y≥ 0

P−m
l (c)(e8 e7C+ e6 S) m < 0,y < 0

with:

e4 =
1

2
√

π (x2 + y2)
2
(x2 + y2 + z2)

2 (I.17)

e5 = 3x4− y2 (y2 + z2)+ x2 (2y2 +(2+ l)z2) (I.18)

e6 = m2 y2 r4− (1+ l)z2 e5 (I.19)

e7 = x2 + y2 +(2+ l)z2 (I.20)
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e8 = 2mx | sinφ | e3 r2 (I.21)

e9 = (1+ l +m)z (I.22)

e10 = (2+ l−m)zr2 (I.23)

e11 = (1+ l−m)z (I.24)

e12 = (2+ l +m)zr2 (I.25)

Similarly,
∂ 2ym

l
∂y2 is the derivative of

∂ym
l

∂y
about y :

∂ 2ym
l

∂y2 = A2× (B2 +C2) (I.26)

where,

A2 =


e4(1+ l)

√
1+2l z m = 0

e4e1 m > 0

e4e2 m < 0

B2 =



−e13 zPl(c)+ r e15 Pl+1(c) m = 0

e11
(
e10 y2C Pm

l+2(c)+ r Pm
l+1(c)(e15C− e8 S)

)
m > 0,y≥ 0

e11
(
e10 y2C Pm

l+2(c)+ r Pm
l+1(c)(e15C+ e8 S)

)
m > 0,y < 0

−e9
(
e12 y2 P−m

l+2(c)S+ r P−m
l+1(c)(e8C+ e15 S)

)
m < 0,y≥ 0

−e9
(
e12 y2 P−m

l+2(c)S− r P−m
l+1(c)(e8C− e15 S)

)
m < 0,y < 0
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C2 =



(2+ l)y2 zr2 Pl+2(c) m = 0

Pm
l (c)(e8 e7 S− e14C) m > 0,y≥ 0

−Pm
l (c)(e14C+ e8 e7 S) m > 0,y < 0

P−m
l (c)(e8 e7C+ e14 S) m < 0,y≥ 0

−P−m
l (c)(e8 e7C− e14 S) m < 0,y < 0

with:

e13 = x4− x2 (2y2− z2)− y2 (3y2 +(2+ l)z2) (I.27)

e14 = m2 x2 r4 +(1+ l)z2 e13 (I.28)

e15 = x4 + x2 (−y2 + z2)−2y2 (y2 +(2+ l)z2) (I.29)

Again, computing the derivative of
∂ym

l
∂x

about y to get
∂ 2ym

l
∂x∂y

:

∂ 2ym
l

∂x∂y
= A3× (B3 +C3) (I.30)

where,

A3 =


e4(1+ l)

√
1+2l xyz m = 0

e4 e1

y
m > 0

−e4 e2

y
m < 0
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B3 =



ze17 Pl(c)− r e18 Pl+1(c) m = 0

e11
(
e10 xy2C Pm

l+2(c)− r Pm
l+1(c)

(
xy2 e18C− e16 | y | S

))
m > 0,y≥ 0

e11
(
e10 xy2C Pm

l+2(c)− r Pm
l+1(c)

(
xy2 e18C+ e16 | y | S

))
m > 0,y < 0

e9
(
e12 xy2 P−m

l+2(c)S− r P−m
l+1(c)

(
e16 | y |C+ xy2 e18 S

))
m < 0,y≥ 0

e9
(
e12 xy2 P−m

l+2(c)S− r P−m
l+1(c)

(
xy2 e18 S− e16 | y |C

))
m < 0,y < 0

C3 =



(2+ l)zr2 Pl+2(c) m = 0

Pm
l (c)(e19C− e16 e7 S) | y | m > 0,y≥ 0

Pm
l (c)(e19C+ e16 e7 S) | y | m > 0,y < 0

P−m
l (c)(e16 e7C+ e19 S) | y | m < 0,y≥ 0

P−m
l (c)(e19 S− e16 e7C) | y | m < 0,y < 0

with:

e16 = m
(
−x2 + y2)r2 (I.31)

e17 = 4x2 +4y2 +(3+ l)z2 (I.32)

e18 = 3x2 +3y2 +(5+2l)z2 (I.33)

e19 = x | y |
(
m2 r4 +(1+ l)z2 e17

)
(I.34)

Finally
∂ 2ym

l
∂y∂x

equals the derivative of
∂ym

l
∂y

about x :

∂ 2ym
l

∂y∂x
= A4× (B4 +C4) (I.35)
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where,

A4 =


e4(1+ l)

√
1+2l xyz m = 0

e20 e1 m > 0

−e20 e2 m < 0

B4 =



ze17 Pl(c)− r e18 Pl+1(c) m = 0

e11
(
e10 x | y |C Pm

l+2(c)− r Pm
l+1(c)(x | y | e18C+ e16 S)

)
m > 0,y≥ 0

e11
(
e10 x | y |C Pm

l+2(c)− r Pm
l+1(c)(x | y | e18C− e16 S)

)
m > 0,y < 0

e9
(
e12 x | y | P−m

l+2(c)S+ r P−m
l+1(c)(e16C− x | y | e18 S)

)
m < 0,y≥ 0

e9
(
e12 x | y | P−m

l+2(c)S− r P−m
l+1(c)(e16C+ x | y | e18 S)

)
m < 0,y < 0

C4 =



(2+ l)zr2 Pl+2(c) m = 0

Pm
l (c)(e19C+ e16 e7 S) m > 0,y≥ 0

Pm
l (c)(e19C− e16 e7 S) m > 0,y < 0

P−m
l (c)(e19 S− e16 e7C) m < 0,y≥ 0

P−m
l (c)(e16 e7C+ e19 S) m < 0,y < 0

with:

e20 =
y

r4
√

2π

√
y2 (x2 + y2)

4
(I.36)
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