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RÉSUMÉ

Le problème de tournées de véhicules (VRP), introduit par Dantzig and Ramser en

1959, est devenu l’un des problèmes les plus étudiés en recherche opérationnelle, et ce, en

raison de son intérêt méthodologique et de ses retombées pratiques dans de nombreux

domaines tels que le transport, la logistique, les télécommunications et la production.

L’objectif général du VRP est d’optimiser l’utilisation des ressources de transport afin de

répondre aux besoins des clients tout en respectant les contraintes découlant des exigences

du contexte d’application.

Les applications réelles du VRP doivent tenir compte d’une grande variété de con-

traintes et plus ces contraintes sont nombreuse, plus le problème est difficile à résoudre.

Les VRPs qui tiennent compte de l’ensemble de ces contraintes rencontrées en pratique

et qui se rapprochent des applications réelles forment la classe des problèmes ‘riches’ de

tournées de véhicules. Résoudre ces problèmes de manière efficiente pose des défis con-

sidérables pour la communauté de chercheurs qui se penchent sur les VRPs. Cette thèse,

composée de deux parties, explore certaines extensions du VRP vers ces problèmes.

La première partie de cette thèse porte sur le VRP périodique avec des contraintes de

fenêtres de temps (PVRPTW). Celui-ci est une extension du VRP classique avec fenêtres

de temps (VRPTW) puisqu’il considère un horizon de planification de plusieurs jours pen-

dant lesquels les clients n’ont généralement pas besoin d’être desservi à tous les jours,

mais plutôt peuvent être visités selon un certain nombre de combinaisons possibles de

jours de livraison. Cette généralisation étend l’éventail d’applications de ce problème à

diverses activités de distributions commerciales, telle la collecte des déchets, le balayage

des rues, la distribution de produits alimentaires, la livraison du courrier, etc. La principale

contribution scientifique de la première partie de cette thèse est le développement d’une

méta-heuristique hybride dans la quelle un ensemble de procédures de recherche locales et



de méta-heuristiques basées sur les principes de voisinages coopèrent avec un algorithme

génétique afin d’améliorer la qualité des solutions et de promouvoir la diversité de la pop-

ulation. Les résultats obtenus montrent que la méthode proposée est très performante et

donne de nouvelles meilleures solutions pour certains grands exemplaires du problème.

La deuxième partie de cette étude a pour but de présenter, modéliser et résoudre deux

problèmes riches de tournées de véhicules, qui sont des extensions du VRPTW en ce sens

qu’ils incluent des demandes dépendantes du temps de ramassage et de livraison avec

des restrictions au niveau de la synchronization temporelle. Ces problèmes sont connus

respectivement sous le nom de Time-dependent Multi-zone Multi-Trip Vehicle Routing

Problem with Time Windows (TMZT-VRPTW) et de Multi-zone Mult-Trip Pickup and

Delivery Problem with Time Windows and Synchronization (MZT-PDTWS). Ces deux

problèmes proviennent de la planification des opérations de systèmes logistiques urbains à

deux niveaux. La difficulté de ces problèmes réside dans la manipulation de deux ensem-

bles entrelacés de décisions: la composante des tournées de véhicules qui vise à déterminer

les séquences de clients visités par chaque véhicule, et la composante de planification qui

vise à faciliter l’arrivée des véhicules selon des restrictions au niveau de la synchronisa-

tion temporelle. Auparavant, ces questions ont été abordées séparément. La combinaison

de ces types de décisions dans une seule formulation mathématique et dans une même

méthode de résolution devrait donc donner de meilleurs résultats que de considérer ces

décisions séparément. Dans cette étude, nous proposons des solutions heuristiques qui tien-

nent compte de ces deux types de décisions simultanément, et ce, d’une manière complète

et efficace. Les résultats de tests expérimentaux confirment la performance de la méthode

proposée lorsqu’on la compare aux autres méthodes présentées dans la littérature. En effet,

la méthode développée propose des solutions nécessitant moins de véhicules et engendrant

de moindres frais de déplacement pour effectuer efficacement la même quantité de travail.

Dans le contexte des systèmes logistiques urbains, nos résultats impliquent une réduction

de la présence de véhicules dans les rues de la ville et, par conséquent, de leur impact

négatif sur la congestion et sur l’environnement.



Mots-clés: Problèmes de tournées de véhicules, ramassage et livraison, demandes

dépendantes du temps, synchronisation, méta-heuristique, algorithme génétiques hybrides

générationnels, recherche tabou.



ABSTRACT

For more than half of century, since the paper of Dantzig and Ramser (1959) was intro-

duced, the Vehicle Routing Problem (VRP) has been one of the most extensively studied

problems in operations research due to its methodological interest and practical relevance

in many fields such as transportation, logistics, telecommunications, and production. The

general goal of the VRP is to optimize the use of transportation resources to service cus-

tomers with respect to side-constraints deriving from real-world applications.

The practical applications of the VRP may have a variety of constraints, and obviously,

the larger the set of constraints that need to be considered, i.e., corresponding to ‘richer’

VRPs, the more difficult the task of problem solving. The needs to study closer representa-

tions of actual applications and methodologies producing high-quality solutions quickly to

larger-sized application problems have increased steadily, providing significant challenges

for the VRP research community. This dissertation explores these extensional issues of the

VRP.

The first part of the dissertation addresses the Periodic Vehicle Routing Problem with

Time Windows (PVRPTW) which generalizes the classical Vehicle Routing Problem with

Time Windows (VRPTW) by extending the planning horizon to several days where cus-

tomers generally do not require delivery on every day, but rather according to one of a

limited number of possible combinations of visit days. This generalization extends the

scope of applications to many commercial distribution activities such as waste collection,

street sweeping, grocery distribution, mail delivery, etc. The major contribution of this

part is the development of a population-based hybrid meta-heuristic in which a set of lo-

cal search procedures and neighborhood-based meta-heuristics cooperate with the genetic

algorithm population evolution mechanism to enhance the solution quality as well as to

promote diversity of the genetic algorithm population. The results show that the proposed



methodology is highly competitive, providing new best solutions in some large instances.

The second part of the dissertation aims to present, model and solve two rich vehi-

cle routing problems which further extend the VRPTW with time-dependent demands of

pickup and delivery, and hard time synchronization restrictions. They are called Time-

dependent Multi-zone Multi-Trip Vehicle Routing Problem with Time Windows (TMZT-

VRPTW), and Multi-zone Mult-Trip Pickup and Delivery Problem with Time Windows

and Synchronization (MZT-PDTWS), respectively. These two problems originate from

planning the operations of two-tiered City Logistics systems. The difficulty of these prob-

lems lies in handling two intertwined sets of decisions: the routing component which aims

to determine the sequences of customers visited by each vehicle, and the scheduling com-

ponent which consists in planning arrivals of vehicles at facilities within hard time synchro-

nization restrictions. Previously, these issues have been addressed separately. Combining

these decisions into one formulation and solution method should yield better results. In this

dissertation we propose meta-heuristics that address the two decisions simultaneously, in a

comprehensive and efficient way. Experiments confirm the good performance of the pro-

posed methodology compared to the literature, providing system managers with solution

requiring less vehicles and travel costs to perform efficiently the same amount of work.

In the context of City Logistics systems, our results indicate a reduction in the presence

of vehicles on the streets of the city and, thus, in their negative impact on congestion and

environment.

Keywords: Vehicle Routing problem, pickup and delivery, time-dependent demand,

synchronization, meta-heuristics, hybrid generational genetic algorithm, tabu search.
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Chapter 1

INTRODUCTION

1.1 Motivations

Transportation is a necessity in human society, allowing people, production and consump-

tion of products to occur at different locations locally, nationally, and worldwide. Trans-

portation is, however, also a major user of energy, it burns a large of the world’s petroleum

(Fuglestvedt et al., 2008). This creates environmental pollution, contributes significantly to

global warming through emission of carbon dioxide. Therefore, improving the efficiency

of transportation services is one of the key drivers for the reduction of transportation cost,

as well as of global warming. As a result, applying operations research to problems of

planning and management of transport operations has become a very progressive trend

of academic study and industrial research. Operations research offers methodologies that

provide solutions with high efficiency and quality in terms of economy and transportation

services.

One specific problem related to planning the distribution process which has received a

lot of attention is the Vehicle Routing Problem (VRP). It was first considered in Dantzig

and Ramser (1959) and defined as the problem of designing the optimal set of routes for

a fleet of vehicles needed to service a set of customers. Due to the high industrial appli-

cability, the significant economic benefit that can be achieved when solving the problem,

the VRP has been the object of numerous studies. In recent years, thanks to the increas-

ing efficiency of solution methods and the availability of more powerful computers, the

interest has shifted toward extended versions arising in real life. These extensions are iden-

tified as Rich Vehicle Routing Problems (RVRPs). In contrast to the classical VRP that

work on idealized models with assumptions not always relevant to real-life problems, the



RVRPs consider more general models encountered in many aspects of industrial problems.

Since the VRP is NP-hard (Lenstra and Rinnooy Kan, 1981), it is not always possible to

solve instances to optimality within limited computation time. So far, exact algorithms

have been able to solve the classical VRP instances having a small number of customers

in term of real-life applications. The complexity of VRP therefore calls for heuristic solu-

tion approaches when ‘rich’ variants that involve multiple constraints, or realistically-sized

instances are contemplated.

This dissertation consists of three papers, concerning the development of mathematical

models as well as methodological solution approaches addressing three rich vehicle routing

problems. In these problems, customers may require several services at different period of

times during the planning horizon. Depending on the practical issues involved in each

problem, different additional attributes have been addressed.

We first consider the Periodic Vehicle Routing Problem with Time Windows (PVRPTW)

that generalize the classical Vehicle Routing Problem with Time Windows by extending the

planning horizon to several days in which vehicle routes must be constructed over this pe-

riod. Customers generally do not require delivery on every day, but rather according to one

of a limited number of possible combinations of visit days. During each day within the

planning period, a fleet of capacitated vehicles travels along routes that begin and end at a

single depot, and serves only customers of that day within their time windows. This gener-

alization extends the scope of applications to many commercial distribution activities such

as waste collection, street sweeping, grocery distribution, mail delivery. The periodicity in

the problem imposes a strong interaction between decisions that have to be taken during

different days. It is therefore not possible to solve the problem on a single day basis and

then to replicate the solution over the planning horizon.

We propose a new population-based hybrid meta-heuristic to solve the PVRPTW. This

meta-heuristic is a generational genetic algorithm that uses two neighborhood-based meta-

heuristics to optimize the offspring generated by crossover operators during the evolution.

Local search methods have previously been proposed to enhance the fitness of offspring. In

the proposed method, neighborhood-based meta-heuristics are instead used for their capac-

ity to escape local optima, and deliver optimized and diversified solutions to the population
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of the next generation. Furthermore, the search performed by the neighborhood-based

meta-heuristics repairs most of the constraint violations that naturally occur after the ap-

plication of the crossover operators. Addressing the PVRPTW requires the assignment of

customer-to-visit-day-patterns, and the scheduling of the deliveries. We therefore introduce

two new crossover operators, one aiming at exploring different visit-day assignment, while

the other exploits route components present in the parents. Together, these two crossover

operators balance exploration and exploitation, thus improving the search efficiency of the

algorithm. Extensive numerical experiments and comparisons with all methods proposed

in the literature show that the proposed methodology is highly competitive, providing new

best solutions for a number of large instances.

The second problem we consider is the Time-dependent Multi-zone Multi-trip Vehicle

Routing Problem with Time Windows (TMZT-VRPTW). The TMZT-VRPTW originates

from planning the operations of two-tiered City Logistics systems (Crainic et al., 2009). In

such systems, incoming loads are first sorted and consolidated at a first-tier facility, located

on the outskirts of the city. Then they are moved to a second-tier facility, satellite or

supply point, by a fleet of first-tier vehicles, where they are transferred to smaller-capacity

vehicles for final delivery to customers located within the controlled city area. Activities

take place over a time horizon several hours long, vehicles, second-tier ones in particular,

performing multiple tours before returning to the depots. Most importantly, the locations

of most supply points within or close to the city center and their limited capacity, together

with the need for efficient operations and on-time delivery to customers, induce the need

for transdock load-transfer activities and the synchronization of the operations of first and

second-tier vehicles, very short waiting times being allowed for vehicles at supply points.

Planning determines the customer demands to service out of each supply point at each time

period. When the set is non empty, it is called thereafter the supply-point zone. A second-

tier vehicle then arrives at a supply point at an appointed time, meets the first-tier vehicles

bringing in the demands for the zone, and loads the planned freight. It then performs a

tour servicing its designated customer demands within the zone. Once the last customer is

serviced, the vehicle moves either directly to a supply point for its next tour, the preferred

move, or to a waiting station (when available) to wait for its next appointment, or to the
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depot to end the current activity period. The TMZT-VRPTW corresponds to the planning

of the activities of second-tier vehicles.

We introduce the first tabu search for the TMZT-VRPTW, integrating multiple neigh-

borhoods grouped into two classes to address the two sets of decisions of the problem

simultaneously rather than separately as was previously done. A first set of neighborhoods

and moves work on the construction of multiple-trip vehicle routes by modifying the fa-

cilities and availability periods a given vehicle visits, while the second aims to improve

the routing of vehicles between two such visits by working on the customer to route as-

signments. The neighborhood selection rule is dynamically modified during the search,

and a diversification strategy guided by an elite set of solutions and a frequency-based

memory is called upon when the search begins to stagnate. The neighborhood definitions

follow from a new formulation we propose for the TMZT-VRPTW. Extensive computa-

tional experiments show that the proposed tabu search yields very high quality solutions.

It outperforms the currently available method (Crainic et al., 2012b) with new best-known

solutions on all instances and an improvement in the solution quality by 4.42% on average.

In the TMZT-VRPTW, freight flow is only considered in the direction from regions

outside the city to the city center. In reality, freight is moved in, out, and through a city,

however. Integrating these flows into a single City Logistics system, facilities and vehi-

cles serving simultaneously several traffic types, would reduce the presence of vehicles

on the streets of the city, and make freight transportation more efficient. Such integration

might make the planning, management of scheduling and synchronizing processes more

complex, even difficult to implement in practice, however. Taking it as a challenge, in the

last part of this dissertation, we address an integration of outbound freight flow, shipping

freight from the city center to destinations outside the city limits, into the TMZT-VRPTW.

We introduce a problem, Multi-zone Multi-trip Pickup and Delivery Problem with Time

Windows and Synchronization(MZT-PDTWS), which has not been studied before. The

MZT-PDTWS is more complex than the TMZT-VRPTW in the sense that a new type

of customer demands, say pickup, is now considered together with delivery-customer de-

mands. Furthermore, pickup-customer-demands supply-point assignments are not known

in advance as for delivery-customer demands, but rather each pickup-customer demands
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has a list of available supply points that can service it, thus requiring the assignment of

each pickup-customer demand to one supply point selected from its list before routing

them. We propose a model for the MZT-PDTWS, and generalize the tabu search proposed

for the TMZT-VRPTW so that it can tackle the new problem efficiently. Different experi-

ments on both algorithmic design and synchronization policies have been conducted. New

benchmark instances with up to 72 supply points and 7200 customer demands have been

built to show the performance of the proposed method.

In summary, we propose efficient meta-heuristics for three rich vehicle routing prob-

lems which are either studied in very few papers, or first considered in the literature. In

the first study, we introduce the use of neighborhood-based meta-heuristics within a gen-

erational genetic algorithm. This hybridization provides the means to repair and enhance

individuals produced during the evolution process, as well as to promote diversity of the ge-

netic algorithm population. In the next studies, we study more complicated VRP variants.

A decomposition approach has previously been proposed to solve the problems in which

sets of decisions in the problems were addressed separately. We therefore propose a new

neighborhood-based meta-heuristic that addresses these sets of decisions simultaneously,

in a comprehensive and efficient way. Extensive numerical experiments and comparisons

with the literature show that our proposed methods yield high quality solutions, providing

many new best solutions or matching many of the existing ones.

1.2 Outline of the dissertation

The remainder of the dissertation is organized as follows. In Chapter 2, we give a short

overview on characteristics and constraints encountered when solving vehicle routing in

practice, as well as heuristics used to solve three VRP variants related to problems studied

in this dissertation. Each of the next three chapters (Chapter 3, 4 and 5), correspond-

ing to an associated paper, studies a specific problem (the PVRPTW, TMZT-VRPTW and

MZT-PDTWS respectively), and follows the same structure. Each chapter gives a proper

description of the problem studied, states and discusses published works, details our con-

tributions, introduces available as well as newly generated benchmark when appropriate,

reports the results compared with the literature, and finishes with conclusion and ideas for
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potential future works. Overall conclusions are drawn in Chapter 6. Appendix A, B, and C

provide supplementary material of the PVRPTW, TMZT-VRPTW, and MZT-PDTWS, re-

spectively.
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Chapter 2

LITERATURE REVIEW

This chapter provides an overview of the work on the VRP variants related to the prob-

lems studied in this dissertation. The VRP and its variants have been the object of nu-

merous studies, and a great number of papers have proposed solution methods for these

problems. This chapter therefore begins with a classification of the VRP by describing

the characteristics and constraints encountered when solving vehicle routing in practice

(Section 2.1). Based on this classification, Section 2.2 refers to books and survey papers

which provide more information on the VRP, its solution methods and recent works. Fi-

nally, three VRP variants related to the problems studied in this dissertation are reviewed:

the Vehicle Routing problems with Time Windows (Section 2.3), the Pickup and Delivery

problems (Section 2.4), and Vehicle Routing problems with Synchronization of vehicles

(Section 2.5).

2.1 Classes of vehicle routing problems

The different VRP formulations that appear in the literature derive from the following four

common attributes of real-life applications: depots, vehicles, customers, objective function.

These attributes are described in the following:

• Depots. Either a single depot or multiple depots can be specified. If there are mul-

tiple depots, each depot will have either an upper bound on the number of vehicles

of a particular type, or an upper bound on the total number of vehicles that can be

housed there.

• Vehicles.

– Characteristics

∗ Number of vehicles: limited or unlimited.



∗ Capacity: the maximum weight that a vehicle can load.

∗ Types: homogeneous or heterogeneous fleet.

∗ Compartments: one or multiple (possibly subdivided in loading parts, each

characterized by its capacity and by the types of freight that can be carried).

– Operational rules

∗ Route length (duration): each vehicle has a route-length constraint (for

example, 10 hours).

∗ Depot: vehicles must return to their starting depot (or not).

∗ Pick up and delivery: vehicles available for the loading and unloading op-

erations.

∗ Multiple tours: a vehicle can do more than one route.

• Customers.

– Amount of demand: freight quantity to be collected or delivered.

– Splitting: allowing deliveries to be split, a customer may be serviced by more

than one vehicle.

– Time window: the period during which the customer can be served; Time win-

dow is either hard or soft. If the time window for a customer is [a,b] and the

window is hard, then servicing this customer by a vehicle has to be carried

out between a and b. If this time window is soft, the vehicle need not service

this customer during [a,b]; if the time window is missed, the algorithm usually

assesses a penalty for the delayed/early service.

– Numbers of visits: one or multiple in a planning period of several days.

– A number of commodity: one or multiple (each customer may order one or

several products).

• Objective function. Usually the objective function is to minimize a weighted com-

bination of capital and operating costs for the fleet. It may also include a formula that

represents penalties for not meeting all the time-window constraints and/or for vio-

lating other constraints. Sometimes these objectives are hierarchical; in other cases,
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they are considered concurrently.

Based on the objective function to be optimized and the types of constraints to be sat-

isfied, different variants are introduced in the literature. The problems grouped under the

‘rich’ VRP variants have in common the characteristics of including additional realistic

constraints, aiming a closer representation of real-life problems. As the number of con-

straints grow in a variant, the ‘richer’ VRP variant might more closely model the real-world

applications, but it is likely more difficult to solve. In the following, we just introduce the

most familiar basic VRP variants from which ‘rich’ VRPs are often built by considering

the combination of these variants.

• Capacitated VRP (CVRP): each customer has its own demand and the total demand

on a route can not exceed the vehicle capacity. In some time- or distance-constrained

variants, additional constraints state that the length of a route should not exceed a

given limit (DVRP) (see Golden et al. (1998), Altinel and Oncan (2005), Toth and

Tramontani (2008)).

• VRP with time windows (VRPTW): a vehicle must arrive at each customer within a

time interval (see Solomon (1987), Potvin and Rousseau (1993, 1995), Le Bouthillier

and Crainic (2005)).

• Periodic VRP (PVRP): it is a variant of the VRP where the planning horizon extends

over a number of periods. Routes are constructed for each period, and each customer

is visited once or more over the horizon, depending on the customer requirements

(see Christofides and Beasley (1984), Tan and Beasley (1984), Russell and Gribbin

(1991), Cordeau et al. (1997), Drummond et al. (2001), Pirkwieser and Raidl (2008),

Vidal et al. (2012)).

• VRP with heterogeneous fleet (VRPHF): the vehicles do not share the same charac-

teristics (e.g. different capacities, different fixed costs) (see Gendreau et al. (1999),

Lima et al. (2004), Dondo and Cerda (2007)).
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• Multi-depot VRP (MDVRP): there are many depots and each vehicle can start or

end its route from any of these depots (see Hadjiconstantinou and Baldacci (1998),

Polacek et al. (2004), Ho et al. (2008), Xu et al. (2012)).

• Multiple tour VRP: one can assign more than one route to a vehicle over the planning

horizon. Different names are given to problems with this setting such as “Multiple

use of vehicles” (Taillard et al. (1995)), “multi-trip” (Brandão and Mercer (1997)),

“multiple trips” (Petch and Salhi (2003)), “multiple vehicle trips” (Olivera and Viera

(2007), Battarra et al. (2009)), “inter-depot” route (Crevier et al. (2007)), “multiple

routes” (Azi et al. (2014)).

• Split delivery VRP (SDVRP): each customer may be served by different vehicles

(the restriction that each customer is visited once is removed and the demand of each

customer can be greater than the capacity of the vehicles) (see Dror et al. (1994),

Frizzell and Giffin (1995), Belenguer et al. (2000), Ho and Haugland (2002)).

• The multi-compartment VRP (MC-VRP): products are incompatible and must be

transported in independent vehicle compartments (see Fallahi et al. (2008), Mendoza

et al. (2010)).

• General pick up and delivery problem. Basically, two problem classes can be distin-

guished:

– The first class refers to situations where all goods delivered have to be loaded

at one or several depots and all goods picked up have to be transported to one

or several depots. Problems of this class are usually referred to as either Ve-

hicle Routing Problems with Backhauls (VRPB) or VRP with Simultaneous

Delivery and Pick-up (VRPSDP). In the VRPB, each route is a mix of line-

haul customers (require deliveries) and backhaul customers (require pickups),

where the backhauls are typically visited after the linehauls (see Goetschalckx

and Jacobs-Blecha (1989); Jacobs-Blecha and Goetschalckx (1993), Thangiah

et al. (1996), Brandão (2006), Zachariadis and Kiranoudis (2012), Salhi et al.
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(2013)). In the VRPSDP, the same customer can ask both for freight to be

delivered from the depot and for other freight to be picked up and brought to

the depot. Each customer has to be visited either exactly once or twice (one

for delivery and one for pickup) (see Montané and Galvao (2006), Ai and Ka-

chitvichyanukul (2009), Zachariadis and Kiranoudis (2011), Tasan and Gen

(2012)).

– The second class, namely Pickup and Delivery VRP (VRPPD), considers all

problems where freight are transported between pickup and delivery locations.

It can be further divided into two subclasses which refer to situations where

pickup and delivery locations are unpaired and paired, respectively. In the for-

mer problem class, every load can be picked up and transported anywhere (see

Hernández-Pérez and Salazar-González (2003), Hernández-Pérez et al. (2009),

Zhao et al. (2009)). The latter problem class considers transportation requests,

each associated with an origin and a destination, resulting in paired pickup and

delivery points with precedence constraint where the pick up point must be

visited before the delivery point (see Bent and Hentenryck (2006)).

• VRP with synchronization considers the situations where vehicle routes must be syn-

chronized in time and/or space (see Crainic et al. (2010, 2011), Dohn et al. (2011),

Meisel and Kopfer (2012)). The spatial dimension of synchronization defines the lo-

cations where vehicle synchronization can take place, while the temporal dimension

of synchronization defines the order in which vehicles must visit a synchronization

point.

2.2 Survey Papers

A number of survey papers have appeared in various journals and books dealing with VRP.

These papers provide the reader with a broad introduction, a synopsis of modeling and

solution methods, and outline the status and prospects for future research to not only the

general VRP but also to some of the main VRP variants.

A good overview of exact and heuristic methods, together with descriptions of some
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application areas, can be found in the book “The Vehicle Routing Problem”, by Toth and

Vigo (2002).

Laporte (2007) gives a literature survey on the classical VRP in which only vehicle

capacity constraints are present. It presents three main solution approaches used in the

literature (i.e. exact algorithms, classical heuristics, and meta-heuristics) and the com-

parison of their results when available. Using the same approach, Cordeau et al. (2007)

provide a general survey of the most important VRP variants (CVRP, VRPTW, inventory

routing problems, stochastic vehicle routing problems), consisting of the mathematical for-

mulations followed by the description of some of the most important available exact and

heuristic algorithms.

The chapters in the book “The Vehicle Routing Problem: Latest Advances and New

Challenges” by Golden et al. (2008) summarize the most significant results, methodolog-

ical advances, new approaches for solving existing VRP since 2000, and highlights new

challenges for the field.

Drexl (2012b) gives a comparison of the state of the art of scientific research and com-

mercial software for modeling and solving VRP.

For more surveys and bibliographies on meta-heuristics for VRP, the reader is referred

to Gendreau et al. (2002), Cordeau et al. (2005), Cordeau and Laporte (2005), Potvin

(2009), Gendreau et al. (2008), Vidal et al. (2013b). Crainic (2008) provides a survey of

exact and heuristic parallel algorithms for the VRP, while Crainic and Hail (2005) describe

parallel meta-heuristics for VRP.

Surveys of some main VRP variants have also been published, such as the VRPTW

(see Bräysy and Gendreau (2005a,b), Tripathi and Minocha (2006)), the VRP with pick

up and delivery (see Savelsbergh and Solomon (1995), Mitrović-Minić (1998), Parragh

et al. (2008a,b)), Periodic VRP (see Francis et al. (2008), Campbell and Wilson (2014)),

Multi-trip VRP (see Şen and Bülbül (2008)), and VRP with synchronization (see Drexl

(2012a)).
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2.3 The Vehicle Routing problems with Time windows

The VRPTW is the problem of designing least cost vehicle routes, originating and ending

at a central depot, servicing a number of geographically situated customers with known

demands. The total demands of all customers on each vehicle route must not exceed the

capacity of the vehicle. Each customer is serviced only once by exactly one vehicle within

a given time interval, called a time window. The time window is hard when a vehicle route

is not feasible if the service of a customer either starts before the earliest time or ends after

the latest time of the time window bound, i.e., if a vehicle arrives too early at a customer, it

must wait until the time window opens; and it is not allowed to arrive late (see Desrochers

et al. (1992), Savelsbergh (1992), Garcia et al. (1994), Badeau et al. (1997), Schulze and

Fahle (1999), Ioannou et al. (2001), Le Bouthillier and Crainic (2005)). In other cases,

both lower and upper bounds of the time windows can be violated with a penalty. These

are VRP with soft time windows (see Taillard et al. (1997), Ioannou et al. (2003), Calvete

et al. (2007), Nai-Wen and Chang-Shi (2013)). The VRP with time deadlines is a special

case of the VRPTW, where the time windows are replaced by time deadlines (there is only

an upper bound) (see Thangiah et al. (1993)).

The VRPTW is an important problem occurring in many distribution systems, e.g.,

deliveries to super markets, bank and postal deliveries, school bus routing, industrial refuse

collection, etc. As the VRPTW generalizes the CVRP by including time window at each

customer, it can be seen as the core problem of most of VRP variants. Consequently, the

VRPTW has been the object of intensive research efforts both for the design of heuristics

and the development of optimal approaches. Here, we focus on heuristic and meta-heuristic

approaches. Details about optimal methods can be found in the recent survey paper of

Desaulniers et al. (2010).

Classical heuristic approaches can be roughly separated into two categories: construc-

tive and improvement heuristics (Laporte et al. (2000)). Constructive heuristics work on

building a feasible solution without a separate improvement scheme, while improvement

heuristics work on improving an incumbent solution by using some types of edge exchange

heuristics within and between routes.

Constructive heuristics were often proposed for the CVRP, but one could also apply
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them to the VRPTW without considering the feasibility of time windows at customers.

Constructive heuristics fall into one of three classes:

• Savings heuristics initially build a solution where each customer is served on its

own route. Routes are then merged one by one according to some criteria. Savings

algorithms vary by the criterion used for merging routes (what saving is obtained by

merging two routes) and by how routes are merged (see Clarke and Wright (1964),

Gaskell (1967), Yellow (1970), Altinel and Oncan (2005)).

• Insertion heuristics build a solution by inserting one customer at a time. Inser-

tion heuristics can build one route at a time (sequential insertion heuristics) or build

many or all routes in parallel (parallel insertion heuristics). The choice of which cus-

tomer to insert and where to insert the customer is what differentiates the insertion

heuristics (see Solomon (1987), Potvin and Rousseau (1993), Ioannou et al. (2001),

Figliozzi (2009)).

• Clustering heuristics are two-phase algorithms. The first phase consists of grouping

customers into subsets (clusters). The second phase then creates routes for each

subset. A third phase may be employed to repair the solution if it turns out that some

of the clusters could not be served by a single vehicle (see Gillett and Miller (1974)).

The common base of improvement heuristics for the VRP is that they are all local

search methods. Local search is a commonly used technique in combinatorial optimiza-

tion. It starts with an initial solution s, and repeatedly replaces the current solution s with

a better solution s′ in its neighborhood N(s) until no better solution exits in N(s), where

neighborhood N(s) is a set of solutions obtainable by slightly perturbing the current solu-

tion s.

Improvement heuristics for the VRP are based on the movements of either vertices or

edges in one route (intra-route) (see Figure 2.1) or several routes (inter-route) (see Fig-

ure 2.2) at a time. These movements can be classified as follows:

• Vertex move: a vertex is removed from its position and inserted into another position

(of the same route or a different route).
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• Vertex swap: two vertices exchange their position in the solution.

• Edge exchange: replace λ edges in the solution by λ other edges.
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Figure 2.1: Intra-route operators

Numerous combinations, extensions and adaptations of these basic movements for dif-

ferent types of VRP are reported in the literature. For instance, it is possible to move or

swap sequences of consecutive vertices (rather than a single vertex), e.g. CROSS exchange

(Taillard et al. (1997)) with Or-opt (Or (1976)) and 2-opt* (Potvin and Rousseau (1995))

as special cases, GENI-exchange (Gendreau et al. (1992)), ejection chains (Xu and Kelly

(1996), Rego and Roucairol (1996)).

One challenge of basic local search methods is that the search often converges to lo-

cal optima. Thus, researchers have developed methods that allow the search to ‘escape’

local optima to find improved solutions. The improvement procedures can be embedded

in a meta-heuristic such as tabu search (Garcia et al. (1994), Potvin et al. (1996b), Tail-

lard et al. (1997), Chiang and Russell (1997), Tan et al. (2000), Cordeau et al. (2001),

Homberger and Gehring (2005)), variable neighborhood search (Rousseau et al. (2002),

Bräysy (2003)), large neighborhood search (Pisinger and Ropke (2007)), simulated an-

nealing (Chiang and Russell (1996), Tan et al. (2000), Czech and Czarnas (2002)), path

relinking (Hashimoto and Yagiura (2008)), or population-based algorithm (e.g., genetic al-

gorithm (Thangiah et al. (1991), Potvin and Bengio (1996), Tan et al. (2000), Vidal et al.
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Figure 2.2: Inter-route operators

(2013a)), ant colony optimization (Gambardella et al. (1999)), or hybridizations between

meta-heuristics (e.g., hybridization of genetic algorithm with tabu search (Wee-Kit et al.

(2001)) and ant colony systems (Berger et al. (2003)), hybridization of simulated anneal-

ing with tabu search (Tan et al. (2001), Li and Lim (2003)) and large neighborhood search

(Bent and Hentenryck (2004), etc.)

Parallel and cooperative search methods form another effective approach. Gehring and

Homberger (2002) developed a parallel two-phased evolutionary algorithm combined with

tabu search. In the first phase, an evolutionary algorithm is performed to minimize the

number of vehicles, while in the second phase, tabu search is applied for the traveling dis-

tance minimization. The parallelization is based on the concept of cooperative autonomy,

for which several autonomous two-phase meta-heuristics cooperate through the exchange

of solutions. Each independent thread is performed with different configuration settings.

Le Bouthillier and Crainic (2005) presented a cooperative search method in which sev-

eral threads communicate through asynchronous exchanges of information using a pool of
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feasible solutions called warehouse. Each thread implements either a genetic algorithm

or a tabu search. Communications are initiated only by individual threads with access to

the warehouse, no broadcasting takes place. Tabu search algorithms require a single so-

lution from the warehouse either for restarting the search or for diversification, while the

improved solutions are sent back to the warehouse. GAs use the warehouse as population,

and each offspring is sent back to the warehouse. Later, Le Bouthillier et al. (2005) ex-

tended the approach of Le Bouthillier and Crainic (2005) to a guided parallel cooperative

search method. It is based on a central memory structure, equipped with a mechanism to

extract knowledge from the information exchanged among search threads in order to guide

the search toward promising and unexplored regions of the solution space. The threads

share information about their respective good solutions identified so far. When a thread

improves the solution, it sends this solution to the post-optimization algorithms present in

the central memory. The central memory sends both solutions and pattern information to

each cooperative thread when needed. A pattern-identification based on the inclusion of

arcs within solutions is used to guide the search. For this purpose, the central memory

is divided into three subsets according to the quality of solutions (i.e., elite, average and

worst). The frequency of an arc is calculated as the number of times it appears in solutions

belonging to a given subset of solutions. Each pattern contains a set of arcs, with similar

frequency of inclusion or not. Guidance is obtained by transmitting arcs patterns to indi-

vidual threads indicating whether the arcs in the pattern should be fixed to intensify the

search or, on the contrary, they should be prohibited to diversify the search.

The currently best-meta-heuristic for the VRPTW is reported in Vidal et al. (2013a)

who developed a hybrid genetic algorithm with adaptive diversity management. Their

method combines the capacity of exploration of genetic algorithm and the intensification

of local search procedures. Each individual is represented as a giant tour without trip de-

limiters which allows the use of simple permutation-based crossover operators. A Split

procedure is then needed to partition a given tour into several vehicle routes to obtain the

associated VRPTW solution. Furthermore, the evaluation of individuals is based on both

penalized costs and contribution to diversity metrics. This method not only solves success-

fully the VRPTW, but also many VRPTW variants with multiple depots (MDVRPTW),
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multiple periods (PVRPTW), and vehicle site dependencies (SDVRPTW).

2.4 The Pickup and Delivery problems

There has been extensive research on variants of the Pickup and Delivery problems that

consider different types of constraints that occur in real-world applications; see a number of

surveys (Savelsbergh and Solomon (1995), Parragh et al. (2008a,b), Berbeglia et al. (2007,

2010)) and book (Toth and Vigo (2002)). Figure 2.3 displays a classification scheme.

According to Berbeglia et al. (2007), the Pickup and Delivery problems are categorized into

one-to-one (1-1), one-to-many-to-one (1-M-1), and many-to-many (M-M) schemes. The

main difference among these three schemes is the transportation endpoint. One-to-many-

to-one scheme deliver goods from the depot to delivery (linehaul) customers and from

pickup (backhaul) customers to the depot, while one-to-one and many-to-many schemes

deal with transportation between customers.

Pickup and Delivery problems

Transport from/to a depot

(1-M-1)
Transport between customers

Pickup and 

delivery 

customers 

are disjoint

Same 

customer has 

both pickup 

and delivery 

demands

Unpaired

(M-M)

Paired

(1-1)

Delivery-first , 

pickup-second

Mixed 

pickups and 

deliveries in 

any order

Each customer 

is visited once

Each customer may 

be visited twice , one 

for pickup , one for 

delivery, if benefical

Lasso solution General solution

Figure 2.3: A classification scheme for Pickup and Delivery Problems
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2.4.1 One-to-many-to-one scheme

The class of one-to-many-to-one pickup and delivery problems is an extension of the VRP

involving both delivery and pickup points. Linehaul (delivery) points are sites that are to

receive goods from a main depot. Backhaul (pickup) points are sites that send goods to the

main depot. The development of these problems was motivated by the fact that significant

savings can be obtained by servicing both linehauls and backhauls in the same route as this

results in less empty trips. In the literature there are many descriptions of applications of

these problems, for example, in reverse logistics where full containers must be brought to

customers, and empty containers must be returned from the customers to depot. There may

be the case where the pickup and delivery service will be done either by one vehicle or a

fleet of vehicles. This class of problems can be classified into three main categories:

• VRP with Backhauls (VRPB): In a route, first are served the linehaul customers and

then the backhauls (delivery-first, pickup-second). No routes are allowed containing

only backhauls, but a route can contain linehaul customers only.

• VRP with Mixed linehauls and Backhauls (VRPMB): any sequence of linehauls and

backhauls in a route is permitted.

• VRP with Simultaneous Delivery and Pickup (VRPSDP): the same customer may

have both a pickup and a delivery demand. Such customer may either be visited

exactly once or twice, one for delivery and one for pickup. It is clear that the latter

case which allows each customer to be visited once or twice is more flexible, thus

can yield better solutions than the former. Parragh et al. (2008a) suggested a new

name for the latter case - VRP with Divisible Deliveries and Pickups (VRPDDP).

The literature further divides the VRPDDP into two categories according to distribu-

tion strategy: (1) lasso solution strategy: each vehicle first follows a path performing

deliveries; when sufficient space is created, it then starts visiting the remaining cus-

tomers assigned to this vehicle along a loop by performing a simultaneous pickup

and delivery at each visit, and finally a path is followed to perform the remaining

pickups at the first visited customers in reverse order; (2) general solution strategy:
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customer may be visited twice either in two different routes or at different times on

the same route.

We note that the VRPMB can be considered as a special case of the VRPSDP because

when the delivery or pickup demand of each customer is set to zero, the VRPSDP reduces

to VRPMB. Hence, a solution approach developed to solve the VRPSDP can be directly

used to solve the VRPMB. In the same way, the VRPMB may be modeled as a VRPSDP

by adding a pickup of zero to each linehaul and a delivery of zero to each backhaul. On the

other hand, the customers of VRPDDP can be divided into pickup and delivery entities to

give a mixed formulation. Table 2.1 presents a summary of the existing literature on these

three variants.

VRP with Backhauls (VRPB) Among heuristic methods, early studies focused only

on constructive methods. Deif and Bodin (1984) were among the first to develop classical

constructive heuristics. They proposed two approaches based on the savings methods of

Clarke and Wright (1964). In the first approach, a constraint is introduced to ensure that

all deliveries are made before any pickup. In the second approach, pickup customers are

delayed from early inclusion in routes by introducing a penalty factor in the basic savings

function. The drawback of these two approaches is that the number of routes could not be

controlled in the final solution. Therefore, the solution found may require more vehicles

than the maximum available to service all customers.

The improvement heuristics were initiated by Goetschalckx and Jacobs-Blecha (1989).

They presented two methods based on the idea of space-filling curves, where separate

routes are developed for the pickup and delivery customers. These routes are then merged

according to the space-filling mapping to obtain a final set of routes. The solution is then

improved by using the 2-opt and 3-opt. Later, in Jacobs-Blecha and Goetschalckx (1993),

they developed a cluster-first route-second algorithm based on the generalized assignment

approach of Fisher and Jaikumar (1981). This method produced better results than their

previous one.

Osman and Wassan (2002) were the first to develop a tabu search meta-heuristic for

the VRPB. They proposed two route construction methods which are based on saving-

insertion and saving-assignment procedures. The solution is then improved by a reactive
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Table 2.1: A comparison of the different papers on the 1-M-1 Pickup and Delivery prob-

lems

Paper Problem type Solution method

VRPB VRPMB VRPSDP

Each customer is visited

Once

Either once or twice

(VRPDDP)

Lasso General

Deif and Bodin (1984) x Constructive heuristic

Goetschalckx and Jacobs-Blecha (1989) x Improvement heuristic

Jacobs-Blecha and Goetschalckx (1993) x Improvement heuristic

Osman and Wassan (2002) x Reactive tabu search

Brandão (2006) x Tabu search

Wassan (2007) x Reactive tabu search + Adaptive memory

Gajpal and Abad (2009b) x Multi-ant colony system

Golden et al. (1984) x Constructive heuristic

Salhi and Nagy (1999) x x Constructive heuristic

Nagy and Salhi (2005) x x Local search

Reimann and Ulrich (2006) x Ant colony optimization

Ropke and Pisinger (2006) x x x Adaptive large neighborhood search

Halse (1992) x Constructive heuristic

Crispim and Brandão (2005) x x Tabu search + Variable neighborhood search (VNS)

Montané and Galvao (2006) x Tabu search

Chen and Wu (2006) x Tabu search

Wassan et al. (2008) x Reactive tabu search

Zachariadis et al. (2009) x Tabu search + Guided local search

Gajpal and Abad (2009a) x Ant colony system

Subramanian et al. (2010) x VNS + Iterated local search

Goksal et al. (2013) x x Particle swarm optimization + VNS

Nagy et al. (2013) x Reactive tabu search

Hoff et al. (2009) x Tabu search

tabu search which considers single-node and two-node exchange neighborhood structures.

Later, Brandão (2006) proposed a new tabu search algorithm where the initial solution is

obtained from a pseudo lower bound based upon the K-tree approach. Their tabu search

examines three neighborhood structures that involve relocating a customer to another route,

exchanging two customers belonging to two different routes, and exchanging the positions

of pickup and delivery customer within the same route. An intra-route repair operator

is applied if the precedence constraint is violated. Their algorithm is better than Osman

and Wassan (2002) algorithm in terms of average cost, number of optimal solutions found

and also computing time on the benchmark instances of Goetschalckx and Jacobs-Blecha
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(1989) and Toth and Vigo (1996). Ropke and Pisinger (2006) proposed a unified heuristic

based on a large neighborhood search which effectively deals with three routing variants

that consider backhaul customers: VRPB, VRPMB, and VRPSDP with and without time

windows. Their method uses different removal and insertion algorithms. At every itera-

tion a certain number of customers is removed from the routes by means of either random,

worst customer, cluster or history based removal. The free customers are then inserted us-

ing a basic or a regret insertion heuristic. Later, Wassan (2007) combined adaptive memory

programming with tabu search and proposed reactive tabu adaptive memory programming

search (RTS-AMP). Their tabu search uses λ -interchange of customers as proposed by Os-

man (1993). RTS-AMP maintains a set of solutions called elitist solutions and uses these

solutions to guide the search towards unexplored regions of the solution space. Gajpal

and Abad (2009b) presented a multi-ant colony system: the first colony is used to assign

customer to vehicles, and the second is used to construct a route for a vehicle given the as-

signed customers, i.e. to solve a Traveling Salesman Problem. After routes are constructed,

three local search procedures are applied.

VRP with Mixed linehauls and Backhauls (VRPMB) Golden et al. (1984) presented

an insertion-based procedure where routes are initially developed for delivery customers by

using some VRP approaches, and then pickup customers are inserted into delivery routes

according to an insertion criterion. Salhi and Nagy (1999) extended this scheme by allow-

ing the insertion of a cluster of pickup customers, and addressed both the VRPMB and

VRPDDP with general solution strategy.

Reimann and Ulrich (2006) proposed an insertion based ant colony optimization method.

Solutions are generated iteratively based on pheromone information, using a sequential in-

sertion based construction heuristic. The local search improvement phase consists of swap

and shift operators.

Goksal et al. (2013) later presented a heuristic solution approach based on particle

swarm optimization (PSO) in which a local search is performed by Variable Neighborhood

Descent. Moreover, it implemented an annealing-like strategy to preserve the swarm di-

versity. The computational results indicated that their method improved 104 out of 141

best-known solutions on benchmark of VRPMB instances (the improvement is around 2%
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on average).

VRP with Simultaneous Delivery and Pickup (VRPSDP) The VRPSDP was first

proposed by Min (1989). The author presented a heuristic to solve a real-life problem

concerning the distribution and collection of books of a public library. Customers are

initially clustered into groups with respect to the capacity of a vehicle, and then for each

group a Traveling Salesman Problem is solved. As mentioned before, the VRPSDP is

divided into two categories according to patterns of goods movements:

• Each customer is visited once: Halse (1992) later proposed a two-phase heuristic

based on the cluster-first-route-second concept. Crispim and Brandão (2005) were

the first to present a meta-heuristic approach for the VRPSDP. Their method is a

hybrid of tabu search and variable neighborhood search. Initial solutions are gen-

erated using a sweep method. If any route within this solution is infeasible due to

intermediate arcs being overloaded, the order of customers on the route is exchanged

until feasibility is established. The improvement phase is built on the moves insert

and swap. Later, more works for the VRPSDP have been published. Montané and

Galvao (2006) used a tabu search framework. The neighborhood is built using the

moves insert, exchange, crossover (splitting and splicing two routes) and 2-opt. The

balance between intensification and diversification of the search is controlled by a

frequency penalization scheme. Chen and Wu (2006) also used the tabu search. The

initial feasible solution is built by an insertion method, which relies on both distance-

and load-based criteria. The neighborhood for the improvement phase is built on the

moves 2-exchange, swap, shift, 2-opt and Or-opt. Wassan et al. (2008) presented

a reactive tabu search framework which uses the general shift, swap operators to-

gether with a problem-specific move which reverses complete routes. The proposed

dynamic control of the tabu list size achieves an effective balance between the in-

tensification and diversification of the search. Zachariadis et al. (2009) proposed a

hybrid meta-heuristic approach based on tabu search controlled by a guiding mech-

anism for diversifying the conducted search. Gajpal and Abad (2009a) proposed an

Ant Colony System methodology which employs a construction rule as well as two

multi-route local search schemes. Subramanian et al. (2010) presented a parallel al-
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gorithm which is embedded with a multi-start heuristic consisting of the Variable

Neighborhood Descent integrated in an iterated local search framework. The main

features of the proposed approach are the automatic calibration of some parameters

and the ability of exploring the high-level of parallelism inherent to recent multi-core

clusters.

• Each customer may be visited either once or twice, one for delivery, one for pickup,

if beneficial (VRP with Divisible Deliveries and Pickups (VRPDDP)): As mentioned

earlier, the VRPDDP is further classified along two distribution strategies: lasso

solution strategy and general solution strategy.

– Lasso solution strategy: Hoff et al. (2009) proposed a tabu search creating lasso

solutions based on shift and swap neighborhoods. After each move, the path

and loop parts of the current solution are re-optimized by 2.5-opt of Bentley

(1992) and 2-opt of Lin (1965), respectively.

– General solution strategy: Salhi and Nagy (1999) proposed an insertion-based

heuristic in which linehaul customers are routed first. It then inserts a clus-

ter of pickup customers into these linehaul routes rather than only one pickup

customer at a time as was previously done by Golden et al. (1984). Nagy and

Salhi (2005) proposed a local search heuristic that considers solutions with a

certain degree of infeasibility. Based on the degree of infeasibility of the cur-

rent solution, sequences of different improvement operators (2-opt, 3-opt, shift,

exchange, etc.) are applied. Nagy et al. (2013) proposed a reactive tabu search

which uses shift, swap operators together with a problem-specific move which

splits customers that are currently served in a single visit into a delivery and

pickup entity, and inserts whichever gives a better solution to the best possible

position in another route.

2.4.2 One-to-one and many-to-many schemes

These schemes refer to problems of designing a set of least cost vehicle routes starting

and ending at a common depot in order to transport goods from pickup to delivery points.
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The one-to-one scheme considers transportation requests, each request originates at one

location and is destined for one other pre-defined location. These requests apply to the

transportation of goods (VRP with Pickups and Deliveries) or people (the Dial-a-Ride prob-

lem). The many-to-many scheme refers to situations where pickup and delivery points are

unpaired, i.e., every good can be picked up and transported anywhere. The many-to-many

scheme did not receive as much attention in the literature as the other schemes. More-

over, most of the literature is restricted to the Capacitated Pickup and Delivery Traveling

Salesman Problem (CPDTSP) that consists of n pickup points and n delivery points, each

of which provides or requests one unit of commodity, and one vehicle of limited capacity.

The objective of the problem is to determine a minimum length feasible tour that picks up

and delivers all loads and does not violate the vehicle capacity.

In this dissertation, we only deal with the 1-M-1 scheme. We therefore do not review

the work published on 1-1 and M-M schemes. For more information on these two schemes,

readers may see the surveys of Cordeau and Laporte (2007), Cordeau et al. (2008), Parragh

et al. (2008b), Berbeglia et al. (2010).

2.5 The Vehicle Routing problems with synchronization of vehicles

In vehicle routing, synchronization of vehicles means to couple the route of two or more

vehicles in time and space. The spatial dimension of synchronization defines the locations

where vehicle synchronization can take place, while the temporal dimension defines the

order in which vehicles must visit a synchronization point. Two of the most studied prob-

lems are multi-echelon VRP and VRP with cross-docking. Table 2.2 gives an overview of

research on these problems for both time and space dimensions. The vehicles can be syn-

chronized at a single location or multiple locations, while synchronization locations may

be visited by vehicles either simultaneously or with a precedence order.

In multi-echelon VRP, delivery from one or several depots to customers is managed

by routing and consolidating the freight through intermediate facilities which are called

satellites. The most common version of multi-elechon VRP studied in the literature is the

two-echelon VRP (2E-VRP). A general time-dependent formulation with fleet synchro-

nization and customer time windows was introduced by Crainic et al. (2009) in the context
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Table 2.2: Synchronization of vehicles

Problem type Paper Spatial synchronization Temporal synchronization Solution method

Single Multiple Simultaneously Precedence

Multi-echelon VRP Crainic et al. (2010) x x Two-phase local search

Crainic et al. (2011) x x Multi-start local search

Hemmelmayr et al. (2012) x x GRASP, path relinking

Crainic et al. (2013) x x ALNS

VRP with cross-docking Lee et al. (2006) x x Tabu search

Liao et al. (2010) x x Tabu search

Wen et al. (2008) x x Tabu search, adaptive memory

Tarantilis (2012) x x Multi-start tabu search

of two-echelon City Logistics systems. In the 2E-VRP, there is only one depot considered,

and a fixed number of capacitated satellites. All freight from the depot must transit through

satellites, and then be delivered to the customers, i.e., direct shipping from the depot to

customers is not allowed. There are therefore two levels of vehicles: 1st-level vehicles

deliver freight from the depot to satellites, while 2nd-level vehicles start from satellites to

load freight and deliver them to customers. All customer demands are fixed and known

in advance and must be satisfied within the scheduling horizon. Each customer demand

has to be satisfied by only one satellite, and customer-satellite assignments are not known

in advance. To solve the 2E-VRP, the transportation is usually decomposed into two lev-

els, with the upper one addressing the depot-to-satellites delivery, while the lower level

building satellites-to-customers delivery routes. Satellites are thus called synchronization

locations where freight is transferred from 1st-level vehicles to 2nd-level ones. The goal of

the 2E-VRP is to service customers at minimum the total transportation cost at both levels,

and satisfying the capacity constraints of the vehicles and satellites.

Crainic et al. (2010) proposed a two-phase heuristic based on a clustering first rout-

ing second procedure plus a classical local search procedure. They applied a separation

strategy that splits the 2E-VRP problem into two major routing subproblems, one at each

level. The second-level subproblem is further decomposed into as many VRPs as the num-

ber of satellites, assuming that the set of customers assigned to each satellite is known.

The customer-to-satellite assignment problem is solved through a clustering-based heuris-

tic procedure allocating customers to closer satellites. In the same way, the VRP at the first
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level involves a single depot and a set of satellites with each one featuring a demand equal

to the sum of the demands of customers assigned to it. This heuristic was used to make a

satellite location analysis in order to build instances up with to 250 customers, providing

also a first sub-optimal solution as a reference for further methods for the 2E-VRP. Those

results were improved by the same authors using multi-start strategy (Crainic et al. (2011)),

and greedy randomized adaptive search procedure (GRASP) with path relinking (Crainic

et al. (2013)). Crainic et al. (2011) is the extension of Crainic et al. (2010) by solving

the resulting VRPs at the two levels iteratively, while adjusting satellite demands through

customer-to-satellite reassignments. Using the same approach, Crainic et al. (2013) solved

VRP subproblems by applying a GRASP and a local search procedure in sequence. Then,

the resulting solution is linked to an elite solution by means of a path relinking proce-

dure for further improvement. Crainic et al. (2013) produced an improvement of 8.7%

with respect to Crainic et al. (2011). Hemmelmayr et al. (2012) developed an adaptive

large neighborhood search (ALNS) heuristic. In their ALNS method, several different

neighborhoods are applied and ranked according to their success in improving solutions.

The highest ranked neighborhoods have a larger probability of being chosen. The pro-

posed neighborhoods work on both levels, satellites and customers, by opening, closing,

or swapping satellites; removing and reinserting customers. Their algorithm is capable of

improving the best known solutions on several instances.

A closely related problem is the so-called VRP with cross-docking (VRPCD). The

VRPCD involves transporting products from a set of suppliers (pickup nodes) to their cus-

tomers (delivery nodes) via a single cross-dock. Products from the suppliers are picked up

by a fleet of vehicles, consolidated at the cross-dock, and immediately delivered to cus-

tomers by the same set of vehicles, without intermediate storage. Lee et al. (2006) were

the first authors to take both VRP and cross-docking into consideration, assuming that all

vehicles coming from suppliers arrive at the cross-dock simultaneously. Time windows

at pickup and delivery nodes are not specified, but all demands must be satisfied within a

given planning horizon. The objective is to determine the number of vehicles and the opti-

mal vehicle routing schedule at the cross-dock to minimize the sum of transportation cost

and fixed cost of vehicles. A mixed integer programming formulation and a tabu search
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were proposed. Their tabu search corresponds to solving two vehicle routing problems (one

for pickup and one for delivery). The second routing problem can only start when the first

one is finished. Liao et al. (2010) proposed another tabu search algorithm to solve the same

problem. There are two major differences between the tabu search algorithms of Lee et al.

(2006) and Liao et al. (2010). First, Liao et al. (2010) moved a customer from one route to

another one at a time, whereas Lee et al. (2006) tried to exchange customers between two

routes. Second, it was allowed to remove an empty vehicle in Liao et al. (2010), while it

was not allowed in Lee et al. (2006). The tabu search of Liao et al. (2010) improved the

solution quality by 20.5% when compared to Lee et al. (2006) with much less computation

time.

A similar problem was studied by Wen et al. (2008), but in this case, each pickup and

delivery have predetermined time windows, and there is no constraint on simultaneous

arrival at the cross dock for all the vehicles at the cross-dock. Instead, the dependency

among the vehicles is determined by the consolidation decisions. To solve the problem, a

tabu search embedded within an adaptive memory procedure (AMP) was developed. In the

AMP, a set of vehicles tours is stored in an adaptive memory. The initial solution is con-

structed by combining vehicle tours selected in the adaptive memory. In the neighborhood

search phase, they used small neighborhood search and large neighborhood search. In the

former, the algorithm tries to improve the solution by moving a small subset of nodes to a

small subset of vehicles, while the whole solution space is explored in the latter (i.e., every

node is moved to every position of every other vehicle). The algorithms starts with the

small neighborhood, and switches to the large neighborhood if there is no improvement in

the best solution after a number of iterations. When exploring the large neighborhood, if

the best solution is updated within a number of iterations, the search process switches back

to the small neighborhood, otherwise the algorithm stops. Tarantilis (2012) later proposed

an adaptive multi-restart tabu search to improve the solution quality by up to 1.45% on

average. Their proposed tabu search uses intra- and inter-route 2-Opt, 1-0 Relocate and

1-1 Exchange. At each iteration, all neighboring solutions involving pickup vehicle routes

and delivery vehicle routes are evaluated. Only feasible moves are considered, and the

oscillations among the neighborhood structures is random with equal selection probability.
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A reference set consisting of good solutions found during the search process is used to

provide a new working solution for the execution of the re-starting mechanism.

In summary, we may note that vehicles in the 2E-VRP are synchronized at multiple

locations called satellites. Most algorithms addressing the problem in the literature did

not consider the time windows for customers and satellite operations. The vehicles in the

VRPCD are synchronized at a single location called cross-dock, time windows are defined

for customers, but not defined for the cross-dock. In the last two problems we study in

this dissertation, i.e., the TMZT-VRPTW and MZT-PDTWS, the operations of vehicles at

one level are considered. The vehicles are synchronized at multiple locations called supply

points to unload and/or load freight, time windows are defined for both customers and

supply points. Each supply point has a no-wait, hard opening time window, specifying the

earliest and latest times the vehicle must be available at it. Waiting stations (e.g., parking

lots) are available for vehicles to wait in order to get to its next supply point just before the

time window. Each vehicle can do multiple trips linking several supply points, where each

trip serves a subset of customers while satisfying the time window at each customer.

2.6 Conclusion

In reviewing the literature, we see that VRPs have been the object of numerous studies

and a very large number of papers proposed solution methods in which more and more

powerful algorithms find increasingly better solutions to both real-world VRP instances and

well-studied benchmark instances. However, research on rich VRP is still comparatively

meager in relation to the body of literature accumulated for the basic variants of VRP.

This dissertation first studies a basic VRP variant with “rich” setting: the Periodic Ve-

hicle Routing Problem with Time Windows (PVRPTW). Next, it tackles two new VRP

variants which are encountered when planning the operations of two-tiered City Logistics

systems, namely Time-dependent Multi-zone Multi-Trip Vehicle Routing Problem with

Time Windows (TMZT-VRPTW), and Multi-zone Multi-Trip Pickup and Delivery Prob-

lem with Time Windows and Synchronization (MZT-PDTWS) respectively.
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Chapter 3

A HYBRID GENERATIONAL GENETIC ALGORITHM FOR THE

PERIODIC VEHICLE ROUTING PROBLEM WITH TIME

WINDOWS

The article in this chapter has been accepted for publication in Journal of Heuristics:

P. K. Nguyen, T. G. Crainic, and M. Toulouse. A hybrid generational genetic algorithm

for the periodic vehicle routing problem with time windows. Journal of Heuristics, March

2014 (DOI 10.1007/s10732-014-9244-3).



Résumé: Nous proposons un algorithme génétique hybride à base de populations

pour le problème de tournées de véhicules périodique avec fenêtres de temps. Cet al-

gorithme hybride est une méta-heuristique qui combine un algorithme génétique avec deux

méta-heuristiques de recherche à base de voisinages: la recherche tabou et la recherche à

voisinage variable. Des méthodes de recherche locales ont été utilisées auparavant pour

améliorer la qualité des solutions générées par les opérateurs de croisement des algo-

rithmes génétiques. Dans notre travail, nous utilisons plutôt des méta-heuristiques de

recherche à base de voisinages pour leur capacité à poursuivre leur recherche au-delà

des optimum locaux, à générer des solutions de meilleures qualités et plus diversifiées,

qui sont alors utilisées for construire la population de la génération suivante. De plus,

la recherche exécutée par les méta-heuristiques de recherche à base de voisinages répare

la plupart des violations de contraintes qui occurent naturellement après l’application des

opérateurs de croisement. L’algorithme génétique que nous proposons introduit deux nou-

veaux opérateurs de croisement conçus pour le VRP périodique avec des contraintes de

fenêtres de temps. Ces deux nouveaux opérateurs de croisement cherchent à utiliser le

croisement des solutions pour améliorer la diversification de la recherche dans l’espace

de solutions tout en préservant l’information à propos des routes qui ont déjà été cal-

culées (le calcul des routes optimales est NP-difficile, nous cherchons donc à minimiser

la destruction de cette information lors des croisements de solutions). Un grand nom-

bre d’expérimentations ont été réalisées et de nombreuses comparaisons ont été conduites

avec toutes les méthodes proposées dans la littérature, montrant que notre méthode est très

compétitive, obtenant de meilleures solutions pour un nombre importants de problèmes de

grande dimensionalité.

Abstract: We propose a new population-based hybrid meta-heuristic for the periodic

vehicle routing problem with time windows. This meta-heuristic is a generational genetic

algorithm that uses two neighborhood-based meta-heuristics to optimize offspring. Local

search methods have previously been proposed to enhance the fitness of offspring gener-

ated by crossover operators. In the proposed method, neighborhood-based meta-heuristics

are used for their capacity to escape local optima, and deliver optimized and diversified

solutions to the population of the next generation. Furthermore, the search performed by
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the neighborhood-based meta-heuristics repairs most of the constraint violations that nat-

urally occur after the application of the crossover operators. The genetic algorithm we

propose introduces two new crossover operators addressing the periodic vehicle routing

problem with time windows. The two crossover operators are seeking the diversification

of the exploration in the solution space from solution recombination, while simultaneously

preserving information about routes in the population as computing routes is NP-hard. Ex-

tensive numerical experiments and comparisons with all methods proposed in the literature

show that the proposed methodology is highly competitive, providing new best solutions

for a number of large instances.

Keywords: Periodic Vehicle Routing problem, time windows, hybrid generational genetic

algorithm, meta-heuristics, tabu search, variable neighborhood search

3.1 Introduction

The Vehicle Routing Problem (VRP) is one of the most extensively studied problems in op-

erations research due to its methodological interest and practical relevance to many fields,

including transportation, logistics, telecommunications, and production; see, e.g., a num-

ber of recent surveys (Bräysy and Gendreau, 2005a,b; Cordeau et al., 2002a,b, 2007; El-

Mihoub et al., 2006; Gendreau et al., 2002; Golden et al., 2002; Laporte and Semet, 2002;

Laporte et al., 2000) and books (Golden et al., 2008; Toth and Vigo, 2002). Many of these

contributions targeted basic problem settings such as the capacitated VRP and the Vehicle

Routing Problem with Time Windows (VRPTW). More recent and significantly less stud-

ied are richer problem settings (Hartl et al., 2006) aiming at more refined representations

of actual applications and combining several “complicating” requirements and restrictions,

such as customers that require multiple visits, heterogeneous vehicle fleets, limits on route

duration or length, etc.

We focus on such a rich, relatively little studied VRP setting, namely the Periodic Ve-

hicle Routing Problem with Time Windows (PVRPTW). Addressing the PVRPTW requires

the generation of a limited number of routes for each day of a given planning horizon, to

minimize the total travel cost while satisfying the constraints on vehicle capacity, route

duration, customer service time windows, and customer visit requirements. The PVRPTW
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generalizes the VRPTW by extending the planning horizon to several days where cus-

tomers generally do not require delivery on every day in this period, but rather according to

one of a limited number of possible combinations of visit days (the so-called patterns). This

generalization extends the scope of applications to many commercial distribution activities

such as waste collection, street sweeping, grocery distribution, mail delivery, etc. It also

raises new resolution challenges due to the requirement of balancing aggregate daily work-

loads in order to achieve efficient feasible solutions. The PVRPTW is actually NP-hard as

it includes the Periodic Vehicle Routing Problem (PVRP), known to be NP-hard, while the

single-period case corresponds to the NP-hard VRPTW (Lenstra and Rinnooy Kan, 1981).

In this paper, we introduce a generational genetic algorithm (GA) for the PVRPTW. It

is a population-based hybrid meta-heuristic in which a set of neighborhood-based meta-

heuristics cooperate with the GA population evolution mechanism to enhance the solution

quality. Therefore, a first contribution of this work is the hybridization, which uses local

search procedures and neighborhood-based meta-heuristics as education strategies to repair

individuals and enhance their fitness as well as to promote diversity of the GA population.

Studies have been published where GAs are hybridized with local-search methods in order

to improve their exploitation capability (e.g., El-Mihoub et al., 2006; Knowles and Corne,

2000; Ishibuchi and Narukawa, 2004; Vidal et al., 2013a). Local search may reduce the di-

versity of the population (Merz and Katayama, 2004), however, and therefore limit the ex-

ploration capability of the GA. A few studies have indicated that a more aggressive search

with a neighborhood-based meta-heuristic starting from the crossover-generated offspring

may improve the diversity makeup of educated offspring and the global performance of the

GA in terms of solution quality (Crainic and Gendreau, 1999; Lü et al., 2010). Our concept

of GA hybridization builds on these insights. In the hybrid algorithm we propose, offspring

are thus first educated using neighborhood-based meta-heuristics, which extend the search

along routes and patterns beyond the offspring’s immediate local optimum. Then, more

intensification-oriented local search procedures improve the educated offspring relative to

its patterns and routes. This more extensive exploration of the offspring neighborhoods by

meta-heuristics yields two additional benefits for the search: the first is the restoration of the

feasibility of a very large percentage of the infeasible offspring produced by GA crossover
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operators; the second is the discovery of solutions with new customer-day assignments that

once added to the current population increase substantially the capability of the algorithm

to uncover new combinations of customer-day assignments through crossover operations.

A second contribution of this work is the design of a recombination operation for the

PVRPTW. Each day in the planning horizon of PVRPTW requires the computation of a

very good approximate solution to the NP-hard VRPTW routing problem using the above

neighborhood-based heuristics. It would be too costly and wasteful to compute such good

approximations for every offspring at each generation. Rather, we let the selection oper-

ator and individual fitness decide which routes are re-optimized through the application

of the neighborhood-based heuristics on routes or route components that survive several

generations. To achieve this objective, we need a recombination operation preserving as

much as possible routes across generations while maintaining the exploration capabilities

of generational genetic algorithms. We have implemented the genetic recombination oper-

ation using two crossover operators. The first crossover operator obtains new offspring by

combining visit days belonging to two parents. This operator aims at exploring the domain

of pattern assignments in the problem instance, thus favoring the exploration capabilities

of the GA. However, after the application of this operator, many customers in the offspring

are assigned to different days, leaving few significant routes or route components that can

be further optimized in the next generations. To address this issue, a second offspring is

generated by randomly selecting a parent for each day of the planning horizon and copying

all the routes of that day from the selected parent. This second crossover operator pre-

serves to a greater extent the existing routes of the parents which are further optimized by

the above neighborhood-based heuristics in next generations.

This work is the first generational GA on PVRPTW (see Pirkwieser and Raidl, 2010;

Vidal et al., 2013a, proposing steady state GAs). Typically, in a steady state GA (also called

incremental GA), a single individual in the population is replaced by an offspring at every

iteration of the method while in the generational GA the whole population is replaced.

While generational GA is favored in general, this model certainly raises challenges than

the steady state model if refined structures, such as highly optimized routes in PVRRPTW,

are to be discovered and maintained across generations. We also note that PVRPTW has
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many constraints, offspring produced by crossover are likely to violate some of these con-

straints, which is an important and well known issue for generational GA. We believe the

approaches proposed in this paper will be useful to address other problem settings raising

similar issues.

We tested the algorithm we propose on all previously published benchmark instances

and compare our results to all currently published results. The proposed Hybrid Genera-

tional Genetic Algorithm (HGGA) produces 9 new best-known solutions and finds 5 best-

known solutions on the set of 20 PVRPTW instances of Cordeau et al. (2004), improving

the solution quality by 0.05% on average in terms of best solution cost. We also improve

all the 45 instances of Pirkwieser and Raidl (2009a), improving the average solution cost

by 0.27%. We hope these encouraging results will contribute to stimulate more investiga-

tions into developing hybrid meta-heuristics for solving heavily constrained optimization

problems.

The remainder of the paper is organized as follows. We define the problem and give a

brief literature review in Section 3.2. The new HGGA and its components are introduced

and discussed in Section 3.3. Section 3.4 is dedicated to the experimental results. Finally,

Section 3.5 concludes the paper.

3.2 Problem definition and literature review

The PVRPTW is defined on a complete undirected graph G =(V ,E ), where V = {0,1, . . . ,n}
is the vertex set and E = {(i, j) : i, j ∈ V , i 6= j} is the edge set. A distance (or travel time)

ci j is associated with every edge (i, j) ∈ E . The depot vertex is indexed by 0. Vc = V \{0}
is the set of customer vertices. Each vertex (customer) i ∈ Vc has a demand qi ≥ 0 on each

day of its visit days over the planning horizon of T days, a service time si ≥ 0, a time

window [ei, li], where ei is the earliest time service may begin and li is the latest time. Each

customer requires a fixed number of visits fi during the planning horizon. These fi visits

must be performed according to an allowable visit-day pattern, which is a subset of fi days,

for example days 1, 3 and 5 of a 7-day planning horizon. A customer may have several

allowable visit-day patterns, they are part of the definition of a problem instance and stored

in a list Ri. The time window specifying the interval vehicles leave and return to the depot
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is given by [e0, l0]. A fleet of m vehicles, each with capacity Qk, is based at the depot.

Vehicles are grouped into set K . Vehicle routes are restricted to a maximum duration of

Dk, k = 1, . . . ,m.

In this paper, we address the case with a homogeneous vehicle fleet, Qk = Q, and a

common duration restriction Dk = D, ∀k = 1, . . . ,m. The PVRPTW can then be seen as the

problem of generating (at most) m vehicle routes for each day of the planning horizon, to

minimize the total cost over the entire planning horizon, such that 1) each vertex i is visited

the required number of times, fi, corresponding to a single pattern of visit days chosen

from Ri, and is serviced within its time window; these are hard, i.e., a vehicle may arrive

before ei and wait to begin service; 2) each route starts from the depot, visits the vertices

selected for that day, with a total demand not exceeding Q, and returns to the depot after a

duration (travel time) not exceeding D.

The complexity class of PVRPTW calls for heuristic solution approaches when realisti-

cally-sized instances are contemplated. Cordeau et al. (2001, 2004) introduced the problem

setting and pioneered the application of heuristics by proposing a tabu search algorithm,

which allows infeasible solutions together with associated penalty terms in the objective

function for violations of time windows, route duration, and vehicle capacity constraints.

Moves either relocate a customer to a different route in the same day or change its pattern,

which provides two ways to improve solutions, by modifying the routing and the visit

pattern assignments to customers. The authors also introduced a set of 20 benchmark

PVRPTW instances.

Pirkwieser and Raidl (2008) proposed a Variable Neighborhood Search (VNS) heuris-

tic for the PVRPTW, with the particularity that it accepts worsening solutions based on

a Metropolis criterion. Pirkwieser and Raidl (2009a) later introduced a hybrid scheme

between this VNS heuristic and an ILP-based column generation procedure addressing a

set-covering formulation. In this hybrid, the VNS is the sole provider of columns for the

set-covering, which is solved via a generic ILP solver. If the latter improves on the current

best solution, this new solution is transferred to the VNS for further enhancement. Since

ILP solvers cannot tackle large instances, validation relied on a new set of smaller instances

derived from the basic Solomon VRPTW 100-customer instances. The authors then pro-
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posed a hybrid between an evolutionary algorithm and the column generation approach

(Pirkwieser and Raidl, 2010), as well as a rigid synchronous cooperative multi-search ap-

proach, named multiple VNS (mVNS) (Pirkwieser and Raidl, 2009b). In the latter setting,

several VNS meta-heuristics run independently, synchronize after a given number of it-

erations to determine the best solution, the worst VNS thread being then restarted from

this best solution, while the others continue their own search. The mVNS was also hy-

bridized with the column generation approach as per Pirkwieser and Raidl (2009a). At a

synchronization point, the best mVNS solution is passed to the ILP solver. If the resulting

solution improves the mVNS best solution, the worst VNS search is initialized with it and

the mVNS is restarted. This mVNS-ILP combination is repeated a fixed number of times.

The mVNS-ILP hybrid generally produced better results than mVNS, without dominating

over the entire instance set.

Cordeau and Maischberger (2012) proposed a parallel iterated tabu search heuristic

which belongs to the pC/KS/MPDS category introduced by Crainic et al. (2005). This

heuristic embeds a tabu search within the framework of iterated local search as the im-

provement phase, yielding an ‘iterated tabu search’. Each ‘iterated tabu search’ thread

starts from different solutions using different parameters, and these threads communicate

through a central memory for exchanging their working solutions. The authors used up to

64 threads in the parallel variant.

Vidal et al. (2013a) proposed a hybrid genetic search which combines the exploration

capabilities of genetic algorithms, the search intensification of local search-based improve-

ment procedures, and diversity management mechanisms based on a generalized fitness

function combining solution quality and diversity. To further improve solution quality, the

authors also applied a decomposition phase in which pattern assigned to each customer

was fixed, the resulting VRPTW subproblem for each period being then solved separately

by their hybrid genetic algorithm.

Overall, the current best published results on the 20 instances of Cordeau et al. (2004)

are reported by Vidal et al. (2013a). Only the latter authors and Pirkwieser and Raidl pub-

lished results for the set of smaller instances introduced in Pirkwieser and Raidl (2009b).

Pirkwieser and Raidl (2009a,b, 2010) reported only average solution costs and no best
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solution costs.

3.3 The Proposed Hybrid Meta-heuristic

This section is dedicated to introducing the Hybrid Generational Genetic Algorithm (HGGA)

we propose. We start by describing the individual representation and evaluation procedure

(Sections 3.3.1 and 3.3.2, respectively). The main phases of the HGGA, illustrated in

Figure 3.1, are typical of generational genetic algorithms and are introduced next. The al-

gorithm uses one population only, which may contain both feasible and infeasible individ-

uals. The initial population is created using three greedy heuristics (Section 3.3.3). A new

population is generated from the current one through the selection, crossover, mutation,

education, and replacement phases of the algorithm (Sections 3.3.4 to 3.3.7, respectively).

The population is always ordered in increasing order of fitness. Our contributions are both

in adapting GA operators to the particular requirements of the PVRPTW and in designing

the overall organization of the hybrid algorithm to answer the challenges of this problem

setting.

START

Initial population 

generator

Population Offspring
Educated 

offsrping

New 

population

Roulette wheel
Crossover & 

mutation
Education Elite selection

Elite selection Output the best 

individual

N > maxGEN ?

NO
YES

Mating 

pool

Figure 3.1: The Hybrid Generational Genetic Algorithm Structure

3.3.1 Individual representation

An individual for HGGA corresponds to a feasible or infeasible solution to the PVRPTW

specifying the pattern assigned to each customer, the number of routes (that is, vehicles),
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and the delivery order within each route. The relevant characteristics of each individ-

ual are encoded into two chromosomes, the Pattern chromosome representing pattern-to-

customer assignments and the Route chromosome which encodes the routes for each day

of the planning horizon.

The Pattern chromosome is a binary vector of n×T bits. Starting from the left, the ith

sequence of T bits encodes the pattern assigned to the corresponding customer i. Figure

3.2a illustrates the Pattern chromosome of a solution with 10 customers and 3 days. In this

illustration, the first customer is serviced according to pattern [110], i.e., on days 2 and 3

(days are numbered from right to left).

110   010    111   100   101    001    010   011   110   100

(a) Pattern chromosome
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0
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110

0

Route 1: 0, 7, 1, 9, 0Route 1: 0, 5, 3, 8, 6, 0

Day 1: Day 2:

Route 2: 0, 8, 2, 3, 0

Route 1: 0, 10, 1, 0

Day 3:

Route 2: 0, 9, 4, 3, 5, 0

(b) Sequences of customers that are served on 3 days

5      3     8     6     11   7     1     9    12     8    2     3    12    10    1    13    9    4      3     5   13

(c) Route chromosome

Figure 3.2: Representation of an individual.

For each day in the planning horizon, a group of routes services customers on that day.

A route is an ordered sequence of customers on one day. The Route chromosome is the

concatenation of all the current sequences in the planning horizon. A number larger than

the number of customers is added at the end of each route in the Route chromosome for the
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decoding of the routes and days. This number is different for each day. Figure 3.2b is a set

of routes for the visit-day patterns in the Pattern chromosome of Figure 3.2a, while Figure

3.2c displays the corresponding Route chromosome.

3.3.2 Search space and individual evaluation

Allowing meta-heuristics to consider infeasible solutions often yields a better search able

to reach higher-quality solutions more efficiently (e.g., Cordeau et al., 2004). We follow

this trend and explicitly allow infeasible solutions during the search process by relaxing

constraints on the maximum vehicle load, route duration, and customer service time win-

dows.

Given a solution s, let c(s) denote the total travel cost of its routes, and let q(s), d(s),

and w(s) denote the total violation of capacity, duration, and time window restrictions,

respectively. The values of q(s) and d(s) are computed on a route basis with respect to

the Q and D values, whereas w(s) = ∑n
i=1 max{(ai− li),0}, where ai is the arrival time

at customer i. Solutions are then evaluated according to the weighted fitness function

f (s) = c(s)+αq(s)+βd(s)+ γw(s), where α , β , and γ are penalty parameters adjusted

dynamically during the search.

Several techniques are available to adjust the penalty parameters. For example, Cordeau

et al. (2004) based their update on the current solution. We prefer to follow Barbosa and

Lemonge (2002), which makes use of information related to the complete population. Let

q, d, and w stand for the violation of vehicle capacity, route duration, and customer service

time window constraints, respectively, averaged over the current population.

Let

h =











c(sworst) if there is no feasible solution in the population;

c(sbest f easible) otherwise.

The penalty parameters are then computed by the following rules:

α = h
q

q2 +d
2
+w2

, β = h
d

q2 +d
2
+w2

, γ = h
w

q2 +d
2
+w2

.

Every time the current best feasible solution is improved, h is redefined, all fitness val-

ues are recomputed using the updated penalty coefficients, and the population is sorted
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accordingly. This adaptive scheme automatically determines the penalty parameter corre-

sponding to each group of constraints during the evolutionary process so that the constraints

that are more difficult to satisfy receive a relatively higher penalty coefficient.

3.3.3 Initial population

Solutions in the initial population are generated by, first, assigning randomly an allowable

pattern of visit days to each customer and, second, by solving a VRPTW for each day us-

ing three greedy heuristics: 1) the Time-Oriented, Nearest-Neighbor heuristic of Solomon

(1987); 2) the parallel route building heuristic of Potvin and Rousseau (1993); 3) our own

route construction method. We use the methods of Solomon (1987) and of Potvin and

Rousseau (1993) because these heuristics are very fast, and they appear to be complemen-

tary. Indeed, comparing the two, the former seems to perform better for clustered problem

instances, while the opposite is true for the other problem settings (Bräysy and Gendreau,

2005a). Moreover, applying three different heuristics helps create diversity within the ini-

tial population.

Our own route construction method is quite flexible with regard to problems with a fixed

number of vehicles. It follows the cluster first - route second scheme. During clustering,

customers are first sorted in increasing order of the angle they make with the depot. Next,

a customer j is chosen randomly and the sequence of n customers j, j+1, ...,n,1, ..., j−1

is divided into m clusters of size ⌈n/m⌉ (the last one may be smaller), one for each avail-

able vehicle. Clustering is performed by a sweep starting from j and proceeding counter-

clockwise through the customers.

Routing is performed iteratively for each cluster using Solomon’s insertion heuristic of

type I1. For added flexibility in routing, the procedure considers not only the customers in

the cluster, but also a small number of customers not yet serviced by a route, selected from

the two immediate neighboring clusters. Each route is initialized with the customer not yet

assigned to a route displaying the lowest starting time for service. The remaining not-yet-

assigned customers are then added sequentially to the route until it is full with respect to

vehicle-capacity and route-duration constraints. The customers not yet assigned once the m

routes are created, if any, are then inserted into the existing routes to minimize the increase
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in the total travel distance. The algorithm stops when all customers are serviced.

3.3.4 Mating selection

The selection operator chooses individuals within the population for mating purposes. At

each generation of HGGA, a mating pool of nPop individuals is formed using a rank-based

Roulette-wheel selection operator. This operator first sorts individuals in the population

according to their fitness and then computes selection probabilities according to their ranks

rather than fitness value. The rank for an individual is scaled linearly using the following

formula:

Rank(Pos) = 2−SP+2(SP−1)
N−Pos

N−1

where N is the number of individuals in the population, Pos is the position of an individual

in this population (the best individual has Pos = 1, the worst individual Pos = N) and

SP ∈ [1.0,2.0] is the selective pressure.

An individual may be selected more than once. Then, each time offspring are required

during the course of the HGGA, two individuals in the mating pool are selected randomly

and passed to the crossover operators. These two individuals are then deleted from the

mating pool.

3.3.5 Crossover and mutation operators

A good solution to the PVRPTW involves a successful assignment of visit-day patterns

to customers as well as strongly optimized solutions to the T NP-hard routing problems

in a T -day planning horizon. To get an efficient GA, diversified visit-day patterns must

be sampled at every generation, requiring that new routing problems be solved, usually

yielding under-optimized routes when time to solve these problems is limited. In turn,

poorly solved routing problems increase the cost of otherwise potentially successful visit-

day assignments, preventing the search from identifying truly good solutions. It is against

this backdrop that we have designed the recombination phase of the genetic algorithm we

propose. We introduce two crossover operators, one aiming at exploring different visit-day

assignments, the exploration crossover operator, while the other, the exploitation crossover

operator combines existing routes from different days. Applied to the same pair of parents
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and yielding two offspring, the former operator creates new visit-day assignments, some-

time destroying useful information contained in the parents, while the latter helps intensify

the search by preserving routes or route components present in the parents, which are iter-

atively optimized in the next generations. Together, these two crossover operators balance

exploration and exploitation, thus improving the search efficiency of the algorithm.

In the following presentation, we use P1 = {Day 1: (Route 1: 5, 3, 8, 6); Day 2: (Route

1: 7, 1, 9) and (Route 2: 8, 2, 3); Day 3: (Route 1: 10, 1) and (Route 2: 9, 4, 3, 5)}, and

P2 = {Day 1: (Route 1: 9, 5, 3, 4, 6) and (Route 2: 7, 1, 2, 10); Day 2: (Route 1: 8, 5, 3);

Day 3: (Route 1: 1, 9, 3, 8)} as examples of parents involved in a crossover operation. The

Pattern and Route chromosomes of P1 and P2 are shown in Figure 3.3.

110   010    111   100   101    001    010   011   110   100

(a) Pattern chromosome of parent P1

5      3     8     6     11   7     1     9    12     8    2     3    12    10    1    13    9    4      3     5   13

(b) Route chromosome of parent P1

101   001    111   001   011    001    001   110   101   001

(c) Pattern chromosome of parent P2

9      5     3     4     6     11    7    1      2    10   11    8     5     3    12    1     9     3     8     13

(d) Route chromosome of parent P2

Figure 3.3: Pattern and Route chromosomes for parents P1 and P2.

The first crossover operator creates offspring by transferring a partial set of routes from

one parent, along with pattern assignments from both parents. The exploration crossover

operator proceeds in two steps:

STEP 1. Assign a pattern to each customer

(a) Inherit pattern assignments from parent P1. Randomly select two cutting points in

the sequence of customers of the Route chromosome of parent P1. The visit days

of customers between these cutting points are copied into the Pattern chromosome

of offspring C1. For example, assume entries 8 and 14 of the Route chromosome

of Figure 3.3b are the cutting points. Customers 9, 8, 2, 3 and 10 appear between
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the cutting points. Customers 9, 8, 2 and 3 are visited on the second day in P1,

therefore the second position of the visit-day pattern for these customers in the

Pattern chromosome of offspring C1 will inherit this visit day from P1 as shown in

Figure 3.4a. Similarly, as customer 10 found between the cutting points of P1 is

visited on the third day, the third position of the visit-day pattern of customer 10 in

the Pattern chromosome of offspring C1 is set to 1 as well. All the other positions

of all the visit-day patterns in the Pattern chromosome of offspring C1 are set to 0.

000   010    010   000   000    000    000   010   010   100

(a) After Step 1a

101   010    111   001   011    001    001   110   010   100

(b) After Step 1b

101   010    111   001   011    001    001   110   011   100

(c) After Step 1c

Figure 3.4: Example of pattern chromosome of offspring C1.

(b) Inherit pattern assignments from parent P2. Let day(i) denote the visit-day pattern

of customer i in offspring C1 after step a). Scan the Pattern chromosome of parent

P2 from left to right. For each customer i such that the number of visit days in

day(i) is smaller than fi, if customer i is visited on day t in P2, customer i inherits

day t in the Pattern chromosome of offspring C1 if day(i)∪{t} is a sub-pattern

of the visit-day patterns in Ri. For example, assume R9 contains visit-day patterns

[110] (visit day 2 and day 3), [101] (visit day 1 and day 3) and [011] (visit day

1 and 2). Customer 9 has day(9) = [010] (assigned a visit at day 2) after step

a) above. If in parent P2, customer 9 has pattern [101], then the visit-day pattern

day(9) cannot be completed in step b). Otherwise, customer 9 will inherit day 3

(or day 1) from the visit-day pattern [110] (or [011]) of parent P2, which will make

day(9) equal to one of the visit-day patterns in R9. Figure 3.4b illustrates the state

of the Pattern chromosome of offspring C1 once step b) is completed.
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(c) Complete pattern assignments. Assign a random pattern r ∈ Ri, such that r in-

cludes day(i), to each customer i whose frequency is not satisfied. For example,

after step b) above, there is only customer 9 whose frequency is not yet satisfied.

Since day(9) =[010] (assigned a visit at day 2) after step b), there are two patterns

of R9: [011] and [110] which have day(9) as sub-pattern. Thus, one of these two

patterns will be selected randomly, and assigned as pattern of customer 9. Then

the Pattern chromosome of offspring C1 is completed as shown in Figure 3.4c.

STEP 2. Assign customers to routes

(a) Copy routes from parent P1. The customers between the two cutting points deter-

mined in Step 1a are routed as in parent P1, i.e. the corresponding sequences are

copied into the Route chromosome of C1. If a route is cut by a cutting point, such

as route 1 in day 2 of Figure 3.2b, the route that is copied in C1 contains only the

customers inside the cutting points, only customer 9 in this example.

(b) Assign remaining customers to routes. The customers not yet routed, customers

before the first cutting point and after the second cutting point in P1, are assigned

to routes in C1 using the cost insertion procedure of Potvin and Rousseau (1993).

These customers may be inserted in routes copied from parent P1 if the procedure

of Potvin and Rousseau (1993) determines that this is the best insertion.

The exploration crossover operator is effective in changing visit-day assignments to

customers. However, it disassembles potentially optimized routes contained in the two

parents, and create new routes in the offspring which are likely not highly optimized.

The exploitation crossover operator processes each day t individually in the planning

horizon, where it selects randomly one parent among {P1,P2}. All routes of the selected

parent in day t are copied into the Route chromosome of offspring C2. Then, customers

are removed/inserted from/into days such that the pattern of visit days in C2 are satisfied

for all customers. If there is more than one possibility to delete a customer, the one that

minimizes cost is deleted. Customers are inserted using the cost insertion procedure of

Potvin and Rousseau (1993).
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For example, assume day 2 is selected from parent P1, while days 1 and 3 are selected

from parent P2. Then, all routes of parent P1 from day 2, and all routes of parent P2 from

days 1 and 3 are copied into the offspring C2, making C2 = {Day 1: (Route 1: 9, 5, 3, 4,

6) and (Route 2: 7, 1, 2, 10); Day 2: (Route 1: 0, 7, 1, 9, 0) and (Route 2: 0, 8, 2, 3, 0);

Day 3: (Route 1: 1, 9, 3, 8)}. Each customer from 1 to 10 is then sequentially examined

for satisfying its visit-day pattern. For example, customer 1 is currently serviced in day 1,

2 and 3 in offspring C2. Assume R1 contains visit-day patterns [110] (visit day 2 and day

3), and [101] (visit day 1 and day 3). Therefore, customer 1 should be removed either from

day 1 to satisfy the pattern [110] or from day 2 to satisfy the pattern [101]. If the former

case gives a higher gain compared to the latter case, customer 1 is removed from day 1.

Otherwise, customer 1 is removed from day 2.

The exploitation operator maintains some of the pre-existing routes in parents P1 and

P2 that might have been disassembled by the exploration operator. Pre-existing routes can

be furthermore optimized during the education phase of HGGA in future generations. In

turn, well optimized routes yield more accurate approximations of the cost of solutions

produced by different pattern assignments.

The mutation operator is applied to each offspring yielded by the crossover opera-

tors. Mutation consists in changing the pattern assignment of a few customers, which are

selected through a low probability Pm. A new pattern is then assigned to each selected

customer i: Either an eligible pattern (i.e., in Ri) not assigned to i in any of the individuals

of the current population, if such a pattern exists, or one not assigned to i in the current

offspring.

3.3.6 Education

Crossover and mutation operators yield offspring, which may be feasible or infeasible, but

is “sent to school” in all cases. The goal of the Education procedure is to improve the

quality of the offspring, as well as to restore the feasibility as much as possible (when

needed).

Two issues must be addressed in this context. First, while GAs proved their worth

in exploring broad and complex search spaces, they also appear less well suited for fine-
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tuning solutions that are near local optima (Gendreau and Potvin, 2005; Garcı́a-Martı́nez

and Lozano, 2008). Hybridization with local-search methods has been proposed to ad-

dress this issue, but this strategy often degrades the diversity of the population (Merz

and Katayama, 2004), and therefore limits the capability of the GA to find successions

of improvements through its generational process. The second issue concerns the fact that

crossover and mutation operators often yield offspring that violates some of the problem

requirements and a repair phase is required. Local search has also been proposed to address

this issue, but it might not be sufficient for heavily constrained optimization problems like

PVRPTW, as our initial experiments have shown.

We therefore propose an education procedure based on a different principle, one which

embeds neighborhood-based meta-heuristics into the GA to both maintain its exploring

ability and restore the feasibility of offspring before its insertion in the population. This

principle follows the insight of previous work on cooperative search methods (Crainic and

Gendreau, 1999) and has been recently reinforced by the results of Lü et al. (2010). Com-

pared with local search procedures, a higher proportion of offspring have their feasibility

restored by meta-heuristics and the educated offspring have a higher average fitness.

The proposed education procedure integrates two meta-heuristics, the Unified Tabu

Search (UTS) of Cordeau et al. (2004) and the Random Variable Neighborhood Search

(RVNS) of Pirkwieser and Raidl (2008). We selected these meta-heuristics for several rea-

sons. On one hand, they were applied to the PVRPTW and, thus, one obtains not only a

basis for comparisons, but also known behavior and performance for the problem of in-

terest. On the other hand, while both can contribute to routing and pattern-assignment

improvements by changing the patterns assigned to customers and the routes of each day,

the way moves are selected, evaluated, and performed is particular to each meta-heuristic.

UTS selects between a routing or a pattern move based on the maximization of the cost

improvement, while RVNS selects randomly at each iteration whether to execute a pat-

tern or a route move. Combining the two yields HGGA, which produces more diversified

individuals across generations.

The pseudo code of Algorithm 1, where CNG stands for the current number of gener-

ations, gives the general structure of the education procedure: Offspring are first educated
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through the neighborhood-based meta-heuristics and, then, intensification-oriented local

search further enhances the educated offspring in their pattern assignment and routing di-

mensions. To save computation time and improve the diversity of the GA, UTS and RVNS

are applied alternately every generation. A rather small number of iterations is allowed to

each meta-heuristic. This may impair the performance of RVNS by “clashing” with its ran-

dom move-selection characteristic, which helps to explore new points in the search space

but yields poor solutions if the meta-heuristic is interrupted too soon. Consequently, a local

search Pattern-Improvement procedure is applied to further improve the solutions. Finally,

a Route-Improvement procedure locally re-optimizes the routes for each day separately.

Algorithm 1 EducationProcedure(solution s, CNG)

1: if CNG is even then

2: UTS(s)

3: else

4: RVNS(s)

5: Pattern improvement(s)

6: end if

7: Route improvement(s)

8: return s

The Pattern-Improvement procedure proceeds by assigning a new pattern to each cus-

tomer, keeping those that actually improve the solution. Customers are handled in random

order. Then, for each customer i and each of its unassigned patterns r′ ∈ Ri (if any), i is

removed from its current routes and the cheapest fitness insertion is performed to insert i

into routes of corresponding days of the new pattern r′. A 2-opt heuristic is then applied

to each route changed by this reassignment. If the new solution improves over the current

one, a 2-opt* heuristic is applied for further improvement of the new current solution. One

then proceeds to the next pattern or, if all have been tried out, to the next customer.

Route improvement is the last education activity and is performed by applying a number

of well-known local search route improvement techniques. Two are intra-route operators,

the 2-opt of Lin (1965) and the Or-opt of Or (1976). The others are inter-route operators,
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the λ -interchange of Osman (1993), the 2-opt* of Potvin and Rousseau (1995), and the

CROSS-exchange of Taillard et al. (1997). For the λ -interchange, we only consider the

cases where λ = 1 and λ = 2 corresponding to the (1,0), (1,1), (2,0), (2,1), and (2,2)-

interchange operators.

The procedure starts by applying in random order the five λ -interchange and the 2-opt*

and CROSS-exchange inter-route operators. Each neighborhood is searched on all possible

pairs of routes (in random order) of the same day and stopped on the first improvement.

The solution is then modified and the process is repeated until no further improvement can

be found. The search is then continued by locally improving each route of the current day

in turn. The intra-route 2-opt and Or-opt neighborhoods are sequentially and repeatedly

applied until no more improvement is found.

3.3.7 Generation replacement and HGGA general structure

Once the mating pool is emptied, the generational change takes place. The goal is to pro-

duce a new generation that conserves the best characteristics of the individuals encountered

so far and that displays a good variety of genetic material. An elitist approach is thus used,

keeping some of the parents and all children which have different pattern assignments,

while also welcoming individuals with unused pattern assignments generated by the edu-

cation procedure.

HGGA evolves a population in which each individual has a different pattern assign-

ment. Recall (Section 3.3.4) that the mating pool is populated with nPop individuals se-

lected from the current population (the same individual may appear more than once ac-

cording to its fitness) and that nPop offspring are created through crossover, mutation and

education. The next generation is then composed of these nPop new individuals, the best

nKeep individuals in the current population (nKeep < nPop), plus feasible solutions found

by the education procedure that have a pattern assignment not yet seen in the population.

Finally, for those individuals that share the same pattern assignment, only the best one is

kept in the next generation. Algorithm 2 summarizes the hybrid meta-heuristic we propose

for the PVRPTW.

As in the mating pool individuals may appear more than once, the diversity of the
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Algorithm 2 Hybrid Generational Genetic Algorithm

1: Randomly generate an initial population of nPop individuals

2: repeat

3: Evaluate the fitness for each individual in the population

4: Create the mating pool of nPop size using rank-based Roulette wheel

5: while the mating pool is not empty do

6: Select two parents at random from the mating pool

7: Apply crossover operators to produce two offspring

8: Apply mutation operator to each offspring

9: Apply education procedure to each offspring

10: Delete both selected parents from the mating pool

11: end while

12: Generation replacement

13: until maximum number of generations > maxGEN

14: Print the current best solution

pattern assignments in the mating pool is smaller than in the initial population. This phe-

nomena will be accentuated if selection schemes with higher selection pressure were used.

Therefore, among the nPop offspring obtained from the crossover and education phases, it

is likely that some will be rejected because they have same pattern assignments. In HGGA,

rejected offspring can easily be replaced by individuals generated by the execution of the

UTS and RVNS procedures during the education phase. These procedures execute between

50 and 800 local transformations on solutions generated by crossover, many of which are

pattern assignment transformations. Each new feasible solution following a transformation

is stored, yielding plenty of solutions to fill the population. Nonetheless, in the eventuality

that local transformation procedures are not used, some approaches should be considered to

obtain the needed individuals such as mutation operations on offspring with repeated pat-

tern assignments or by generating random individuals which do not repeat existing pattern

assignments.
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3.4 Computational Analysis

The objective of the numerical experiments is twofold. First, to study a number of variants

of the main algorithmic components and strategies and thus develop insights into address-

ing the challenges of designing hybrid meta-heuristics for tightly constrained combinato-

rial optimization problems (Section 3.4.1). The second objective consists in evaluating the

performance of the proposed HGGA through comparisons with published results (Section

3.4.2).

HGGA is implemented in C++. Experiments were run on an Intel Xeon 2.8 GHz, 16 GB

RAM. Two sets of instances were used throughout the experiments. The first, introduced

by Cordeau et al. (2004), is made up of two sets (identified as a and b) of ten Euclidean

instances each, ranging from 48 to 288 customers, 3 to 20 homogeneous vehicles, and with

a planning horizon of 4 or 6 days. Instances a and b have narrow and large time windows,

respectively. The depot has a [0,1000] time window in all instances. The second set of

instances was generated by Pirkwieser and Raidl (2009a) and is made up of three sets

of fifteen instances each. These Euclidean instances were created based on the Solomon

VRPTW 100-customer instance set with a planning horizon of four, six, and eight days,

denoted p4, p6, and p8, respectively.

3.4.1 Analysis of design decisions

A hybrid meta-heuristic like HGGA is always the result of a number of decisions on the

structure, components, and parameter values of the method. Three main design compo-

nents are studied through their impact on the behavior of the proposed HGGA: the edu-

cation procedure (Sections 3.4.1.1 and 3.4.1.2), the selection and replacement strategies

(Section 3.4.1.3), and the crossover operators (Section 3.4.1.4). The calibration of the

search parameters is presented in Section 3.4.1.5.

3.4.1.1 Variants of the education procedure

The first experiment examines the contribution of the education procedure on search per-

formance. We consider the execution of the GA with and without the inclusion of the
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education procedure phase. We also evaluate the impact of each neighborhood-based

meta-heuristic on the GA performance in order to determine an appropriate hybridization

scheme.

To determine the hybridization scheme, we have implemented the UTS and RVNS

meta-heuristics following the descriptions given in Cordeau et al. (2004) and Pirkwieser

and Raidl (2008), respectively (Annex A.1 details the algorithms), and set up four hybrid

algorithms following the general structure of Algorithm 2. The first two, HGGA-UTS and

HGGA-VNS, embed one method only, UTS or RVNS being called at each iteration, re-

spectively. The third, HGGA-UTS/VNS, combines the two, UTS and RVNS being used

alternately at every generation. The fourth, HGGA, enhances the HGGA-UTS/VNS struc-

ture by performing the pattern improvement procedure following the RVNS execution.

To level the comparison field, the number of iterations of UTS (200) and RVNS (1200)

was set to yield comparable computing times. Similarly, the number of iterations of RVNS

was reduced for HGGA such that the total computing effort for RVNS and pattern improve-

ment be approximately the same as that of RVNS in HGGA-UTS/VNS. Experiments were

conducted on the Cordeau et al. (2004) instances.

Table 3.1: Aggregated performance comparison between education schemes on Cordeau

et al. (2004) instances

HGGA-notEdu HGGA-UTS HGGA-VNS HGGA-UTS/VNS HGGA

Time (hours) 0.35 5.22 5.77 5.20 5.18

GAP +8.84% +1.07% +1.48% +0.34% -0.05%

Table 3.1 displays the aggregated results of this experiment in terms of average CPU

time and gap to the best known solution (BKS). The last four columns display results for

GA with the education phase under the different hybridization schemes while the second

column (HGGA-notEdu) displays the performance obtained without an education phase.

As expected, we can observe from the second column that the education procedure con-

tributes significantly to improve the performance of the algorithm. The computational time

is significantly less compared to the hybridized versions, but the average gap to the BKS

of +8.84% is the highest compared to all the variants using the education phase.
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In Table 3.1, we also observe that hybridization based on UTS or RVNS impacts the

method differently, the aggregate performances being too close to discriminate (slight ad-

vantage to HGGA-UTS). Mainly, this is explained by how the move types are selected by

each meta-heuristic, UTS selects between routing or pattern modification moves based on

cost improvement while RVNS makes a random selection satisfying the Metropolis selec-

tion criteria. The results also showed that both hybridization schemes improved in solution

quality upon UTS but not relative to RVNS, and the situation did not change with increased

education effort (e.g., doubling the number of UTS and RVNS iterations in the hybrids).

Combining the two neighborhood-based meta-heuristics into the same hybrid algorithm

produced the desired result, HGGA-UTS/VNS outperforming HGGA-UTS and HGGA-

VNS (even when the education effort was reduced, e.g., running 100 and 1000 iterations

of UTS and VNS, respectively). The hybrid also improved the BKS for small instances.

The best performance, both in solution quality and computation time, is offered by the

HGGA hybrid, however, which adds the pattern-improvement post-optimization procedure

to RVNS.

3.4.1.2 Capacity of UTS and RVNS to repair offspring

Based on the constraint violations penalty system described in Section 3.3.2, infeasible

individuals with low constraint violation may get good objective function values and be

competitive in terms of fitness selection. This is desirable as the solution of these individu-

als, beside few violated constraints, may have components that facilitate finding improved

feasible individuals. However, keeping too many infeasible solutions may lead to a pro-

longed processing time to synthesize the population. In the next experiment, we show that

UTS and RVNS are very efficient in repairing the offspring generated by the crossover op-

erators. This experiment measures the percentage of feasible individuals among the new

offspring and in the overall population during the evolutionary process.

Table 3.2 displays the results for all small instances (less than 100 customers) and

large instances (100 or more customers). The percentage values in each row of the Range

columns represent the smallest and the largest percentages of feasible individuals obtained

among all the generations. The first row is before education and the second row is after
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Table 3.2: Percentage of presence of feasible individuals during the evolution

Small instances Large instances

Range Mean Range Mean

Offspring before education 29% - 82% 66% 26% - 77% 62%

Offspring after education 70% - 100% 91% 60% - 100% 90%

Individuals in population 61% - 100% 96% 57% - 100% 93%

education, both rows apply to offspring only. The third row is after education considering

the percentages of feasible individuals in the overall population. The mean number of

feasible individuals over all the generations are reported in the Mean columns. From Table

3.2, it is clear that the education procedure is able to restore the feasibility of offspring, i.e.,

the percentage of feasible individuals in nPop offspring is increased from 66% (62%) to

91% (90%) after the education for small (large) instances on average. Together, for small

and large instances, we get percentages of feasible individuals in the population of 96%

and 93% respectively.

3.4.1.3 Variants of selection and replacement schemes

In the next set of experiments, we analyzed the impact of the selection operator and re-

placement policies on the solution quality. Two types of selection operators, rank-based

roulette wheel and binary tournament, were investigated in conjunction with two replace-

ment strategies:

• Strategy 1. The population of generation i+1 is made up of the nKeep best solutions

of generation i plus all nPop offspring.

• Strategy 2. The population of generation i+ 1 is made up of the nKeep best solu-

tions of generation i, all nPop offspring, plus feasible solutions discovered during

the education procedure displaying pattern assignments not yet used by nKeep best

solutions and nPop offspring.
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Note that in both strategies, each individual in the population has a different pattern

assignment as only the best one among those using the same pattern assignment is kept.

Table 3.3: Proportion of individuals in the mating pool from nKeep best solutions of pre-

vious generation

Strategy nKeep Binary Tournament Rank-based roulette wheel

%nKeep GAP %nKeep GAP

40 6% - 8% 2.54% 26% - 37% 0.38%
1

70 13 % - 16% 2.09% 48% - 53% 0.05%

40 4% - 7% 2.2% 24% - 34% 0.07%
2

70 10% - 15% 2.06% 37% - 50% 0%

The experiment was run for 2000 generations with nPop = 100 and different values of

nKeep. The selective pressure for the rank-based roulette wheel selection operator was set

to 1.2. The experiment was performed using a small set of instances {1a,11a,3a, 3b, 9a, 9b}
from Cordeau et al. (2004) with diverse characteristics, such as small and large time win-

dows, number of customers, and number of periods, which impact the ease of addressing

instances. Thus, larger time windows imply more feasible places to insert customers into

routes, thereby increasing the number of feasible solutions with respect to this constraint.

Similarly, more customers or longer planning horizons imply more feasible pattern com-

binations. We report the average results over 10 runs in Table 3.3. The %nKeep column

reports the proportion of solutions in the mating pool that comes from the nKeep best

solutions of the previous generation, the percentage values in each row of this column

representing the lower and upper bounds on the number of solutions from nKeep, respec-

tively. Over all, rank-based roulette wheel selection and the second replacement strategy

yield better solutions than the others. Thus, we report in the GAP column the gaps for the

average values obtained by each selection and replacement strategy with respect to that of

the rank-based roulette wheel selection and the second replacement strategy.

We observe a significant difference in Table 3.3 between the two selection operators in

terms of the impact they have on the performance of the HGGA. Further, for both selection
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operators, Strategy 2 yields better solutions than Strategy 1. Consequently, rank-based

roulette wheel selection and the second replacement strategy were used in all subsequent

experiments.

3.4.1.4 Complementarity of the crossover operators
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Figure 3.5: Performance comparison between variants of crossover operators.

To show the complementarity of the two crossover operators in HGGA, we have run

tests where HGGA uses only one of the crossover operators. Figure 3.5 displays the value

of the best solutions found by HGGA over 2000 generations on instance 10b of Cordeau

et al. (2004). The value of the best solution when HGGA uses only the exploitation operator

is 13813.69 obtained at generation 922, with only the exploration operator the best solu-

tion is 13654.46 obtained at generation 1489, while using both crossover operators the best

solution is 13363 obtained at generation 1896. From Figure 3.5, we can see that using only

the exploitation crossover, HGGA converges rapidly but the search yields a sub-optimal so-

lution. With a slower convergence, HGGA using only the exploration crossover produces

the worst solution, 1.17% higher than when only the exploitation operator is used. Em-

ploying both crossover operators improves the solution by -2.18% and -3.37% compared

to using only either one of crossover operators, exploitation and exploration, respectively.
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3.4.1.5 Calibration of search parameters

The main parameters of the proposed HGGA requiring calibration are the population size,

the cardinality of the elite group, and the number of iterations for UTS and RVNS. The

parameter values were selected considering a number of criteria: solution quality, improve-

ment of the best solution through generations, and the computational cost for HGGA. The

calibration was performed using the same small set of instances used in Section 3.4.1.3.

Experiments showed that a somewhat larger population size and longer education ex-

plorations (number of iterations of UTS and RVNS meta-heuristics) yield a more extensive

sampling of the solution space and favor identifying good solutions based on correct selec-

tions of patterns for customers together with good routings. The experiments also showed

that appropriate parameter values change with the size of the instance. The interval exam-

ined and the final parameter settings appear in Table 3.4, where small and large instances

consist of less and more than or equal to 100 customers, respectively. Additionally, for

all instances, the UTS procedure uses a tabu length of θ = 1.5log10(n) (smaller than the

7.5log10(n) in Cordeau et al., 2004), and the RVNS procedure lowers the temperature every

τ = 10 iterations (smaller than the 100 in Pirkwieser and Raidl, 2008).

Table 3.4: Calibration of main HGGA parameters

Parameters Interval Final values

explored Small instances Large instances

Population size (nPop) [50, 400] 70 100

Elite set cardinality (nKeep) [25, 300] 40 70

Number of UTS iterations [50, 150] 50 100

Number of RVNS iterations [100, 800] 400 800

Maximum number of generations (maxGEN) [250, 5000] 500 1500, 2000

The last calibration step examined the stopping criterion, which is based on the total

number of HGGA iterations. The best solution and corresponding computation time were

measured for each instance from generation 250 to generation 5000, by steps of 250. The

results indicate that, for small instances, the best solutions can not be improved after 500

generations, while the average improvement of the best solution between generations 500
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and 750 is less than 0.001%. Consequently, the number of generations was set to 500

for small instances. For large instances, the number of generations was set to 1500 for

instances with less than 200 customers, and to 2000 for instances with more than or equal

to 200 customers.

3.4.2 Numerical Results

The performance of the proposed HGGA is evaluated through comparisons with pub-

lished results on the instances provided by Cordeau et al. (2004) and Pirkwieser and Raidl

(2009a). For brevity, only aggregated results are provided in this section. Details may be

found in Annex A.2.

In order to compare computational times of meta-heuristic algorithms that were run on

different machines, we have scaled all CPU times into their equivalent Intel Xeon 2.8 GHz

run times. This conversion is based on the assumption that CPU time is approximately lin-

early proportional to the number of floating point operations per second (flop/s) performed

by the processor. Various computer systems have been tested using the linear equation

solver software LINPACK, their (flop/s) measures are reported in Dongarra (2013). Table

3.5 provides these values for each of the algorithms we compared with, along with the re-

sulting scaling factors used for the time conversion. MFlop/s values were obtained from the

Net Library at the website with URL: http://www.netlib.org/benchmark/linpackjava/timings list.html.

Table 3.5: Scaling factors for computation times

Authors Processors MFlop/s Factor

Cordeau et al. (2004) Pentium 4 2 GHz 198 0.47

Pirkwieser and Raidl (2008) 2.2 GHz Dual-Core AMD Opteron 300 0.7

Cordeau and Maischberger (2012); Vidal et al. (2013a) 2.93 GHz Intel Xeon CPU 448 1.05

Pirkwieser and Raidl (2009b, 2010) Core2 Quad 2.83 GHz Q9550 687 1.6

This paper 2.8 GHz Intel Xeon CPU 428 1.00

Table 3.6 compares the gaps for the HGGA relative to previous BKS and those of the

other algorithms on the Cordeau et al. (2004) instances:

• CLM04: UTS of Cordeau et al. (2004)
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• PR08: RVNS of Pirkwieser and Raidl (2008)

• CM12: Parallel iterated tabu search of Cordeau and Maischberger (2012)

• VCGP13: Hybrid genetic algorithm of Vidal et al. (2013a)

Table 3.6: Best performance comparison among PVRPTW algorithms; Cordeau et al.

(2004) instances

Instances Prev BKS CLM04 PR08 CM12 VCGP13 HGGA

No n m T Cost Best 10 Best X Best 30 Best 10 Avg 10 Best 10 Cost GAP Time (min)

1a 48 3 4 2909.02 0.07 0 0 0 0 2909.02 0 2

2a 96 6 4 5026.57 0.57 0.19 0 0 0.04 5026.57 0 16

3a 144 9 4 7023.9 2.93 1.63 0.54 0.38 0.48 7024.96 0.02 129

4a 192 12 4 7755.77 2.54 1.63 0.66 0.47 0.25 7738.25 -0.23 219

5a 240 15 4 8311.17 3.39 2.18 0.58 0.37 0.56 8319.89 0.11 327

6a 288 18 4 10473.24 4.34 2.3 0.66 0.04 0.76 10478.80 0.05 468

7a 72 5 6 6782.68 0.62 0.07 0 0.01 0.1 6782.68 0 10

8a 144 10 6 9574.8 1.81 1.53 0.3 0.19 0.32 9574.86 0.0006 252

9a 216 15 6 13201.06 3.13 1.99 0.75 0.35 0.64 13188.40 -0.1 523

10a 288 20 6 16920.96 4.81 4.31 2.01 0.47 0.11 16906.80 -0.08 903

1b 48 3 4 2277.44 0.73 0 0 0 0 2277.44 0 2

2b 96 6 4 4121.5 3.3 0.39 0.08 0.01 0.39 4122.03 0.01 26

3b 144 9 4 5489.33 2.9 1.57 0.01 0.59 0.41 5489.77 0.01 140

4b 192 12 4 6347.77 3.89 2.03 0.56 0.08 0.73 6345.65 -0.03 248

5b 240 15 4 6777.54 4.09 2.84 0.34 0.19 0.6 6775.39 -0.03 446

6b 288 18 4 8582.72 4.03 2.76 0.89 0.14 0.19 8580.06 -0.03 504

7b 72 5 6 5481.61 0.43 0.42 0 0 0.26 5481.61 0 16

8b 144 10 6 7599.01 3.64 1.71 0.75 0.28 0.31 7595.75 -0.04 287

9b 216 15 6 10532.51 3.39 3.36 0.45 0.54 0.42 10508.80 -0.23 610

10b 288 20 6 13406.89 4.28 4 0.63 0.27 -0.1 13363.00 -0.33 1080

Avg Gap to BKS (%) 2.74 1.75 0.46 0.22 0.32 -0.05

Avg Origin run time (min) 160 N/A 11.32 32.74 310.46

Avg Scaled time (min) 75.2 N/A 11.88 34.37 310.46

Processor P4-2G Opt-2.2G Xe-2.93G Xe-2.93G Xe-2.8G

The first four columns indicate the instance name, the number of customers n, the

number of vehicles m, and the number of days T , respectively. The fifth column displays

the previous BKS reported in Vidal et al. (2013a). All gaps are reported as % value w.r.t. the

previous BKS. The next four columns provide, respectively, the gaps for the values reported

by Cordeau et al. (2004), Pirkwieser and Raidl (2008), Cordeau and Maischberger (2012),
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Vidal et al. (2013a). The last four columns report the gaps for the average values obtained

by our algorithm over 10 runs, the cost of the best solution found during these runs, the

corresponding gap and the average computation time over the 10 runs. The last three

rows provide average measures over all instances: the average gap to the previous BKS,

the original computation time, and the scaled computation time which use our machine

(Xe-2.8G) as the baseline in minutes, and the type of processor used by each algorithm.

Boldface indicates instances for which HGGA improves previous BKS.

HGGA produces high quality solutions, with an average error gap of -0.05% to the pre-

vious BKS, compared to more than 0.22% for the other algorithms. HGGA produces 9 new

best-known solutions and finds 5 best-known solutions over 20 instances. Experiments also

showed that the best solutions in the initial population were 27.59% greater than the best

solutions obtained by HGGA on average, illustrating the significant solution-improvement

effect of the hybrid strategy.

The next round of experiments focused on the instances proposed by Pirkwieser and

Raidl, and used in Pirkwieser and Raidl (2009a,b, 2010) and Vidal et al. (2013a). It is note-

worthy that the authors truncated the calculated travel costs to one digit, which reduced the

total cost. More importantly, for instances with tight time windows, truncation can produce

many more feasible solutions compared to the no-truncation case, hence resulting in a quite

huge reduction of total cost. We therefore give the performance results of HGGA with and

without truncation (the detailed results are provided in Annex A.2). One also notes that

best solutions were reported by Vidal et al. (2013a) only, and just for the truncation case.

Pirkwieser and Raidl (2009a,b, 2010) reported only average costs and standard deviations

computed over 30 runs for each instance. Average costs over 10 runs for each instance set

p4, p6, p8 are available in Vidal et al. (2013a). We therefore selected the best average cost

of each instance set over all previous algorithms, identified it as Previous Best Average,

and used it to measure the performance of the proposed HGGA meta-heuristic (notice that

all Previous Best Average were produced by Vidal et al. (2013a)).

Table 3.7 sums up this comparison, based on averages. It displays the average results of

HGGA over 10 runs (with truncation), the reported results of the algorithms in Pirkwieser

and Raidl (2009a,b, 2010) – VNS and VNS-ILP (Pirkwieser and Raidl, 2009a); mVNS
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and mVNS-ILP (Pirkwieser and Raidl, 2009b); Evolutionary Algorithm (EA), combination

of column generation and evolutionary algorithm (CG-EA), and CG-ILP (Pirkwieser and

Raidl, 2010) – as well as the average results of the Hybrid Genetic Algorithm (VCGP13)

of (Vidal et al., 2013a). We report for each algorithm the averages of the percentages of

deviation from the Previous Best Average (Column GAP), the published computation time

(Column Origin) and the scaled computation time based on our machine (Xe-2.8G) (Col-

umn Scale). Several settings were given for VNS-ILP, mVNS, and mVNS-ILP, without

a clear dominating one. We therefore selected the best solution over all settings (5 or 7,

each with 30 repetitions) for each instance set, together with the corresponding computa-

tion time. Pirkwieser and Raidl (2009a) used an Opteron 2.2 GHz, Pirkwieser and Raidl

(2009b, 2010) used a Core2 Quad 2.83 GHz, and Vidal et al. (2013a) used an Intel Xeon

2.93 GHz. One observes that HGGA performs again very well, obtaining the smallest av-

erage gap from the Previous Best Average for all 45 instances, and improving the average

costs by 0.09%, 0.25%, and 0.48% for p4, p6, and p8 instances, respectively. A detailed

comparison, instance by instance, further supports this conclusion (see Table A.2 in the

Annex). Relative to the best known solutions of Vidal et al. (2013a), the proposed meta-

heuristic obtained better results on 9/45 instances, the same results on 13/45, and worse

on 23/45 instances. In all cases, improvements and deficits are negligible, the gaps for the

three instance sets being 0.002%, 0.022% and -0.004% for p4, p6, and p8, respectively.

Table 3.7: Comparative performances on Pirkwieser and Raidl (2009a) instances

Algorithms Processor p4 p6 p8

Runs GAP Time (min) Runs GAP Time (min) Runs GAP Time (min)

Origin Scale Origin Scale Origin Scale

VNS Opt-2.2G 90 1.32% 0.81 1.15 90 1.21% 0.93 1.33 30 2.18% 0.51 0.73

VNS-ILP 150 1.12% 0.57 0.81 150 1.05% 0.81 1.16 30 2.05% 0.58 0.83

mVNS 150 0.95% 0.43 0.69 210 0.96% 0.80 1.28 - - - -

mVNS-ILP 150 0.41% 0.70 1.12 210 0.81% 0.82 1.31 - - - -

EA Qd-2.83G 30 3.55% 0.48 0.77 30 4.25% 0.61 0.98 30 6.33% 0.73 1.17

CG-EA 30 2.47% 0.60 0.96 30 3.41% 0.80 1.28 30 5.19% 1.00 1.6

CG-ILP 30 3.52% 0.56 0.89 30 9.61% 0.80 1.28 30 14.88% 1.00 1.6

VCGP13 Xe-2.93G 10 0% 3.21 3.37 10 0% 4.44 4.66 10 0% 5.06 5.31

HGGA Xe-2.8G 10 -0.09% 33.88 33.88 10 -0.25% 43.20 43.20 10 -0.48% 48.75 48.75

61



Table 3.8 displays the performance of HGGA for the two cases, with and without travel-

cost truncation. As expected, HGGA displays enhanced performance in the former case

compared to the latter. Experiments also showed that the best solutions in the initial popu-

lation were, on average, 23.17% and 21.86% greater than the best solution obtained in the

cases without and with truncation, respectively, illustrating again the significant effect of

the hybrid meta-heuristic.

Table 3.8: HGGA and the travel-cost truncation issue; Pirkwieser and Raidl (2009a) in-

stances

Result p4 p6 p8

Previous Best Average Avg cost 3280.30 4381.19 5387.09

Avg cost 3277.23 4370.43 5361.22
HGGA with truncation

GAP -0.09% -0.25% -0.48%

Avg cost 3297.31 4393.97 5394.08
HGGA without truncation

GAP 0.55% 0.29% 0.13%

To further validate the performance of HGGA, we sample the success rate of HGGA

for reaching the previous BKS and the new BKS by constructing a time-to-target (TTT)

plot (Aiex et al., 2007) for two problem instances. A TTT plot is generated from the ex-

ecution of an algorithm κ times during which one measures the time required to reach a

solution at least as good as a target solution. The running times are sorted in increasing

order. The i-sorted running time ti is associated with a probability ρi = (i− 1/2)/κ , the

points zi = [ti,ρi], i = 1, ...,κ , are plotted. Each plotted point indicates the probability (ver-

tical axis) for the algorithm to achieve the target solution in the indicated time (horizontal

axis). For this experiment we use the two largest instances of Cordeau et al. (2004), i.e.,

instances 10a and 10b, and replace, in the TTT plots, the running times by the number

of generations. The plots in Figure 3.6a and 3.6b were generated from the execution of

HGGA 200 times on instances 10a, using the previous BKS and the new BKS as target

values, i.e., values 16920.96 and 16906.80, respectively. Similarly, the plots in Figure 3.6c

and 3.6d were generated for instance 10b. We observe that HGGA reaches the previous
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BKS with a maximum probability of 0.75 and 0.86 on instances 10a and 10b respectively

while reaching the new BKS with a maximum probability of 0.32 and 0.37 respectively for

instances 10a and 10b.
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(d) The target solution is new BKS of 10b

Figure 3.6: Time-to-target plot for the instance 10a and 10b of Cordeau et al. (2004)

We conclude this section with a few remarks on the computational effort of HGGA.

In its current implementation, this effort appears indeed high compared to the methods in

the literature, the meta-heuristic education procedure compounding the issue. Yet, the is-

sue is not really significant. On the one hand, the proposed methodology may be greatly

accelerated by using the classical strategy of performing the crossover and education pro-

cedures in parallel (Crainic and Toulouse, 2010). This strategy is particularly adapted to
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the present case for two main reasons. First, in the generational GA paradigm, all mating

and offspring generation and education is performed before a new generation is considered.

Decomposing this component of the work clearly then yields independent tasks. Second,

each such task is still computation intensive, involving at least a sequence of mating and

offspring generation and education (this case corresponds to the finer-grained decomposi-

tion assigning each pair of parents to a particular processor). Quasi-linear speedup factors

may consequently be expected.

On the other hand, the proposed hybrid GA meta-heuristic is actually using the com-

putational effort to provide higher-quality solutions. To support this claim, we let the two

neighborhood-based meta-heuristics search address each instance for a computing time

equivalent to that of the HGGA for the same instance. All algorithms were run 10 times

and the best results were taken for comparison. The results are summed up in Table 3.9,

where columns CLM04 and PR08 indicate the gap to the cost of solutions obtained by

HGGA from the cost of solutions obtained by the meta-heuristics for the same computing

time as HGGA (for example, row 3a, −2.69 = HGGA(3a)−CLM04(3a)
HGGA(3a) × 100). The negative

values observed for all instances and procedures indicate the computing effort of HGGA

is well spent, the proposed hybrid meta-heuristic is outperforming the two meta-heuristics,

UTS of Cordeau et al. (2004) and RVNS of Pirkwieser and Raidl (2008), which are used

in the education procedure.

3.5 Conclusion

We introduced HGGA, a population-based hybrid meta-heuristic for the periodic vehicle

routing problem with time windows. For this hybrid, a persistent algorithm, the genetic

algorithm, calls at each generation for the execution of one among two neighborhood-

based meta-heuristics to “educate” each individual of the current population. Extensive

numerical experiments and comparisons with all methods proposed in the literature show

that the proposed methodology is highly competitive, providing new best solutions in some

large instances.

In the present algorithm, the education of each individual is completely independent

of the others for a given generation, education can be easily parallelized with an expected
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speed-up closed to linear. Future work will exploit this parallelism by expanding the cur-

rent hybrid algorithm into a cooperative search algorithm. To fully exploit parallelism,

the neighborhood-based meta-heuristics of the current implementation will be used in a

persistent manner and executed in parallel while GA operators will provide cooperation

Table 3.9: Performance comparison for fixed computing effort; Cordeau et al. (2004) in-

stances

Instances Time (hours) CLM04 PR08 HGGA

1a 0.03 -0.04 0 2909.02

2a 0.27 -0.51 -0.15 5026.57

3a 2.15 -2.69 -1.71 7024.96

4a 3.66 -2.11 -1.79 7738.25

5a 5.46 -2.91 -1.32 8321.15

6a 7.81 -3.88 -2.11 10478.80

7a 0.17 -0.28 -0.1 6782.68

8a 4.21 -1.7 -2.05 9574.86

9a 8.71 -3.04 -1.65 13188.40

10a 15.05 -4.52 -3.12 16906.80

1b 0.03 -0.51 0 2277.44

2b 0.43 -2.67 -0.8 4122.03

3b 2.34 -2.49 -1.69 5489.77

4b 4.14 -3.53 -2.05 6345.65

5b 7.43 -2.08 -3.1 6775.39

6b 8.41 -2.67 -3.09 8580.06

7b 0.26 -0.36 -0.33 5481.61

8b 4.78 -3.54 -1.31 7595.75

9b 10.17 -3.33 -3.12 10508.80

10b 18 -2.75 -4.14 13363.00

Average 5.18 -2.28 -1.68 7924.49
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among neighborhood-based meta-heuristics. Current and new crossover operators will be

called on solutions that belong to a pair of neighborhood-based meta-heuristics, generat-

ing offspring that will guide the two cooperating meta-heuristics. A distributed selection

procedure will be designed to select these solutions. Besides speeding-up computation

through parallelism, this cooperative approach to PVRPTW will study the distributed se-

lection, crossover and mutation operators and their capability to provide, through diffusion,

a consistent global search strategy, which we expect to be comparable to the evolution of a

steady state GA.

66



Chapter 4

A TABU SEARCH FOR TIME-DEPENDENT MULTI-ZONE

MULTI-TRIP VEHICLE ROUTING PROBLEM WITH TIME

WINDOWS

This chapter has been published as journal article: P. K. Nguyen, T. G. Crainic, and

M. Toulouse. A tabu search for Time-dependent Multi-zone Multi-trip Vehicle Routing

Problem with Time Windows. European Journal of Operational Research, 231(1):43–56,

2013.



Résumé: Nous proposons une méta-heuristique basée sur la recherche tabou pour

le Time-dependent Multi-zone Multi-trip Vehicle Routing Problem with Time Windows.

Cette méta-heuristique utilise deux types de voisinages correspondant aux deux types de

décisions du problème. Une stratégie de sélection du type de voisinage est définie en fonc-

tion des phases de la recherche dans l’espace de solutions, cette stratégie permettant de

combiner les capacités d’exploration et d’intensification de la recherche. Une stratégie

de diversification guidée par un ensemble de solutions élites et une mémoire à base de

fréquences est aussi utilisée pour conduire la recherche dans des régions non explorées de

l’espace de solutions dans le but d’améliorer la qualité de la recherche. Un grand nombre

d’expérimentations ont été conduites, de même que de nombreuses comparaisons avec les

résultats dans la littérature. Ces expérimentations et comparaisons montrent que la méthode

de recherche tabou proposée donne des solutions de très hautes qualités, améliorant les so-

lutions déjà publiées.

Abstract: We propose a tabu search meta-heuristic for the Time-dependent Multi-zone

Multi-trip Vehicle Routing Problem with Time Windows. Two types of neighborhoods,

corresponding to the two sets of decisions of the problem, together with a strategy con-

trolling the selection of the neighborhood type for particular phases of the search, provide

the means to set up and combine exploration and exploitation capabilities for the search.

A diversification strategy, guided by an elite solution set and a frequency-based memory,

is also used to drive the search to potentially unexplored good regions and, hopefully, en-

hance the solution quality. Extensive numerical experiments and comparisons with the

literature show that the proposed tabu search yields very high quality solutions, improving

those currently published.

Keywords: Multi-trip Vehicle Routing with Time windows; Synchronization; Time-dependent

demand; Tabu search

4.1 Introduction

The basic Vehicle Routing Problem with Time Windows (VRPTW) aims to design least

cost routes from a single depot to a set of geographically distributed customers, while

satisfying time window constraints at customers and the capacity of vehicles. In this paper,
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we consider the Time-dependent Multi-zone Multi-trip Vehicle Routing Problem with Time

Windows (TMZT-VRPTW), which is an extension of the VRPTW involving both designing

and assigning routes to vehicles within time synchronization restrictions.

In the TMZT-VRPTW setting, a homogeneous fleet of vehicles operates out of a single

garage to deliver customer-specific loads, available at particular facilities during particular

operating time intervals. Deliveries at customers must be performed according to hard time

windows. Vehicles must synchronize their arrivals at facilities with the respective operating

time periods, that is, time windows at facilities are hard and vehicles are not permitted to

arrive in advance and wait. Particular waiting stations may be used by the vehicles to wait

for the next appointment. A vehicle route thus leaves the garage to visit a first facility within

its operating time periods and load freight, proceeds to deliver it to customers within their

time windows, and then moves to its next appointment at a facility, possibly stopping to

wait for the appropriate time at a waiting station. The route continues until either there are

no more loads to deliver or its cost becomes noncompetitive compared to other routes. The

vehicle returns to the garage in both cases. The goal of the TMZT-VRPTW is to determine

the set of routes, and assign them to particular vehicles, providing timely customer service

and synchronized arrival at facilities for loading freight, minimizing the total cost made

up of the (variable) costs of operating vehicles and the (fixed) costs of using them. The

“time dependency” characterizing the problem setting follows from the time stamps of the

origin-to-destination demand, indicating the time interval when the load is available at the

origin facility and the delivery time window at the customer. This is different from most

time-dependent vehicle routing problem contributions in the literature where travel costs

or travel times are considered to vary with time.

The TMZT-VRPTW is encountered in several settings, in particular in the context of

planning the operations of two-tiered City Logistics systems (Crainic et al., 2009). In such

systems, the first tier involves large-capacity vehicles delivering freight from the city distri-

bution centers (CDCs) located on the outskirts of the city to intermediary facilities, called

satellites, where it is transferred to smaller-capacity vehicles performing the satellite-to-

customer delivery routes. Given the concerns regarding the impact of freight transport

on the city living conditions (e.g., congestion and environment), as well as the locations

69



of most satellites within or close to the city center, very short waiting times are allowed,

most transfer operations being performed according to trans-dock practices, without in-

termediate storage. The arrival of first-tier vehicles at a given time period define the set

of customers to be serviced, and the time required to unload and transfer the freight thus

defining the availability period during which second-tier vehicles must arrive at the satel-

lite and load. Second-tier vehicles must therefore synchronize their arrivals at satellites

with these availability periods. After loading the planned freight, each second-tier vehicle

undertakes a trip servicing the customers assigned to it. Once the last customer is serviced,

the vehicle moves empty either directly to a satellite for its next trip, to a waiting station

(when available) to wait for its next appointment at a satellite, or to the garage to end the

current work assignment. The TMZT-VRPTW corresponds to the planning of the activities

of second-tier vehicles.

To our knowledge, Crainic et al. (2009) were the first (and only) to propose a method

to address the TMZT-VRPTW. The authors proposed a decomposition approach that first

addressed the VRPTW subproblems representing the delivery to the customers associated

with each combination of satellite and availability period. The vehicle trips resulting from

the solution of the subproblems were then put together into multi-trip routes by solving a

minimum cost network flow problem. These two sets of decisions, 1) how to service cus-

tomers associated to given facility-availability period combinations, and 2) how to combine

the resulting trips into vehicle-specific multi-trip routes abiding by the synchronization re-

quirements at facilities, are not independent, however. Combining them into one formu-

lation and solution method should yield better results. The objective of this paper is to

take up on this challenge and present a meta-heuristic that addresses the two decisions

simultaneously, in a comprehensive and efficient way.

We thus introduce the first tabu search for the TMZT-VRPTW, integrating multiple

neighborhoods grouped into two classes to address the two sets of decisions identified

above. A first set of neighborhoods and moves work on the construction of the multiple-

trip vehicle routes by modifying the facilities and availability periods a given vehicle visits.

A second set aims to improve the routing of vehicles between two such visits by working on

the customer to route/vehicle assignments. The former perturbs significantly the solution
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and thus favors exploration of the search space, while the latter applied to each vehicle trip

exploits good assignments. Hence, dynamically adjusting their utilization during the search

provides the proposed algorithm with desired exploration and exploitation capabilities.

The proposed algorithm starts by freely exploring the search space made up of feasible

and infeasible solutions. As the search advances, one lowers the probability of selecting

neighborhoods modifying the facility-to-vehicle route assignments, thus limiting the size

of the search region and giving routing moves more time to optimize routes. Of course,

customer time windows and synchronization requirements constrain these decisions and

moves. A diversification strategy guided by an elite set of solutions and a frequency-based

memory is called upon when the search begins to stagnate. Creating new working solutions

from the elite set helps to capitalize on the best solution attributes obtained so far. On

the other hand, employing a frequency-based memory to perturb new working solutions

provides a certain level of diversity to the search.

The main contributions of the paper are the following: 1) a new formulation for the

TMZT-VRPTW, which is the source to define neighborhoods in the proposed tabu search;

2) the neighborhood structure and the dynamic strategy used to control the selection of

neighborhoods; 3) a new tabu search meta-heuristic outperforming the available method

(Crainic et al., 2012b) with new best-known solutions on all instances and an improvement

in the solution quality by 4.42% on average.

The remainder of the paper is organized as follows. Section 4.2 contains a detailed

problem description. The problem formulation is then provided in Section 4.3. Section 4.4

reviews the literature. The details of the proposed methodology are described in Section

4.5. Computational results are then reported and analyzed in Section 4.6, while conclusions

and future works are considered in Section 4.7.

4.2 Problem Description

The time-dependency characterizing demand in the TMZT-VRPTW setting translates into

two phenomena. The first concerns facilities, which become available for work at particular

time periods only with a set of loads destined to specific customers. A given facility may

be available at several periods during the planning period considered, with a different set
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of loads at each occurrence. To model this time dependency, we define supply points as

particular combinations of facilities and availability time periods. A supply point is then

characterized by a set of loads to be delivered to particular customers, and by a no-wait hard

time window, meaning that vehicles cannot arrive before the beginning of the time window

and wait for the opening of the facility, nor after the end of the time window by paying a

penalty. The second phenomenon concerns customers, which may receive several loads,

from different facilities and time periods. We model this time dependency by identifying

each particular load as a customer demand, characterized by the supply point where it is

available for delivery, the customer it must be delivered to, and the particular time window

for the delivery at the customer.

Synchronization at supply points requires that vehicles arrive at supply points at ap-

pointed times. Consequently, a direct move that gets the vehicle to a supply point sooner

than the appointed time is forbidden. In this case, the vehicle may go to a location, which

we call waiting station (e.g., a parking lot), and wait there in order to get to its next supply

point just before the appointed time. Otherwise, if there is no waiting station available, the

vehicle goes to the garage to finish its route.

The TMZT-VRPTW can then be described as follows. There is a garage, or main depot,

g, a set of waiting stations w ∈ W , a set of supply points s ∈ S , and a set of customer-

demand nodes d ∈ D (i.e., one node for each customer demand). We assume that there is

a limited allowable waiting time, defined by η , at each supply point. Each supply point

s ∈S has a no-wait, hard opening time window [t(s)−η , t(s)], specifying the earliest and

latest times the vehicle may be at s, respectively, a vehicle loading time δ (s), and a set of

customer-demand nodes Ds ∈D making up its service zone. Each customer-demand node

d ∈ Ds has a volume qd to be delivered, a service time δ (d) to unload freight from the

vehicle, and a time window [ed, ld], where ed is the earliest time service may begin and ld

is the latest time. It is assumed all customer-demand volumes are less than the capacity of

the vehicle (otherwise, the classical technique of duplicating customer demands such that

each conforms to this requirement is applied in a processing phase).

The TMZT-VRPTW can be seen as the problem of determining a set of routes made

up of a sequence of supply-point visits, each followed by a trip servicing customer loads
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in the zone of the respective supply point, and of assigning each route to one vehicle. The

objective is to minimize the total cost, which is made up of the fixed cost of using the

vehicles and the routing costs of servicing customer demands and moving between supply

points, while the following conditions are satisfied:

1. Every vehicle starts and ends its route at the main depot g;

2. Every vehicle servicing customer-demand nodes in Ds must reach the supply point

s ∈ S within its time window, i.e., it must not arrive sooner than (t(s)− η) and

no later than t(s); When needed, the vehicle may wait at a waiting station w ∈ W

before moving to s; Once at s, the vehicle starts loading at time t(s) and continues

loading for a time δ (s), after which it leaves s to service the assigned customer-

demand nodes in Ds. After performing a route within zone Ds, the vehicle may move

to another supply point for the next trip or go to the main depot g to complete its

route;

3. Every customer-demand node d ∈ ∪s∈S Ds is visited by exactly one vehicle within

its time window (these are hard).

4.3 Model Formulation

The TMZT-VRPTW is defined on a directed graph G = (V ,A ), with vertex set V =

g∪S ∪D ∪W , where g is the main depot, S is the set of supply points, D = {∪Ds :

s ∈S } is the customer-demand node set, W is the set of waiting stations, and the arc set

A = {(g,s) : s∈S }∪{(s,d) : s∈S ,d ∈Ds}∪{(d, j) : d ∈D , j ∈ g∪W }∪{(i, j) : i, j ∈
Ds,s ∈S }∪{(d,s′) : d ∈Ds,s,s

′ ∈S , t(s)< t(s′)}∪{(w,s) : w ∈W ,s ∈S }. Hence, the

set A does not include arcs representing direct travel

• From the main depot g to any customer-demand node or waiting station;

• From any customer-demand node to its supply point or to supply points with opening

times earlier than that of its supply point;

• From a supply point to any waiting station or to the main depot g.
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A routing cost (or travel time) ci j is associated with each arc (i, j) ∈ A . A fleet of m

identical vehicles with capacity Q is based at the main depot g. Vehicles are grouped into

set K .

Let a route leg be a trip that links a pair of supply points, or starts and ends at a supply

point and the main depot g, respectively. Thus, there are two types of route legs and their

feasibility is defined as follows:

• A single-supply point route leg l, starting at supply point s and ending at the main

depot, is feasible if it starts loading a total of goods not exceeding Q at supply point

s at time t(s), then leaves s at time t(s)+ δ (s) to deliver to a subset of customer-

demand nodes in Ds within their time windows.

• An inter-supply point route leg l that starts and ends at a pair of supply points s

and s′, respectively, is feasible if it starts loading a total of goods not exceeding Q

at supply point s at time t(s), then leaves s at time t(s)+ δ (s) to deliver to a subset

of customer-demand nodes in Ds within their time windows, and arrives to s′ within

the opening time window [t(s′)−η , t(s′)] (the vehicle can wait at a waiting station

w ∈W before moving to s′ in case the direct move from the last serviced customer

in leg l to s′ gets the vehicle to s′ before (t(s′)−η)).

A sequence of route legs, starting and ending at the main depot, assigned to a vehicle

is called a route or work assignment. For the sake of simplicity, from now on, the terms

vehicle route and work assignment are used interchangeably. Figure 4.1 illustrates a three-

leg work assignment, where s1,s2,s3 are supply points, g and w1 are the main depot and

a waiting station, respectively, Ds1
= {d1,d2,d3,d4,d5}, Ds2

= {d6,d7,d8,d9}, and Ds3
=

{d10,d11,d12,d13,d14,d15}. The dashed lines stand for the empty arrival from the depot g

or from a waiting station, the empty movement from the last customer in the previous leg

to the supply point of the next leg or to a waiting station, and the empty movement to the

depot g once the work assignment is finished. This work assignment consists of a sequence

of three legs {l1, l2, l3}, where l1 = {s1,d1,d4,d3,s2} and l2 = {s2,d7,d9,w1,s3} are two

inter-supply point route legs, while l3 = {s3,d11,d14,d12,d15,g} is a single-supply point

route leg.
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Figure 4.1: A three-leg work assignment illustration

Let L denote the set of all feasible legs satisfying the total load of vehicles, and the

time windows at customers and supply points. Define the edl and fls coefficients:

edl =











1 if customer demand d ∈ D is on leg l ∈L ;

0 otherwise.

fls =



























1 if leg l starts at supply point s ∈S ;

−1 if leg l ends at supply point s ∈S ;

0 otherwise.

Binary decision variables are used in the formulation:

• xk
l =











1 if leg l ∈L is assigned to work assignment k ∈K ;

0 otherwise.

• yk
s =











1 if work assignment k has the first leg starting at supply point s;

0 otherwise.

• zk
s =











1 if work assignment k has the last leg starting at supply point s;

0 otherwise.

Let πl be the total cost of route leg l, and F be the fixed cost of using a vehicle. The

TMZT-VRPTW can then be formulated as

Minimize ∑
k∈K

∑
l∈L

πlx
k
l + ∑

k∈K

F ∑
s∈S

yk
s (4.1)
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S.t. ∑
k∈K

∑
l∈L

edlx
k
l = 1 ∀d ∈D , (4.2)

∑
s∈S

yk
s ≤ 1 ∀k ∈K , (4.3)

∑
s∈S

yk
s = ∑

s∈S

zk
s ∀k ∈K , (4.4)

∑
l∈L

flsx
k
l = yk

s ∀s ∈S ,k ∈K , (4.5)

xk
l ∈ {0,1} ∀l ∈L ,k ∈K , (4.6)

yk
s ∈ {0,1} ∀s ∈S ,k ∈K , (4.7)

zk
s ∈ {0,1} ∀s ∈S ,k ∈K (4.8)

The objective function (4.1) minimizes the total cost made up of the costs of operat-

ing and using vehicles. Constraints (4.2) guarantee that each customer demand is visited

exactly once, while Constraints (4.3) state that at most one work assignment is assigned

to each vehicle. Constraints (4.4) ensure that each work assignment starts and ends at the

main depot. In fact, by summing over all supply points, the left-hand side counts the num-

ber of first legs assigned to each vehicle k, while the right-hand side counts the number of

last legs assigned to each vehicle k. Then, from Constraints (4.3) and (4.4), either the num-

bers of first and last legs assigned to the vehicle k are both equal to zero, e.g., the vehicle

k is not used (∑s∈S yk
s = ∑s∈S zk

s = 0), or are both equal to 1, e.g., the vehicle k is used

(∑s∈S yk
s = ∑s∈S zk

s = 1).

Constraints (4.5) ensure that when a vehicle goes to a supply point, it also leaves it,

except for the starting supply point of the first leg. In fact, for any given vehicle k and

supply point s, the left-hand side of the equality sums the value of fls on all legs starting or

ending at supply point s which are assigned to vehicle k. Consequently, when yk
s = 1, the

equality (4.5) becomes ∑l∈L flsx
k
l = 1, which means that there must be one leg starting at
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supply point s assigned to vehicle k as the first leg. Constraints (4.6), (4.7), and (4.8) define

the sets of decision variables.

4.4 Literature Review

The literature on TMZT-VRPTW is limited. In the TMZT-VRPTW setting, customer de-

mands are divided into zones associated to supply points, that is facilities and time periods.

Taking advantage of this special structure, Crainic et al. (2009) proposed a decomposition-

based heuristic approach for TMZT-VRPTW, but no implementation was reported. The

general idea is to decompose the problem by (facility, period) zone, solve the resulting

small VRPTW at each zone, and finally determine the flow of vehicles to operate the routes

associated with these zones at minimum cost by solving a minimum cost network flow

problem. Crainic et al. (2012b) later implemented this idea, and calculated a lower bound

by relaxing vehicle capacity and time window constraints at supply points and customers.

A number of VRP variants share the multi-trip setting with the TMZT-VRPTW, e.g.,

the Multi-trip Vehicle Routing Problem (or the Vehicle Routing Problem with Multiple

Use of Vehicles; Taillard et al., 1995; Brandão and Mercer, 1998; Petch and Salhi, 2003;

Salhi and Petch, 2007), the VRP with Intermediate Facilities or with inter-depot routes

(Tarantilis et al., 2008; Crevier et al., 2007), and the Waste Collection VRP (Kim et al.,

2006; Ombuki-Berman et al., 2007; Benjamin and Beasley, 2010). In the first variant, only

one depot is used to replenish vehicles between their trips, while in the latter variants,

vehicles may be replenished at intermediate depots along their trips. In addition, unlike

the first two variants, each driver is assumed to take a lunch break in a period of time in

the Waste Collection VRP. The challenging setting in our problem compared to these three

variants is the time synchronization restrictions at supply points and the waiting stations.

The School Bus Routing problem (SBRP) resembles our problem setting quite closely.

In general, the SBRP involves transporting students from predefined locations to their

schools using a fleet of buses with varying capacities, while satisfying all school timing

requirements (see the surveys of Desrosiers et al., 1981; Braca et al., 1997; Park and Kim,

2010). The SBRP consists of three components: determine the bus stop locations, assign

students to bus stops, route and schedule the buses. However, most of the problems de-
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scribed in the literature just consider some parts of the SBRP. In the multi-school setting,

the SBRP shares some constraint settings with the TMZT-VRPTW, e.g., vehicle capacity,

school time window, multi-trip. Yet, there are also differences in conditions and settings

between the SBRP and the TMZT-VRPTW. Mixed-load settings may occur in the SBRP,

where students from different schools can be put on the same bus at the same time; Max-

imum riding times for students on buses may also be specified. These settings are not

imposed in the TMZT-VRPTW. In the SBRP, only the exact earliest pick-up time for all

students is considered, while there is a time window for each customer in the TMZT-

VRPTW.

4.5 Tabu Search Meta-heuristic

Among the meta-heuristics proposed for the vehicle routing problem, tabu search has been

shown to be a very effective one, providing a good compromise between solution quality

and computation time. Various techniques have also been proposed to further enhance the

performance of tabu search for complex problems with multiple constraints and charac-

teristics. Inspired in part by these developments, we propose a tabu search with multiple

neighborhoods and appropriate memory mechanisms for the TMZT-VRPTW. This section

describes our tabu search algorithm, from its general structure to detailing its main com-

ponents. The search space and initial solution generator are presented in Sections 4.5.2

and 4.5.3, respectively. Sections 4.5.4 - 4.5.6 describe the neighborhood structures, our

neighborhood-selection strategy, and the tabu status mechanism for each neighborhood.

We detail in Section 4.5.7 the management of the elite set and a diversification mechanism.

Finally, a post optimization procedure is described in Section 4.5.8.

4.5.1 General structure

The TMZT-VRPTW schedules vehicles from the main depot to supply points in order to

load freight. The vehicles then deliver freight from supply points to customers. Solutions to

this problem involve two types of decisions: the first ones assign vehicles to supply points

while the second ones assign customer demands to vehicles. We define neighborhood

structures for each of these two types of decisions. The leg neighborhoods aim to change
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the vehicle assignments to supply points, while routing neighborhoods move customer

demands among vehicle routes.

Several studies of tabu search with multiple neighborhoods exist. In some studies (e.g.,

Dell’Amico and Trubian, 1993; Gaspero and Schaerf, 2007), all neighborhoods are evalu-

ated simultaneously. In other ones (e.g., Xu et al., 2006; Hamiez et al., 2009), neighbor-

hoods are explored in a serial way, one after another in either a fixed or randomized order.

Our experiments show that these approaches do not work well for the TMZT-VRPTW

(see details in Annex B.1). This is because, in our problem, each type of neighborhood

is applied to a particular decision domain, whereas size is the main difference between

neighborhoods in the literature on tabu search with multiple neighborhoods. Moreover, the

two decision domains of our problem are related and impact each other. Therefore, we

propose an approach where only one neighborhood type is used in a given iteration of the

tabu search method. Our selection strategy of the neighborhood type at each iteration is

probabilistic, the distribution of our probability function being biased by the structure of

our problem and the state of the search in order to obtain the right balance of exploration

within each neighborhood space. The bias of our function is implemented through a pa-

rameter r that specifies the ratio of selecting routing neighborhoods to leg neighborhoods.

The value of this parameter is adjusted during the course of the algorithm to favor the best

possible exploration of the problem solution space.

The general structure of the tabu search meta-heuristic (TS) we propose is introduced

in Algorithm 3. First, an initial feasible solution p is generated using a greedy method

seeking to fully utilize vehicles and minimize the total cost. At each iteration of the tabu

search method, one neighborhood is selected probabilistically based on the current value

of r, then the selected neighborhood is explored, and the best move is chosen (lines 7-8).

This move must not be tabu, unless it improves the current best solution pbest (aspiration

criterion). The algorithm adds the new solution to an elite set E if it improves on pbest . It

also remembers the value of the parameter r when the new best solution was found (lines

9-13), and finally updates the elite set E by removing a solution based on its value and the

difference between solutions (Section 4.5.7).

Initially, the search freely explores the solution space by selecting each neighborhood
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Algorithm 3 Tabu search

1: Generate an initial feasible solution p

2: pbest ← p

3: Elite set E ←⊘
4: Probability of selecting routing neighborhood with respect to leg neighborhood r← 1

5: STOP← 0

6: repeat

7: A neighborhood is selected based on the value of r

8: Find the best solution p′ in the selected neighborhood of p

9: if p′ is better than pbest then

10: pbest ← p′

11: rbest ← r

12: Add (pbest ,rbest) to the elite set E ; update E

13: end if

14: p← p′

15: if pbest not improved for ITcNS iterations then

16: if pbest not improved after CcNS consecutive executions of Control procedure then

17: if E =⊘ then

18: STOP← 1

19: else

20: Select randomly (p,rp) (and remove it) from the elite set E

21: Diversify the current solution p

22: Set r← rp and reset tabu lists

23: end if

24: else

25: Apply Control procedure to update the value of r

26: p← pbest

27: end if

28: end if

29: until STOP

30: pbest ← Post-optimization(pbest)

31: return pbest
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with equal probability. Whenever the best solution is not improved for ITcNS TS iter-

ations (line 25), the Control procedure is called to reduce the probability of selecting leg

neighborhoods. Consequently, route neighborhoods are selected proportionally more often,

which gives routing moves more opportunity to optimize trips. The search is re-initialized

from the current best solution pbest after the execution of the Control procedure (line 26).

Moreover, after CcNS consecutive executions of this procedure without improvement of the

current best solution pbest , a solution p is selected randomly and removed from the elite set

E (line 20), and a Diversification mechanism is applied to perturb p (line 21). The value of

r is reset to the value it had when the corresponding elite solution was found, and all tabu

lists are reset to the empty state (line 22). The search then proceeds from the perturbed so-

lution p. The search is stopped when the elite set E is empty. Finally, a post-optimization

procedure is performed to potentially improve the current best solution pbest (line 30).

4.5.2 Search space

As described in Section 4.3, a solution is a set of work assignments, each work assignment

consisting of a sequence of route legs linking supply points. The search space is thus made

up of feasible and infeasible work assignments.

For a given solution p, let c(p) denote the total travel cost of its work assignments,

and let q(p),wc(p), and ws(p) denote the total violation of vehicle load, customer time

windows, and supply-point time windows, respectively. The total vehicle-load violation is

computed on a route leg basis with respect to the value Q, whereas the total violation of

time windows of customers is equal to ∑d∈p max{(ad − ld),0}, and the total violation of

time windows of supply points is equal to ∑s∈p max{(t(s)−η−as),(as− t(s)),0}, where

ad and as are the arrival time at customer demand d and supply point s, respectively.

Due to the time synchronization restrictions at supply points, the arrival time at the first

customer d of each leg l starting at supply point s is always calculated as ad = t(s)+δ (s)+

csd , no matter when the vehicle arrives at supply point s. This helps to prevent propagating

time-window infeasibility among the legs of a work assignment.

Solutions are then evaluated according to the weighted fitness function f (p) = c(p)+

α1q(p)+α2wc(p)+α3ws(p)+F ∗m, where α1, α2, α3 are penalty parameters adjusted
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dynamically during the search. The updating scheme is based on the idea of Cordeau et al.

(2001). At each iteration, the value of α1, α2, and α3 are modified by a factor 1+β > 1. If

the current solution is feasible with respect to load constraints, the value of α1 is divided by

1+β ; otherwise it is multiplied by 1+β . The same rule applies to α2 and α3 with respect

to time window constraints of customers and supply points, respectively. In our algorithm,

we set α1 = α2 = α3 = 1 and β = 0.5.

4.5.3 Initial solution

We sort the supply points (customer zones) and index them in increasing order of their

opening time. Thus, if t(s1) ≤ t(s2), then s1 < s2 and vice-versa. We then construct an

initial solution by building each work assignment sequentially. Each work-assignment

construction consists of two phases: the first phase determines the first supply point for the

current work assignment; the second phase creates sequentially each leg using a greedy

algorithm.

In the first phase, the supply point s with earliest opening time and unserviced cus-

tomers is assigned as the initial supply point of the first leg of the current work assignment.

During the second phase, the first leg l is created using a greedy algorithm. If the leg l ends

at a supply point s′, we continue applying the greedy algorithm to build the next leg of l

in which s′ is now used as the initial supply point. Otherwise, if the leg l ends at the main

depot, it means the current work assignment cannot be used anymore, and we return to the

first phase to build another work assignment. This process is repeated until all customers

are serviced (assigned to a vehicle route).

The greedy algorithm constructs each leg by attempting to minimize the cost and keep

the vehicle working at full capacity as much as possible. Thus, for a given initial supply

point s assigned to the leg, it finds a set of supply points S′ = {s′ ∈S |s′ with unserviced

customers and t(s′) > t(s)}. If S′ 6= /0, for each pair (s,s′), it creates an empty leg with s

and s′ as the initial and end supply point, respectively. It then assigns unserviced customers

of customer zone s to this leg sequentially by applying the heuristic I1 of Solomon (1987)

until the vehicle is full. When feasible legs exist, the one with minimum cost is selected.

In the case there are no feasible legs or S′ = /0, it builds the last leg (s,g) by applying the
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heuristic I1 of Solomon (1987).

4.5.4 Neighborhoods

Leg neighborhoods focus on repositioning legs at supply points within the time restric-

tions. Let Wu be the work assignment assigned to vehicle u. Let si−1 and si+1 denote the

predecessor and successor supply points, respectively, of si within a work assignment. The

leg-move operators are:

• Relocate supply point. Consider two work assignments Wu and Wv as illustrated in

Figure 4.2. For supply point si ∈Wu, such that si /∈Wv, and for each two successive

supply points s j, s j+1 ∈Wv, if s j < si < s j+1 then move supply point si from work

assignment Wu to Wv locating it between s j and s j+1. All customers serviced by si on

Wu are also moved to Wv.

• Exchange supply points. Consider two work assignments Wu and Wv as illustrated

in Figure 4.3. For supply points si ∈Wu and s j ∈Wv such that si−1 < s j < si+1 and

s j−1 < si < s j+1, swap si and s j together with their customers.

(a) Work assignments before Relocate (b) Work assignments after Relocate

Wu

Wv

s i

sj sj+1

Wu

Wv

si

sj sj+1

Figure 4.2: Relocate supply point

When moving a supply point, all customers serviced by it are also moved. Therefore,

the violations of load and time windows for customers are not changed by the move. The

move value is thus defined as ∆ f = ∆c+F ∗∆m+∆ws. The three components of the sum-

mation are the difference in travel cost, the fixed cost of using vehicles, and the difference

in violation of time windows at supply points between the value of the neighboring solution

and the value of the current solution.
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(a) Work assignments before Exchange (b) Work assignments after Exchange

si

Wu

Wv

sj-1 sj+1

sjs i-1 si+1

Wu

Wv

sj-1 sj+1

sjsi-1 si+1

si

Figure 4.3: Exchange supply points

Routing neighborhoods try to improve trip routing by using different intra- and inter-

route neighborhoods commonly used in the VRPTW literature: Relocation, Exchange and

2-opt. For each move in each neighborhood, two customers are considered.

• Relocation move: one of the two customers is taken from its current position and

inserted after the other one.

• Exchange move: two customers are swapped.

• 2-opt move: for two customers in the same leg, the edges emanating from them are

removed, two edges are added, one of which connects these two customers, and

the other connects their successor customers. For two customers in different legs,

the work assignment segments following them are swapped preserving the order of

customers succeeding them in each segment.

Moving customers could change the travel cost and the number of vehicles, as well as

the level of constraint violations of load, time windows of customers, and time windows of

supply points. Consequently, the value of a routing move is defined as ∆ f = ∆c+F ∗∆m+

∆q+∆wc +∆ws. Note that for ∆c, the change in the routing cost, may involve, beside a

change in the routing cost between customers, a change in the routing cost from the last

customer to the supply point at the end of the modified leg(s). For example, a routing move

may impact on whether a vehicle has to go to a waiting station or not, therefore impacting

the traveling cost from the last customer to its supply point.

84



4.5.5 Neighborhood selection strategy

The algorithm explores one neighborhood at each iteration. The neighborhood to explore

is randomly selected among the five previously defined neighborhoods. The main issue in

this case is to define a probability distribution for the neighborhoods as well as whether the

probability distribution should evolve over time.

Using a fixed a priori distribution has drawbacks which limit the exploration capability

of the algorithm. For example, this would mean that the algorithm will display the same

behavior during the entire search. Moreover, the calibration of the probabilities would

be extremely challenging and instance dependent. Indeed, too low routing-neighborhood

probabilities (high leg-neighborhood probabilities) would result in an insufficient number

of routing moves to adequately optimize the customer routes after the leg moves. The

search may easily get stuck in the opposite case, as it needs to move to less-explored regions

of the search space once a succession of routing moves have “optimized” trips.

Considering the drawbacks of having a fixed probability distribution for the selection of

neighborhoods, we have elected to vary these probabilities as the search progresses. At the

beginning of the search, both leg and routing neighborhoods are given the same probability

of being selected, which allows the TS algorithm to freely explore the solution space.

Given that the number of supply points is much smaller than the number of customers

in most TMZT-VRPTW instances, the algorithm should perform more routing than leg

moves to ensure adequate optimization of routes. Consequently, after the initial phase, the

probability of selecting leg neighborhoods becomes lower than the probability of selecting

routing neighborhoods. We control this probability distribution using the neighborhood-

selection parameter r, assigning to a routing neighborhood the probability r/(2+ 3r) of

being selected, and to a leg neighborhood the probability 1/(2+3r) of being selected. The

equal initial probabilities are then obtained by setting r = 1. The Control procedure in

our algorithm varies the value of r during execution to monotonically reduce (increase)

the probability of selecting leg (routing) neighborhoods after each ITcNS iterations without

improvement of the best solution. A linear scheme rk+1 = rk + ∆r is used, where ∆r is a

user defined parameter.
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4.5.6 Tabu lists and tabu duration

We keep a separate tabu list for each type of move. Elements of a solution generated by a

move are given a tabu status as follows:

• Leg moves:

– Relocate supply point: the position of supply point si just inserted into work

assignment Wv cannot be changed by another relocate supply point move while

it is tabu.

– Exchange supply points: supply points si and s j just swapped cannot be swapped

again while they are tabu.

• Routing moves:

– Relocation move: the position of customer i just inserted after customer j, can-

not be changed by the same type of move while it is tabu.

– Exchange move: customers i and j just swapped cannot be swapped again while

they are tabu.

– 2-opt move: a 2-opt move applied to customers i and j cannot be applied again

to the same customers while tabu.

A tabu status is assigned to each tabu list element for θ iterations, where θ is randomly

selected from a uniform interval. Generally, the tabu status of a move stays so for a number

of iterations proportional to the number of possible moves. Consequently, we use different

intervals of tabu list size for leg and routing moves. Since there are O(m′∗|S |) possible leg

moves, we set the interval of tabu list size for leg moves to [m′*|S |/a1, m′*|S |/a2], where

m′ is the number of vehicles used in the initial solution, and a1 and a2 are user-defined

parameters.

In TMZT-VRPTW, each supply point has its own customer demands. Therefore, the

number of iterations during which a routing move within the zone of a supply point s

remains tabu is only counted each time the algorithm deals with customer demands in

that zone. The interval of tabu list size for routing moves for each supply point s with
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|Ds| associated customer demands is therefore calculated as [a3log10(|Ds|), a4log10(|Ds|)],
where a3 and a4 are user defined parameters.

In our tabu search, a move declared tabu is accepted if it improves the current best

solution.

4.5.7 Diversification strategy

A diversification strategy, based on an elite set and a frequency-based memory, moves the

search to potentially unexplored promising regions when it begins to stagnate. In a nutshell,

diversification aims to capitalize on the best attributes obtained so far by selecting a new

working solution from the elite set and perturbing it based on long-term trends.

In more details, we use the elite set as a diversified pool of high-quality solutions found

during the tabu search. The elite set starts empty and is limited in size. The quality and

diversity of the elite set is controlled by the insertion of new best solutions produced by the

tabu search and the elimination of the existing solutions in the elite set. The elimination

is based on the Hamming distance ∆(p1, p2) measuring the number of customer positions

that differ between solutions p1 and p2. (see, e.g., Ehmke et al., 2012; Vidal et al., 2012,

for the utilization of the Hamming distance in other VRP settings).

The elimination of a solution from the elite set is considered each time a new best

solution pbest is inserted. There are two cases. While the elite set is not yet full, we delete

only when there exists a solution very similar to the new pbest , i.e., we delete the solution

p with the smallest ∆(p, pbest) ≤ 0.05(n+ |S |). This aims to balance the impact on pool

quality and diversity. When the elite set is full, pbest replaces the solution p that is the most

similar to it, i.e., the one with the smallest ∆(p, pbest).

The long-term frequency memory keeps a history of the arcs most frequently added to

the current solution. Let ti j be the number of times arc (i, j) has been added to the solution

during the search process. The frequency of arc (i, j) is then defined as ρi j = ti j/T , where

T is the total number of iterations executed so far.

Diversification then proceeds to perturb the search that starts from the solution taken

from the elite set by removing arcs with high frequency and inserting arcs with low fre-

quency. Thus, the evaluation of neighbor solutions is biased so as to penalize the arcs most
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frequently added to the current solution. More precisely, a penalty g(p̄) = C̄(∑(i, j)∈Aa
ρi j +

∑(i′, j′)∈Ar
(1−ρi′ j′)) is added to the evaluation of the fitness f (p̄) (Section 4.5.2) of a neigh-

bor p̄ of the current solution p, where C̄ is the average cost of all arcs in the problem, and

Aa and Ar are the sets of arcs that are added to and removed from the solution p in the move

to p̄, respectively. The diversification mechanism is executed ITdiv iterations.

4.5.8 Post-optimization

The best solution obtained through the tabu search is enhanced by applying a number of

well-known local search route improvement techniques. Two are intra-route operators, the

2-opt of Lin (1965) and the Or-opt of Or (1976). The others are inter-route operators, the

λ -interchange of Osman (1993), and the CROSS-exchange of Taillard et al. (1997). For

the λ -interchange, we only consider the cases where λ = 1 and λ = 2 corresponding to the

(1,0), (1,1), (2,0), (2,1), and (2,2)-interchange operators. A customer is re-allocated only

to legs with the same initial supply point. The post-optimization procedure is executed for

each customer zone separately.

The post-optimization procedure starts by applying in random order the five λ -interchange

and CROSS-exchange inter-route operators. Each neighborhood is searched on all possible

pairs of legs (in random order) of the same starting supply point and stopped on the first

improvement. The solution is then modified and the process is repeated until no further

improvement can be found. The search is then continued by locally improving each leg of

the current starting supply point in turn. The intra-route 2-opt and Or-opt neighborhoods

are sequentially and repeatedly applied until no more improvement is found.

4.6 Computational Results

The objective of the numerical experimentation is threefold. First, to study the impact of

a number of major parameters and search strategies on the performance of the proposed

algorithm in order to identify the most efficient ones. The second objective consists in

evaluating the performance of the method through comparisons with currently published

results. We finally analyze the impact of synchronization and vehicle fixed cost on solution

quality.
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Our tabu search algorithm is implemented in C++. Experiments were run on a 2.8 GHz

Intel Xeon 4-core processor with 16GB of RAM. Six sets of ten instances each, generated

by Crainic et al. (2012b), were used throughout the experiments. These Euclidean instances

are identified as A1, A2, B1, B2, C1, and C2. The numbers of customer zones for these sets

are 4, 8, 16, 32, 36, and 72, respectively. The numbers of customer demands are 400, 1600,

and 3600 for set of type A, B, and C, respectively. Supply points, waiting stations, and

customers are uniformly distributed in a square, with the X and Y coordinates in the interval

[0, 100], [0, 200], and [0, 300] for set of type A, B, and C, respectively. The opening

times of supply points are generated randomly in the [0, 14400] range, while the limited

allowable waiting time at supply points η = 100. The vehicle-loading times at supply

points are set to 30, for all supply points. The time window of each customer demand is

then generated based on the opening time of the supply point to which it is assigned. The

ready time and time window duration of each customer demand are generated randomly

in the interval [0, 300] and [150, 450], respectively. The due time for delivery is thus set

by adding the time window duration to the ready time. To ensure feasibility of movements

from a supply point to its customer demands, a number of values are added to the ready

times and due times: the opening time of the supply point to which the customer demand

is assigned, the loading time at the supply point, and the smallest integer higher than the

value of the distance between the customer demand and the supply point. One waiting

station is set for every 100 customers in all instances. The fixed cost and the capacity of

each vehicle are set to 500 and 100, respectively, for all instance sets.

4.6.1 Algorithm design and calibration

We aim for a general algorithmic structure avoiding instance-related parameter settings.

We therefore defined settings as functions of problem size for the main parameters of the

proposed algorithm, tabu tenure, neighborhood selection-control, diversification triggering,

and size of the elite set.

89



4.6.1.1 Tabu tenure calibration

The intervals for the tabu list tenures for leg and routing moves were defined in Section

4.5.6 as [m′*|S |/a1, m′*|S |/a2] and [a3log10(|Ds|), a4log10(|Ds|)], respectively. Using a

large interval for routing moves, [10, 20], we tested different values for a1 in the interval [6,

8] and a4 in the interval [10, 12]. We observed that too large an interval is not productive

as low values cannot prevent cycling, while high ones overly restrict the search path. We

therefore set a3 and a4 to 7 and 10, respectively.

A similar process has been used to explore different values of a1 in the integer interval

[7, 9] and a2 in the integer interval [4, 6]. using the leg-move tabu tag interval as defined

above. We found that the most appropriate values for a1 and a2 are 7 and 5, respectively.

4.6.1.2 Calibration of the neighborhood selection probabilities

Adjustments to the neighborhood selection probabilities depend on two parameters: ITcNS,

the number of consecutive iterations without improvement of the best solution (this number

triggers the execution of the Control procedure that modifies probabilities), and ∆r, the

adjustment factor of the neighborhood-selection parameter r.

The value of ITcNS is defined as a function of the problem size. This value should be

large enough to give each customer demand and supply point in each leg the possibility

to be moved. Thus, ITcNS = e1 ∗ (m′ ∗ |S |+ n), where m′ is the number of vehicles used

in the initial solution, |S | and n are the numbers of supply points and customer demands,

respectively, and e1 is a user defined parameter. Similarly, ∆r, the amplitude of the modifi-

cations in the probabilities, is set to be proportional to the ratio of the number of customers

with the number of supply points. Thus, ∆r = e2 log10(n/|S|), where e2 is a user defined

parameter.

Searching for a good combination of values for e1 and e2 concerns balancing between

exploration and exploitation. On one hand, the higher the value of ITcNS, the more chances

customer demands and supply points are to be moved between routes, thus favoring ex-

ploration. On the other hand, a too high ITcNS value may waste time in useless moves.

We experimented with different values of e1 in the integer interval [1, 5] and e2 in the

integer interval [1, 7]. Three runs were performed for each instance for 1 million itera-
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tions. Computational results for each combination of values (e1,e2) over all 60 instances

are summed up in Table 4.1, which displays the average gaps to the previous best known

solutions (BKS) of the solutions obtained by each combination.

Table 4.1: Performance comparison between (e1, e2) combinations

e1

e2

1 2 3 4 5 6 7

1 -2.21% -2.42% -2.98% -3.09% -3.11% -3.18% -3.15%

2 -2.27% -2.45% -3.24% -3.21% -3.17% -3.14% -3.12%

3 -2.34% -2.73% -3.37% -3.39% -3.44% -3.36% -3.28%

4 -2.46% -2.74% -3.31% -3.36% -3.41% -3.28% -3.24%

5 -2.41% -2.78% -3.32% -3.37% -3.39% -3.29% -3.19%

Table 4.1 indicates that (3, 5) is the most appropriate combination for (e1,e2), im-

proving the solution quality by 3.44% on average. We also observed that executing the

algorithm with r greater than 50 log10(n/|S|) yields an average improvement of the best

solution of less than 0.1%, while requiring about 37.3% more time. Based on these re-

sults, we used (e1, e2) = (3, 5) and rmax = 50log10(n/|S|), the maximum value of r, in the

remaining experiments.

4.6.1.3 Neighborhood search strategy

The neighborhood exploration strategy specifies how the different neighborhoods can be

used to explore efficiently the solution space of the problem. Several such strategies can

be envisioned and we actually experimented with quite a number of them before selecting

the one introduced in Section 4.5.5. (For brevity, we placed in Annex B.1 the description

of the alternate strategies we explored and the numerical results supporting our selection.)

The neighborhood-search strategy also specifies which move in the neighborhood is to

be chosen at each iteration. We studied two strategies, first and best improvement, respec-
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tively. The former chooses the first neighbor solution that improves the objective function

as the next starting solution, while the latter chooses the best neighbor thus requiring to

evaluate all neighbors. The customers in each route are searched sequentially.

Table 4.2 reports comparison results between these two strategies. Corresponding av-

erage gaps to the previous BKS and average computation times are displayed in Columns

GAP to BKS and Time (min), respectively.

Table 4.2: Comparative performances between neighborhood search strategies

Problem set

Best improvement First improvement

Elite set size = 5 Elite set size = 5 Elite set size = 10

GAP to BKS Time (min) GAP to BKS Time (min) GAP to BKS Time (min)

A1 -3.01% 18 -1.95% 16 -2.06% 24

A2 -6.22% 10 -4.42% 8 -4.57% 14

B1 -4.47% 60 -2.82% 45 -2.98% 69

B2 -4.71% 39 -3.23% 27 -3.35% 46

C1 -3.78% 165 -1.14% 115 -1.24% 176

C2 -3.82% 104 -1.89% 80 -1.91% 108

Average -4.33% 66 -2.57% 49 -2.68% 73

The computational results in Table 4.2 show that using the same elite set size (=5), best

improvement gives better solutions for all sets, while first improvement has a lower com-

putation time. One observes, however, that the difference in computation time is smaller

than the difference in solution quality, indicating that the best improvement strategy yields

a better algorithm. More importantly, even doubling size of the elite set (=10), which re-

sults in longer computation times, the solutions of the first improvement strategy are still

significantly worse than the solutions of the best improvement strategy.

4.6.1.4 Elite set calibration, diversification, and run-time behavior

We now turn to the parameters characterizing the diversification procedure and the elite

set utilization, and examine their impact on the performance of the algorithm. We com-

plete this part of reporting on the computational experiments, by examining the run-time
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behavior of the proposed tabu search meta-heuristic.

Four variants of the algorithm were studied corresponding to the different ways to set

an elite solution as the new working solution and the inclusion, or not, of the diversification

phase. The first two variants simply select an elite solution p at random and re-start the

algorithm from it. The Diversification mechanism described in Section 4.5.7 is applied in

the last two variants to diversify from the elite solution p.

The initialization of the r parameter following the selection of p is a component com-

mon to the four variants. We studied two alternatives where r was set to either the full or

half the value at which p was found, respectively (i.e., r = rp or r = rp/2). The size of the

elite set is relevant for the Diversification mechanism only. Three values were tested, 1, 5,

and 10.

Similar to previous experiments, we used formulas dependent on the problem dimen-

sions for ITdiv and CcNS, which determine for how long exploration can proceed. Thus, the

number of diversification phases is set to ITdiv = m′ ∗ |S |+ n, where m′ is the number of

vehicles used in the initial solution, and |S | and n are the numbers of supply points and

customers, respectively. We also set the number of consecutive executions of the Control

procedure without improvement of the best solution to CcNS = min(3log10(n/|S|),(rmax−
r)/∆r), which keeps the value of CcNS sufficiently high during the course of the algo-

rithm, even though Control procedure is started with different values of r (remember that

rmax = 50log10(n/|S|)). Intuitively, in the beginning, r is small and CcNS takes the value

3log10(n/|S|), while when r becomes large enough, CcNS takes the value (rmax− r)/∆r.

Table 4.3 displays the performance comparison between the four variants with the three

different values for the elite set size. For each variant and size of the elite set, the table

shows the average gaps to the previous BKS of the average cost of the best solutions of all

instances, together with the corresponding average computation time in minutes over 10

runs.

As expected, results indicate that guidance using elite solutions contributes significantly

to improve the performance of the algorithm. Without using the elite set, the algorithm

requires the lowest computation effort but produces solutions with the lowest average (im-

provement) gap to the previous BKS of -2.96%, compared to all the variants using the elite
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Table 4.3: Performance comparison between diversification settings

Elite set

Without diversification With diversification

size

1st variant 2nd variant 3rd variant 4th variant

r = rp r = rp/2 r = rp r = rp/2

GAP to BKS Time GAP to BKS Time GAP to BKS Time GAP to BKS Time

0 -2.96% 24 - - - - - -

1 -3.18% 29 -3.03% 38 -3.93% 35 -3.97% 47

5 -3.39% 39 -3.34% 47 -4.33% 66 -4.24% 71

10 -3.53% 50 -3.61% 59 -4.35% 92 -4.25% 98

set. Comparing the two variants corresponding to the two values at which r is reset, one

observes that the solution quality is not very sensitive to this value, but computing effort is

increasing when the value of r is lower (r = rp/2).

One observes that the third and fourth variants are significantly better in terms of finding

high quality solutions. This indicates that the long-term memory and the diversification

mechanism added to the algorithm are important features for high performance. Moreover,

setting the size of the elite set to 5 achieves a better balance between solution quality and

computation time, compared to a larger size of 10. Indeed, doubling the size of the elite

set improves only slightly the solution quality, 0.02%, but requires 39% more time. We

therefore set the size of the elite set to 5 and reset r = rp.

Figures 4.4a and 4.4b illustrate the impact of the diversification procedure and the elite

set on search performance. These figures report the solution value and the value of r, re-

spectively, along the iterations of the tabu search algorithm on instance C2-1. The number

of customers n and supply points |S | for the instance C2-1 are 3600 and 72, respectively,

therefore, the maximum value of the neighborhood-selection parameter rmax = 80. The

value of r was reset six times (Figure 4.4b) corresponding to the re-initialization of the

search using six different solutions extracted from the elite set. Prior to the first reset of

r, the algorithm proceeded from the solution generated by the initialization procedure, the

value of r increasing from 1 to 50 during that search sequence. Aligning vertically the
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Figure 4.4: Impact of diversification and elite-set utilization on algorithm performance

iteration axis of Figures 4.4b and Figure 4.4a, one obtains the representation of how the so-

lution quality varies with each search sequence between two consecutive resets. We can see

that without using the elite set, the search stopped quite early, namely at iteration 219,647,

with a best solution value of 99,024.51. On the other hand, using the elite set and the di-

versification procedure, new improved solutions with substantially better costs were found

through the next five search sequences when a solution from the elite set was used to diver-

sify the search. The best solution was found at iteration 902,960 (with r = 70) from the fifth

solution extracted from the elite set. Its value is 97,370.8, improving the solution quality

by 1.67% compared to the case without using the elite set. This improvement indicates the

efficiency of the diversification procedure and the elite set applied in the algorithm. The

search stopped at iteration 980,723.

To further emphasize the importance of the diversification feature of the proposed meta-
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Figure 4.5: Time-to-target plot for the instance C2-1

heuristic on performance, we focused on the run-time behavior of the proposed algorithm

and constructed a time-to-target (TTT) plot (Aiex et al., 2007). A TTT plot is generated by

executing an algorithm κ times and measuring the time required to reach a solution at least

as good as a target solution. The running times are sorted in increasing order. The i-sorted

running time ti is associated with a probability ρi = (i−1/2)/κ and the points zi = [ti,ρi],

i = 1, ...,κ , are plotted. Each plotted point indicates the probability (vertical axis) for

the algorithm to achieve the target solution in the indicated time (horizontal axis). Once

again, we used the C2-1 instance, with a best known solution value of 97,350.2, for this

experiment. The plot in Figure 4.5 compares two algorithms: the first does not use the elite

set and diversification mechanisms while the second applies them. This plot is produced

by the execution of both algorithms 200 times, using a target value of 1.5% above the best

known solution, i.e., value of 98,810.45, together with a maximum computational time of

120 minutes. We observe in Figure 4.5 that both algorithms have similar behaviors until

about 31 minutes. During that period, the second algorithm has not yet applied the elite

set and diversification mechanisms. Starting from that point, the probability for the second
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algorithm to find the target value starts to be greater than for the first algorithm. Moreover,

within 120 minutes, the first algorithm reaches the target with a maximum probability

of 0.8. While the second algorithm always reaches the target and requires less than 55

minutes. This analysis indeed indicates that better performances are obtained when the

elite set and diversification procedure are integrated to the search algorithm.

4.6.2 Comparing with results in the literature

This section compares the performance of the proposed tabu search algorithm with results

available in the literature. We initiate this analysis examining the effectiveness of the rout-

ing component of the search, as well as the contribution of each set of decisions to the

solution quality.

4.6.2.1 Effectiveness of routing neighborhoods

We have run the proposed tabu search algorithm using only our routing neighborhoods on

the Solomon and Desrosiers (1988) 56 VRPTW 100-customer instances. All parameters

related to the supply points were discarded. Therefore, ITcNS = 3∗n, and ITdiv = n. More-

over, when the elite set is not yet full, the solution which is most similar to pbest is deleted,

i.e., the solution p with the smallest ∆(p, pbest)≤ 0.05∗n. We executed three runs for each

instance, and report the best one.

Table 4.4 compares the performances obtained by this striped-down version of the tabu

search algorithm with the results of other tabu search algorithms reported in the survey on

the VRPTW of Bräysy and Gendreau (2005b). For completion sake, we also included the

results of the currently best-metaheuristic, the hybrid genetic algorithm with adaptive di-

versity management of Vidal et al. (2013a) (best in five repetitions). The first column gives

the name of the authors of the study. Columns R1, R2, C1, C2, RC1, and RC2 present

the average number of vehicles and average total distance with respect to the six groups

of problem instances, respectively. Finally, the rightmost column indicates the cumula-

tive number of vehicles (CNV) and cumulative total distance (CTD) over all 56 instances.

The performance of the routing neighborhood search of our algorithm appears satisfac-

tory, considering that all algorithms in the literature were tailored for the VRPTW, most
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of them (except Backer and Furnon, 1997; Tan et al., 2000) actually aiming first to reduce

the number of vehicles. We do not, as our algorithm treats vehicles through supply-point

neighborhoods not considered in this experiments, and we do not compete with the other

meta-heuristics on this count. We do compete with respect to the total distance, though,

outperforming six out of the eleven meta-heuristics.

Using routing neighborhoods only is not sufficient for the problem setting at hand,

however. We have actually also run our algorithm by fixing the supply point-to-vehicle

assignment of the initial solution and applying only routing neighborhoods. We obtained

worse solutions than the proposed tabu search handling both neighborhood types, with an

average error gap of 5.91% (see details in Annex B.1). Therefore, although we have created

efficient routing neighborhoods, we cannot get good solutions by considering routing only.

Both sets of decisions are important. Our algorithm handles both neighborhood types effi-

ciently, and is able to enhance the solution quality significantly by using long-term memory

and diversification mechanisms. Performance comparisons of the proposed algorithm with

the literature are presented in the next subsection.

4.6.2.2 The performance of the proposed algorithm

The performance of the proposed tabu search meta-heuristic is evaluated by comparing

its output with published results on the instances provided by Crainic et al. (2012b). For

brevity, only aggregated results are provided in this section. (Details can be found in An-

nex B.2.)

Table 4.5 displays the comparison between the (best) results reported by Crainic et al.

(2012b) and those obtained by the proposed tabu search meta-heuristic run 10 times for

each instance. For comparison sake, we report the best results we obtained for the 10

runs, but provide both best and average results in the detailed tables of Annex B.2. Table

4.5 gives the best results (Best column), the number of vehicles (#Vehicles column), the

number of times vehicles move directly from one customer zone to another customer zone

without using waiting stations (DM column), and the number of times waiting stations are

used for moving between customer zones (MWS column). Average computation times in

minutes are displayed in the Time column, while the corresponding gaps to the previous
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Table 4.4: Performance comparison with meta-heuristics for the VRPTW

Authors R1 R2 C1 C2 RC1 RC2 CNV/CTD

Garcia et al. (1994) 12.92 3.09 10.00 3.00 12.88 3.75 436

1317.70 1222.60 877.10 602.30 1473.50 1527.00 65977.00

Rochat and Taillard (1995) 12.25 2.91 10.00 3.00 11.88 3.38 415

1208.50 961.72 828.38 589.86 1377.39 1119.59 57231.00

Potvin et al. (1996b) 12.50 3.09 10.00 3.00 12.63 3.38 426

1294.50 1154.40 850.20 594.60 1456.30 1404.80 63530.00

Taillard et al. (1997) 12.17 2.82 10.00 3.00 11.50 3.38 410

1209.35 980.27 828.38 589.86 1389.22 1117.44 57523.00

Chiang and Russell (1997) 12.17 2.73 10.00 3.00 11.88 3.25 411

1204.19 986.32 828.38 591.42 1397.44 1229.54 58502.00

Backer and Furnon (1997) 14.17 5.27 10.00 3.00 14.25 6.25 508

1214.86 930.18 829.77 604.84 1385.12 1099.96 56998.00

Schulze and Fahle (1999) 12.25 2.82 10.00 3.00 11.75 3.38 414

1239.15 1066.68 828.94 589.93 1409.26 1286.05 60346.00

Tan et al. (2000) 13.83 3.82 10.00 3.25 13.63 4.25 467

1266.37 1080.24 870.87 634.85 1458.16 1293.38 62008.00

Cordeau et al. (2001) 12.08 2.73 10.00 3.00 11.50 3.25 407.00

1210.14 969.57 828.38 589.86 1389.78 1134.52 57556.00

Lau et al. (2003) 12.17 3.00 10.00 3.00 12.25 3.38 418

1211.55 1001.12 832.13 589.86 1418.77 1170.93 58477.00

Vidal et al. (2013a) 11.92 2.73 10.00 3.00 11.50 3.25 405

1210.69 951.51 828.38 589.86 1384.17 1119.24 57196

TS 12.66 3.72 10.00 3.00 12.50 4.25 442

1231.40 986.70 850.34 609.11 1396.84 1136.72 58425.00
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Table 4.5: Comparative performances on Crainic et al. (2012b) instances

Problem set
Crainic et al. (2012b) TS GAP to BKS

Best #Vehicles DM MWS Time Avg 10 Best 10 #Vehicles DM MWS Time %

A1 18575 24 1 36 5 18043.84 18010.52 23 2 36 18 -3.04

A2 15411 19 2 42 3 14495.23 14440.05 17 5 42 10 -6.29

B1 55653 51 14 180 22 53124.00 53036.13 45 31 168 60 -4.62

B2 47396 39 20 193 10 45272.96 45074.16 34 40 177 39 -4.79

C1 117426 87 39 423 50 112975.99 112810.90 79 73 394 165 -3.92

C2 101570 64 68 434 23 97747.18 97585.83 60 108 391 104 -3.91

Average 59338.50 47.33 24 218 18.83 56943.20 56826.27 43 43.17 201.50 66 -4.42

BKS are given in the last column.

TS produces high-quality solutions, with an average improvement gap of -4.42% com-

pared to the previous BKS, yielding better solutions than Crainic et al. (2012b) on all

instances. Moreover, the proposed tabu search meta-heuristic produces consistently good

solutions, the average solution quality being very close to that of the best one. Note-

worthy, as shown in Table 4.3, without post-optimization and using the same size of the

elite set (=5), TS obtains an average gap to the previous BKS of -4.33%. Thus, the post-

optimization process helped to improve solution quality by 0.09% on average, requiring

only a few extra seconds.

TS produces solutions that not only require fewer vehicles (8.87% on average), but also

require less usage of waiting stations. More precisely, the TS we propose used waiting

stations 12050 times compared to 13071 times in Crainic et al. (2012b), vehicles move

directly from one customer zone to another customer zone on 2590 occasions compared to

1449 occasions in Crainic et al. (2012b). Thus, in our TS, 17.69% of the times vehicles

move directly to another customer zone without using waiting stations, compared to 9.98%

in Crainic et al. (2012b). Moreover, the proposed TS provides better customer routing (i.e.,

traveling cost), with an average gap of -1.30% to the previous BKS. This advantage goes

beyond the simple numerical performance in terms of cost to propose a distribution system

that is structurally better with less vehicles traveling for idling purposes.
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4.6.3 Synchronization at supply points

Waiting stations are introduced as locations where vehicles can wait when the direct move

would get them at supply points sooner than the opening times. In this section, we analyze

the impact of waiting stations on solution quality.

In all previous experiments, traveling cost and time were equivalent. In order to analyze

the impact of waiting without modifying the travel costs, we explicitly introduced into

the model a waiting cost measure related to the customer-to-waiting station movement

generating the need to wait. Thus, the waiting cost for a (customer demand, supply point)

pair is computed as a percentage of the total cost from the customer to the waiting station

and from the latter to the supply point. We performed 6 runs corresponding to a percentage

equal to 10%, 20%, 30%, 40%, 50%, and 100%.

The experiment was run on the C2 set, which includes the largest instances in terms

of the numbers of customers, supply points, and waiting stations. Table 4.6 sums up the

solution-quality variations for the six cases compared to the case without waiting costs.

The table displays the solution-quality variations in terms of the total cost, traveling cost,

number of vehicles, and synchronization requirements at supply points. One observes that

higher waiting cost results in vehicles performing longer routes (the routing cost increases)

to avoid going to waiting stations. Consequently, the number of direct moves increases,

and accordingly, the number of moves using waiting stations is reduced. Moreover, it also

requires more vehicles, resulting in a higher total cost.

4.6.4 Impact of vehicle fixed cost

The objective of the TMZT-VRPTW is to minimize the total cost of the system, comprised

on the total “fixed” cost of using vehicles and the “variable” cost of delivering the loads to

customers by the vehicles. In this section, we analyze the impact of vehicle fixed cost on

solution quality.

In all previous experiments, a value of 500 was set to the fixed cost F of using a vehicle.

We performed three additional runs setting the fixed cost F equal to 0, 250, and 1000. Table

4.7 sums up the solution-quality variations in terms of total cost, traveling cost, number of

vehicles, synchronization requirements at supply points, and number of legs. One observes
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Table 4.6: Impact of waiting cost on solution quality

Impact on
Increase the cost of waiting by

solution quality 10% 20% 30% 40% 50% 100%

Total cost 2.87% 5.15% 7.46% 9.75% 11.77% 20.23%

Routing cost 3.78% 6.78% 10.04% 13.13% 15.39% 26.59%

#Vehicles 0.82% 1.47% 1.64% 2.13% 3.61% 5.91%

DM 3.91% 15.14% 23.24% 31.30% 34.19% 58.41%

MWS -5.45% -8.68% -10.90% -12.97% -14.14% -21.38%

that vehicle fixed cost plays an important role in the problem solution. Setting the fixed cost

to zero represents the case where the objective of the problem aims only to minimize the

traveling cost. The experimental results in Table 4.7 illustrate clearly that the traveling cost

is lower for this case compared to the other cases where vehicle fixed costs are considered.

On the other hand, this case puts on the road the largest number of vehicles, each vehicle

performing exactly one leg. While this case eliminates the need for waiting stations, it

would correspond to the highest cost in terms of manpower, as well as impact on congestion

and emissions. Introducing a vehicle fixed cost dramatically reduces the number of vehicles

and generates solutions where each vehicle performs a sequence of several of legs and,

sometimes stops at waiting stations. Increasing the vehicle fixed cost continues to decrease

the number of vehicles, as well as the utilization of the waiting stations, while increasing

the traveling cost. These modifications are not dramatic, however. Thus, for example,

doubling the value of F (i.e., from 250 to 500, or from 500 to 1000 in this experiment)

increases the traveling cost by less than 1% and reduces the number of vehicles by less

than 2.5%. Generally speaking, once vehicle fixed costs are introduced, the pattern of

solutions is not very sensitive to its value.
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Table 4.7: Impact of vehicle fixed cost on solution quality

Fixed cost F Total cost Traveling cost #Vehicles DM MWS #Legs

0 17584.74 17584.74 290 0 0 290

250 46105.71 35105.71 44 41 202 287

500 56943.06 35443.06 43 42 202 287

1000 77740.31 35740.31 42 44 201 287

4.7 Conclusion

We proposed a tabu search meta-heuristic for the Time-dependent Multi-zone Multi-trip

Vehicle Routing Problem with Time Windows. The proposed model formulation provided

the means to identify clearly the main components of the decision set of the problem. We

could thus propose a tabu search method that works on multiple neighborhoods, which are

used to improve both the routing and the assignment of routes to vehicles. The selection

of neighborhoods is dynamically adjusted along the search to keep the balance between

exploration and exploitation. Moreover, a diversification strategy guided by an elite set and

a frequency-based memory is introduced to not only provide a certain level of diversity to

the search, but also help incorporate good attributes into newly created solutions.

Experimental results illustrated clearly the superior performance of the proposed method-

ology compared to the literature. It yields higher quality solutions in terms of both required

number of vehicles and traveling cost. In addition, the utilization of waiting stations, result-

ing from the synchronization restriction at supply points, was significantly reduced. The

quality of these results in terms of number of required vehicles, costs, times, and frequency

of direct movements are not only extremely satisfying when evaluating the proposed meta-

heuristic, but are also interesting from a managerial point of view. Indeed, they indicate

that our tabu search will prove efficient in actual applications, contributing to provide sys-

tem managers with solution requiring less vehicles to perform efficiently the same amount

of work. This is particularly interesting when City Logistics systems are contemplated as
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our results indicate a reduction in the presence of vehicles on the streets of the city and,

thus, in their negative impact on congestion and environment.
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Chapter 5

MULTI-ZONE MULTI-TRIP PICKUP AND DELIVERY PROBLEM

WITH TIME WINDOWS AND SYNCHRONIZATION

This chapter has been published as technical report: P. K. Nguyen, T. G. Crainic, and

M. Toulouse. Multi-zone Multi-trip Pickup and Delivery Problem with Time Windows and

Synchronization. Technical report, Publication CIRRELT-2014-18, Centre interuniversi-

taire de recherche sur les réseaux d’entreprise, la logistique et le transport, Université de

Montréal, Montréal, QC, Canada, 2014.



Résumé: Dans ce travail nous considérons les systèmes de logistique urbaine à deux

niveaux dans lesquels nous prenons en considération à la fois le trafic entrant et sor-

tant. Ce problème avec trafic entrant et sortant n’a pas encore été pris en considération

dans les modèles et algorithmes sur les tournées de véhicules. Le problème étudié, ap-

pelé Multi-zone Multi-trip Pickup and Delivery Problem with Time Windows and Syn-

chronisation, comporte deux ensembles de décisions entrelacés: des décisions de routage

qui déterminent la séquence de clients visités par chaque itinéraire d’un véhicule, des

décisions de planification qui prévoient les mouvements de véhicules entre les installations

à l’intérieur de restrictions liées à la synchronisation temporelle. Nous proposons un algo-

rithme de recherche tabou intégrant plusieurs voisinages adaptés aux types de décisions du

problème. Pour évaluer l’algorithme proposé, des tests ont été effectués sur des problèmes

de référence que nous avons conçus pour ce problème, et qui ont jusqu’à 72 installations

et 7200 demandes de clients. De plus, comme il n’y a pas de résultats disponibles dans la

littérature pour ce problème, nous avons aussi évalué la performance de notre méthode par

comparaison avec des résultats publiés sur le problème de tournées de véhicules avec voy-

ages de retour. L’algorithme proposé est compétitif avec d’autres méta-heuristiques avec et

sans fenêtres de temps.

Abstract: In this paper, we consider two-tier City Logistics systems accounting for

both the inbound and outbound traffic, that have not been taken into account in models and

algorithms for vehicle routing research. The problem under study, called the Multi-zone

Multi-trip Pickup and Delivery Problem with Time Windows and Synchronization, has

two sets of intertwined decisions: the routing decisions which determine the sequence of

customers visited by each vehicle route, the scheduling decisions which plan movements

of vehicles between facilities within time synchronization restrictions. We propose a tabu

search algorithm integrating multiple neighborhoods targeted to the decision sets of the

problem. To assess the proposed algorithm, tests have been conducted on the first bench-

mark instances of the problem which have up to 72 facilities and 7200 customer demands.

As no previous results are available in the literature for the problem, we also evaluate the

performance of the method through comparisons with currently published results on the

vehicle routing problem with backhauls. The proposed algorithm is competitive with other
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meta-heuristics both with and without time windows.

Keywords: Multi-trip Pickup and Delivery problem with Time windows; Synchronization;

Tabu search; Multiple neighborhoods

5.1 Introduction

Research for city logistics is receiving more and more attention, with most researchers fo-

cusing on inbound freight flow. Hence, either the single-tier case or the multiple tiers case,

freight flow is often considered in the direction from regions outside the city, say external

zones, to the city center, and the objective is to minimize the total cost of the associated

system. In reality, freight is moved in, out, and through a city. When dedicated fleet is used

for each type of freight flow, this might be simple to implement and manage, but it results

in the presence of more vehicles and empty trips on the streets of the city, that eventually

increases the operating costs and environmental pollution. In this paper, we therefore make

an effort on integrating the outbound freight flow, shipping freight from the city center to

external zones, with the ‘classical’ inbound freight flow into a single City Logistics system.

We study a new problem, the so-called Multi-zone Multi-trip Pickup and Delivery Problem

with Time Windows and Synchronization(MZT-PDTWS), which addresses an integrated

system servicing both traffic types while sharing the same fleet of vehicles.

The MZT-PDTWS originates from planning the operations of two-tiered City Logistics

systems (Crainic et al., 2009). In such systems, inbound loads are sorted and consolidated

at first-tier facilities located on the outskirts of the city, moved to second-tier facilities,

called satellites, located close to or within the city-center area, by a fleet of medium-sized

vehicles. In the second tier, a smaller-capacity fleet performs tours to pick up outbound

demands within the city center and transport them to satellites. Once at satellites, planned

appropriate pairs of first-tier and second-tier vehicles transfer inbound and outbound de-

mands to each other according to cross-docking, without intermediate storage. The first-tier

vehicles then move the outbound demands to external zones, while the second-tier vehicles

deliver the inbound demands to designated customers situated within the city center. This

integration of inbound and outbound operations helps to reduce the number of empty vehi-

cle movements in both tiers, as well as freight traffic in the city center. Since satellites are
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used as intermediate transshipment points for the freight distribution, the synchronization

of the operations of first-tier and second-tier vehicles at satellites becomes one of the most

constraining aspects of the problem.

In the MZT-PDTWS setting, a homogeneous fleet of vehicles operates out of a single

garage to pickup- or delivery-customer demands associated to a given set of satellites. Each

customer demand is defined by its specific location, commodity volume, as well as a partic-

ular service time requirement. Customer demands are divided into two categories, pickup

(backhaul) demands representing outbound demands, and delivery (linehaul) demands rep-

resenting inbound demands. The arrival of first-tier vehicles at a given time period define

the set of delivery-customer demands to be serviced, and the time required to unload and

transfer the freight thus define the availability period during which second-tier vehicles

must arrive at the satellite and load. Second-tier vehicles must therefore synchronize their

arrivals at satellites with these availability periods for loading the planned freight. The in-

tegration of outbound freight flow concerns pickup demands, which should be collected by

second-tier vehicles, and brought to assigned satellites at their availability periods. Con-

sequently, at satellites, second-tier vehicles may either unload pickup demands (if any), or

load delivery demands (when available), or do both. In case the vehicle loads the planned

freight, it undertakes a route delivering freight to the assigned customers. Otherwise, when

the vehicle leaves a satellite empty (i.e., only unloads at this satellite), it either undergoes

a route collecting new pickup demands, or moves empty to another satellite for loading

delivery demands, or to the garage to end its activity. The waiting stations may be used by

vehicles to wait for its next appointment at a satellite. The MZT-PDTWS corresponds to

the planning of the activities of second-tier vehicles.

The MZT-PDTWS is a generalization of the Time-dependent Multi-zone Multitrip Ve-

hicle Routing Problem with Time Windows (TMZT-VRPTW) which has been studied in

Crainic et al. (2012b) and Nguyen et al. (2013). The TMZT-VRPTW considers only the

inbound traffic flow, while the MZT-PDTWS generalizes the TMZT-VRPTW by consider-

ing an additional traffic flow, say outbound, shipping freight in the opposite direction, i.e.,

from the city center to destinations outside the city limits. Both traffic types share a same

fleet of vehicles. Furthermore, satellites would also be shared. This version has not been
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investigated in the literature. Such services sharing services increases the synchronization

challenges at satellites, the complexity to manage the traffic of vehicles into and out of

satellites in particular, as well as to route vehicles doing both pickup and delivery opera-

tions through satellites. We make three contributions: 1) we present the first formulation

for the MZT-PDTWS, 2) we propose a tabu search meta-heuristic to solve the problem, 3)

we introduce a new benchmark with instances up to 72 supply points and 7200 customer

demands to show the performance of the proposed method.

The remainder of the paper is organized as follows. Section 5.2 contains a detailed

problem description. Section 5.3 reviews the literature. The problem formulation is then

provided in Section 5.4. Details of the proposed methodology are described in Section 5.5.

Computational results are then reported and analyzed in Section 5.6, while conclusions and

future works are considered in Section 5.7.

5.2 Problem Description

In this paper, we address the integration of outbound traffic into city logistics. The physical

flow from customers to satellites is called the pickup phase. The process from satellites to

customers is called the delivery phase. Vehicles operate according to the Pseudo-Backhaul

strategy described in Crainic et al. (2012a), in which any delivery or pickup phase must be

completed before another one may be started. Each satellite may operate at several periods

during the planning period considered. For the sake of simplicity, we define supply points

as particular combinations of satellites and availability time periods in our model.

The MZT-PDTWS can be described as follows. There is a garage, or main depot, g,

a set of pickup-customer demands p ∈ C P, a set of delivery-customer demands d ∈ C D,

a set of waiting stations w ∈ W , and a set of supply points s ∈ S . A traveling cost (or

travel time) ci, j is associated with each pair of i and j where i, j ∈ g∪C D∪C P∪S ∪W .

We use the terms cost, travel time, and distance interchangeably. Each supply point s ∈S

has a no-wait, hard opening time window [t(s)−η , t(s)], specifying the earliest and latest

times the vehicle may be at s, respectively. Hence, the vehicle must not arrive at s sooner

than (t(s)− η) and no later than t(s); in the former case, the vehicle has to wait at a

waiting station w ∈W before moving to s. Each customer demand is serviced by exactly
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one supply point. The supply point that services each delivery-customer demand is fixed

and known in advance. For each pickup-customer demand p ∈ C P, it is given a set of

supply points Sp ∈S that can service p. Therefore, it is required to assign each pickup-

customer demand p to exactly one supply point s ∈Sp. Consequently, each supply point

s may service a group of either pickup-customer demands C P
s ⊆ C P, or delivery-customer

demands C D
s ⊆ C D or both. Thus, it refers to movements where all freight collected from

pickup-customer demands in C P
s have to be transported to s and all freight delivered to

delivery-customer demands in C D
s have to be loaded at s. Accordingly, each supply point

s requires an unloading time ϕ ′(s), which is the time required to unload freight picked up

at a set of customer demands in C P
s , and a loading time ϕ(s), which is the time required

to load freight to service a set of customer demands in C D
s . For each customer demand

i ∈ C P∪C D, we use (i,qi,δ (i), [ei, li]) to mean that customer demand i requires a quantity

qi of demand in the hard time window [ei, li] with a service time δ (i).

In general, once arriving at a supply point, the vehicle in the MZT-PDTWS may either

unload pickup demands or load delivery demands or do both. Figure 5.1 represents these

activities of a vehicle at a supply point s. The dashed lines stand for the empty move.
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Figure 5.1: Activities at supply points

Figures 5.1a and 5.1b depict instances of ‘unload only’ operation in which after arriving

at the supply point with the collected freight from pickup-customer demands, the vehicle

unloads all freight, then it leaves the supply point empty for its next trip or goes to the

depot to end its activity. From the last serviced pickup-customer demand, the vehicle may

go directly to the supply point s as shown in Figure 5.1a if it can arrive at s within the time

window [t(s)−η , t(s)]. Otherwise, in case the direct move gets the vehicle to s sooner than

t(s)−η , as shown in Figure 5.1b, the vehicle goes to a waiting station, and wait there in
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order to get to s within the time window of s. Figure 5.1c represents the case of ‘load only’

operation in which the vehicle goes empty to supply point s and loads freight. Figures 5.1d

and 5.1e depict instances of ‘unload and load’ operation in which at a supply point s, after

unloading all freight collected from pickup-customer demands, the vehicle starts to load

freight, it then leaves s to deliver freight to designated delivery-customer demands.

Let a pickup (delivery) leg be a route that links one or several pickup- (delivery-) cus-

tomer demands of the same type with a supply point. Thus, we define two types for each

pickup and delivery legs as well as their feasibility rules as follows:

• Direct-pickup leg is a route run by a vehicle that goes to one or several pickup-

customer demands to collect freight and goes to the supply point directly to unload

all freight (see Figure 5.1a).

• Indirect-pickup leg is similar to the case of direct-pickup leg, except that after ser-

vicing the last pickup-customer demand, the vehicle has to go to a waiting station

and wait there due to the synchronization requirement at the supply point, then ends

at the supply point to unload all freight (see Figure 5.1b).

A pickup leg assigned to the supply point s is feasible if the vehicle with a total load

not exceeding Q can arrive at s within its time window [t(s)−η , t(s)] after servicing

a subset of pickup-customer demands in C P
s within their time windows.

• Single-delivery leg is a route run by a vehicle that arrives empty at a supply point s to

load freight and delivers all freight to one or several delivery-customer demands in

C D
s (see Figure 5.1c). A single-delivery leg assigned to the supply point s is feasible

if the vehicle arrives empty at s at time t ′ ∈ [t(s)−η , t(s)] to load freight with a

total load not exceeding Q, then leaves s at time t ′+ϕ(s) to perform the delivery for

serving a subset of customer demands in C D
s within their time windows.

• Coordinate-delivery leg is a route run by a vehicle that starts empty at a supply

point s for loading freight, then delivers all freight to designated delivery-customer

demands in C D
s , given that this vehicle does both unload and load at supply point

s, i.e, it does a direct-pickup leg (see Figure 5.1d) or an indirect-pickup leg (see
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Figure 5.1e) at the same supply point s right before this coordinate-delivery leg. A

coordinate-delivery leg assigned to the supply point s is feasible if the vehicle arrives

at s at time t ′ ∈ [t(s)−η , t(s)] to unload all collected freight, it then starts to load

delivery demands at time t ′+ϕ ′(s) with a total load not exceeding Q, leaves s at time

t(s)+ϕ ′(s)+ϕ(s) to perform the delivery for serving a subset of customer demands

in C D
s within their time windows.

A sequence of legs, starting and ending at the main depot, assigned to a vehicle is called

a work assignment. For the sake of simplicity, from now on, the terms vehicle and work

assignment are used interchangeably. Figure 5.2 illustrates a four-leg work assignment,

where s1,s2,s3 are supply points, g and w1 are respectively the main depot and waiting sta-

tion, C P
s1
= {p1, p2, p3, p4, p5}, C D

s1
= {d1,d2,d3,d4,d5}, C P

s2
= {p6, p7, p8, p9, p10}, C D

s2
=

{d6,d7,d8,d9,d10,d11}, C P
s3
= {p11, p12, p13, p14, p15}, and C D

s3
= {d12,d13,d14,d15}. The

dashed lines stand for the empty arrival. This vehicle performs a sequence of four legs

{r1,r2,r3,r4} where r1 = {s1,d1,d3,d4} is a single-delivery leg, r2 = {p6, p8, p9,w1,s2}
is an indirect-pickup leg, r3 = {s2,d6,d9,d8,d7} is a coordinate-delivery leg, and r4 =

{p11, p13, p12,s3} is a direct-pickup leg. This vehicle first moves empty from the depot g to

supply point s1. Once at s1, this vehicle start loading delivery demands. After loading for a

time ϕ(s1), it leaves s1 to service customer demands (d1,d3,d4) in C D
s1

, then moves empty

to pickup customer zone C P
s2

for collecting freight at pickup-customer demands (p6, p8,

p9). In order to arrive at s2 within its opening time window, after collecting freight from

customer demand p9, this vehicle has to go to waiting station w1 and wait there. Once at

s2 (assuming arrival time is t), it does both unloading and loading operations: (1) at time t,

it starts unloading and keeps doing for a time ϕ ′(s2), and (2) then from time t +ϕ ′(s2), it

loads delivery demands and continues loading for a time ϕ(s2), after which it leaves s2 to

service customer demands (d6, d9, d8, d7) in C D
s2

. After servicing the last customer demand

d7, it moves empty to pickup customer zone C P
s3

. There, after loading freight at pickup-

customer demands (p11, p13, p12), this vehicle moves to supply point s3 within the opening

time window of s3. Once at s3, this vehicle starts unloading freight for a duration of ϕ ′(s3).

At the end, this vehicle moves empty back to the depot g to complete its task.

The MZT-PDTWS can be seen as the problem of (1) assigning pickup-customer de-
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Figure 5.2: A four-leg work assignment illustration

mands to supply points, and (2) determining a set of pickup and delivery legs and an

assignment of each leg to one vehicle, such that each vehicle can perform several legs

sequentially. The objective is to minimize the total cost, which is comprised of routing cost

and fixed cost on the use of vehicles, while the following conditions are satisfied:

1. Every vehicle starts and ends its leg sequence at the main depot g;

2. Each pickup-customer demand p is assigned to exactly one supply point s ∈Sp;

3. Every vehicle required to service customer demands in C P
s ∪C D

s must reach its sup-

ply point s ∈S within its no-wait, hard opening time window. Assume the arrival

time at s is t; Once at s:

• if the vehicle is not empty, i.e., it is containing goods picked up from customer

demands in C P
s , it has to unload them first. The vehicle starts unloading goods

at time t, and continues unloading for a duration of ϕ ′(s), after which it may

either:

– (1) load goods shipped from external zones for a duration of ϕ(s) and then

leave s to deliver goods to customer demands in C D
s , or

– (2) move empty either to another pickup customer zone to collect goods,

or directly to another supply point for loading goods, or

– (3) go to the main depot g to complete its task;
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• otherwise, the vehicle starts to load goods to service customer demands in C D
s .

It starts loading goods at time t and continues loading for a duration of ϕ(s),

after which it leaves s to deliver goods to customers in C D
s . After perform-

ing a trip within the delivery customer zone C D
s , the vehicle may continue its

movement as either the situation (2) or (3) described above;

4. Every customer demand is visited by exactly one leg with a total load not exceeding

Q, and each customer demand i ∈ C D∪C P is serviced within its hard time window

[ei, li], i.e., a vehicle may arrive before ei and wait to begin service, but must not

arrive later than li.

5.3 Literature Review

In this paper, we present a new variant of the VRP. It extends the Time-dependent Multi-

zone Multi-trip Vehicle Routing problem with Time Windows (TMZT-VRPTW) by consid-

ering an additional type of customer demands. The TMZT-VRPTW just addresses inbound

demands, resulting in only one type of customers, i.e., delivery-customer demands, while

the MZT-PDTWS considers delivery and pickup-customer demands as it addresses both

inbound and outbound demands. Crainic et al. (2009) pioneered the introduction of the

TMZT-VRPTW and proposed a decomposition-based heuristic approach to solve it. The

general idea is to solve each customer-zone routing out of each supply point subproblem

independently, and then put the created vehicle tours together into multi-tour routes by

solving a minimum cost network flow problem. Yet, as routing decisions affect the sup-

ply point assignment decisions and vice versa, these two decision levels are intertwined

and should not be solved separately. Nguyen et al. (2013) later investigated an alternative

approach that addresses these two decisions simultaneously, in a tabu search framework.

Thus, in comparing to the previous approach, it yields solutions with higher quality up to

4.42% in term of total cost, requiring not only less vehicles, but also less usage of waiting

stations.

In the context of Pickup and Delivery problems, there has been extensive research on

variants of the problem with respect to additional and different types of constraints which
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occur in real-world applications; see, e.g., a number of surveys (Savelsbergh and Solomon,

1995; Parragh et al., 2008a,b; Berbeglia et al., 2007, 2010) and book (Toth and Vigo, 2002).

Based on the difference in transportation endpoints, Parragh et al. (2008a,b) divided them

into two subclasses: the first refers to transportation of goods from the depot to delivery

(linehaul) customers and from pickup (backhaul) customers to the depot; the second refers

to those problems where goods are transported between pickup and delivery locations. As

we follow the Pseudo-Backhaul strategy in which any delivery or pickup phase must be

completed before another one may be started, our problem belongs to the first subclass.

In reviewing the literature, the first subclass of Pickup and Delivery problems includes

the single demand case where linehaul and backhaul customers are disjoint, and the com-

bined case where the same customer has both a pickup and a delivery demand. In the

former case, there are either problems in which linehaul customers of a given trip have

to be serviced before backhaul customers of the same trip (Osman and Wassan, 2002;

Brandão, 2006), that are denoted as Vehicle Routing problem with Backhauls (VRPB); or

problems in which linehaul and backhaul customers may be visited in any order (Dethloff,

2002; Ropke and Pisinger, 2006), that are denoted as Vehicle Routing problem with Mixed

linehauls and Backhauls (VRPMB). In the combined case, each customer may be either

visited exactly once (Nagy and Salhi, 2005; Dell’Amico et al., 2006) or visited twice, one

for delivery and one for pickup (Salhi and Nagy, 1999; Gribkovskaia et al., 2001). Prob-

lems in this case are denoted as Vehicle Routing problem with Simultaneous Delivery and

Pickup.

In our problem, a customer, which is identified by a location, may have both types of

demands: pickup and delivery. These demands of a customer might be available at differ-

ent periods with different commodity volumes, thus we define them as customer demands.

However, pickup and delivery phases are completed separately. The VRPB can be consid-

ered as a subproblem of our problem. More precisely, VRPB can be seen as the problem

of routing delivery-customer demands of supply point s and pickup-customer demands as-

signed to supply point s′ where t(s) < t(s′) in our problem, while time synchronization

restrictions at supply points and waiting stations are not considered. Starting from the

supply point s, the vehicles first deliver freight to delivery-customer demands. Then, they
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collect new freight at pickup-customer demands and bring to supply point s′. Two variants

with and without time windows at customers are considered in the VRPB literature. How-

ever, the number of studies dealing with the time window variant is relatively smaller than

those without time window.

Vehicle Routing problem with Cross-Docking (VRPCD) is a VRP variant sharing syn-

chronization of vehicles’ operations requirement with our problem. In general, the VRPCD

involves transporting products from a set of suppliers to their corresponding customers via

a cross-dock. More precisely, products from the suppliers are picked up by a fleet of vehi-

cles, consolidated at the cross-dock (i.e., classified into a certain group according to their

destination), and immediately delivered to customers by the same set of vehicles, without

delay or storage. A supplier and its corresponding customers are not necessarily served

by the same vehicle. At the cross-dock, for each vehicle the unloading must be completed

before reloading starts. There may exist constraint on simultaneous arrival at cross-dock

for all the vehicles (Lee et al., 2006; Liao et al., 2010) or the arrival dependency among the

vehicles is determined by the consolidation decisions (Wen et al., 2008). As our problem,

each vehicle in the VRPCD operates pickup and delivery phases separately. However, there

are also differences between the VRPCD and the MZT-PDTWS.

In the VRPCD, each vehicle performs a sequence of two trips, i.e., pickup and then

delivery, using cross-dock as intermediate storage. While in our problem, there are neither

limitation on the number of trips nor the requirement for the ordering between pickup and

delivery trips performed by each vehicle. Vehicles in our problem are synchronized at mul-

tiple locations (supply points) rather than a single location (the cross-dock) in the VRPCD.

The synchronized arrival time of all or several vehicles at the cross-dock is considered as

a variable in the VRPCD, which is determined by the consolidation decisions, while it is

given in advance in our problem.

5.4 Model Formulation

5.4.1 Notation

We define for each supply point s ∈S :
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• ADS
s = {(d,s)|s′ ∈S ,d ∈ C D

s′ , t(s
′) < t(s),ed + δ (d)+ cd,s ≤ t(s) } contains all the

arcs (d,s) from delivery-customer demands d to the supply point s such that ed +

δ (d)+ cd,s ≤ t(s), i.e., the vehicle could arrive at s before the opening time t(s). By

including this constraint, we eliminate inadmissible arcs, thus reduce the set;

• APS
s = {(p,s)|p ∈ C P

s } contains all the arcs from pickup-customer demands p to the

supply point s such that s ∈ Sp.

• AS−
s = {(s′,s)|t(s)−η ≤ t(s′)−η +ϕ ′(s′)+ cs′,s ≤ t(s)} contains all the arcs (s′,s)

from any supply points s′ to the supply point s such that t(s)−η ≤ t(s′)−η+ϕ ′(s′)+

cs′,s ≤ t(s), i.e., the vehicle could travel directly from s′ to s when it only unloads at

s′ (leaves s′ empty);

• AS+

s = {(s,s′)|t(s′)−η ≤ t(s)−η +ϕ ′(s)+ cs,s′ ≤ t(s′)} contains all the arcs (s,s′)

from the supply point s to any supply points s′ such that t(s′)−η ≤ t(s)−η+ϕ ′(s)+

cs,s′ ≤ t(s′), i.e., the vehicle could travel directly from s to s′ when it only unloads at

s;

• ASP
s = {(s, p)|t(s)−η +ϕ ′(s)+ cs,p ≤ lp, p ∈ C P} contains all the arcs (s, p) from

the supply point s to any pickup-customer demands p ∈ C P such that t(s)− η +

ϕ ′(s)+cs,p ≤ lp, i.e., the vehicle could arrive at p from s before the due time lp when

it only unloads at s (there exists arcs (s, p), i.e., the vehicle goes from s to p, only if

the vehicle leaves s empty, i.e., only unloads at s);

• ASD
s = {(s,d)|d ∈ C D

s } contains all the arcs from the supply point s to any delivery-

customer demands d ∈ C D
s ;

We define for each delivery-customer demand d ∈ C D
s ,s ∈S :

• ADS
d = {(d,s′)|s′ ∈S ,ed +δ (d)+ cd,s′ ≤ t(s′)} contains all the arcs (d,s′) from the

delivery-customer demand d to any supply points s′ ∈S such that ed +δ (d)+cd,s′ ≤
t(s′), i.e., the vehicle could arrive at s′ from d before the opening time t(s′);
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• ADP
d = {(d, p)|p ∈ C P,ed + δ (d)+ cd,p ≤ lp} contains all the arcs (d, p) from the

delivery-customer demand d to any pickup-customer demands p∈C P such that ed +

δ (d)+ cd,p ≤ lp, i.e., the vehicle could arrive at p before the due time lp;

• AD+

d = {(d,d′)|d′ ∈ C D
s ,ed +δ (d)+ cd,d′ ≤ ld′} contains all the arcs (d,d′) from the

delivery-customer demand d to any other delivery-customer demands d′ of the same

zone C D
s such that ed +δ (d)+ cd,d′ ≤ ld′ ;

• AD−
d = {(d′,d)|d′ ∈ C D

s ,ed′ + δ (d′) + cd′,d ≤ ld} contains all the arcs (d′,d) from

any delivery-customer demands d′ of the same zone C D
s to the delivery-customer

demand d such that ed′+δ (d′)+ cd′,d ≤ ld;

We define for each pickup-customer demand p ∈ C P:

• APS
p = {(p,s)|s ∈Sp} contains all the arcs from the pickup-customer demand p to

its available supply point s ∈Sp;

• APD
p = {(p,d)|d ∈ C D,ep + δ (p)+ cp,d ≤ ld} contains all the arcs (p,d) from the

pickup-customer demand p to any delivery-customer demands d such that ep +

δ (p)+ cp,d ≤ ld;

• AP+

p = {(p, p′)|p′ ∈ C P,ep + δ (p) + cp,p′ ≤ lp′ ,Sp ∩ Sp′ 6= /0} contains all the arcs

(p, p′) from the pickup-customer demand p to any other pickup-customer demands

p′ such that (1) Sp∩Sp′ 6= /0, i.e., p′ has at least one available supply point in common

with p, and (2) ep +δ (p)+ cp,p′ ≤ lp′ ;

• AP−
p = {(p′, p)|p′ ∈ C P,ep′ + δ (p′)+ cp′,p ≤ lp,Sp ∩ Sp′ 6= /0} contains all the arcs

(p′, p) from any pickup-customer demands p′ to the pickup-customer demand p such

that (1) Sp∩ Sp′ 6= /0, i.e., p′ has at least one available supply point in common with

p, and (2) ep′+δ (p′)+ cp′,p ≤ lp;

• ADP
p = {(d, p)|d ∈ C D,ed + δ (d)+ cd,p ≤ lp} contains all the arcs (d, p) from any

delivery-customer demands d to the pickup-customer demand p such that ed+δ (d)+

cd,p ≤ lp;
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• ASP
p = {(s, p)|t(s)−η +ϕ ′(s)+cs,p ≤ lp} contains all the arcs (s, p) from any supply

points s to the pickup-customer demand p such that t(s)−η +ϕ ′(s)+ cs,p ≤ lp, i.e.,

the vehicle could arrive at p from s before the due time lp when it only unload at s;

We define for each waiting station w ∈W :

• AW−= {(i,w)|i∈{S ∪C D∪C P},w∈W } contains all the arcs from pickup-customer

demands, delivery-customer demands and supply points to waiting stations;

• AWS = {(w,s)|w ∈ W ,s ∈S } contains all the arcs from waiting stations to supply

points;

For the depot g, we define:

• ADG = {(d,g)|d ∈ C D} contains all the arcs from delivery-customer demands d to

the main depot g;

• AGS = {(g,s)|s ∈S } contains all the arcs from the main depot g to supply points;

• AGP = {(g, p)|p∈C P} contains all the arcs from the main depot g to pickup-customer

demands p;

Let F stand for fixed cost for operating a vehicle. The set of available vehicles is

denoted by K . The maximal number of arcs included in any vehicle is given by e and we

define R as {1,...,e}. Also, M is a large positive constant.

5.4.2 Formulation

The MZT-PDTWS is defined on a space-time network G = (V ,A ), where V is the set of

nodes, and the arcs in A stand for the possible movements between these nodes. Set V is

made up of the main depot g and the sets of customer demands, supply points and waiting

stations, i.e., V = g∪C P∪C D∪S ∪W . Set A = ∪s∈S [ASD
s ∪ASP

s ∪AS+

s ]∪d∈C D [ADS
d ∪

ADP
d ∪AD+

d ]∪p∈C P [APS
s ∪APD

s ∪AP+

s ]∪AW− ∪AWS ∪ADG ∪AGS ∪AGP, which consists of

admissible arcs.

We define the following decision variables:
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• xr
i jk, a binary variable that takes value 1 if arc (i, j) ∈ A is traversed by vehicle k

and appears in the rth position of the work assignment of vehicle k, and value 0

otherwise;

• yps, a binary variable that takes value 1 if pickup-customer demand p ∈ C P is as-

signed to supply point s ∈S , and value 0 otherwise;

• zsk, a binary variable that takes value 1 if vehicle k unloads at supply point s, and

value 0 otherwise.

Note that we preliminary set yps = 0 ∀p ∈ C P,s /∈ Sp given that such s does not service

p. Demands at each supply point s ∈S , waiting station w ∈W and the main depot g are

equal to zero, i.e, qs = qw = qg = 0. For convenience, we set demand at each delivery node

d ∈ C D: qd =−qd < 0. In addition,

Bik is the starting time of service at customer demand i ∈ C P∪C D by vehicle k;

Bsk is the arrival time of vehicle k at supply point s ∈S ;

Biwk is the arrival time of vehicle k at waiting station w ∈W from a supply point,

a delivery-customer demand, or a pickup-customer demand i ∈ {S ∪C D∪C P};
Qik is the load of vehicle k when leaving i ∈ V ;

Lsk is the load of vehicle k when arriving at supply point s ∈S .

We set Qgk = 0 ∀k ∈K as the vehicle leaves the depot empty.

The MZT-PDTWS can then be formulated as the following:

Minimize ∑
k∈K

∑
(i, j)∈A

ci j ∑
r∈R

xr
i jk +F ∑

k∈K

(

∑
s∈S

x1
gsk + ∑

p∈C P

x1
gpk

)

(5.1)

S.t. ∑
r∈R



xr
sgk + ∑

(s,d)∈ASD
s

xr
sdk + ∑

w∈W

xr
swk + ∑

(s,s′)∈AS+
s

xr
ss′k + ∑

(s,p)∈ASP
s

xr
spk



≤ 1

∀s ∈S ,k ∈K

(5.2)
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x1
gsk + ∑

r∈R



 ∑
w∈W

xr
wsk + ∑

(s′,s)∈AS−
s

xr
s′sk + ∑

(p,s)∈APS
s

xr
psk + ∑

(d,s)∈ADS
s

xr
dsk





= ∑
r∈R



xr
sgk + ∑

(s,d)∈ASD
s

xr
sdk + ∑

w∈W

xr
swk + ∑

(s,s′)∈AS+
s

xr
ss′k + ∑

(s,p)∈ASP
s

xr
spk





∀s ∈S ,k ∈K

(5.3)

∑
s∈S

x1
gsk + ∑

p∈C P

x1
gpk = ∑

r∈R

(

∑
d∈C D

xr
dgk + ∑

s∈S

xr
sgk

)

∀k ∈K (5.4)

∑
r∈R

∑
s∈S

xr
wsk = ∑

r∈R

(

∑
d∈C D

xr
dwk + ∑

p∈C P

xr
pwk + ∑

s∈S

xr
swk

)

∀w ∈W ,k ∈K (5.5)

∑
s∈Sp

yps = 1 ∀p ∈ C
P

(5.6)

∑
k∈K

∑
r∈R

xr
psk ≤ yps ∀p ∈ C

P,s ∈S (5.7)

xr
pwk + yps ≤ xr+1

wsk +1 ∀p ∈ C
P,s ∈Sp,w ∈W ,r ∈R,k ∈K (5.8)

∑
k∈K

∑
r∈R

xr
pp′k + yps ≤ yp′s +1 ∀p, p′ ∈ C

P, p 6= p′,s ∈Sp (5.9)

∑
k∈K

∑
r∈R



 ∑
(p,p′)∈AP+

p

xr
pp′k + ∑

w∈W

xr
pwk + ∑

s∈Sp

xr
psk



= 1 ∀p ∈ C
P

(5.10)

∑
k∈K

∑
r∈R



 ∑
(s,p)∈ASP

p

xr
spk + ∑

(p′,p)∈AP−
p

xr
p′pk + ∑

(d,p)∈ADP
p

xr
d pk



+ ∑
k∈K

x1
gpk = 1 ∀p ∈ C

P

(5.11)

∑
k∈K

∑
r∈R



 ∑
(d,d′)∈AD+

d

xr
dd′k + ∑

(d,p)∈ADP
d

xr
d pk + ∑

(d,s′)∈ADS
d

xr
ds′k + ∑

w∈W

xr
dwk + xr

dgk



= 1

∀d ∈ C D
s ,s ∈S

(5.12)
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∑
k∈K

∑
r∈R



xr
sdk + ∑

(d′,d)∈AD−
d

xr
d′dk



= 1 ∀d ∈ C
D
s ,s ∈S (5.13)

Q jk ≥ (Qik +q j)−Q(1− ∑
r∈R

xr
i jk) ∀(i, j) ∈A , j /∈S ,k ∈K (5.14)

Lsk ≥ Qik−Q(1− ∑
r∈R

xr
isk) ∀(i,s) ∈A ,s ∈S ,k ∈K (5.15)

max{0,qi} ≤ Qik ≤ min{Q,Q+qi} ∀i ∈ V ,k ∈K (5.16)

Qsk ≤ Q ∑
d∈C D

s

∑
r∈R

xr
sdk ∀s ∈S ,k ∈K (5.17)

Qsk ≥ min
d∈C D

s

{qd} ∑
d∈C D

s

∑
r∈R

xr
sdk ∀s ∈S ,k ∈K (5.18)

Lsk ≥ min
p∈C P
{qp} ∑

i∈V \C D

∑
r∈R

xr
sik ∀s ∈S ,k ∈K (5.19)

Qsk ≤ Q(1− ∑
i∈V \C D

∑
r∈R

xr
sik) ∀s ∈S ,k ∈K (5.20)

∑
k∈K

Lsk = ∑
p∈C P

qpyps ∀s ∈S (5.21)

B jk ≥ Bik +δ (i)+ ci, j−M(1− ∑
r∈R

xr
i jk)

∀(i, j) ∈A , i ∈ {C P∪C D}, j ∈ {C P∪C D∪S }, i 6= j,k ∈K

(5.22)

Bik ≥ Bsk +ϕ ′(s)+ cs,i−M(1− ∑
r∈R

xr
sik) ∀s ∈S , i ∈ {C P∪S \ s},k ∈K (5.23)

Bdk ≥ Bsk +ϕ(s)+ zskϕ ′(s)+ cs,d−M(1− ∑
r∈R

xr
sdk) ∀s ∈S ,d ∈ C

D
s ,k ∈K (5.24)
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Biwk ≥ Biw +δ (i)+ ci,w−M(1− ∑
r∈R

xr
iwk) ∀w ∈W , i ∈ {C P∪C

D},k ∈K (5.25)

Bswk ≥ Bsk +ϕ ′(s)+ cs,w−M(1− ∑
r∈R

xr
swk) ∀w ∈W ,s ∈S ,k ∈K (5.26)

If ∑
r∈R\e

(

xr
iwk xr+1

wsk

)

= 1 then Bsk ≥ Biwk + cws

∀w ∈W ,s ∈S , i ∈ {C P∪C D∪S \ s},k ∈K

(5.27)

zsk = 1 if and only if ∑
p∈C P

(

∑
r∈R

xr
psk + ∑

r∈R\e
∑

w∈W

xr
pwk xr+1

wsk

)

= 1

∀s ∈S ,k ∈K

(5.28)

(t(s)−η) ∑
r∈R



xr
gsk + ∑

w∈W

xr
wsk + ∑

(s′,s)∈AS−
s

xr
s′sk + ∑

(p,s)∈APS
s

xr
psk + ∑

(d,s)∈ADS
s

xr
dsk



≤ Bsk

≤ t(s) ∑
r∈R



xr
sgk + ∑

(s,d)∈ASD
s

xr
sdk + ∑

w∈W

xr
swk + ∑

(s,s′)∈AS+
s

xr
ss′k + ∑

(s,p)∈ASP
s

xr
spk





∀s ∈S ,k ∈K

(5.29)

ep ∑
r∈R



 ∑
(p,p′)∈AP+

p

xr
pp′k + ∑

w∈W

xr
pwk + ∑

s∈Sp

xr
psk



≤ Bpk

≤ lp ∑
r∈R



 ∑
(s,p)∈ASP

p

xr
spk + ∑

(p′,p)∈AP−
p

xr
p′pk + ∑

(d,p)∈ADP
p

xr
d pk + xr

gpk





∀p ∈ C P,k ∈K

(5.30)

ed ∑
r∈R



 ∑
(d,d′)∈AD+

d

xr
dd′k + ∑

(d,p)∈ADP
d

xr
d pk + ∑

(d,s′)∈ADS
d

xr
ds′k + ∑

w∈W

xr
dwk + xr

dgk





≤ Bdk ≤ ld ∑
r∈R



xr
sdk + ∑

(d′,d)∈AD−
d

xr
d′dk



 ∀s ∈S ,d ∈ C
D
s ,k ∈K

(5.31)
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0≤ Lsk ≤ Q ∀s ∈S ,k ∈K (5.32)

xr
i jk ∈ {0,1} ∀(i, j) ∈A ,r ∈R,k ∈K (5.33)

yps ∈ {0,1} ∀p ∈ C
P,s ∈S (5.34)

zsk ∈ {0,1} ∀s ∈S ,k ∈K (5.35)

The objective function (5.1) minimizes the total transportation cost, including the fixed

costs incurred for using vehicles. Constraints (5.2) ensure that a vehicle leaving a sup-

ply point visits either a customer demand, a waiting station, another supply point, or the

main depot g. The conservation of flow at supply point is completed by constraints (5.3).

Constraints (5.4) and (5.5) represent the conservation of flow at main depot and waiting

stations respectively. Constraints (5.6) ensure that each pickup-customer demand must be

assigned to only one supply point. Constraints (5.7) - (5.9) forbid the illegal pickup legs

which bring either pickup demands to the supply point to which they are not assigned or

pickup demands not assigned to the same supply point.

Constraints (5.10) ensure that when a vehicle leaves a pickup-customer demand p, it

goes either to another pickup-customer demand, a waiting station w∈W , or a supply point

s ∈ W . These constraints together with (5.11) enforce the flow conservation at pickup-

customer demands, and the single assignment of pickup-customer demands to legs. Sim-

ilarly, constraints (5.12) ensure that when a vehicle leaves a delivery-customer demand

d ∈ C D
s , it goes either to another delivery-customer demand of the same set C D

s , a pickup-

customer demand p, a supply point s′, a waiting station w, or the main depot g. Constraints

(5.12) and (5.13) also enforce the flow conservation at delivery-customer demands, and the

single assignment of delivery-customer demands to legs.

Consistency of load variables is ensured through constraints (5.14) and (5.15), while

constraints (5.16) enforce the restrictions on the vehicle capacity. Constraints (5.17) and

(5.18) ensure that the vehicle k brings load from a supply point s to a delivery-customer
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demand d of the customer zone C D
s if and only if it loads freight at supply point s, i.e.,

Qks > 0. Constraints (5.19) and (5.20) ensure that the vehicle k goes directly from the

supply point s to either a pickup-customer demand p, any other supply point, a waiting

station, or the main depot g if it only unloads at s and then leaves s empty. Constraints

(5.21) guarantee that the total pickup load entering each supply point equals to the total

pickup demands of customers, which are assigned to the corresponding supply point.

Consistency of the time variables is ensured through constraints (5.22) - (5.27). Note

that when a waiting station w is reached in the rth position of the work assignment of

vehicle k, the outgoing arc (w,s) should be in the (r + 1)th position of the same work

assignment. Constraints (5.27) can be linearized by introducing new variables vr
iwsk ∈{0,1}

such that vr
iwsk = xr

iwkxr+1
wsk ∀w ∈ W ,s ∈ S , i ∈ {C P ∪C D ∪S \ s},k ∈ K . Constraints

(5.27) can be made explicit by means of the following linear constraints:

xr
iwk ≥ vr

iwsk ∀r ∈R,w ∈W ,s ∈S , i ∈ {C P∪C
D∪S \ s},k ∈K (5.36)

xr+1
wsk ≥ vr

iwsk ∀r ∈R,w ∈W ,s ∈S , i ∈ {C P∪C
D∪S \ s},k ∈K (5.37)

xr
iwk + xr+1

wsk ≤ 1+ vr
iwsk ∀r ∈R,w ∈W ,s ∈S , i ∈ {C P∪C

D∪S \ s},k ∈K (5.38)

Bsk ≥ Biwk + cws−M(1− ∑
r∈R

vr
iwsk) ∀w ∈W ,s ∈S , i ∈ {C P∪C

D∪S \ s},k ∈K

(5.39)

Constraints (5.28) ensure that the vehicle k unloads at a supply point s if and only if

it brings pick-up demands to s. Because each pickup-customer demand p is serviced only

once, these constraints can be linearized and rewritten as follows:

zsk = ∑
p∈C P

(

∑
r∈R

xr
psk + ∑

r∈R

vr
pwsk

)

∀s ∈S ,k ∈K

(5.40)
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The respect of time windows at supply points and customer demands is enforced through

constraints (5.29) - (5.31). Constraints (5.32) are bounding constraints for variables Lk
s . Fi-

nally, constraints (5.33) - (5.35) define the decision variables.

5.5 Solution method

In this section, we present the extension of our proposed tabu search for the TMZT-VRPTW

in Nguyen et al. (2013) so that it can tackle the MZT-PDTWS. The general structure and

search space are presented in Section 5.5.1 and 5.5.2, respectively. Section 5.5.3 describes

the initial solution construction. All components of TS are then given: the neighborhood

structures (Section 5.5.4), the neighborhood-selection Control procedure (Section 5.5.5),

the tabu status mechanism (Section 5.5.6), the diversification mechanism (Section 5.5.7),

and Post-optimization procedure (Section 5.5.8).

5.5.1 General structure

The structure of TS is presented in Algorithm 4. Let r as the ratio of selecting routing

neighborhoods to leg neighborhoods. First, an initial feasible solution z is generated using

a greedy method seeking to fully utilize vehicles and minimize the total cost. At each

iteration of the TS method, one neighborhood is selected probabilistically based on the

current value of r, then the selected neighborhood is explored, and the best move is chosen

(lines 7-8). This move must not be tabu, unless it improves the current best TS solution zbest

(aspiration criterion). The algorithm adds the new solution to an elite set E if it improves

on zbest . It also remembers the value of the parameter r when the new best solution was

found (lines 9-13), and finally updates the elite set E by removing a solution based on its

value and the difference between solutions (Section 5.5.7).

Initially, the search freely explores the solution space by assigning each neighborhood

with the same probability of being selected. Whenever the best TS solution zbest is not

improved for ITcNS TS iterations (line 15), the Control procedure is called to reduce the

probability of selecting leg neighborhoods (line 25). Consequently, routing neighborhoods

are selected proportionally more often, which gives customer moves more opportunity to

fully optimize routes. The search is re-initialized from the current best TS solution zbest
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Algorithm 4 Tabu search

1: Generate an initial feasible solution z

2: zbest ← z

3: Elite set E ←⊘
4: Probability of selecting routing neighborhood with respect to leg neighborhood r← 1

5: STOP← 0

6: repeat

7: A neighborhood is selected based on the value of r

8: Find the best solution z′ in the selected neighborhood of z

9: if z′ is better than zbest then

10: zbest ← z′

11: rbest ← r

12: Add (zbest ,rbest) to the elite set E ; update E

13: end if

14: z← z′

15: if zbest not improved for ITcNS iterations then

16: if zbest not improved after CcNS consecutive executions of Control procedure then

17: if E =⊘ then

18: STOP← 1

19: else

20: Select randomly (z,rz) (and remove it) from the elite set E

21: Diversify the current solution z

22: Set r← rz and reset tabu lists

23: end if

24: else

25: Apply Control procedure to update the value of r

26: z← zbest

27: end if

28: end if

29: until STOP

30: zbest ← Post-optimization(zbest)

31: return zbest
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after the execution of the Control procedure (line 26). Moreover, after CcNS consecutive

executions of this procedure without improvement of the current best TS solution zbest , a

solution z is selected randomly and removed from the elite set (line 20), and a Diversi-

fication mechanism is applied to perturb z (line 21). The value of r is reset to the value

it had when the corresponding elite solution was found, and all tabu lists are reset to the

empty state (line 22). The search then proceeds from the perturbed solution z. The search is

stopped when the elite set E is empty. Finally, a post-optimization procedure is performed

to potentially improve the current best solution zbest (line 30).

5.5.2 Search space

We allow infeasible solutions in our algorithm. Infeasible solutions are penalized in propor-

tion to the violations of the constraints on vehicle capacity, the time windows of customer

demands and supply points. More precisely, for a solution z, let c(z) denote the total trav-

eling cost, and let q(z),wc(z) and ws(z) denote the total violation of vehicle load, customer

demands time windows, supply points time windows, respectively. The total vehicle-load

violation is computed on a leg basis with respect to the value Q, whereas the total violation

of time windows of customer demands is equal to ∑i∈z max{(ai− li),0}, and the total viola-

tion of time windows of supply points is equal to ∑s∈z max{(t(s)−η−as),(as− t(s)),0},
where ai and as are the arrival time at customer demand i and supply point s, respectively.

Solutions are then evaluated according to the weighted fitness function f (z) = c(z)+

αQq(z)+αCwc(z)+αSws(z)+F ∗m, where αQ, αC, αS are penalty parameters adjusted

dynamically during the search. The updating scheme is based on the idea of Cordeau et al.

(2001). At each iteration, the value of αQ, αC and αS are modified by a factor 1+β > 1.

If the current solution is feasible with respect to load constraints, the value of αQ is divided

by 1+ β ; otherwise it is multiplied by 1+ β . The same rule applies to αC and αS with

respect to time window constraints of customers and supply points, respectively. In our

algorithm, we set αQ = αC = αS = 1 and β = 0.3.
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5.5.3 Initial solution

We sort the supply points and index them in increasing order of their opening times. Thus,

if t(s1)≤ t(s2), then s1 < s2 and vice versa. We then construct an initial solution by assign-

ing each pickup-customer demand to one supply point, and building each feasible work

assignment sequentially.

There are several ways to assign pickup-customer demands to supply points. A simple

way is to assign each pickup-customer demand to its closest supply point. Another way

is that each supply point s services a predefined number of its pickup-customer demands

closest to it. However, these strategies fail to take the significant variation of delivery loads

at each supply point into account. The imbalance of pickup and delivery demands might

happen at some supply points, which reduces the possibility of ‘unload and load’ operation

at a supply point, and thus increases the number of empty movements.

In order to overcome this issue, we first estimate what the maximum total pickup de-

mands at each supply point should be. As delivery-customer demands are already assigned

to supply points, we calculate the total delivery demands assigned to each supply point.

Let Ks denote this number for each supply point s ∈S . We then use Ks as the maximum

capacity of collected freight which vehicles can unload at supply point s in hope of bal-

ancing the unloading and loading operations at each supply point. Each pickup-customer

demand p is then assigned to the nearest supply point in Sp. When the assignment violates

the maximum capacity of the nearest supply point in Sp, it is randomly allocated to the

supply point in Sp whose residual capacity is large enough for the assignment. Pickup-

customer demands are handled in random order. By considering both the distance from

pickup-customer demands to supply points and the capacity of delivery demands at each

supply point when allocating pickup-customer demands, we aim to generate a solution

which satisfy the following two conditions. The first condition is a small total traveling

cost. The other condition is to avoid the imbalance of the number of generated pickup legs

and delivery legs at each supply point, so vehicles can do more ‘unload and load’ activities,

which then helps to reduce empty movements.

Once the assignment of pickup-customer demands to supply points is completed, each

work assignment of the initial solution is built sequentially. Each work-assignment con-
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struction consists of two phases: the first phase determines the first supply point for the

current work assignment; the second phase creates sequentially each leg using a greedy

algorithm.

In the first phase, the supply point s with earliest opening time and unserviced cus-

tomer demands is assigned as the initial supply point of the first leg of the current work

assignment. During the second phase, one or a sequence of first legs between supply point

s and either other supply point s′ or the depot g is created using a greedy algorithm. If the

first created leg(s) ends at a supply point s′, we continue applying the greedy algorithm to

build next leg(s) in which s′ is now used as the initial supply point. Otherwise, if it ends

at the main depot, it means the current work assignment cannot be used anymore, and we

return to the first phase to build another work assignment. This process is repeated until all

customer demands are serviced (assigned to a vehicle route).

The greedy algorithm is implemented as follows: for a given initial supply point s

assigned to the leg, it finds a set of supply points S′ = {s′ ∈S |s′ with unserviced customer

demands and t(s′) > t(s)}. If S′ 6= ∅, for each pair (s,s′), all unrouted customer demands

of s and unrouted pickup-customer demands of s′ are candidates for insertion to the vehicle

according to a priority order which considers unrouted pickup-customer demands of s first,

then unrouted delivery-customer demands of s, and unrouted pickup-customer demands of

s′ as the latest. Each unserviced customer demand is assigned to the vehicle sequentially

by applying the heuristic I1 of Solomon (1987) until the vehicle is full.

Figure 5.3 illustrates different possibilities when routing customer demands between

two supply points s and s′. If there exists unrouted pickup-customer demands of s, the

greedy algorithm assigns them to the current vehicle first, for instance, generating a pickup

leg {p2, p5, p3,s}. Between supply point s and s′, the algorithm then may generate either a

leg or a sequence of legs:

• (1) A sequence of two legs: a delivery leg {s,d1,d2,d4} and a pickup leg {p7, p10,s
′}

• (2) A pickup leg: {p9, p11, p12,s
′}

• (3) A delivery leg: {s,d3,d5,d7}
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Figure 5.3: A generation of a sequence of legs between two supply points.

• (4) An empty leg connecting s and s′

Which one is generated depends on the departure time at supply point s, time windows

and distance between unserviced delivery- and pickup-customer demands of supply point

s and s′, respectively.

Among feasible legs generated between all pairs of s and s′, the one with the smallest

average cost per unit demand is selected and assigned to the current work assignment. The

average cost per unit demand is expressed as the ratio of the total traveling time over the

total demand carried by the vehicle between s and s′. We set total demand to one for empty

legs. In the case there are no feasible legs or S′ = ∅, the greedy algorithm builds the last

leg (s,g) by applying the heuristic I1 of Solomon (1987).

5.5.4 Neighborhoods

The MZT-PDTWS has the same problem structure as the TMZT-VRPTW, where each

work assignment consists of a sequence of legs and where each leg is made of a sequence

of customer demands. Therefore, the MZT-PDTWS is also solved by applying neighbor-

hoods at leg and customer levels. However, the MZT-PDTWS is more complex than the
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TMZT-VRPTW in the sense that a new type of customer demands, say pickup, is now con-

sidered together with delivery-customer demands. Furthermore, pickup-customer-demand-

to-supply point assignments are not known in advance as for delivery-customer demands,

but rather each pickup-customer demand has a list of available supply points that can ser-

vice it. Consequently, it is asking for expanding neighborhoods so that the MZT-PDTWS

can be addressed more efficiently. In this section, we describe in detail two types of neigh-

borhoods, i.e., routing neighborhoods and leg neighborhoods, used in our tabu search.

5.5.4.1 Routing neighborhoods

In the MZT-PDTWS, each vehicle performs a sequence of legs, each leg services either

pickup- or delivery-customer demands but cannot do both. As a result, routing neighbor-

hoods work on two sets of pickup legs and delivery legs separately. These neighborhoods

try to improve routing by using different intra and inter route neighborhoods commonly

used in the VRP literature: Relocation, Exchange and 2-opt.

For delivery-customer demands whose serviced supply points are pre-assigned as those

in the TMZT-VRPTW, moving them between supply points, i.e., causing reassignments to

other supply points, is forbidden. Routing neighborhoods working on delivery-customer

demands are therefore kept unchanged as in the TMZT-VRPTW. More precisely, for each

move in each neighborhood, two delivery-customer demands which belong to a same sup-

ply point are considered:

• Relocation move: one of the two customer demands is taken from its current position

and inserted after the other one.

• Exchange move: two customer demands are swapped.

• 2-opt move: for two customer demands in the same leg, the edges emanating from

them are removed, two edges are added, one of which connects these two customer

demands, and the other connects their successor customer demands. For two cus-

tomer demands in different legs, the remaining segments of these legs are swapped

preserving the order of customer demands.
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For pickup-customer demands whose lists of available serviced supply points are only

given, the assignment of each pickup-customer demand to a supply point selected from

the given list is required before routing it. Consequently, we extend routing neighbor-

hoods working on pickup-customer demands so that they could address the routing but also

the supply-point assignment. It eventually helps to improve the routing through pickup-

customer-demand-to-supply-point assignment and vice-versa. Since pickup-customer de-

mands can be reassigned to other supply points, we do not restrict routing neighborhoods

to work on each zone of pickup-customer demands separately as for delivery-customer de-

mands. However, when a move reassigns a pickup-customer demand p, assuming from

si to s j, it is constrained to reassign the demand to a supply point that belongs to the list

of available serviced supply points for p, i.e., s j ∈Sp. Three types of routing neighbor-

hoods are thus considered for all pairs of pickup-customer demands satisfying the above

condition for reassignment:

• Relocation move: one pickup-customer demand is shifted from its current position

to another position, in the same leg or in a different leg which may be assigned to

the same supply point or not, provided the condition for supply-point reassignment

is respected.

• Exchange move: two pickup-customer demands are exchanged. They may belong to

the same leg or, if the condition for supply-point reassignment allows them, to two

distinct legs sharing one common supply point or not.

• 2-opt move: for two pickup-customer demands in the same leg, the edges emanat-

ing from them are removed, two edges are added, one of which connects these two

pickup-customer demands, and the other connects their successor pickup-customer

demands. For two pickup-customer demands in different legs sharing one com-

mon supply point, thus in different vehicles, the remaining segments of these legs

are swapped preserving the order of customer demands. Finally, for two pickup-

customer demands in different legs sharing two distinct supply points, i.e., in a same

vehicle or different vehicles, the remaining segments of these legs are swapped pre-

serving the order of customer demands, when the condition for supply-point reas-
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signment is respected.

Let us take a simple example to illustrate the condition for supply-point reassignment.

Consider Table 5.2 where the lists Sp for pickup-customer demands p ∈P are given for

the work assignment Wu shown in Figure 5.4a. Consider two pickup-customer demands p1

and p6 in Wu which belong to different supply points, s2 and s4, respectively. The 2-opt

move of p1 and p6 applied on Wu requires the supply-point reassignments of {p2, p3, p4}
to s4 and of {p7, p8} to s2. Customer demands p7 and p8 can be reassigned to supply point

s2 as s2 ∈ Sp7
∩Sp8

. Similarity, p2, p3, p4 can be reassigned to s4 as s4 ∈ Sp2
∩Sp3

∩
Sp4

. The condition for supply-point reassignment is satisfied, therefore this 2-opt move is

accepted. Figure 5.4b illustrates Wu after the move.

Table 5.2: The lists of available serviced supply points Sp

Pickup-customer demand p List of available serviced supply points Sp

p1 {s2,s4}

p2 {s2,s3,s4}

p3 {s1,s2,s4}

p4 {s2,s4}

p5 {s4}

p6 {s4,s5}

p7 {s2,s4}

p8 {s1,s2,s4}

On the other hand, the 2-opt move of p1 and p5 applied on Wu requires the supply-

point reassignments of {p2, p3, p4} to s4 and of {p6, p7, p8} to s2. However, s2 /∈Sp6
, so

p6 can not be reassigned to supply point s2. Due to the infeasibility of the supply-point

reassignment, this 2-opt move is not accepted.
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(a) Work assignment W u before 2-opt

Wu di p1

s2s1

p2 p3 p4 dl p5

s4

p6 p7 p8dj

Wu di p1

s2s1

p7 p8 dl p5 p6 p2 p3dj

s4

p4

(b) Work assignment W u after 2-opt

Figure 5.4: An example of 2-opt routing neighborhood on pickup-customer demands

5.5.4.2 Leg neighborhoods

In the MZT-PDTWS, each leg is assigned to the supply point where the vehicle returns the

collected freight and/or loads new freight. Let Wu be the work assignment performed by

vehicle u. Let si−1 and si+1 denote the predecessor and successor supply points, respec-

tively, of si within a work assignment. When moving a supply point, all customer demands

serviced by it in the vehicle are also moved. Leg neighborhoods focus on repositioning

legs within the time restrictions. They are described in the following:

Relocate supply point This neighborhood removes a supply point together with cus-

tomer demands serviced by it in a work assignment and inserts them into another work

assignment. Consider two work assignments Wu and Wv. For each supply point si ∈Wu:

• if si /∈Wv: for each two successive supply points s j, s j+1 ∈Wv, such that s j < si <

s j+1, then move si from work assignment Wu to Wv locating it between s j and s j+1

(see Figure 5.5 for example). As we promote the ‘unload and load’ operation at a

supply point to reduce empty movements, the reassignment of pickup-customer de-

mands to other supply points may be required. More precisely, whenever a pickup

(or a single-delivery) leg assigned to si is relocated between s j and s j+1, and the leg

assigned to s j+1 is a single-delivery leg (or the leg assigned to s j is pickup leg), the

reassignment of all pickup-customer demands in the leg of si (or s j) to supply point

s j+1 (or si) is checked. If the reassignment is feasible, it is executed, customer de-
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mands in the leg of si is then relocated between s j and s j+1 to create a new ‘unload

and load’ operation at supply point s j+1 (or si) on the work assignment Wv. Other-

wise, the leg assigned to si is just simply relocated between s j and s j+1. Figure 5.6

illustrates the relocation of a pickup leg assigned to si on Wu between s j and s j+1

on Wv. As there are two pickup-customer demands pi and p j in this leg, and the leg

assigned to s j+1 of Wv is a single delivery leg, we check whether we can reassign

pi and p j to supply point s j+1 so that vehicle v can do ‘unload and load’ at s j+1. If

s j+1 ∈Spi
∩Sp j

then the reassignment is applied, and the movement is executed as

shown in Figure 5.6b. Otherwise, see Figure 5.6c.

• if si ∈Wv:

– Case 1: if vehicle u only unloads at si: this is a relocate move of the pickup leg

ri assigned to si in vehicle u. Three cases of vehicle’s operation at supply point

si in vehicle v are considered:

∗ Case 1.1: if vehicle v only unloads at si: denote r j the pickup leg assigned

to si in Wv, then move si from work assignment Wu to Wv by concatenating

two pickup legs ri and r j. Appending ri to r j and r j to ri are both considered

(see Figure 5.7).

∗ Case 1.2: if vehicle v only loads at si: denote r j the single-delivery leg

assigned to si in Wv, then move si from work assignment Wu to Wv by

locating pickup leg ri right before single-delivery leg r j so that vehicle v

does ‘unload and load’ operation at si (see Figure 5.8).

∗ Case 1.3: if vehicle v both ‘unloads and loads’ at si: denote r j the pickup

leg and r′j the coordinate leg assigned to si in Wv, then move si from work

assignment Wu to Wv by concatenating two pickup legs ri and r j. Both

cases of appending ri to r j and r j to ri are also considered as in the case

1.1.

– Case 2: if vehicle u only loads at si: this is a relocate move of the single-

delivery leg ri assigned to si of vehicle u. Three cases of vehicle’s operation

at supply point si in vehicle v are considered as in the Case 1. Similarly, if
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vehicle v loads at si, i.e., there exists delivery leg r j assigned to si in vehicle v,

the concatenation of delivery leg ri and delivery leg r j is also examined in two

cases: one appending ri to r j and the other appending r j to ri.

– Case 3: if vehicle u both ‘unloads and loads’ at si: this is a relocate move of both

the pickup leg ri and the coordinate delivery leg r′i assigned to the same supply

point si in vehicle u. Three cases of vehicle’s operation at supply point si in

vehicle v are considered as in previous cases. All possibilities of concatenation

delivery (pickup) legs assigned to the same supply point si in both vehicle u and

v are also examined.

(a) Work assignments before Relocate

di
Wu dj

pi

pj

si

dk
Wv dl

si+1

sj sj+1

si-1

dm

dn

pk pl di
Wu dj

pi

pj

si

dk
Wv dl

si+1

s j s j+1

si-1

dm

dn

pk pl

(b) Work assignments after Relocate

Figure 5.5: Relocate a supply point: relocate both pickup leg and coordinate-delivery leg

assigned to a same supply point

(a) Work assignments before Relocate

(b) Work assignments after Relocate

Case: supply-point reassignment is applied

di
Wu dj

pi

pj

plpk

si

dk
Wv dl

si+1

sj sj+1

s i-1

di
Wu dj

pi

pj

plpk

dk
Wv dl

si+1

sj sj+1

si-1

dr

dr

(c) Work assignments after Relocate

Case: supply-point reassignment is not applied

di
Wu dj

pi

pj

plpk

s i

dk
Wv dl

si+1

sj sj+1

si-1

dr

Figure 5.6: Relocate a supply point: relocate a pickup leg
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(a) Work assignments before Relocate

(c) Work assignments after Relocate

Case: append (ri,s i) to (rj,si)

di
Wu dj

pi

pj
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pk

si

pm
Wv

si+1

si
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s i+1si
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(b) Work assignments after Relocate

Case: append (rj,si) to (ri,si)

di
Wu dj

pl

pk

pm
Wv pi pj

si

si+1si

pn

Figure 5.7: Relocate a supply point: concatenation of two pickup legs

(a) Work assignments before Relocate

Wu

pi

pj

dndmdk
Wv

si+1

sj sj+1

si-1

dl

djdi

si

si

Wu

pi

pj

dndmdk
Wv

s i+1

s j s j+1

si-1

dl

djdi

si

(b) Work assignments after Relocate

Figure 5.8: Relocate a supply point: creation of an ‘unload and load’ operation

Exchange supply point This neighborhood exchanges legs between work assignments.

Consider two work assignments Wu and Wv. For supply points si ∈Wu and s j ∈Wv:

• if si−1 < s j < si+1:

– if s j−1 < si < s j+1: simply swap si and s j together with customer demands

serviced by them (both pickup- and delivery-customer demands if any);

– if s j−1 = si < s j+1: first swap si and s j together with customer demands ser-

viced by them; next if there were pickup-customer demands assigned to si in

both vehicle u and vehicle v, then in vehicle v we concatenate pickup-customer

demands from both vehicles as described in the case 1.1; and also concatenate
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delivery-customer demands in both vehicles if applicable;

– if s j−1 < si <= s j+1: same as previous case.

• otherwise if si−1 = s j or if s j = si+1: as supply points si and s j play a symmetric role

in this exchange leg move, these two cases are considered the same as the previous

one.

The reassignment of pickup-customer demands to new supply points is considered the

same as those in the relocate supply point neighborhood whenever it could create ‘unload

and load’ operation. And only the feasible reassignments are accepted.

Moving legs or customer demands could change the traveling cost and the number of

vehicles, as well as the level of constraint violations of load, time windows of customer de-

mands, and time windows of supply points. As a result, the move value is defined as a sum

of five terms ∆ f = ∆c+F ∗∆m+∆q+∆wc+∆ws. The five components of the summation

are the difference in traveling cost, the fixed cost of using vehicles, and the difference in

violation of load, time windows at customer demands and supply points between the value

of the neighboring solution and the value of the current solution.

5.5.5 Neighborhood selection strategy

The algorithm explores one neighborhood at each iteration. The neighborhood to explore

is randomly selected among the five previously defined neighborhoods. As in Nguyen et al.

(2013), the probability for the selection of neighborhoods is controlled by a neighborhood-

selection parameter r. At the beginning of the search, both leg and routing neighborhoods

are given the same probability of being selected, which allows the TS algorithm to freely

explore the solution space. Given that the number of supply points is much smaller than

the number of customer demands in most MZT-PDTWS instances, the algorithm should

perform more customer than leg moves to ensure adequate optimization of routes. Con-

sequently, after the initial phase, the probability of selecting leg neighborhoods becomes

lower than the probability of selecting routing neighborhoods. We assign to a routing

neighborhood the probability r/(2+ 6r) of being selected, and to a leg neighborhood the

probability 1/(2+6r) of being selected. The equal initial probabilities are then obtained by
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setting r = 1. The Control procedure in our algorithm varies the value of r during execution

to monotonically reduce (increase) the probability of selecting leg (routing) neighborhoods

after each ITcNS iterations without improvement of the best solution. A linear scheme

rk+1 = rk +∆r is used, where ∆r is a user defined parameter, rk+1 and rk are values of r at

iteration k+1 and k, respectively.

5.5.6 Tabu lists and tabu duration

We keep a separate tabu list for each type of move. Elements of a solution generated by a

move are given a tabu status as follows:

• Leg moves:

– Relocation move: the position of supply point si just inserted into work assign-

ment Wv cannot be changed by another relocate supply point move while it is

tabu.

– Exchange move: supply points si and s j just swapped cannot be swapped again

while they are tabu.

• Customer moves:

– Relocation move: the position of customer demand i just inserted after customer

demand j, cannot be changed by the same type of move while it is tabu.

– Exchange move: customer demands i and j just swapped cannot be swapped

again while they are tabu.

– 2-opt move: a 2-opt move applied to customer demands i and j cannot be ap-

plied again to the same customer demands while tabu.

A tabu status is assigned to each tabu list element for θ iterations, where θ is randomly

selected from a uniform interval. Any move declared tabu cannot be performed unless it

yields a solution which improves the current best solution. Generally, the tabu status of

a move stays so for a number of iterations proportional to the number of possible moves.

Consequently, we use different intervals of the tabu list size for leg and routing moves.
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Since there are O(m′ ∗ |S |) possible leg moves, we set the interval of tabu list size for leg

moves to [m′*|S |/a1, m′*|S |/a2], where m′ is the number of vehicles used in the initial

solution, and a1 and a2 are user-defined parameters.

In MZT-PDTWS, each delivery-customer demand is serviced by a fixed supply point

which is known in advance. Therefore, the number of iterations during which a customer

demand moves within the delivery customer zone of a supply point s remains tabu is only

counted each time the algorithm deals with customer demands in that zone. The interval

of tabu list size for delivery-customer demand moves for each supply point s with |C D
s |

associated customers is therefore calculated as [a3log10(|C D
s |), a4log10(|C D

s |)], where a3

and a4 are user defined parameters. As pickup-customer demands are not fixed to any

supply points yet, the interval of tabu list size for pickup-customer demand moves is

[a5log10(|C P|), a6log10(|C P|)], where a5 and a6 are user defined parameters.

5.5.7 Diversification strategy

A diversification strategy, based on an elite set and a frequency-based memory, directs the

search to potentially unexplored promising regions when the search begins to stagnate. In a

nutshell, diversification aims to capitalize on the best attributes obtained so far by selecting

a new working solution from the elite set and perturbing it based on long-term trends.

In more details, we use the elite set as a diversified pool of high-quality solutions found

during the tabu search. The elite set starts empty and is limited in size. The quality and

diversity of the elite set is controlled by the insertion of new best solutions produced by the

tabu search and the elimination of the existing solutions in the elite set. The elimination

is based on the Hamming distance ∆(z1,z2) measuring not only the number of customer

demand positions that differ between solutions z1 and z2 as in the TMZT-VRPTW, but also

the differences between supply-point assignments of pickup-customer demands. More pre-

cisely, this distance is computed according to Equation (5.41), where T(cond) is a valua-

tion function that returns 1 if the condition cond is true, 0, otherwise; Nz[i] is the next place

(which is either a customer demand, the depot, or a supply point) visited by the vehicle

after servicing customer demand i in solution z; and Sz[i] is the supply point assigned to
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pickup-customer demand i in the solution z.

∆(z1,z2) = ∑
i∈C P∪C D

T(Nz1
[i] 6= Nz2

[i])+ ∑
i∈C P

T(Sz1
[i] 6= Sz2

[i]) (5.41)

The elimination of a solution from the elite set is considered each time a new best

solution zbest is inserted. There are two cases. If the elite set is not yet full, we delete only

when there exists a solution very similar to the new zbest , i.e., we delete the solution z with

the smallest ∆(z,zbest)≤ 0.05(|C D|+2|C P|+ |S |). When the elite set is full, zbest replaces

the solution z that is the most similar to it, i.e., the one with the smallest ∆(z,zbest).

The long-term frequency memory keeps a history of the arcs most frequently added to

the current solution as well as the supply-point assignments of pickup-customer demands

most frequently used. Let ti j be the number of times arc (i, j) has been added to the solution

during the search process. The frequency of arc (i, j) is then defined as ρi j = ti j/T , where

T is the total number of iterations executed so far. Similarly, let t ′ps be the number of

times pickup-customer demand p has been assigned to supply point s during the search.

The frequency of the supply-point assignment of customer demand p to s is defined as

χps = t ′ps/T .

Diversification then proceeds to perturb the search that starts from the solution taken

from the elite set by removing arcs with high frequency and inserting arcs with low fre-

quency and promoting never-seen supply-point assignments. Thus, the evaluation of neigh-

bor solutions is biased so as to penalize the arcs most frequently added to the current solu-

tion and the supply-point assignment most frequently used.

More precisely, the corresponding two penalties g1(z̄) and g2(z̄) are added to the eval-

uation of the fitness f (z̄) (Section 5.5.2) of a neighbor z̄ of the current solution z:

g1(z̄) = C̄( ∑
(i, j)∈Aa

ρi j + ∑
(i′, j′)∈Ar

(1−ρi′ j′)) (5.42)

g2(z̄) = C̄ ∑
p∈C P















∑
s∈Sp

Sz(p)=Sz̄(p)=s

χps + ∑
s∈Sp

Sz(p) 6=s

Sz̄(p)=s

χps + ∑
s∈Sp

Sz(p)=s

Sz̄(p) 6=s

(1−χps)















(5.43)
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where C̄ is the average cost of all arcs in the problem, and Aa and Ar are the sets of arcs

that are added to and removed from the solution z in the move to z̄, respectively.

In this way, we introduce into the solution new arcs and supply-point assignments

which helps to direct the search into unexplored regions. The diversification mechanism is

executed ITdiv iterations.

5.5.8 Post optimization

The best solution obtained through the tabu search is enhanced by applying a local-search

Supply-point-improvement procedure and a Leg-improvement procedure sequentially. The

purpose of implementing two procedures is to improve the routing and the supply-point

assignment.

The Supply-point-improvement proceeds by assigning a new supply point to each pickup-

customer demand, keeping those that actually improve the solution. Pickup-customer de-

mands are handled in random order. Then, for each pickup-customer demand p and each of

its unassigned supply point s ∈Sp (if any), p is removed from its current leg (i.e., current

assigned supply point) and the cheapest fitness insertion is performed to insert p into each

pickup leg assigned to s. The best feasible improvement one is executed (if any). One

then proceeds to the next unassigned supply point or, if all have been tried out, to the next

pickup-customer demand.

The Leg-improvement is then performed by applying a number of well-known local-

search route improvement techniques. Two are intra-route operators, the 2-opt of Lin

(1965) and the Or-opt of Or (1976). The others are inter-route operators, the λ -interchange

of Osman (1993), and the CROSS-exchange of Taillard et al. (1997). For the λ -interchange,

we only consider the cases where λ = 1 and λ = 2 corresponding to the (1,0), (1,1), (2,0),

(2,1), and (2,2)-interchange operators. A delivery-customer demand is re-allocated only to

legs with the same initial supply point. This procedure is therefore executed for each de-

livery customer zone separately. For pickup-customer demands which could change their

supply points, the procedure is executed for all pairs of pickup-customer demands satisfy-

ing the supply-point assignment.

The procedure starts by applying in random order the five λ -interchange and CROSS-
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exchange inter-route operators. Each neighborhood is searched on all possible pairs of

legs (in random order) and stopped on the first feasible improvement. The solution is

then modified and the process is repeated until no further improvement can be found. The

search is then continued by locally improving each leg of each vehicle in turn. The intra-

route 2-opt and Or-opt neighborhoods are sequentially and repeatedly applied until no more

improvement is found.

5.6 Experiments

Because our problem is new, no benchmark instances are available for it. We have first

created MZT-PDTWS test instances from known TMZT-VRPTW benchmark problems.

Next, we have studied the impact of a number of major parameters and search strategies

on the performance of the proposed algorithm in order to identify the best design. We then

have analyzed the impact of sharing the same fleet of vehicles and synchronization schemes

on solution quality. Finally, in order to evaluate the performance of the method, we made

comparisons with published results of the VRPB with and without time windows.

Our tabu search algorithm is implemented in C++. Experiments were run on a 2.8 GHz

Intel Xeon 4-core processor with 16GB of RAM.

5.6.1 Test data generation

We have generated new data sets for our problem based on the TMZT-VRPTW instances

proposed in Crainic et al. (2009) and two given parameters, the ratio BH = |∑p∈C P qp/∑i∈C P∪C D qi|
- the total demand of backhauls over the total demand of backhauls and linehauls, and the

value MSP = maxp∈C P

∥

∥Sp

∥

∥.

Based on the hypothesis that the volume of goods moving out of the city is relatively

lower than the volume of goods moving in, we have set the values of BH at {0.1, 0.3,

0.5}. For the sake of simplification, we have also used BH as the ratio of the number of

backhauls over the total number of backhauls and linehauls.

We have generated six sets of 15 instances each, for a total of 90 problem instances.

The six sets are called A1, A2, B1, B2, C1, and C2. Each set is further divided into

three groups of 5 instances, each group is defined by one of the three different values
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of BH = {0.1,0.3,0.5}. Table 5.3 summarizes the parameters of all the MZT-PDTWS

instances. The last column lists the names of the TMZT-VRPTW instances used to create

our new MZT-PDTWS benchmark.

Each MZT-PDTWS instance is constructed from a TMZT-VRPTW to which a set of

new pickup-customer demands has been added, while all delivery-customer demands, sup-

ply points, waiting stations and their attributes in the TMZT-VRPTW are kept unchanged.

The added pickup-customer demands are generated based on a value of BH. The attributes

of each pickup-customer demand p are generated as follows:

• The coordinates [Xp,Yp] are uniformly distributed in the same interval used to gen-

erate coordinates of the delivery-customer demands.

• The volume of demand qp is randomly generated in the same interval as for delivery-

customer demands, i.e., [5, 25], with respect to the value of BH.

• The service time δ (p) is set to 20 as in TMZT-VRPTW.

• The number of available supply points assigned to pickup-customer demand p is

selected randomly in the range [1, MSP]. Let x denote this number. Then, the list of

available supply points assigned to p is determined by randomly selecting x supply

points in the problem.

• Time window [ep, lp]: Assuming s1,s2, ...,sx are x supply points available to ser-

vice pickup-customer demand p in increasing order of opening times. To ensure

feasibility, the values of ep and lp are then chosen randomly in the interval [Ep -

300, Ep] and [Lp - 300, Lp], respectively, where Ep = t(s1)− δ (p)− ⌈cp,s1
⌉ and

Lp = t(sx)−δ (p)−⌈cp,sx
⌉.

All other attributes are kept the same as in the TMZT-VRPTW instances. The numbers

of supply points (waiting stations) for the six sets are 4(4), 8(4), 16(16), 32(16), 36(36),

and 72(36), respectively. Supply points, waiting stations, and customers are uniformly

distributed in a square, with the X and Y coordinates in the interval [0, 100], [0, 200],

and [0,300] for set of type A, B, and C, respectively. The opening times of supply points
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are generated randomly in the [1000, 15,400] range, while the limited allowable waiting

time at supply points η = 100. The vehicle-loading and vehicle-unloading times at supply

points are set to 30, for all supply points. The fixed cost and the capacity of each vehicle

are set to 500 and 100, respectively, for all instance sets.

Table 5.3: Summary of the benchmark test

Problem Instances Number of Number of BH Number of customers [X,Y] customer MSP Original instances

set name supply points waiting stations Linehauls Backhauls coordinates by Crainic et al. (2009)

A1

A1-1 ... A1-5

4 4

0.1

400

44

[0,100] 2 A1-1 ... A1-5A1-6 ... A1-10 0.3 171

A1-11 ... A1-15 0.5 400

A2

A2-1 ... A2-5

8 4

0.1

400

44

[0,100] 2 A2-1 ... A2-5A2-6 ... A2-10 0.3 171

A2-11 ... A2-15 0.5 400

B1

B1-1 ... B1-5

16 16

0.1

1600

177

[0,200] 3 B1-1 ... B1-5B1-6 ... B1-10 0.3 685

B1-11 ... B1-15 0.5 1600

B2

B2-1 ... B2-5

32 16

0.1

1600

177

[0,200] 3 B2-1 ... B2-5B2-6 ... B2-10 0.3 685

B2-11 ... B2-15 0.5 1600

C1

C1-1 ... C1-5

36 36

0.1

3600

400

[0,300] 4 C1-1 ... C1-5C1-6 ... C1-10 0.3 1542

C1-11 ... C1-15 0.5 3600

C2

C2-1 ... C2-5

72 36

0.1

3600

400

[0,300] 4 C2-1 ... C2-5C2-6 ... C2-10 0.3 1542

C2-11 ... C2-15 0.5 3600

5.6.2 Algorithm design and calibration

We have aimed for a general algorithmic structure avoiding instance-related parameter set-

tings. We have therefore defined settings as functions of problem size for the main param-

eters of the proposed algorithm, tabu tenure, neighborhood selection-control.
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5.6.2.1 Tabu tenure calibration

The intervals for the tabu list tenures for leg, delivery, and pickup routing moves were

defined in Section 5.5.6 as [m′*|S |/a1, m′*|S |/a2], [a3log10(|C D
s |), a4log10(|C D

s |)], and

[a5log10(|C P|), a6log10(|C P|)], respectively. Using a large interval for routing moves, [10,

20], we tested different values for a1 in the integer interval [7, 10] and for a2 in the integer

interval [4, 6]. We have observed that too large an interval is not productive as low values

cannot prevent cycling, while high ones overly restrict the search path. We have therefore

set a1 and a2 to 7 and 5, respectively.

A similar process has been used to explore different values of a3, a4, a5, a6 in the

integer interval [4, 6], [7, 9], [6, 8] and [10, 12], respectively, using delivery and pickup

routing tabu as defined above. We have used a larger value of tabu tenure for routing moves

on pickup-customer demands as they are not restricted to one customer zone as those on

delivery-customer demands. We found that the most appropriate values for a3, a4, a5 and

a6 are 6, 8, 7 and 10, respectively.

5.6.2.2 Calibration of the neighborhood selection probabilities

Adjustments to the neighborhood selection probabilities depend on two parameters: ITcNS,

the number of consecutive iterations without improvement of the best solution (this number

triggers the execution of the Control procedure that modifies probabilities), and ∆r, the

adjustment factor of the neighborhood-selection parameter r.

The value of ITcNS is defined as a function of the problem size. This value should be

large enough to give each customer and supply point in each leg the possibility to be moved.

Thus, ITcNS = e1 ∗ (m′ ∗ |S |+ n), where m′ is the number of vehicles used in the initial

solution, |S | and n are the numbers of supply points and customer demands, respectively,

and e1 is a user defined parameter. Similarly, ∆r, the amplitude of the modifications in

the probabilities, is set to be proportional to the ratio of the number of customer demands

with the number of supply points. Thus, ∆r = e2 log10(n/|S|), where e2 is a user defined

parameter.

Searching for a good combination of values for e1 and e2 concerns balancing between

exploration and exploitation. On one hand, the higher the value of ITcNS, the more chances
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customers and supply points are to be moved between routes, thus favoring exploration.

On the other hand, a too high ITcNS value may waste time in useless moves. We have

experimented with different values of e1 in the integer interval [1,5] and e2 in the integer

interval [1, 7]. Three runs were performed for each instance for one million iterations.

Computational results for each combination of values (e1,e2) over all instances are summed

up in Table 5.4, which displays the average gaps between the best solutions obtained by

each combination and the best combination.

Table 5.4: Performance comparison between (e1, e2) combinations

e1

e2

1 2 3 4 5 6 7

1 1.25% 1.04% 0.43% 0.34% 0.32% 0.28% 0.28%

2 1.14% 0.98% 0.21% 0.23% 0.26% 0.31% 0.31%

3 1.12% 0.73% 0.09% 0.06% 0% 0.08% 0.17%

4 0.97% 0.71% 0.14% 0.08% 0.04% 0.18% 0.21%

5 1.05% 0.68% 0.12% 0.07% 0.05% 0.17% 0.28%

Table 5.4 indicates that (3,5) is the most appropriate combination for (e1,e2), giving

best solutions on average. We have also observed that executing the algorithm with r

greater than 60 log10(n/|S|) yields an average improvement of the best solution of less

than 0.1%, while requiring about 41% more time. Based on these results, we used (e1, e2)

= (3, 5) and rmax = 60log10(n/|S|), the maximum value of r, in the remaining experiments.

5.6.2.3 Elite set calibration, diversification

We now turn to the parameters characterizing the diversification procedure and the elite set

utilization, and examine their impact on the performance of the algorithm. Four variants

of the algorithm were studied corresponding to the different ways to set an elite solution as

the new working solution and the inclusion, or not, of the diversification phase. The first
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two variants simply select an elite solution z at random and re-start the algorithm from it.

The Diversification mechanism described in Section 5.5.7 is applied in the last two variants

to diversify from the elite solution z.

The initialization of the r parameter following the selection of z is a component com-

mon to the four variants. We have studied two alternatives where r was set to either the full

or half the value at which z was found, respectively (i.e., r = rz or r = rz/2). The size of

the elite set is relevant for the Diversification mechanism only. Three values were tested,

1, 5, and 10.

Similar to previous experiments, we have used formulas dependent on the problem

dimensions for ITdiv and CcNS, which determine for how long exploration can proceed.

Thus, the number of diversification phases is set to ITdiv = m′ ∗ |S |+ n, where m′ is the

number of vehicles used in the initial solution, and |S | and n are the numbers of supply

points and customer demands, respectively.

We have also set the number of consecutive executions of the Control procedure without

improvement of the best solution to CcNS =min(3log10(n/|S|),(rmax−r)/∆r), which keeps

the value of CcNS sufficiently high during the course of the algorithm, even though Control

procedure is started with different values of r (remember that rmax = 60log10(n/|S|)). In-

tuitively, in the beginning, r is small and CcNS takes the value 3log10(n/|S|), while when r

becomes large enough, CcNS takes the value (rmax− r)/∆r.

Table 5.5 displays the performance comparison between the four variants with the three

different values for the elite set size. For each variant and size of the elite set, the table

shows the average gaps to the cost of the best solutions obtained by it from those obtained

without using the elite set and diversification, together with the corresponding average

computation time in minutes over 10 runs.

As expected, results indicate that guidance using elite solutions contributes significantly

to improve the performance of the algorithm. Without using the elite set, the algorithm

requires the lowest computation effort but produces worst solutions compared to all the

variants using the elite set. Comparing the two variants corresponding to the two values at

which r is reset, one observes that the solution quality is not very sensitive to this value,

but computing effort is increasing when the value of r is lower (r = rz/2).
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Table 5.5: Performance comparison between diversification settings

Elite set

Without diversification With diversification

size

1st variant 2nd variant 3rd variant 4th variant

r = rz r = rz/2 r = rz r = rz/2

GAP (%) Time GAP (%) Time GAP (%) Time GAP (%) Time

0 0 50 - - - - - -

1 -0.37 66 -0.36 92 -1.02 88 -1.05 103

5 -0.64 95 -0.69 117 -1.54 157 -1.48 194

10 -0.78 121 -0.74 139 -1.55 223 -1.50 260

One observes that the third and fourth variants are significantly better in terms of finding

high quality solutions. This indicates that the long-term memory and the diversification

mechanism added to the algorithm are important features for high performance. Moreover,

setting the size of the elite set to 5 achieves a better balance between solution quality and

computation time, compared to a larger size of 10. Indeed, doubling the size of the elite

set improves only slightly the solution quality, 0.01%, but requires 42% more time. We

therefore set the size of the elite set to 5 and reset r = rz.

5.6.3 Numerical results

Table 5.6 displays the results obtained by the proposed tabu search meta-heuristic over

10 runs for each group of instances. It gives the average results (Avg 10 column), the

best results (Best 10 column), the number of vehicles (#Vehicles column), the percentage

of times vehicles move directly to supply points without using waiting stations (DM(%)

column), and the percentage of times vehicles do both unload and load once they arrive at

supply points (PD(%) column). Average computation times in minutes are displayed in the

Time column.

Experiment results show that, in total, 4874 vehicles are used in the 90 problem in-

stances, servicing a total of 39790 legs. Hence, on average, each vehicle services 8 legs.

Table 5.6 shows that the percentage of times vehicles do both unload and load increases
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Table 5.6: Performance of TS on all instances

Problem set BH Avg 10 Best 10 #Vehicles DM (%) PD (%) Time(min)

0.1 19873.29 19758.67 21.8 10.45 21.89 20

A1 0.3 21007.60 20854.25 22 27.44 60.93 34

0.5 23455.87 23245.62 22.2 51.29 87.1 58

0.1 16884.05 16756.85 16.4 14.77 21.52 12

A2 0.3 18462.56 18295.76 16.4 31.75 56.75 19

0.5 21150.77 20981.06 17.2 45.28 88.05 33

0.1 66979.79 66763.80 46.8 19.33 15.01 66

B1 0.3 75587.05 75398.22 47.8 31.3 46.73 139

0.5 99155.77 99025.96 54.8 38.31 80.39 231

0.1 59828.68 59717.48 36.4 19.06 16.53 42

B2 0.3 72098.73 71945.56 40 23.64 46.76 97

0.5 94024.35 93838.52 46 32.63 78.41 198

0.1 153335.20 153106.40 90.4 17.65 13.84 172

C1 0.3 200072.40 199848.80 99.4 21.78 46.01 310

0.5 292032.84 291836.60 119.8 30.91 82.58 705

0.1 141018.12 140803.04 76.2 18.26 15.65 112

C2 0.3 195573.18 195206.00 94.4 24.59 41.92 213

0.5 278354.82 278058.20 106.8 26.45 77.77 348

Average 102716.39 102524.49 54.16 26.94 49.88 156.06
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proportionally to the percentage of pickup-customer demands (i.e., the value of BH). On

average, 49.88% of times the vehicles do both unload and load once they arrive at sup-

ply points. This factor of ‘unload and load’ operations at supply points not only reduces

the number of empty moves but also the traveling cost. Moreover, experiments show that

the traveling cost and the number of vehicles of initial solutions are 32.45% and 20.76%

greater than those of best solutions on average, respectively, illustrating the significant

solution-improvement effect of the proposed algorithm.

5.6.4 The benefits of combining linehauls and backhauls

The combining of linehaul- and backhaul-customer demands on each vehicle is expected

to reduce the total number of vehicles and total traveling cost with respect to the case when

linehauls and backhauls are serviced on separate vehicles. Table 5.7 compares the best

solutions of both alternatives for all instances over 10 runs. In this table, LH-BH refers to

the solutions with linehaul- and backhaul-customer demands on the same vehicles, while

LH+BH refers to the solutions with linehaul- and backhaul-customer demands on different

vehicles. The LH+BH solutions can be seen as the summation of solutions to the problem

in two cases, one dealing with only linehaul-customer demands and the other dealing with

only backhaul-customer demands. The average number of vehicles, traveling cost, and total

cost of LH-BH solutions on each set of problems are given in column #Vehicles, Traveling

cost, and Total cost, respectively. For the column ‘LH+BH’, each entry consists of three

numbers indicating the gaps between attributes of solutions obtained by LH+BH and those

obtained by LH-BH. The first number displays the gap to the average number of vehicles

obtained by the LH+BH strategy from the average number of vehicles obtained by the LH-

BH strategy, while the second and third numbers indicate the gaps of average traveling cost

and total cost, respectively.

As expected, results indicate that assigning linehauls and backhauls to separate fleets

of vehicles leads to an increase in both the average number of vehicles and traveling cost.

This increase becomes significant when more backhauls are serviced, i.e., higher value of

BH. In all cases, an increase in total cost is thus also observed, with an average gap of

27.63% and a maximal gap of 62.48%.

152



Table 5.7: Comparison of separate and combined linehaul and backhaul solutions in num-

ber of vehicles, traveling cost, and total cost

Problem set BH
LH-BH LH+BH

#Vehicles Traveling cost Total cost GAP (%)

0.1 21.8 8858.67 19758.67 12.84 9.08 11.16

A1 0.3 22 9854.25 20854.25 45.45 26.25 36.38

0.5 22.2 12145.62 23245.62 89.19 38.06 62.48

0.1 16.4 8556.85 16756.85 13.41 10.14 11.74

A2 0.3 16.4 10095.76 18295.76 35.37 21.91 27.94

0.5 17.2 12381.06 20981.06 69.77 34.57 49.00

0.1 46.8 43363.80 66763.80 8.55 11.52 10.48

B1 0.3 47.8 51498.22 75398.22 35.98 29.50 31.55

0.5 54.8 71625.96 99025.96 48.18 33.71 37.71

0.1 36.4 41517.48 59717.48 10.99 10.65 10.76

B2 0.3 40 51945.56 71945.56 38.00 28.73 31.31

0.5 46 70838.52 93838.52 57.39 29.76 36.53

0.1 90.4 107906.40 153106.40 0.22 14.68 10.41

C1 0.3 99.4 150148.80 199848.80 24.55 28.87 27.79

0.5 119.8 231936.60 291836.60 39.07 26.11 28.77

0.1 76.2 102703.04 140803.04 0.79 22.56 16.67

C2 0.3 94.4 148006.00 195206.00 10.59 31.48 26.43

0.5 106.8 224658.20 278058.20 35.39 29.00 30.23

Average 54.16 75446.71 102524.49 31.98 24.25 27.63
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5.6.5 Synchronization at supply points

Each supply point is defined as a combination of a satellite and an availability time period in

our problem. Thus the vehicles must arrive at supply points during these predefined periods

to unload and/or load freight. In this section, we analyze the impact of synchronization of

vehicles’ operations requirement at supply points on solution quality.

In all previous experiments, the requirement for availability of vehicle at each supply

point s is characterized by only one time window [es, ls] of s which is used for both unload

and load operations. In order to analyze the impact of available requirements without mod-

ifying time windows at customer demands, we introduce into the model two time windows

for unloading and loading respectively at each supply point, but keep the availability time

periods of supply points unchanged. More precisely, we use [eu
s , l

u
s ] and [el

s, l
l
s], specifying

the earliest and latest times at which the vehicle has to be available at s for unloading col-

lected demands and loading delivery demands, respectively, where lu
s +ϕ ′(s)≤ ll

s, eu
s = es

and ll
s = ls. Activities of a vehicle at s are then described as follows:

• Only unload at s: the vehicle arrives at s with pickup demands at time t within its

unload time window [eu
s , l

u
s ], i.e., the vehicle must not arrive at s sooner than eu

s and

no later than lu
s ; it takes ϕ ′(s) for unloading all demands, the vehicle thus leaves s

empty at time t +ϕ ′(s);

• Only load at s: the vehicle arrives at s empty at time t within its load time window

[el
s, l

l
s], i.e., the vehicle must not arrive at s sooner than el

s and no later than ll
s; it takes

ϕ(s) for loading delivery demands, with a total load not exceeding Q; the vehicle

then leaves s at time t +ϕ(s) to perform the delivery for serving a subset of delivery

customers in C D
s ;

• Unload and load at s: the vehicle arrives at s with pickup demands at time t within

its unload time window [eu
s , l

u
s ]; it takes ϕ ′(s) for unloading all demands; in case

t +ϕ ′(s) < el
s, the vehicle has to wait at supply point till el

s to start loading freight;

otherwise it starts to load freight at t + ϕ ′(s); it takes ϕ(s) for loading, then the

vehicle leaves s to deliver all loaded freight to a subset of customers in C D
s .
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The unload and load time windows at each supply point are defined by two parameters:

the length of each unload and load time window (denoted by lenu and lenl , respectively;

we set lenu = lenl in our experiment), and the difference between el
s and lu

s (see Figure

5.9). We performed three runs with values of these two parameters equal to (20, 60), (30,

40) and (40,20) (remember that the length of time window at each supply point equals to

100 in all instances).

lenu lenl

Dif

es ls

es ls
u llu

es ls
= es = ls

Figure 5.9: Illustration of two time windows at a supply point s

Table 5.8: Impact of synchronization at supply points on solution quality

One time window Two time windows

Len = 100, Dif = 0 Len = 20, Dif = 60 Len = 30, Dif = 40 Len = 40, Dif = 20

#Vehicles (%) 0 1.03 0.79 0.52

Traveling cost (%) 0 2.17 0.82 0.74

Total cost (%) 0 1.94 0.88 0.75

PD (%) 49.88 45.40 46.98 48.31

DM (%) 26.94 22.45 23.95 24.01

The experiment was run on all instances. Table 5.8 sums up the solution-quality varia-

tions for three cases of two time windows compared to the case of only one time window.

The table displays the solution-quality variations in terms of the number of vehicles, travel-

ing cost, and total cost. The percentage of times vehicles do both unload and load at supply

points (PD(%) row) and the percentage of times vehicles move directly to a supply point

without using waiting stations (DM(%) row) are also given.

Results indicate that solutions to the cases with two time windows are worse than those

with one time window in terms of both number of vehicles and traveling cost. Moreover,

longer waiting-time capabilities of supply points result in vehicles moving directly to sup-
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ply points more frequently and doing more ‘unload and load’ operations (maximum of

26.94% and 49.88% respectively, both from the case of only one time window).

5.6.6 Comparing with the published results for the VRPB

As mentioned previously, the proposed algorithm can be directly applied to solve the VRPB

which is a special case of the MZT-PDTWS. Hence, in this subsection, we compare our

algorithm with the existing algorithms in the literature for the VRPB, in both cases with

and without time windows.

5.6.6.1 Vehicle Routing problem with Backhauls and Time windows

In the Vehicle Routing problem with Backhauls and Time windows (VRPBTW), time win-

dows at customers and duration of the route are considered. We have run our tabu search us-

ing only our routing neighborhoods on the Gélinas et al. (1995) 15 VRPBTW 100-customer

instances. All parameters related to the supply points were discarded.

Different exact and meta-heuristic algorithms for the VRPBTW may be found in the

literature. Gélinas et al. (1995) proposed a branching strategy for branch-and-bound ap-

proaches based on column generation. This algorithm found optimal solutions to 6 test

problems. Potvin et al. (1996a) designed a genetic algorithm to identify an ordering of cus-

tomers that produces good routes. This ordering was then used by a greedy route construc-

tion heuristic to insert the customers one by one into the routes. Simple construction and

improvement algorithms (using λ -interchange and 2-opt*) were developed by Thangiah

et al. (1996). The ant system approach was used by Reimann et al. (2002) where only

global pheromone updating was applied. A two-phase heuristic was proposed by Zhong

and Cole (2005) in which customers were clustered in the first phase, then in the second

phase, three route improvement routines (2-opt, 1-move, 1-exchange) were applied within

a guided local search framework. Ropke and Pisinger (2006) developed a large neigh-

borhood search which applied several competing removal and insertion heuristics. The

selection of a heuristic was based on statistics gathered during the search.

Table 5.9 compares the performances obtained by our algorithm with the results of

these algorithms. The first column gives the name of the authors of the study. The next
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fifteen columns present the number of vehicles and total distance with respect to the 15

instances, respectively. These 15 instances are divided into five groups, i.e., R101, R102,

R103, R104, R105, with three different percentages of backhaul customers (%BH) in each

group. Finally, the rightmost column indicates the cumulative number of vehicles (CNV)

and cumulative total distance (CTD) over all 15 instances. Most algorithms in the literature

(except Gélinas et al. (1995)) actually aimed first to reduce the number of vehicles. We do

not, as our algorithm treats vehicles through supply point neighborhoods not considered in

these experiments, and we do not compete with the other meta-heuristics on this count. We

do compete with respect to the total distance, though, outperforming four out of the five

meta-heuristics (with an average gap of 1.08%, a maximal gap of 2.81% and a minimal

gap of -0.34%). This comparison, however, is not totally fair given that the other methods

optimize another objective by first minimizing the number of vehicles.

5.6.6.2 Vehicle Routing problem with Backhauls

The next round of experiments focused on the VRPB which is obtained by removing the

constraints of time windows at customers and the route duration from the VRPBTW. The

performance of the proposed tabu search is evaluated through comparison with results of

other tabu search algorithms on two sets of instances in the VRPB literature. The first set

of 62 instances was proposed in Goetschalckx and Jacobs-Blecha (1989). The instances

range in size between 25 and 150 customers with backhauls ranging between 20 and 50%.

The second set of 33 instances was proposed by Toth and Vigo (1997) where the number of

customers range between 21 and 100, and backhauls percentages are either 20, 34 or 50%.

In the VRPB literature, there are two different ways to compute the Euclidean distances be-

tween pairs of customers, namely real-valued and integer-valued cost matrix, respectively.

The former matrix was used for all three tabu search algorithms with which we compare

our method. Therefore, in this experiment, we only use real-valued cost matrix whose

entries are the Euclidean distances.

Table 5.10 sums up the comparison of average of the best solutions for two sets of

instances. The first column gives the name of the authors of the study. The average of

the best solutions obtained by each study is given in the columns Cost. For completion

157



T
ab

le
5
.9

:
P

er
fo

rm
an

ce
co

m
p
ar

is
o
n

w
it

h
al

g
o
ri

th
m

s
fo

r
th

e
V

R
P

B
T

W

A
u
th

o
rs

R
1
0
1

R
1
0
2

R
1
0
3

R
1
0
4

R
1
0
5

C
N

V
/C

T
D

%
B

H
%

B
H

%
B

H
%

B
H

%
B

H

1
0
%

3
0
%

5
0
%

1
0
%

3
0
%

5
0
%

1
0
%

3
0
%

5
0
%

1
0
%

3
0
%

5
0
%

1
0
%

3
0
%

5
0
%

G
él

in
as

et
al

.
(1

9
9
5
)

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

1
7
6
7
.9

1
8
7
7
.6

1
8
9
5
.1

1
6
0
0
.5

1
6
3
9
.2

1
7
2
1
.3

-
-

-
-

-
-

-
-

-
-

T
h
an

g
ia

h
et

al
.

(1
9
9
6
)

2
4

2
4

2
5

2
0

2
1

2
1

1
5

1
6

1
7

1
3

1
2

1
3

1
7

1
8

1
8

2
7
4

1
8
4
2
.3

1
9
2
8
.6

1
9
3
7
.6

1
6
5
4
.1

1
7
6
4
.3

1
7
4
5
.7

1
3
7
1
.6

1
4
7
7
.6

1
5
4
3
.2

1
2
2
0
.3

1
3
0
2
.5

1
3
4
6
.6

1
5
5
3
.4

1
7
0
6
.7

1
6
5
7
.4

2
4
0
5
1
.9

P
o
tv

in
et

al
.
(1

9
9
6
a)

2
3

2
3

2
4

2
0

2
0

2
1

1
6

1
5

1
7

1
2

1
2

1
3

1
7

1
6

1
8

2
6
7

1
8
1
5

1
8
9
6
.6

1
9
0
5
.9

1
6
2
2
.9

1
6
8
8
.1

1
7
3
5
.7

1
3
4
3
.7

1
3
8
1
.6

1
4
5
6
.6

1
1
1
7
.7

1
1
6
9
.1

1
2
0
3
.7

1
6
2
1

1
6
5
2
.8

1
7
0
6
.7

2
3
3
1
7
.1

R
ei

m
an

n
et

al
.
(2

0
0
2
)

2
2

2
3

2
4

1
9

2
2

2
2

1
6

1
6

1
7

1
1

1
2

1
2

1
6

1
6

1
7

2
6
5

1
8
3
1
.6

8
1
9
9
9
.1

6
1
9
4
5
.2

9
1
6
7
7
.6

2
1
7
5
4
.4

3
1
7
8
2
.2

1
1
3
4
8
.4

1
1
3
9
5
.8

8
1
4
6
7
.6

6
1
2
0
5
.7

8
1
1
2
8
.3

1
2
0
8
.4

6
1
5
4
4
.8

1
1
5
9
2
.2

3
1
6
3
3
.0

1
2
3
5
1
4
.9

3

Z
h
o
n
g

an
d

C
o
le

(2
0
0
5
)

2
4

2
4

2
5

-
-

-
-

-
-

-
-

-
1
7

1
7

1
9

-

1
8
4
8
.0

4
2
0
3
4
.6

1
2
0
5
7
.0

5
-

-
-

-
-

-
-

-
-

1
5
9
0
.5

4
1
6
6
7
.9

2
1
6
9
9
.8

8
-

R
ei

m
an

n
an

d
U

lr
ic

h
(2

0
0
6
)

2
2

2
3

2
4

1
9

2
2

2
2

1
5

1
5

1
7

1
1

1
1

1
1

1
6

1
6

1
7

2
6
1

1
8
5
3
.4

5
1
9
8
5
.2

3
1
9
6
4
.0

4
1
6
6
3
.1

6
1
7
5
9
.0

2
1
7
8
2
.9

1
1
4
5
4
.2

5
1
4
0
7
.2

9
1
4
7
8
.4

8
1
1
5
3
.0

6
1
2
2
8
.6

2
1
3
0
6
.9

7
1
5
7
0
.1

1
1
6
4
6
.1

1
1
6
8
9
.7

4
2
3
9
4
2
.4

4

R
o
p
k
e

an
d

P
is

in
g
er

(2
0
0
6
)

2
2

2
3

2
4

1
9

2
2

2
2

1
5

1
5

1
7

1
1

1
1

1
1

1
5

1
6

1
6

2
5
9

1
8
1
8
.8

6
1
9
5
9
.5

6
1
9
3
9
.1

1
6
5
3
.1

9
1
7
5
0
.7

1
7
7
5
.7

6
1
3
8
7
.5

7
1
3
9
0
.3

3
1
4
5
6
.5

8
1
0
8
4
.1

7
1
1
5
4
.8

4
1
1
9
1
.3

8
1
5
6
1
.2

8
1
5
8
3
.3

1
7
1
0
.1

9
2
3
4
1
6
.8

1

T
S

2
2

2
3

2
4

1
9

2
2

2
2

1
5

1
5

1
7

1
1

1
1

1
2

1
6

1
6

1
7

2
6
3

1
8
2
3
.6

4
1
8
9
7
.7

9
1
9
1
7
.8

7
1
6
6
5
.9

3
1
7
5
8
.3

1
1
7
8
1
.4

6
1
4
0
2
.6

3
1
3
8
2
.0

8
1
4
7
1
.4

3
1
1
0
2
.2

1
1
1
8
1
.1

7
1
2
0
4
.5

9
1
5
7
1
.4

2
1
5
8
6
.6

6
1
6
4
8
.3

2
2
3
3
9
5
.5

1

158



sake, we also included the GAP for these studies relative to the average of best known

solutions in the GAP to BKS (%) columns. One observes that the proposed TS performs

well, outperforming all three other tabu search algorithms on Goetschalckx and Jacobs-

Blecha (1989) instances (with an average gap of 0.05% and a maximal gap of 0.1%), and

only worse than Brandão (2006) on Toth and Vigo (1997) instances (with a gap of -0.47%).

Table 5.10: Performance comparison with tabu search algorithms for the VRPB

Authors Goetschalckx and Jacobs-Blecha (1989) Toth and Vigo (1997)

Cost GAP to BKS (%) Cost GAP to BKS (%)

Osman and Wassan (2002) 291261.7 0.25 708.42 1.09

Brandão (2006) 291160.5 0.21 702.15 0.19

Wassan (2007) 290981.8 0.15 706.48 0.81

TS 290964.7 0.14 705.49 0.67

5.7 Conclusion

We studied the MZT-PDTWS, a new vehicle routing problem variant in which each vehicle

performs multiple sequences of delivery and pickup through supply points within time

synchronization restrictions. We proposed the first model formulation and a tabu search

meta-heuristic integrating multiple neighborhoods for the problem. The computational

study was performed on the first benchmark instances with up to 72 supply points and

7200 customer demands. Our experiments reveal that longer waiting-time capabilities of

supply points tend to yield better results as it reduces the utilization of waiting stations,

but also the number of empty trips. The MZT-PDTWS is a new problem and no previous

results are available. We thus evaluated the performance of the proposed method through

comparisons with published results on the VRPB as the MZT-PDTWS generalizes this

problem. The experiments indicated that the proposed method is competitive with other

meta-heuristics for both the cases with and without time windows.
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Chapter 6

CONCLUSIONS

The Vehicle Routing Problem is a problem related to the distribution of goods, and to

logistics in general. Solving the VRP efficiently is key to efficient transport planning and

management. Today’s exact algorithms can solve instances having a small number of cus-

tomers in terms of real-life applications. Hence, solving VRP optimally in reasonable time

is still a challenge, particularly for large-scale instances and real-life, rich VRP variants.

Meta-heuristic approaches do not guarantee optimality, but they significantly reduce the

computational time needed to find solutions, which are often the best known solutions.

The main objective of this dissertation was to introduce models and efficient algorithms

for three rich vehicle routing problems arising in many real-life applications. They are the

PVRPTW, the TMZT-VRPTW and the MZT-PDTWS. The first two problems are studied in

very few papers, while the last problem is considered for the first time in the literature. Due

to the high computational complexity and the need to solve realistically-sized instances, our

focus has been on developing meta-heuristics.

Since the problems we have studied in this dissertation belong to the VRP domain,

we have first summarized the most important concepts, solution methods and the progress

made within this area in Chapter 2.

In Chapter 3, we have tackled the Periodic VRP with Time Windows (PVRPTW) which

is a generalization of VRPTW as it extends the planning horizon to several days. We have

proposed a new population-based hybrid meta-heuristic to address this problem in which

two neighborhood based meta-heuristics are used to educate the offspring generated by

new crossover operators to enhance the solution quality. This hybridization provides the

means to combine the exploration capabilities of population-based methods and the sys-

tematic, sometimes aggressive search capabilities of neighborhood based methods, as well

as their proficiency to explore the infeasible part of the search space to repair infeasible so-

lutions. Numerical experiments show that the proposed methodology is highly competitive,



providing new best solutions in some large instances.

Chapter 4 addressed the Time-dependent Multi-zone Multi-trip VRP with Time Win-

dows (TMZT-VRPTW). A decomposition approach has previously been proposed to solve

the problem (Crainic et al., 2009, 2012b) in which two key sets of decisions in the prob-

lem were addressed separately. These two sets of decisions, 1- how to service customers

associated to given supply points, and 2- how to combine the resulting trips into vehicle-

specific multi-trip routes abiding by the synchronization requirements at supply points, are

not independent, however. We thus have proposed a tabu search meta-heuristic, integrat-

ing multiple neighborhoods into two classes to address these two sets of decisions of the

problem simultaneously. The first set applied to each vehicle trip exploits good routing,

while the second works on the construction of the multiple-trip vehicle routes, perturbing

significantly the solution, and thus favor exploration of the search space. The selection of

neighborhoods is dynamically adjusted along the search, providing the proposed algorithm

with desired exploration and exploitation capabilities. Further, a diversification strategy

guided by an elite set of solutions and a frequency-based memory is also used to provide a

certain level of diversity to the search, but also helps incorporate good attributes into newly

created solutions. Extensive computational experiments illustrate clearly the good perfor-

mance of the proposed methodology compared to the literature. It yields higher quality

solutions in terms of both required number of vehicles and traveling cost.

Chapter 5 studied the Multi-zone Multi trip Pickup and Delivery Problem with Time

Windows and Synchronization (MZT-PDTWS). The MZT-PDTWS generalizes the TMZT-

VRPTW as it accounts for both inbound and outbound traffic. Hence, the same fleet of ve-

hicles and given set of supply points are shared for both types of traffic. These shared ser-

vices increase the synchronization challenges at supply points, the complexity to manage

the traffic of vehicles into and out of supply points in particular, as well as to route vehicles

doing both pickup and delivery operations through supply points. This problem has not

been investigated in the literature. We have introduced a model for the MZT-PDTWS, and

generalized the tabu search proposed for the TMZT-VRPTW in order to tackle this new

problem efficiently. Extensive computational experiments have been conducted to qualify

the impact of a number of major problem characteristics, parameters and search strategies
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on the quality of the solutions and to underline the good performance of the proposed al-

gorithm. The MZT-PDTWS also generalizes the VRP with Backhauls. As no previous

results were available in the literature for the MZT-PDTWS, we have also evaluated the

performance of the method through comparisons with currently published results on the

VRPB for both cases with and without time windows.

In summary, we proposed efficient meta-heuristics for three rich vehicle routing prob-

lems. In the first study, we introduced the use of neighborhood-based meta-heuristics

within a generational genetic algorithm. This hybridization provided the means to repair

and enhance individuals produced during the evolution process, as well as to promote diver-

sity of the genetic algorithm population. In the next studies, we studied more complicated

VRP variants. A decomposition approach has previously been proposed to solve the prob-

lems in which sets of decisions in the problems were addressed separately. We therefore

proposed a new neighborhood-based meta-heuristic that addresses these sets of decisions

simultaneously, in a comprehensive and efficient way. Extensive numerical experiments

and comparisons with the literature showed that our proposed methods yield high quality

solutions, providing many new best solutions or matching many of the existing ones.

Through the three problems studied in this dissertation, we have found that real-world

rich VRP variants pose challenging research issues arising from the multiple intertwined

optimization subproblems. Some studies address these subproblems sequentially and sep-

arately, while others take a more holistic perspective in which subproblems cooperate and

are intertwined. The latter yields better results, but also asks for more complex designs

of methodology, intelligent cooperation between decisions that have to be taken during

the solution process. The utilization of multiple neighborhoods targeting different levels of

decisions is a good approach to handle such problems. However, the definition of neighbor-

hood structures, neighborhood combinations, transitions and cooperation between neigh-

borhoods are challenges when designing a meta-heuristic algorithm, and often dependent

on the specifics of problem at hand. We think that future research should focus on more

complex neighborhood structures which help to explore new neighbors, thus hopefully, im-

proving the solution quality. In order to speed-up computation and enhance solutions, par-

allelization and cooperation schemes between different neighborhoods embedded in tabu
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search threads are also one research direction that we want to follow. Furthermore, one

can run tabu searches and genetic methods in a cooperative search framework to combine

the strength of both population-based and neighborhood-based methods to explore the so-

lution space. The tabu searches aim to explore the search space, while the genetic methods

contribute toward increasing the diversity of solutions exchanged among the cooperating

methods.

Finally, the two last problems studied in this dissertation being new VRP variants, sev-

eral research issues still need to be addressed, in particular the one concerning the synchro-

nization of vehicles operating at different levels of a supply chain. For example, in the case

of two-tier City Logistics systems, both urban vehicles in the first tier and city freighters

in the second tier are integrated into a single system. The vehicles in each tier may bring

different types of freight traffic, and do multiple trips to exchange freight through shared

facilities between the two tiers. Routing customers and scheduling movements of vehi-

cles in this setting impose a more general and interesting VRP variant which has not been

investigated in the literature.
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Annex A

SUPPLEMENTARY MATERIAL FOR THE PVRPTW

A.1 The UTS and RVNS Meta-heuristics

This Annex briefly presents the two meta-heuristics that have been implemented for the

offspring education procedure.

A.1.1 Unified Tabu Search

UTS (Cordeau et al., 2004) uses its own penalty coefficients, α1, α2, and α3, for violations

of vehicle capacity, route duration and customer service time window constraints, respec-

tively. The cost function of a solution s then becomes f (s) = c(s) + α1q(s) + α2d(s) +

α3w(s).

An attribute set B(s) = {(i,k, l) : customer i is visited by vehicle k on day l} is associ-

ated to each solution s. Let brl be a binary constant equal to 1 if and only if day l belongs to

pattern r, for each pattern r ∈ R and every day l ∈T of solution s. The neighborhood N(s)

of a solution s is then defined by two transformations to (1) relocate a customer within a

day (routing modification), and (2) replace the pattern of a customer (pattern modification):

1. Remove customer i from route k on day l and insert it into another route k′.

2. Replace pattern r currently assigned to customer i with another pattern r′ ∈ Ri; Then,

for l = 1, . . . , t do

• If brl = 1 and br′l = 0, remove customer i from its route of day l;

• If brl = 0 and br′l = 1, insert customer i into the route of day l minimizing the

increase in fitness f (s).

UTS starts from a given offspring s and chooses, at each iteration, the best non-tabu

solution in N(s). After each iteration, the values of the parameters α1, α2, and α3 are



Algorithm 5 UTS(s)

1: α1 = 1, α2 = 1, α3 = 1

2: s2← s, f (s2) = f (s)

3: if s is feasible then

4: s1← s

5: c(s1) = c(s)

6: else

7: c(s1) = ∞

8: end if

9: f lag = 0

10: for it = 1, ...,UTSit do

11: Choose a solution s∈N(s) that minimizes f (s) + p(s) and is not tabu or satisfies the

aspiration criteria.

12: if solution s is feasible and c(s)< c(s1) then

13: s1← s

14: c(s1) = c(s)

15: f lag = 1

16: else if f (s)< f (s2) then

17: s2← s

18: f (s2) = f (s)

19: end if

20: Compute q(s), d(s) and w(s) and update α1, and α2, α3 accordingly

21: s← s

22: end for

23: if f lag then

24: return s1

25: else

26: return s2

27: end if
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modified by a factor 1+ δ ; multiplied by the factor if the solution is feasible with respect

to the respective constraint, divided, otherwise. We set δ = 0.5, the best value reported by

the authors (Cordeau et al., 2004).

To diversify the search, any solution s ∈ N(s) such that f (s) ≥ f (s) is penal-

ized by a factor p(s) proportional to the addition frequency of its attributes, p(s) =

λc(s)
√

nm∑(i,k,l)∈B(s)ρikl , where ρikl is the number of times attribute (i,k, l) has been

added to the solution during the search process and λ = 0.015.

The tabu length was adjusted to a smaller number of iterations performed and set to θ

= 1.5log10(n). The post-optimization heuristic is not implemented in the education proce-

dure. The UTS procedure returns the best feasible solution s1 if it exists, the best infeasible

solution s2, otherwise. The procedure is summarized in Algorithm 5.

A.1.2 Random Variable Neighborhood Search (RVNS)

RVNS (Pirkwieser and Raidl, 2008) uses three different neighborhood structures. For each

of these structures, the authors defined six moves, hence resulting in a total of 18 neigh-

borhoods: (1) randomly changing patterns of customers, (2) moving a random segment

of customers of a route to another route on the same day, and (3) exchanging two random

segments of customers between two routes on the same day. In the latter two cases, the seg-

ments are reversed with a small probability, prev = 0.1. The neighborhoods are summarized

in Table A.1.

Table A.1: Neighborhood structures of RVNS

Neighborhood structure Value of δ Neighborhood

Change pattern up to δ = [1,6] times N1,...,N6

Move segment of maximal length δ = [1,5] N7, ...,N11

bounded by the route size N12

Exchange segment of maximal length δ = [1,5] N13, ...,N17

bounded by corresponding route size N18

RVNS starts with a random neighborhood ordering and generates a new ordering each
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time a full VNS iteration is completed. For intensification, RVNS applies 2-opt in a best-

improvement fashion. Additionally, each new incumbent solution is subject to a 2-opt*.

RVNS accepts solutions which degrade the objective value under the Metropolis crite-

rion, like in simulated annealing. Thus, an inferior solution s′ is accepted with probability

e−( f (s′)− f (s))/T , depending on the cost difference to the current solution s relative to the

temperature T . A linear cooling scheme is applied, T being decreased every τ iterations

by an amount of (T ∗ τ)/τmax, where τmax denoted the maximal VNS iterations. The value

of τ was adjusted to the smaller number of iterations performed and set to τ=10, the ini-

tial temperature value T0 = 10, and τmax = [100, 800]. The detailed description of the

implementation is given in Algorithms 6 and 7.

Algorithm 6 Shaking(solution s, int k, double prev)

1: if (1≤ k ≤ 6) then

2: s′← ShakingPattern(s, k) (i.e., neighborhood Nk)

3: else if (7 ≤ k ≤ 12) then

4: s′← ShakingMoveSegment(s, k-6, prev) (neighborhood Nk−6)

5: else if (13 ≤ k ≤ 18) then

6: s′← ShakingExchangeSegments(s, k-12, prev) (neighborhood Nk−12)

7: end if

8: return s′

A.2 Detailed Results for the PVRPTW

Table A.2 summarizes the HGGA results for the Pirkwieser and Raidl (2009a) instances

with and without travel cost truncation. The algorithm was run 10 times per instance. Best

results, average results, standard deviations, and computation time are reported. Vidal et al.

(2013a) are the only one to provide the best solutions for their algorithm (VCGP13), and

for the truncation case only. We therefore also include these best results of the truncation

case in the column VCGP13 for comparison purposes. The “GAP Best-to-Best” column

displays the gaps of the best solutions obtained by HGGA with respect to those of VCGP13.
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Algorithm 7 RVNS(solution s, int maxiter)

1: prev = 0.1; T = 10 {initial temperature}
2: s∗← s

3: numNeighbor = 18 {number of neighborhoods}
4: curIter = 1 {current iteration}
5: repeat

6: RandPermutation(ar, numNeighbor) {random permutation of neighborhood sequence}
7: curNeighbor = 1 {index of current neighborhood}
8: while (curNeighbor ≤ numNeighbor and curIter ≤ maxiter) do

9: k = ar[curNeighbor]

10: s′ = Shaking(s, k, prev)

11: 2-opt(s′)

12: if (s′ better than s) then

13: 2-opt*(s′)

14: s← s′

15: if (s better than s∗) then

16: s∗← s

17: end if

18: else

19: {
20: probaccept = e−( f (s′)− f (s))/T

21: if (accept s′ with probability probaccept) {accept worse solution} then

22: s← s′

23: else

24: curNeighbor+= 1

25: end if

26: }
27: end if

28: curIter+= 1

29: Update temperature T if needed

30: end while

31: until (curIter >maxiter) {exceed maximum number of iterations}
32: return s∗
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Table A.2: HGGA results on Pirkwieser and Raidl (2009a) instances with and without

travel cost truncation

Instances Without truncation With truncation

HGGA HGGA VCGP13 GAP (%)

No Best Avg Std Best Avg Std Time (min) Best Best-to-Best

p4r101 4162.90 4169.59 7.44 4082.6 4084.59 2.63 25.73 4082.0 0.015

p4r102 3738.16 3742.76 4.29 3724.5 3728.98 3.52 32.81 3724.3 0.005

p4r103 3166.02 3172 9.1 3153.1 3158.86 5.8 31.92 3153.1 0

p4r104 2578.06 2585.99 8.75 2566.3 2576.77 7.82 33.99 2566.0 0.012

p4r105 3659.17 3667.67 8.82 3638.8 3647.34 10.37 32.83 3638.9 -0.003

p4c101 2913.81 2913.81 0 2907.4 2907.4 0 34.26 2907.4 0

p4c102 2888.31 2894.39 7.7 2882.9 2887.48 4.77 35.67 2882.9 0

p4c103 2735.20 2752.55 12.68 2734.5 2745 7.34 41.02 2734.5 0

p4c104 2425.30 2437.63 15.15 2419.0 2425.96 11.08 43.33 2419.0 0

p4c105 2888.30 2902.44 10.94 2884.1 2886.62 9.17 34.67 2884.1 0

p4rc101 3975.53 3980.43 9.89 3955.3 3960.53 11.58 30.43 3956.4 -0.028

p4rc102 3765.02 3777.95 11.5 3755.7 3755.72 0.04 31.06 3755.7 0

p4rc103 3469.81 3482.64 14.63 3450.1 3461.38 16.07 32.46 3449.9 0.006

p4rc104 2999.94 3013.01 11.52 2991.6 2995.49 5.02 35.11 2991.5 0.003

p4rc105 3952.03 3966.77 15.49 3933.1 3936.27 2.92 32.94 3932.6 0.013

Average 3287.84 3297.31 9.86 3271.93 3277.23 6.54 33.88 3271.89 0.002

p6r101 5393.83 5398.83 6.6 5376.4 5380.55 6.65 38.76 5376.1 0.006

p6r102 5298.10 5303.3 10.37 5201.3 5211.37 7.3 37.51 5201.6 -0.006

p6r103 3955.42 3975.68 14.42 3940.6 3956.29 13.71 44.75 3940.5 0.003

p6r104 3341.60 3375.2 14.72 3335.9 3344.35 10.5 47.57 3335.8 0.003

p6r105 4288.44 4300.96 10.64 4273.0 4285.02 13.45 38.73 4272.9 0.002

p6c101 3984.30 3998.94 9.97 3981.2 3991.09 9.12 37.93 3981.2 0

p6c102 3843.20 3856.08 8.76 3841.7 3841.7 0 44.31 3841.7 0

p6c103 3523.30 3542.28 18.48 3523.3 3529.66 8.14 52.27 3523.6 -0.009

p6c104 3210.58 3230.69 13.43 3217.4 3225.104 8.92 52.81 3206.3 0.346

p6c105 4052.10 4072.3 11.9 4052.1 4052.1 0 42.82 4052.1 0

p6rc101 5792.86 5806.72 9.57 5780.6 5787.24 7.75 37.97 5781.5 -0.016

p6rc102 5353.53 5380.13 18.28 5333.2 5342.72 11.01 41.93 5333.3 -0.002

p6rc103 4289.15 4310.79 20.2 4273.3 4288.97 13.9 41.98 4273.1 0.005

p6rc104 4076.84 4092.66 18.11 4062.1 4078.36 15.29 48.53 4062.0 0.002

p6rc105 5241.73 5264.98 24.12 5227.2 5241.86 11.71 40.11 5227.1 0.002

Average 4376.33 4393.97 13.97 4361.29 4370.43 9.16 43.19 4360.59 0.022

p8r101 6492.00 6505.19 11.8 6469.6 6483.93 9.83 44.09 6471.3 -0.026

p8r102 6158.62 6163.74 7.88 6098.1 6108 11.55 45.23 6097.9 0.003

p8r103 4717.23 4760.88 18.7 4687.1 4696.72 13.91 51.02 4687.0 0.002

p8r104 4402.72 4430.98 15.54 4353.1 4366.52 14.87 52.31 4355.8 -0.062

p8r105 5491.93 5505.27 19.38 5476.9 5484.21 14.65 45.31 5476.5 0.007

p8c101 4687.93 4713.2 16.1 4679.1 4693.37 10.42 49.6 4679.1 0

p8c102 4942.33 4966.82 15 4933.3 4953.35 16.28 51.22 4933.3 0

p8c103 4673.79 4689.97 16.94 4664.3 4676.4 15.47 61.28 4664.0 0.006

p8c104 4606.24 4626.79 20.81 4591.7 4603.21 14.57 46.33 4591.6 0.002

p8c105 5146.48 5169.32 21.27 5134.2 5134.2 0 47.62 5134.2 0

p8rc101 6883.01 6898.79 19.19 6846.9 6858.81 12.82 41.24 6847.2 -0.004

p8rc102 5778.46 5799.03 20.91 5763.4 5769.08 7.53 48.09 5763.3 0.002

p8rc103 5447.04 5464.45 20.28 5425.1 5433.06 8.19 47.53 5424.9 0.004

p8rc104 4942.07 4960.9 16.39 4929.6 4941.31 7.77 53 4929.5 0.002

p8rc105 6224.69 6255.93 29.08 6203.6 6216.2 12.31 47.43 6203.4 0.003

Average 5372.97 5394.08 17.95 5350.4 5361.22 11.34 48.75 5350.6 -0.004
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Annex B

SUPPLEMENTARY MATERIAL

FOR THE TMZT-VRPTW

B.1 Neighborhood Selection Strategies

This Annex briefly presents the neighborhood selection strategies that have been studied

to determine how neighborhoods should be combined in our algorithm and how they are

intertwined. First, to verify the necessity of both types of neighborhood, i.e., vehicle-to-

supply-point assignment and routing neighborhoods, we developed a variant (identified as

O) using routing neighborhoods only. In this variant, the three routing neighborhoods are

evaluated at each iteration, and the best move is selected among all the moves in all three

neighborhoods. Second, to select the neighborhood selection strategy to be included into

the proposed tabu search (Section 4.5.5), we tried two variants of a greedy strategy (called

L and M), three variants of fixing the probability of selecting leg neighborhoods (called N1,

N2, and N3), and three variants of a two-level strategy. The performance of all variants is

compared to that of the Control procedure embedded into the proposed tabu search, where

the selection of the neighborhood is driven dynamically.

Greedy strategy L. All five neighborhoods are evaluated at each iteration. The best

move is selected among all the moves in all neighborhoods.

Greedy strategy M. One type of neighborhood, leg or routing, is first selected at each

iteration based on the value of r. Then, the neighborhoods of the selected type are evalu-

ated. The best move is finally selected.

Fixing the probability of selecting neighborhoods. A single neighborhood is evalu-

ated at each iteration selected randomly by a fixed probability. The Strategy N1 allocates

the same probability to all neighborhood (r = 1). Strategy N2 sets the probability of se-

lecting routing neighborhoods greater than the probability of selecting leg neighborhoods

(r > 1) to give more time to optimizing routes following a leg move. Strategy N3 allows

the search to freely explore the solution space at the beginning by allowing all neighbor-



hoods to share the same probability of selection, while restricting the selection of leg moves

(and encouraging the optimization of routes following such a move) afterwards. It thus ap-

plies Strategy N1 for the first T1 iterations, and Strategy N2 for the last T2 iterations.

The same number of iterations, 1 million, was performed for all strategies on each

instance. In addition, we ran three times the M, N2, N3 strategies for three values of

r = {15, 30, 45}. Table B.1 displays the average best- solution results for all strategies

and problem types. The last column (GAP to Control (%)) shows the average gap of each

strategy relative to the results obtained by the Control neighborhood selection strategy used

in the implementation studied in the main sections of the paper.

Table B.1: Performance comparison between neighborhood selection strategies

Strategy Problem set GAP to

A1 A2 B1 B2 C1 C2 Control (%)

O 18602.03 15015.79 56502.56 48764.74 122616.80 108965.20 5.91

L 18593.07 14958.53 56089.99 48058.11 117755.10 107118.90 4.43

r = 15 18246.81 14744.71 54524.40 46218.93 116762.10 100245.40 1.40

M r = 30 18253.74 14740.81 54408.71 46526.30 116008.10 100474.13 1.41

r = 45 18268.07 14729.11 54100.25 46295.93 117025.80 100810.93 1.43

N1 18255.39 14660.38 54109.26 46122.47 116200.50 100056.02 1.04

r = 15 18198.15 14664.80 53927.76 46536.96 115836.10 99894.28 0.94

N2 r = 30 18198.24 14636.68 54029.69 46535.03 115298.60 99982.87 0.94

r = 45 18200.22 14663.08 53865.71 46330.53 115812.40 99978.64 0.92

r = 15 18143.10 14657.21 54364.18 46320.67 116379.40 99931.71 1.09

N3 r = 30 18158.00 14646.96 53869.52 46282.02 115768.70 99957.79 0.83

r = 45 18142.19 14646.21 53741.44 46128.00 115595.40 99973.40 0.70

Control 18102.02 14549.13 53539.38 46000.00 114260.90 98503.27

Examining the experimental results, as expected, the variant O using routing neighbor-

hoods only produced the worst solutions, emphasizing the importance of the including both

types of neighborhoods. Furthermore, among variants using both types of neighborhoods,
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i.e., L, M, N1, N2, and N3, we observe that the performance of Strategy L is the worst.

The main reason is that leg moves, which are necessary to diversify the search, are not

selected sufficiently often in this strategy. Indeed, one observes the better performance of

the greedy Strategy M where leg moves are given a higher probability of selection. The

best performance in this group of strategies is offered by Strategy N3, however, adjusting

the type of exploration as the search progresses, from equal probabilities at the beginning

of the search, to increased route-optimization neighborhoods in later stages.

Yet, fixing a priori the selection probabilities may limit the exploration capability of the

search. Indeed, the Control procedure, implementing a selection strategy driven dynami-

cally by variations in solution quality, outperforms all the other strategies.

Two-level strategy. It consists in running TS using one type of neighborhood until no

further improvement can be found, and then switching to using the other type of neighbor-

hood.

The algorithm starts at the “high level” applying the two leg neighborhoods in random-

ized order. In each case, all pairs of vehicles are searched sequentially, and the search stops

either at the first improvement, or with the best improvement once all pairs have been eval-

uated. When both neighborhoods are completely evaluated but no improving solution has

been identified, the best move is selected and becomes the current solution. “Low-level”

search then starts from this solution using the three routing neighborhoods in randomized

order with either the first or the best improvement criterion. Low-level search continues

until no further improving solution can be found. The algorithm stops when the maximum

number of iterations is reached, otherwise it switches back to the high level.

In the variant described above, only one leg move is implemented before making the

transition from the high level to the low level, no mater whether improved moves have

been performed or not. It may cause the two-level search to be trapped in local optima,

since employing only one leg move may not change significantly the solution. Thus, we

define the second variant where the search continues for a small number of leg moves

before switching to the low level when no improving leg move is found in a high-level TS

sequence.

We run each variant for 1 million iterations. Table B.2 reports comparison results be-
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tween these variants of the two-level neighborhoods strategy. Corresponding average gaps

to the solutions obtained by the tabu search with the Control neighborhood-selection strat-

egy and average computation times are displayed in Columns GAP to Control and Time

(min), respectively.

For the first variant, best improvement produces higher quality solutions with an aver-

age error gap of 1.25% compared to 2.87% for the first improvement strategy. However,

first improvement requires less computation time. For the second variant, the number of

leg moves (high level search) is selected randomly in the integer interval [2,5]. The result

is reported in the two last columns of Table B.2. One observes that this variant performs

better than the two previous variants. However, given a same total number of iterations

(1 million), compared to strategies N2 and N3 where neighborhoods are mixed liberally

or their selections are driven by a fixed number, the two-level strategy does not perform

better.

Table B.2: Comparative performance of two level neighborhood-search strategies

Problem First improvement Best improvement Best improvement

set & random leg moves

GAP to Control Time (min) GAP to Control Time (min) GAP to Control Time (min)

A1 1.96% 32 1.51% 52 1.35% 64

A2 2.27% 25 1.62% 47 1.24% 53

B1 4.95% 59 2.59% 102 2.21% 128

B2 1.93% 41 0.74% 83 0.58% 94

C1 3.01% 105 0.65% 171 0.21% 193

C2 3.12% 93 0.39% 121 0.01% 138

Average 2.87% 59.17 1.25% 96 0.93% 111.67

To further illustrate the performance of our neighborhood selection strategy, Table B.3

reports the average move value for each of the five neighborhoods, as well as the proportion

(in %) of each move application. To compare fairly, we compute the move value as the

change in the routing cost and the fixed cost of using vehicles, without including penalties

for constraint violation. Negative values indicate improvement. It can be seen that all three

routing move types yield improvements (on average), while leg moves do not always do.
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Routing moves and leg moves are respectively applied about 90% and 10% on average,

ensuring adequate optimization of work assignments as desired.

Table B.3: Comparative performance of neighborhood types

Problem Average value of routing move Average value of leg move Routing move applications Leg move applications

set Relocation Exchange 2-opt Relocation Exchange %

A1 -0.77 -0.50 -0.53 1.92 -2.35 91.78 8.22

A2 -0.96 -0.59 -0.57 -0.62 -0.22 91.88 8.12

B1 -1.59 -0.85 -0.63 -0.97 -1.83 93.11 6.89

B2 -1.07 -0.65 -0.59 -0.76 -0.35 90.49 9.51

C1 -1.20 -0.45 -0.56 0.84 -1.76 88.52 11.48

C2 -1.34 -0.82 -0.73 0.55 0.34 89.85 10.15

B.2 Detailed Results for the TMZT-VRPTW

Tables B.4, B.5, and B.6 display comparison results on the Crainic et al. (2012b) instances.

The first group of columns displays the results of Crainic et al. (2012b), the best solution

values (Best column), the number of vehicles (#Vehicles column), the number of times

vehicles move directly from one customer zone to another without passing through wait-

ing stations (DM column), and the number of times waiting stations are used for moving

between customer zones (MWS column). The next group of columns displays the same

information for the proposed tabu search, plus the average values (Avg 10 column) and

standard deviations (Std column) over 10 runs, the range of route legs per vehicle (RLPV

column) and the average number of route legs per vehicle (ALPV column), as well as the

corresponding gap to the previous BKS (last column).
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Table B.4: Best performance comparison between our algorithm and Crainic et al. (2012b)

on problem sets A

Instances Crainic et al. (2012b) TS GAP

No Best #Vehicles DM MWS Avg 10 Std Best 10 #Vehicles DM MWS RLPV ALPV %

A1-1 17767 19 0 44 17152.7 24.36 17118.40 18 0 44 [2,4] 3.44 -3.65

A1-2 18783 24 0 35 18392.85 18.29 18371.20 24 0 35 [1,4] 2.46 -2.19

A1-3 16114 19 0 41 15749.17 14.10 15731.10 19 0 41 [2,4] 3.11 -2.38

A1-4 20936 31 0 30 20798.3 17.71 20780.00 31 0 29 [1,3] 1.94 -0.75

A1-5 15850 18 11 34 15633.8 17.46 15613.70 18 13 32 [3,4] 3.44 -1.49

A1-6 17456 20 0 40 16760.83 27.52 16720.80 19 0 40 [2,4] 3.11 -4.21

A1-7 19169 24 0 37 18790.99 15.08 18760.10 23 0 37 [1,4] 2.54 -2.13

A1-8 16790 20 2 40 16598.9 23.40 16553.30 20 4 38 [2,4] 3.11 -1.41

A1-9 21570 32 0 31 19361.32 43.02 19318.10 26 4 31 [1,4] 2.37 -10.44

A1-10 21316 32 0 26 21199.57 42.77 21138.50 32 0 26 [1,3] 1.81 -0.83

Average 18575.1 23.9 1.3 35.8 18043.84 24.37 18010.52 23 2.1 35.3 - 2.73 -3.04

A2-1 16380 21 1 41 15864.90 29.61 15823.40 20 2 41 [1,5] 3.15 -3.40

A2-2 18433 24 2 36 17140.57 35.63 17085.00 21 10 35 [1,5] 3.10 -7.31

A2-3 14654 18 4 42 13785.34 37.68 13717.80 16 6 41 [3,6] 3.94 -6.39

A2-4 13056 13 0 49 12828.75 31.65 12774.90 13 0 48 [4,6] 4.69 -2.15

A2-5 14256 14 3 46 13622.56 33.07 13579.70 13 3 46 [2,7] 4.77 -4.74

A2-6 17480 24 7 30 15430.33 36.16 15347.70 20 15 27 [1,5] 3.10 -12.16

A2-7 13955 15 1 49 13325.39 31.88 13287.90 14 0 49 [3,5] 4.5 -4.78

A2-8 14975 18 0 46 14815.85 29.67 14765.50 18 0 46 [1,5] 3.56 -1.40

A2-9 14430 16 0 45 13149.59 45.10 13103.00 13 4 46 [2,7] 4.77 -9.20

A2-10 16490 22 6 35 14988.99 53.43 14915.60 19 11 35 [2,6] 3.42 -9.55

Average 15410.9 18.5 2.4 41.9 14495.23 36.39 14440.05 16.8 5.1 41.3 - 3.90 -6.29
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Table B.5: Best performance comparison between our algorithm and Crainic et al. (2012b)

on problem sets B

Instances Crainic et al. (2012b) TS GAP

No Best #Vehicles DM MWS Avg 10 Std Best 10 #Vehicles DM MWS RLPV ALPV %

B1-1 71007 89 4 153 65660.43 81.26 65570.2 76 30 140 [1,7] 3.22 -7.66

B1-2 53419 44 22 180 50886.42 80.38 50778.1 39 42 160 [3,8] 6.16 -4.94

B1-3 51175 41 20 186 48328.92 33.47 48284.8 36 36 170 [3,10] 6.72 -5.65

B1-4 54331 42 25 176 53547.07 64.46 53439.8 42 32 168 [3,9] 5.77 -1.64

B1-5 54072 45 12 186 51435.01 56.81 51309.7 37 31 171 [3,10] 6.44 -5.11

B1-6 54593 50 16 182 51604.48 61.61 51577.5 41 45 161 [3,10] 6.01 -5.52

B1-7 53322 46 15 180 51843.15 67.97 51785 44 26 170 [3,7] 5.44 -2.88

B1-8 55423 48 5 193 53941.65 70.38 53820.5 45 22 183 [2,10] 5.55 -2.89

B1-9 55208 53 19 168 52555.43 71.93 52427.7 48 32 162 [2,9] 5.03 -5.04

B1-10 53979 48 5 195 51437.39 75.74 51368 42 14 188 [3,9] 5.80 -4.84

Average 55652.9 50.6 14.3 179.9 53124.00 66.40 53036.13 45.00 31.00 167.30 - 5.61 -4.62

B2-1 44889 32 21 193 43492.67 79.24 43318.3 27 43 175 [7,13] 9.06 -3.50

B2-2 50427 47 22 178 46697.50 109.51 46506.1 39 54 152 [3,11] 6.28 -7.78

B2-3 48941 40 25 188 46839.89 121.45 46582 36 52 168 [3,12] 7.11 -4.82

B2-4 45894 28 19 206 44627.32 80.86 44531.5 28 34 193 [6,13] 9.10 -2.97

B2-5 46523 41 17 195 44538.50 89.31 44345.1 37 29 182 [3,10] 6.70 -4.68

B2-6 46441 36 16 199 45374.68 91.52 45066.5 35 21 190 [4,11] 7.01 -2.96

B2-7 44894 34 16 199 43601.74 61.52 43450.6 31 32 183 [6,10] 7.93 -3.22

B2-8 44549 28 23 201 43041.03 101.17 42745.1 24 42 183 [8,13] 10.37 -4.05

B2-9 46801 37 21 198 44543.77 62.17 44408.8 30 58 165 [4,12] 8.43 -5.11

B2-10 54606 62 16 172 49972.49 96.31 49787.6 50 33 171 [2,9] 5.08 -8.82

Average 47396.5 38.5 19.6 192.9 45272.96 89.31 45074.16 33.70 39.80 176.20 - 7.71 -4.79
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Table B.6: Best performance comparison between our algorithm and Crainic et al. (2012b)

on problem sets C

Instances Crainic et al. (2012b) TS GAP

No Best #Vehicles DM MWS Avg 10 Std Best 10 #Vehicles DM MWS RLPV ALPV %

C1-1 115967 86 67 394 111243.00 62.10 111196 75 114 359 [4,12] 7.30 -4.11

C1-2 113176 92 43 411 109077.00 98.18 108993 81 85 388 [2,10] 6.82 -3.69

C1-3 114773 80 62 409 109013.30 118.31 108758 68 101 374 [4,14] 7.98 -5.24

C1-4 114310 83 30 435 110412.90 109.96 110269 79 61 404 [4,12] 6.88 -3.54

C1-5 121245 100 25 423 115635.50 116.06 115335 84 55 406 [3,10] 6.48 -4.87

C1-6 115324 87 39 426 111761.60 180.11 111558 81 64 400 [3,12] 6.72 -3.27

C1-7 120443 86 31 431 117028.30 98.70 116869 83 59 401 [3,10] 6.54 -2.97

C1-8 115473 78 40 433 111768.80 97.67 111565 72 76 394 [4,13] 7.52 -3.38

C1-9 126060 89 34 427 121740.30 112.01 121607 84 74 387 [3,14] 6.40 -3.53

C1-10 117493 85 18 442 112079.20 120.98 111959 74 47 426 [4,12] 7.39 -4.71

Average 117426.4 86.6 38.9 423.1 112975.99 111.41 112810.90 78.10 73.00 393.90 - 7.01 -3.92

C2-1 101232 69 70 423 97566.43 101.30 97350.2 67 101 391 [4,12] 8.34 -3.83

C2-2 98289 53 85 433 95340.22 105.34 95262.7 48 146 372 [8,19] 11.79 -3.08

C2-3 106180 65 71 426 102038.30 85.31 101758 62 102 388 [5,14] 8.90 -4.16

C2-4 97387 74 35 450 93426.91 96.49 93217.2 64 79 410 [5,13] 8.64 -4.28

C2-5 101090 53 74 442 96744.10 103.29 96581.4 52 98 414 [6,15] 10.84 -4.46

C2-6 106847 85 54 426 101813.60 88.09 101665 75 90 392 [3,12] 7.42 -4.85

C2-7 98471 62 76 424 95197.20 98.25 95096.4 60 99 395 [5,13] 11.08 -3.43

C2-8 99948 55 73 442 96761.28 82.87 96675.2 49 123 388 [7, 17] 11.42 -3.27

C2-9 102301 57 79 432 97949.94 92.90 97691.2 56 134 373 [5,14] 10.05 -4.51

C2-10 103950 63 67 437 100633.80 94.98 100561 60 108 387 [6,15] 9.25 -3.26

Average 101569.5 63.6 68.4 433.5 97747.18 94.88 97585.83 59.30 108.00 391.00 - 9.77 -3.91
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Annex C

SUPPLEMENTARY MATERIAL

FOR THE MZT-PDTWS

Tables C.1, C.2, C.3, C.4, C.5, and C.6 display the detailed results obtained by the pro-

posed tabu search, the average values (Avg10 column), standard deviations (Std column),

and the best solution values (Best10 column) over 10 runs, the number of vehicles (#Vehi-

cles column), the number of times vehicles move directly to a supply point without passing

through waiting stations (DM column), the number of times waiting stations are used for

moving between customer zones (MWS column), the number of times vehicles do both

‘unload and load’ operation once they arrive at supply points (PD column), the number of

legs (#Legs column).



Table C.1: Detailed results on problem instances set A1

Instance Avg10 Std Best10 #Vehicles DM MWS PD #Legs

A1-1 19125.65 35.52 19052.70 18 3 42 8 70

A1-2 20627.00 41.79 20532.30 24 2 35 9 68

A1-3 17555.37 77.06 17438.78 18 0 42 9 68

A1-4 24232.20 95.98 24027.82 31 0 31 9 69

A1-5 17826.23 44.93 17741.77 18 16 30 9 72

A1-6 19768.53 40.51 19694.70 18 17 33 27 89

A1-7 21709.69 67.39 21572.62 24 9 30 25 85

A1-8 18536.57 87.90 18292.37 18 13 33 26 85

A1-9 25565.77 100.09 25382.80 31 1 32 26 87

A1-10 19457.42 92.58 19328.76 19 19 28 27 90

A1-11 21572.33 79.16 21399.10 18 43 19 57 123

A1-12 24223.69 93.21 23978.20 24 28 31 46 119

A1-13 20797.80 70.05 20652.90 18 31 32 55 118

A1-14 28375.16 112.27 28136.80 31 18 40 55 118

A1-15 22390.35 139.26 22061.10 20 39 29 57 125

Average 21450.92 78.51 21286.18 22.00 15.93 32.47 29.67 92.40
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Table C.2: Detailed results on problem instances set A2

Instance Avg10 Std Best10 #Vehicles DM MWS PD #Legs

A2-1 18577.68 98.24 18410.01 19 6 40 12 76

A2-2 19725.88 87.47 19590.37 21 12 30 8 70

A2-3 15885.33 87.89 15767.75 16 9 40 10 74

A2-4 14923.72 42.97 14859.18 13 1 49 11 72

A2-5 15307.64 91.77 15156.95 13 7 43 10 72

A2-6 20286.66 97.82 20113.70 19 16 32 30 95

A2-7 21459.12 99.36 21321.10 21 21 25 29 92

A2-8 17541.52 97.37 17339.61 16 17 35 28 91

A2-9 16378.68 80.03 16209.82 13 6 47 28 89

A2-10 16646.85 88.86 16494.59 13 20 33 28 90

A2-11 22422.22 91.86 22195.60 20 24 41 55 127

A2-12 23920.24 56.28 23823.10 21 38 27 55 124

A2-13 21312.70 97.21 21079.20 18 23 39 58 126

A2-14 19055.70 90.23 18901.30 14 22 40 57 121

A2-15 19043.00 84.86 18906.10 13 37 27 55 124

Average 18832.46 86.15 18677.89 16.67 17.27 36.53 31.60 96.20
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Table C.3: Detailed results on problem instances set B1

Instance Avg10 Std Best10 #Vehicles DM MWS PD #Legs

B1-1 83561.38 35.75 83498.7 77 30 151 30 282

B1-2 62675.24 70.27 62513.8 40 50 158 33 277

B1-3 59566.89 103.07 59281.3 36 45 171 30 276

B1-4 66674.47 119.30 66454.1 41 39 168 31 273

B1-5 62420.99 139.67 62071.1 40 33 174 29 271

B1-6 94815.97 105.30 94634.4 77 47 171 104 358

B1-7 70117.71 123.55 69773.4 43 72 150 104 349

B1-8 69328.12 113.24 69139.9 37 82 148 106 356

B1-9 72630.66 74.17 72449.4 40 79 150 103 352

B1-10 71042.78 32.74 70994 42 69 147 104 347

B1-11 115479.33 105.64 115313.5 80 70 205 219 495

B1-12 90142.91 85.73 90053.1 46 120 146 211 484

B1-13 93478.07 73.38 93389.9 49 119 152 213 492

B1-14 99444.83 72.84 99349.3 46 87 176 216 485

B1-15 97233.69 97.95 97024 53 114 142 211 480

Average 80574.20 90.17 80395.99 49.80 70.40 160.60 116.27 371.80
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Table C.4: Detailed results on problem instances set B2

Instance Avg10 Std Best10 #Vehicles DM MWS PD #Legs

B2-1 57606.41 97.85 57406.8 31 48 174 40 291

B2-2 64177.54 68.39 64048 45 47 165 36 285

B2-3 61249.92 90.45 61096.2 36 43 182 38 292

B2-4 58321.89 108.80 58286.9 32 35 194 33 289

B2-5 57787.64 77.15 57749.5 38 38 181 36 288

B2-6 69084.69 68.22 68991.4 38 45 178 104 353

B2-7 77033.95 85.71 76810.3 48 68 169 112 366

B2-8 73010.21 70.96 72821.9 36 59 174 106 360

B2-9 70535.79 58.06 70448.2 36 52 174 103 353

B2-10 70829.02 96.03 70656 42 46 177 109 361

B2-11 91315.56 98.60 91199.3 41 86 180 211 487

B2-12 100857.73 60.85 100728.3 60 95 177 220 493

B2-13 97624.36 102.62 97410.2 41 85 192 209 493

B2-14 89699.15 131.32 89332.2 42 91 191 219 504

B2-15 90624.95 47.31 90522.6 46 92 187 220 500

Average 75317.25 84.16 75167.19 40.80 62.00 179.67 119.73 381.00
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Table C.5: Detailed results on problem instances set C1

Instance Avg10 Std Best10 #Vehicles DM MWS PD #Legs

C1-1 154322.30 72.45 154127 93 89 374 65 616

C1-2 150028.70 142.39 149835 92 82 374 65 607

C1-3 152287.90 135.71 152100 83 95 386 65 619

C1-4 154935.90 57.31 154805 97 68 393 63 616

C1-5 155101.20 161.33 154665 87 78 395 65 619

C1-6 203099.00 120.09 202994 101 116 372 225 786

C1-7 196721.20 165.82 196335 101 100 397 228 786

C1-8 200641.20 33.40 200559 91 120 395 231 787

C1-9 198211.80 110.56 197954 107 106 375 232 792

C1-10 201688.80 162.98 201402 97 99 404 227 799

C1-11 293262.00 153.85 293078 123 156 426 501 1106

C1-12 285020.80 81.31 284801 121 203 391 484 1086

C1-13 293493.00 155.59 293226 112 221 370 491 1100

C1-14 286054.90 91.54 285829 119 162 423 497 1098

C1-15 302333.50 48.99 302249 124 172 433 469 1112

Average 215146.81 112.89 214930.60 103.20 124.47 393.87 260.53 835.27
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Table C.6: Detailed results on problem instances set C2

Instance Avg10 Std Best10 #Vehicles DM MWS PD #Legs

C2-1 142736.00 109.07 142511 77 114 391 78 655

C2-2 141224.60 55.47 141095 77 97 414 80 663

C2-3 147322.30 61.62 147219 82 86 426 80 657

C2-4 134630.60 42.95 134567.2 73 83 416 79 642

C2-5 139177.10 196.80 138623 72 83 426 80 655

C2-6 188064.70 202.55 187501 89 144 392 232 817

C2-7 224601.60 118.17 224486 103 222 408 236 900

C2-8 191738.70 210.74 191220 98 113 433 232 817

C2-9 183440.30 166.22 183034 92 100 428 233 812

C2-10 190020.60 87.56 189789 90 106 440 235 833

C2-11 290027.30 75.65 289826 117 198 451 484 1142

C2-12 265985.50 210.68 265391 88 148 479 494 1132

C2-13 276053.30 107.45 275884 122 177 455 477 1126

C2-14 274952.90 137.77 274742 110 148 482 485 1132

C2-15 284755.10 160.20 284448 97 167 463 524 1157

Average 204982.04 129.53 204689.08 92.47 132.40 433.60 268.60 876.00
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