
Université de Montréal

Improving Automation in Model-Driven Engineering using Examples

par
Martin Faunes Carvallo

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée à la Faculté des arts et des sciences
en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en computer science

June, 2013

c© Martin Faunes Carvallo, 2013.

RÉSUMÉ

Cette thèse a pour but d’améliorer l’automatisation dans l’ingénierie dirigée par les mo-

dèles (MDE pour Model Driven Engineering). MDE est un paradigme qui promet de

réduire la complexité du logiciel par l’utilisation intensive de modèles et des transforma-

tions automatiques entre modèles (TM). D’une façon simplifiée, dans la vision du MDE,

les spécialistes utilisent plusieurs modèles pour représenter un logiciel, et ils produisent

le code source en transformant automatiquement ces modèles. Conséquemment, l’auto-

matisation est un facteur clé et un principe fondateur de MDE. En plus des TM, d’autres

activités ont besoin d’automatisation, e.g. la définition des langages de modélisation et

la migration de logiciels.

Dans ce contexte, la contribution principale de cette thèse est de proposer une ap-

proche générale pour améliorer l’automatisation du MDE. Notre approche est basée sur

la recherche métaheuristique guidée par les exemples.

Nous appliquons cette approche sur deux problèmes importants de MDE, (1) la trans-

formation des modèles et (2) la définition précise de languages de modélisation. Pour le

premier problème, nous distinguons entre la transformation dans le contexte de la mi-

gration et les transformations générales entre modèles. Dans le cas de la migration, nous

proposons une méthode de regroupement logiciel (Software Clustering) basée sur une

métaheuristique guidée par des exemples de regroupement. De la même façon, pour les

transformations générales, nous apprenons des transformations entre modèles en utili-

sant un algorithme de programmation génétique qui s’inspire des exemples des transfor-

mations passées. Pour la définition précise de langages de modélisation, nous proposons

une méthode basée sur une recherche métaheuristique, qui dérive des règles de bonne

formation pour les méta-modèles, avec l’objectif de bien discriminer entre modèles va-

lides et invalides.

Les études empiriques que nous avons menées, montrent que les approches propo-

sées obtiennent des bons résultats tant quantitatifs que qualitatifs. Ceux-ci nous per-

mettent de conclure que l’amélioration de l’automatisation du MDE en utilisant des mé-

thodes de recherche métaheuristique et des exemples peut contribuer à l’adoption plus

iii

large de MDE dans l’industrie à là venir.

Mots clés : Ingénierie dirigée par les modèles, génie logiciel guidé par les exemples,

génie logiciel automatisé, méta-modélisation, génie logiciel avec des méthodes de re-

cherche heuristique.

ABSTRACT

This thesis aims to improve automation in Model Driven Engineering (MDE). MDE

is a paradigm that promises to reduce software complexity by the mean of the intensive

use of models and automatic model transformation (MT). Roughly speaking, in MDE

vision, stakeholders use several models to represent the software, and produce source

code by automatically transforming these models. Consequently, automation is a key

factor and founding principle of MDE. In addition to MT, other MDE activities require

automation, e.g. modeling language definition and software migration.

In this context, the main contribution of this thesis is proposing a general approach

for improving automation in MDE. Our approach is based on meta-heuristic search

guided by examples. We apply our approach to two important MDE problems, (1) model

transformation and (2) precise modeling languages. For transformations, we distinguish

between transformations in the context of migration and general model transformations.

In the case of migration, we propose a software clustering method based on a search

algorithm guided by cluster examples. Similarly, for general transformations, we learn

model transformations by a genetic programming algorithm taking inspiration from ex-

amples of past transformations.

For the problem of precise metamodeling, we propose a meta-heuristic search method

to derive well-formedness rules for metamodels with the objective of discriminating ex-

amples of valid and invalid models.

Our empirical evaluation shows that the proposed approaches exhibit good results.

These allow us to conclude that improving automation in MDE using meta-heuristic

search and examples can contribute to a wider adoption of MDE in industry in the com-

ing years.

Keywords: Model-driven engineering, software engineering by examples, auto-

mated software engineering, metamodeling, search-based software engineering.

CONTENTS

RÉSUMÉ . ii

ABSTRACT . iv

CONTENTS . v

LIST OF TABLES . viii

LIST OF ABBREVIATIONS . ix

CHAPTER 1: INTRODUCTION . 1

1.1 Context . 1

1.1.1 Model Driven Engineeting (MDE) 1

1.1.2 The importance of automation and MDE 1

1.1.3 Automation difficulties . 2

1.2 Thesis problem . 2

1.2.1 Automating general model transformations 3

1.2.2 Automating transformations in the context of migration 4

1.2.3 Automating the support to precise modeling 5

1.3 Contributions . 6

1.4 Thesis structure . 8

CHAPTER 2: RELATED WORK . 9

2.1 Related work on model transformation in the context of migration . . . 9

2.1.1 Approaches based on static analysis 10

2.1.2 Dynamic analysis . 15

2.1.3 Summary . 15

2.2 Related work on general model transformation 17

2.2.1 MTBE . 17

2.2.2 MTBD . 21

vi

2.2.3 Summary . 22

2.3 Related work of improving modeling language 23

2.3.1 Metamodel definition and modeling space 23

2.3.2 Derivation of invariants . 24

2.3.3 Metamodel reconstruction . 25

CHAPTER 3: IMPROVING AUTOMATION MDE BY EXAMPLES AND

THE THREE APPROACHES 28

3.1 Chapter Objectives . 28

3.2 Model Driven Engineering (MDE) . 28

3.3 Improving Automation in MDE . 30

3.4 Automation Techniques and By Example approaches 32

3.5 Targeted automation problems . 33

3.6 First approach : Deriving High-Level Abstractions from Legacy Soft-

ware Using Example-Driven Clustering 33

3.7 Second approach: Genetic-Programming Approach to Learn Model Trans-

formation Rules from Examples . 34

3.8 Third approach: Automatically searching for metamodel well-formedness

rules in examples and counter-examples 35

3.9 Common aspects on the three approaches 35

3.10 Chapter summary . 36

CHAPTER 4: DERIVING HIGH-LEVEL ABSTRACTIONS FROM LEGACY

SOFTWARE USING EXAMPLE-DRIVEN CLUSTERING 37

CHAPTER 5: GENETIC-PROGRAMMING APPROACH TO LEARN MODEL

TRANSFORMATION RULES FROM EXAMPLES 50

CHAPTER 6: AUTOMATICALLY SEARCHING FOR METAMODEL WELL-

FORMEDNESS RULES IN EXAMPLES AND COUNTER-

EXAMPLES . 67

vii

CHAPTER 7: CONCLUSION AND FUTURE PERSPECTIVE 84

7.1 Thesis contributions and impact on MDE 84

7.2 Going beyond . 85

BIBLIOGRAPHY . 88

LIST OF TABLES

2.I Summary of the related work on model transformation in the con-

text of migration . 16

2.II Summary of Model Transformation By Example related work . . 27

LIST OF ABBREVIATIONS

CMT Chain of Model Transformations

GA Genetic Algorithm

GP Genetic Programming

MDE Model Driven Engineering

MT Model Transformation

MTBD Model Transformation By Demonstration

MTBE Model Transformation By Example

n-to-m Many-to-many

OO Object Oriented

PSO Particle Swarm Optimisation

SA Simulated Annealing

SC Software Clustering

SE Software Engineering

TR Transformation Rule

WFR Well-Fromedness Rules

CHAPTER 1

INTRODUCTION

1.1 Context

1.1.1 Model Driven Engineeting (MDE)

MDE is a paradigm that proposes reducing software system complexity by the mean

of the intensive use of models and automatic model transformations.

The idea behind this paradigm is that software development, software understand-

ing, and many software engineering activities, can be made easier by using the proper

high-level abstraction models (domain models) to represent various perspectives of the

software and by automatically transforming these models into low-level artifacts such as

source code and test suites [33].

The assumption here is that dealing with domain models is considerably easier for

many stakeholders than directly dealing with implementation artifacts.

1.1.2 The importance of automation and MDE

As mentioned earlier, the basic assumption of MDE is that domain models are eas-

ier to deal with than implementation artifacts. Still, a software system actually operates

through its implementation artifacts. That implies that a mechanism is needed to, start-

ing from domain models, produce, modify, and test low level artifacts. This mechanism

cannot be manual. If this is the case, the advantages of the MDE paradigm will be com-

promised. Indeed, software developers will have to manually produce domain models

and manually derive implementation artifacts from them. They also have to manually

keep them up to date and manage the consistency between them after any modification.

The experience showed that such manual tasks result in an important discrepancy be-

tween high-level representations of the software and their corresponding low-level ones.

Consequently, automation is a key factor and founding principle of MDE for many

development and maintenance activities. In addition to model transformation, other ex-

2

amples of activities that require automation include the support for metamodel definition

and testing, and the architecture of a software system recovery from the source code.

1.1.3 Automation difficulties

However, automation is not easy. Automating an activity comes always at a cost.

First, the proper knowledge on how the activity is to be performed has to be gathered.

Second, this knowledge must be converted into coherent and scalable algorithms. Fi-

nally, the algorithms have to be comprehensively validated over a test set that considers

most of the common cases but also corner-case situations.

For many automation problems, gathering the proper knowledge and systematizing it

is a challenge by itself. In the case of transformations, for example, even for widely used

formalisms, large variations and sometimes conflicts can be observed in the available

knowledge. Each expert can transform manually a specific model into another, but the

elicitation of this knowledge into a general form that can be translated into a universal

algorithm is another story. The situation is even worse when dealing with proprietary

formalisms for which little knowledge is available.

Knowledge elicitation is not the only problem. The mapping of the general knowl-

edge into an operational one is an important issue. The software specialist has to master

both the problem domain (the knowledge) and the implementation domain (languages,

tools, and environments). Now, let us keep an optimistic position. Suppose that the

knowledge is gathered and converted into an algorithm, the next obstacle is to validate

this algorithm with a reliable test activity.

1.2 Thesis problem

Not all the MDE activities require the same need and the same level of automation. In

this thesis, we concentrate on two problems that we consider as fundamental to the MDE

paradigm. The first problem is model transformation. This problem is studied under two

perspectives: (1) general transformations that require to define the semantic equivalence

between the constructs of two modeling languages, (2) transformations in the context of

3

migration between programming/design paradigms. The second problem that we target

in this thesis is the support for the definition of precise modeling languages.

1.2.1 Automating general model transformations

In our opinion, the activity that requires the highest level of automation is model

transformation (call it MT for short). MT is the main mechanism that supports the MDE

vision. Thus, the more automatic MT is the more effective will become MDE.

But, before going further, let us define MT. A Model transformation is a mechanism

that receives, as input, a source model and generates, as output, it corresponding target

model. The generation is done by applying, in general, a set of transformation rules. A

transformation rule looks for a pattern in the source model and instantiates a correspond-

ing pattern in the target model. An MT is defined at the metamodel level. That allows

the creation of a general MT that transforms any instance of a source metamodel into its

corresponding instance of the target metamodel.

MT automation is not an easy task. To write transformations, the MDE specialist

must have a deep knowledge about the source and target metamodels as well as the se-

mantic equivalence between the two. In recent years, considerable advances have been

made in modeling environments and tools. From the point of view of the transformation

infrastructure, a large effort has been made to define languages for expressing transfor-

mation rules and thus make the writing of transformation programs easier. However,

having a good transformation language is only one part of the solution; the most im-

portant part, as we mentioned, is to define/gather the knowledge on how to transform

any model conforming to a particular metamodel into a model conforming to another

metamodel. For many problems, this knowledge is incomplete or not available. This is

the motivation behind the research on learning transformation rules.

The approaches that try to learn transformation programs start from concrete trans-

formation examples. Basically, these approaches take as input one or many transforma-

tion examples (each in the form of a source and a target model) and produce as output a

set of transformation rules that generalize the transformation described in the examples.

The above-mentioned approaches have many limitations. First, most of them [4, 15,

4

25, 47, 54, 57, 60] require that the two models in each example must be complemented

by transformation traces (TT). TT are fine-grained mappings giving the correspondence

between the elements in the source models and those in the target model. Obviously

this kind of information is difficult to obtain in the recorded past examples. Second,

many approaches [4, 34, 35, 47, 57] do not produce actual operational rules, but only

conceptual mappings that have to be later, manually, transformed into operational rules.

The third limitation is that the rules produced are very simple as they involve one element

in the source model and produce one element in the target model (1-to-1 rules). With

the exception of [4, 25], no approach can derive m-to-n rules. As another limitation,

current approaches are not properly tested or the complete settings and results are not

reported [4, 15, 25, 54, 57, 60] . Finally, there is a group of approaches that instead of

generating transformation rules, generalize edition actions that the user performs [39,

55]. The limitation here is that the obtained editing patterns are not as reusable as the

transformation rules.

Our goal is to propose a new Model Transformation By Example (MTBE) approach

that solves/circumvents all the above mentioned limitations.

1.2.2 Automating transformations in the context of migration

In some software engineering tasks that produce high-abstraction models from low-

abstraction ones, the problem to automate MT is even harder. Indeed, software migration

processes can be seen as a CMT. First, the legacy code is transformed into a model

conforming to the legacy paradigm (reverse engineering transformation). Then, this

model is mapped to a new one conforming to the new paradigm (paradigm shift). Finally,

the obtained model is transformed into code (code generation).

The first and third transformations are particular cases of general transformations

(see the previous sub-section). The second one is completely different as, usually, the

new paradigm is more abstract. Its elements are in general clusters of those of the legacy

paradigm. Examples are variable and procedure grouping into classes ([48, 49, 53, 56],

or class grouping into components [2]. In these cases, the transformation is a clustering

mechanism that cannot be encoded like a general transformation.

5

Existing work in software clustering uses heuristics to guide the clustering process.

One of these heuristics is that elements that are structurally connected in the legacy

model should be grouped together. The empirical validation of such heuristics showed

that they produce relatively poor results [2, 13, 28, 40, 41, 48, 49, 53, 56, 61].

Our goal is to generate clustering-like transformations using a new heuristic based

on the conformance to migration examples.

1.2.3 Automating the support to precise modeling

Usually MTs should accept as input only valid source models to produce valid target

models. This observation leads us to the second activity that requires an important level

of automation in MDE, namely, the definition of precise modeling languages (metamod-

els). MDE relies on models to represent software systems from different perspectives.

To define a valid model of a given perspective, the model has to be created using the

constructs and following the rules defined on the metamodel that describes this perspec-

tive. For example, to be a valid UML class diagram, a diagram has to instantiate the

constructs types defined in its metamodel, but also conform to the well-formedness rules

attached to it.

Creating precise metamodels is also a difficult task. Metamodels are usually com-

posed of two components, a domain structure and a set of well-formedness rules. While

the domain structure describes the main domain concepts and their relationships, the

well-formedness rules impose further restrictions over models. This is to avoid models

that, even if build using the concepts and relationships defined on the domain structure,

are malformed.

Creating the domain structure, although it is a difficult task, is in general well carried

by the modeling community. Defining rules to further restrict the domain structure is by

far harder because it requires a high degree of formalization. Moreover, such rules need

to be coherent, complete and correct.

Current approaches in this field are mainly focused on recovering the domain struc-

ture [31, 50]. The little work on constraint recovery only targets programs/source code

constraints [14, 17, 45, 62]. Our goal is to propose an approach for the derivation of

6

well-formedness rules that uses examples of valid and invalid models.

1.3 Contributions

The general contribution of our thesis is improving automation in MDE. We propose

solutions to the automation problems based on examples. We see the automation as an

optimization problem where solutions are searched based on examples.

In particular, we address automation on two important activities, (1) model transfor-

mation and (2) modeling language definition. In (1), we distinguish between (a) general

transformations and (b) transformation in the context of migration.

In the problem of general model transformation, we contribute by proposing an ap-

proach that searches for transformation rules based on a genetic-programming search

that is guided by conformance with examples. Unlike the other approaches, our ap-

proach does not need transformation traces.

Our contribution is characterized as follows.

– Proposal of a transformation rule derivation process based on a search (Genetic

Programming) that is guided by conformance with examples.

– The proposed approach does not need transformation traces, and thus it is easy to

be used.

– The proposed approach produces operational many-to-many transformation rules

that can have complex conditions.

– The generic GP algorithm is adapted to the problem of deriving transformation

rules.

– Adaptation includes a solution encoding for transformation rules compatible with

GP, genetic operators (mutations and crossover) to be used in GP, a technique to

create the initial population, and an efficient fitness function to guide the search.

The fitness function compares target model produced by a set of transformation

rules with the expected target model (the one given as example).

– The proposed approach is validated over two transformation problems: UML class

diagram to relational schema and sequence diagram to state machines.

7

– We also created a base of examples that could be used as a benchmark for the

evaluation of other approaches.

In the migration, we propose a software clustering approach that search for a solution

by conformance with example clusters. Our approach main characteristics are as follows.

– Adaptation of Software Clustering (SC) to the process of MT in the context of

migrating.

– Proposal of an SC method based on a search that is performed in two steps. A

global search is performed with Particle Swarm Optimization (PSO), and then the

result is polished by a local search, in particular, Simulated Annealing (SA).

– Adaptation of PSO and SA to the clustering problem in the context of MT in

migrating.

– Proposal of a solution and example encoding compatible with the search process,

and an efficient heuristic to guide the searches that compares candidate clusters

with example clusters. Since the search process performs this comparison many

times, the efficiency, here is a key factor.

– The proposed approach is validated on the specific problem of migrating procedu-

ral programs to the object-oriented paradigm.

– We create a reusable base of examples composed of procedural programs and their

corresponding OO programs.

Finally, for the problem of modeling language definition, our contribution is an ap-

proach that automatically derives well-formedness rules for metamodels. The approach

is based on a GP search that is guided by conformance with example and counter-

examples models.

Our contributions are as follows.

– Formalization of the synthesis of well-formedness rules as a search problem.

– Definition of a set of operators to automatically synthesize OCL expressions.

– A series of experiments that demonstrate the effectiveness of the approach and

provide a set of lessons learned for automatic model search and mutation.

8

1.4 Thesis structure

The remainder of this thesis is organized as follows. Chapter 2 reviews the state of

the art related to our three contributions. In chapter 3, we draw the big picture of our

thesis and discuss the role of the three proposed approaches to reach the global objective

of the thesis. Chapters 4, 5 and 6, give the details of the three approaches in the form

of articles. The document finishes by presenting, in chapter 7, a conclusion and some

future perspectives of our work.

CHAPTER 2

RELATED WORK

The objective of this chapter is to present the related work of this thesis. As said

before, this thesis is about automating MDE based on optimization searches guided by

examples. Thus, in this chapter we survey works of this domain. The chapter is divided

in three sections in which we discuss the three specific problems addressed. First we

discuss the related work of model transformation in the context of migration, second

we discuss the related work of general model transformation and finally we discuss the

related work of improving modeling language definition.

2.1 Related work on model transformation in the context of migration

In this section we present the related work of the first approach [18] presented in

this thesis, entitled "Deriving High-Level Abstractions from Legacy Software Using

Example-Driven Clustering".

The contributions in this area have different objectives, represent the problem and

the solution in many different ways, and use several algorithms. But they all have in

common two aspects that we use to classify the approaches.

The first common aspect is that, all contributions perform an analysis of low-level

model to extract facts, and based on this facts, they reify high-level models. The tech-

niques used to perform this analysis can be divided into two types: static or dynamic.

Static analysis is performed over the low-level model definition (e.g. source code). Dy-

namic analysis is performed over the source code execution traces.

The second common aspect of the surveyed techniques, is that, all contributions see

the reifying of high-level models from low-level models as a grouping problem. In such a

grouping, artifacts in the low-level model form groups that reify high-level artifacts. The

groups are created following some intuition. We call this intuition the meaningfulness

hypothesis. An example of hypothesis is that "elements that work together should be

10

grouped together".

In what follows, we present the state-of-the-art, according to the proposed classifica-

tion. At the end of the subsection we present a table summarizing the contributions.

2.1.1 Approaches based on static analysis

The first group of approaches reify high-level artifact by grouping low-level artifacts.

The groups are formed by analyzing facts obtained from the low-level model after a static

analysis. That is, the supposition here is that low-level artifacts have, in their definition,

enough information to reify high-level artifacts, and that there is no need of observing

their behavior.

2.1.1.1 Cohesion and coupling

This subcategory of static analysis based approaches, reify high-level artifacts from

source code based on the supposition that, elements that are close(far) in the application

level should be close(far) in the domain level. They transform this supposition into an

algorithm that measures the solution quality based on two metrics maximizing cohesion

and by minimizing coupling, where cohesion measures the quantity of interconnection

between elements of the same group and coupling measures the interconnection between

elements of different groups. The relevant approaches are the following:

In 1998, Mancoridis et al. [40] propose a collection of algorithms to facilitate the

automatic recovery of the modular structure of a software system for source code mod-

ules. The approach starts by creating a dependency graph of the source code modules

(source code files) and their dependencies. The graph is, then, partitioned using differ-

ent algorithms. The quality of a partition is measured in terms of module intra and inter

dependency (cohesion and coupling). The algorithms used are optimal clustering that

evaluates every possible graph partition, and three suboptimal algorithms that rely on

neighboring, hill-climbing and genetic algorithms, respectively. The approach is imple-

mented in a tool called Bunch and it is evaluated over four software systems.

In 1999, Mancoridis et al. [41] extend their previous work [40] by enabling the

11

integration of designer knowledge about the system structure into an, otherwise, fully

automatic cluster process. In particular the approach adds a functionality that allows

the user to manually define clusters, the orphan adoption. They also allow to classify

modules as omnipresent suppliers and omnipresent client, with suppliers modules not

being subject to the clustering process.

In 2002, Harman et al. [28] present a search-based approach for automatic software

modularization using a fitness function based on cohesion and coupling. The approach

uses a genetic algorithm and has two main contributions, (1) a modularization represen-

tation such that each modularization has only one representation and (2) an adaptation of

a genetic algorithm that preserves groups of elements (building blocks). The approach

is tested over toy systems of about 24 elements.

In 2002, Sahraoui et al. [48] focus on grouping procedures and global variables to

identify objects in procedural code. The approach sees the grouping problem as a par-

titioning problem of a call graph that relates procedures and global variables, in which

the objective is minimizing coupling and maximizing cohesion. The partitioning prob-

lem is solved using a genetic algorithm and conceptual clustering which is a variation of

hierarchical clustering. The approach is evaluated over three existing systems.

2.1.1.2 Static metrics

This subcategory of static analysis based approaches, reify high-level artifacts from

source code based on the supposition that beyond cohesion and coupling, there exist a

set of static metrics that can be optimized to create good groups. This extension of the

previous subgroup of works is based almost on the same underlying supposition. The

relevant approaches are the following:

In 2005, Seng et al. [51] propose a clustering approach to improve subsystem de-

compositions. The approach is based on a genetic algorithm that optimizes a fitness

function based on five OO metrics: coupling, cohesion, complexity, cyclic dependencies

and bottlenecks. To facilitate the convergence, one half of the initial population is cre-

ated favoring fittest individuals and, to favor diversity, the other half is created randomly.

They use the classic one-point crossover and they define four mutations: splitting a clus-

12

ter, merging two clusters, delete a cluster and adding a one element cluster to a bigger

cluster. They test their approach over a large OO open source system to reorganize its

classes into packages. The results show that the algorithm is able to find a good subop-

timal solution for the five components of the fitness function.

In 2007, Harman and Tratt [27] present an approach for refactoring OO programs

based on Pareto optimality. The approach consists in optimizing coupling and the stan-

dard deviation of the number of methods per class. The optimization is performed for

each metric independently. For each metric, a search based algorithm (hill climbing) is

run. The algorithm searches for a local optimum by randomly moving methods between

classes. Finally, a Pareto front is built to integrate the information of the two runs and it

is up to the user to select a solution in the Pareto front.

In 2009, Abdeen et al. [1] present an heuristic search-based approach for automat-

ically improving package structure in OO software systems in order to avoid direct

cyclic-connectivity. The approach uses Simulated Annealing (SA), for automatically

increasing package cohesion and automatically reducing package coupling and package

direct cyclic-connectivity. The optimization is done by moving classes over packages.

The classes to move are selected randomly giving more probability to bad classes. The

selected classes are randomly moved to a package in the neighborhood. The authors

test their approach on four open source software systems and the results show that their

approach is able to reduce coupling and direct cyclic-connectivity.

2.1.1.3 Concept analysis

Also based on static analysis, the following subcategory of approaches are based on

the idea that elements that represent common concepts in the application level should

be grouped together in the domain level. In particular, these approaches form candidate

high-level artifacts by performing formal concept analysis (Creation of concept or Galois

lattices). The relevant approaches are the following:

In 1997, Sahraoui et al. [49] propose a computer supported approach aimed at eas-

ing the migration of procedural software systems to object-oriented technology. The ap-

proach first identifies candidate objects (groups of variables) in procedural source code

13

using a Galois lattice. The lattice is created from an adjacency matrix that relates pro-

cedures to variables used by these procedures, which is the result of a static analysis of

the source code. The candidate objects are then refined by using the same technique.

Finally, an algorithm assigns the procedures to the identified objects in order to define

their behavior. A example is used to illustrate the approach which is also validated on a

large procedural system.

In 1999, Stiff and Reps [53] apply Concept Analysis for the modularization problem

in the conversion of procedural C programs to OO C++ programs. In this approach,

groups of procedures and variables become candidate objects. The main difference with

[49] is that (1) the initial adjacency matrix also considers the return data type and the

argument data types of procedures, and (2) it allows the use of complementary informa-

tion added by the user such as negative information to represent situations in which a

procedure does not have to use the user defined data type. The approach is tested over

various C programs like those of the SPEC benchmark.

2.1.1.4 Distance

Based on static analysis, as well, this subcategory of approaches creates groups, by

measuring the distance of the low level elements. The underlying supposition here is

that a mix of elements close in the application level should be close in the domain level

with the one used by those that perform concept analysis and Galois lattices. That is,

that elements that represent common concepts in the application level should be grouped

together in the domain level. The relevant approaches are the following:

In 2006, Czibula and S. erban [13] presented an approach for refactoring based on

k-means clustering. The approach consists of three steps. First, the relevant data is col-

lected from source code and other artifacts. Second, the k-means clustering is applied.

The k-means algorithm iteratively creates k clusters (groups of objects) that minimizes a

fitness function that measures the distance between the objects in a cluster. In the third

step, a list of refactoring actions is proposed by comparing the clustering result to the

current system organization. They test their approach on a large OO open source soft-

ware system where they reorganize classes, methods and attributes. They automatically

14

compare the results of their approach with a known good partition by calculating two

metrics: accuracy and precision. The authors claim to have results close to 99% for

these two metrics.

In 1999, van Deursen and Kuipers [56] propose a method for identifying objects

by semi-automatically restructuring the legacy data structures in large COBOL sys-

tems. The technique performs agglomerative clustering analysis under the hypothesis

that record fields that are related in implementation are also related in the application

domain. This hypothesis is treated as a fitness function that measures the euclidean dis-

tance in terms of programs that use the fields. The algorithm, then, tries to minimize the

distance between fields of the same cluster and maximize the distance between elements

of different clusters.

2.1.1.5 Others

Finally, there are approaches that, after a static analysis, use other kind of hypothesis

to create high-level artifacts as group of low-level artifacts.

In 1993 Canfora et al. [10] proposed a method to address the problem of identifying

reusable abstract data types, in source code, in the context of reverse engineering and re-

engineering. The method proposed searches for candidate abstract data types by looking

for isolated subgraphs in a graph that links procedures and user defined data types. In

their method, the graph is the result of a static analysis of the source code and the process

of looking for isolated subgraphs is perform in Prolog. A case study is used for validation

and to analyze the feasibility of the proposed method.

In 2006, Washizaki and Fukazawa [58] propose an approach for the refactoring of

OO programs. The refactoring is made by identifying and extracting reusable compo-

nents in the target programs and by making the proper modifications on the surrounding

parts of original programs. The approach works as follows. First, a graph is created

to represent the classes and their relationships (in particular, inheritance, reference and

instantiation). Then, the graph is processed by a clustering algorithm to search for fa-

cade patterns. Finally, the targeted programs are modified in order to use this cluster as

component. Even if the authors test their approach over several open source systems it

15

is not clear how the approach performs since the number of components to be found is

unknown.

2.1.2 Dynamic analysis

The second group of approaches, also reify high-level artifact by grouping low-level

artifacts. However, these approaches are based on the idea that what is important when

reifying high-level artifacts is their dynamic behavior rather than their static definition.

Thus, these approaches use, as input, facts obtained from the execution of the low-level

artifacts (execution traces) to reify high-level artifacts.

In 2005, Xiao and Tzerpos [61] proposed a clustering approach based on dynamic

dependencies between software artifacts. The approach starts by creating a dynamic and

weighted dependency graph for the studied system where the nodes are system source-

code files and the edges are their dynamic dependencies. Then, the graph is partitioned

using a clustering method. Finally the results are compared with those obtained from

static dependencies. Sadly, the comparison shows that the static dependencies perform

better than dynamic ones, even though, the latter can still give some good results.

In 2010, Allier et al. [2] propose an approach to restructure legacy OO applications

into component-based applications. The approach is based on execution traces. The

candidate components are identified by clustering the classes that appear frequently to-

gether in the execution traces of use cases. The clustering process is performed first by

a global search. Then its results are refined by a local search. They used a genetic algo-

rithm and SA respectively. Both search strategies are guided by a fitness functions that

optimises cohesion and coupling. The approach is validated through the study of three

legacy Java applications. Among the results they claim to have found more that 50% of

the components of the largest application.

2.1.3 Summary

Table 2.I summarizes the main aspects of the related work on model transformation

in the context of migration. As it can be seen in the table, most contributions are based

16

on static analysis. Only two contributions are based on dynamic analysis. Among those

based on static analysis, more that a half are based on cohesion and coupling or OO

metrics, which are, the most common hypothesis. The other half is based on several

hypothesis being the most common those based on concept analysis and distance. The

objective that the surveyed approaches aim at are mainly migration and refactoring, but

also, architecture recovering and reverse engineering. The most common source and

target paradigm considered in these migration approaches are procedural to OO. But

procedural to structured and OO to component have also been considered. On the other

hand, when refactoring the most common paradigm is OO. Finally, among the algorithms

used, the most common are clustering algorithms but also optimization search, GA,

concept analysis and Galois lattice.

2.2 Related work on general model transformation

In this section we present the related work of the second approach [22] presented

in this thesis, entitled "Genetic-Programming Approach to Learn Model Transformation

Rules from Examples".

Like the first approach, the contributions in this area represent the problem and the

solution in many different ways, use several algorithms and propose solutions of differ-

ent levels of generality. However, in order to classify them, we pay attention to two main

characteristics: (1) Model Transformation by Examples (MTBE) vs Model Transforma-

tion by Demonstration (MTBD) and (2) abstract vs operational transformations.

First, we divide the existing work between MTBE approaches and MTBD approaches.

MTBE contributions are those that, based on examples of past transformations (pairs of

source and target models), produce transformation rules, or mappings leading to trans-

formation rules, or that directly transform a model. MTBD contributions are those that,

based on examples of edition actions, transform a model.

Second, we divide the MTBE approaches between those that generate operational

transformation rules and those that derive abstract mappings or that actually transform a

model but do not produce any kind of transformation knowledge.

17

Dynamic
or Static

Meaningfulness
hypothesis

Year Authors Objective Source
Paradigm

Target
paradigm

Algorithm

Static

Cohesion and
Coupling

1998 Mancoridis et al. Architecture
recovering

Procedural
and OO

Optimal clustering,
Neighboring parti-
tions, Hill climbing,
GA

1999 Mancoridis et al. Architecture
recovering

Procedural
and OO

Optimal clustering,
Neighboring parti-
tions, Hill climbing,
GA

2002 Sahraoui et al. Migration Procedural OO Optimal clustering,
Neighboring parti-
tions, Hill climbing,
GA

2002 Harman et al. Refactoring Not men-
tioned

Optimal clustering,
Neighboring parti-
tions, Hill climbing,
GA

Concept
analysis

1997 Sahraoui et al. Migration Procedural OO Galois latice
1999 Stiff and Reps Migration Procedural OO Concept analysis

Distance 2006 Czibula and Ser-
ban

Refactoring OO k-means clustering

1999 van Deursen and
Kuipers

Migration Procedural OO Agglomerative cluster-
ing

Others 2005 Washizaki and
Fukazawa

Refactoring OO Optimal clustering
Based on a neighbor-
ing graph

1993 Canfora et al. Migration Procedural Structured Full search based on
prolog

OO Metrics

2005 Seng et al. Refactoring OO GA
2007 Harman and Tratt Refactoring OO Hill climbing and

Pareto
2009 Abdeen et al. Refactoring OO Hill climbing

Dynamic Cohesion and
Coupling

2005 Xiao and Tzerpos Reverse
engineer-
ing

OO Hierarchical clus-
tering, ACDC, GA,
Agglomerative

2010 Allier et al. Migration OO Component GA

Table 2.I: Summary of the related work on model transformation in the context of mi-
gration

In the following subsections, we present the state-of-the-art according to the above-

mentioned classification. A summary table of the main contributions is provided at the

end of the section.

2.2.1 MTBE

2.2.1.1 Transformation rules

In 2006, Varró [57] proposed a first approach of MTBE. In his work, he derives

transformation rules starting from a set of prototypical transformation examples with

interrelated models. The examples are provided by the user. This semi-automatic and

18

iterative process starts by analyzing the mappings between source and target example

models along with the respective meta-models. The transformation rules are finally pro-

duced using an ad-hoc algorithm. Varró’s approach can derive only 1-to-1 transformation

rules, which is an important limitation, considering that the majority of transformation

problems need n-to-m rules. The rules derived by this approach, can test the presence

or the absence of elements in the source models. This level of expressiveness, which

is enough for many transformation problems, is, however, insufficient for many com-

mon transformation problems like UML Class diagram to Relational diagram. Although

source and target model examples could be collected from past manual transformations,

providing the fine-grained semantic equivalence between the contained model constructs

is difficult to guarantee. Finally, Varró did not publish the validation data. Consequently,

we do not know how the approach behaves in a realistic scenario.

In 2007, Wimmer et al. proposed in [60] an approach that produces 1-to-1 transfor-

mation rules based on transformation examples and their traces. The derivation process

is similar to the one proposed by Varró in [57], with the difference that Wimmer produces

executable ATL [32] rules. As mentioned earlier, producing only 1-to-1 transformation

rules is an important limitation for the approach applicability as most of the existing

transformation problems cannot be addressed. Here again, the lack of a validation step

does not allow assessing how the approach performs in realistic situations.

In 2008, Strommer et al. [54] extend the previous approach of Wimmer by enabling

2-to-1 rules in a derivation process based on pattern matching. From the implementation

standpoint, the authors developed an Eclipse plug-in prototype for model transforma-

tion. Like the previous approaches, this contribution has not been validated in concrete

settings, and the question on how the approach performs in realistic situations remains

unanswered.

In 2009, Balogh et al. [4], improve the original work of Varró by using inductive

programming logic (ILP) [42] instead of the original ad-hoc heuristic. However, like for

the approach of Varró, the main idea is to derive rules using transformation mappings.

One difference between the approach of Strommer et al. [54] and the one of Balogh et

al. is that the former uses pattern matching to derive transformation rules and the latter

19

uses inductive programming logic (ILP) [42]. This approach produces n-to-m rules from

Prolog clauses that are obtained through a semi-automatic process in which the user has

to add logical assertions until the ILP inference engine can produce the desired rule. In

addition to the need of giving detailed mappings, the fact that the user has to interact

with the ILP inference engine is a limitation of this approach. Like Varró, Balogh et al.

also produce rule conditions of low expressiveness (only able to test the presence and

absence of source elements). Balogh et al. claim being able to produce the set of rules

needed to transform a UML class diagram to relational schema. Unfortunately, the set

of rules obtained is not published. The paper also lacks a validation step, which makes

it very difficult to assess the usefulness of the proposed approach.

In 2009, Garcia-Magarino et al. [25] propose an algorithm capable of creating n-to-

m transformation rules starting from interrelated model examples and their metamodels.

The rules are created in a generic model transformation language, and they are, later,

translated to ATL for evaluation proposes. The paper presents a validation step that

mainly focuses on approach capability to generate n-to-m rules, but it does evaluate the

quality of the produced rules. As for other MTBE approaches, the need of transformation

traces limits the approach applicability.

In 2010, Kessentini et al. [35] proposed an approach for deriving 1-to-m transfor-

mation rules starting from transformation examples. The rule derivation process is made

by producing 1-to-m mappings between elements in the source metamodel and elements

in the target metamodel. This contribution does not use traces and also it actually pro-

duces rules. Although the rules produced are of type 1-to-m, which is an improvement

compared to other contributions, the absence of n-to-m rules is still a limitation. The

rule conditions produced are very simple. They only test the presence of source model

elements and are not able, among other things, to use the property values. Like in his

previous work, Kessentini et al. based his approach on a hybrid heuristic search that uses

PSO and SA. The authors also perform a validation step but this has the same threats to

validity as the previous approach, i.e., correctness scores derived manually by the au-

thors.

In 2012, Saada et al. [47], extend the work of Dolques et al. [15] by proposing a

20

two-step rule derivation process. In the first step, Dolques’ approach is used to learn

transformation patterns from transformation examples and transformation traces. In the

second step, the learned patterns are analyzed and those considered as pertinent are se-

lected. Selected patterns are, then, translated into transformation rules in JESS language.

As in [15] the produced rules are n-to-m. The approach is finally tested in a ten-fold ex-

perimental setting where precision and recall are calculated.

2.2.1.2 Mappings and other forms of transformations

In 2008, Kessentini et al. [34] propose a model transformation approach that, start-

ing from transformation examples and their traces, transforms a source model into a

target model. This contribution differs from the previous ones because it does not pro-

duce transformation rules. It instead directly derives the needed target model by analogy

with the existing examples. The transformation process is made by producing n-to-m

mappings between elements in the source model and elements in the target model. The

mappings are derived by an hybrid heuristic search that first finds an initial solution

by performing a global search (using the meta-heuristic Particle Swarm Optimization

(PSO) [16]) and then improves this solution by performing a local search (using the

meta-heuristic SA [37]). These heuristic searches are guided by an objective function

that measures the similarity between the solution and the base of examples. The fact

that this approach does not produce rules could be a limitation. Indeed, when rules are

produced, it is possible to manually modify and improve them in an iterative process that

ends with a satisfactory set of rules. These rules can be, later, reused as many times as

the user needs. In the case of this approach, when obtaining an incomplete transforma-

tion for a given model, the user has to manually correct and complete the target model,

employing his time in a task that only solves a specific case without any potential of

reuse. Although this approach was validated on industrial data, the evaluation process

has threats to validity. Indeed, the authors calculated two correctness scores, one by

automatically comparing the obtained model with the expected one, and the other by

checking manually the correctness of the obtained model. The manual assessment was

done by the authors themselves and not by independent subjects.

21

In 2010, Dolques et al. [15], propose an MTBE approach based of Relational Con-

cept Analysis (RCA) [44]. The RCA based derivation process analyses a unique trans-

formation example and its mappings, along with the source and target meta-models. It

produces sets of recurrent n-to-m transformation mappings organized in a lattice. When

the mappings (or transformation traces) are not available, Dolques et al. propose a tech-

nique to produce an alignment between the source and target example models. This

alignment is based on the identifiers, which compromises the quality of the resulting

mappings, as mentioned by the authors. Because this rule derivation approach was not

validated on concrete data, it is difficult to assess to which extent it is efficient. Moreover,

the need of transformation traces is also a limit, as it is the case for all the approaches

except for [35].

2.2.2 MTBD

In 2009, Sun et al. [55] proposed a new perspective for the derivation of transfor-

mations, namely, Model Transformation By Demonstration (MTBD). In this work, the

objective is to generalize model transformation cases. However, instead of using exam-

ples, the users are asked to demonstrate how the model transformation should be done

by directly editing (e.g., add, delete, connect, update) the model instance to simulate

the model transformation process step by step. The user editing actions are recorded

and serve as matching and transformation patterns that can be later applied on a simi-

lar (or the same) model by performing a pattern-matching process. From the point of

view of the expressiveness, the transformation patterns produced can contain sophisti-

cated transformation actions like string concatenation and mathematical operations on

numeric properties which is an improvement to the previous approaches. This approach

is intended to perform an endogenous transformation, i.e., both source and target models

conform to the same metamodel. Moreover, the transformation consists of changing the

source model itself progressively to end with the target one. These two facts are im-

portant limitations of this approach. Another primordial limitation is that the generated

transformation patterns are not really rules. Thus, they can hardly be reused in a state-

of-the-art transformation languages such as ATL. Because Sun et al. do not perform a

22

validation, we do not have enough elements to judge the performance of their approach

on a realistic scenario.

In 2010, Langer et al. [39] propose an MTBD approach, very similar to the one

of Sun et al., with the improvement of handling exogenous transformations. These are

transformations in which the source and target models belong to two different metamod-

els. The main limitation of this approach is the same as the one of Sun et al., since it

does not produce transformation rules but instead transformation patterns. As for many

approaches, the absence of a rigorous validation makes it difficult to assess the perfor-

mance of this approach in realistic scenarios.

2.2.3 Summary

Table 2.II summarizes the main aspects of the related work on general model trans-

formation. In the table the tags "X" and "-" are used to assert the presence, respectively

absence, of a property. The table is divided into two groups, approaches that perform

MTBE and approaches that perform MTBD.

The first group is separated between contributions that aims to derive transformation

rules and those that derive mappings and other kind of equivalence between the source

and the target language.

All the approaches that derive transformation rules use transformation example pairs

and, with the exception of one work, all of them use transformation traces. They use

several derivation processes e.g. pattern matching and heuristic searches. Less than

a half of these approaches derive full operational rules, the others do not. With the

exception of two works, none of them derives n-to-m rules. None of them, neither, are

able to derive the target model by performing advanced operations like concatenating

two source model identifiers. They do not implement any kind of rule execution control

different than the default (i.e. every rule triggers when matching the source pattern)

and with the exception of two contributions, none of them presents a comprehensive

validation step. The approaches that derive mappings and other kind of equivalences,

also use transformation examples with traces. One of them does not use metamodels

since it derives a transformation equivalence at a model level. They also use several

23

derivation processes. Both of them derive n-to-m matchings between source and target

models and none of them allows advanced operations or implements execution control.

One of them performs a comprehensive validation step.

The second group of approaches, those that transform a model by demonstration,

does not use transformation examples or transformation traces, nor metamodels. They

use demonstrative editing actions. Both are based on a pattern matching derivation pro-

cess that derives n-to-m transformation patterns that state how to modify the source

model in order to obtain the target model. Both of them allow operations to enlarge the

target model identifier space by concatenating source model identifiers. Sadly, as in the

first group, none of them performs a comprehensive evaluation step.

2.3 Related work of improving modeling language

In this section, we present the existing work related to the third contribution [21] pre-

sented in this thesis, entitled "Automatically searching for metamodel well-formedness

rules in examples and counter-examples".

To the best of our knowledge, this is the first contribution with the objective of de-

riving automatically well-formedness rules in the context of metamodeling. Thus, we

cannot discuss contributions that target the same problem within the same context.

Instead, we discuss in this section three families of contributions to which our work

is related. The first family concerns the metamodel definition and the resulting modeling

space. Another type of contributions that we consider is the learning of invariants or rules

from low level artifacts. Finally, we discuss a closely and complementary domain which

is the automatic recovery or reconstruction of metamodel structures from examples or

low level artifacts.

2.3.1 Metamodel definition and modeling space

In 2012, Cadavid et al. [8] perform an empirical study, which analyzes the current

state of practice in metamodels that actually use logical expressions to constrain the

structure (well-formedness rules). They analyzed dozens of metamodels coming from

24

industry, academia and the Object Management Group, to understand how metamodelers

articulate metamodel structures with well-formedness rules. They implement a set of

metrics in the OCLMetrics tool to evaluate the complexity of both parts, as well as their

mutual coupling. They observe that all the metamodels tend to have a small core subset

of concepts, which are constrained by most of the rules. And they also observe that,

in general, the rules are loosely coupled to the structure. However, the most interesting

conclusion, from our perspective, is that there is a limited set of well-formedness rule

patterns (22) that are the most used by metamodelers. As we will see in Chapters 3 and

5, we use these patterns as a starting point when searching for well-formedness rules in

a metamodel.

With respect to the modeling space resulting from a metamodel definition, Cadavid et

al. [26] studied the automatic selection of a set of models that better cover this modeling

space. The selected set should both cover as many representative situations as possible

and be kept as small as possible for further manual analysis. They use a meta-heuristic

algorithm, SA, to select a set of models that satisfies those two objectives. The approach

was positively evaluated using two metamodels from two different domains. In this

thesis, we reuse the idea of model set selection to create the base of model examples. As

it will be shown in Chapters 3 and 5, the base of examples includes a set of valid and a

set of invalid models for a given metamodel. These examples allow to assess if a learned

set of well-formedness rules discriminate well between the two sets of models.

2.3.2 Derivation of invariants

In 2007, Ernst et al. [17] proposed the Daikon system. This system allows the dy-

namic detection of likely invariants in C/C++, Java and Perl programs. This contribution,

which is a precursor to the domain, is based on a derivation process that works as fol-

lows. First, a program is automatically instrumented in order to report the value of the

program variables during the executions. Then the program is run many times in order to

produce the execution traces. Finally, an inference engine reads the execution traces and

produces likely invariants using a generate-and-check algorithm to test a set of potential

invariants against the traces.

25

In 2011, Ratcliff et al. [45] complemented Ernst et al. work [17]. This contribution

proposes a method, based on a GP algorithm, in which a population of randomly created

invariants is improved by comparing their performance against the program execution

traces. Since an evolutionary search can consider a very large amount of invariants,

Rafcliff et al. propose a mechanism to filter the interesting invariants from those that are

uninteresting. Sadly, this mechanism is not explicitly documented. Finally, the authors

perform a case study that allows them to conclude that their approach can find more

invariants than Daikon [17].

In 2011, Zeller [62] gave an overview of specification mining. The idea is to extract

specifications from existing systems by effectively leveraging the knowledge encoded

into billions of code lines. These specifications are models of the software behavior that

can act as specifications for building, verifying, and synthesizing new or revised systems.

Rather than writing specifications from scratch, developers would, thus, rely on this ex-

isting knowledge base, overcoming specification inertia. Among the specifications that

Zeller identifies we can mention pre-conditions, post-conditions and dynamic invariants.

During the same year, Dallmeir et al. [14] pointed out that dynamic specification

mining effectiveness entirely depends on the observed executions. If not enough tests

are available, the resulting specification may be too incomplete to be useful. To ad-

dress this problem, they use test case generation to systematically enrich dynamically

mined specifications. The test case generation covers all possible transitions between all

observed states, and thus extracts additional transitions from their executions.

2.3.3 Metamodel reconstruction

In 2008, Javed et al. [31] proposed an approach to infer a metamodel from a collec-

tion of instance models. This contribution is motivated by the fact that, in most meta-

modeling environments, the instance models cannot be loaded properly into the model-

ing tool without the metamodel. The inferring process is based on grammar inference

algorithms. Finally, the approach feasibility is shown by performing a case study.

Later, in 2012, Sanchez-Cuadrado et al. [50] proposed an interactive and iterative

approach to the metamodel construction enabling the specification of model fragments

26

by domain experts, with the possibility of using informal drawing tools like Dia. These

fragments can be annotated with hints about the intention or needs for certain elements.

Given these informations, a meta-model is automatically induced, which can be refac-

tored in an interactive way, and then compiled into an implementation meta-model using

profiles and patterns for different platforms and purposes.

27

Table 2.II: Summary of Model Transformation By Example related work

CHAPTER 3

IMPROVING AUTOMATION MDE BY EXAMPLES AND THE THREE

APPROACHES

3.1 Chapter Objectives

The objective of this chapter is to draw a big picture of our contributions and to

show how the three approaches contribute in improving automation in Model Driven

Engineering (MDE).

In order to do that, we first describe the context of this thesis by giving a summary of

the main aspects of MDE. We then discuss the role of automation in MDE and the tech-

niques that, depending on the context, can be used to improve the degree of automation

in MDE tasks.

A special attention is paid to Search Based and by examples approaches since they

form the basis of our contributions.

After giving the context, we present the three MDE problems we target and the three

approaches proposed in this thesis to improve automation on these problems.

Finalizing, the common aspects of the approaches are discussed and a summary of

the chapter is given.

3.2 Model Driven Engineering (MDE)

MDE is a paradigm that promises reducing software system complexity by the mean

of the intensive use of models and automatic model transformations. The main idea of

MDE is that software development can be easied by using several high-level abstrac-

tion models (domain models) to represent the software system and that, by the mean of

model transformation, automatically produce low-level abstraction models (implementa-

tion models) like source code and test sets [33]. The assumption here is that dealing with

several domain models is considerably easier than directly dealing with implementation

artifacts.

29

In the following paragraphs we recall the main concepts of MDE. Our definitions are

based mainly on the ideas of [33] and [7]. These concepts will be used in the rest of this

chapter.

Models. Models are software artifacts used to represent software systems. Models

reduce the effort of understanding the system because they contain less details, focus

on a specific perspective, and are intended for a specific audience. Still, for a given

perspective, models give the same answers than the modeled system. Thereby, models

are easier to deal with than the modeled system while covering the same information.

Metamodels. Several models are used to represent a software system, each one

focuses on a specific perspective. Examples of these perspectives are the level of ab-

stractions at which the model represents the system, the aspect that the model describes

and the audience to whom the model is intended. The formal definition of these per-

spectives are provided by Metamodels. Metamodels are software artifacts that define

the elements and relationship that can be used and the rules that must be satisfied to

produce a valid model. Metamodels are also complemented with well-formedness rules

[9] that bring additional constraints in order to make metamodels more precise in their

definitions and thus safer in their utilization.

Model Transformations (MT). Producing and maintaining several up-to-date mod-

els can become a hard task. To alleviate such a task, MDE activities are thought to be

performed automatically (when possible) by mean of model transformations.

MT is a mechanism that receives as input one or several source models and creates

as output one or several target models by applying, for example, a set of transformation

rules (TR). TR are declarative programs that look for a pattern of elements in the source

model(s) and that instantiates a pattern of elements in the target model(s).

MT and TR are defined at a metamodel level. That allows them to receive as in-

put any model instance of the source metamodel and create the corresponding model

instance of the target metamodel. Consequently, the source and the target metamodels

30

are inputs for a MT and for TR.

Defining a MT is a difficult task. The specific transformation knowledge has to be

gathered and implemented into a set of TRs. More over, this set of TRs have to be correct,

coherent, and general enough. However, once defined, a MT becomes a repetitive task

and thus, subject of automation and reuse.

Chain of Model Transformations (CMT). Frequently a single MT is not enough

to cover the conceptual distance between the source models and the target models. In this

case a succession of MTs is used. We call this succession a chain of model transforma-

tions (CMT). CMT transforms source models into target models by applying successive

MT in a similar way that an assembly line does.

SE tasks and MDE tasks. Under MDE paradigm, every Software Engineering

(SE) task (that are called MDE tasks) relies at some point on a CMT. For example,

forward engineering [23] is seen as a CMT that starts with the domain expert and the SE

practitioner providing domain models, and that finishes by producing implementation

models like source code. As another example, model driven testing engineering [29] is

also seen as a CMT. In this case the CMT starts with domain models representing the

system and finishes by producing implementation models like test cases.

3.3 Improving Automation in MDE

In this thesis we present three approaches that increase the degree of automation in

MDE. Before describing these approaches, let us answer the question "What automation

is?". Dictionary.com defines automation as:

1. The technique, method, or system of operating or controlling a process by highly

automatic means, as by electronic devices, reducing human intervention to a min-

imum;

2. a mechanical device, operated electronically, that functions automatically, without

continuous input from an operator;

31

3. by extension, the use of electronic or mechanical devices to replace human labor.

Thus automation happens when human activities (specially productive ones) are re-

placed by electronic devices automatically controlled.

According to Sheridan [52], the degree of automation, is the relation between the

tasks of a process that are allocated to machines and those allocated to humans. Wei et

al. [59] extend this definition to consider the difficulty of the task. For these authors, the

tasks can be the process performed to transform an input into an output or the control

activities needed to assure that the process works properly.

Parasuraman et al. [43] define a scale of 10 levels to measure the degree of automa-

tion in information processing that depends on how less human interaction is needed to

perform a process or a task. At level 1 (lowest) the computer offers no assistance and

thus the human must take all decisions and actions. At level 10 (highest) the computer

decides everything, acts autonomously and ignore the human. But the less quality an

automated process achieves the more human interaction is needed in controlling and

validating. Thus, the better is the quality of a process, the better is the level of automa-

tion. By quality we mean correctness, coherence, safety, rapidity and generality.

Therefore, in the case of MDE, improving the degree of automation is about replac-

ing MDE tasks, that are performed manually by automatic (computer based) processes.

In the case of MDE tasks that are already performed automatically, improving automa-

tion is about replacing them by new processes that need less human interactions.

Of course MDE is not meant to be a fully automated approach. Manual tasks are

impossible to avoid [3]. At some point, a human being has to validate the automatically

produced result or to organize the overall process. At the end, it is up to humans to

define, for example, which are the model transformations that are interesting to perform

or the systems that are interesting to be modeled. In this sense automation in MDE do

not pretend to replace the human role but to avoid performing manually all those tasks

that, because of their nature (complexity, time consuming, error prone and repetitive),

are better done automatically.

32

3.4 Automation Techniques and By Example approaches

To improve automation, the proper techniques have to be chosen. This choice de-

pends on the context. If the automation algorithm is known and performant, a program

implementing it is enough, like in the case of sorting [30].

But there are situations in which the algorithm is unknown or not scalable. In these

cases techniques like metaheuristics, search based algorithms and machine learning al-

gorithms can be used, e.g [11], where a search algorithm is used to solve the vehicle

routing problem.

These techniques can be combined with examples to solve specific problems (e.g.

[36]) by analogy with examples or, even, to learn a good general subobtimal solution out

from examples (e.g. [5]).

This idea has been largely applied in machine learning to automate objects classi-

fication (e.g. [63]) since the classification algorithm is, in general, unknown. In these

applications, images of objects with their corresponding classification are given as ex-

amples to a machine learning process. The process analyzes the examples to determine

what properties are important for the classification as well as the parameter values of the

classifier. Once the properties determined and the parameters set, the application is able

to automatically classify a new object (not present in the example set).

Examples have also been used in MDE to learn model transformations. Certainly, for

some specific kind of models, the transformation algorithm is well known (e.g. Sequence

diagrams to Petri nets models [6]). But, in general, the algorithm to transform a model of

an arbitrary kind to its corresponding model of another arbitrary kind is unknown [12].

For this general case, approaches have been proposed that use examples models (pairs of

source and target models). The examples are analyzed to set some learning or deriving

artifact (e.g. [60]). Once the examples processed, the approaches are able to transform a

new source model into its corresponding target model.

Whether the approach is intended to solve a specific problem following examples or

to abstract a general solution out from examples, a mechanism to process the examples

and to obtain information or knowledge from them, is needed. The choice of this mech-

33

anism depends on the problem’s nature, on how general the solution is expected to be

and also on how much information about the solution is known beforehand.

3.5 Targeted automation problems

Among all the tasks and aspects that can be improved when increasing automation in

MDE, we are interested in three specific activities: software migration (SM) [24], model

transformation (MT) [57] and precise metamodeling (PM) [46].

SM can be seen as a three steps process: (1) reverse engineering of models from

the legacy code, (2) model transformation from the legacy paradigm to the new one,

and (3), code generation from the model. The second step is a model transformation

problem with the particular property that constructs of the new paradigm are obtained

by clustering the ones of the legacy paradigm.

MT, in turn, is the classical problem of capturing the semantic equivalence between

two metamodels.

Finally, PM aims to having precise metamodel definitions by adding well-formedness

rules to the structure definition. Since metamodels are inputs for MT, PM is an important

element in MDE.

In the next three sections we discuss the three approaches proposed in this thesis to

improve automation in these three aspects of MDE. We finish the chapter by discussing

the common elements to the three approaches and by connecting these ideas with the

central theme of this thesis.

3.6 First approach : Deriving High-Level Abstractions from Legacy Software Us-

ing Example-Driven Clustering

The first approach [18] presented in this thesis, called "Deriving High-Level Ab-

stractions from Legacy Software Using Example-Driven Clustering", introduces im-

provements in automation by modeling transformation in the context of migration as

a Software Clustering (SC) problem.

34

This new approach, instead of creating clusters by optimizing SE metrics (e.g. [41])

or by grouping together elements that share common properties (e.g. [1]), creates clus-

ters by similarity with cluster examples.

We argue that SE metrics and common properties do not necessary lead to reify high

level software artifacts of good quality and that, by creating clusters using examples the

quality of the derived constructs improves.

As for other SC approaches (e.g. [41]), we represent the SC problem as a graph

partitioning problem and, since a general solution for this problem is unknown, we use a

combination search based method that finds a suboptimal solution. In particular we use

Particle Swarm Optimization (PSO) [16] and Simulated Annealing (SA) [37].

3.7 Second approach: Genetic-Programming Approach to Learn Model Trans-

formation Rules from Examples

The second approach [22], called "Genetic-Programming Approach to Learn Model

Transformation Rules from Examples" introduces improvements in automation for the

production of Transformation Rules.

This approach proposes a method to automatically derive (generalize) the set of TRs

that implement a MT by using as input examples of the transformation (pairs of source

and target models).

Since in general, the algorithm to produce a coherent set of TRs that properly imple-

ment a MT is unknown and that TRs are programs, we decided to use Genetic Program-

ming (GP) [38].

GP is a evolutionary algorithm and also a search based algorithm. It is used to au-

tomatically search for a program that approximate a behavior. GP is used in a context

in which manually producing the program is difficult, but in which, there exist examples

based on what GP can derive an approximation.

The idea of automatically deriving a MT from examples is not new (e.g. [57]) but

our approach needs less human interaction and proposes more general solutions than the

ones of the state of the art.

35

3.8 Third approach: Automatically searching for metamodel well-formedness rules

in examples and counter-examples

The third approach [21], called "Automatically searching for metamodel well-formedness

rules in examples and counter-examples", introduces improvements in the automation of

well-formedness rule derivation for metamodels.

WFRs help in defining more precise metamodels by constraining the models that a

metamodel can accept as valid, and, therefore, avoiding poorly constructed models [9].

The approach uses examples of valid models and invalid models as inputs and uses

these examples to derive general well-formedness rules for the metamodel.

In this approach, we also propose a derivation method based on GP and examples,

and the justification is similar to the one articulated for the second approach. Indeed,

WFRs are programs and the algorithm to produce them is unknown. Still, there are

examples that can be used to derive an approximation of them.

To our knowledge metamodel WFRs are currently created manually. Therefore, this

method is the first attempt to automate this task.

3.9 Common aspects on the three approaches

In this thesis, the three approaches have in common that they all improve important

parts of MDE.

The first one improves the migration process by formalizing the paradigm shift as

a model transformation problem. Unlike general transformation, paradigm shift is seen

as a clustering task. The second approach improves the CMT by automating the deriva-

tion of transformation rules. Finally, the third approach improves CMT by proposing a

method for the automatic derivation of well-formedness rules for metamodels.

The three approaches have in common the fact that they all use examples. The first

one creates clusters by conformance with cluster examples. The second one derives

transformation rules by using examples of past transformations (pairs of source and tar-

get models) as input, and the third one uses examples of valid and invalid models to

derive general well-formedness rules.

36

The third common aspect is that the three approaches solves a problem for which the

algorithm is unknown, and each one proposes a solution based in search based algorithm

like GP, PSO and SA. The first approach uses a combination of PSO and SA to per-

form clustering by analogy. In contrast, the two other approaches adapt GP to abstract

knowledge (transformation rules and well-formedness rules) from examples.

3.10 Chapter summary

MDE reduces software system complexity easing its development and maintenance.

MDE relies on the use of models to represent systems and uses CMTs to derive various

software artifacts from these models.

Even if human interaction is unavoidable, improving the degree of automation in

MDE tasks remains an important challenge.

The technique used to improve MDE tasks depends on the nature of the specific

problem. For problems where efficient algorithmic solutions are known, a program im-

plementing the algorithm is good enough. But when the algorithm is unknown or not

scalable, other techniques like search based and machine learning algorithms can be

combined with examples to solve the problem in specific cases or even to find general

solutions.

In this thesis we proposes three approaches that improves software migration, model

transformation and precise metamodeling, three important activities of MDE. The three

approaches use examples and solve a problem in which a scalable algorithm is unknown

by applying search based algorithms.

In the next three chapters we present in detail each approach and support our proposal

with empirical validations.

CHAPTER 4

DERIVING HIGH-LEVEL ABSTRACTIONS FROM LEGACY SOFTWARE

USING EXAMPLE-DRIVEN CLUSTERING

In this chapter we present the first contribution [18] entitled "Deriving High-Level

Abstractions from Legacy Software Using Example-Driven Clustering" published at

"Proceedings of the 2011 Conference of the Center for Advanced Studies on Collab-

orative Research", 2011, pages 188-199. The contribution aims to improve automation

in MDE. Specifically, the approach proposes a method to perform model transforma-

tion in the context of migration. The approach allows reifying a high-level of abstraction

model from low level artifacts (source code) by performing a software clustering process

based on a hybrid optimization search. The search, instead of being guided by structural

metrics, is guided by conformance with known good clusters used as examples. Based

on our empirical results, we argue that driving the search by conformance to examples

leads to better results than current approaches. This contribution is the follow-up of [19],

which was presented in GECCO 2011. In the remainder of this chapter we present the

paper.

1

Deriving High-Level Abstractions from Legacy Software
Using Example-Driven Clustering

Martin Faunes, Marouane Kessentini and Houari Sahraoui

DIRO, Université de Montréal, Montréal, Canada

Abstract
Much research in the past two decades has fo-
cused on automatic generation of abstractions
from low-level software elements using clustering
algorithms. This research is generally motivated
by comprehension improvement through more
abstract constructs, re-architecture of existing
systems to improve their maintenance, or migra-
tion to new paradigms. In this paper, we start
from a formulation of software clustering prob-
lems in a setting, where elements of a software
system form a graph to be partitioned in order to
derive high-level abstractions. We then propose a
novel formulation where the graph partitioning
solution is evaluated by the degree of its confor-
mance with past clustering cases given as exam-
ples. We provide a concrete illustration of this
formulation with the problem of object identifica-
tion in procedural code.

1 Introduction
For more than 20 years, researchers have been
proposing approaches and algorithms to automati-
cally derive more abstract constructs from exist-
ing low-level software elements. This research
work is generally motivated by program compre-
hension, re-architecture of existing systems to
improve their maintenance, or migration to new
paradigms. In general, deriving abstract constructs
is treated as a clustering problem. Indeed, the

Copyright  2011 Martin Faunes, Marouane Kessentini
and Houari Sahraoui. Permission to copy is hereby
granted provided the original copyright notice is repro-
duced in copies made.

proposed work tries to obtain abstractions by
clustering basic elements. Early examples are
abstract data type identification as groups of va-
riables and procedures (e.g., [1]), remodulariza-
tion as groups of procedures (e.g., [11]), and
classes identification as groups of procedures and
variable (e.g., [5]). Recent work concentrates,
among others, on package restructuring as groups
of classes (e.g., [3]), and components identifica-
tion as groups of classes (e.g., [14]).

In modern software engineering, abstract
elements such as classes and components general-
ly reify actual entities or functions of the applica-
tion domain. Consequently, their existence obeys
the application semantics. If we want to obtain
them by clustering existing low-level constructs in
the code, we should have a means to approximate
the application semantics from the code. The
more a group of basic elements conforms to an
application entity according to the approximation
method, the more it is considered as an acceptable
abstraction.

The most commonly used approximation
heuristic in software clustering (SC) problems is
that elements that are close structurally are also
close semantically, i.e., they form an abstraction
that represents an application entity or function.
For example in a C program, if a set of procedures
accesses the same set of variables, chances are
that both sets define respectively the behavior and
structure of a class corresponding to an applica-
tion entity. We call this the structure-semantics-
equivalence hypothesis. Another approximation
method is based on the hypothesis that elements
that are changed together frequently are semanti-
cally close (simultaneous-change hypothesis).

Although the existing approximation methods
give good results in many clustering problems,

38

2

they generate a lot of false positives. This makes
it difficult to rely on them for automated
processes. In this paper, we propose a new formu-
lation of software-clustering problems. In this
formulation, we view the clustering as a grouping
process guided by the similarity with past cluster-
ing examples. We illustrate our proposal with the
well-know clustering problem of object identifica-
tion in procedural code. Our evaluation showed
that the majority of identified objects are correct.
Furthermore, our “by-example” approach outper-
forms a classical one [4].

The paper is organized as follows: Section 2
shows the classical formulation of software-
clustering problems. This is done by synthesizing
the existing work in a formal framework. At the
end of this section, we highlight the limitations of
this classical formulation. To alleviate these limi-
tations, we propose a new formulation that is
described in Section 3. To illustrate this new for-
mulation, we present in Section 4 an application
to the problem of object identification (OI) in
procedural code. The first part of this section is
dedicated to the mapping between the OI problem
and our formulation. In the second part, we eva-
luate the derived solution on existing legacy code.
Concluding remarks are finally given in Section 5.

2 SC as a Graph Partition-
ing Problem

This section has two goals. First, it presents a
good sample of the exiting work on software
clustering problems. The second objective is to
propose a uniform formulation of the SC prob-
lems to better analyze the existing research con-
tributions and highlight their limitations.

In the majority SC contributions, three impor-
tant elements are usually specified: (1) the defini-
tion of the clustering problem, (2) the definition
of an objective function to evaluate the quality of
a solution, and (3) the concrete algorithm used to
perform the clustering, i.e., to derive the solution.
In this section, we propose a uniform formulation
for the three above-mentioned elements and
present the existing work accordingly.

2.1 Problem Definition
The majority of software clustering contributions
is based on the structure-semantics-equivalence
hypothesis. In this context, groups of elements

that are structurally dependent are viewed as ab-
stractions corresponding to application domain
entities. In this setting, the contributions can be
summarized as: given a set of elements compos-
ing a software and the dependency relationships
between them, find groups (clusters) of elements
that maximize an objective function and/or satisfy
a set of constraints (e.g., [3]). There are many
ways to formally represent the problem of soft-
ware clustering. The most common way is to
view it as a graph partitioning problem [16]. The
notion of graph could be explicit (e.g., [17] and
[9]), or implicit (e.g., [21] and [2]) where a matrix
representation is used.

2.1.1 Graph-based Representation

The software to be clustered defines a graph
,  . The set of vertexes  represents the
elements of interest in the software and the set of
edges      represent the dependencies
between these elements. The nature of the ele-
ments in  and their dependencies in  are prob-
lem specific. For example, when clustering
classes into packages,  is the set of classes in the
system and  the relationships between classes
such as method invocations (e.g., [3]).

The graph  is typically a directed graph (e.g.,
[5] and [17]). In directed graphs each edge   
is an ordered un pair ,  where an element
   depends on an element   , but the in-
verse is not necessarily true. For example, when
deriving packages by grouping classes,  could
represent the method invocations between classes.
In that case, the graph is directed. In the case of
undirected graphs, each    is an unordered
pair ,  stating that there is a dependency be-
tween u and v without a specific direction. In the
rest of this paper, we will consider only directed
graph as undirected graphs could be easily trans-
formed into a directed one.

For a clustering problem, different types of
elements in a software could be of interest. Con-
sequently, the vertexes in  and edges in  are
typed. This can be represented by two functions
(1) :    associating each element   
with its type    where  is the set of possi-
ble types of  and (2) :    associating each
element    with its type    where  is
the set of possible types of  . For example in
object identification, procedures call procedures
and use variables. Formally

39

3

  , 

  , 

The definitions of types for vertexes and
edges could be explicit (e.g., [5] and [4]), or im-
plicit (e.g., [9]). Depending on the type of vertex-
es an edge connects, there are restrictions on the
type it can take. For example, a variable can’t call
or use a procedure. This type of restriction can be
represented formally as a function

:       
that specifies for each pair of types of vertexes in
TV the subset  of allowed types of edges in TE.

As stated by Mitchell in [18], for some clus-
tering problems, edges in the graph could be
weighted. The weight is defined as a function
:   . This function is used to measures the
strength of the dependency between two elements.
For instance, the weight could indicate the num-
ber of method invocations between two classes.

2.1.2 Graph Partitioning

Now that we have introduced the graph based
representation of a program, the next step is to
describe how the graphs are partitioned to achieve
the clustering goal. As described in [17], the parti-
tion of a graph G into m clusters is formalized as

  , , … , 

where each  is a cluster corresponding to a sub-
graph of  such that:

• Each cluster  is a non empty sub-graph of
:

  , |  ,   ,

1    ,   ||

  ,     |       (1)

• Each vertex in  belongs to at least one clus-
ter:

Constraint 1:  

   (2)

• Each vertex in  belongs to no more than
one cluster:

Constraint 2:          (3)

The above mentioned constraints are some-
times ignored to cover a broader range of cluster-
ing problems. In the case of component
identification (e.g., [6] and [14]), all the classes
could not be assigned to components, which vi-
olates the first constraint. Moreover, when com-
ponents are identified with the perspective of
reuse, a same class could be considered for more
than one component (violation of the second con-
straint). For other problems, additional constraints
are added. This is particularly the case for the
remodularization where part of the initial architec-
ture should be preserved like in [3]. Another poss-
ible constraint is that some elements should be in
the same cluster (e.g., [17]).

2.2 Evaluating Clustering Solu-
tions

An objective function is necessary to evaluate the
quality of a partition and to guide the partitioning
process. In general, the objective function in-
volves a vector  of metrics to be measured on a
clustering solution. Each metric defines an objec-
tive to reach. To combine this multiple objectives
into a single value, the most common technique is
to use a vector  of weights that define the im-
portance of each metric. The metrics in  depend
on the software structure as it appears in the graph
 and the partition solution  . The most fre-
quently used metrics are cohesion and coupling
(e.g., [13]). Formally, the objective function  is
defined as follows.

: ,   0,1
where each metric  and weight  are defined
as functions:

: ,   0,1 and :   0,1
Metrics that have in general different defini-

tion domain are normalized ([0,1]) to ease their
combination. As a consequence, the objective
function is generally defined in the interval [0,1] ,
which eases the interpretation and the comparison
(e.g., [9]). Sometimes, other definition domains
are used (e.g., [16]).

When the dependencies of the graph  are
obtained by static analysis, static metrics are used
(e.g., [17] and [13]). Conversely, when  is de-
rived by dynamic analysis (case of execution
traces), dynamic metrics are used (e.g., [6] and
[14]).

40

4

2.2.1 Cohesion and Coupling as me-
trics

Cohesion and coupling are the most used metrics
for clustering evaluation. This is due to two rea-
sons. First, for graph partitioning problems, we
usually seek for solutions that maximize intra-
group dependencies (cohesion) and minimize
inter-group dependencies (coupling) (see for ex-
ample [18] and [9]). Second, from the quality
point of view, cohesion and coupling are two
important properties.

Cohesion (call it ) measures the mutual
proximity of a group of elements in terms of de-
pendencies. Accordingly, the clustering process
should place together elements that are interde-
pendent. When the used graph contains un-
weighted edges like in [16], the cohesion of a
partition  is usually calculated as the
average of cohesions of its clusters .

  1
  




 0,1

This is evaluated as the number of internal
edges || between elements of  norma-
lized by the total number of possible edges
 between the elements of a cluster .

 
||

  0,1

  ,      
   

Coupling (call it ) measures the depen-
dencies between elements belonging to different
clusters. The clustering process tries to minimize
coupling between those elements. When the used
graph contains unweighted edges like in [9] and
[3], the Coupling ,  between pairs of
clusters is calculated as the number of edges inter-
clusters , . Coupling is usually
normalized by the number of possible edges inter-
clusters ,     .

,  
, 

,   0,1

where

,  

,   
      


      



The coupling of a partition  is calculated as
the average of the couplings between pairs of the
m clusters.

 





1
  1 ∑ , 

,

2   1

 0   1



A good example on how cohesion and coupl-
ing are combined into a single objective function
is the one given in [18] where the objective func-
tion, to be maximized, is BasicMQ. BasicMQ is
calculated as the difference between cohesion and
coupling:

       1
   1



Both cohesion and coupling could be calcu-
lated taking into account the weights of the edges
as in [18], where another objective function,
called TurboMQ, is defined. Finally, other ap-
proaches are used to combine cohesion and coupl-
ing. Examples are threshold-based metric
aggregation [4] and Pareto optimal analysis [8].

2.2.2 Other Metrics and other Objec-
tive Functions

In addition to coupling and cohesion, other me-
trics are used in clustering problems. An impor-
tant one is the number of cyclic-dependencies
between the clusters (e.g., [9] and [12]). In both
contributions the number of cyclic-dependencies
has to be minimized too conform to the principle
of client-supplier that eases the maintenance.
Bottleneck is another metric that counts the num-
ber of incoming and outgoing dependencies of the
clusters (e.g., [9]). Clustering algorithms aim at
minimizing this metric to facilitate the mainten-
ance of the obtained software.

Size-Complexity metrics are also commonly
used (e.g., [9]). For many clustering problems, the
size and/or complexity of the clusters should be

41

5

controlled for maintenance considerations (e.g.,
[5]).

In addition to metrics, there are many other
clustering evaluation techniques. Some are still
related to structural dependencies and others in-
volve information that cannot be extracted only
from the code. Examples of these techniques are
similarity-based clustering (e.g., [3]), and co-
change-based clustering (e.g., [15]).

An interesting approach is the one of [22]
where the clustering process uses structural (de-
pendencies) and non structural information (own-
ership, location). To this end, the authors define a
clustering approach based on Information Theory.

As it is conjectured for our work, examples
could be used to evaluate the quality of clustering
solutions. The idea is to compare the inputs and
outputs of the clustering with those of known
cases. This was done in [10] where a refactoring
process is performed to improve the quality of an
OO program. In this work, an objective function
measures a distance between the OO metrics of
the refactored program and those of an example
program. As we will see in Section 3, our ap-
proach is different as we do not use metrics to
assess the similarity with examples. We rather use
the structural similarity between the program to
cluster and the examples. Moreover, we do not
use a single example but a set of examples.

2.3 Algorithms
As stated in Section 2.1, the majority of software
clustering problems is modeled as a graph-
partitioning problem. Consequently, it is difficult
to obtain an optimal solution using an exhaustive
search method. This observation motivates the use
of heuristic-search methods. When looking to the
existing literature, a wide variety of algorithms
were used: Hill climbing and multi-hill climbing,
Genetic algorithms, Simulated Annealing, Tabu
search, etc.

In some contributions, deterministic cluster-
ing algorithms were used such as hierarchical
clustering (e.g., [4]), and formal concept analysis
(e.g.,[5] and [21]). Hierarchical clustering algo-
rithm usually is sensitive to the order in which the
elements are processed. Some heuristics are used
to reduce this sensitivity. Formal concept analysis
produces a set of clusters but not a partition. A
post-processing using heuristics is necessary to
derive a partition.

2.4 Summary
As mentioned previously, the main limitations of
existing approaches to software clustering is the
definition of a function that evaluates the quality
of the obtained abstractions. In many problems,
the clusters (abstractions) should have a meaning
that is beyond the structural proximity of the basic
elements that compose them. For example, a class
implements a family of objects of the real world.
Similarly, a component implements a function or
a set of functions required in an application. Rely-
ing only on structure proximity when defining the
clusters, cannot guarantee that the obtained
classes or components are meaningful from the
application domain standpoint. In the following
section, we propose a complementary way to
guide the clustering process. Rather than the
structural proximity alone, we use the similarity
with past valid clustering examples.

3 Software Clustering by
Example

In Section 2 we have shown that, following the
structural-semantics-equivalence hypothesis,
almost all the approaches aims at minimizing or
maximizing an objective function defined to
measure structural dependencies inside and be-
tween clusters starting from a dependency graph.

In this section we present our approach which
is based on the hypothesis that examples can help
recovering part of the semantic proximity. The
idea behind our clustering process is to compare
configurations of groups of elements to configura-
tions in an example base that led to abstract enti-
ties. Roughly speaking, suppose in a system A
known as having a good modularization, a group
of classes in a module MA are connected, by dif-
ferent types of relationships, following a certain
configuration. If in a system B to modularize, we
find a group of classes MB that follows (almost)
the same configuration as MA, then chances are
that MB forms a good module. Classes in both
configurations do not need to have the same
names.

3.1 Modeling the Base of Exam-
ples

We define a base of examples as a set  of 
pairs   ,  of already clustered software

42

6

represented by a dependency graph  and its
corresponding partition  , formally:

  |  , , 1    

In opposition to case-based reasoning ap-
proaches, our goal is not to find a complete sys-
tem similar to the one we try to cluster. Therefore,
the example base is used as set of clusters 
coming from different systems.

        

For the sake of clarity we refer to clusters in
the example base by  to dissociate them from
those we seek to define, and for which we use .

3.2 Deriving a Partition
Software elements represented by vertexes in  of
,  should be grouped together by similarity
with cluster examples   . To this end, we
define a function :    that assigns an
example cluster to each element in the graph to
partition. For example,    means
that the vertex    was assigned the cluster
   . The nature of the graph  and the
function  depend on the clustering problem.

The clustering process produces a partition
 of the graph ,  with the principle that
vertexes with the same assigned cluster   
according to  form a cluster    . Formally:

        

3.3 Evaluating a Partition
The objective function  is defined in terms of
similarity between the groups of elements of the
system to partition with the associated cluster
examples. It could be calculated as the weighted
average of similarities of these groups. To give
equal chances to each group, the similarity is
normalized by the size of the groups.

 
∑ ||, 


||  0,1

The similarity  between a candidate clus-
ter Ki and an example cluster Qj is defined as a
function of the similarities between their respec-
tive elements. It is a variation of the graph match-
ing function defined in [19]. Formally,

,   1
||  max


, 



 0,1

The function ,  compares a vertex
   of  to a vertex    of  . , 
equals zero if the types of  and  are different,
that is, if  and  are not comparables. Otherwise,
,  will match the edges EV(v) of  and
EV(q) of  and will return the ratio of matched
edges over the total edges of  and . In directed
graphs, EV(v) includes both incoming and out-
going edges.

 

  |  ,     , ,   ,   

The edge    and an edge   
match if they satisfy all the following conditions:

• both are of the same type

• both   ,  and   ,  are internal
(respectively external) edges.

• both  and  are incoming (respectively out-
going) edges of respectively  and .

• Neither  nor  have been matched yet with
another edge.

To illustrate ,  let us consider the
vertexes  and  in Figure 1. For simplicity rea-
sons, we suppose that  and  are of the same
type and that the edges of  and  (the ones in
bold) are of the same type as well.

Figure 1: Example of vertexes to calculate
vSimv, q

In this example, v has 4 edges (  4), q
has 3 edges (  3). Both v and q have one
incoming edge from the outside of their clusters,
call them ev1 and eq1. Then, ,  
,   1. Both v and q have one
outgoing edge inside their respective clusters (ev2
and eq2). This gives match(ev2, eq2)=match(eq2,
ev2) =1. Consequently,

43

7

,   2  2
4  3  4

7
To calculate , , we create a matrix

that contains  values for all pairs of vertexes.
Then, we match the pairs to maximize the global
similarity as shown in the example of Table 1.

Table 1: Vertex-Similarity Matrix of K and Q.

This matrix was build to calculate
, . As the number possibilities is small,
all the possible mappings are evaluated. In our
case, the best mapping is the one that matches
 to  ( 0.9),  to  ( 0.5),  to 
( 0.83), etc. This gives

,   1
||  max


, 



 3.73
6

 0.62

In the next section, we present an illustrative
application of our approach for the well-known
problem of object identification in procedural
code.

4 Application to Object
Identification

In Section 3 we have presented our new formula-
tion of software clustering problems. In this sec-
tion, we show how this formulation could apply to
a specific clustering problem, namely, object
identification in procedural code. The intuition
behind many solutions to this problem is that if a
subset of procedures accesses the same variables,
this is an indication that the variables define the
state of an object and the procedures its behavior
(e.g., [5]). We still use the same intuition, but we
change the way we evaluate the nature and the
strength of the dependencies between variables
and procedures.

4.1 Modeling Procedural Code
as a Graph

The software to be clustered is defined as a graph
,  where the vertexes are procedures and
variables and the edges procedure calls and varia-
ble accesses. According to the framework of Sec-
tion 2, vertex and edge types are respectively

  , 

and   , 

In this illustration, we use unweighted edges,
although call and use edges could be weighted by
respectively the number of calls between two
procedures and the number of accesses between a
procedure and a variable.

The base of example  is defined according
to the framework of Section 3. It contains a set of
procedural programs ,  represented as
graphs and the corresponding partitions. Each
sub-graph of a partition  of a program graph
 has been previously tagged as an actual object
of the application domain of the considered pro-
gram.

When using the example base  to identify
the set of objects  of a program  represented
by a graph , the quality of  is also evaluated
according to the framework of Section 3. Func-
tions ,  and ,  match separate-
ly variables and procedures one the one hand, and
consider both types of edges for  and .

4.2 Finding Objects by Parti-
tioning the Graph

The space of all the possible partitions is very
large for average procedural programs. To explore
this space, a heuristic search is suited. In this
illustration we use a hybrid method that combines
Particle Swarm Optimization (PSO) [7] and Simu-
lated Annealing (SA) [15]. First, we perform a
global heuristic search by PSO to reduce the
search space and select an initial solution. Then,
to refine this solution, a local heuristic search is
done using SA [20]. In the remainder of this sub-
section we describe briefly PSO and SA, and then,
detail our adaptations to the specific problem of
object identification.

As usual, the adaptations concern the encod-
ing of solutions, the solution-change operators,
and the definition of the fitness function.

44

8

4.2.1 Particle Swarm Optimization
(PSO)

PSO [7] is a parallel population-based computa-
tion technique. The PSO swarm (population) is
represented by a set of  particles (possible solu-
tions to the problem). A particle  is defined by a
position coordinate vector  , in the solution
space. Particles improve themselves by changing
positions according to a velocity function. The
improvement is assessed by a fitness function.
The best position of each particle () is
stored and so is stored de best position ever found
by the particles in the swarm (). At each
iteration, all particles are moved according to their
velocities (Equation 4). The velocity 

 of a par-
ticle , given by Equation (5), depends on its iner-
tia, i.e., previous velocity  , its  , and the
. These factors are weighted respectively by
parameters  ,  , and  .  and  are
not systematically considered. Random numbers
(between 0 and 1) are uniformly generated to
determine to which extended a particles will take
into account these two positions.


    

 (4)


              

        (5)

The algorithm iterates until the particles con-
verge towards a unique position that determines a
suboptimal solution to the problem.

4.2.2 Simulated Annealing (SA)

SA [15] is a local search algorithm that gradually
transforms a solution following the annealing
principle used in metallurgy. Starting from an
initial solution, SA uses a pseudo-cooling process
where a pseudo temperature is decreased gradual-
ly. For each temperature step, three operations are
repeated for a fixed number of iterations: (1) de-
termine a new neighboring solution, (2) evaluate
the fitness of the new solution and (3) decide on
whether to accept the new solution in place of the
current one based on the fitness function and the
temperature value. Solutions are accepted if they
improve quality. When the quality is degraded,
they still can be accepted, but with a certain prob-
ability. The acceptance probability is high when
the temperature is high and the quality degrada-
tion is low. As a consequence, quality-degrading
solutions are easily accepted in the beginning of

process when the temperatures are high, but with
less probability as the temperature decreases. This
mechanism prevents from reaching a local opti-
mum.

4.2.3 Solution-Coding Adaptation

The efficiency of applying a search-based method
to a particular problem relies heavily on how
potential problem solutions are coded into an
appropriate representation that can be manipu-
lated by the method. We model the search space
as an n-dimensional space where each dimension
corresponds to one of the composing element of
the software to partition into objects. A solution is
then a point in that space defined by a coordinate
vector whose elements are the numbers of the
example clusters in  . Each solution vector is
the result of the assignment function  defined
in Section 3.2. When generating the initial popu-
lation, for each solution,  assign randomly a
cluster in the example base to each element (vec-
tor coordinate) to each element of the program to
cluster. Later in the clustering process, this as-
signments are modified using solution-change
operators.

To show how a possible solution is coded, let
us consider a program with eight composing ele-
ments (four variables and four procedures). This
program defines an 8-dimensional space where
each possible solution is apposition vector of
eight coordinates. One solution in this space,
shown in Figure 2, proposes to group the compos-
ing elements into three objects. It suggests, for
example, that the two variables ( and ), and
two procedures ( and ) should be grouped
according to example cluster .

This solutions coding is used by both search
methods PSO and SA.

Figure 2: Example of a Solution Representation.

45

9

4.2.4 Change Operators

Modifying solutions to produce new ones is the
second important aspect of the heuristic search.
Unlike coding, solution change is implemented
differently for PSO and SA. While PSO sees a
change as a movement in the search space driven
by a velocity function, SA considers it as random
coordinate modifications.

In the case of PSO, a translation (velocity)
vector is derived according to Equation (5) and
added to the position vector (see the example of
Figure 3). Each dimension of the position vector
is added to the corresponding dimension of the
velocity vector. These additions consider two
constraints. First, the velocity vector contains real
values. When added to the coordinate values, they
produce real coordinates that do not correspond to
the numbers of the cluster examples. In this case,
the obtained real value is rounded to the closest
integer value (see for example dimension 1 where
velocity 2.9, added to coordinate 2, gives a value
of 4.9 changed to coordinate 5). The second con-
straint is related to the number of clusters in the
example base  . To derive coordinates corres-
ponding to valid cluster numbers, the obtained
coordinates are transformed according to arith-
metic modulo .

Figure 3: An Illustration of the Change Operator
in PSO.

For SA, the change operator involves ran-
domly choosing  dimensions (  ) and re-
placing their assigned clusters by randomly
selected ones form the base of examples. For
instance, Figure 4 shows an example of this
change. Elements of dimensions 2, 4, and 7 are
selected to be changed. They are assigned to  in

place of, respectively, , , and . The other
elements keep their assigned clusters. The number
of dimensions to change is a parameter of the SA
algorithm (three in our example). In our valida-
tion, this parameter is randomly chosen at each
step between 1 and


.

Figure 4: An Illustration of the Change Operator
in SA.

4.3 A Case Study
To evaluate the efficiency of our formulation of
the SC problems in the particular case of object
identification, we conducted a case study.

We selected 10 C programs from the website
Planet Source Code1. The size of these programs
in terms of composing elements (variables and
procedures) varies from 18 to 105, with an aver-
age of 57. For each program, after reading the
documentation and exploring the code, we identi-
fied manually the objects in terms of groups of
variables and procedures. Each program was
parsed and a corresponding graph was con-
structed. We grouped for the 10 programs the
graphs with their corresponding partitions, i.e.,
manually identified objects, defining 10 identifi-
cation examples. All together, the 10 examples
define 49 objects (cluster examples).

To measure the correctness of our object
identification, we used a 10-fold cross-validation
procedure. For each fold, we identify the objects
in one program and use the 9 other programs as
the base of examples. The objects identified au-

1 www.planet-source-code.com

46

10

tomatically are compared to those found manual-
ly. The correctness for each fold is calculated as
the proportion of composing elements that are
assigned to good objects. The global correctness
is derived as the average of the 10 fold’s correct-
ness values.

To set the parameters of PSO and SA algo-
rithm, we took values commonly found in the
literature [12].

Table 2 shows the correctness values ob-
tained for each of the 10 folds when using the
hybrid PSO-SA research. Correctness varies be-
tween 66% and 100% depending on the programs.
The identification in small programs is correctly
done (100%). It was good for large programs
(around 80%). Programs with less good values are
the average ones. 7 over the 10 programs have
identification correctness greater than 80%.

PC
Num. of
elements

Fitness Correctness

PC 1 18 0,92 100%
PC 2 22 0,89 100%
PC 3 25 0,91 100%
PC 4 44 0,86 86%
PC 5 59 0,89 78%
PC 6 62 0,74 68%
PC 7 65 0,78 66%
PC 8 76 0,89 79%
PC 9 90 0,85 83%

PC 10 105 0,88 89%
Avg. 57 0.82 85%

Table 2: 10-Fold Cross Validation Results.

In addition to the PSO-SA, we performed the
identification with only PSO (with more iterations
and a larger population) to evaluate if hybrid
search is useful compared to single-method
search. As shown in Figure 5, hybrid search with
PSO-SA gives better results for larger programs
compared to search with PSO only. The differ-
ence for the larger program was 0.34 (0.89 com-
pared to 0.55). For small programs both strategies
give the same results. For the average ones PSO
alone was a better option. This indicates that hy-
brid strategies that combine global and local
search are useful when the search space is large.

After evaluating the efficiency of our formu-
lation, the second question is to compare it to
methods using the classical coupling-cohesion
formulation of the clustering problems. Starting
from the approach proposed in [4], we imple-
mented a genetic-based detection algorithm that
aims at minimizing coupling and maximizing

cohesion in the partition solutions. In this algo-
rithm we used two variants of the fitness function
corresponding to two ways of combining coupling
and cohesion criteria. In the first variant, call it
ACf1, the quality of a solution is measured as the
ratio between normalized cohesion and coupling.
Formally

  


In the second variant, ACf2, the fitness is
calculated as the average of the cohesion and the
inverse of coupling. Formally

 
  1


2

Both variants give a high fitness when the
cohesion is high and the coupling low.

Table 2 shows the comparative results be-
tween our example-based identification (PSO-SA)
and the coupling-cohesion-based identification
(ACf1 and ACf2). For all the 10 programs, the
correctness is significantly better with our new
formulation than with the classical one. The dif-
ference is even more important for larger pro-
grams. This is a clear indication that similarity
with previous examples, combined with the struc-
tural dependencies, could improve the quality of
the clustering approaches in SC problems.

Figure 5: Effect of Search Strategy, Program size,
and Alternative clustering Methods on

Correctness.

5 Conclusions
Software clustering offers promising solutions to
many maintenance problems such as software re-
architecture and migration. Software clustering

0,0

0,2

0,4

0,6

0,8

1,0

1,2

18 22 25 44 59 62 65 76 90 105

Co
or

.

Constructs

Identification Correctness

PSO-SA

PSO

ACf1

ACf2

47

11

consists in identify groups of software elements
that may correspond to more abstract artifacts. To
guide this identification, objective functions are
proposed with the principle of approximating
semantic information from the structural depen-
dencies between elements.

In this paper, we first propose a general for-
mulation of the SC problems. Then, we propose a
novel formulation in which the clustering objec-
tive functions are defined in terms of similarity
with previous clustering examples rather than
only the structural proximity. Our formulation is
general and could be used for various SC prob-
lems. In this paper, we illustrate it with the well-
known problem of object identification.

In this context, we performed a case study to
evaluate the example-based object identification.
The study targeted 10 C programs taken from
Planet Source Code website. In an initial phase,
we identified manually the objects in those pro-
grams and created a base of examples accordingly.
Then, we used a 10-fold cross-validation proce-
dure where each program was clustered using the
9 others.

Although our experimental results are very
encouraging and indicate a clear trend in favor of
our proposal, some limitations are worth noting.
One important problem that limits the applicabili-
ty of our approach is the need for an example base.
This base could be difficult to obtain for migra-
tion problems that involve two paradigms (proce-
dural to object or object to components). This is
because two versions (one for each paradigm) of
the same program should be aligned. Hopefully,
for single-paradigm problems such as re-
architeture and modularization, there are many
programs with refactored architectures that can be
used. In this context, we are adapting and evaluat-
ing our approach on the re-packaging problem.

References
[1] G. Canfora, A. Cimitile, M. Munro and M.

Tortorella, "Experiments in identifying reus-
able abstract data types in program code", in
Workshop on Program Comprehension, pp.
36-45, 1993.

[2] G. Czibula and G. Şerban, "Improving sys-
tems design using a clustering approach", In-
ternational Journal of Computer Science and
Network Security, vol. 6, no. 12, pp. 40-49,
2006.

[3] H. Abdeen, S. Ducasse, H. Sahraoui, and I.
Alloui, "Automatic package coupling and
cycle minimization", in Working Conference
on Reverse Engineering, pp. 103-112, 2009.

[4] H. Sahraoui, P. Valtchev, I. Konkobo, and S.
Shen, "Object identification in legacy code as
a grouping problem", in International Com-
puter Software and Applications Conference,
pp. 689-696, 2002.

[5] H. Sahraoui, W. Melo, H. Lounis, and F.
Dumont, "Applying concept formation me-
thods to object identification in procedural
code", in International Conference on Auto-
mated Software Engineering, pp. 210-218,
1997.

[6] H. Washizaki and Y. Fukazawa. "A technique
for automatic component extraction from ob-
ject-oriented programs by refactoring", in
Science of Computer Programming, vol. 56,
no.1-2, pp. 99-116, 2005.

[7] J. Kennedy and R. Eberhart, "Particle swarm
optimization", in International Conference on
Neural Networks, vol. 4, pp. 1942-1948, 1995.

[8] M. Harman and L. Tratt, "Pareto optimal
search based refactoring at the design level",
in Conference on Genetic and Evolutionary
Computation, pp. 1106-1113, 2007.

[9] M. Harman, R. Hierons, and M. Proctor, "A
new representation and crossover operator for
search-based optimization of software mod-
ularization", in Genetic and Evolutionary
Computation Conference, pp. 1351-1358,
2002.

[10] M. O’Keefee and Mel Ó Cinnéide. “Auto-
mated design improvement by example”, in
Conference on New Trends in Software Me-
thodologies, Tools and Techniques, pp. 315 -
329, 2007.

[11] M. Siff and T. Reps, "Identifying modules via
concept analysis", in Transactions on Soft-
ware Engineering, vol. 25, no. 6, pp. 749-768,
1999.

[12] M. Wimmer, M. Strommer, H. Kargl, and G.
Kramler, "Towards model transformation
generation by-example", in International
Conference on System Sciences, pp. 285b,
2007.

48

12

[13] O. Seng, M. Bauer, M. Biehl, and G. Pache,
"Search-based improvement of subsystem
decompositions", in Conference on Genetic
and Evolutionary Computation, pp. 1045–
1051, 2005.

[14] S. Allier, H. Sahraoui, S. Sadou, and S.
Vaucher, "Restructuring object-oriented ap-
plications into component-oriented applica-
tions by using consistency with execution
traces", in International Symposium on Com-
ponent Based Software Engineering, pp. 216-
231, 2010.

[15] S. Kirkpatrick, "Optimization by simulated
annealing: quantitative studies", in Journal
Of Statistical Physics, vol. 34, no. 5, pp. 975-
986, 1984.

[16] S. Mancoridis, B. Mitchell, C. Rorres, Y.
Chen, and E. Gansner, "Using automatic
clustering to produce high-level system or-
ganizations of source code", in International
Workshop on Program Comprehension, pp.
45-53, 1998.

[17] S. Mancoridis, B. Mitchell, Y. Chen, and E.
Gansner, "Bunch: A clustering tool for the
recovery and maintenance of software system
structures", in International Conference on
Software Maintenance, pp. 50-59, 1999.

[18] S. Mitchell, “A heuristic search approach to
solving the software clustering problem”,
Dissertation, Drexel University, Philadelphia,
PA, United States, 2002.

[19] V. D. Blondel, A. Gajardo, M. Heymans, P.
Senellart, and P. Van Dooren, "A measure of
similarity between graph vertexes: Applica-
tions to synonym extraction and web search-
ing", Society for Industrial and Applied
Mathematics, vol. 46, no. 4, pp. 647-666,
2004.

[20] V. Kelner, F. Capitanescu, O. Léonard, and L.
Wehenkel, "A hybrid optimization technique
coupling an evolutionary and a local search
algorithm", in Journal Of Computational And
Applied Mathematics, vol. 215, no.2, pp. 448-
456, 2008.

[21] V. Van Deursen and T. Kuipers, "Identifying
objects using cluster and concept analysis", in
International Conference on Software Engi-
neering, pp. 246–255, 1999.

[22] P. Andritsos and V. Tzerpos, “Software clus-
tering based on information loss minimiza-
tion.”, in 10th Working Conference on
Reverse Engineering, pp. 334-344, 2003.

49

CHAPTER 5

GENETIC-PROGRAMMING APPROACH TO LEARN MODEL

TRANSFORMATION RULES FROM EXAMPLES

In this chapter we present our second contribution [22] entitled "Genetic-Programming

Approach to Learn Model Transformation Rules from Examples" published at "Theory

and practice of Model Transformations", 2013, pages 17-32. The contribution aims to

improve automation in MDE. Specifically, the approach derives a model transformation.

The derivation process is based on optimization search (GP) guided by conformance

with examples of past transformations (pairs of source and target models). As opposed

to other approaches, ours does not need transformation traces, and thus, is easier to use.

Our approach can derive full operational n-to-m transformation rules that can have com-

plex conditions. The validation on two transformation problems showed that non-trivial

rules could be derived. This contribution is the follow-up of [20], which was presented

in ASE 2012.

Genetic-Programming Approach to Learn Model

Transformation Rules from Examples

Martin Faunes1, Houari Sahraoui1, and Mounir Boukadoum2

1 DIRO, Université de Montréal, Canada
2 Université du Québec à Montréal, Canada

Abstract. We propose a genetic programming-based approach to
automatically learn model transformation rules from prior transforma-
tion pairs of source-target models used as examples. Unlike current
approaches, ours does not need fine-grained transformation traces to pro-
duce many-to-many rules. This makes it applicable to a wider spectrum
of transformation problems. Since the learned rules are produced directly
in an actual transformation language, they can be easily tested, improved
and reused. The proposed approach was successfully evaluated on well-
known transformation problems that highlight three modeling aspects:
structure, time constraints, and nesting.

1 Introduction

The adoption of new technologies generally follows a recurrent cycle described
by Moore in [16]. In this cycle, user categories adopt a technology at different
moments depending on their profiles and the technology’s maturity. Moore iden-
tified the move from the early adopters category to the early majority category
as the gap that is the most difficult to cross and in which many technologies
spend a long time or just fail. Model Driven Engineering (MDE), as a new tech-
nology that changes considerably the way we develop software, does not escape
this observation. MDE received much attention in recent years due to its promise
to reduce the complexity of the development and maintenance of software appli-
cations. However, and notwithstanding the success stories reported in the past
decade, MDE is still at the early-adopters stage [15]. As mentioned by Selic1, in
addition to the economic and cultural factors, the technical factors, particularly
the difficulty of automation, represent major obstacles for MDE’s adoption.

Automation is a keystone and a founding principle of the MDE paradigm.
According to Schmidt, MDE technologies combine domain-specific modeling lan-
guages with transformation engines and generators to produce various software
artifacts [21]. By automating model-to-model and model-to-code transforma-
tions, MDE fills the conceptual gap between source code and models, and en-
sures that models are up to date with regards to the code and other models. In
recent years, considerable advances have been made in modeling environments

1 Bran Selic, “The Embarrassing Truth About Software and Automation and What
Should be Done About It”, Keynote talk, ASE 2007.

K. Duddy and G. Kappel (Eds.): ICMT 2013, LNCS 7909, pp. 17–32, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

51

M. Faunes, H. Sahraoui, and M. Boukadoum

and tools. However, in practice, automated model transformation and code gen-
eration has been restricted to niche areas such as database mapping and data-
intensive-application generation [15]. To address this limitation, a large effort has
been made to define languages for expressing transformation rules (e.g., ATL [9])
to make the writing of transformation programs easier.

Having a good transformation language is only one part of the solution; the
most important part is to define/gather knowledge about how to transform
any model conforming to a particular metamodel into a model conforming to
another metamodel. For many problems, this knowledge is incomplete or not
available. The difficulty of writing transformation rules is the main motivation
behind the research on learning transformation rules from examples. Although
the idea goes back to the early nineties, the first concrete work on Model Trans-
formation by Example (MTBE) was proposed by Varro in 2006 [24]. MTBE’s
objective was to derive transformation programs by generalizing concrete trans-
formations found in a set of prototypical examples of source and target models.
Since then, many approaches have been proposed to derive the transformation
rules (e.g., [22,1,6,4,12,20]) or to transform a model by analogy with transformed
examples [10].

Still, the existing MTBE approaches only solve the problem of rule deriva-
tion partially. Most of them require detailed mappings (transformation traces)
between the source and target model examples [1], which are difficult to pro-
vide in some situations; others cannot derive rules that test many constructs in
the source model and/or produce many construct in the target model, many-
to-many rules [22], a requirement in complex transformation problems. A third
limitation is the inability of some approaches to automatically produce complex
rule conditions to define precise patterns to search for in the source model [20].
Finally, some approaches produce abstract, non-executable rules that have to be
completed and mapped manually to an executable language [4].

In a previous work [5], we proposed a preliminary approach for the derivation
of complex and executable rules from examples without the need of transfor-
mation traces. The approach was inspired from genetic programming (GP) and
exploits GP’s ability to evolve programs in order to improve their capacity to
approximate a behavior defined by a set of valid pairs of inputs/outputs. The ap-
proach was quantitatively evaluated on the transformation of class diagrams to
relational schemas. Although 75% of the model constructs were correctly trans-
formed, many key transformation rules were not derived or only derived partially.
In this paper, we propose an improved version of the algorithm with new ways
of solution initialization, new program derivation from existing ones, and pro-
gram evaluation. This new version is evaluated on two transformation problems
that cover three important software modeling characteristics: structure, time
constraints, and nesting. In the first problem, the transformation of class dia-
grams to relational schemas, we test the ability of our approach to handle the
transformation of structural models. Time-constrained-model transformation is
considered in the second case study through the problem of sequence diagrams
to state charts. In this problem, the derived transformation should preserve the

52

Genetic-Programming Approach to Learn Model Transformation Rules

time constraints between the constructs. Our second case study also handles the
complex problem of nested-sequence-diagrams to state-charts transformation. In
this case, the transformation control is non trivial as the rules should transform
the nested elements before those that contain them. The obtained quantitative
and qualitative results show that our approach allows the derivation the correct
transformation rules for both problems.

2 Learning Rules from Examples

Our goal is to define a transformation-rule derivation process that may apply
to a wide range of transformation problems. To this end, our approach should
work even if fine-grained transformation traces are not available. Additionally,
constraints on the shape or size of the rules should be as limited as possible.
This includes the numbers of source and target-construct types and the nature
of rule conditions. Finally, the produced rule sets must be executable without a
manual refinement step.

2.1 Rule Derivation as an Evolutionary Process

Transformation rules are programs that analyze certain aspects of source models
given as input and synthesize the corresponding target models as output [21].
Learning complex and dynamic structures such as programs is not an easy
task [2]. Of the possible tools that can be used for automatic programs gen-
eration, Genetic Programming (GP) [13] is a strong contender for supremacy
as it was originally created for the purpose. This motivated our investigation
of GP to automatically derive rule sets, i.e., declarative programs, using exam-
ples of models transformations, i.e., complex inputs/outputs. GP draws inspira-
tion from Darwinian evolution and aims to automatically derive a program to
solve a given problem, starting from some indications about how the problem
should be solved. These usually take the form of input and output examples, and
the derivation process is done by iteratively improving an initial population of
randomly-created programs, i.e., by keeping the fittest programs for reproduc-
tion at each step, the reproduction being made by means of genetic operators
similar to those observed in nature. The typical GP cycle is sketched in Figure 1.

Before, starting the evolution process, the user must have a set of example
pairs describing the expected program behavior in the form of <input, output>.
The user must also define a way to encode and create the initial population of
random programs. Finally, a mechanism is needed to run the programs on the
provided inputs and compare the execution results with the expected outputs.
This is typically done by defining a fitness function that evaluates the closeness
between the produced and expected outputs.

To apply GP to the MTBE problem, we have to consider two issues. First,
transformation rules are not imperative programs and cannot be encoded as trees
as usually done in GP [13]; second, the outputs of transformations are models
(usually graphs) that are not easy to compare for evaluating the correctness of

53

M. Faunes, H. Sahraoui, and M. Boukadoum

Fig. 1. A typical GP cycle

a program. In the following subsections, we detail our adaptation of the GP
algorithm to the specific problem of MTBE. Note that, for our investigation,
we decided to use a simple metamodeling language to describe the metamod-
els and a generic rule language/engine JESS [8] for the writing and execution
of transformation rules. This decision was made to separate, in a first phase
of this research project, the intrinsic complexity of MTBE from the acciden-
tal complexity of conformance to standards and interoperability concerns. The
mapping between JESS and a transformation language such as ATL is pretty
easy to perform since both languages offer similar features such as declarative
and imperative structures as well as control mechanisms.

2.2 Encoding Rule Sets

Typical transformation problems require a set of transformation rules to cover all
the patterns in the source models. A program p is accordingly encoded as a set
of transformation rules, p = {r1, r2, ..., rn}. Each transformation rule ri is in turn
encoded as a pair ri = (SP, TP), where SP is the pattern to search for in the source
model and TP is the pattern to instantiate when producing the target model.

Source Pattern. A source pattern SP is a pair SP = (SGC, G), in which SGC is
a set of generic source constructs and G is a guard. A generic source construct is
the specification of an instance of a construct type that has to be matched with
concrete constructs in the source model. For example, in the rule of Listing 1.1,
SGC = {C, A, S}, where C, A and S represent respectively a class, an attribute,
and an association. SGC could include more than one generic construct from the
same construct type, e.g., two classes and an association. Each generic construct
has the properties of its construct type in the source metamodel. When matched
with a concrete construct from the source model, these properties take the values
of the latter. For instance, an attribute A has its name (descriptive property)
and the name of the class it belongs to (join property) as properties. During
execution, the value of a property can be accessed as shown in Listing 1.1, e.g.,
A.name and A.class.

The guard G contains two types of conditions: join conditions and state con-
ditions. Join properties are used to define the set of join conditions, which al-
low to specify a source pattern as a model fragment, i.e., a set of interrelated
constructs according to the metamodel. For example, in the rule of Listing 1.1,
the join condition A.class = C.name states that A should be an attribute of

54

Genetic-Programming Approach to Learn Model Transformation Rules

class C whereas S.classFrom = C.name restricts the pattern to only classes
that are at the origin of associations.

Listing 1.1. Rule encoding example

Source pattern :

// Generic source element

Class C, Attribute A, Association S

// Guard: Join condition

(and (A.class = C.name) (S.classFrom = C.name))

// Guard: State condition

(and (S.maxCardFrom < 1) (S.maxCardTo > 1))

Target pattern :

// Generic target element

Table T, Column O

// Bindings

T.name := C.name

O.name := A.name

// Join - statement

O.table = T.name

State conditions involve the properties of the generic source constructs (both
join and descriptive ones). They are encoded as a binary tree containing elements
from terminal (T) and primitive (I) sets. T is the union of the properties of the
constructs in SGC and a set of constants C. For the rule of Listing 1.1, the prop-
erties are C.name, A.name, A.class, S.classFrom, S.classTo, S.MaxCardFr,
S.MaxCardTo, etc. As the properties are numbers and strings, numeric and
string constants such as {0, 1, Empty, ...} are added to the terminals. As condi-
tions are manipulated, the Boolean constants true and false are also added. The
set of primitives I is composed minimally of logical operators and comparators
(I = {and, or, not, =, >, <, ...}). Other operators, such as arithmetic or string
operators, could be added to test values derived from the basic properties. Since
this work uses the concrete rule language JESS [8], the conceptual distinction
between join and state conditions is not reflected in the actual code. Both types
of conditions form the condition tree with terminals as leaf nodes and primitives
as the other nodes. A rule without any condition will be represented by a tree
with the single node “true”. A rule is fired for any combination of instances for
which the condition tree is true.

Target Pattern. The target pattern TP is a triple TP = (TGC, B, TJ), where
TGC, B and TJ represent respectively a set of generic target constructs, a set of
binding statements, and a set of join statements. A generic target construct spec-
ifies a concrete construct to create in the target model when the rule is fired. In
the example of Listing 1.1, two constructs are created: a table T and a column
O. The set of bindings B determines how to set the property values of the cre-
ated constructs with the property values of the constructs that match the source
pattern. In Listing 1.1, the created table and column will respectively have the
same names as the selected class and attribute. Finally, the join statements TJ
allow to connect the created constructs to form a fragment in the target model.

55

M. Faunes, H. Sahraoui, and M. Boukadoum

In the example provided, column O is assigned to table T . The join statements
must conform to the target metamodel.

2.3 Creating Rule Sets

As stated in Section 2.1, deriving transformation rules using genetic program-
ming requires the creation of an initial population of random rule sets. Each
rule set has to be syntactically correct with respect to the rule language (JESS
in this work). Moreover, a rule set should be consistent with the source and
target metamodels. In this respect, rules should describe valid source and target
patterns. For the initial population, a number of rule sets nrs is created (nrs is
a parameter of the approach). The number of rules to create for each rule set is
selected randomly from a given interval. For each rule, we use a random com-
bination of elementary model fragments (building blocks) to create the source
and target patterns. The random combination of building blocks is intended to
reduce the size of the search space by considering connected model fragments
rather than arbitrary subsets of constructs. For each rule, two combinations are
performed respectively over the graphs of the source and target metamodels to
create the source and target patterns of the rule, SP and TP .

A building block is a minimal model fragment which is self-contained, i.e., its
existence does not depend upon the existence of other constructs. For example,
in a UML class diagram, a single class could form a building block. However, an
attribute should be associated to its class to form a block. Similarly, an inher-
itance relationship forms with two classes (superclass and subclass) a building
block. The determination of the building block for a given metamodel depends
only on this latter and not on the transformation of its models.

To create random patterns (source or target), a maximal number of generic
constructs nc is first determined randomly. Then, a first building block is ran-
domly selected and included within the pattern. If nc is not reached yet, another
building block is selected among those that could be connected to the blocks in
the current fragment. Two blocks could be connected if they share at least one
generic construct. The connection is made by considering both constructs to con-
nect as the same generic construct. The procedure is repeated until nc is reached.
To illustrate the pattern creation procedure, consider the following example.
Imagine that the maximum number of constructs is set to four. A first random
selection could add to the pattern the block (ClassC1, AttributA1, A1.class =
C1.name) containing two connected generic constructs C1 and A1. As the size
of the pattern is less than four, another random selection could add an inher-
itance block with constructs InheritanceI1, ClassC3, and ClassC4, and links
I1.class = C3.name and I1.super = C4.name. One of the two possibilities of
connections ((C1, C3) or (C1, C4)) is selected, let us say (C1, C4). C4 is then
replaced by C1 in the pattern including the links.

The last step toward the pattern creation is the random generation of the
state conditions (for a source pattern) or the binding statements (for a target
pattern). For a source pattern, a tree is created by randomly mixing elements
from the terminal set T , i.e., properties of the selected constructs and constants

56

Genetic-Programming Approach to Learn Model Transformation Rules

consistent with their types, and elements from the primitive set P of operators.
The creation of the tree is done using a variation of the“grow” method defined
in [13]. In the case of a target pattern, the binding statements are generated by
randomly assigning elements in the terminal set T of the source pattern to the
properties of the generic constructs of the target pattern that were not set by
the join statements (links). The random property-value assignments are done
according to the property types.

2.4 Deriving New Rule Sets

In GP, a population of programs is evolved and improved by applying genetic
operators (mutation and crossover). These operators are specific to the problem
to solve. As with the initial-population creation, the genetic operators should
guarantee that the derived programs are syntactically and semantically valid.
Before applying the genetic operators to produce new programs, programs from
the current generation are selected for reproduction depending on their fitness
values. For the derivation of transformation rule sets, roulette-wheel selection
is used. This technique assigns to each rule set a probability of being selected
that is proportional to its fitness. This selection strategy favors the fittest rule
sets while still giving a chance of being selected to the others. Note that some
program could be included directly into the new population, i.e., elitist strategy.

Crossover. The crossover operation consists of producing new rule sets by com-
bining the existing genetic material. It is applied with a given probability to each
pair of selected rule sets. After selecting two-parent rule sets for reproduction,
two new rule sets are created by exchanging parts of the parents, i.e., subsets
of rules. For instance, consider the two rule sets p1 = {r11, r12, r13, r14} hav-
ing four rules and p2 = {r21, r22, r23, r24, r25} with five rules. If two cut-points
are randomly set to 2 for p1 and 3 for p2, the offspring obtained are rule sets
o1 = {r11, r12, r24, r25} and o2 = {r21, r22, r23, r13, r14}. Because each rule is syn-
tactically and semantically correct before the crossover, this correctness is not
altered for the offspring.

Mutation. After the crossover, the obtained offspring could be mutated with
a given probability. Mutation allows the introduction of new genetic material
while the population evolves. This is done by randomly altering existing rules
or adding newly-generated ones. Mutation could occur at the rule set level or at
the single rule level. Each time, a rule set is randomly selected for mutation, a
mutation strategy is also randomly selected. Two mutation strategies are defined
at the rule-set level: (1) adding a randomly-created rule to the rule set and (2)
deleting a randomly-selected rule. To avoid empty rule sets, deletion could not
be performed if the rule set has only one rule.

At the rule level, many strategies are possible. For a randomly-selected rule,
one could replace the target pattern by a new one, randomly created. One could
also rebind one or more target pattern properties by picking a random number
of properties in the target pattern and randomly bind them to properties in the

57

M. Faunes, H. Sahraoui, and M. Boukadoum

source pattern and constants. These modifications, when done as in Section 2.2,
preserve the rule’s validity, both syntactically and semantically. For the source
pattern, it is also possible to introduce random modifications as for the target
pattern. However, the target pattern has to be modified accordingly to avoid
semantical and syntactical errors.

2.5 Evaluating Rule Sets

For the initial population and during the evolution, each generated rule set is
evaluated to assess its ability to perform correct transformations. This evalua-
tion is performed in two steps: (1) rule set execution on the examples and (2)
comparison of produced vs. expected target models. Rule sets are translated into
the JESS, and executed on the examples using the JESS rule engine. Metamodels
are represented as sets of fact templates and models as fact sets. The rule trans-
lation is straightforward with the particularities that generic-target-construct
declaration, join statements and bindings are merged into fact-assertion clauses.
Listing 1.2 shows the JESS translation of the rule in Listing 1.1.

Listing 1.2. An example of a JESS Rule

(defrule RuleListing1

(class (name ?C1))

(attribute (name ?A1)(class ?A2))

(association (maxCardFrom ?S1) (maxCardTo ?S2)(classFrom ?S3))

(test (and (and (eq ?A2 ?C1)(eq ?S3 ?C1))

(and (< ?S1 1)(> ?S2 1))))

=>

(assert (table(name ?C1)))

(assert (column(name ?A1)(table ?C1))))

Our fitness function measures the similarity between the target models pro-
duced by a rule set and the expected ones as given in the example model pairs.
Consider E the set of examples ei composed each of a pair of a source and a
target model (msi, mti). The fitness F (E, p) of a rule set p is defined as the
average of the transformation correctness f(mti, p(msi)) of all examples ei. The
transformation correctness f(mti, p(msi)) measures to which extent the target
model p(msi), obtained by executing p on the source model msi, is similar to
the expected target model mti of ei.

Comparing two models, i.e., two graphs with typed nodes, is a difficult prob-
lem (graph isomorphism). Considering that in the proposed GP-based rule deriva-
tion, the fitness function is evaluated for each rule set, on each example, and at
each iteration, this cannot afford exhaustive graph comparisons. Instead, a quick
an efficient graph kernel f is used. f , which is a model similarity measure, calcu-
lates the weighted average of the transformation correctness per construct type
t ∈ Tmti in the expected model mti. This is done to give the same importance
to all construct types regardless of their frequencies. Formally:

f(mti, p(msi)) =
∑

t∈Tmti

ft(mti, p(msi))

|Tmti |
(1)

58

Genetic-Programming Approach to Learn Model Transformation Rules

ft is defined as the weighted sum of percentages of the constructs of type t that
are respectively fully (fmt), partially (pmt), or non(nmt) matched:

ft(mti, p(msi)) = αfmt + βpmt + γnmt, α + β + γ = 1 (2)

For each construct of type t in the expected model, we first determine if it is fully
matched by a construct in the produced model, i.e., it exists in the produced
model a construct of the same type that have the same property values. For the
constructs in the expected model that are not matched yet, we determine, in a
second step, if they can be partially matched. A construct is partially matched
if it exists in the produced model a construct of the same type that was not
matched in the first step. Finally, the last step is to classify all the remaining
constructs as not matched.

Coefficients α, β, and γ have each a different impact on the derivation process
during the evolution. α, which should be set to a high value (typically 0.6), is
used to favor rules that correctly produce the expected constructs. As mentioned
earlier, β, with an average value (≈ 0.3), allows to give more chances to rules
producing the right types of the expected constructs and helps converging to-
wards the optimal solution. Finally, γ has to be set to a small value (≈ 0.1). The
idea of giving a small weight to the not-matched constructs seems counterintu-
itive. However, our experience shows that this promotes diversity, particularly
during the early generations, and this helps avoid local solution optima.

The calculation of the transformation correctness assesses whether the con-
structs of the expected model are present in the produced model. As a conse-
quence, a good solution could include the correct rules that generate the right
constructs, but it could also contain redundant rules or rules that generate un-
necessary constructs. To handle this situation, we consider the size of the rule
set when selecting the best solution. Consequently, even if an optimal solution
is found in terms of correctness, the evolution process continues to search for
equally-optimal solutions, but with fewer rules.

3 Evaluation

We evaluate our approach from two perspectives. First, a quantitative evaluation
allows to answer the question: To which extent our approach generates rules that
correctly transform the set of provided examples? In a second phase, a qualita-
tive evaluation will help answering the question: If the examples are correctly
transformed, are the produced rules those that are expected? In this context,
we constructed a semi-real environment where the transformation solutions are
known and where the examples models are simulated by creating prototypical
source models and by deriving the corresponding target models using the known
transformations. We were aware of the limitations of this setting, but it helps
investigate more problems and it clearly defines the reference rule sets that the
approach should derive. Additionally, it reasonably simulates situations where
the examples have been manually created over a long period of time by experts.

59

M. Faunes, H. Sahraoui, and M. Boukadoum

The preliminary version of our approach was evaluated on the transforma-
tion of class diagrams to relational schemas [5]. This transformation, call it case
A, illustrates well the problem of transforming structural models. Its complexity
resides, among others, in the multiple possibilities of transforming the same con-
struct according to the values of its properties. In the evaluation of the improved
version presented in this paper, we also studied the transformation of UML2 se-
quence diagrams to state machines (Case B1 for basic sequence diagrams and
Case B2 for advanced ones). Such a transformation is difficult because, in addi-
tion to considering the transformation of single model fragments and ensuring
the structural coherence, it introduces two important modelling characteristics:
time constraints and nesting. In this transformation, the coherence in terms of
time constraints and weak sequencing should be guaranteed. On the other hand,
nesting is tested because this transformation have to deal with combined frag-
ments (alternatives, loops, and sequences) that can be nested at different levels,
and thus, this transformation has to manage the recursive compositions in ad-
dition to handling the structural and time coherence. For case A, we used the
transformation described in [3], whereas for cases B1 and B2, we rewrote, as
rules, the graph-based transformations given in [7]. As GP-based algorithms are
probabilistic in nature, five runs were performed in parallel for each case. For
each run, we set the number of iterations to 3000, the population size to 200
and elitism to 20 programs. Crossover probability was set to 0.9 and mutation
probability to 0.9. Unlike classical genetic algorithms, having a high mutation
probability is not unusual for GP algorithms (e.g. [18]). The weighs (α, β, γ) of
the fitness function were set to (0.6, 0.3, 0.1), as explained in Section 2.5.

3.1 Quantitative Results

For each case, an optimal solution was found in at least one of the five runs. This
is an indication that the search process has a good probability of convergence.
The charts with sampled data that are shown in figures 2 and 3 illustrate the
evolution of a successful run for cases A and B22. Three curves are displayed
in each plot: the fitness function value (F) and the proportion of full matches
(FM) (vertical axis on the left), and the rule set size (PS) (vertical axis on the
right). The curves correspond to the fittest rule set at each generation (iteration)
identified in the horizontal axis.

The solution evolutions for both cases follow the same pattern and differ
only in the number of generations needed to converge toward a solution and to
reach a minimal rule-set size. As expected, case A, with structural constraints
only, is the one with the fastest convergence. At the initial generation, which
is considered as a random transformation generation, half of the constructs are
correctly transformed (FM = 0.5). These are simple one-to-one transformations
(class-to-table or attribute-to-column) that have high chances of being generated
randomly. The optimal solution in terms of FM is found at the 59th generation

2 The complete data can be downloaded at
http://geodes.iro.umontreal.ca/en/projects/MOTOE/ICMT13

60

Genetic-Programming Approach to Learn Model Transformation Rules

Fig. 2. Search evolution for case A Fig. 3. Search evolution for case B2

with 10 rules. Once a solution with FM = 1 is found, the search process con-
tinues so that the current solution is replaced if another one with fewer rules
is found. This happened three times for case A, with the last occurrence at the
129th generation where the number of rules dropped to 7. No further improve-
ment was observed during the rest of the evolution in terms of number of rules.
Compared to the results obtained on this case with our previous work [5], a
significant improvement was observed (100% vs. 75% for FM).

Case B2, for which structural, time and nesting constraints are involved, took
many more generations (991) to converge to 100% of full match, with minimal
rules achieved at generation 2280. The complexity of the transformation and the
increase in the size of the search space also reduced the proportion of correct
transformations obtained randomly in the initial population (FM = 0.4 for the
initial generation compared to FM = 0.5 in case A). Case B1 has similar results
as B2, but with a faster convergence curve. From the computational perspective,
the parallel five runs took collectively between one hour for case A and three
hours for case B2 on a standard workstation (CPU @ 3.40GHz with 16 Go of
RAM). Although this time could be reduced by optimizing the code, it is not
considered excessive knowing that the process of learning new transformations
is not intended to be executed frequently.

3.2 Qualitative Results

Obtaining 100% correct transformations of examples does not necessarily mean
that we have derived the expected rules. In theory, for a limited sample of test
cases, the same output values could be produced by different programs. Thus,
to assess our results qualitatively, we need to compare the produced rules with
those used to generate the examples (expected ones).

For cases A, we were searching for rules to transform classes, associations
with various cardinalities and inheritance relationships. The expected rule set
was found with a slight difference in one rule. Indeed, as all the classes in our
examples contain at least one attribute, the rule that creates a table from a
class has an unnecessary condition on the presence of an attribute. This kind of
situations cannot be detected automatically because there is no counterexample.
In the case of B1, the expected rules to create a state machine for every object in
the sequence diagram, considering messages as events, were perfectly recovered.

61

M. Faunes, H. Sahraoui, and M. Boukadoum

Finally for B2, rules have to be found for every combined fragment (sequences,
loops, and alts) and for managing the nesting at different levels. Here again,
the best solution contains all the expected rules with an additional one. The
extra rule is subsumed by a correct rule that creates a start state from the
initial message of a combined fragment. Both rules have the same target pattern,
whereas the extra rule has additional conditions. This situation (subsumption)
could be easily detected by an automatic rule-set cleaning phase.

3.3 Discussion

During the development and evaluation of our approach, we faced several chal-
lenges to address or circumvent. This section discusses the most important ones.

Rule Execution Control. In the existing MTBE approaches, including ours,
rules are defined to search for model fragments in the source model following
a source pattern, and instantiate corresponding model fragments in the target
model according to a target pattern. The target model fragments are usually not
independent and have to be properly connected to form a coherent target model.
Connecting target model fragments is difficult because, in most transformation
languages, rules cannot check if a construct is present in the target model to
connect to the produced fragment. In most MTBE approaches, the connection
is achieved implicitly by using the same naming space both for source and target
models. In our work, we circumvent partially the connection problem by recre-
ating the target constructs. This technique was sufficient to handle the studied
transformation cases, but it may be of limited use for other complex transfor-
mation problems. A good solution to handle the connection problem may be an
explicit approach that uses global variables and meta-rules (execution control)
as explained in [17]. In such an approach, the derivation process would learn the
control separately or along with the transformation rules. We plan to explore
this idea in a future work.

Complex Value Derivation. In our experimental setting, rule conditions and
binding statements consider property values as data elements that cannot be
combined to create new data elements. For example, for a construct C1 in the
source model with two numeric properties p1 and p2 and a string property p3, a
condition like C1.p1 + C1.p2 ≤ 2 could not be created. Similarly, for a construct
C2 to create in the target model with a string property p4, we cannot derive the
binding statement C2.p4 = “Der − ” + C1.p3. In our approach, such conditions
and binding statements could be recovered by adding value-derivation operators
such as arithmetic and string operators in the primitive set I (see Section 2.2).
However, this can be done only at the cost of increasing the search-space size,
with an impact on convergence. We plan to consider these new operators in
the future after a code optimization phase to handle the extra computational
cost.

Transformation Examples. In the evaluation of our initial approach [5], we
used examples collected from the literature, whereas in the evaluation of the

62

Genetic-Programming Approach to Learn Model Transformation Rules

improved version, we used prototypical examples. Using prototypical examples
helped to find the correct solution faster, because a reduced number of examples
was necessary to cover the modeling space. However, these could be difficult to
define in real situations. The choice of using prototypical or existing examples
depend on the context: availability of expertise vs. availability of examples.

Model Comparison. The search for a solution is guided by the transforma-
tion correctness (fitness function). As mentioned in Section 2.5, an exhaustive
comparison between the produced and expected models is costly. A trade-off is
necessary between the comparison precision and the computational constraints.
From our experience, sophisticated comparisons such as the one described in [5]
do not impact the search much, when contrasted against the simple comparison
described in this paper. We plan to conduct a rigorous cost benefit study to
compare different alternatives of model-comparison functions.

4 Related Work

Learning transformations from examples takes inspiration from other domains
such as programming by example [19]. Existing work could be grouped into
two categories model transformation by example and model transformation by
demonstration. In the first categories, the majority of approaches takes as input
a set of pairs of source and target models. Models in each pair are generally
manually aligned through fine-grained mapping between constructs of the two
models [22]. Rule derivation is performed using Ad hoc algorithms [6,22], ma-
chine learning such as inductive logic programming in [1], or association rule
mining with formal concept analysis [4]. In our approach, we use a different cat-
egory of derivation algorithm, i.e., genetic programming. In this algorithm, can-
didate transformation programs are evolved with the objective of better match-
ing the provided transformation examples. The derivation does not require the
user alignment/mapping of models that could be difficult to formalize in many
cases. Indeed, once a candidate program is derived, it is executed on the example
source models and its output is compared to the example target models. One
positive side effect of our approach is that the obtained rules are executed and
tested during the derivation process, which helps assessing each rule individu-
ally and the rule set globally. In some of the above-mentioned approached, the
rules are not executable or are mapped in a subsequent step to an executable
language. For example, the work in [4] is extended by mapping the derived
association rules into executable ones in JESS [20]. In the same category of con-
tributions, the work by Kessentini et al. [11] brings a different perspective to the
MTBE problem. Rather than deriving a reusable transformation program, it
defines a technique that automatically transforms a source model by analogy
with existing transformation examples. Although this could be useful for some
situations, the inability to derive transformation rules/knowledge could be seen
as a limitation.

The second category of contributions in transformation rule learning is the
model transformation by demonstration (MTBD). The goal here is to derive

63

M. Faunes, H. Sahraoui, and M. Boukadoum

transformation patterns starting from step by step recorded actions on past
transformations. In [23], Sun et al. propose an approach to generalize model
editing actions (e.g., add, delete, update) that a user performs to refactor a
model. The user editing actions are recorded and serve as patterns that can be
later applied on a similar model by performing a pattern-matching process. This
approach is intended to perform endogenous transformations (refactoring) and
its generalization to exogenous transformation is not trivial. in [14], Langer et
al. proposes an MTBD approach, very similar to the previous one, with the im-
provement of handling exogenous transformations. MTBD solves many problems
of MTBE, as complex transformation could be abstracted. However, transfor-
mation patterns are derived individually and there is no guarantee that patterns
could be applied together to derive consistent target models. In our case, the fact
that rule sets are evaluated by executing them on the example source models,
helps assessing the consistency of the produced models.

In addition to the differences highlighted in the previous paragraphs, our ap-
proach allows generating many-to-many rules that search for non trivial patterns
in the source models and instantiate non trivial patterns in the target models. In
contrast with the state-of-the-art approaches, we do not try to derive patterns
by explicitly generalizing situations found among the examples. We instead use
an evolutionary approach that evolves transformation programs, guided by their
ability to correctly transform the example at hand. Finally, it is difficult to com-
pare quantitatively and qualitatively with the other approaches. The validations
of most of these are not or only partially reported.

5 Conclusion

Prior work has demonstrated that model transformation rules could be derived
from examples. However, these contributions require fine-grained examples of
model mapping or need a manual refinement phase to produce operational rules.
In this paper, we propose a novel approach based on genetic programming to
learn operational rules from pairs of unrelated models, given as examples. This
approach was evaluated on structural and time-constrained model transforma-
tions. We found that in virtually all the cases, the produced rule sets are opera-
tional and correct. Our approach is a new stone in the resolution of the MTBE
problem, and our evaluation provides a compelling evidence that MTBE could
be an efficient solution to many transformation problems. However, some limi-
tations are worth noting. Although the approach worked well for the addressed
problem, the evaluation showed that convergence is difficult to reach for complex
transformations. Future work should therefore include the explicit reasoning on
rule execution control to simplify the transformation rules. It should also better
consider transformations with complex conditions and bindings. In particular,
we consider dealing with source and target models that do not share the same
naming space using natural-language processing techniques.

64

Genetic-Programming Approach to Learn Model Transformation Rules

References

1. Balogh, Z., Varrò, D.: Model transformation by example using inductive logic
programming. Soft. and Syst. Modeling 8 (2009)

2. Banzhaf, W.: Genetic Programming: An Introduction on the Automatic Evolution
of Computer Programs and Its Applications. Morgan Kaufmann Publishers (1998)

3. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation
approaches. IBM Systems Journal 45(3) (2006)

4. Dolques, X., Huchard, M., Nebut, C., Reitz, P.: Learning transformation rules
from transformation examples: An approach based on relational concept analysis.
In: Int. Enterprise Distributed Object Computing Workshops (2010)

5. Faunes, M., Sahraoui, H., Boukadoum, M.: Generating model transformation rules
from examples using an evolutionary algorithm. In: Aut. Soft. Engineering (ASE)
(2012)

6. Garćıa-Magariño, I., Gómez-Sanz, J.J., Fuentes-Fernández, R.: Model transforma-
tion by-example: An algorithm for generating many-to-many transformation rules
in several model transformation languages. In: Paige, R.F. (ed.) ICMT 2009. LNCS,
vol. 5563, pp. 52–66. Springer, Heidelberg (2009)

7. Grønmo, R., Møller-Pedersen, B.: From UML 2 sequence diagrams to state
machines by graph transformation. Journal of Object Technology 10 (2011)

8. Hill, E.F.: Jess in Action: Java Rule-Based Systems (2003)
9. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)

MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)
10. Kessentini, M., Sahraoui, H.A., Boukadoum, M.: Model transformation as an

optimization problem. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MODELS 2008. LNCS, vol. 5301, pp. 159–173. Springer, Heidelberg (2008)

11. Kessentini, M., Sahraoui, H.A., Boukadoum, M., Omar, O.B.: Search-based model
transformation by example. Soft. and Syst. Modeling 11(2) (2012)

12. Kessentini, M., Wimmer, M., Sahraoui, H., Boukadoum, M.: Generating transfor-
mation rules from examples for behavioral models. In: Proc. of the 2nd Int. WS
on Behaviour Modelling: Foundation and Applications (2010)

13. Koza, J., Poli, R.: Genetic programming. In: Search Methodologies (2005)
14. Langer, P., Wimmer, M., Kappel, G.: Model-to-model transformations by

demonstration. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142,
pp. 153–167. Springer, Heidelberg (2010)

15. Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez, M.: An empirical study
of the state of the practice and acceptance of model-driven engineering in four
industrial cases. In: Empirical Software Engineering

16. Moore, G.: Crossing the Chasm: Marketing and Selling Disruptive Products to
Mainstream Customers. HarperCollins (2002)

17. Pachet, F., Perrot, J.: Rule firing with metarules. In: SEKE (1994)
18. Ratcliff, S., White, D.R., Clark, J.A.: Searching for invariants using genetic

programming and mutation testing. In: GECCO (2011)
19. Repenning, A., Perrone, C.: Programming by example: programming by analogous

examples. Commun. ACM 43(3) (2000)
20. Saada, H., Dolques, X., Huchard, M., Nebut, C., Sahraoui, H.: Generation of

operational transformation rules from examples of model transformations. In:
France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 546–561. Springer, Heidelberg (2012)

65

M. Faunes, H. Sahraoui, and M. Boukadoum

21. Schmidt, D.C.: Model-driven engineering. IEEE Computer 39(2) (2006)
22. Strommer, M., Wimmer, M.: A framework for model transformation by-example:

Concepts and tool support. In: Paige, R.F., Meyer, B. (eds.) TOOLS EUROPE
2008. LNBIP, vol. 11, pp. 372–391. Springer, Heidelberg (2008)

23. Sun, Y., White, J., Gray, J.: Model transformation by demonstration. In:
Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 712–726. Springer,
Heidelberg (2009)

24. Varró, D.: Model transformation by example. In: Wang, J., Whittle, J.,
Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 410–424. Springer,
Heidelberg (2006)

66

CHAPTER 6

AUTOMATICALLY SEARCHING FOR METAMODEL WELL-FORMEDNESS

RULES IN EXAMPLES AND COUNTER-EXAMPLES

In this chapter we present the third contribution [21] entitled "Automatically search-

ing for metamodel well-formedness rules in examples and counter-examples" published

at "Model-Driven Engineering Languages and Systems", 2013, pages 187-202. The

contribution aims to improve automation in MDE. Specifically, the approach proposes a

method to improve modeling language precision. In particular, the approach proposes a

method to derive well-formedness rules for metamodels, based on a optimization search

(genetic programming) that is guided by examples of valid and invalid models. We val-

idate our approach over two metamodels for which our approach can derive most of the

relevant well-formedness rules. In the remainder of this chapter we present the paper.

Automatically searching for metamodel
well-formedness rules in examples and

counter-examples

Martin Faunes1, Juan Cadavid2, Benoit Baudry2, Houari Sahraoui1, and
Benoit Combemale2

1 Université de Montréal, Montreal, Canada

2 IRISA/INRIA, Rennes, France

Abstract. Current metamodeling formalisms support the definition of
a metamodel with two views: classes and relations, that form the core
of the metamodel, and well-formedness rules, that constraints the set of
valid models. While a safe application of automatic operations on mod-
els requires a precise definition of the domain using the two views, most
metamodels currently present in repositories have only the first one part.
In this paper, we propose to start from valid and invalid model examples
in order to automatically retrieve well-formedness rules in OCL using Ge-
netic Programming. The approach is evaluated on metamodels for state
machines and features diagrams. The experiments aim at demonstrating
the feasibility of the approach and at illustrating some important design
decisions that must be considered when using this technique.

1 Introduction

Metamodeling is a key activity for capitalizing domain knowledge. A metamodel
formally defines the essential concepts of an engineering domain, providing the
basis for the automation of many operations on models in this domain (e.g.,
analysis, simulation, refactoring, transformation, visualization). However, do-
main engineers can benefit from the full power of automatic model operations
only if the metamodel is precise enough to effectively specify and implement
these operations, as well as to ensure a safe application. Current metamodel-
ing techniques, such as EMF3, GME [13] or MetaEdit+4, impose to define a
metamodel as two parts: a domain structure, which captures the concepts and
relationships that can be used to build models in a specific domain, and well-
formedness rules, that impose further constraints that must be satisfied by all

3 Eclipse Modeling Framework, cf. http://www.eclipse.org/modeling/emf/
4 cf. http://www.metacase.com

68

models in the domain. The domain structure is usually modeled as a class dia-
gram, while well-formedness rules are expressed as logical formula.

When looking at the most popular metamodel repositories (e.g. [1], we find
hundreds of metamodels which include only the domain structure, with no well-
formedness rules. The major issue with this is that it is possible to build models
that conform to the metamodel (i.e., satisfy the structural constraints imposed
by concepts and relationships of the domain structure), but are invalid with
respect to the domain. For example, considering the class diagram metamodel
without well-formedness rules, it is possible to build a class diagram in which
there is a cyclic dependency in the inheritance tree (this model would be valid
with respect to the domain structure but invalid with respect to the domain
of object-oriented classes). From an engineering and metamodel exploitation
perspective, the absence of well-formedness rules is a problem because it can
introduce errors in operations that are defined on the basis of the domain struc-
ture. For example, operations that rely on automatic model generation might
generate wrong models or compatibility analysis (e.g. to build model transfor-
mation chains) can be wrong if the input model is considered as conforming to
the domain structure while it does not fully conform to the domain.

The intuition of this work is that domain experts know the well-formedness
rules, but do not explicitly model them and some operations may consider them
as assumptions (i.e., hidden contract). We believe that experts know them in the
sense that, if we show them a set of models that conform to the domain structure,
they are able to discriminate between those that are valid with respect to the
domain and those that are not. However, we can only speculate about why they
do not formalize them. Given the importance of well-formedness rules, we would
like to have an explicit model of these rules to get a metamodel as precise as
possible and get the greatest value out of automatic operations on models.

In this work, we leverage domain expertise to automatically generate well-
formedness rules in the form of OCL (Object Constraint Language) invariants
over a domain structure modeled as a class diagram with MOF. We gather
domain expertise in the initial domain structure and a set of models that conform
to the domain structure, in which some models are valid with respect to the
domain and some models are invalid. Starting from this input, our technique
relies on Genetic Programming [12] to automatically generate well-formedness
rules that are able to discriminate between the valid and invalid models.

We validate our approach on two metamodels: a state machine metamodel
and a feature diagrams metamodel. For the first metamodel our approach finds
10 out of 12 well-formedness rules, with precision = recall = 0.83. For the
second metamodel we retrieve seven out of 11 well-formedness rules with a
precision = 0.78 and recall = 0.64.

The contributions of this paper are the following:

– formalizing the synthesis of well-formedness rules as a search problem;
– a set of operators to automatically synthesize and mutate OCL expressions;
– a series of experiments that demonstrate the effectiveness of the approach

and provide a set of lessons learned for automatic model search and mutation.

69

The paper is organized as follows. Section 2 provides the background and,
defines and illustrates the problem addressed. Section 3 details the proposed ap-
proach using Genetic Programming to derive well-formedness rules, and Section
4 reports our experiments to evaluate the approach. Section 5 surveys related
work. Finally, we conclude and outline our perspectives in Section 6.

2 Problem definition

This section precisely defines what we mean by metamodeling and illustrates how
both the domain structure and well-formedness rules are necessary to completely
specify a metamodel. Then we illustrate how the absence of well-formedness rules
can lead to situations where models conform to the domain structure but are
invalid with respect to the domain.

2.1 Definitions

Definition 1. Metamodel. A metamodel is defined as the composition of:

– Domain structure. This part of the metamodel specifies the core concepts
and attributes that define the domain, as well as the relationships that specify
how the concepts can be bound together in a model.

– Well-formedness rules. Additional properties that restrict the way con-
cepts can be assembled to form a valid model.

The method we introduce in this work can be applied to any metamodel
that is specified according to this definition. Nevertheless, for this work we had
to choose concrete formalisms to implement both parts. Thus, here, we exper-
iment with domain structures formalized with MOF and well-formedness rules
formalized with the Object Constraint Language (OCL).

2.2 Illustration of precise metamodeling

Here we illustrate why both parts of a metamodel are necessary to have a speci-
fication as precise as possible and avoid models that conform to the metamodel
but are invalid with respect to the domain. The model in Fig. 1 specifies a sim-
plified domain structure for state machines. A StateMachine is composed of
several Vertexs and several Transitions. Transitions have a source and a tar-
get Vertex, while Vertexs can have several incoming and outgoing Transitions.
The model distinguishes between several different types of Vertexs.

The domain structure in Fig. 1 accurately captures all the concepts that
are necessary to build state machines, as well as all the valid relationships that
can exist between these concepts. However, valid models can also exist, of this
structure, that are not valid state machines. For example, the metamodel does
not prevent the construction of a state machine in which a join pseudostate
has only one incoming transition (when it should have at least 2). Thus, the sole

70

Fig. 1: State machine metamodel

domain structure of Fig. 1 is not sufficient to precisely model the specific domain
of state machines.

The domain structure needs to be enhanced with additional properties to cap-
ture the domain more precisely. The following well-formedness rules, expressed
in OCL, show some mandatory properties.

1. WFR1: Join pseudostates have one outgoing transition

(context Join inv : s e l f . outgoing−>s i z e () = 1))

2. WFR2: Fork pseudostates have at least two outgoing transitions

(context Fork inv : s e l f . outgoing−>s i z e () > 1)

2.3 Problem definition

The initial observation of this work is that most metamodelers build the domain
structure, but do not specify the well-formedness rules. The absence of these
rules allows the creation of models that conform to the metamodel (only domain
structure) but are not valid with respect to the domain. For example, if we ignore
the well-formedness rules illustrated previously, it is possible to build the two
models of Fig. 2a and Fig. 2b. Both models conform to the structure of Fig. 1,
but the model of Fig. 2b is an invalid state machine.

(a) Valid (b) Invalid

Fig. 2: Example of state machines

The intuition of this work is that, given a domain structure without well-
formedness rules, it is possible (i) to generate models (e.g., using test model

71

generation techniques [2]) and (ii) to ask domain experts to sort these models
between valid and invalid. Then, our objective is to automatically retrieve a set
of well-formedness rules. The retrieved well-formedness rules are not meant to
be exactly those sought (that are unknown), but shall be a good approximation.
In particular, they should be able to properly discriminate models beyond those
provided in the learning process, i.e., they should generalize the examples.

3 Approach description

3.1 Approach overview

The problem, as described in Section 2, is complex to solve. The only inputs
to our derivation mechanism are the sets of examples of valid (positive) and
invalid (negative) models. Hence, our goal is to retrieve the minimal set of well-
formedness rules that better discriminate between the two sets of models.

From a certain perspective, well-formedness rule sets could be viewed as
declarative programs that take as input a model and produce as output a decision
about the validity of this model with respect to the domain. This observation
motivates the use Genetic Programming (GP) as a technique to derive such rule
sets. Indeed, GP is a popular evolutionary algorithm which aims at automatically
deriving a program that approximates a behaviour from examples of inputs and
outputs. It is used in a scenario where manually writing the program is difficult.
In our work, the examples of inputs are the models and the outputs are their
validity. As we will show later in this section, to guide the derivation process,
well-formedness rules should be evaluated on the example models. To this end,
the rules to search for are implemented as OCL invariants56.

The boundaries of our derivation process are summarized in Fig. 3. In addi-
tion to example models, the derivation process takes as input a metamodel for
which the invariants are sought. It produces as output fully operational OCL
invariants that represent an approximation to the sought invariants.

Fig. 3: Approach overview

In the next two sub-sections, first, a brief introduction to the GP technique
is given and then its use to solve specifically the problem of well-formedness rule
derivation is described.
5 http://projects.eclipse.org/projects/modeling.mdt.ocl.
6 In the remainder of this section, we use the term “invariant” (resp. “invariant set”)

to designate a well-formedness rule (resp. rule set)

72

3.2 Genetic Programming

The most effective way to understand GP is to look to the typical GP process
(cycle), sketched in Fig. 4. Step 1 of a GP cycle consists of creating an initial
population of randomly-created programs. Then, in step 2, the fitness of each
program in the current population is calculated. This is typically done by execut-
ing the programs over the example inputs and comparing the execution results
with the expected outputs (those given as example). If the current population
satisfies termination criteria in step 3, e.g., a predefined number of iterations or
a target fitness value, the fittest program met during the evolution is returned
(step 7); otherwise, in step 4, a new population is created (it is also called evolv-
ing the current population). This is done by selecting the fittest programs of
the current population and reproducing them. Although, the selection process
favors the programs with the highest fitness values, it still gives a chance to any
program to avoid local optima. Reproduction involves three families of genetic
operations: (i) elitism to directly add top-ranked programs to the new popula-
tion, (ii) crossover to create new programs by combining genetic material of the
old ones, and (iii) mutation to alter an existing program by randomly adding
new genetic material. Once a new population is created, it replaces the current
one (step 5) and the next iteration of the GP cycle takes place, i.e., steps 2 to
5. Thus, programs progressively change to better approximate the behaviour as
specified by the inputs/outputs.

Fig. 4: A typical GP cycle

3.3 Using GP to Derive Well-Formedness Rules

To adapt GP to our problem, we have to produce a set of positive and negative
models (base of examples). Then, we need to define a way to encode a set of
invariants and to create the initial population of them. Another action consists
in selecting a mechanism to execute sets of invariant on the provided models
to calculate their fitness. Finally, proper genetic operators should be defined
to evolve the population of candidate sets. In the rest of this section, these
adaptations are described in details.

73

Input/output encoding: The base of examples E is a set of pairs e = (m, v) where
m is a model (conforming to the considered metamodel M) and v, a boolean,
is the model validity stating if m satisfies the invariants or not. We refer to the
example model as em and to the example model validity as ev. Each model m
conforms to the ECORE [16] metamodel M .

Invariant set encoding: In GP, a population of programs is initially created and
evolved to search for the one which better approximates the behavior specified
by the examples of inputs and outputs. In our adaptation, a program is a set
p that contains OCL invariants ij , p = {i1, i2, ..., in}. A model m, to be valid
given an invariant set p, has to satisfy each invariant ij ∈ p. To encode an OCL
invariant ij , we use the format provided by the Eclipse OCL framework. An OCL
invariant is seen as a tuple (c, t) where c is the context, i.e., a main metamodel
class, and t is a tree that combines logical operators, comparison operators, func-
tions, metamodel elements, and constants according to OCL syntax. Metamodel
elements can be class attributes or class relationships (called references). In such
a tree, the leave nodes are metamodel elements and constants, and the leave-
node parents are comparison operators and functions. Any node on top of these
two levels is a logical operator. In our implementation, we use the logical opera-
tors {and, or, not, implies}, comparison operators {>,<,=,≥,≤, 6=}, and other
operations like {isKindOf, forAll, includesAll, size, allInstances, etc.}. These
operations are generally enough to encode a wide range of OCL invariants.

Random invariant set creation: The first phase of the well-formedness rule
derivation process is the random generation of the initial population, consist-
ing of n invariant sets. In theory, there is an infinity of possible invariants that
can be generated for a given metamodel. However, Cadavid et al. [3] showed em-
pirically, i.e., by analyzing dozens of metamodels from the standard community,
academia, and industry, that there is a limited number of recurrent invariant
patterns (20), whose instances are used individually or combined to create com-
plex invariants. A pattern example is CollectionSizeEqualsOne, which states that
the size of a collection col, contained in a class A, should be equal to 1:

context A inv : co l−>s i z e () = 1

Such a pattern could be instantiated for any collection that can be found in a
class, regardless of its type. Two possible instantiations for the state-machine
metamodel in Fig. 1, could be the following:

context Fork inv : s e l f . incoming−> s i z e () = 1
context Fork inv : s e l f . outgoing−> s i z e () = 1

In our random generation process, we first automatically produce all the
possible instances of the above-mentioned 20 basic patterns for the considered
metamodel. This results in a large number of rules, lots of them are wrong, some
of them are too simple or with wrong parameter values and thus it is still neces-
sary to explore, combine and mutate this initial space of rules in order to produce
the right set. To this end, for each invariant set to create, we randomly pick some
of of the generated instances to produce simple invariants or complex ones by

74

Fig. 5: An example of a randomly-created invariant set

combining the chosen instances with logical operators. Simple invariants can be
combined if they share the same context. Fig. 5 shows an example of a set with
three invariants. The two first invariants are simple and contain respectively an
instance of the pattern CollectionSizeEqualsOne and an instance of the pattern
CollectionIsSubset, i.e., a collection that shoud be included in another one. The
third invariant is the conjuction of an instance of CollectionSizeEqualsOne with
an instance of CollectionIncludesSelf, i.e., if a class contains a collection typed
with itself, an instance of this class also makes part of this contained collection.

The number of instances to select as well as the number of combinations
to perform to produce complex invariants (tree depths) are decided randomly
during the creation of each set. The pattern instances are syntactically (w.r.t
the OCL syntax) and semantically (w.r.t the metamodel structure) correct as
they are their combinations. However, this does not mean that they are good
invariants. This is decided by the fitness function.

Fitness calculation: In our implementation, OCL invariants are evaluated on the
example models using the Eclipse OCL engine. The fitness function f assesses
how well an invariant set p discriminates the models contained in the base of ex-
amples E with respect to the expert-based classification. f is a weighed function
of two sub-functions f1 and f2. The first component, f1, measures the rate of
example models in E that are well classified by p. A model em is well classified
if v (em, p), the evaluation of p on em, is equal to ev. f1 is defined as:

f1 (p,E) =

∑
e∈E I (v (em, p) = ev)

|E| → [0, 1] (1)

Function I(a) returns 1 if a = true and 0 otherwise. The evaluation of a set
of invariants p on a model m , v(m, p), is defined formally as:

v (m, p) = u (m, i1) ∧ u (m, i2) ∧ ... ∧ u (m, iz)→ Boolean;∀ik ∈ p (2)

Here, u(m, i) is a boolean function that returns true if m satisfies the invari-
ant i and false otherwise.

Component f1 allows to evaluate the set of invariants as a whole. However,
it could penalize candidate sets that include good invariants but a few ones. To

75

reward good invariants individually, we defined a second component, f2, of the
fitness function. f2 is calculated by counting the invariants i ∈ p that are able
to find at least α true positives Tp and at least β true negatives Tp. We then
divide by the number of invariants |p| to normalize the result between 0 and 1:

f2 (p,E) =

∑
e∈E I (Tp(i, E) ≥ α ∧ Tn(i, E) ≥ β)

|p| → [0, 1] (3)

Here, a true positive (resp. negative) is a model e ∈ E classified as valid
(resp. invalid) and that satisfies (resp. not satisfies) the invariant i ∈ p:

Tp (p,E) =
∑

e∈E;e.v

I (u (e, i));Tn (p,E) =
∑

e∈E;¬e.v
I (¬u (e, i)) (4)

Now that we can generate an initial population and evaluate each of the
invariant sets, the next step consists in selecting invariant sets to use them to
produce a new population by applying crossover and mutation operators.

Selection method: To determine which sets of invariants will be reproduced to
create the new population, the Roulette-wheel selection method is used in this
work. This technique assigns to each invariant set in the current population a
probability of being selected for reproduction that is proportional to its fitness.
This selection strategy favours the fittest invariant sets while still giving a chance
to the others.

Genetic Operators : The crossover operator consists of producing new invariant
sets by combining the existing genetic material. After selecting two parent sets
for reproduction, two new invariant sets are created by exchanging invariants of
the parents. For instance, consider the two invariant sets p1 = {i11, i12, i13, i14}
having four invariants and p2 = {i21, i22, i23, i24, i25} with five invariants. If a
cut-point is randomly set to 2 for p1 and another to 3 for p2, the offspring
obtained are invariant sets o1 = {i11, i12, i24, i25} and io2 = {i21, i22, i23, i13, i14}.
Because each parent invariant is syntactically and semantically correct before the
crossover, this correctness is not altered for the offspring. Crossover is applied
with high probability.

Mutation allows to randomly inject new genetic materiel in the population. It
is applied with a low priority to offsprings after a crossover or to the selected par-
ents when the crossover is not applied. In our adaptation of GP, we implemented
10 mutation operators that modify an invariant set at many levels. Every oper-
ator preserves the sibling correctness, syntactically and semantically. The first
three operators are defined at the set level. One allows to add a new invariant,
produced randomly according to the procedure used in the initial population
generation. The second operator simply picks one of the existing invariants in
the set and removes it. If we consider the set of Fig. 5 , we could have, for in-
stance, the following mutations, corresponding respectively to the two operators:

Add : context Orthogonal inv : s e l f . outgoing−>i n c l ud e sA l l (s e l f . incoming)
Remove : context Fork inv : s e l f . incoming−> s i z e () = 1

76

The third operator at the set level selects two invariants, simple or complex,
having the same context, and combines them using the “implies” operator. The
remaining operators are defined at the invariant level. For one invariant of the
considered set, some mutations consist in replacing respectively a comparison
or a logical operator by a new one. For example, “=” in “Inv 0” of Fig. 5
could be replaced by “>”. Similarly, “and” in “Inv 2” could become “implies”.
Incrementing/decrementing a numerical constant and replacing an attribute or
a reference by a new one that is of the same type and that belongs to the same
context, also are possible mutations, e.g., replacing 1 by 0 or “incoming” by
“outgoing” in “Inv 0”. Another used mutation is the replacement of an operand
(sub-tree) of a logical operator or a comparator by a randomly generated one.
For example, the operand “self.contents->includes(self)” in “Inv 2” could be
replaced by “self.outgoing->size() = 0”. The final mutation is the negation of a
node that returns a boolean value (a logical operator, a comparison operator or a
boolean function). For instance, “Inv 1” could be mutated to “not self.incoming
->includesAll(self.outgoing)”.

All the decisions made during the mutation, including the selection of the
mutation operator, the invariant to change, and the replacement elements, are
determined randomly.

4 Evaluation

4.1 Research Questions

The evaluation of our approach addresses the two following research questions:

1. To which extent our approach is able to derive well-formedness rules that
properly discriminate between valid and invalid models?

2. Are the produced well-formedness rules those that are expected?

The first questions aims at assessing the validity of the approach from the quan-
titative perspective while the second considers the qualitative perspective.

4.2 Experimental Setting

Method. To answer both research questions, we conduct an experiment in which
we evaluate our approach over two different metamodels. The evaluation is per-
formed in a semi-real environment in which we know a priori the well-formedness
rules sought (OCL invariants provided with the metamodels). The example mod-
els are randomly created using Alloy [9]. The creation with Alloy takes into
account the known invariants. The number of positive models that are created
(those that satisfy all the invariants) is equal to five times the number of known
invariants. An identical number of negative models is also created. To create
negative models, we randomly negate one or more invariants to force Alloy to
violate them. The positive and negative model examples are then given as input
to the derivation process, but not the known invariants.

77

To answer the first question, we first calculate the classification correctness
of the best found invariant set, i.e., proportion of models in the example base
that are correctly classified (f1 in the fitness function). Then, considering the
stochastic nature of our approach, i.e., different executions may lead to different
results, we take a sample of executions and compare it with another sample
obtained by a random technique. To have a fair comparison, we defined the
random technique as the selection of the best from n ×m randomly–generated
sets, where n and m are respectively the size of a population and the number of
iterations in our approach. In other words, both our approach and the random
technique explore the same number of invariant sets. The comparison of the two
samples is done using an independent-sample t-test (or Mann-Whitney test if f1
values are not normally distributed in the two execution samples). The tests are
performed with a significance at the level of α = 0.05, i.e., a probability of less
than 5% that the difference between the two samples is obtained by chance.

To answer the second research question, we analyzed the invariants of the
best derived solution and compare them with the known invariants. The compar-
ison produces four sets: invariants found that match the expected ones (FOU),
invariant found that are subsumed (less general) by the expected ones (SUB),
invariants that are not expected (INC), and expected invariants not found ex-
cluding the subsumptions (MIS). Ideally, all the found invariants should be in
FOU and MIS should be empty. Solutions with all the invariants in FOU but a
few in SUB are also acceptable. We defined two versions of precision and recall
depending on the acceptance of subsumed invariants (relaxed) or not (strict), as
follows:

precisionstrict = |FOU |
|FOU |+|SUB|+|INC| and recallstrict = |FOU |

|FOU |+|SUB|+|MIS|

precisionrel = |FOU |+|SUB|
|FOU |+|SUB|+|INC| and recallrel = |FOU |+|SUB|

|FOU |+|SUB|+|MIS|

Data.The first metamodel used is the one of state machines (see Fig. 1). We
selected 12 OCL invariants related to the incoming and outgoing transitions
depending on the state types. As mentioned earlier we created 60 positive and
60 negative models (5× 12 for each set).

The second metamodel that we consider represents the feature diagrams [11]
(see Fig. 6). For this metamodel, we selected 11 OCL invariants covering the
interdependencies between the feature types and the relation types. We created
accordingly 55 positive and 55 negative example models.

Fig. 6: Feature diagram metamodel

78

Algorithmic parameters. GP, being a meta-heuristic algorithm, it depends
on many parameters. The population size was fixed to 100 invariant sets and the
evolution was performed with a maximum of 1000 iterations. To ensure that the
best invariant sets will be kept during the evolution, we used an elitism strategy
that consists in automatically adding the 10 fittest sets of each generation to the
next one. For the evolution operator, the crossover probability was set to 0.9.
We used the same probability for mutation. Unlike classical genetic algorithms,
having a high mutation probability is not unusual for GP algorithms (see, for
instance, [14]). For the fitness function we give equal weights to f1 and f2 (0.5),
and the parameter α of f2 was set to 1. Finally, the probability of creating
complex invariants vs. simple ones during the random creation is set to 0.1, i.e.,
each time an invariant has to be generated, it has nine chances to be simple and
one to be complex. This probability is recursively applied to the operands of the
logical operators when a complex invariant is created.

4.3 Results

Question 1. Given the stochastic nature of the GP, we performed a sample of
executions and took the best found set. For the state machine metamodel the
optimal best set was found before reaching the maximum number of iterations
(after 537 iterations). This set perfectly discrimnates the positive models from
the negative ones (f1 = 1). For the feature digram metamodel, the best set
missclassified 10 from the 110 models (f1 = 0.91). The second step was to assess if
the GP-based derivation performs better, in terms of discrimination power, than
random generation. We performed a Kolmogoriv-Smirnov test that revealed that
the f1 values are normally distributed in both GP-based and random execution
samples. This allows us to perform an independent-samples t-test with the null
hypothesis that there is no difference in f1 between the two derivation techniques.
As illustrated in Table 1, the GP-based derivation performs clearly better than
the random technique (∼ 0.9 compared to ∼ 0.25) and this difference in f1 is
statistically significant with p < 0.001 for both metamodels.

Table 1: Comparison with random generation (Question 1).
Metamodel Average f1 for GP Average f1 for Random Sig.

State machines 0.96 0.22 < 0.001
Feature diagrams 0.88 0.25 < 0.001

Question 2. We manually analyzed the obtained invariants for each metamodel
and compared them to the expected ones7. Table 2 summarizes the analysis
results. For state machines, 12 invariants were found. 10 of them exactly matches

7 Full results at http://geodes.iro.umontreal.ca/en/projects/MOTOE/MODELS13

79

Table 2: Precision and recall for invariant determination (Question 2).
Metamodel precisionstrict recallstrict precisionrel recallrel

State machines 0.83 0.83 0.83 0.83
Feature diagrams 0.78 0.64 0.89 0.73

expected invariants, 2 are incorrect and 2 are missing. This led to a precision
and a recall (strict an relaxed) of 0.83. The missing and incorrect invariants are:

Miss ing i nva r i an t s
context I n i t i a l inv : s e l f . incoming−>s i z e () = 0
context Fina l inv : s e l f . outgoing−>s i z e () = 0

In c o r r e c t i nva r i an t s
context I n i t i a l inv : s e l f . outgoing−>i n c l ud e sA l l (s e l f . incoming))
context Fina l inv : s e l f . incoming−>i n c l ud e sA l l (s e l f . outgoing))

We expected invariants enforcing that the set of incoming (respectively out-
going) transitions is empty for initial (respectively final) states. Our algorithm,
based on the examples, finds invariants that evaluate to true, as empty sets are
always included in other sets, but do not represent the correct semantic.

For the feature diagrams, the results were slightly worse. Indeed, 9 invariants
were derived. 7 of them are good invariants whereas one is subsumed and one
is incorrect. 3 expected invariants were not recovered. Consequently, the strict
precision is 0.78 and the strict recall 0.64, whereas, the relaxed ones are increased
respectively to 0.89 and 0.73. The concerned invariants are:

Miss ing i nva r i an t s
context Or inv : contents−>f o rA l l (v : Vertex | v . oc l IsKindOf (Feature))
context Optional inv : contents−>f o rA l l (v : Vertex | v . oc l IsKindOf (Feature))
context Pr imit iveFeature inv : s e l f . contents−>s i z e () = 0

In c o r r e c t i nva r i an t
context Pr imit iveFeature inv : s e l f . conta iner−>i n c l ud e sA l l (s e l f . contents))

Subsumed inva r i an t
Expected : context DecomposableFeature inv : s e l f . contents−>s i z e () > 1
Found : context DecomposableFeature inv : s e l f . contents−>s i z e () > 0

The incorrect invariant correspond to the same case discussed for the state ma-
chines, i.e., inclusion of an empty set. The subsumed invariant is explained by
the fact that in all the positive models, the contents of a DecomposableFeature
includes more than one element with lead to the condition “> 1” instead of the
expected “> 0”. Finally, two invariants with the iterator forAll were not found.

4.4 Threats to Validity and Performence Issues

As for any experimental evaluation, some threats could affect the validity of our
findings. Conclusion validity could be affected by the stochastic nature of our
approach. To address this threat, we conducted statistical tests on a sample of
executions to show that the difference in correctness between our approach and
random generation is large and statistically significant. Another related threat
concerns the influence of the algorithmic parameters on the obtained results.
We set some of the parameters to standard or consensual values (crossover prob-
ability, population size, and number of iterations). For the others, we tested

80

different combinations (fitness function weights and mutation probability). Mu-
tation probability, in particular, is certainly the parameter that has the most
influence on the results. Indeed, when the initial population does not contain
invariants that are close the ones sought, many mutations are necessary to con-
verge towards the optimal invariant set (see for example, [14,7]).

We identified two potential threats to the external validity. First, the models
used as examples were automatically generated taking into account the sought
invariants rather than collected and classified by experts as valid/invalid. To
ensure that the produced models cover well the modeling space, we forced Alloy
to perform the generation with different parameter values such the number of
class instances in each model. In the future, we plan to conduct new experiments
with more real settings to circumvent this threat. The second threat concerns
the used metamodels. Although these metamodels describe different domains,
the investigation of more metamodels is necessary to draw better conclusions.
The manual comparison made by the authors to answer Question2 could repre-
sent a threat to the internal validity. Deciding for the exact invariant matches
and subsumptions could be error-prone and affected by the experimenter ex-
pectancies. To prevent this threat, we conducted this comparison rigorously and
diligently. We expect to use independent subjects to write/classify the models
and evaluate the invariants in our future experiments.

Several implementation iterations were necessary to obtain an efficient ver-
sion of our algorithm. We reused many elements that affect the performance of
our algorithm, Eclipse OCL engine, Alloy model generator, and Alloy to ECORE
transformer. These elements are used for each invariant set in the population and
repeated trough the different evolution iterations. To obtain an acceptable per-
formance, we first parallelized the GP process to calculate the fitness function
of each invariant set in a population in separated threads. After, many trials,
we created one thread per invariant set when evaluating a population. A second
change, which improved considerably the performance, is the pre-calculation of
the component u (e, i) that is used in f1 and f2, i.e., we pre-calculate the va-
lidity of each example model for each invariant present in the population. As
many invariants are shared by many sets, and their validity is used in f1 and f2,
the improvement was considerable. The two optimizations allowed us to run the
algorithm over a input size 20 time bigger.

5 RelatedWork

In this section we analyze the related works to our approach from two different
perspectives. The first one is the derivation of invariants, as rules learned from
an underlying artifact, either models or programs. In the second perspective,
we cite other works using learning techniques to derive useful information for
MDE stakeholders. For the first perspective, the main referent in the derivation
of invariants in software engineering is Daikon [6]. Taking a program as input,
it analyzes the computed values and detects likely invariants that can be used
for program understanding and documentation and verification of formal spec-

81

ifications among other tasks. The machine learning technique used is an infer-
ence engine based on a generate-and-check algorithm. This approach was later
notoriously complemented with Sam Ratcliff’s work [14]. Demonstrating that
evolutionary search can consider a very wide amount of program invariants, the
need for a filtering mechanism was imposed. The given solution was the use of
mutation testing, enabling thus the approach to sort out invariants that are not
interesting for the user. Zeller investigates the idea of specification mining[17],
where he intends to leverage on repositories of software specifications, in order
to reuse this knowledge into actionable recommendations for today’s developers
of formal specifications. The main technique for achieving specification mining is
the generation of test cases covering a wide range of possible program executions
- the “execution space”. Test cases which lead to undesired program executions,
or so-called illegal states, are used to enrich specifications [4].

For the second perspective, in the field of Model-Driven Engineering, machine
learning techniques have been used successfully. [5] uses formal concept analysis
to learn patterns of model transformation rules from a set of examples. Another
application is the reverse engineering of metamodels, also known as metamodel
recovery. In [10] the authors propose a mechanism to learn a metamodel from a
set of models, by using techniques inspired by grammar inference. In the same
fashion, [8] proposes a process for pattern extraction from deployable artifacts
in order to recover architecture models. Learning of metamodels has also been
presented as bottom-up metamodeling. In [15], authors present an approach to
build metamodels from partial object models, annotated with information to
build abstractions. These abstractions are refined iteratively, in order to obtain
an implementation metamodel ready to use for MDE activities. Although this
approach does not actually use search-based techniques, it does highlight the
importance of guiding domain experts in the difficult task of metamodeling.

6 Conclusions

In this paper, we propose an approach to automatically derive well-formedness
rules for metamodels. Our approach uses positive and negative example models
as input and it is based on a Genetic Programming that evolves a population
of random created rules, guided by a fitness function that measures how well
the rules discriminate the models used as example. Once finished, the process
returns the best set of well-formedness rules ever created during the process.
We validate the approach over two different metamodels coming from different
domains: a state machines, and feature diagrams. As a result, our approach auto-
matically derives most of the expected well-formedness rules. This results shows
the feasibility of our approach and defines a starting point for our future works.
Future work includes investigating the support of more complex invariants, and
alternatives in the way to obtains model examples. We are also extending our
experiments to address the threats to validity mentioned in this paper. In par-
ticular, we explore the application of the approach on other various metamodels,
including ones coming from industry.

82

References

1. Metamodel zoos. http://www.emn.fr/z-info/atlanmod/index.php/Zoos.
2. J. Cadavid, B. Baudry, and H. Sahraoui. Searching the boundaries of a model-

ing space to test metamodels. In Proceedings of the International Conference on
Software Testing, verification and validation (ICST), pages –, Apr. 2012.

3. J. Cadavid, B. Combemale, and B. Baudry. Ten years of Meta-Object Facility: an
Analysis of Metamodeling Practices. Tech. report RR-7882, INRIA, 2012.

4. V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller. Generating test cases
for specification mining. In Proceedings of the 19th international symposium on
Software testing and analysis, pages 85–96. ACM, 2010.

5. X. Dolques, M. Huchard, C. Nebut, H. Saada, et al. Formal and relational concept
analysis approaches in software engineering: an overview and an application to
learn model transformation patterns in examples. 2011.

6. M. Ernst, J. Perkins, P. Guo, S. McCamant, C. Pacheco, M. Tschantz, and C. Xiao.
The daikon system for dynamic detection of likely invariants. Science of Computer
Programming, 69(1-3):35–45, 2007.

7. M. Faunes, H. Sahraoui, and M. Boukadoum. Generating model transformation
rules from examples using an evolutionary algorithm. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering, pages
250–253. ACM, 2012.

8. J. Favre. Cacophony: Metamodel-driven software architecture reconstruction. In
Reverse Engineering, 2004. Proceedings. 11th Working Conference on, pages 204–
213. IEEE, 2004.

9. D. Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(2):256–290, 2002.

10. F. Javed, M. Mernik, J. Gray, and B. Bryant. MARS: A metamodel recovery system
using grammar inference. Information and Software Technology, 50(9-10):948–968,
2008.

11. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented domain analysis (foda) feasibility study. Technical report, DTIC Docu-
ment, 1990.

12. J. Koza and R. Poli. Genetic programming. In Search Methodologies. 2005.
13. A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G. Nord-

strom, J. Sprinkle, and P. Volgyesi. The generic modeling environment. In Work-
shop on Intelligent Signal Processing, Budapest, Hungary, volume 17, 2001.

14. S. Ratcliff, D. White, and J. A. Clark. Searching for invariants using genetic
programming and mutation testing. 2011.

15. J. Sánchez-Cuadrado, J. de Lara, and E. Guerra. Bottom-up meta-modelling: An
interactive approach. Model Driven Engineering Languages and Systems, pages
3–19, 2012.

16. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework (2nd Edition). Addison-Wesley, 2008.

17. A. Zeller. Specifications for free. In NASA Formal Methods, pages 2–12. Springer,
2011.

83

CHAPTER 7

CONCLUSION AND FUTURE PERSPECTIVE

7.1 Thesis contributions and impact on MDE

The main contribution of our thesis is proposing a general approach for improving

automation in MDE.

In our vision, automation problems can be solved by means of an optimization pro-

cess in which solutions are searched based on examples.

We apply this vision to three MDE activities, (1) model transformation in the context

of migration, (2) general model transformation and (3) modeling language definition.

For the first problem, MT in the context of migration, we propose a software clus-

tering approach that searches for a solution by conformance with example clusters. Our

approach main contribution is that, instead of guiding the clustering process based on the

classic structural metrics, the search is guided by conformance with known good clusters

used as examples. Based on our empirical results, we argue that driving the search by

conformance to examples leads to better results than current approaches.

In the second problem, general model transformation, we contribute to the state of

the art by proposing an approach to derive model transformations based on a heuristic

search (genetic programming) guided by conformance with the examples of source and

target models. Our approach, unlike the existing ones, does not need transformation

traces, but only example pairs of source and target models. It produces complex many-

to-many rules with sophisticated conditions. These rules are fully operational at the end

of the derivation process. The validation on two transformation problems showed that

non-trivial rules could be derived.

For the problem of modeling language definition, our contribution is proposing a

search based approach to automatically improve a modeling language definition where

the search is based on examples. Roughly speaking, the approach derives well-formedness

rules for a metamodel starting only with two sets of valid and invalid models. To the best

85

of our knowledge, this is the first contribution in the domain. The initial evaluation re-

vealed encouraging results.

We believe that our contributions are important steps towards the improvement of

automation level offered by the existing MDE environments. Improving automation will

result in a better adoption of this paradigm by a larger part of the software industry. More

concretely, contributing to the migration towards new development/design paradigms

will help organizations that are struggling to prolong the life and quality of their vital

software.

The derivation of transformation rules from examples is, without any doubt, the con-

tribution that has the most impact on MDE adoption. Although much effort is dedicated

to writing transformations for well-known general formalisms, e.g., UML, there is no

critical mass to deal with all the domain-specific languages. Our approach gives an addi-

tional option to derive transformations by asking the stakeholder to give transformation

examples rather than fully-fledged transformations.

Another reason why MDE is not widely adopted is the lack of support to produce

and to process models safely. In other words, the definition of modeling languages

(metamodels) is a craft activity, with tremendous consequences on the correctness and

reliability of the derived software. Introducing precision is often synonym of formal-

izations, which requires non-tivial skills from the stakeholders. Our approach to the

learning of well-formedness rules offers the possibility of giving examples of valid and

invalid models letting the formal rule writing to an automated process.

7.2 Going beyond

Our proposal is a general framework, which requires to be applied to concrete MDE

problems, like the three that we address in the thesis.

In this respect, although we provide compelling evidence that our vision can be con-

cretely applied, the proposed approaches do not pretend to fully solve the addressed

problems. There is still room for improvement.

In the first approach, in model transformation in the context of migration, a faster

86

mechanism to test a solution quality is needed to improve the performance of the clus-

tering process. On the other hand, the availability of bigger example cluster databases is

necessary to test our proposal in industrial scenarios. Moreover, this example base could

be organized by application domain since the application low level structure tends to be

similar in applications of similar domains. Furthermore, the proposal needs to be tested

in other scenarios beyond procedural to OO, e.g., object to component applications. That

would give us an important feedback on the approach feasibility.

Many improvements are also possible for the transformation rule learning approach.

First of all, a validation in an industrial setting is needed to confirm the maturity of our

approach. To do so, many more example bases are needed. These example bases should

consider a wide range of transformation problems. Eventually, benchmarks should be

created in order to compare different team results. These tests should lead to better/faster

mechanisms to guide the search (fitness functions). The second improvement opportu-

nity is that no one has still addressed the complex problem of producing transformations

in which the constructs in the target model are created by complex operations on con-

structs of the source model. An example is when a field in the target model is created

by concatenating two fields of the source model. This kind of transformation, rare in

some transformation problems, happens often in others. From another perspective, up

to now, model transformation approaches only consider transformation rules that ignore

the problem of controlling the rules’ execution (e.g., with metarules). Explicit transfor-

mation control is often needed in model transformation used in industrial contexts. This

idea is currently explored by my followers in the project. In the same vein, existing ap-

proaches consider in general that transformations search for patterns in the source model

and instantiate patterns in the target model. Once again, this is a simplification since in

many problems, rules have to check for the existence of constructs in the target model

to connect to them the target pattern instances. Finally, it should be possible to feed the

search with rules known to be correct and ask the search to preserve and complete these

rules. That would facilitate the work of practitioners, since they often know the main

rules (those that cover 80% of the cases), but have difficulties to write the remaining

20%.

87

The third approach is in its early stages. It means that many ideas of improvement are

on the agenda. First, a newer mechanism to create the initial population of rules is needed

to ease the convergence towards promising solution. Second, more efficient mechanisms

to test a solution quality are needed. Indeed, the simple discrimination between the two

sets of valid and invalid models could lead to unwanted rules. As a third initiative, other

derivation operators (combination and alteration of the current rules) should be defined

and tested. Moreover, as our approach is probabilistic by nature, a comprehensive study

should be conducted in order to determine the best parameters to support more complex

rules. And finally, better mechanisms to test the approach should be designed in order

to avoid the threat to validity intrinsic to our test method. Another important idea is Potvin

says:

"valo

de req"

sic.

Potvin

says:

"valo

de req"

sic.

to extend the scope of our approach to complex well-formedness rules. Up to now, we

applied our approach on a subset of simple rule types. Considering deriving complex

rules will bring a new level of complexity that we have to handle.

BIBLIOGRAPHY

[1] Hani Abdeen, Stéphane Ducasse, Houari Sahraoui, and Ilham Alloui. Auto-

matic package coupling and cycle minimization. In Reverse Engineering, 2009.

WCRE’09. 16th Working Conference on, pages 103–112. IEEE, 2009.

[2] Simon Allier, Houari A Sahraoui, Salah Sadou, and Stéphane Vaucher. Restruc-

turing object-oriented applications into component-oriented applications by using

consistency with execution traces. In Component-Based Software Engineering,

pages 216–231. Springer, 2010.

[3] Lisanne Bainbridge. Ironies of automation. Automatica, 19(6):775–779, 1983.

[4] Zoltán Balogh and Dániel Varró. Model transformation by example using inductive

logic programming. Software & Systems Modeling, 8(3):347–364, 2009.

[5] Adam Baumberg and David Hogg. Learning flexible models from image sequences.

Springer, 1994.

[6] Simona Bernardi, Susanna Donatelli, and José Merseguer. From uml sequence

diagrams and statecharts to analysable petri net models. In Proceedings of the 3rd

international workshop on Software and performance, pages 35–45. ACM, 2002.

[7] Jean Bézivin. In search of a basic principle for model driven engineering. Novatica

Journal, Special Issue, 5(2):21–24, 2004.

[8] Juan Cadavid, Benoît Combemale, Benoit Baudry, et al. Ten years of meta-object

facility: an analysis of metamodeling practices. 2012.

[9] Juan Cadavid, Benoît Combemale, Benoit Baudry, et al. Ten years of meta-object

facility: an analysis of metamodeling practices. 2012.

[10] G Canfora, A Cimitile, M Munro, and M Tortorella. Experiments in identifying

reusable abstract data types in program code. In Program Comprehension, 1993.

Proceedings., IEEE Second Workshop on, pages 36–45. IEEE, 1993.

89

[11] Ai-ling Chen, Gen-ke Yang, and Zhi-ming Wu. Hybrid discrete particle swarm op-

timization algorithm for capacitated vehicle routing problem. Journal of Zhejiang

University Science A, 7(4):607–614, 2006.

[12] Krzysztof Czarnecki and Simon Helsen. Classification of model transformation ap-

proaches. In Proceedings of the 2nd OOPSLA Workshop on Generative Techniques

in the Context of the Model Driven Architecture, volume 45, pages 1–17, 2003.

[13] István Gergely Czibula and G Serban. Improving systems design using a cluster-

ing approach. IJCSNS International Journal of Computer Science and Network

Security, 6(12):40–49, 2006.

[14] Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Sebastian Hack, and An-

dreas Zeller. Generating test cases for specification mining. In Proceedings of

the 19th international symposium on Software testing and analysis, pages 85–96.

ACM, 2010.

[15] Xavier Dolques, Marianne Huchard, Clémentine Nebut, and Philippe Reitz. Learn-

ing transformation rules from transformation examples: An approach based on re-

lational concept analysis. In Enterprise Distributed Object Computing Conference

Workshops (EDOCW), 2010 14th IEEE International, pages 27–32. IEEE, 2010.

[16] Russell Eberhart and James Kennedy. A new optimizer using particle swarm theory.

In Micro Machine and Human Science, 1995. MHS’95., Proceedings of the Sixth

International Symposium on, pages 39–43. IEEE, 1995.

[17] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos

Pacheco, Matthew S Tschantz, and Chen Xiao. The daikon system for dynamic

detection of likely invariants. Science of Computer Programming, 69(1):35–45,

2007.

[18] Martin Faunes, Marouane Kessentini, and Houari Sahraoui. Deriving high-level

abstractions from legacy software using example-driven clustering. In Proceed-

90

ings of the 2011 Conference of the Center for Advanced Studies on Collaborative

Research, pages 188–199. IBM Corp., 2011.

[19] Martin Faunes, Marouane Kessentini, and Houari Sahraoui. Software clustering by

example. In Proceedings of the 13th annual conference companion on Genetic and

evolutionary computation, pages 245–246. ACM, 2011.

[20] Martin Faunes, Houari Sahraoui, and Mounir Boukadoum. Generating model

transformation rules from examples using an evolutionary algorithm. In Proceed-

ings of the 27th IEEE/ACM International Conference on Automated Software En-

gineering, pages 250–253. ACM, 2012.

[21] Martin Faunes, Juan Cadavid, Benoit Baudry, Houari Sahraoui, and Benoit Combe-

male. Automatically searching for metamodel well-formedness rules in examples

and counter-examples. In Model Driven Engineering Languages and Systems.

ACM/IEEE, 2013.

[22] Martin Faunes, Houari Sahraoui, and Mounir Boukadoum. Genetic-programming

approach to learn model transformation rules from examples. In Theory and Prac-

tice of Model Transformations, pages 17–32. Springer, 2013.

[23] Jean-Marie Favre. Towards a basic theory to model model driven engineering. In

3rd Workshop in Software Model Engineering, WiSME. Citeseer, 2004.

[24] Franck Fleurey, Erwan Breton, Benoit Baudry, Alain Nicolas, and Jean-Marc

Jézéquel. Model-driven engineering for software migration in a large industrial

context. In Model Driven Engineering Languages and Systems, pages 482–497.

Springer, 2007.

[25] Iván García-Magariño, Jorge J Gómez-Sanz, and Rubén Fuentes-Fernández.

Model transformation by-example: an algorithm for generating many-to-many

transformation rules in several model transformation languages. In Theory and

Practice of Model Transformations, pages 52–66. Springer, 2009.

91

[26] Juan José Cadavid Gómez, Benoit Baudry, and Houari Sahraoui. Searching the

boundaries of a modeling space to test metamodels. In Software Testing, Verifica-

tion and Validation (ICST), 2012 IEEE Fifth International Conference on, pages

131–140. IEEE, 2012.

[27] Mark Harman and Laurence Tratt. Pareto optimal search based refactoring at the

design level. In Proceedings of the 9th annual conference on Genetic and evolu-

tionary computation, pages 1106–1113. ACM, 2007.

[28] Mark Harman, Robert M Hierons, and Mark Proctor. A new representation and

crossover operator for search-based optimization of software modularization. In

GECCO, volume 2, pages 1351–1358, 2002.

[29] Reiko Heckel and Marc Lohmann. Towards model-driven testing. Electronic Notes

in Theoretical Computer Science, 82(6):33–43, 2003.

[30] Charles AR Hoare. Quicksort. The Computer Journal, 5(1):10–16, 1962.

[31] Faizan Javed, Marjan Mernik, Jeff Gray, and Barrett R Bryant. Mars: A metamodel

recovery system using grammar inference. Information and Software Technology,

50(9):948–968, 2008.

[32] Frédéric Jouault and Ivan Kurtev. Transforming models with atl. In Satellite Events

at the MoDELS 2005 Conference, pages 128–138. Springer, 2006.

[33] Stuart Kent. Model driven engineering. In Integrated formal methods, pages 286–

298. Springer, 2002.

[34] Marouane Kessentini, Houari Sahraoui, and Mounir Boukadoum. Model transfor-

mation as an optimization problem. In Model Driven Engineering Languages and

Systems, pages 159–173. Springer, 2008.

[35] Marouane Kessentini, Manuel Wimmer, Houari Sahraoui, and Mounir

Boukadoum. Generating transformation rules from examples for behavioral mod-

92

els. In Proceedings of the Second International Workshop on Behaviour Modelling:

Foundation and Applications, page 2. ACM, 2010.

[36] Marouane Kessentini, Houari Sahraoui, Mounir Boukadoum, and Omar Ben Omar.

Search-based model transformation by example. Software & Systems Modeling, 11

(2):209–226, 2012.

[37] Scott Kirkpatrick. Optimization by simulated annealing: Quantitative studies.

Journal of statistical physics, 34(5-6):975–986, 1984.

[38] John R Koza and Riccardo Poli. Genetic programming. In Search Methodologies,

pages 127–164. Springer, 2005.

[39] Philip Langer, Manuel Wimmer, and Gerti Kappel. Model-to-model transforma-

tions by demonstration. In Theory and Practice of Model Transformations, pages

153–167. Springer, 2010.

[40] Spiros Mancoridis, Brian S Mitchell, Chris Rorres, Y Chen, and Emden R Gansner.

Using automatic clustering to produce high-level system organizations of source

code. In Program Comprehension, 1998. IWPC’98. Proceedings., 6th International

Workshop on, pages 45–52. IEEE, 1998.

[41] Spiros Mancoridis, Brian S Mitchell, Yihfarn Chen, and Emden R Gansner. Bunch:

A clustering tool for the recovery and maintenance of software system structures.

In Software Maintenance, 1999.(ICSM’99) Proceedings. IEEE International Con-

ference on, pages 50–59. IEEE, 1999.

[42] Stephen Muggleton. Inductive logic programming. New generation computing, 8

(4):295–318, 1991.

[43] Raja Parasuraman, Thomas B Sheridan, and Christopher D Wickens. A model

for types and levels of human interaction with automation. Systems, Man and

Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 30(3):286–297,

2000.

93

[44] Uta Priss. Relational concept analysis: Semantic structures in dictionaries and

lexical databases. 1996.

[45] Sam Ratcliff, David Robert White, and John A Clark. Searching for invariants

using genetic programming and mutation testing. 2011.

[46] Mark Richters and Martin Gogolla. Validating uml models and ocl constraints. In

UML 2000 - The Unified Modeling Language.

[47] Hajer Saada, Xavier Dolques, Marianne Huchard, Clémentine Nebut, and Houari

Sahraoui. Generation of operational transformation rules from examples of model

transformations. In Model Driven Engineering Languages and Systems, pages

546–561. Springer, 2012.

[48] Houari Sahraoui, Petko Valtchev, Idrissa Konkobo, and Shiqiang Shen. Object

identification in legacy code as a grouping problem. In Computer Software and

Applications Conference, 2002. COMPSAC 2002. Proceedings. 26th Annual Inter-

national, pages 689–696. IEEE, 2002.

[49] Houari A Sahraoui, Walcélio Melo, Hakim Lounis, and François Dumont. Apply-

ing concept formation methods to object identification in procedural code. In Au-

tomated Software Engineering, 1997. Proceedings., 12th IEEE International Con-

ference, pages 210–218. IEEE, 1997.

[50] Jesús Sánchez-Cuadrado, Juan De Lara, and Esther Guerra. Bottom-up meta-

modelling: An interactive approach. In Model Driven Engineering Languages and

Systems, pages 3–19. Springer, 2012.

[51] Olaf Seng, Markus Bauer, Matthias Biehl, and Gert Pache. Search-based improve-

ment of subsystem decompositions. In Proceedings of the 2005 conference on

Genetic and evolutionary computation, pages 1045–1051. ACM, 2005.

[52] Thomas B Sheridan. Telerobotics, automation and human supervisory control. The

MIT press, 1992.

94

[53] Michael Siff and Thomas Reps. Identifying modules via concept analysis. Software

Engineering, IEEE Transactions on, 25(6):749–768, 1999.

[54] Michael Strommer and Manuel Wimmer. A framework for model transformation

by-example: Concepts and tool support. In Objects, Components, Models and

Patterns, pages 372–391. Springer, 2008.

[55] Yu Sun, Jules White, and Jeff Gray. Model transformation by demonstration.

In Model Driven Engineering Languages and Systems, pages 712–726. Springer,

2009.

[56] Arie Van Deursen and Tobias Kuipers. Identifying objects using cluster and con-

cept analysis. In Proceedings of the 21st international conference on Software

engineering, pages 246–255. ACM, 1999.

[57] Dániel Varró. Model transformation by example. In Model Driven Engineering

Languages and Systems, pages 410–424. Springer, 2006.

[58] Hironori Washizaki and Yoshiaki Fukazawa. A technique for automatic component

extraction from object-oriented programs by refactoring. Science of Computer Pro-

gramming, 56(1):99–116, 2005.

[59] Zhi-Gang Wei, Anil P Macwan, and Peter A Wieringa. A quantitative measure

for degree of automation and its relation to system performance and mental load.

Human Factors: The Journal of the Human Factors and Ergonomics Society, 40

(2):277–295, 1998.

[60] Manuel Wimmer, Michael Strommer, Horst Kargl, and Gerhard Kramler. Towards

model transformation generation by-example. In System Sciences, 2007. HICSS

2007. 40th Annual Hawaii International Conference on, pages 285b–285b. IEEE,

2007.

[61] Chenchen Xiao and Vassilios Tzerpos. Software clustering based on dynamic de-

pendencies. In Software Maintenance and Reengineering, 2005. CSMR 2005. Ninth

European Conference on, pages 124–133. IEEE, 2005.

95

[62] Andreas Zeller. Specifications for free. In NASA Formal Methods, pages 2–12.

Springer, 2011.

[63] Mengjie Zhang and Will Smart. Multiclass object classification using genetic pro-

gramming. In Applications of Evolutionary Computing, pages 369–378. Springer,

2004.

	Résumé
	Abstract
	Contents
	List of Tables
	List of Abbreviations
	Introduction
	Context
	Model Driven Engineeting (MDE)
	The importance of automation and MDE
	Automation difficulties

	Thesis problem
	Automating general model transformations
	Automating transformations in the context of migration
	Automating the support to precise modeling

	Contributions
	Thesis structure

	Related Work
	Related work on model transformation in the context of migration
	Approaches based on static analysis
	Dynamic analysis
	Summary

	Related work on general model transformation
	MTBE
	MTBD
	Summary

	Related work of improving modeling language
	Metamodel definition and modeling space
	Derivation of invariants
	Metamodel reconstruction

	Improving automation MDE by examples and the three approaches
	Chapter Objectives
	Model Driven Engineering (MDE)
	Improving Automation in MDE
	Automation Techniques and By Example approaches
	Targeted automation problems
	First approach : Deriving High-Level Abstractions from Legacy Software Using Example-Driven Clustering
	Second approach: Genetic-Programming Approach to Learn Model Transformation Rules from Examples
	Third approach: Automatically searching for metamodel well-formedness rules in examples and counter-examples
	Common aspects on the three approaches
	Chapter summary

	Deriving High-Level Abstractions from Legacy Software Using Example-Driven Clustering
	Genetic-Programming Approach to Learn Model Transformation Rules from Examples
	Automatically searching for metamodel well-formedness rules in examples and counter-examples
	Conclusion and future perspective
	Thesis contributions and impact on MDE
	Going beyond

	Bibliography

