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Abstract. At any given point in time, the collection of assets existing in the economy is observable.
Each asset is a function of a set of contingencies. The union taken over all assets of these contingencies
is what we call the set of publicly known states. An innovation is a set of states that are not publicly
known along with an asset (in a broad sense) that pays contingent on those states. The creator
of an innovation is an entrepreneur. He is represented by a probability measure on the set of new
states. All other agents perceive the innovation as ambiguous: each of them is represented by a set
of probabilities on the new states. The agents in the economy are classified with respect to their
attitude towards this Ambiguity : the financiers are (locally) Ambiguity-seeking while the consumers
are Ambiguity-averse. An entrepreneur and a financier come together when the former seeks funds
to implement his project and the latter seeks new profit opportunities. The resulting contracting
problem does not fall within the standard theory due to the presence of Ambiguity (on the financier’s
side) and to the heterogeneity in the parties’ beliefs. We prove existence and monotonicity (i.e.,
truthful revelation) of an optimal contract. We characterize such a contract under the additional
assumption that the financiers are globally Ambiguity-seeking. Finally, we re-formulate our results
in an insurance framework and extend the classical result of Arrow [4] and the more recent one of
Ghossoub [24]. In the case of an Ambiguity-averse insurer, we also show that an optimal contract
has the form of a generalized deductible.

1. Introduction

In this paper, we study the problem of contracting for innovation between an entrepreneur and a fi-
nancier. Not surprisingly, a third of the paper will be devoted to make sense of this very first sentence.
Why are we interested in this problem? What does “innovation” mean? Are “entrepreneur” and

Key words and phrases. Innovation, Entrepreneurship, Knightian Uncertanity, Ambiguity, Contracting, Vigilance,
Insurance.

JEL Classification: C62, D80, D81, D86, L26, P19.
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“financier” just two labels or is there something substantial behind these denominations? Why does
“contracting for innovation” differ from other contracting problems, for instance that of contracting
for a pound of peaches in your hometown?

Two strands of literature merge in our work: the literature on entrepreneurship and innovation and
the literature on contracting under Ambiguity. We contribute to the former by building a theoretical
framework where we can answer the questions raised above; we contribute to the latter by studying
and solving a novel problem of contracting under Ambiguity.

The paper is organized as follows. We present our ideas on entrepreneurship and innovation in
Sections 1.1 to 4. Section 2 deserves a special mention since it contains the formal definition of
Innovation that we introduce with this paper. Section 4 concludes this part by briefly discussing our
contribution in relation to some of the existing literature. The ideas elaborated in these sections lead
to the formulation of a certain contracting problem in Section 5. We discuss some related literature
on contracts in Section 5.7. In Section 6, we state our theorem on the existence and monotonicity of
an optimal contract. In Section 7, we examine the case of Ambiguity-seeking financiers, and show
how the problem can then be reduced to a problem with belief heterogeneity, but with no Ambiguity.
Such problems have been examined by Ghossoub [24, 26]. In Section 8, we observe that – with some
technical changes – our result can be re-interpreted in an insurance framework, and we compare it
to the classical result of Arrow [4], Borch [8], and Raviv [47]. We conclude this paper in Section 9
by examinig a special case where we fully characterize an optimal contract. Appendices containing
some background material and the proofs omitted from the main text complete the exposition.

1.1. The Inadequacy of the Classical Model. Our interest in the problem of contracting for
innovation is rooted in a broad project [2, 3, 6, 32, 42, 43] which aims at answering the following
questions: How do capitalist systems generate their dynamism? Why is a capitalist economy inher-
ently different from a centrally planned one? Our research has been inspired by the fundamental
belief that in order to study these issues, we must study the mechanisms of entrepreneurship and
innovation in capitalist economies: the role of entrepreneurs in seeing commercial possibilities for
developing and adopting products that exploit new technologies; the role of entrepreneurs in con-
ceiving and developing new products and methods; the role of financiers in identifying entrepreneurs
to back and to advise; and the incentives and disincentives for entrepreneurship inside established
corporations. This means studying both the entrepreneur as a micro actor and the entrepreneurial
economy as an interactive system.

Thus, we do believe that entrepreneurs and financiers are special types of economic agents and that
the process of innovation plays a fundamental role in explaining the dynamics of capitalist economies.
Yet, this belief clashes against some of the fundamental construction of economic theory. Think of
the Arrow-Debreu model: any equilibrium outcome achievable in a decentralized economy can also
be achieved in a centrally planned one, anybody can be a financier, and there is no profit to be made
with this activity anyway. By introducing frictions in the Arrow-Debreu model, such as frictions in
the financial markets for example, we could make sense of the notion of financier by appealing to
differences in the agents’ initial endowments. Yet, this would not explain why certain financiers are
successful while other are not: after all, in an equilibrium of the model, they all share the same view
and have the same opportunities. And, what is an entrepreneur in this model?

We believe that the main drawbacks of the classical theories do not reside in an excessive idealiza-
tion of actual economies. Rather, we believe that those drawbacks reside in a fundamental modeling
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issue: the way Uncertainty is treated. We contend that it is precisely the classical treatment of Un-
certainty that has lead to a gross misrepresentation of the role played by entrepreneurs and financiers
in actual economies. It is to this treatment and to our proposed remedy that we move next.

1.2. Objective States vs Subjective States. When dealing with uncertainty, a central concept
in classical theories is that of state of the world. Following the Bayesian tradition, a state of the world
is a complete specification of all the parameters defining an environment. For instance, a state of the
world for the economy would consist of a specification of temperature, humidity, consumers’ tastes,
technological possibilities, detailed maps of all possible planets, etc. According to this view, the
future is uncertain because it is not known in advance which state will obtain. In principle (but this
is clearly beyond human capabilities), one might come up with the full list of all possible states, and
classical theories postulate that each and every agent would be described by a probability measure
on such a list. While (ex ante) different agents might have different views (i.e., different probability
distributions), the information conveyed by the market eventually leads them to entertain the same
view: at an economy’s equilibrium no two agents are willing to bet against each other about the
uncertainty’s resolution. Thus, in classical theories, there is nothing uncontroversial about the way
one deals with uncertainty.

The contrast between this prediction of the theory and what happens in real life is striking. Actual
economic agents usually disagree about the resolution of uncertainty, and even the assumption of a
list of contingencies known to all agents as well as the assumption of each agent having a probability
distribution over such contingencies seem hardly tenable. It is an old idea, dating back at least to F.
Knight, that some – and, perhaps, the most relevant – economic decisions are made in circumstances
where the information available is too coarse to make full sense of the surrounding environment,
where things look too fuzzy for having a probability distribution over a set of relevant contingencies.
In such situations, Risk Theory is simply of no use. We fully adhere to this view.

The concept of state of the world is central to our theory as well. We depart, however, from
classical theories in that we do not assume the existence of a list of all possible states which is known
to all agents. We do so for several reasons. First, we believe that this assumption is too artificial.
Second, a theory built on such an assumption would not be testable, not even in principle. Third,
and more importantly, we believe that, by making such an assumption, we would lose sight of the
actual role played by entrepreneurs and financiers in actual economies.

We take a point of view that might deem “objective”. We take off from the (abstract) notion of
asset. In its broadest interpretation, an asset is, by definition, something that pays off depending on
the realization of certain contingencies. In other words, in order to define an asset, one must specify
a list of contingencies along with the amount that the asset pays as a function of those. At each
point in time, the set of assets existing in the economy is observable. Thus, in principle, the set of
contingencies associated with each asset is objectively given. The union, taken over all the assets, of
all these contingencies is then objectively given, in the sense that is it derived from observables. We
call this set the set of publicly known states of the world, and denote it by SP . We assume that each
and every agent in the economy is aware of all the states contained in SP . We stress, however, that
what is more important is that this set be knowable rather than be known by every agent.

Of course, there is no reason why each agent in the economy, individually considered, be restricted
to hold the same view. In other words, while we assume that each agent is aware of the set SP , we
are also open to the possibility that each agent might consider states that are not in SP . Formally,
we admit that each agent i has a subjective state space Si of the form Si “ SP Y Ii, where Ii is
the list of contingencies in agent i’s set of states that are not publicly known. An example might
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clarify. In the ’50s, IBM was investing in the creation of (big) computers. In our terminology, this
means that IBM had envisioned states of the world where computers would be produced and sold,
where hardware and software for computers would be produced and sold, etc. Since IBM stocks
were tradable, these states would be part of the publicly known states according to our definition.
Some time between the late ’50s and the early ’60s, Doug Englebart envisioned a world where a PCs
existed and where software and hardware for PCs would be produced and sold. According to our
view, before Doug Englebart began pateting his ideas, these states existed only in his mind (and
maybe in those of few others), that is they were part of Doug Englebart’s subjective state space, but
they were not publicly knowable.

We will assume that each agent i is a Bayesian decision maker with respect to his own subjective
state space. That is, agent i with subjective state space Si makes his decisions according to a
probability distribution Pi on Si. In the terminology that we will be using in Section 3 below, this
means that we assume that each agent believes that he has a good understanding of his own state
spaces. While this assumption could be removed, we believe that it is a good first approximation.
Moreover, we believe that it follows quite naturally from the idea of subjective state space, as we
define it.

2. Innovation

The idea of “innovation” and the way we model it is central to our theory. Unquestionably, the
ability to “innovate” is one of the most distinguishing features of capitalist economies. Innovations
occur in the form of new consumption goods, new technological processes, new institutions, new
forms of organizations in trading activities, etc. We abstract from the differences existing across
different types of innovation, and focus on what is common among them. For us, an innovation is
defined as follows:

Definition 2.1. An innovation is a set of states of the world which are not publicly known along
with an asset which pays contingent on those states.

An example will clarify momentarily. For now, we should like to point out that the word “asset”
in the definition should be interpreted in a broad sense. That is, by asset we mean any activity
capable of generating economic value. An innovation will be denoted by a pair pSj ,Xjq, where j is
the innovator, Sj is his subjective state space and Xj is the asset that pays contingent on states in
Sj. Notice that, as it is encoded in the definition of the subjective state space Sj , we allow for Xj to
pay off also contingent on states in SP .

In order to illustrate the definition, let us imagine an economy where historically only two types
of cakes have been consumed: carrot cakes and coconut cakes. Each year, each individual consumer
might be of one of two types: either he likes carrot cakes (consumers of type 1) or coconut cakes
(consumers of type 2) but not both. The fraction of the population made of consumers of type 1
varies from year to year according to some known stochastic process. Summing up, in our economy
there are two productive processes: one for producing carrot cakes and one for coconut cakes. There
is a continuum of tomorrow’s states, where each state gives the fraction of consumers of type 1.
These states are understood by everyone in the economy. That is, SP “ r0, 1s and a point x in r0, 1s
means that the fraction of type 1 consumers is x. Moreover, there is a given probability distribution
on r0, 1s, which is known to everyone in the economy.

Now, suppose that an especially creative individual, whom we call e, comes into the scene and
(a) figures out a new productive process that produces banana cakes; and, (b) believes that each
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consumer, whether of type 1 or 2, would switch to banana cakes with probability 1{3 if given the
opportunity. What is happening here is that agent e has: (1) imagined a whole set of new states,
those in which consumers might like banana cakes (in fact, the subjective state space for agent e is
two-dimensional, while SP is one-dimensional); (2) imagined that a non-negligible probability mass
might be allocated to the extra dimension conditional on the consumers being given the chance to
consume banana cakes; and, (3) figured out a device (the productive process) that makes the new
states capable of generating economic value.

Hopefully, the example has convincingly demonstrated that the definition given above is the “right”
definition in that it conveys the essential features which identify any innovation (the new states along
with the new activity). We believe that one of its virtues is that it makes it clear that the process
of innovation is truly associated to the appearance of new and fundamentally different possibilities:
from the viewpoint of the innovator, both the state space and the space of production possibilities
have higher dimensionality.

Definition 2.2. An agent e who issues an innovation is called an entrepreneur.

Recall that we assumed that each agent has a probability distribution on his subjective state space.
Thus, an entrepreneur is described by a triple pSe,Xe, Peq, where pSe,Xeq is the innovation and Pe

is his subjective probability on the subjective state space Se.

3. Uncertainty and the classification of economic agents

In our story, the innovators are the entrepreneurs. But what is going to happen once they come
up with an innovation? In the economy above, how are consumers going to react if they are told
that banana cakes will be available? We follow up on the idea expressed above that an innovation is
associated to a new scenario, something that the economy as whole has not yet experienced. It is then
natural to regard such a situation as one of Knightian uncertainty (or Ambiguity): the information
available is (except, possibly, for the entrepreneur) too coarse to form a probability distribution on
the relevant contingencies. Notice that Ambiguity enters our model in a rather novel way: its source
is not some devicee (Nature) outside the economic system; rather, it is some of the economic actors
– the entrepreneurs – who are the primary source of Ambiguity.

Decision theorists have developed several models to deal with this problem, all of which stipulate
that the behavior of agents facing Ambiguity is described not by a single probability but rather by
a set of those (see [28, 29] for a comprehensive survey). Formally, the problem is as follows. Let e
be an entrepreneur, and let i be another agent. Agent i is represented by a pair pSi, Piq, where Si
is his subjective state space and Pi a probability on Si. Suppose that i has never thought of the
subjective states of the entrepreneur. Now, suppose that agent i is made aware, directly or otherwise,
of the innovation pSe,Xeq as well as of the probability Pe of the entrepreneur. What is i going to
do? He is going to believe e and adopt his view (i.e., the probability Pe) or is i going to form a
different opinion? In fact, is i going to form an opinion at all? Clearly, each of these cases is possible
and there is no real reason to favor one over the other. Thus, we need a way to model all these
possibilities simultaneously. We are going to do so as follows. When agent i becomes aware of the
subjective states of agent e, the set of states for agent i becomes Si Y Se. Thus, agent i’s problem
is that of extending his view from Si to the union Si Y Se as this is necessary for evaluating assets
that pay contingent on Se. We assume that agent i makes this extension by using all the probability
distributions on Si Y Se which are compatible with his original view, that is all those probabilities
on Si Y Se whose conditional on Si is Pi. The exact way in which agent i will evaluate the assets
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defined on Se depends, loosely speaking, on the way all these probabilities are aggregated and, in
general, different agents would aggregate them in different ways. Put in a different terminology, an
agent’s evaluation of the assets defined on Se depends on the agent’s attitude toward Ambiguity.
This observation suggests a natural classification of economic agents: in one category we would put
those agents who are going to share, at least partially, the view of at least one entrepreneur while in
the other we would put those who are not going to do so under any circumstances. The former have
the potential to become business partners of some entrepreneurs, the latter will never do so. Thus,
we are going to distinguish between consumers and financiers that are defined as follows.

1. Consumers: Their subjective state space coincides with the publicly known set of states.
They are Ambiguity-averse, in the sense that they always evaluate their options according to
the worst probability (worst case scenario = maxmin expected utility). Formally, a consumer
c is represented by a pair pSP,Pcq; when facing an innovation pSe,Xeq, c evaluates it by using
the functional

C pXeq “ min
PPCc

ż
uc pXeq dP

where Cc is the set of all probabilities on SP Y Se whose conditional on SP is Pc and uc is
the consumer’s utility on outcomes.

Notice that this description easily implies that (a) if there exists a bond in the economy, and (b) if
there exists a state in Se such that the worth of the innovation is below the bond, then the consumer
will not buy that innovation at any positive price. Under these circumstances, these agents will never
become business partners of any entrepreneur, which explain why we call them consumers.

2. Financiers: Their subjective state space coincides with the publicly known set of states.
They are less Ambiguity-averse than the consumers. A financier ϕ is represented by a pair
pSP,Pϕq; when facing an innovation pSe,Xeq, ϕ evaluates it by using the functional

(3.1) Φ pXeq “ α pXeq min
QPCϕ

ż
uϕ pXeq dQ `

´
1 ´ αpXeq

¯
max
QPCϕ

ż
uϕ pXeq dQ

where Cϕ is the set of probabilities on SP Y Se whose conditional on SP is Pϕ and uϕ is the
financier’s utility on outcomes. For each asset Xe, the coefficient α pXeq P r0, 1s.

Thus, the functional (3.1) is a combination of aversion toward projects that involve new states
(the min part of the functional) and favor toward the same projects (the max part). Intuitively,
the coefficient α pXeq represents the degree of Ambiguity aversion of the financier (see [22, 23]), and
this degree is allowed to vary with the asset (i.e., the entrepreneurial project) to be evaluated. We
suppose that for at least one asset Xe, α pXeq ă 1. A special case obtains when the financier’s
attitude toward Ambiguity does not depend on the project to be evaluated. In such a case, projects
are evaluated by using the functional

(3.2) Φ pXeq “ αmin
QPCϕ

ż
uϕ pXeq dQ` p1 ´ αq max

QPCϕ

ż
uϕ pXeq dQ

where we suppose that α ă 1.

We believe that our categorization captures the essential (functional) distinction between the
concept of “consumer” and “financier”: a (pure) consumer is someone who rejects the unknown, and
a financier is somebody that is willing to bet on it. The condition in the above definitions that both
the consumer’s and the financier’s state space is SP only means that consumers and financiers are
not entrepreneurs. One might argue that this assumption is natural in the case of consumers but
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it is not so in the case of financiers. This is not problematic as a financier’s subjective state space
bigger than SP can be easily accommodated in our framework by suitably re-defining the function
α pXeq, which represents the financier’s Ambiguity aversion.

In sum, we have three types of agent: entrepreneurs, financiers and consumers. The study of
economies populated by these types agents (the way we defined them) poses entirely new problems.
Here, since we are concerned with the problem of contracting between financiers and entrepreneurs,
we leave it at that. We refer the interested reader to [2] for a preliminary inquiry into the properties
of these economies.

4. Comments and Related Literature

The literature on innovation is vast. Spanning from Schumpeter [53] to the works of Reinganum
[48], Romer [49], Scotchmer [55] and Boldrin and Levine [7], it contains many more important
papers than we could reasonably cite here. We refer to [44] for a comprehensive list of references.
It is probably fair to say that most of these works have focused on a particular aspect of innovation
or on a particular role played by it, a choice usually dictated by the problem under study1. Our
definition is an attempt to account simultaneously for all those aspects. We hope that, in such a
way, it will appear as a concept that can easily be exported and particularized to any setting where
the intuitive idea of innovation might play a significant role.

Undoubtedly, our construction has a strong Schumpeterian flavor: the entrepreneur is the creator
of the innovation2, the entrepreneur is a singular actor, our financiers are quite like Schumpeter’s
bankers, the functional classification of the economic agents, etc. Clearly, there are considerable
differences as well. The most notable is in the definition of innovation: our is a far reaching gen-
eralization of Schumpeter’s notion, which consists only of a new combination of the inputs in the
productive process. Another difference worth stressing is the following. Schumpeter’s work, as it
is well-known, is regarded as a celebration of the entrepreneur: this is viewed as a privileged in-
dividual that in a condition of severe uncertainty (the newly thought states) has a “vision” (the
project/asset) that might change the course of the economy3. While this is true in our construction
as well, the appearance of this “vision” would be rather inconsequential if it were not coupled with
another “vision”, that of the financier. In our construction, the vision of the entrepreneur leads to
the appearance of Ambiguity. It is only the insight of the financier in this Ambiguity that recognizes
the vision of the entrepreneur and makes the change possible. Formally, this insight appears in the
form of the coefficient αpXeq being low enough, which means precisely that the financier believes in
the profitability of the entrepreneur’s project.

5. Contracting for innovation

All that we have said so far leads to the following problem. An entrepreneur comes up with a new
idea. Not having enough wealth to implement it, he goes to a financier and describes his project,

1See, for instance, Bianchi and Henrekson [5] for a discussion.
2Schumpeter distinguishes between those who create ideas and those, the entrepreneurs, who turn them into some-

thing of economic value. Roughly, in our model this would correspond to distinguishing between those who come up
with the new states (inventors) and those who make those states suitable of generating economic value (entrepreneurs)
by issuing assets that pay contingent on those states.

3In Schumpeter’s work, the entrepreneur faces Ambiguity, while in our construction all of his uncertainty is reduced
to Risk. This is not a substantial difference as we could allow for the entrepreneur to be described by non-additive
criteria. This would result only in a technical complication without changing the essence of the problems we study.
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hoping to obtain the necessary funds. We have seen that the entrepreneur’s project, the innovation,
is a pair pSe,Xeq, where Se contains the new states envisioned by the entrepreneur and Xe : Se Ñ R

expresses the monetary return of the project as a function of the contingencies in Se. On his hand,
the entrepreneur has (in his subjective opinion) a clear probabilistic view of the new world that he
has envisioned. This is described by a probability measure Pe (we will be precise about the σ-algebra
where this probability is defined, momentarily). On the other hand, the financier, by facing a set
of states he had never conceived of, perceives some Ambiguity in the entrepreneur’s description.
This is described by the fact the financier evaluates the project by using a functional of the form
(3.1), above. Two features place this problem outside the realm of standard contract theory. First,
we have heterogeneity in the parties’ beliefs: their views are different and, in fact, they are formed
independently of each other. Second, one of the parties perceives Ambiguity, i.e., this party’s beliefs
are not represented by a probability measure. We are going to formalize this contracting problem
in the remainder of this section and we will provide its solution in Section 6. In Section 5.7 we will
discuss some related literature.

5.1. Preliminaries. This subsection briefly discusses two aspects of the contracting problem that
are seemingly technical. In fact, these aspects play a substantial role not only here but also elsewhere,
for instance in the problem of whether or not a central authority is able to replicate the outcomes
produced by an economy with innovation. In the present setting, the easiest way to grasp these
aspects is also the most intuitive: just think of an entrepreneur and a financier coming together into
a room; the former describes his project because he wants to get funding, the latter has to decide
what to do.

The first issue has to do with the measurable structure on the set Se. In our story, the financier
is somebody who not only sees the innovation, i.e., the pair pSe,Xeq, for the first time in his life
but has never conceived of it either. This implies that a contract between the financier and the
entrepreneur may only be written on the basis of the information that is revealed in the room. The
way to formalize this requirement is by endowing Se with the coarsest σ-algebra which makes Xe

measurable: this expresses precisely that all the information available is derived from the description
of the innovation. We denote this the σ-algebra by Σe. Accordingly, the innovation can be written
as ppSe,Σeq ,Xeq, and Xe is a random variable on pSe,Σeq. By Doob’s Measurability Theorem [1,
Theorem 4.41], any measurable function g on pSe,Σeq has the form g “ ζ ˝ Xe, where ζ is a Borel-
measurable function R Ñ R. The Banach space of all bounded measurable functions on pSe,Σeq
(with }g}8 “ supsPS |gpsq|) is denoted by BpΣeq and the set of its positive elements by B`pΣeq.

The second issue has to do with the probability Pe according to which the entrepreneur evaluates
his own innovation. We assume that the entrepreneur declares truthfully this belief Pe, which is
thus a common knowledge among the parties. Formally, this probability is just a mathematical
representation of certain parts of the entrepreneur’s project. Thus, de facto, we assume that the
entrepreneur reveals truthfully some aspects of his project (precisely those that admit a representation
in the form of a probabilistic assessment). We believe that this assumption sounds heavier than what
it really is, and this is so for at least two reasons. First, when they come in contact with each other,
the entrepreneur knows nothing about the financier (formally, this is encoded in the requirement on
the σ-algebra). Thus, if he were to lie about those aspects of the project (i.e., declare a probability
different from Pe), he would have no reason to think that this might increase his chances to get funded.
Second, and perhaps more importantly, the financier’s beliefs (in the non-additive sense) are formed
independently of Pe. That is, the view the financier ends up with after being presented with the
innovation would be the same whether Pe or any other probability is declared by the entrepreneur.
Formally, what drives the feature that the financier might find the project worthwhile is not the
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probability Pe but the coefficient of Ambiguity aversion αpXeq, which depends only on the random
variable Xe and not on the probability Pe.

We have said that the probability describes certain aspects of the entrepreneur’s project. All
the other aspects are encoded in the mapping Xe, which expresses the gains/losses that the project
allegedly generates as a function of the new states. Needless to say, we do not make any assumption
about how truthfully this part is revealed as this is the very essence of the contracting problem.

5.2. Definition of a Contract. The formal definition of a contract is as follows.

Definition 5.1. A contract between an entrepreneur and a financier is a pair pH,Y q, where H ě 0
and Y P B pΣeq is such that Y ď Xe.

The interpretation is that a contract is a scheme according to which the financier pays H (which
may be 0) to the entrepreneur and in exchange gets a claim on part of the amount Xepsq, which
obtains when s P S realizes. This claim may consist of all Xepsq or just a part of it. The amount
that the entrepreneur gets when s P S realizes is denoted by Y psq (which may be 0). The definition
includes as special cases the following types of contracts:

(a) The financier simply buys the project, and has no further obligation toward the entrepreneur.
This obtain for Y psq “ 0, for every s P S;

(b) The financiers acquires ownership of the project. When the state s P S realizes, he obtains
the amount Xepsq and transfers Y psq to the entrepreneur;

(c) The entrepreneur retains ownership of the project, but commits to paying the amount Zpsq “
Xepsq ´ Y psq to the financier when s P S realizes. He does so in exchange for an up front
(that is, before the uncertainty resolves) payment of H;

(d) The entrepreneur transfers part of the ownership to the financier in exchange for H, and the
parties agree to a sharing rule that specifies that when s P S realizes the amount Zpsq “
Xepsq ´ Y psq goes to the financier and the amount Y psq goes to the entrepreneur.

In a static setting, the distinction between cases (b), (c) and case (d) is purely a matter of
interpretation because the contract is formally the same. Differently, in case (a) one can actually
talk of transfer of ownership. This is an important case, whose determination requires to characterizes
all those circumstances (as functions of the project Xe and of the parties’ preferences) that lead to
an optimal solutions with the feature that Y psq “ 0, for every s P S. We plan on addressing this
problem in a future inquiry. At the moment, we are going to be interested mainly in determining
the form of a general contract, and in understanding the role played by Ambiguity in this type of
problems.

Example 5.2 (Publishing). In the case of “Author meets Publisher”, the innovation is a new book,
or music, or film, or other intellectual property. In publishing, the up-front payment H is called the
”advance”. The Publisher purchases the residual claim on the work, and contracts to pay the Author
a royalty stream based on sales revenue, which corresponds to the function Y .

Example 5.3 (Franchising). In this case, a franchisee pays an initial lump-sum H to a franchiser
who owns a certain franchise. In return, the franchisee receives the rights for a claim Y on a part of
the revenue X of the franchise business. While this is not, strictly speaking, a problem of contracting
for innovation, it is and instructive example.
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In the remainder of the paper, we are going to suppress the subscripts e (except from the en-
trepreneur’s utility function) since we are going to consider one entrepreneur only.

5.3. The Entrepreneur. As previously mentioned, the entrepreneur has, in his subjective opinion, a
clear probabilistic view of the new world S he has envisioned. This view is represented by a (countably
additive) probability measure P on pS,Σq, which he uses to evaluate the possible contracts that he
might sign. Formally,

Assumption 5.4. The entrepreneur evaluates contracts by means of the Subjective Expected Utility
(SEU) criterion ż

ue pY q dP, Y P B pΣq

where ue : R Ñ R is the entrepreneur’s utility for monetary outcomes.

Mainly for reasons of comparison with other parts of the contracting literature, we assume that
the uncertainty on S is diffused. Precisely, we assume the following.

Assumption 5.5. X is a continuous random variable on the probability space pS,Σ, P q. That is,
P ˝ X´1 is nonatomic.

Finally, we make the following assumption on ue:

Assumption 5.6. The entrepreneur’s utility function ue satisfies the following properties:

(1) ue p0q “ 0;

(2) ue is strictly increasing and strictly concave;

(3) ue is continuously differentiable;

(4) ue is bounded.

Thus, in particular, we assume that the entrepreneur is risk-averse.

5.4. The Financier. When presented with innovation ppS,Σq ,Xq, financier ϕ perceives Ambiguity.
This is represented by the set Cϕ (of probabilities on SP YSe whose conditional on SP is Pϕ) which
appears in equation (3.1), above. In order to describe the financier’s evaluation of the innovation, we
are going to restrict to a sub-class of the functionals of type (3.1): that of Choquet Expected Utility
(CEU). This class still allows for a wide variety of behavior as these functionals need not be either
concave or convex. In the CEU model introduced by Schmeidler [52], the functional (3.1) takes the
form of an integral (in the sense of Choquet) with respect to a non-additive, monotone set function
(a capacity). While the use of Choquet integrals has become quite common in the applications of
decision theory, it is probably still not part of the toolbox of most professionals. Because of this, we
have included a few basic facts about capacities and Choquet integrals in Appendix A.1. In sum, a
financier ϕ is described as follows.

Assumption 5.7. The financier evaluates contract by means of the functional Φ : BpΣq Ñ R defined
by

Φ pY q “

ż
uϕ pY q dυ, Y P B pΣq
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where uϕ : R Ñ R is the financier’s utility for money, υ is a capacity on Σ and the integral is taken
in the sense of Choquet (see Appendix A.1).

In line with Assumption 5.5, we also assume the following:

Assumption 5.8. υ is a continuous capacity (see Appendix A.1)

Finally, we make the following assumption.

Assumption 5.9. The financier is risk-neutral. We take uϕ to be the identity on R.

From now on, we are going to assume that the random variable X which describes the profitability
of the project is a positive random variable, that is X P B`pΣq. This is without loss of generality
since it can always be obtained by suitably re-normalizing the parties utility functions.

5.5. The Contracting Problem. The problem of finding an optimal contract pH,Y q may be split
into two parts: we first determine the optimal Y given H, and then use this to find the optimal H.
In line with the description of economic agents of Section 3, we have in mind situations characterized
by two features: (a) the entrepreneur does not have initial wealth (at least to be devoted to running
the project); and, (b) while the entrepreneur is the sole potential provider of that innovation, there
is competition among financiers to acquire it. Hence, the problem of finding an optimal contingent
payment scheme Y can be formulated as follows

sup
Y PBpΣq

ż
ue pW e

0 `H ´X ` Y q dP(5.1)

s.t. 0 ď Y ď X
ż

pX ´ Y q dυ ě p1 ` ρqH

The argument of the utility ue in problem (5.1) is the entrepreneur’s wealth as a function of the
state s P S that will realize

W e psq “ W e
0 `H ´X psq ` Y psq

where W e
0 denotes the entrepreneur’s initial wealth, which can be zero. None of our results will be

modified if the entrepreneur’s initial wealth is assumed to be zero. Clearly, W ep¨q is a measurable
function on pS,Σq. The last constraint, is the financier’s participation constraint. It states that a
necessary condition for the financier to offer the contract is that his evaluation of the random variable
X ´ Y (the amount that he receives, as a function of the state, if he signs the contract) be at least
as high as the amount H that he has to pay up front to the entrepreneur. In fact, the financier’s
evaluation of X ´ Y might have to be strictly higher than H since by funding the entrepreneur the
financier might give up other investment opportunities, for instance those present in the standard
asset market defined by SP , the publicly known states. This condition is expressed by the factor
p1 ` ρq, where ρ ě 0 is a loading factor in the language of insurance contracting. The other constraint
(0 ď Y ď X) expresses two conditions: (a) the right-hand inequality states that, in each state of
the world, the transfer from the financier to the entrepreneur does not exceed the profitability of the
project; and, (b) the left-hand inequality states that if there is a transfer from the entrepreneur to
the financier, this will not exceed the entrepreneur’s initial wealth (which we have set equal to zero).

Once problem (5.1) is solved, the optimal H is determined by maximizing the financier’s evaluation
(given the optimal Y ). While this is not the usual optimization problem as it involves maximizing a
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Choquet integral, it is by now well-understood how to solve this problem (e.g. [31, 33, 34, 35, 57]),
and the solution to this problem involves only a quantitative determination. Thus, we need to focus
only on solving problem (5.1).

5.6. Truthful Revelation of the Profitability of the Project. When studying a problem of
contracting in a situation of uncertainty, one typically adds one more constraint to the ones we
considered above. This is a monotonicity constraint that, in our case, would stipulate that the
payment from the financier to the entrepreneur is an increasing function of X, that is Y “ Ξ ˝X for
some increasing function Ξ : R Ñ R. This would guarantee that the entrepreneur does not downplay
the profitability of the project. For the moment, we are going to ignore this problem altogether. The
reason is the following: in our main theorem, we are going to show that the monotonicity of Y is a
feature that appears in all optimal contracts that we determine. Notice that this feature guarantees
that, even in the case where the project profitability depends on (state-contingent) unobserved actions
taken by the entrepreneur, there would be neither adverse selection nor moral hazard problems with
our optimal contracts.

5.7. Related Literature. In our inquiry on the role of innovation, we have been led to studying a
contracting problem where not only there is heterogeneity in the parties’ beliefs but also the beliefs
of one party are not additive as a reflection of the Ambiguity perceived by this party. The literature
on contracting under heterogeneity and Ambiguity is not vast, but it does enlist several important
contributions. We are going to focus only on the literature that directly relates to our work, and
refer the reader to [38, 39, 40] for other interesting issues (for instance, the effect of Ambiguity on the
incompleteness of the contractual form [38]). Important contributions to the problem of existence and
monotonicity of the optimal contract in situations of Ambiguity and/or heterogeneity have been made
by [9, 10, 11, 12, 15, 17]. Carlier and Dana [10, 11] and Dana [17] show existence and monotonicity
in settings characterized by the presence of Ambiguity but where there is no heterogeneity. Carlier
and Dana [9] study a setting similar to ours, but impose the additional restriction that the capacity
of one party is a distortion of the probability of the other party, thus retain a certain (weak) form of
homogeneity. Chateauneuf, Dana and Tallon [15] allow for capacities (i.e., Ambiguity) on both sides,
but they assume that both capacities are sub-modular distortions and that the state space is finite.
Finally, Carlier and Dana [12] also allow for capacities on both sides, but demand that both capacities
be distortions of the same measure, and that the heterogeneity be “small” (in a sense made precise
in that paper). In relation to this literature, we contribute an existence and monotonicity result in
a setting where, while we have Ambiguity only on one side, we allow for any degree of heterogeneity.
To this, we also add a characterization of the optimal contract that we obtain in Section 7 under the
additional assumption of a submodular (concave) capacity (not necessarily a probability distortion;
in fact, our result is a bit more general than what is stated here; see Corollary 7.2 Section 7).

6. Existence and monotonicity of an optimal contract

In this section, we are going to show that the contracting problem (problem (5.1) of Section 5)
between the entrepreneur and the financier admits a solution. Moreover, we are going to show that
this solution is increasing in X, thus clearing up the field from concerns of project’s misrepresentation
on the part of the entrepreneur. Our solution obtains under an assumption which guarantees a certain
consistency between the financier’s and the entrepreneur’s assessments of the uncertainty. The formal
property is stated in the following definition, which extends to a setting with Ambiguity a concept
originally introduced in Ghossoub [24].
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Definition 6.1. Let υ be a capacity on Σ, P a measure on the same σ-algebra and let X be a
random variable on pS,Σq. We say that υ is pP,Xq-vigilant if for any Y1,Y2 P B` pΣq such that

(i) Y1 and Y2 have the same distribution under P ; and

(ii) Y2 and X are comonotonic4,

the following holds ż
pX ´ Y2q dυ ě

ż
pX ´ Y1q dυ

Loosely, to say that υ is pP,Xq vigilant means that the financier considers the entrepreneur’s
description pP,Xq of the project sufficiently credible. Note that this is a subjective statement on
the part of the financier. In fact, one can depict the following the story. An entrepreneur envisions
the new world S and comes up with his new idea pP,Xq. Then, he goes to a financier to ask for
funding, and tells him about the new world S and the project pP,Xq. The financier forms his
view of S, which is described by υ, and decides how credible the entrepreneur’s project is. If he
deems it sufficiently credible, then they would start negotiating. If not, the entrepreneur would take
leave and seek for a financier with a different opinion. Thus, the appearance of assumptions of the
vigilance-type should not be surprising, as ultimately these are conditions for both parties to believe
in the mutual profitability of the project. An interesting problem would be to determine the minimal
level of credibility required for a certain contract to be signed or, inversely, what are the contracts
that the parties are willing to sign for a given credibility level. We leave this for future research.
Before proceeding, however, we should like to stress that in the special case where the capacity υ

is a measure, the assumption of vigilance is a weakening of the monotone likelihood ratio property
frequently assumed in the contracting literature to deal with problems stemming from the asymmetry
in the information. We refer the reader to Ghossoub [24] for the relation between the two properties
in a context of Risk. We can now state our main result.

Theorem 6.2. If υ is pP,Xq vigilant, then problem (5.1) admits a solution Y which is comonotonic
with X.

The proof of the Theorem is in Appendix B.

7. Ambiguity-loving financiers

In Section 3, we said that a fairly general description of the way financiers deal with Ambiguity
would be that provided by the functionals of the form (see eq. (3.1), Section 3)

Φ pXeq “ α pXeq min
QPCϕ

ż
uϕ pXeq dQ `

´
1 ´ α pXeq

¯
max
QPCϕ

ż
uϕ pXeq dQ

where the coefficient α p¨q is allowed to vary with the project to be evaluated. The variability of the
coefficient expresses the financier’s preference for certain projects over others, maybe because they
are closer to his subjective vision (we pointed out in Section 3 that we can allow for financiers to
have a subjective visions by simply re-defining the function α p¨q). A natural special case of this
description obtains when the coefficient α p¨q is constant. This would represent the case where the
financier is not really concerned about the kind of Ambiguity he faces. Rather, he is only interested
in the fact that there is Ambiguity, and he is willing to bet on its resolution. Since financiers have

4For the definition of comonotonic functions, see Appendix A.1.
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to be willing to deal with Ambiguity, it suffices to focus on the case α “ 0 (in fact, the case α “ 1
identifies the consumers; see Section 3):

(7.1) Φ pXeq “ max
QPCϕ

ż
uϕ pXeq dQ

By a result of Schmeidler [51], a subclass of these functionals obtains as a special case of Choquet
integrals. Precisely, a Choquet integral can be written in the form (7.1) if and only if the capacity
that defines it is submodular (see Appendix A.1). In this case, we can give a characterization of the
solution whose existence we proved in Theorem 6.2. Proposition 7.1 below shows that, when the
capacity representing the financier is submodular, the optimal solution to the contracting problem
(5.1) is the same as the solution of another contracting problem, which involves heterogeneity but
not Ambiguity. It is important to stress, as the proof of Proposition 7.1 makes it clear, that this
is not a statement about the type of uncertainty involved in this problem (5.1) but only a devise
which allows us to characterize the solution. The usefulness of the equivalence proved in Proposition
7.1 stems from the fact that the solution can now be characterized by using the methods introduced
in Ghossoub [24, 26]. In fact, under some mild additional conditions, this solution can even be
characterized analytically (see Ghossoub [24]).

So, let us assume that the capacity υ representing the financier in Assumption 5.7 is submodular.
Then, the functional Φ takes the form (7.1). The set Cϕ is a non-empty, weak˚-compact and convex
set of probability measures, and it is called the anti-core of υ. For Q P Cϕ, consider the following
problem

sup
Y PBpΣq

ż
ue pW e

0 `H ´X ` Y q dP(7.2)

s.t. 0 ď Y ď X
ż

pX ´ Y q dQ ě p1 ` ρqH

That is, problem (7.2) is a problem similar to problem (5.1) but (ideally) involves a financier that
is an Expected-Utility maximizer, with Q P Cϕ being the probability representing the financier. If
Q is pP,Xq-vigilant, then by Theorem 6.2, problem (7.2) for Q P Cϕ admits a solution which is
comonotonic with X. Let us denote by Y ˚ pQq this optimal solution.

Proposition 7.1. If the capacity υ in Assumption 5.7 is submodular, and if every Q P anticore pυq
is pP,Xq-vigilant, then there exists a Q˚ P anticore pυq such that Y ˚ pQ˚q solves the contracting
problem (5.1).

In Section 9 we will examine a special case of this setting in which we will fully characterize the
shape of an optimal contract. Inspection of the proof of Proposition 7.1 (Appendix C) shows that
this result can be extended to general functionals of the form (7.1), that is functionals of the form
(7.1) that are not necessarily Choquet integrals.

Corollary 7.2. Assume that in problem (5.1) the financier is described by a functional of the form

Φ pXeq “ max
QPC

ż
uϕ pXeq dQ
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where C is a weak˚-compact set of probability measures on pS,Σq. If there exists a solution Y ˚˚ to
the contracting problem, and if every Q P C is pP,Xq-vigilant, then there exists a Q˚ P C such that
Y ˚˚ “ Y ˚ pQ˚q.

In Section 8, where we discuss insurance contracts, we will give a pictorial description of this type
of solution.

8. Insurance contracts

In an insurance framework, one party (the insured) pays a premium in return for a (state-
contingent) indemnity provided by the other party (the insurer). This problem has been studied
by Arrow [4], Borch [8], and Raviv [47] under the assumptions that (i) both parties are Expected-
Utility maximizers (there is no Ambiguity); (ii) both parties entertain the same beliefs (there is no
heterogeneity); and, (iii) the insured is risk-averse and that the insurer is risk-neutral. The solution
that they provided shows that the optimal contract takes the form of a deductible5.

✲
x

✻Ipxq

�
�
�
�
�
�
�
�

d

Figure 1. A deductible contract.

This now classical result was extended only recently to the case of heterogeneity in the parties’
beliefs (but with no Ambiguity) by Ghossoub [24]. Insurance problems with Ambiguity have been
studied in some of the papers we mentioned in Section 5.7.

By making the natural assumption that the insured is an Expected-Utility maximizer while the
insurer might perceive some Ambiguity, the problem of optimal insurance takes the following form:

sup
Y PBpΣq

ż
ui pW0 `H ´X ` Y q dP(8.1)

s.t. 0 ď Y ď X
ż

p´Y q dυ ě H 1 “ p1 ` ρqH

5See [20, p. 59] and [30, 54] for surveys of the “classical” theory of insurance demand and contracting.



16 MASSIMILIANO AMARANTE, MARIO GHOSSOUB, AND EDMUND PHELPS

In problem (8.1), i is the insured; ui is his utility and the argument of ui is the wealth of the
insured as a function of the state (W0 is the insured’s initial wealth); X is the insurable loss and Y
is the indemnity; finally, H is the negative of the premium Π, that is, H “ ´Π, and ρ is a loading
on the premium. The last constraint (

ş
´Y dυ ě H 1) is the insurer’s participation constraint, whereş

¨ dυ is the Choquet integral describing how the insurer deals with the Ambiguity that he perceives.
In the special case of a submodular υ, this problem becomes:

sup
Y PBpΣq

ż
ui pW0 `H ´X ` Y q dP

s.t. 0 ď Y ď X

min
QPC

ż
Y dυ ď p1 ` ρqΠ

where C “ anticore pυq. Just as we did we did in Section 7, we can consider a family of contracting
problems parametrized by the set C. Each problem in this family is of the form (8.1) with the only
difference that the insurer’s Choquet integral is replaced by the Lebesgue integral

ş
¨ dQ, Q P C. If

Q is pP,Xq-vigilant, we denote by Y ˚ pQq the solution of this problem. A simple adaptation of the
proof of Proposition 7.1 then shows that:

Corollary 8.1. If υ is submodular, and if every Q P C is pP,Xq-vigilant, then there exists a Q˚ P C

such that Y ˚ pQ˚q solves the insurance problem (8.1).

In the same vein as Corollary 7.2, Section 7, we also have the following result.

Corollary 8.2. Assume that in the insurance problem the insurer is described by a functional of the
form

I pY q “ max
QPC

ż
Y dυ

where C is a weak˚-compact set of probability measures on pS,Σq. If there exists a solution Y ˚˚ to
the insurance problem, and if every Q P C is pP,Xq-vigilant, then there exists a Q˚ P C such that
Y ˚˚ “ Y ˚ pQ˚q.

In the cases covered by Corollary 8.2 (which includes Corollary 8.1), the characterization of the
optimal contract then follows from the results of Ghossoub [24].

Corollary 8.3. An optimal contract Y ˚ pQ˚q in Corollary 8.2 takes the form of a generalized de-
ductible.

Thus, the difference with respect to the no-heterogeneity and no-Ambiguity setting of Arrow-
Borch-Raviv consists of the non-linearity of the risk-sharing schedule. The source of this difference is
clear. The Arrow-Borch-Raviv is a pure risk-sharing result: the two parties sign the contract because
of the different shapes of the utility functions (one is risk-averse, the other is risk-neutral), but they
have the same exact view of the uncertainty. When, as in our setting, the parties differ also because
of their views about uncertainty, intuitively they have to share uncertainty in addition to risk. By
taking the Arrow-Borch-Raviv case as a reference point, we could interpret the concave parts of the
optimal schedule as an indication that the insured is more optimistic about certain outcomes than
the insurer, with the situation being reversed in the convex parts.
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Figure 2. An example of a generalized deductible contract.

Unlike Corollary 7.2 that has the re-formulation given by Corollary 8.2 in the insurance framework,
a re-formulation of Theorem 6.2 is not straightforward. Inspection of the proof of Theorem 6.2 shows
that the main difficulty in transferring that result to an insurance framework resides in the lack of
homogeneity of the Choquet integral (that is, for Choquet integrals in general

ş
´Y dυ ‰ ´

ş
Y dυ).

This difficulty can be circumvented by replacing the Choquet integral with the Šipoš integral, a.k.a.
the symmetric Choquet integral (see Appendix A.1). Unlike the Choquet integral, the Šipoš integral
is homogeneous, and the proof of Theorem 6.2 carries through to the insurance setting as well. We
thus have:

Corollary 8.4. Assume that in the insurance problem the insurer is described by a Šipoš integral
and that υ is pP,Xq-vigilant. Then, the insurance problem admits a solution Y which is comonotonic
with X.

9. The Case of a Concave Distortion of a Probability Measure

We conclude this paper by considering a special case of the setting of Section 7 which will allow us
to fully characterize the shape of an optimal contract. This full characterization is helpful in practice
since it permits to actually compute the optimal innovation contract as a function of the underlying
innovation. However, this requires some additional assumptions.

We suppose first that υ “ T ˝ Q, for some probability measure Q on pS,Σq and some function
T : r0, 1s Ñ r0, 1s, increasing, concave and continuous, with T p0q “ 0 and T p1q “ 1. Then T ˝Q is a
continuous submodular capacity on pS,Σq. Then the entrepreneur’s problem becomes the following.

sup
Y PBpΣq

ż
ue pW e

0 `H ´X ` Y q dP(9.1)

s.t. 0 ď Y ď X
ż

pX ´ Y q dT ˝ Q ě p1 ` ρqH
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Based on the results of Gilboa [27], we may assume that the distortion function T and the prob-
ability measure Q are subjective, i.e., they are determined entirely from the financier’s preferences,
since υ is6. We will also assume that X is a continuous random variable on the probability space
pS,Σ, Qq. Specifically:

Assumption 9.1. We assume that υ “ T ˝Q, where:

(1) Q is a probability measure on pS,Σq such that Q ˝X´1 is nonatomic;

(2) T : r0, 1s Ñ r0, 1s is increasing, concave and continuously differentiable; and,

(3) T p0q “ 0, T p1q “ 1, and T 1 p0q ă `8.

We will also assume that the lump-sum start-up financing H that the entrepreneur receives from
the financier guarantees a nonnegative wealth process for the entrepreneur. Specifically, we shall
assume the following.

Assumption 9.2. X ď W e
0 `H, P -a.s.

For each Z P B` pΣq, let FZ ptq “ Q
`
ts P S : Z psq ď tu

˘
denote the distribution function of Z with

respect to the probability measure Q, and let FX ptq “ Q
`
ts P S : X psq ď tu

˘
denote the distribution

function of X with respect to the probability measure Q. Let F´1
Z ptq be the left-continuous inverse

of the distribution function FZ (that is, the quantile function of Z), defined by

(9.2) F´1
Z ptq “ inf

!
z P R

` : FZ pzq ě t
)
, @t P r0, 1s

Definition 9.3. Denote by AQuant the collection of all quantile functions f of the form F´1, where
F is the distribution function of some Z P B` pΣq such that 0 ď Z ď X.

That is, AQuant is the collection of all quantile functions f that satisfy the following properties:

(1) f pzq ď F´1
X pzq, for each 0 ă z ă 1;

(2) f pzq ě 0, for each 0 ă z ă 1.

Denoting by Quant “
!
f : p0, 1q Ñ R

ˇ̌
ˇ f is nondecreasing and left-continuous

)
the collection of

all quantile functions, we can then write AQuant as follows:

(9.3) AQuant “
!
f P Quant : 0 ď f pzq ď F´1

X pzq , for each 0 ă z ă 1
)

By Lebesgue’s Decomposition Theorem [1, Th. 10.61] there exists a unique pair pPac, Psq of (non-
negative) finite measures on pS,Σq such that P “ Pac ` Ps, Pac ăă Q, and Ps K Q. That
is, for all B P Σ with Q pBq “ 0, we have Pac pBq “ 0, and there is some A P Σ such that
Q pSzAq “ Ps pAq “ 0. It then also follows that Pac pSzAq “ 0 and Q pAq “ 1. Note also that for all
Z P B pΣq,

ş
Z dP “

ş
A
Z dPac `

ş
SzA Z dPs. Furthermore, by the Radon-Nikodým Theorem [16, Th.

4.2.2] there exists a Q-a.s. unique Σ-measurable and Q-integrable function h : S Ñ r0,`8q such that
Pac pCq “

ş
C
h dQ, for all C P Σ. Consequently, for all Z P B pΣq,

ş
Z dP “

ş
A
Zh dQ`

ş
SzA Z dPs.

6[27, Th. 3.1] also yields that both T and P are unique.
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Moreover, since Pac pSzAq “ 0, it follows that
ş
SzAZ dPs “

ş
SzA Z dP . Thus, for all Z P B pΣq,ş

Z dP “
ş
A
Zh dQ`

ş
SzAZ dP .

Moreover, since h : S Ñ r0,`8q is Σ-measurable and Q-integrable, there exists a Borel-measurable
and Q˝X´1-integrable map φ : X pSq Ñ r0,`8q such that h “ dPac{dQ “ φ˝X. We will also make
the following assumption.

Assumption 9.4. The Σ-measurable function h “ φ ˝ X “ dPac{dQ is anti-comonotonic with X,
i.e., φ is nonincreasing.

Since Q˝X´1 is nonatomic (by Assumption 9.1), it follows that FX pXq has a uniform distribution
over p0, 1q [21, Lemma A.21], that is, Q

`
ts P S : FX pXq psq ď tu

˘
“ t for each t P p0, 1q. Letting

U :“ FX pXq, it follows that U is a random variable on the probability space pS,Σ, Qq with a uniform
distribution on p0, 1q. Consider the following quantile problem:

For a given β ě p1 ` ρqH,

sup
f

V pfq “

ż
ue

`
W e

0 `H ´ f pUq
˘
φ

`
F´1
X pUq

˘
dQ(9.4)

s.t. f P AQuant
ż
T 1 p1 ´ Uq f pUq dQ “ β

The following theorem characterizes the solution of problem (9.1) in terms of the solution of the
relatively easier quantile problem given in problem (9.4), provided the previous assumptions hold.
The proof is given in Appendix D.

Theorem 9.5. Under the previous assumptions, there exists a parameter β˚ ě p1 ` ρqH such that
if f˚ is optimal for problem (9.4) with parameter β˚, then the function

Y ˚ “
`
X ´ f˚ pUq

˘
1A `X1SzA

is optimal for problem (9.1).

In particular, Y ˚ “ X ´ f˚ pUq , Q-a.s. That is, the set E of states of the world s such that

Y ˚ psq ‰
´
X ´ f˚ pUq

¯
psq has probability 0 under the probability measure Q (and hence υ pEq “

T ˝Q pEq “ 0). The contract that is optimal for the entrepreneur will be seen by the financier to be
almost surely equal to the function X ´ f˚ pUq.

Another immediate implication of Theorem 9.5 is that the states of the world to which the financier
assigns a zero “probability” are sates where the innovation contract is a full transfer rule. On the
set of all other states of the world, the innovation contract deviates from a full transfer rule by the
function f˚ pUq.

Under the following two assumptions, it is possible to fully characterize the shape of an optimal
innovation contract. This is done in Corollary 9.8.

Assumption 9.6. The Σ-measurable function h “ φ˝X “ dPac{dQ is such that φ is left-continuous.
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Assumption 9.7. the function t ÞÑ T 1p1´tq

φpF´1

X
ptqq

, defined on t P p0, 1q ztt : φ ˝ F´1
x ptq “ 0u, is nonde-

creasing.

Conditions similar to Assumption 9.7 have been used in several recent studies dealing with some
problem of demand under Ambiguity, where the latter is introduced into the study via a distortion
of probabilities. For instance,

‚ In studying portfolio choice under prospect theory [36, 56], Jin and Zhou [34] impose a similar
monotonicity assumption [34, Assumption 4.1] to that used in our Assumption 9.7;

‚ To characterize the solution to a portfolio choice problem under Yaari’s [58] dual theory of
choice, He and Zhou [31] impose a monotonicity assumption [31, Assumption 3.5] which is
also similar to our Assumption 9.7;

‚ In studying the ideas of greed and leverage within a portfolio choice problem under prospect
theory, Jin and Zhou [33] use an assumption [33, Assumption 2.3] which is similar to our
Assumption 9.7;

‚ Carlier and Dana [13] study an abstract problem of demand for contingent claims. When the
decision maker’s (DM) preferences admit a Rank-Dependent Expected Utility representation
[45, 46], Carlier and Dana [13] show that a similar monotonicity condition to that used in our
Assumption 9.7 is essential to derive some important properties of solutions to their demand
problem [13, Prop. 4.1, Prop. 4.4]. Also, when the DM’s preferences have a prospect theory
representation, then Carlier and Dana [13] impose a monotonicity assumption [13, eq. (5.8)]
similar to our Assumption 9.7.

When the previous assumptions hold, we can give an explicit characterization of an optimal con-
tract, as follows.

Corollary 9.8. Under the previous assumptions, there exists a parameter β˚ ě p1 ` ρqH such that
an optimal solution Y ˚ for problem (9.1) takes the following form:

Y ˚ “

˜
X ´ max

«
0,min

!
F´1
X pUq , f˚

λ˚ pUq
)ff¸

1A `X1SzA

where for each t P p0, 1q ztt : φ ˝ F´1
x ptq “ 0u,

f˚
λ˚ ptq “ W e

0 `H ´
`
u1
e

˘´1

˜
´λ˚T 1 p1 ´ tq

φ
`
F´1
X ptq

˘
¸

and λ˚ is chosen so thatż 1

0

T 1 p1 ´ tqmax
”
0,min

!
F´1
X ptq , f˚

λ˚ ptq
)ı

dt “ β˚

The proof of Corollary 9.8 is given in Appendix E. Note that if Assumption 9.4 holds, then
Assumption 9.6 is a weak assumption. Indeed, any monotone function is Borel-measurable, and
hence “almost contiunous”, in view of Lusin’s Theorem [19, Theorem 7.5.2]. Also, any monotone
function is almost surely continuous, for Lebesgue measure.
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Appendix A. Background Material

A.1. Capacities and the Choquet Integral. Here, we summarize the basic definitions about
capacities, Choquet integrals and Šipoš integrals. The proofs of the statements listed below can be
found, for instance, in [37] or [41].

Definition A.1. A (normalized) capacity on a measurable space pS,Σq is a set function υ : Σ Ñ r0, 1s
such that

(1) υ p∅q “ 0;

(2) υ pSq “ 1; and

(3) A,B P Σ and A Ă B ùñ υ pAq ď υ pBq.

Definition A.2. A capacity υ on pS,Σq is continuous from above (resp. below) if for any sequence
tAnuně1 Ď Σ such that An`1 Ď An (resp. An`1 Ě An) for each n, it holds that

lim
nÑ`8

υ pAnq “ υ

˜
`8č

n“1

An

¸ ˜
resp. lim

nÑ`8
υ pAnq “ υ

˜
`8ď

n“1

An

¸¸

A capacity that is continuous both from above and below is said to be continuous.

Definition A.3. Given a capacity υ and a function ψ P B pΣq, the Choquet integral of ψ w.r.t. υ is
defined by

ż
φ dυ “

ż `8

0

υ pts P S : φ psq ě tuq dt `

ż 0

´8
rυ pts P S : φ psq ě tuq ´ 1s dt

where the integrals on the RHS are taken in the sense of Riemann.

Unlike the Lebesgue integral, the Choquet integral is not additive. One of its characterizing
properties, however, is that it respects additivity on comonotonic functions.

Definition A.4. Two functions Y1, Y2 P B pΣq are comonotonic if for all s, s1 P S

”
Y1psq ´ Y1ps1q

ı”
Y2psq ´ Y2ps1q

ı
ě 0

As mentioned above, if Y1, Y2 P B pΣq are comonotonic then

ż
pY1 ` Y2q dυ “

ż
Y1dυ `

ż
Y2dυ

Definition A.5. A capacity υ on pS,Σq is submodular (or concave) if for any A,B P Σ

υ pAYBq ` υ pA XBq ď υ pAq ` υ pBq

It is supermodular (or convex) if the reverse inequality holds for any A,B P Σ.
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As a functional on B pΣq, the Choquet integral
ş

¨ dυ is concave (resp. convex) if and only if υ is
submodular (resp. supermodular).

Proposition A.6. Let υ be a capacity on pS,Σq.

(1) If Y P B pΣq and c P R, then
ş

pY ` cq dυ “
ş
Y dυ ` c.

(2) If A P Σ then
ş
1A dυ “ υ pAq.

(3) If Y P B pΣq and a ě 0, then
ş
a Y dυ “ a

ş
Y dυ.

(4) If Y1, Y2 P B pΣq are such that Y1 ď Y2, then
ş
Y1 dυ ď

ş
Y2 dυ.

(5) If υ is submodluar, then for any Y1, Y2 P B pΣq,
ş

pY1 ` Y2q dυ ď
ş
Y1 dυ `

ş
Y2 dυ.

Definition A.7. The Šipoš integral, or the symmetric Choquet integral (see [41]), is a functional
Š : B pΣq Ñ R defined by

Š pY q “

ż
Y `dυ ´

ż
Y ´dυ

where the integrals on the RHS are taken in the sense of Choquet and Y ` (resp. Y ´) denotes the
positive (resp. negative) part of Y P B pΣq. Obviously, the Šipoš integral coincides with the Choquet
integral for positive functions.

A.2. Nondecreasing Rearrangements. All the definitions and results that appear in this Appen-
dix are taken from Ghossoub [24, 25, 26] and the references therein. We refer the interested reader
to Ghossoub [24, 25, 26] for proofs and for additional results.

A.2.1. The Nondecreasing Rearrangement. Let pS,G, P q be a probability space, and let X P B` pGq
be a continuous random variable (i.e., P ˝X´1 is a nonatomic Borel probability measure) with range
X pSq “ r0,M s. Denote by Σ the σ-algebra generated by X, and let

φ pBq :“ P
´

ts P S : X psq P Bu
¯

“ P ˝X´1 pBq ,

for any Borel subset B of R.

For any Borel-measurable map I : r0,M s Ñ R, define the distribution function of I as the map
φI : R Ñ r0, 1s given by φI ptq :“ φ

`
tx P r0,M s : I pxq ď tu

˘
. Then φI is a nondecreasing right-

continuous function.

Definition A.8. Let I : r0,M s Ñ r0,M s be any Borel-measurable map, and define the function
rI : r0,M s Ñ R by

(A.1) rI ptq :“ inf
!
z P R

` : φI pzq ě φ
`

r0, ts
˘)

Then rI is a nondecreasing and Borel-measurable mapping of r0,M s into r0,M s such that I and rI
are φ-equimeasurable, in the sense that for any α P r0,M s,

φ
´

tt P r0,M s : I ptq ď αu
¯

“ φ
´

tt P r0,M s : rI ptq ď αu
¯
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Moreover, if I : r0,M s Ñ R
` is another nondecreasing, Borel-measurable map which is φ-

equimeasurable with I, then I “ rI, φ-a.s. rI is called the nondecreasing φ-rearrangement of I.

Now, define Y :“ I ˝ X and rY :“ rI ˝ X. Since both I and rI are Borel-measurable mappings

of r0,M s into itself, it follows that Y, rY P B` pΣq. Note also that rY is nondecreasing in X, in the

sense that if s1, s2 P S are such that X ps1q ď X ps2q then rY ps1q ď rY ps2q, and that Y and rY are

P -equimeasurable. That is, for any α P r0,M s, P
´

ts P S : Y psq ď αu
¯

“ P
´

ts P S : rY psq ď αu
¯
.

We will call rY a nondecreasing P -rearrangement of Y with respect to X, and we shall

denote it by rYP . Note that rYP is P -a.s. unique. Note also that if Y1 and Y2 are P -equimeasurable
and if Y1 P L1 pS,G, P q, then Y2 P L1 pS,G, P q and

ş
ψ pY1q dP “

ş
ψ pY2q dP , for any measurable

function ψ such that the integrals exist.

A.2.2. Supermodularity and Hardy-Littlewood Inequalities. A partially ordered set (poset) is a pair
pA,Áq, where Á is a reflexive, transitive and antisymmetric binary relation on A. For any x, y P A,
we denote by x _ y (resp. x ^ y) the least upper bound (resp. greatest lower bound) of the set
tx, yu. A poset pA,Áq is a lattice when x _ y, x ^ y P A for every x, y P A. For instance, the
Euclidian space R

n is a lattice for the partial order Á defined as follows: for x “ px1, . . . , xnq P R
n

and y “ py1, . . . , ynq P R
n, we write x Á y when xi ě yi, for each i “ 1, . . . , n.

Definition A.9. Let pA,Áq be a lattice. A function L : A Ñ R is said to be supermodular if for
each x, y P A,

L px _ yq ` L px^ yq ě L pxq ` L pyq

In particular, a function L : R2 Ñ R is supermodular if for any x1, x2, y1, y2 P R with x1 ď x2 and
y1 ď y2, we have

L px2, y2q ` L px1, y1q ě L px1, y2q ` L px2, y1q

It is then easily seen that supermodularity of a function L : R2 Ñ R is is equivalent to the function
η pyq “ L px` h, yq ´ L px, yq being nondecreasing for any x P R and h ě 0.

Example A.10. The following are useful examples of supermodular functions on R
2:

(1) If g : R Ñ R is concave and a P R, then the function L1 : R2 Ñ R defined by L1 px, yq “
g pa´ x` yq is supermodular;

(2) The function L2 : R
2 Ñ R defined by L2 px, yq “ ´ py ´ xq` is supermodular;

(3) If η : R Ñ R
` is a nonincreasing function, h : R Ñ R is concave and nondecreasing, and

a P R, then the function L3 : R
2 Ñ R defined by L3 px, yq “ h pa´ yq η pxq is supermodular.

Lemma A.11. Let Y P B` pΣq, and denote by rYP the nondecreasing P -rearrangement of Y with
respect to X. Then,
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(1) If L is a supermodular and P ˝X´1-integrable function on the range of X then:

ż
L

´
X,Y

¯
dP ď

ż
L

´
X, rYP

¯
dP

(2) If 0 ď Y ď X then 0 ď rYP ď X.

Appendix B. Proof of Theorem 6.2

Let us denote by FSB the feasibility set for problem (5.1) (which we assume nonempty to rule out
trivial situations):

(B.1) FSB “

#
Y P B pΣq : 0 ď Y ď X and

ż
pX ´ Y q dυ ě p1 ` ρqH “ H 1

+

Let FÒ
SB be the set of all the Y P FSB which, in addition, are comonotonic with X:

F
Ò
SB “

!
Y “ I ˝X P FSB : I is nondecreasing

)

Lemma B.1. If υ is pP,Xq-vigilant, then for each Y P FSB there exists a rY P FSB such that:

(1) rY is comonotonic with X,

(2)
ş
ue

´
W e

0 `H ´X ` rY
¯
dP ě

ş
ue

´
W e

0 `H ´X ` Y
¯
dP ,

(3)
ş ´
X ´ rY

¯
dυ ě

ş ´
X ´ Y

¯
dυ

Proof. Choose any Y “ I ˝ X P FSB , and let rYP denote the nondecreasing P -rearrangement of Y

with respect to X. Then (i) rYP “ rI ˝ X where rI is nondecreasing, and (ii) 0 ď rYP ď X, by Lemma

A.11. Furthermore, since υ is pP,Xq-vigilant, it follows that
ş ´
X ´ rYP

¯
dυ ě

ş ´
X ´ Y

¯
dυ. But

ş ´
X ´ Y

¯
dυ ě H 1 since Y P FSB. Hence, rYP P F

Ò
SB . Moreover, since the utility ue is concave

(Assumption 5.6), the function U px, yq “ ue pW e
0 `H ´ x` yq is supermodular (as in Example A.10

(1)). Then, by Lemma A.11,
ş
ue

´
W e

0 `H ´X ` rY
¯
dP ě

ş
ue

´
W e

0 `H ´X ` Y
¯
dP . �

Proof of Theorem 6.2. By Lemma B.1, we can choose a maximizing sequence tYnun in F
Ò
SB for

problem (5.1). That is,

lim
nÑ`8

ż
ue pW e

0 `H ´X ` Ynq dP “ N ” sup
Y PB`pΣq

# ż
ue pW e

0 `H ´X ` Y q dP

+
ă `8

Since 0 ď Yn ď X ď M ” }X}8, the sequence tYnun is uniformly bounded. Moreover, for
each n ě 1 we have Yn “ In ˝ X, with In : r0,M s Ñ r0,M s. Consequently, the sequence tInun
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is a uniformly bounded sequence of nondecreasing Borel-measurable functions. Thus, by Helly’s
First Theorem [14, Lemma 13.15] (a.k.a. Helly’s Compactness Theorem), there is a nondecreasing
function I˚ : r0,M s Ñ r0,M s and a subsequence tImum of tInun such that tImum converges pointwise
on r0,M s to I˚. Hence, I˚ is also Borel-measurable, and so Y ˚ “ I˚ ˝ X P B`pΣq is such that
0 ď Y ˚ ď X. Moreover, the sequence tYmum, Ym “ Im ˝ X, converges pointwise to Y ˚. Thus, the
sequence tX´Ymum is uniformly bounded and converges pointwise to pX ´ Y ˚q. By the assumption
that υ is continuous (Assumption 5.8), it follows from a Dominated Convergence-type Theorem [41,
Theorem 7.16]7 that

H 1 ď lim
mÑ`8

ż
pX ´ Ymq dυ “

ż
pX ´ Y ˚q dυ

and so Y ˚ P F
Ò
SB . Now, by continuity and boundedness of the function ue, and by Lebesgue’s

Dominated Convergence Theorem [1, Theorem 11.21], we have
ż
ue pW e

0 `H ´X ` Y ˚q dP “ lim
mÑ`8

ż
ue pW e

0 `H ´X ` Ymq dP

“ lim
nÑ`8

ż
ue pW e

0 `H ´X ` Ynq dP “ N

Hence Y ˚ solves problem (5.1). �

Appendix C. Proof of Proposition 7.1

Proof. Let Cϕ denote the anticore of υ. Since each Q P Cϕ is pP,Xq-vigilant, it follows that υ is
pP,Xq-vigilant. Hence, by Theorem 6.2, there exists a solution Y ˚˚ to problem (5.1). Fix Q P Cϕ
arbitrarily, and let Y ˚ pQq be an optimal solution of problem (7.2) for this given Q P Cϕ. The
existence of Y ˚ pQq follows from the pP,Xq-vigilance of Q, in light of Theorem 6.2. Then, Y ˚ pQq
satisfies 0 ď Y ˚ pQq ď X, and

ş
pX ´ Y ˚ pQqq dQ ě p1 ` ρqH. Hence,

max
RPCϕ

ż
pX ´ Y ˚ pQqq dR ě

ż
pX ´ Y ˚ pQqq dQ ě p1 ` ρqH,

which shows that Y ˚ pQq is feasible for problem (5.1). Since Y ˚˚ solves problem (5.1), we must have
that

(C.1)

ż
ue pW e

0 `H ´X ` Y ˚˚q dP ě

ż
ue pW e

0 `H ´X ` Y ˚ pQqq dP

To conclude the proof, it suffices to find some Q˚˚ P Cϕ such that inequality (C.1) holds as an
equality. Suppose, by the way of contradiction, that no such Q˚˚ exists. Then, for all Q P Cϕ it holds
that

(C.2)

ż
ue pW e

0 `H ´X ` Y ˚˚q dP ą

ż
ue pW e

0 `H ´X ` Y ˚ pQqq dP

Since, by definition, Y ˚pQq solves the problem of type (7.2) defined by Q, inequality (C.2) implies
that Y ˚˚ must not be feasible for any problem of the type (7.2). That is, for all Q P Cϕ,

ż
pX ´ Y ˚˚q dQ ă p1 ` ρqH

7The Theorem of Pap [41] is for the Šipoš integral, or the symmetric Choquet integral. However, the latter coincides
with the Choquet integral for nonnegative functions (see Appendix A.1).
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However, by the feasibility of Y ˚˚ for problem (5.1), we have that for all Q P Cϕ,ż
pX ´ Y ˚˚q dQ ă p1 ` ρqH ď max

RPCϕ

ż
pX ´ Y ˚˚q dR

which, since pX ´ Y ˚q P B pΣq, contradicts the fact that Cϕ is weak˚-compact and convex. �

Appendix D. Proof of Theorem 9.5

D.1. “Splitting”. Recall that by Lebesgue’s Decomposition Theorem [1, Th. 10.61] there exists a
unique pair pPac, Psq of (nonnegative) finite measures on pS,Σq such that P “ Pac ` Ps, Pac ăă Q,
and Ps K Q. That is, for all B P Σ with Q pBq “ 0, we have Pac pBq “ 0, and there is some A P Σ
such that Q pSzAq “ Ps pAq “ 0. It then also follows that Pac pSzAq “ 0 and Q pAq “ 1. In the
following, the Σ-measurable set A on which Q is concentrated is assumed to be fixed all throughout.
Consider now the following two problems:

For a given β ě p1 ` ρqH,

sup
Y PBpΣq

ż

A

ue
`
W e

0 `H ´X ` Y
˘
dP(D.1)

s.t. 0 ď Y ď X
ż

pX ´ Y q dT ˝ Q “ β

and

sup
Y PBpΣq

ż

SzA
ue

`
W e

0 `H ´X ` Y
˘
dP(D.2)

s.t. 0 ď Y 1SzA ď X1SzAż

SzA
pX ´ Y q dT ˝Q “ 0

Remark D.1. By the boundedness of ue, the supremum of each of the above two problems is finite
when their feasibility sets are nonempty. Now, the function X is feasible for problem (D.2), and so
problem (D.2) has a nonempty feasibility set.

Definition D.2. For a given β ě p1 ` ρqH, let ΘA,β be the feasibility set of problem (D.1) with
parameter β. That is,

ΘA,β :“

#
Y P B` pΣq : 0 ď Y ď X,

ż
pX ´ Y q dT ˝Q “ β

+

Denote by Γ the collection of all β for which the feasibility set ΘA,β is nonempty:

Definition D.3. Let Γ :“
!
β ě p1 ` ρqH : ΘA,β ‰ ∅

)
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Lemma D.4. Γ ‰ ∅.

Proof. Choose Y P FSB arbitrarily, where FSB is defined by equation (B.1). Then Y P B` pΣq is
such that 0 ď Y ď X, and

ş
pX ´ Y q dT ˝ Q ě p1 ` ρqH. Let βY “

ş
pX ´ Y q dT ˝ Q. Then,

by definition of βY , and since 0 ď Y ď X, we have Y P ΘA,βY
, and so ΘA,βY

‰ ∅. Consequently,
βY P Γ, and so Γ ‰ ∅. �

Lemma D.5. X is optimal for problem (D.2).

Proof. The feasibility of X for problem (D.2) is clear. To show optimality, let Y be any feasible
solution for problem (D.2). Then for each s P SzA, Y psq ď X psq. Therefore, since ue is increasing,
we have ue

`
W e

0 `H´X psq`Y psq
˘

ď ue
`
W e

0 `H´X psq`X psq
˘

“ ue
`
W e

0 `H
˘
, for each s P SzA.

Thus, ż

SzA
ue

`
W e

0 `H ´X ` Y
˘
dP ď

ż

SzA
ue

`
W e

0 `H ´X `X
˘
dP “ u

`
W e

0 `H
˘
P pSzAq

�

Remark D.6. Since Q pSzAq “ 0 and T p0q “ 0, it follows that T ˝Q pSzAq “ 0, and so
ş
1SzA dT ˝Q “

T ˝Q pSzAq “ 0, by Proposition A.6. Therefore, for any Z P B` pΣq, it follows form the monotonicity
and positive homogeneity of the Choquet integral (Proposition A.6) that

0 ď

ż

SzA
Z dT ˝ Q “

ż
Z1SzA dT ˝ Q ď

ż
}Z}s1SzA dT ˝Q “ }Z}s

ż
1SzA dT ˝ Q “ 0

and so
ş
SzAZ dT ˝ Q “ 0. Consequently, it follows form Proposition A.6 that for any Z P B` pΣq,

ż
Z dT ˝ Q ď

ż
Z1A dT ˝ Q “

ż

A

Z dT ˝ Q

Now, consider the following problem:

Problem D.7.

sup
βPΓ

#
F ˚
A pβq : F ˚

A pβq is the supremum of problem (D.1), for a fixed β P Γ

+

Lemma D.8. Under Assumption 9.1, if β˚ is optimal for problem (D.7), and if Y ˚
1 is optimal for

problem (D.1) with parameter β˚, then Y ˚ :“ Y ˚
1 1A `X1SzA is optimal for problem (5.1).

Proof. By the feasibility of Y ˚
1 for problem (D.1) with parameter β˚, we have 0 ď Y ˚

1 ď X andş
pX ´ Y ˚

1 q dT ˝ P “ β˚. Therefore, 0 ď Y ˚ ď X, and
ż

pX ´ Y ˚q dT ˝ Q “

ż “
pX ´ Y ˚

1 q1A ` pX ´Xq1SzA

‰
dT ˝ Q

“

ż

A

pX ´ Y ˚
1 q dT ˝Q ě

ż
pX ´ Y ˚

1 q dT ˝Q “ β˚ ě p1 ` ρqH

where the inequality
ş
A

pX ´ Y ˚
1 q dT ˝ Q ě

ş
pX ´ Y ˚

1 q dT ˝ Q follows from the same argument as
in Remark D.6. Hence, Y ˚ is feasible for problem (9.1). To show optimality of Y ˚ for problem (9.1),
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let Y be any other feasible function for problem (9.1), and define α by α “
ş `
X ´ Y

˘
dT ˝Q. Then

α ě p1 ` ρqH, and so Y is feasible for problem (D.1) with parameter α, and α is feasible for problem
(D.7). Hence

F ˚
A pαq ě

ż

A

ue
`
W e

0 `H ´X ` Y
˘
dP

Now, since β˚ is optimal for problem (D.7), it follows that F ˚
A pβ˚q ě F ˚

A pαq. Moreover, Y is

feasible for problem (D.2) (since 0 ď Y ď X and so
ş
SzA

`
X ´ Y

˘
dT ˝ Q “ 0 by Remark D.6).

Thus,

F ˚
A pβ˚q ` ue

`
W e

0 `H
˘
P pSzAq ě F ˚

A pαq ` ue
`
W e

0 `H
˘
P pSzAq

ě

ż

A

ue
`
W e

0 `H ´X ` Y
˘
dP ` ue

`
W e

0 `H
˘
P pSzAq

ě

ż

A

ue
`
W e

0 `H ´X ` Y
˘
dP `

ż

SzA
ue

`
W e

0 `H ´X ` Y
˘
dP

“

ż
ue

`
W e

0 `H ´X ` Y
˘
dP

However, F ˚
A pβ˚q “

ş
A
ue

`
W e

0 `H ´X ` Y ˚
1

˘
dP . Therefore,

ż
ue

`
W e

0 `H ´X ` Y ˚
˘
dP “ F ˚

A pβ˚q ` ue
`
W e

0 `H
˘
P pSzAq ě

ż
ue

`
W e

0 `H ´X ` Y
˘
dP

Hence, Y ˚ is optimal for problem (9.1). �

Remark D.9. By Lemma D.8, we can restrict ourselves to solving problem (D.1) with a parameter
β P Γ.

D.2. Solving Problem (D.1). Recall that for all Z P B pΣq,
ş
Z dP “

ş
A
Zh dQ`

ş
SzA Z dP , where

h “ dPac{dQ is the Radon-Nikodým derivative of Pac with respect to Q. Moreover, by definition of
the set A P Σ, we have Q pSzAq “ Ps pAq “ 0. Therefore,

ş
A
Zh dQ “

ş
Zh dQ, for each Z P B pΣq.

Hence, we can rewrite problem (D.1) (restricting ourselves to parameters β P Γ and recalling that
h “ φ ˝ X) as the following problem:

For a given β P Γ,

sup
Y PBpΣq

ż
ue

`
W e

0 `H ´X ` Y
˘
φ pXq dQ(D.3)

s.t. 0 ď Y ď X
ż

pX ´ Y q dT ˝Q “ β

Now, consider the following problem:
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For a given β P Γ,

sup
Y PBpΣq

ż
ue

`
W e

0 `H ´ Z
˘
φ pXq dQ(D.4)

s.t. 0 ď Z ď X
ż
Z dT ˝ Q “ β “

ż `8

0

T
´
Q

`
ts P S : Z psq ě tu

˘¯
dt

Lemma D.10. If Z˚ is optimal for problem (D.4) with parameter β, then Y ˚ :“ X ´Z˚ is optimal
for problem (D.3) with parameter β.

Proof. Let β P Γ be given, and suppose that Z˚ is optimal for problem (D.4) with parameter β.
Define Y ˚ :“ X ´ Z˚. Then Y ˚ P B pΣq. Moreover, since 0 ď Z˚ ď X, it follows that 0 ď Y ˚ ď X.
Now, ż

pX ´ Y ˚q dT ˝ Q “

ż ´
X ´ pX ´ Z˚q

¯
dT ˝ Q “

ż
Z˚ dT ˝ Q “ β

and so Y ˚ is feasible for problem (D.3) with parameter β. To show optimality of Y ˚ for problem
(D.3) with parameter β, suppose, by way of contradiction, that Y ‰ Y ˚ is feasible for problem (D.3)
with parameter β andż

ue
`
W e

0 `H ´X ` Y
˘
h dQ ą

ż
ue

`
W e

0 `H ´X ` Y ˚
˘
h dQ

that is, with Z :“ X ´ Y , we haveż
ue

`
W e

0 `H ´ Z
˘
h dQ ą

ż
ue

`
W e

0 `H ´ Z˚
˘
h dQ

Now, since 0 ď Y ď X and
ş `
X ´ Y

˘
dT ˝Q “ β, we have that Z is feasible for problem (D.4) with

parameter β, hence contradicting the optimality of Z˚ for problem (D.4) with parameter β. Thus,
Y ˚ :“ X ´ Z˚ is optimal for problem (D.3) with parameter β. �

Definition D.11. If Z1, Z2 P B` pΣq are feasible for problem (D.4) with parameter β, we will say
that Z2 is a Pareto improvement of Z1 (or is Pareto-improving) when the following hold:

(1)
ş
ue

`
W e

0 `H ´ Z2

˘
h dQ ě

ş
ue

`
W e

0 `H ´ Z1

˘
h dQ; and,

(2)
ş
Z2 dT ˝Q ě

ş
Z1 dT ˝Q.

The next result shows that for any feasible claim for problem (D.4), there is a another feasible
claim for problem (D.4), which is comonotonic with X and Pareto-improving.

Lemma D.12. Fix a parameter β P Γ. If Z is feasible for problem (D.4) with parameter β, then rZ
is feasible for probem (D.4) with parameter β, comonotonic with X, and Pareto-improving, where rZ
is the nondecreasing Q-rearrangement of Z with respect to X.

Proof. Let Z be feasible for problem (D.4) with parameter β, and note that by Assumption 9.4,

the map ξ pX,Zq :“ ue
`
W e

0 ` H ´ Z
˘
φ pXq is supermodular (see Example A.10). Let rZ denote

the nondecreasing Q-rearrangement of Z with respect to X. Then by Lemma A.11 (2) and by
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equimeasurability of Z and rZ, the function rZ is feasible for problem (D.4) with parameter β. Also,

by Lemma A.11 (1) and by supermodularity of ξ pX,Zq, it follows that rZ is Pareto-improving. �

D.3. Quantile reformulation. Fix a parameter β P Γ, let Z P B` pΣq be feasible for problem (D.4)
with parameter β, and let FZ ptq “ Q

`
ts P S : Z psq ď tu

˘
denote the distribution function of Z with

respect to the probability measure Q, and let FX ptq “ Q
`
ts P S : X psq ď tu

˘
denote the distribution

function of X with respect to the probability measure Q. Let F´1
Z ptq be the left-continuous inverse

of the distribution function FZ (that is, the quantile function of Z), defined by

F´1
Z ptq “ inf

!
z P R

` : FZ pzq ě t
)
, @t P r0, 1s

Let rZ denote the nondecreasing Q-rearrangement of Z with respect to X. Since Z P B` pΣq, it can
be written as ψ˝X for some nonnegative Borel-measurable and bounded map ψ on X pSq. Moreover,
since 0 ď Z ď X, ψ is a mapping of r0,M s into r0,M s. Let ζ :“ Q ˝X´1 be the image measure of Q

under X. By Assumption 9.1, ζ is nonatomic. We can then define the mapping rψ : r0,M s Ñ r0,M s
as in Appendix A.2 (see equation (A.1) on p. 22) to be the nondecreasing ζ-rearrangement of ψ, that
is,

rψ ptq :“ inf
!
z P R

` : ζ
`
tx P r0,M s : ψ pxq ď zu

˘
ě ζ

`
r0, ts

˘)

Then, as in Appendix A.2, rZ “ rψ ˝ X. Therefore, for each s0 P S,

rZ ps0q “ rψ pX ps0qq “ inf
!
z P R

` : ζ
`
tx P r0,M s : ψ pxq ď zu

˘
ě ζ

`
r0,X ps0qs

˘)

However, for each s0 P S,

ζ
`

r0,X ps0qs
˘

“ Q ˝X´1
`

r0,X ps0qs
˘

“ FX pX ps0qq :“ FX pXq ps0q

Moreover,

ζ
`
tx P r0,M s : ψ pxq ď zu

˘
“ Q ˝X´1

`
tx P r0,M s : ψ pxq ď zu

˘

“ Q
`
ts P S : ψ pX psqq ď zu

˘
“ FZ pzq

Consequently, for each s0 P S,

rZ ps0q “ inf
!
z P R

` : FZ pzq ě FX pXq ps0q
)

“ F´1
Z pFX pX ps0qqq :“ F´1

Z pFX pXqq ps0q

That is,

(D.5) rZ “ F´1
Z pFX pXqq

where F´1
Z is the left-continuous inverse of FZ , as defined in equation (9.2).

Hence, by Lemma D.12 and equation (D.5), we can restrict ourselves to finding a solution to
problem (D.4) of the form F´1 pFX pXqq, where F is the distribution function of a function Z P
B` pΣq such that 0 ď Z ď X and

ş
Z dT ˝ Q “ β. Moreover, since X is a nondecreasing function

of X and Q-equimeasurable with X, it follows from the Q-a.s. uniqueness of the equimeasurable
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nondecreasing Q-rearrangement (see Appendix A.2) that X “ F´1
X pFX pXqq, Q-a.s. (see also [21,

Lemma A.21]). Thus, for any Z P B` pΣq,
ż
ue

`
W e

0 `H ´ F´1
Z pFX pXqq

˘
φ

`
F´1
X pFX pXqq

˘
dQ “

ż
ue

`
W e

0 `H ´ rZ
˘
φ pXq dQ

ě

ż
ue

`
W e

0 `H ´ Z
˘
φ pXq dQ

where the inequality follows from the proof of Lemma D.12. Moreover, since ζ “ Q˝X´1 is nonatomic
(by Assumption 9.1), it follows that FX pXq has a uniform distribution over p0, 1q [21, Lemma A.21],
that is, Q

`
ts P S : FX pXq psq ď tu

˘
“ t for each t P p0, 1q. Finally, letting U :“ FX pXq,

ż
F´1 pUq dT ˝Q “

ż `8

0

T
”
Q

`
ts P S : F´1 pUq psq ě tu

˘ı
dt

“

ż `8

0

T
”
Q

`
ts P S : F´1 pUq psq ą tu

˘ı
dt

“

ż `8

0

T
”
1 ´ F ptq

ı
dt

“

ż 1

0

T 1 p1 ´ tqF´1 ptq dt “

ż
T 1 p1 ´ UqF´1 pUq dQ

where the third and last equalities above follow from the fact that U has a uniform distribution over
p0, 1q, and where the second-to-last equality follows from a standard argument8.

Now, recall from Definition 9.3 that AQuant given in equation (9.3) is the collection of all ad-
missible quantile functions, that is the collection of all functions f of the form F´1, where F is the
distribution function of a function Z P B` pΣq such that 0 ď Z ď X, and consider the following
problem:

For a given β P Γ

sup
f

V pfq “

ż
ue

`
W e

0 `H ´ f pUq
˘
φ

`
F´1
X pUq

˘
dQ(D.6)

s.t. f P AQuant
ż
T 1 p1 ´ Uq f pUq dQ “ β

Lemma D.13. If f˚ is optimal for problem (D.6) with parameter β P Γ, then the function f˚ pUq is
optimal for problem (D.4) with parameter β, where U :“ FX pXq. Moreover, X ´ f˚ pUq is optimal
for problem (D.3) with parameter β.

Proof. Fix β P Γ, suppose that f˚ P AQuant is optimal for problem (D.6) with parameter β, and
let Z˚ P B` pΣq be the corresponding function. That is, f˚ is the quantile function of Z˚ and

0 ď Z˚ ď X. Let rZ˚ :“ f˚ pUq. Then rZ˚ is the equimeasurable nondecreasing Q-rearrangement of

8See, e.g. Denneberg [18], Proposition 1.4 on p. 8 and the discussion on pp. 61-62. See also [34, p. 418], [31, p. 210,
p. 213], or [9, p. 207].
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Z˚ with respect to X, and so 0 ď rZ˚ ď X by Lemma A.11 (2). Moreover,

β “

ż
T 1 p1 ´ Uq f˚ pUq dQ “

ż
f˚ pUq dT ˝ Q

“

ż
rZ˚ dT ˝ Q “

ż `8

0

T
”
Q

`
ts P S : rZ˚ psq ě tu

˘ı
dt

“

ż `8

0

T
”
Q

`
ts P S : Z˚ psq ě tu

˘ı
dt “

ż
rZ˚ dT ˝Q

where the second-to-last equality follows from the Q-equimeasurability of Z˚ and rZ˚. Therefore,
rZ˚ “ f˚ pUq is feasible for problem (D.4) with parameter β. To show optimality, let Z be any
feasible solution for problem (D.4) with parameter β, and let F be the distribution function for Z.

Then, by Lemma D.12, the function rZ :“ F´1 pUq is feasible for probem (D.4) with parameter β,

comonotonic with X, and Pareto-improving. Moreover, rZ has also F as a distribution function. To

show optimality of rZ˚ “ f˚ pUq for problem (D.4) with parameter β it remains to show that
ż
ue

`
W e

0 `H ´ rZ˚
˘
φ pXq dQ ě

ż
ue

`
W e

0 `H ´ rZ
˘
φ pXq dQ

Now, let f :“ F´1, so that rZ “ f pUq. Since rZ is feasible for probem (D.4) with parameter β, we
have

β “

ż
rZ dT ˝ Q “

ż
F´1 pUq dT ˝ Q

“

ż 1

0

T 1 p1 ´ tqF´1 ptq dt “

ż
T 1 p1 ´ Uq f pUq dQ

Hence, f is feasible for problem (D.6) with parameter β. Since f˚ is optimal for problem (D.6) with
parameter β we have

ż
ue

`
W e

0 `H ´ f˚ pUq
˘
φ

`
F´1
X pUq

˘
dQ ě

ż
ue

`
W e

0 `H ´ f pUq
˘
φ

`
F´1
X pUq

˘
dQ

Finally, since X “ F´1
X pUq , Q-a.s., we have

ż
ue

`
W e

0 `H ´ rZ˚
˘
φ pXq dQ ě

ż
ue

`
W e

0 `H ´ rZ
˘
φ pXq dQ

Therefore, rZ˚ “ f˚ pUq is optimal for problem (D.4) with parameter β. Finally, by Lemma D.10,

Y ˚ :“ X ´ rZ˚ “ X ´ f˚ pUq is optimal for problem (D.3) with parameter β. �

By Lemmata D.8 and D.13, this completes the proof of Theorem 9.5.

Appendix E. Proof of Corollary 9.8

Recall from equation (9.3) that

AQuant “
!
f P Quant : 0 ď f pzq ď F´1

X pzq , for each 0 ă z ă 1
)
,
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where Quant “
!
f : p0, 1q Ñ R

ˇ̌
ˇ f is nondecreasing and left-continuous

)
. Define the collection K of

functions on p0, 1q as follows:

(E.1) K “
!
f : p0, 1q Ñ R

ˇ̌
ˇ 0 ď f pzq ď F´1

X pzq , for each 0 ă z ă 1
)

Then AQuant “ QuantX K. Consider the following problem, with parameter β P Γ:

For a given β P Γ

sup
f

V pfq “

ż 1

0

ue
`
W e

0 `H ´ f ptq
˘
φ

`
F´1
X ptq

˘
dt(E.2)

s.t. f P AQuant
ż 1

0

T 1 p1 ´ tq f ptq dt “ β

Lemma E.1. For a given β P Γ, if f˚ P AQuant satisfies the following:

(1)
ş1
0
T 1 p1 ´ tq f˚ ptq dt “ β;

(2) There exists λ ď 0 such that for all t P p0, 1q ztt : φ ˝ F´1
x ptq “ 0u,

f˚ ptq “ argmax
0ďyďF´1

X
ptq

“
ue pW e

0 `H ´ yqφ
`
F´1
X ptq

˘
´ λT 1 p1 ´ tq y

‰

Then f˚ solves problem (E.2) with parameter β

Proof. Fix β P Γ, suppose that f˚ P AQuant satisfies conditions p1q and p2q above. Then, in
particular, f˚ is feasible for problem (E.2) with parameter β. To show optimality of f˚ for problem
(E.2) with parameter β, let f by any other feasible solution for problem (E.2) with parameter β.
Then, for all t P p0, 1q ztt : φ ˝ F´1

x ptq “ 0u,

ue pW e
0 `H ´ f˚ ptqq φ

`
F´1
X ptq

˘
´ λT 1 p1 ´ tq f˚ ptq

ě ue pW e
0 `H ´ f ptqqφ

`
F´1
X ptq

˘
´ λT 1 p1 ´ tq f ptq

That is,
”
ue pW e

0 `H ´ f˚ ptqq ´ ue pW e
0 `H ´ f ptqq

ı
φ

`
F´1
X ptq

˘
ě λT 1 p1 ´ tq

”
f˚ ptq ´ f ptq

ı
. In-

tegrating yields V pf˚q ´ V pfq ě λ rβ ´ βs “ 0, that is V pf˚q ě V pfq, as required. �

Hence, in view of Lemma E.1, in order to find a solution for problem (E.2) with a given parameter
β P Γ and a given λ ď 0, one can start by solving the problem

(E.3) max
0ďfλptqďF´1

X
ptq

“
ue pW e

0 `H ´ fλ ptqqφ
`
F´1
X ptq

˘
´ λT 1 p1 ´ tq fλ ptq

‰

for a fixed t P p0, 1q ztt : φ ˝ F´1
x ptq “ 0u.

Consider first the following problem:

(E.4) max
fλptq

“
ue pW e

0 `H ´ fλ ptqqφ
`
F´1
X ptq

˘
´ λT 1 p1 ´ tq fλ ptq

‰

for a fixed t P p0, 1q ztt : φ ˝ F´1
x ptq “ 0u.
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By concavity of the utility function u, in order to solve problem (E.4), it suffices to solve for the
first-order condition

´u1
e pW e

0 `H ´ f˚
λ ptqqφ

`
F´1
X ptq

˘
´ λT 1 p1 ´ tq “ 0

which gives

(E.5) f˚
λ ptq “ W e

0 `H ´
`
u1
e

˘´1

˜
´λT 1 p1 ´ tq

φ
`
F´1
X ptq

˘
¸

Then the function f˚
λ ptq solve problem (E.4), for a fixed t P p0, 1q ztt : φ ˝ F´1

x ptq “ 0u.

By Assumption 9.7, the function t ÞÑ T 1p1´tq

φpF´1

X
ptqq

is nondecreasing. By Assumption 5.6 , the function

ue is strictly concave and continuously differentiable. Hence, the function u1
e is both continuous and

strictly decreasing. This then implies that pu1
eq´1 is continuous and strictly decreasing, by the Inverse

Function Theorem [50, pp. 221-223]. Therefore, the function f˚
λ ptq in equation (E.5) is nondecreasing

(λ ď 0). Moreover, by Assumption 9.1 and Assumption 9.6, f˚
λ ptq is left-continuous.

Define the function f˚˚
λ by

(E.6) f˚˚
λ ptq “ max

«
0,min

!
F´1
X ptq , f˚

λ ptq
)ff

Then f˚˚
λ ptq P K. Moreover, since both F´1

X and f˚
λ are nondecreasing and left-continuous functions,

it follows that f˚˚
λ is nondecreasing and left-continuous. Consequently, f˚˚

λ ptq P AQuant. Finally,
it is easily seen that f˚˚

λ ptq solves problem (E.3) for the given λ. Now, for a given β0 P Γ, if λ˚ is

chosen so that
ş1
0
T 1 p1 ´ tq f˚˚

λ˚ ptq dt “ β0, then by Lemma E.1, f˚˚
λ˚ is optimal for problem (E.2)

with parameter β0.

Hence, to conclude the proof of Corollary 9.8, it remains to show that for each β0 P Γ, there exists

a λ˚ ď 0 such that
ş1
0
T 1 p1 ´ tq f˚˚

λ˚ ptq dt “ β0. This is given by Lemma E.2 below.

Lemma E.2. Let ψ be the function of the parameter λ ď 0 defined by ψ pλq :“
ş1
0
T 1 p1 ´ tq f˚˚

λ ptq dt.
Then for each β0 P Γ, there exists a λ˚ ď 0 such that ψ pλ˚q “ β0.

Proof. First note that ψ is a continuous and nonincreasing function of λ, where continuity of ψ is a
consequence of Lebesgue’s Dominated Convergence Theorem [1, Theorem 11.21]. Indeed, since X is
bounded and since F´1

X is nondecreasing, it follows that for each t P r0, 1s,

min
!
F´1
X ptq , f˚

λ ptq
)

ď F´1
X ptq ď F´1

X p1q ď M “ }X}s ă `8.

Moreover, since T is concave and increasing, T 1 is nonincreasing and nonnegative, and so for each
t P r0, 1s, 0 ď T 1 p1 ´ tq ď T 1 p0q. But T 1 p0q ă `8, by Assumption 9.1. Hence, for each t P r0, 1s,

min
!
F´1
X ptq , f˚

λ ptq
)
T 1 p1 ´ tq ď F´1

X p1qT 1 p0q ď }X}s T
1 p0q ă `8
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Moreover, ψ p0q “ 0 (by Assumption 5.6), and

lim
λÑ´8

ψ pλq “

ż 1

0

T 1 p1 ´ tqmin
!
F´1
X ptq ,W e

0 `H
)
dt

“

ż FXpW e
0

`Hq

0

T 1 p1 ´ tqF´1
X ptq dt ` pW e

0 `Hq

ż 1

FXpW e
0

`Hq
T 1 p1 ´ tq dt

However, by Assumption 9.2, we have FX pW e
0 `Hq “ 1. This then implies that

lim
λÑ´8

ψ pλq “

ż 1

0

T 1 p1 ´ tqF´1
X ptq dt “

ż
X dT ˝ Q

Now, for any β0 P Γ, and for any Y P B` pΣq which is feasible for problem (D.1) with parameter
β0, one has:

(i) 0 ď Y ď X; and,

(ii)
ş

pX ´ Y q dT ˝Q “ β0.

Hence, 0 ď X´Y ď X, and so, by monotonicity of the Choquet integral (Proposition A.6), it follows
that β0 “

ş
pX ´ Y q dT ˝ Q ď

ş
X dT ˝Q. Consequently, for any β0 P Γ,

0 “ ψ p0q ď β0 ď

ż
X dT ˝ Q “ lim

λÑ´8
ψ pλq

Hence, by the Intermediate Value Theorem [50, Theorem 4.23], for each β0 P Γ there exists some
λ˚ ď 0 such that ψ pλ˚q “ β0. �

By Lemmata E.1 and E.2, this concludes the proof of Corollary 9.8.
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