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Abstract

Controlled choice over public schools is a common policy of school boards in the

United States. It attempts giving choice to parents while maintaining racial and eth-

nic balance at schools. This paper provides a foundation for controlled school choice

programs. We develop a natural notion of fairness and show that assignments, which

are fair for same type students and constrained non-wasteful, always exist in controlled

choice problems; a “controlled” version of the student proposing deferred acceptance al-

gorithm (CDAA) always finds such an assignment which is also weakly Pareto-optimal.

CDAA provides a practical solution for controlled school choice programs.
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1 Introduction

School choice is one of the most widely discussed topics in education. It means giving parents

the opportunity to choose the school their child will attend. A central issue is diversity in

schools. Controlled school choice in the United States attempts to provide parental choice

while maintaining the racial, ethnic and socioeconomic balance at schools. Traditionally,

children were assigned a public school in their neighborhood. However, neighborhood-based

assignment eventually led to economically and racially segregated neighborhoods as wealthy

parents used to move to the neighborhoods of schools of their choice. Parents without such

means had to send their children to their neighborhood schools, regardless of the quality or

appropriateness of those schools for their children. As a result of these concerns, controlled

school choice programs have become increasingly popular across the United States. Unfor-

tunately, none of the papers in education and in school choice describes how in practice to

assign students to schools while complying with desegregation guidelines.

The school choice problem, introduced by Abdulkadiroğlu and Sönmez (2003), is closely

related to two-sided matching and one-sided matching. Matching theory easily incorporates

student preferences as well as school preferences, which may reflect a true preference relation

of school principals or an objective priority ordering of students at a school. However, as

we will demonstrate in the examples below, control stems from the policies of a third party

over assignments of students to schools, be it a school board or a court. In this paper, we

develop a theory of matching in order to incorporate such third party policies over matchings.

Our theory helps to understand which policies are possible and which ones may lead to

incompatibilities.

In some places, control over student assignment is enforced by a court order. For instance,

a Racial Imbalance Law that was passed in 1965 in Massachusetts, prohibits racial imbalance

and discourages schools from having student enrollments that are more than 50% minority.

After a series of legal decisions, the Boston Public Schools (BPS) was ordered to implement

a controlled choice plan in 1975.1 Although BPS has been relieved of legal monitoring, it still

continues to try to achieve diversity across ethnic and socioeconomic lines at the city schools

(Abdulkadiroğlu, Pathak, Roth, and Sönmez 2005, 2006). Likewise, St. Louis and Kansas

City, Missouri, must observe court-ordered racial desegregation guidelines for the placement

of students in city schools.2 In contrast, the White Plains Board of Education employ their

nationally recognized Controlled Parents’ Choice Program voluntarily.3

1See http://boston.k12.ma.us/bps/assignmtfacts.pdf for a brief history of student assignment in Boston.
2Similarly, Section 228.057 of Florida Statutes requires each school district in the state to design a choice

plan. Section 228.057 emphasizes the importance of maintaining socioeconomic, demographic, and racial
balance within each school.

3The reason behind initiating the choice program was the Board’s “belief that balance of the
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Other types of control are also present. In New York City, “Educational Option” (EdOpt)

schools have to accept students across different ability range. In particular, 16 percent of

students that attend an EdOpt school must score above grade level on the standardized

English Language Arts test, 68 percent must score at grade level, and the remaining 16

percent must score below grade level (Abdulkadiroglu, Pathak, and Roth, 2005).4 Miami-

Dade County Public Schools control for the socioeconomic status of students in order to

diminish concentrations of low-income students at certain schools. Similarly, Chicago Public

Schools diversify their student bodies by enrolling students in choice options at schools that

are not the students’ designated neighborhood schools.5

Fairness appears to be the important criterion in student assignment. Quoting from

Weaver (1992),

“although controlled-choice districts cannot assign all students to their first-choice schools,

districts try to avoid subjective and unfair assignments by establishing clear assignment

criteria. This process is often as simple as prioritizing factors such as whether a family has

other children in the chosen school, what a student’s racial/ethnic background is, where a

family lives, and when the application was turned in.”6

Indeed, a crucial policy of most school choice programs (not only controlled choice programs)

is to give some students priority at certain schools. For example, some state and local laws

require that students who live in the attendance area of a school must be given priority for

that school over students who do not live in the school’s attendance area; siblings of students

already attending a school must be given priority, and students requiring a bilingual program

must be given priority in schools that offer such programs.

Is fairness compatible with controlled choice? That is, given a controlled school choice

program, can one guarantee fair assignment of students?

As described by Abdulkadiroğlu and Sönmez (2003), a natural point of departure for

school choice is a closely related problem, namely the college admissions problem (Gale and

racial and ethnic diversity of the schools’ population would promote students’ understanding, appre-
ciation, and acceptance of persons of different racial, ethnic, social, and cultural backgrounds. See
http://wpcsd.k12.ny.us/1info/index.html”. Cambridge has a similar policy of control not only on racial
diversity but on socioeconomic diversity as well.

4There are similar constraints in other countries as well. For example in England, City Technology
Colleges are required to admit a group of students from across the ability range and their student body
should be representative of the community in the catchment area (Donald Hirch, 1994, page 120).

5We refer the interested reader http://www.buildingchoice.org for an illuminating overview of interdistrict
school choice programs including possible desegregation guidelines.

6One of the key obstacles identified by the critics of school choice concerns student selection to overde-
manded schools (Hirch 1994, p. 14). Because of this reason, the design of a student assignment mechanism
remains to be an important issue in school choice programs, whether it is controlled or not.
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Shapley, 1962; Roth and Sotomayor, 1990).7 Putting control aside for the time being, the

notion of stability in college admissions is equivalent to the following appealing property in

the context of school choice: An assignment is fair if there is no unmatched student-school

pair (s, c) where student s prefers school c to her assignment and she has higher priority

than some other student who is assigned a seat at school c. Therefore, a stable matching in

the context of college admissions eliminates justified envy in the context of school choice.8

In particular, the students proposing deferred acceptance algorithm (also known as Gale-

Shapley student optimal algorithm) finds the fair assignment which is preferred by every

student to any other fair assignment. Moreover, revealing preferences truthfully is a weakly

dominant strategy for every student in the preference revelation game in which students

submit their preferences over schools first, and then the assignment is determined via the

students proposing deferred acceptance algorithm (DAA) using the submitted preferences

(Dubins and Freedman, 1981; Roth 1982).9

Abdulkadiroğlu and Sönmez (2003) and Abdulkadiroğlu (2005) have considered a relaxed

controlled choice problem by employing type-specific quotas. Control is imposed on the

maximum number of students from each racial/ethnic group which a school can enroll.

Their proposed solutions do not capture controlled choice to the full extent because they

do not exclude segregated schools in fair assignments. For example, consider a school that

can enroll 100 students, and at most 50 of these students can be Caucasian. In this case, a

student body of 50 Caucasian students would not violate the maximum quota, yet it is fully

segregated. Such an assignment would be unacceptable in Minneapolis, White Plains, or St.

Louis. Their approach does not provide a complete understanding for the controlled choice

problem.

In order to provide a foundation for controlled school choice programs in the United

States, a thorough analysis of fairness and controlled choice requires a substantial general-

ization of the model. Extending the model to fully capture controlled choice brings major

difficulties.

The first difficulty concerns the definition of blocking pairs, hence the very definition

of stability. By law, every student in the United States is entitled to get enrolled at a

7The college admissions problem has been extensively studied and the theory built on this problem has
been the basis in designing British and American entry-level labor markets (see Roth (1984,1991,2002) and
Roth and Peranson (1999)).

8The observation connecting fairness in a one sided matching problem to stability in a corresponding two
sided matching problem has previously been made by Balinski and Sönmez (1999) in the context of Turkish
college admissions, where they study a college admissions problem with responsive preferences.

9Although for schools it is not a weakly dominant strategy to truthfully reveal their preferences in DAA,
Kojima and Pathak (2008) have recently shown under some regularity conditions that in DAA the fraction
of participants that can gain from misreporting approaches zero as the market becomes large.
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public school. The stability and fairness notions above do not incorporate this constraint.

In particular, an unmatched student-school pair can cause justified envy (or constitute a

blocking pair) even if some other student becomes unassigned after that pair is matched. It

is this problem which proves that controlled school choice problems are not equivalent to

college admissions problems.

Following the laws of a state or the policies of a school choice program (or of the school

board), an assignment is legally feasible (or politically acceptable) if both (i) every student is

enrolled at a public school and (ii) at each school the desegregation guidelines are respected.

We incorporate these constraints in the definition of justified envy, hence in the definition

of fairness. The nature of controlled choice imposes that a student-school pair can cause a

justified envy (or blocks) only if matching this pair does neither result in any unassigned

student nor violate the controlled choice constraints at any school.

This raises the question of existence of fair and legally feasible assignments. We show that

feasible student assignments which are fair may not exist. Due to this impossibility, fairness

needs to be weakened in order to respect legal constraints. A natural route is to allow envy

only among students of the same type. Then only white students can justifiably envy other

white students (but not any black students). It turns out that legally feasible assignments,

which are fair for same types, may not exist if we require additionally non-wastefulness

(Balinski and Sönmez, 1999). In our context, this condition requires that empty seats should

not be wasted if students claim them while the legal constraints can be maintained. A

positive result emerges if non-wastefulness is constrained: students can claim empty seats

only if the resulting assignment does not cause any envy among students of the same type.

In particular, a controlled version of the student proposing deferred acceptance algorithm

finds for each controlled school choice problem a legally feasible assignment which is both

fair for same types and constrained non-wasteful. The assignment found by the controlled

student proposing deferred acceptance algorithm (CDAA) has in addition the important

welfare property of weak Pareto-optimality: it is impossible to reassign students to schools

such that each student is strictly better off with the reassigned school compared to the school

chosen for him by CDAA.

Abdulkadiroğlu (2010) considers the same model as here but proposes different stability

concepts. In particular, due to the non-existence of feasible and fair student assignments, he

relaxes feasibility by not requiring that all students are enrolled at a school and then looks

for fair assignments which are not dominated by any other fair assignment.

Students’ preferences is the only information which is private. All other components of

a controlled school choice problem are commonly known. We show that, unfortunately, it

is impossible to elicit true preferences in dominant strategies while maintaining fairness and
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the legal constraints. More precisely, there does not exist any feasible mechanism which is

incentive compatible, fair for same types and constrained non-wasteful. However, giving up

constrained non-wastefulness results in a possibility. For instance, when a certain number

of seats is reserved for each type at every school and the total number of reserved seats for

each race is equal to the number of students of that race, the mechanism that employs DAA

is incentive compatible and fair for same types. However, empty seats may be wasted and

the assignment may be highly inefficient. In addition, that mechanism is very rigid in the

sense that each school reserves for each race a fixed number of students of that race.

Depending on the preferences of a controlled school choice program we make several

recommendations of how to assign students to the schools. It is impossible to eliminate

envy across different races while respecting controlled school choice constraints. Since these

constraints are often legal and/or political, many school choice programs comply with them

and fairness across types needs to be abandoned. Incentive compatibility is only guaranteed if

the program is ready to accept both highly inefficient assignments of students to schools and

the waste of empty seats (although the assignment is based on the true preferences). In real

life this cost may be too high and school choice programs may consider giving up incentive

compatibility and maintaining some form of efficiency. CDAA achieves this goal: the output

assignment always respects the controlled choice constraints, it is weakly Pareto-optimal,

fair for students belonging to the same race, and constrained non-wasteful.

Although we focus on controlled school choice, all of our results equally apply to central-

ized matching programs where diversity constraints are wished to be implemented. Think

for instance of college or university admissions where one may want to avoid completely

segregated student bodies. Other examples are entry-level labor markets where we may wish

to exclude gender segregated worker groups meaning that for each firm there are both female

and male workers among its hires. In labor markets we may even desire to control for both

race and gender.

The paper is organized as follows. Section 2 formalizes controlled school choice and in-

troduces our desirable criteria, namely fairness for same types and non-wastefulness. Section

3 shows that it is impossible to use results from college admissions problems for controlled

school choice. Section 4 shows that there may not exist any feasible assignment which is

both fair for same types and non-wasteful. Therefore, we constrain non-wastefulness and

show that CDAA always finds a feasible assignment which is both fair for same types and

constrained non-wasteful, and which is weakly Pareto-optimal. Section 5 focusses on in-

centive compatibility and shows that there may not exist any feasible mechanism which is

both fair for same types and constrained wasteful. Giving up constrained non-wastefulness

allows to divide the school choice problem into several problems, one for each type of stu-
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dents, and for each type DAA is applied. Section 6 summarizes our recommendations for

controlled school choice programs. In Appendix A we show that all of our results carry over

to controlled school choice with percentage terms. In Appendix B we give an algorithm to

check the feasibility of a proposal in CDAA. In Appendix C we allow justified envy across

different types and show that the results for fairness across types parallel the corresponding

ones for fairness for same types and (constrained) non-wastefulness. Namely, there may not

exist any feasible assignment which is fair across types, and there may not exist any feasible

mechanism which is both fair across types and incentive compatible.

2 Controlled School Choice

A controlled school choice problem or simply a problem consists of the following:

1. a finite set of students S = {s1, . . . , sn};

2. a finite set of schools C = {c1, . . . , cm};

3. a capacity vector q = (qc1 , . . . , qcm), where qc is the capacity of school c ∈ C;

4. a students’ preference profile PS = (Ps1 , . . . , Psn), where Ps is the strict preference

relation of student s ∈ S over C ∪ {s} and each school is acceptable under Ps,
10 i.e.

cPss for all schools c ∈ C; cPsc
′ means that student s strictly prefers school c to school

c′;

5. a schools’ priority profile �C= (�c1 , . . . ,�cm), where �c is the strict priority ranking

of school c ∈ C over S; s �c s′ means that student s has higher priority than student

s′ to be enrolled at school c;

6. a type space T = {t1, ..., tk};

7. a type function τ : S → T , where τ(s) is the type of student s;

8. for each school c, two vectors of type specific constraints qT
c

= (qt1
c
, . . . , qtk

c
) and qTc =

(qt1c , . . . , q
tk
c ) such that qt

c
≤ qtc ≤ qc for all t ∈ T , and

∑
t∈T q

t
c
≤ qc ≤

∑
t∈T q

t
c.

qt
c

is the minimal number of slots that school c must by law allocate to type t students,

called the floor for type t at school c, whereas qtc is the maximal number of slots that

10This constraint is implicitly given in school choice because students are not allowed to reject schools
assigned to them.
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school c is allowed by law to allocate to type t students, called the ceiling for type t at

school c. The same model is studied by Abdulkadiroğlu (2009).

In summary, a controlled school choice problem is given by(
S,C, q, PS,�C , T, τ, (qTc , q

T
c )c∈C

)
.

When everything except PS remains fixed, we simply refer to PS as a controlled school choice

problem.

The set of types may represent different students’ characteristics: (i) race; (ii) socioe-

conomic status (determined by free or reduced-price lunch eligibility); or (iii) the district

where the student lives.

Controlled choice constraints deserve further discussion. First, these constraints are

imposed by law or the policies of a state (via desegregation orders), and the school choice

program has to comply with these constraints. Second, they may be more general. For

example, our results would apply if these constraints were given in percentage terms (as in

the Minneapolis example above). Third, the type space can be a very rich set. When race

is controlled, T is typically composed of {white, black, hispanic, asian}. The type space

and type specific quotas (i.e. the model) can further be generalized to divide students into

categories of several dimensions. For example, consider a controlled choice problem where

both race and gender are controlled. Then T can be constructed as {white, black, hispanic,

asian}×{female, male} and τ(s) = (τ r(s), τ g(s)) ∈ {white, black, hispanic, asian}×{female,

male} denotes student s’s race and gender. Type specific racial quotas may be independent

of gender, and gender quotas may be independent of racial background. For example, when

counting for black students, we do not consider their gender; and when counting for female

students, we do not consider their racial background. Appendix A shows that all our results

apply to this generalization as well. For expositional convenience the main text will focus

on controlled choice where the type space is one-dimensional (like race). Accordingly, each

student is associated with a race and the distribution of types induces a natural partition of

the set of students: (St)t∈T where St = {s ∈ S : τ(s) = t} is the set of all students of type t.

An assignment µ is a function from the set C ∪S to the set of all subsets of C ∪S such

that

i. |µ(s)| = 1 for every student s, and11 µ(s) = s if µ(s) /∈ C;

ii. |µ(c)| ≤ qc and µ(c) ⊆ S for every school c;

11Because each student is assigned to exactly one school or no school, we will omit set brackets and write
µ(s) = c instead of µ(s) = {c} and µ(s) = s instead of µ(s) = {s}.
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iii. µ(s) = c if and only if s ∈ µ(c).

Student s is unassigned if µ(s) = s; otherwise µ(s) denotes the school that student s is

assigned; µ(c) denotes the set of students that are assigned school c; and µt(c) denotes the

students of type t that are assigned to school c, i.e. µt(c) = µ(c) ∩ St. Note that any school

is acceptable under Ps for each student s and for any assignment µ we have µ(s) = s or

µ(s)Pss. This means that any assignment µ is individually rational.

A set of students S ′ ⊆ S respects (capacity and controlled choice) constraints at

school c if |S ′| ≤ qc and for every type t ∈ T , qt
c
≤ |{s ∈ S ′ : τ(s) = t}| ≤ qtc. An assignment

µ respects constraints if for every school c, µ(c) respects constraints at c, i.e. for every

type t we have

qt
c
≤ |µt(c)| ≤ qtc.

Remark 1 In many school districts, controlled choice constraints are given in percentage

terms. For example, in Minneapolis, a district is allowed to go above or below the district-

wide average enrollment rates by up to 15 percent points in determining the racial quotas.

In White Plains, after 1988, the Board aimed to achieve at each elementary school a mix

among the black, Hispanic, and “other” students that is within ±5% points of the district

average for each of these groups in each of the grade levels (Yanofsky and Laurette, 1992).

If the controlled school choice constraints are given in percentage terms, then an assign-

ment µ respects constraints if for every school c and every type t we have

qt
c
|µ(c)| ≤ |µt(c)| ≤ qtc|µ(c)|.

This means, for example, that at a school at least 30 per cent of the admitted students

are white (qw
c

= 0.3) and at most 70 per cent of the admitted students are white (qwc =

0.7). Percentage terms do not cause any difficulties and Appendix A shows that all of our

results carry over to controlled school choice with percentage constraints. In the main text

constraints are given in quotas for simplicity.

As outlined before the law of many states in the United States requires students to be

assigned to schools such that (i) at each school the constraints are respected and (ii) each

student is enrolled at a public school. An assignment µ is (legally or politically) feasible

if µ respects constraints and every student is assigned a school.

Obviously a controlled school choice problem does not have a feasible solution if there

are not enough students of a certain type to fill the minimal number of slots required by law

for that type at all schools. Therefore, we will assume that the number of students of any

type is bigger than the sum of the floors for that type at all schools, i.e. for each t ∈ T ,
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|St| ≥
∑

c∈C q
t
c
. Similarly, in order not to leave any student unassigned we need to have

enough slots for each type of students, that is |St| ≤
∑

c∈C q
t
c.

12

From now on we will assume that the legal constraints at schools are such that a legally

feasible assignment exists. Otherwise the laws are not compatible with each other and they

need to be modified. We will not consider this issue here.

What are desirable properties of feasible assignments in controlled school choice prob-

lems? The following notions are the natural adaptations of their counterparts in standard

two-sided matching (without type constraints).

The first requirement is that whenever a student prefers an empty slot to the school

assigned to him, the legal constraints are violated when assigning the empty slot to this

student while keeping all other assignments unchanged.13

We say that student s justifiably claims an empty slot at school c under the

feasible assignment µ if

(nw1) cPsµ(s) and |µ(c)| < qc,

(nw2) q
τ(s)
µ(s) < |µτ(s)(µ(s))|, and

(nw3) |µτ(s)(c)| < qτ(s)c .

Here (nw1) means student s prefers an empty slot at school c to the school assigned

to him; (nw2) means that the floor of student s’s type is not binding at school µ(s); and

(nw3) means that the ceiling of student s’s type is not binding at school c. Hence, under

(nw1)-(nw3) student s can be assigned an empty slot at the better school c without changing

the assignments of the other students and violating the constraints at any school. A feasible

assignment µ is non-wasteful if no student justifiably claims an empty slot at any school.

A well studied requirement of the literature is fairness or no-envy (Foley, 1967)14. In

school choice student s envies student s′ when s prefers the school at which s′ is enrolled,

say school c, to her school. However, the nature of controlled school choice imposes the

following (legal) constraints: Envy is justified only when

(i) student s has higher priority to be enrolled at school c than student s′,

12Note that these constraints are not sufficient for the existence of a feasible assignment. For example,
consider the problem consisting of three schools and three students. Each student has a different type. The
capacities are all equal to 1, the floors are all equal to zero, and the ceilings are given by qt1

c1
= qt2

c1
= qt3

c1
= 1,

qt1
c2

= qt2
c2

= 0 and qt3
c2

= 1, and qt1
c3

= qt2
c3

= 0 and qt3
c3

= 1. There does not exist a feasible assignment because
student s1 or student s2 has to be left unassigned if the constraints at school c1 are respected.

13This requirement is in the spirit of the property “non-wastefulness” introduced by Balinski and Sönmez
(1999).

14See for example Tadenuma and Thomson (1991), for an excellent survey, also see Thomson (forthcoming),
Thomson (2000) and Young (1995).
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(ii) student s can be enrolled at school c without violating controlled choice constraints by

removing s′ from c, and

(iii) student s′ can be enrolled at another school without violating constraints by removing

s′ from c in favor of s.

Throughout the main text we will require that envy is justified only if both the envying

student and the envied student are of the same type. If this is the case, then (ii) and (iii)

are always true since then the envying student and the envied student can simply exchange

schools. We formulate our notion of fairness more precisely below.

We say that student s justifiably envies student s′ at school c under the feasible

assignment µ if

(f1) µ(s′) = c, cPsµ(s) and s �c s′, and

(f2) τ(s) = τ(s′).

In (f1), student s′ is enrolled at school c and both student s prefers school c to his assigned

school µ(s) and student s has higher priority to be enrolled at school c than student s′. By

(f2), student s and student s′ are of the same type. Then we obtain a feasible assignment

when students s and s′ exchange their slots, i.e. choose µ′ as follows: µ′(s) = µ(s′), µ′(s′) =

µ(s), and µ′(ŝ) = µ(ŝ) for all ŝ ∈ S\{s, s′}. The assignment µ′ is feasible because s and s′

are of the same type and µ was feasible.

A feasible assignment µ is fair for same types if no student justifiably envies any

student who is of the same type.

We discuss also a stronger notion of fairness where envy is allowed across types, i.e. the

envying student and the envied student can be of different types. Such an envy is justified

only if student s can be enrolled at school c and student s′ at another school while keeping

all the other assignments unchanged and satisfying the controlled school choice constraints

at all schools. A feasible assignment µ is fair across types if no student justifiably envies

any student. Independently of his own type, a student is allowed to envy any student. In

Appendix C we show that the results for this stronger condition parallel the results for

fairness for same types and non-wastefulness.

3 (No) Connection with College Admissions

Previous papers on school choice (or “student placement”) successfully associated any prob-

lem with a college admissions problem and applied well-known results from this literature. In
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any of these papers the school choice problem can be reduced to a college admissions problem

in which (i) the priority ordering of students at a school reflects that school’s preferences

over individual students, (ii) a set of students that do not respect the type specific quotas of

a school is not acceptable for that school, (iii) a school’s preferences over acceptable sets of

students is responsive to the priority ordering of students at that school. Then fairness in the

controlled choice problem corresponds to stability in the corresponding college admissions

problem. We will show that this approach is not possible here because controlled school

choice imposes legal constraints which are absent in the standard two-sided matching.

Every controlled school choice problem
(
S,C,q,PS, �C ,T ,τ ,(qT

c
, qTc )c∈C

)
corresponds to

a college admissions problem
(
S,C,q,PS, �C ,P̂C ,T ,τ ,(qT

c
, qTc )c∈C

)
, where P̂C is the list of

colleges’ preferences over sets of students, whereas �C is the list of colleges’ preferences over

individual students. Parallel to Abdulkadiroğlu (2005) we will impose for each college c a

“responsiveness” condition on P̂c subject to respecting constraints at c.

A set of students is acceptable for college c if and only if it respects capacity and

controlled choice constraints at college c; furthermore, c’s preferences over acceptable sets of

students are responsive to �c. That is, for every s, s′ ∈ S and S ′ ⊆ S\{s, s′}, if S ′∪{s} and

S ′∪{s′} are both acceptable for c, then S ′∪{s}P̂cS ′∪{s′} if and only if s �c s′. In addition,

for all sets S ′, S ′′ ⊆ S, if both S ′ and S ′′ are unacceptable for college c, then ∅P̂cS ′, ∅P̂cS ′′

and S ′ÎcS
′′. In other words, any unacceptable set of students is ranked below the empty set

and any two unacceptable sets are indifferent.

A matching is an assignment. We use assignment for school choice and matching for

college admissions. A college-student pair (c, s) blocks a matching µ if cPsµ(s) and

(s1) either µ(c) ∪ {s} respects constraints at c, or equivalently µ(c) ∪ {s}P̂cµ(c);

(s2) or there exists s′ ∈ µ(c) such that both τ(s) = τ(s′) and s �c s′, or equivalently both

τ(s) = τ(s′) and (µ(c)\{s′}) ∪ {s}P̂cµ(c) (by responsiveness).

A matching µ is stable if (i) for every c, µ(c) is acceptable for c and (ii) it is not blocked

by any college-student pair. Here (s1) corresponds to the property “non-wastefulness” in-

troduced in Balinski and Sönmez (1999) and (s2) corresponds to the requirement that no

student envies another student who is of the same type.

Controlled school choice is fundamentally different from college admissions. In the defi-

nition of justified claim and justified envy, the initial assignment µ is assumed to be feasible.

Then student s can be assigned (the possibly empty) slot at his more preferred school and

the (possibly) envied student s′ can be assigned a slot at another school while respecting

controlled choice constraints at all schools. In contrast, while checking for a blocking pair in a
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matching, in (s1) and (s2) we only check whether the new set of students respects constraints

at college c; we do not check whether s′ is matched with another college; or whether removing

s from µ(s) violates constraints at µ(s). Therefore, a fair and non-wasteful assignment is

not necessarily stable in the corresponding college admissions problem.

Conversely, if a matching is stable in the college admissions problem and it is feasible in

the corresponding school choice problem, then it will be fair for same types and non-wasteful

in the corresponding school choice problem. However, the feasibility of the matching in the

school choice problem is not implied by its stability in the college admissions problem,

since stability requires neither that every student is matched with a college nor that the

controlled choice constraints are respected at all schools. It is possible that there is no

feasible assignment which is stable in the corresponding college admissions problem. The

following example illustrates these points.

Example 1. There are three white students w1, w2, w3; two black students b1, b2; and two

colleges c1 and c2 each with capacity four. State laws require each college to admit at least one

student of each type. Each college’s preference over acceptable sets of students is responsive

to the following ranking of students: w1 �c w2 �c w3 �c b1 �c b2. All students prefer

college c1 to college c2. The only stable matching is the following: µ(c1) = {w1, w2, w3, b1}
and µ(c2) = ∅, i.e. b2 is not matched with any college.15 Clearly, µ is not feasible in the

corresponding school choice problem because (i) the minimum quotas for white and black

students are not satisfied at school c2 and (ii) student b2 is assigned no school although the

law entitles him a slot at a public school. Since µ is the only matching which is stable,

any feasible assignment of the corresponding school choice problem is unstable in the college

admissions problem. Furthermore, the unique feasible assignment which is both fair for

same types and non-wasteful in the corresponding school choice problem is the following:

µ′(c1) = {w1, w2, b1} and µ′(c2) = {w3, b2}.

4 Existence of Fair Assignments

As described before it is impossible to apply results from college admissions problems to

controlled school choice. Since stable matchings always exist in college admissions problems,

our first result makes this even clearer: the legal constraints, fairness and non-wastefulness

may result in an incompatibility.

15Note that this is also the matching which Abdulkadiroğlu and Sönmez (2003)’s top trading cycles mech-
anism with type specific quotas finds. Therefore, Example 1 also shows that it is impossible to use this
mechanism for controlled school choice.
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THEOREM 1: The set of feasible assignments which are both fair for same types and

non-wasteful may be empty in a controlled school choice problem.

Proof : The proof is by means of an example. Consider the following problem consisting of

three schools {c1, c2, c3} and two students {s1, s2}. Each school has a capacity of two (qc = 2

for all schools c). All students are of the same type t. The ceiling of type t is equal to two

at all schools (qtc = 2 for all schools c). School c1 has a floor for type t of qt
c1

= 1. All

other floors are equal to zero. The schools’ priorities are given by s2 �c1 s1, s2 �c2 s1 and

s1 �c3 s2. The students’ preferences are given by c2Ps1c3Ps1c1Ps1s1 and c3Ps2c2Ps2c1Ps2s2.

This information is summarized in Table 1.

TABLE 1.

�c1 �c2 �c3 Ps1 Ps2

s2 s2 s1 c2 c3

s1 s1 s2 c3 c2

c1 c1

s1 s2

capacities qc1 = 2 qc2 = 2 qc3 = 2

ceiling for t qtc1 = 2 qtc2 = 2 qtc3 = 2

floor for t qt
c1

= 1 qt
c2

= 0 qt
c3

= 0

Next we determine the set of assignments which are feasible for this problem. Feasibility

requires that student s1 or student s2 is assigned school c1 and all students are enrolled at

a school. Therefore,

µ1 =

(
c1 c2 c3

s1 s2 ∅

)
s2 claims c3

−→
µ2 =

(
c1 c2 c3

s1 ∅ s2

)
,

s2 envies s1 ↑ ↓ s1 envies s2

µ4 =

(
c1 c2 c3

s2 s1 ∅

)
←−

s1 claims c2
µ3 =

(
c1 c2 c3

s2 ∅ s1

)

and µ5 =

(
c1 c2 c3

{s1, s2} ∅ ∅

)
are the only assignments which are feasible. Now (as indi-

cated above)

(i) µ1 is wasteful because s2 justifiably claims an empty slot at c3,

(ii) µ2 is not fair for same types because s1 justifiably envies s2 at c3,
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(iii) µ3 is wasteful because s1 justifiably claims an empty slot at c2,

(iv) µ4 is not fair for same types because s2 justifiably envies s1 at c2; and

(v) µ5 is wasteful because s1 justifiably claims an empty slot at c2.

Hence there is no feasible assignment which is both fair for same types and non-wasteful. �

Note that, in contrast to the literature on matching, our impossibility result is not ob-

tained by violating the responsiveness condition (or “substitutability”) of schools’ preferences

over sets of students, but by controlled choice. In the example used to prove Theorem 1 (ex-

cept for µ5) in any politically feasible assignment each school is assigned at most one student

and these conditions do not have any bite. Yet we obtain an impossibility. Furthermore,

Theorem 1 does not follow from any previous result, because below we show that a slight

twist of non-wastefulness gives us back a possibility result.

Remark 2 Similar to Theorem 1, Theorem 1’ in Appendix C shows that the set of feasible

assignments which are fair across types may be empty in a controlled school choice problem.

Hence, it is impossible to allow envy across types while complying with the (legal) choice

constraints. This means that any controlled school choice program needs to give up fairness

across types and envy can be only allowed among same type students if choice constraints

are respected.

We discuss the robustness of Theorem 1 subject to relaxing constraints. We know from

Abdulkadiroğlu (2005) that existence of feasible assignments which are fair for same types

and non-wasteful is reestablished if we set all floors equal to zero. If we relax the ceilings,

then we may also need to increase the number of seats which are available at a school. In the

example used to prove Theorem 1 the ceilings and the capacities are such that each school’s

capacity is equal to the total number of students and the ceiling for each type at each school

is equal to the total number of students of that type. Hence, Theorem 1 is robust subject

to relaxing ceilings and capacities. Furthermore, note that in the example there is only one

school with a floor greater than zero.

Clearly Theorem 1 is a negative result. We will see later that the answer is affirmative

to both (i) the existence of feasible assignments which are fair for same types and (ii) the

existence of feasible and non-wasteful assignments. Hence, in controlled school choice prob-

lem we may retain fairness for same types or non-wastefulness while giving up the other

requirement.

Giving up completely the other requirement is not satisfactory for a controlled school

choice program. Since in real-life controlled school choice problems typically the total number
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of slots available is about the same as the number of students, potential violations of non-

wastefulness arise less likely than potential envy among students who are of the same type.

Therefore, our primary focus should be on fairness for same types and we propose the

following: fairness for same types should be always satisfied and among those assignments

we chose one which is constrained non-wasteful meaning that if a student justifiably claims

an empty slot at a school, then after assigning him this empty slot the new assignment is no

longer fair for same types. Then there will be another student of the same type justifiably

envying this student at the new school.

We say that a feasible assignment µ is constrained non-wasteful if:

student s justifiably claims an empty slot at school c under µ

⇒ the assignment µ′ (where µ′(s) = c and µ′(s′) = µ(s′) for all s′ ∈ S\{s}) is not fair for

same types.

If the feasible assignment µ is fair for same types and constrained non-wasteful, then the

above definition is equivalent to whenever a black student s justifiably claims an empty slot

at school c under µ, then some other black student s′ justifiably envies student s at school

c under the assignment µ′ (where µ′ is defined as above).

The idea of feasible assignments which are both fair for same types and constrained non-

wasteful is similar to the one of “bargaining sets”: if a black student s has an objection to µ

because s claims an empty slot at c, then there will be a counterobjection once s is assigned

to c since some other black student will then justifiably envy s at c. Roughly speaking, an

outcome belongs to the “bargaining set” if and only if for any objection to the outcome there

exists a counterobjection.

THEOREM 2: The set of feasible assignments which are both fair for same types and

constrained non-wasteful is non-empty in a controlled school choice problem.

In showing Theorem 2 we propose a controlled version of the student proposing deferred

acceptance algorithm (DAA). Recall that in the classical algorithm of Gale and Shapley

(1962) students are put tentatively on waiting lists and at any step the students, who do not

belong to any waiting list, simultaneously propose to schools to which they did not propose

yet. Each school updates its waiting list by accepting the most preferred students from the

new proposals and the students who were previously on its waiting list. The other students

are rejected. If each student either belongs to a waiting list or has proposed to all schools,

then the algorithm ends and the schools are assigned according to the waiting lists.

Our controlled version will have two important differences. First, proposals cannot be

simultaneous. When several students propose simultaneously, it may be infeasible to put
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them on the waiting lists. In Example 1 all white students propose to school c1 and admitting

all of them at school c1 makes it impossible to assign at least one white student to school c2.
16

In our controlled student proposing deferred acceptance algorithm proposals are sequential

(say according to when the applications were received): similar to McVitie and Wilson

(1970) at each step one student, who does not belong to any waiting list, proposes to the

most preferred school to which he did not propose yet.

Second, when putting a student on a waiting list we need to make sure that all tentative

assignments are feasible. In other words, we check whether there is some feasible assignment

such that all students are assigned the school to which’s waiting list they belong. In the

standard DAA we check only whether the set of most preferred students from the new

proposals and the students on the waiting list respects constraints at that school.

Controlled Student Proposing Deferred Acceptance Algorithm

(CDAA)

Start: Fix an order of the students, in which they are allowed to make proposals to schools,

say s1 − s2 − · · · − sn. We will always define a tentative assignment ν recording the

current waiting lists at all schools. The tentative assignment is such that it is possible

to allocate the unassigned students to schools such that the resulting assignment is fea-

sible. Let F denote the set of all feasible assignments and ν0 be the empty assignment,

i.e. ν0(s) = s for all s ∈ S. Let PS be a controlled school choice problem.

1. Let student s1 apply to the school which is ranked first under Ps1 , say c1. If there is

some µ ∈ F such that µ(s1) = c1, then set ν1(s1) = c1 and ν1(s) = ν0(s) = s for all

s ∈ S\{s1}; otherwise s1 is rejected by school c1 and we set ν1 = ν0.

...

k. If there is some student s such that νk−1(s) = s (s is unassigned), then student s did

not yet apply to all the schools which are acceptable to him. Let s be the student

with minimal index among those students. Let c be the school which is most preferred

under Ps among the schools to which s did not apply yet.

(i) If there is µ ∈ F such that µ(s) = c and µ(s′) = νk−1(s
′) for all students s′ such

that νk−1(s
′) 6= s′, then student s justifiably claims an empty slot at school c under

νk−1. Then we set νk(s) = c and νk(s
′) = νk−1(s

′) for all s′ ∈ S\{s} (Appendix

16Here one may consider rejecting student w3 since w3 has the lowest priority among the white students.
Generally (as in the example used to prove Theorem 1), however each white student could propose to a
different school and we would not know which students to put on waiting lists.
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B provides an algorithm which checks whether student s can justifiably claim an

empty slot at school c or not);

(ii) If (i) is not true but there is a student s′ of the same type of s and student s

justifiably envies student s′ at school c under νk−1, then let s′ be the student who

has the lowest priority under �c among all the students of type τ(s) who are

tentatively admitted at school c under νk−1. Then we set νk(s) = c, νk(s
′) = s′,

and νk(s
′′) = νk−1(s

′′) for all s′′ ∈ S\{s, s′}, i.e. school c rejects s′ and puts s on

its waiting list; and

(iii) Otherwise (if (i) and (ii) are not true) we set νk = νk−1 and student s is rejected

by school c.

End: The algorithm ends at a Step x where νx(s) 6= s for all s ∈ S. Then the tentative

assignments become final and νx is the controlled student proposing deferred acceptance

assignment for profile PS.

The assignment found by CDAA may be wasteful because in the example used to prove

Theorem 1 the algorithm finds µ1 and student s2 justifiably claims an empty slot at school

c3 under µ1.

THEOREM 3: For any controlled school choice problem CDAA yields a feasible assignment

which is both fair for same types and constrained non-wasteful.

Proof : Let PS be a controlled school choice problem and µ be the assignment that CDAA

finds for PS. We show that (a) µ is feasible, (b) µ is fair for same types, and (c) µ is

constrained non-wasteful.

For (a) it suffices to show at Step k, any student, who is unassigned under νk−1, did

not yet propose to all schools on his preference. Suppose that νk−1(s) = s and student s

proposed to all schools before.

Let student s have been on a waiting list of a school, say school c, until Step h. Then

at Step h another student s′ proposed to c and school c rejected s. But then there were

other schools c′ which could have given s′ an empty slot keeping all the other matches of νh

unchanged. But s did not apply to any of those empty slots (because otherwise he would

have received that slot). Therefore, this is impossible.

If student s was never on a waiting list, then let h be the step where student s applied to

his most preferred school. Since s is rejected at Step h, s could not justifiably claim an empty

slot at his most preferred school. But then there were no µ′ ∈ F such that µ′(s′) = νh−1(s
′)

for all s′ ∈ S\{s} with νh−1(s
′) 6= s′. But then νh−1 is an impossible waiting list at Step

h− 1, which contradicts the definition of CDAA.
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For (b), suppose that µ is not fair for same types. Then there is a student s who justifiably

envies student s′ at school c under µ and both students s and s′ are of the same type. Let s′

have lowest priority in µ(c) among the students who are of type τ(s). Since cPsµ(s), student

s applied to school c at some step, say Step k.

If νk(s) = c, then by µ(s) 6= c, student s was later rejected by school c because some

student of type τ(s) applied to school c and had higher priority than s under �c. Now it is

impossible that student s′ was put on school c’s waiting list later because s′ must have had

higher priority than s and we have s �c s′.
If νk(s) 6= c, then (i) was not possible at Step k, i.e. s could not justifiably claim an

empty slot at school c under νk−1. Since (ii) was neither possible, all students of type τ(s)

in νk−1(c) had higher priority than s. Now it is again impossible that student s′ was put

on school c’s waiting list later because s′ must have had higher priority than s and we have

s �c s′.
It may be that student s′ later justifiably claimed an empty slot at school c. This is also

impossible because given a waiting list νx, for each school c and each type, the students of

that type admitted at the school only increases, i.e. it is not possible that s′ claims an empty

slot later whereas s could not do that earlier.

For (c), suppose that µ is not constrained non-wasteful. Then a student s justifiably

claims an empty slot at school c under µ and µ′ (where µ′(s) = c and µ′(s′) = µ(s′) for all

s′ ∈ S\{s}) is fair for same types. Since s justifiably claims an empty slot at school c, we

have cPsµ(s) and s must have proposed to c, say at Step k, before proposing to µ(s). The

following is true in CDAA: once a student is admitted on a waiting list, then the student

can only be removed from the waiting list if another student of the same type is admitted.

Therefore, for all types t and all schools c′ we have

|νtk−1(c
′)| ≤ |µt(c′)|. (1)

Now by the feasibility of µ and s’s justified claim of an empty slot at c under µ, at Step

k there was a feasible assignment µ̂ such that µ̂(s) = c and µ̂(ŝ) = νk−1(ŝ) for all ŝ such

that νk−1(ŝ) 6= ŝ. Hence, νk(s) = c and s was put on the waiting list of c at Step k. Since

µ(s) 6= c, at a later step, say Step k′, school c rejected student s and admitted a student s′.

Then student s′ must be of the same type as s and at Step k′ (i) was not true, i.e. student

s′ could not justifiably claim an empty slot at school c at Step k′. But then by the same

property (1) for Step k′ no student of type τ(s) can justifiably claim an empty slot at school

c under µ, a contradiction to s’s justified claim of an empty slot at c under µ. �

In CDAA students with smaller indices are allowed to propose first (and students may be
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indexed according to when their applications were received by the controlled school choice

program). However, it is easy to verify that the order, in which students are allowed to

propose, is irrelevant for the conclusion of Theorem 3. Therefore, at each step alternatively

we may choose randomly a student from the students who do not belong to any waiting

list. This randomization of the CDAA ensures that the algorithm becomes anonymous.

Then using Roth and Rothblum (1999) and Ehlers (2008) it can be shown that in a low

information environment it is a weakly dominant strategy for each student to submit his

true ranking. Unfortunately, in contrast to McVitie and Wilson’s sequential version of DAA,

CDAA may yield different outcomes for different orders. For instance, in the example used

to prove Theorem 1, CDAA finds µ1 when student s1 proposes in Step 1 and it finds µ3 when

student s2 proposes in Step 1.

Remark 3 In Erdil and Ergin (2008) properties parallel to the ones above have appeared:

they propose in uncontrolled school choice with possibly equal priorities a constrained ef-

ficient solution called the stable improvement cycles algorithm. Loosely speaking, this al-

gorithm breaks ties in any priority ordering, runs DAA for the school choice problem with

the resulting strict priority profile, and in case there exists a “stable improvement cycle” for

the output assignment of DAA, students exchange their assigned schools along such a cycle,

and so on. The algorithm stops when no stable improvement cycle exists. In such a case

the resulting assignment is constrained efficient meaning that it is not Pareto dominated

by any fair assignment. When students have equal priority at a school, the outcome of the

stable improvement cycles algorithm may depend on how ties are broken and which stable

improvement cycles are chosen. If both ties are randomly broken and the cycle choice is

random, they show similarly to Roth and Rothblum (1999) and Ehlers (2008) that in a low

information environment it is a weakly dominant strategy for each student to submit his

true ranking in this algorithm.

It turns out that CDAA has another desirable feature: the output assignment is always

weakly Pareto-optimal in the sense that there exists no feasible assignment which all students

strictly prefer to the output assignment, i.e. if µ is the assignment found by CDAA for the

controlled school choice problem PS, then there exists no feasible assignment µ̄ such that

µ̄(s)Psµ(s) for all students s. If this important welfare property is not satisfied by an

assignment procedure, then one may seriously criticize the use of that procedure because all

students unanimously may strictly prefer another assignment (or another procedure).

THEOREM 4: For any controlled school choice problem CDAA yields a feasible assignment

which is weakly Pareto-optimal.
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Proof : Let PS be a controlled school choice problem and µ be the assignment that CDAA

finds for PS.

Suppose that µ is not weakly Pareto-optimal. Then there exists another feasible assign-

ment µ̄ such that µ̄(s)Psµ(s) for all students s. We derive a contradiction as follows: first

we show that for any type t, the school, at which the last type-t student is admitted, admits

no type-t student under µ̄; second we show that under both µ and µ̄ each school is assigned

the same number of students; and third we show that there is a cyclical exchange among all

types of the schools at which the last type-t students are admitted in CDAA.

Let t be a type and let CDAA admit the students of type t at their seats specified by µ

in the order i1, i2, . . ., il. This means that student i1 is the first student s of type t who gets

assigned to µ(s) in CDAA and student il is the last student s of type t who gets assigned to

µ(s) in CDAA. Because µ̄(s)Psµ(s) for any student s, each student s applies to µ̄(s) before

applying to µ(s). Since il is the last type-t student to be admitted, il must justifiably claim

an empty slot at µ(il) in the Step k where il proposes to µ(il). But then no student s of

type t proposed to µ(il) before proposing to µ(s) because such a student could have claimed

an empty slot at school µ(il) (since il was able to claim an empty slot at µ(il) at the later

Step k). Hence, by µ̄(s)Psµ(s) for all s ∈ St, no student of type t is assigned to µ(il) under

µ̄ and we have µ̄t(µ(il)) = ∅.
Since under both µ̄ and µ all students are assigned a school, in showing |µ̄(c)| = |µ(c)|

for all schools c it suffices to show |µ̄(c)| ≤ |µ(c)| for all schools c. Suppose that this is

not the case, i.e. for some school c we have |µ̄(c)| > |µ(c)|. Then for some type t we have

|µ̄t(c)| > |µt(c)|. Then µ̄t(c) 6= ∅. Let i ∈ µ̄t(c). Since cPiµ(i), student i proposed to c

before proposing to µ(i). Since |µ(c)| < qc and |µ̄t(c)| > |µt(c)|, student i claimed an empty

slot at school c when proposing to it. Now this claim must have been justified since the last

type-t student to be admitted, student il, justifiably claimed an empty slot at µ(il) and no

student of type t is assigned to µ(il) under µ̄. Thus, student i must have been assigned an

empty slot at c when he proposed to c in CDAA. Since our choice i ∈ µ̄t(c) was arbitrary,

school c must admit at least |µt(c)|+ 1 students of type t in CDAA. Hence, we have shown

|µ̄(c)| = |µ(c)| for all schools c.

For each type t, let itl denote the last type-t student s to be admitted at µ(s) in CDAA

and let ct = µ(itl). Since |µ̄(ct)| = |µ(ct)| and µ̄t(ct) = ∅, there exists at least one type t′ such

that |µ̄t′(ct)| > |µt′(ct)| or equivalently some students of type t′ would like to claim the slot

of itl at school ct. For the moment, let us treat types as agents and say that type t is endowed

with an empty slot at ct and type t′ would like to claim a slot at ct if |µ̄t′(ct)| > |µt′(ct)|.
Now, similarly as above, type t′ is also endowed with an empty slot at ct

′
and some type t′′

would like to claim that slot. Because the set of types is finite and each type is endowed
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with exactly one empty slot, there must exist at least one cyclical exchange from µ to µ̄:

there are types t1, . . . , tm such that t1 claims the slot ct2 , t2 claims the slot ct3 ,. . ., and tm

claims the slot ct1 .

Now choose the type t such that type t is part of a cyclical exchange and among the

types, which are part of a cyclical exchange, type t is the first type to admit all students in

CDAA. This means that itl is admitted at µ(ct) before any other type t′, which is part of a

cyclical exchange, admits it
′

l at ct
′
. Because t is part of a cyclical exchange, type t claims

the “endowment” of another type, say type t′. Because itl is the last type-t student to be

admitted, all type-t students, who would like to claim the slot at ct
′
, proposed to ct

′
before.

Because type t is the first type to admit all students among all types which are part of a

cyclical exchange, at this step both the slot at ct
′

was empty and this cyclical exchange was

feasible when the type-t students proposed to ct
′
. But then at this step this type-t student

justifiably claims an empty slot at school ct
′

and CDAA would have assigned this type-t

student to school ct
′
, which is a contradiction. �

Remark 4 An immediate consequence of Theorem 4 is that it is impossible to make all

white students strictly better off by reassigning their seats and seats left empty among white

students while keeping all other students enrolled at their schools. More precisely, for any

type t the assignment µt is weakly Pareto-optimal in the sense that it is impossible to make

all students of type t better off by reassigning (in a feasible way) their seats specified by µ

and the seats left empty by µ, i.e. there is no feasible assignment µ̄ such that µ̄(s)Psµ(s) for

all s ∈ St and µ̄(s′) = µ(s′) for all s′ ∈ S\St. This is easily seen by applying Theorem 4 to

the problem reduced for type-t students where any school c has qc + |µt(c)| − |µ(c)| empty

seats available and St is the set of students. Applying CDAA to PSt yields µt and µt needs

to be weakly Pareto-optimal by Theorem 4, the desired conclusion.

Remark 5 Another immediate consequence of Theorem 4 is that it is impossible to make

all white students weakly better off by fairly reassigning their seats among white students

while keeping all other students enrolled at their schools and all empty slots empty. More

precisely, if µ is the output of CDAA, then for any type t the assignment µt is “best” from

the type-t students’ point of view in the following sense: there is no other feasible assignment

µ̄ such that (i) |µ̄t(c)| = |µt(c)| for all schools c, (ii) µ̄ is fair for same types, and (iii) µ̄t

Pareto dominates for type-t students the assignment µt.17

17This follows from the fact that when allocating the seats of µt to type-t students, µt is the output of
CDAA restricted to type-t students. But CDAA restricted to type-t students and the seats of µt is identical
with McVitie and Wilson (1970)’s version of DAA. Then µt is the output of DAA to type-t students and the
seats of µt and we know that for type-t students µt is most preferred among all assignments which are fair
for same types.
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5 Incentive Compatibility

Apart from students’ preferences all components of a controlled school choice problem are

exogenously determined (like the capacities of the schools) or given by law (like the priority

profile and the controlled choice constraints). The only information which is private are

students’ preferences over schools. They need to be stated by the students to the school

choice program. Since students must be assigned schools for any possible reported profile,

the program has to be based on a mechanism selecting an assignment for each problem.

In a controlled school choice program the mechanism should respect the legal constraints

imposed by the state. A mechanism is (legally) feasible if it selects a feasible assignment

for any reported profile.

Any program would like to elicit the true preferences from students. If students would

misreport, then the assignment chosen by the program is based on false preferences and may

be highly unfair for the true preferences.

Avoiding this problem means constructing a mechanism where no student has ever an

incentive to misrepresent his true preference for any preferences reported by the other agents.

Any mechanism which makes truthful revelation of preferences a dominant strategy for each

student is called (dominant strategy) incentive compatible. A feasible mechanism

is fair for same types if it selects for any controlled school choice problem a feasible

assignment which is fair for same types. Analogously we define non-wastefulness and

constrained non-wastefulness, respectively, for a mechanism.

In contrast to the school choice problems studied in previous papers it is impossible to

construct a mechanism which is incentive compatible, fair for same types and constrained

non-wasteful while respecting the diversity constraints given by law. Therefore, it is impos-

sible to choose for each profile an order in which students propose in CDAA such that this

mechanism becomes incentive compatible.

THEOREM 5: In controlled school choice there is no feasible mechanism which is incentive

compatible, fair for same types and constrained non-wasteful.

Proof : The proof is by means of an example. Consider the following problem consisting of

three schools {c1, c2, c3} and two students {s1, s2}. Each school has a capacity of two (qc = 2

for all schools c). The type space consists of a single type t, i.e. both students are of the

same type t. The ceiling for type t is equal to two for each school (qtc = 2 for all schools c).

School c1 has a floor for type t of qt
c1

= 1 and both other schools have a floor of 0 for type

t. Schools c1 and c2 give higher priority to student s2 whereas school c3 gives higher priority

student s1. The students’ preferences are given by c2Ps1c1Ps1c3Ps1s1 and c3Ps2c1Ps2c2Ps2s2.
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This information is summarized in Table 2.

TABLE 2.

�c1 �c2 �c3 Ps1 Ps2

s2 s2 s1 c2 c3

s1 s1 s2 c1 c1

c3 c2

s1 s2

capacities qc1 = 2 qc2 = 2 qc3 = 2

ceiling for t qtc1 = 2 qtc2 = 2 qtc3 = 2

floor for t qt
c1

= 1 qt
c2

= 0 qt
c3

= 0

Next we determine the set of feasible assignments. Feasibility requires that one of the

students is assigned school c1 and each student is assigned a school. Then it is straightforward

to verify that

µ1 =

(
c1 c2 c3

s1 ∅ s2

)
, µ2 =

(
c1 c2 c3

s1 s2 ∅

)

µ3 =

(
c1 c2 c3

s2 ∅ s1

)
, µ4 =

(
c1 c2 c3

s2 s1 ∅

)
, µ5 =

(
c1 c2 c3

{s1, s2} ∅ ∅

)
is the set of all feasible assignments.

It is easy to check that µ1 and µ4 are the only feasible assignments which are both fair

for same types and constrained non-wasteful for this controlled school choice problem. Note

that under PS,

(i) µ2 and µ5 are not constrained non-wasteful since s2 justifiably claims an empty slot at

c3 under both µ2 and µ5 and the resulting assignment µ1 is fair for same types, and

(ii) µ3 is not constrained non-wasteful since s1 justifiably claims an empty slot at c2 under

µ3 and the resulting assignment µ4 is fair for same types.

Any feasible mechanism which is both fair for same types and constrained non-wasteful

must select either the assignment µ1 or the assignment µ4. We will show that in each case

there is a student who profitably manipulates the mechanism.

Case 1: The mechanism selects µ1.

Under µ1 student s1 is assigned school c1. We will show that student s1 gains by misre-

porting his true preference. Suppose that student s1 states the (false) preference P ′s1 given
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by c2P
′
s1
c3P

′
s1
c1P

′
s1
s1, and student s2 were to report his true preference Ps2 . Keeping all other

components of the above problem fixed, in the new problem the students’ preferences are

P ′S = (P ′s1 , Ps2).

In the new problem under µ1 student s1 justifiably envies student s2 at school c3 since

(f1) µ1(s1) = c1, c3P
′
s1
c1 and s1 �c3 s2, and (f2) τ(s1) = τ(s2). Note that under P ′S,

(i) µ1 and µ2 are not fair for same types, and

(ii) µ3 and µ5 are not constrained non-wasteful since s1 justifiably claims an empty slot at

c2 under both µ3 and µ5 and the resulting assignment µ4 is fair for same types.

Thus, the unique feasible assignment, which is both fair for same types and non-wasteful

for the new problem, is µ4. Hence, any feasible mechanism, which is both fair for same types

and constrained non-wasteful, must select the assignment µ4 for the new problem. Under

µ4 student s1 is assigned school c2 which is strictly preferred to c1 under the true preference

Ps1 . Thus student s1 does better by stating P ′s1 than by stating his true preference Ps1 , and

the mechanism is not incentive compatible.

Case 2: The mechanism selects µ4.

Under µ4 student s2 is assigned school c1. Similarly as in Case 1 we will show that

student s2 gains by misreporting his preference. Suppose that student s2 states the (false)

preference P ′s2 given by c3P
′
s2
c2P

′
s2
c1P

′
s2
s2, and student s1 were to report his true preference

Ps1 . Keeping all other components of the above problem fixed, in the new problem the

students’ preferences are P ′S = (Ps1 , P
′
s2

).

In the new problem under µ4 student s2 justifiably envies student s1 at school c2 since

(f1) µ4(s2) = c1, c2P
′
s2
c1 and s2 �c2 s1, and (f2) τ(s2) = τ(s1). Note that under P ′S,

(i) µ4 is not fair for same types,

(ii) µ2 and µ5 are not constrained non-wasteful since s2 justifiably claims an empty slot at

c3 under both µ2 and µ5 and the resulting assignment µ1 is fair for same types, and

(iii) µ3 is not constrained non-wasteful since s1 justifiably claims an empty slot at c1 under

µ3 and the resulting assignment µ5 is fair for same types.

The unique feasible assignment, which is both fair for same types and constrained non-

wasteful for the new problem, is µ1. Hence, any feasible mechanism, which is both fair

for same types and constrained non-wasteful, must select the assignment µ1 for the new

problem. Under µ1 student s2 is assigned school c3 which is strictly preferred to c1 under
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the true preference Ps2 . Thus student s2 does better by stating P ′s2 than by stating his true

preference Ps2 , and the mechanism is not incentive compatible. �

Remark 6 The conclusion of Theorem 5 remains unchanged when constrained non-wastefulness

is replaced by non-wastefulness. Of course, by Theorem 1 we know that the set of feasible

assignments which are both fair for same types and non-wasteful may be empty. Therefore,

it is meaningful to require a mechanism to satisfy simultaneously both fairness for same

types and non-wastefulness only if there exist feasible assignments which are both fair for

same types and non-wasteful. Hence we say that a feasible mechanism is fair for same

types and non-wasteful if it selects for any controlled school choice problem a feasible as-

signment which is fair for same types and non-wasteful whenever such an assignment exists.

Now the proof of Theorem 5 remains true when constrained non-wastefulness is replaced by

non-wastefulness. Hence in controlled school choice there is no feasible mechanism which is

incentive compatible, fair for same types and non-wasteful.

Remark 7 The non-existence of feasible mechanisms, which are incentive compatible, fair

for same types and (constrained) non-wasteful, unambiguously shows that controlled school

choice is not equivalent to college admission. In all models of school choice studied so far

it was possible to connect the school choice problem to the college admissions problem and

show that DAA is a mechanism which is non-wasteful, fair, and incentive compatible. This

was due to the absence of diversity constraints (the floors) which are present in controlled

choice.

In college admissions any mechanism, which is incentive compatible for students, chooses

for each problem the extreme of the lattice of stable matchings which students prefer over

any other stable matching. In controlled school choice there is not always a unique candidate

for a feasible assignment which is fair for same types and (constrained) non-wasteful. This

provides additional reason for Theorem 5 and Remark 6, i.e. for the non-existence of feasible

mechanisms which are incentive compatible, fair for same types and (constrained) non-

wasteful.

In the example used to prove Theorem 5 we know that

µ1 =

(
c1 c2 c3

s1 ∅ s2

)
and µ4 =

(
c1 c2 c3

s2 s1 ∅

)

are the only feasible assignments which are both fair for same types and (constrained) non-

wasteful for this problem.

Student s1 prefers c2 to c1 under Ps1 and student s2 prefers c3 to c1 under Ps2 . Thus

s1 strictly prefers µ4 to µ1 under Ps1 and s2 strictly prefers µ1 to µ4 under Ps2 . Hence
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students’ preferences are opposed over the (only) two feasible assignments, which are both

fair for same types and (constrained) non-wasteful, and there is no feasible, fair for same

types and (constrained) non-wasteful assignment which both students prefer to any other

feasible assignment which is both fair for same types and non-wasteful.

When computing the “minimum” ∧ of µ1 and µ4 (by assigning each student to the school

which he least prefers from µ1 and µ4) we obtain the assignment

µ1 ∧ µ4 =

(
c1 c2 c3

{s1, s2} ∅ ∅

)

which is feasible but not (constrained) non-wasteful.

Remark 8 Theorem 5 implies that for any order of the students CDAA is not incentive

compatible. Due to this fact students may misrepresent their preferences over schools. Now

if the students play a Nash equilibrium (NE), what are the properties of the outcome (or the

assignment) of any NE? It is easy to see that the outcome of any NE must be constrained

non-wasteful.18 Unfortunately, the outcome of a NE may not be fair for same types according

to students’ true preferences.

For instance, consider a problem consisting of three students {s1, s2, s3} (all of the same

type) and three schools {c1, c2, c3}. Each school has a capacity of one (qc = 1 for all schools

c). Any ceiling of any type t is equal to one and any floor of any type t is equal to zero. The

students’ preferences and the schools’ priorities are given below:

�c1 �c2 �c3 Ps1 Ps2 Ps3

s2 s1 s3 c1 c2 c2

s1 s3 s2 c2 c1 c3

s3 s2 s1 c3 c3 c1

Now if student s3 reports P̄s3 : c3c1c2, then independently of the order, in which students

propose, CDAA chooses for P̄S = (Ps1 , Ps2 , P̄s3) the assignment

µ̄ =

(
c1 c2 c3

s1 s2 s3

)
.

Obviously µ̄ is not fair for same types for the true profile since student s3 justifiably envies

student s2 at school c2 (and all students are of the same type). It is easy to check that P̄S

18Otherwise a student would justifiably claim an empty slot and after assigning him this empty slot the
resulting assignment is fair for same types. Then this student profits from changing his preference such that
he proposes to this school before proposing to the school to which he is assigned to.
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is a NE in CDAA and that P̄S is even robust to deviations of any group of students, i.e.

P̄S is a strong Nash equilibrium. However, this feature is not peculiar to controlled school

choice since the above problem is a college admissions problem and we know that in college

admissions the outcome of a NE may not be stable according to the true preferences.19

Any controlled school choice program must give up constrained non-wastefulness, fair-

ness for same types or incentive compatibility. It will wonder whether an existence result

reemerges if we give up exactly one of our two basic requirements, namely constrained non-

wastefulness or fairness for same types.

Since in real life often the number of available seats is approximately the same as the

number of students, potential justified claims of empty seats occur less frequently than

potential justified envy. Hence, a school choice program may be ready to give up constrained

non-wastefulness while retaining fairness for same types and incentive compatibility. We will

demonstrate that this weakening results in existence.20

Example 3. A feasible mechanism which is both fair for same types and incentive compatible.

Fix a feasible assignment, say µ. We relate any controlled school choice problem with

a college admissions problem in the following way: break any school c into k schools

{c(t1), . . . , c(tk)} where |T | = k and c(t) is the part of school c wanting to fill slots with

students of type t. The capacity of school c(t) is qc(t) = |µt(c)| and the preference of c(t)

ranks only students of type t acceptable, in the same order as �c. Note that some slots are

wasted at school c if |µ(c)| < qc. Any student replaces on his preference school c by |T | copies

of c in the order c(t1), c(t2),. . ., c(tk). Then determine the student optimal matching of this

related problem. Because (i) all students rank all schools as acceptable, (ii) for any type

t there are exactly
∑

c∈C qc(t) =
∑

c∈C |µt(c)| = |St| slots available and (iii) any school c(t)

ranks acceptable exactly all students of type t, the student optimal matching µ̄ of the related

problem satisfies for all types t and all schools c, µ̄t(c(t)) ⊆ St and |µ̄(c(t))| = qc(t) = |µt(c)|.
Thus the feasibility of µ implies that the student optimal matching of the related problem

is a feasible assignment of the controlled school choice problem. We know that DAA is

incentive compatible. Furthermore the stability of the student optimal matching in the

related problem implies that there is no student envying justifiably another student of the

19In school choice problems without control and legal constraints, Ergin and Sönmez (2006) consider
revelation games induced by the Boston school choice mechanism and DAA.

20Giving up fairness for same types also results in existence. A serial dictatorship (which is used frequently
for the allocation of indivisible objects) is a feasible mechanism which is both non-wasteful and incentive
compatible. A serial dictatorship orders the set of students alphabetically, say s1, s2, . . ., and sn. Then
for any problem, first student s1 picks the feasible assignments which he most prefers, second student s2
picks the assignments, which he most prefers, among the remaining feasible assignments and so on. This
mechanism is fair only if each school’s priority ranking is identical with the alphabetical order of the students.
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same type. Thus the “related” mechanism is a feasible mechanism which is both fair for

same types and incentive compatible. The mechanism is constrained non-wasteful only if

the initial assignment µ filled all available slots at each school. Furthermore the mechanism

is fair (across types) only if all students are of the same type. When all students are of the

same type, the floor at a school may be represent the number of students which is necessary

not to shut down that school.

Observe that the above mechanism is “rigid”: in Example 3 for each type t, the slots,

which will be filled with type-t students, are exogenously given by the feasible assignment µ.

This inflexibility was the price for incentive compatibility of this mechanism. In general this

price includes giving up weak Pareto-optimality because due to the inflexibility all students

may be strictly better off with another feasible assignment compared to the assignment

chosen by the mechanism in Example 3. Note that this inefficiency stems from the rigidity

of the mechanism and not necessarily from the waste of empty seats.

6 Recommendation to School Choice Programs

Although there is a large literature in education evaluating and estimating the effects of

segregation across schools on students’ achievements (Hanushek, Kain, and Rivkin (2002),

Guryan (2004), Card and Rothstein (2005), and others)21, and on how to measure segregation

and how to determine optimal desegregation guidelines22, none of these papers discusses

the problem of how in practice to assign students to schools while complying with these

desegregation guidelines. This is exactly what our paper does.

Without controlled choice and legal constraints, the student proposing deferred accep-

tance algorithm eliminates any justified envy and makes truthful revelation of preferences a

dominant strategy for students (Abdulkadiroğlu and Sönmez, 2003). Once controlled choice

constraints are imposed it may be impossible to eliminate any justified envy. The legal con-

straints allow to eliminate justified envy only among students of the same type (and not of

different types). Any state in the United States needs to decide whether controlled choice

and legal constraints are more important or whether elimination of any justified envy is more

important. In university admissions it is likely that fairness is regarded more important and

in those contexts DAA assigns students to schools in a satisfactory manner. In school choice

21We will refer the interested reader to Echenique, Fryer, and Kaufman (2006) for an illuminating account
of this literature.

22School segregation can be purely racial or, as in Echenique, Fryer and Kaufman (2006), school segregation
is measured according to the spectral segregation index of Echenique and Fryer (2006) which uses the intensity
of social interactions among the members of a group (see also Cutler and Glaeser (1997)).
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it is unlikely that controlled choice and legal constraints are ignored completely and envy

can be eliminated only among students of the same race.

Fairness across types and fairness for same types are the extreme in allowing envy among

different agents: under fairness across types envy is allowed among all agents and under

fairness for same types envy is only allowed among same type students. As we showed even

allowing envy only among same type students still results in impossibilities when coupled

with non-wastefulness whereas allowing envy among all students alone results in impossibil-

ities. This is a particular feature of controlled school choice problems.

Of course, in the absence of floor constraints, then assignments which are fair across types

always exist. In such situations, a straightforward modification of DAA by Abdulkadiroğlu

(2005) finds an assignment which is fair across types. However, the assignment found is not

necessarily feasible because it may not assign all students to schools. This is achieved by

CDAA.

Acceptance of controlled choice and legal constraints means for any school choice pro-

gram to decide whether incentive compatibility is more important or whether weak Pareto-

optimality or/and constrained non-wastefulness is more important. If the program insists on

incentive compatibility, the incentive compatible mechanism we propose basically segregates

the problem into several problems, one for each race, and applies DAA to each problem

separately. Making truth telling a dominant strategy brings many serious flaws with it (even

though the assignment is based on true preferences). Any incentive compatible mechanism

may implement assignments which are highly inefficient and highly wasteful (of empty seats).

Due to these flaws many school choice programs may prefer a mechanism which is weakly

Pareto-optimal and constrained non-wasteful: this is achieved in practice by CDAA. Further-

more, in low information environments this mechanism is immune to manipulation. Similar

observations have been made by Erdil and Ergin (2008) in (uncontrolled) school choice with

indifferences: there exists no incentive compatible and fair mechanism which is constrained

efficient; applying DAA may yield assignments which are Pareto-dominated by other fair

assignments whereas the stable improvement cycles algorithm is constrained efficient and

fair but not incentive compatible. In a low information environment the random version of

this mechanism is immune to manipulation.

Controlled choice comes with a price. Any program has to disregard at least one desirable

property when following the state’s laws or the policies of school boards. More generally,

third party policies may override students’ preferences and schools’ priorities, and “less”

segregated assignments may be more preferred among the feasible ones. For instance, a

student body of 50% black-50% white may be strictly preferred by a school board to a

student body of 40%black-60% white (even if both student bodies comply with the laws).
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It is obvious that all our incompatibilities apply to this generalization as well. Our results

raise the question whether some state laws or policies need to be modified.
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APPENDIX A: PERCENTAGE CONSTRAINTS

Below we generalize our results to school choice with percentage constraints. For all c ∈ C
and all t ∈ T , let 0 ≤ qt

c
≤ qtc ≤ 1. Recall that if the constrained school choice constraints

are given in percentage terms, then an assignment µ respects percentage constraints if for

every school c and every type t we have

qt
c
|µ(c)| ≤ |µt(c)| ≤ qtc|µ(c)|.

Again we suppose that the set of assignments respecting percentage constraints is non-empty.

Throughout Appendix A we say that that student s justifiably claims an empty slot

at school c under the feasible assignment µ if

(nw1) cPsµ(s) and |µ(c)| < qc,

(nw2) q
τ(s)
µ(s)(|µ(µ(s))| − 1) ≤ |µτ(s)(µ(s))| − 1 ≤ q

τ(s)
µ(s)(|µ(µ(s))| − 1), and

(nw3) qτ(s)
c

(|µ(c)|+ 1) ≤ |µτ(s)(c)|+ 1 ≤ qτ(s)c (|µ(c)|+ 1).

Hence, under (nw1)-(nw3) student s can be assigned an empty slot at the better school c

without changing the assignments of the other students and violating the percentage terms

at any school. A feasible assignment µ is non-wasteful if no student justifiably claims an

empty slot at any school.

THEOREM 1%: The set of feasible assignments which are both fair for same types and

non-wasteful may be empty in a controlled school choice problem with percentage constraints.

Proof : The proof is by means of modifying the example in the proof of Theorem 1. Consider

the following problem consisting of three schools {c1, c2, c3} and 31 students {s1, . . . , s31}.
Each school has a capacity of 11 (qc = 11 for all schools c). There are two types t and

t′ and 13 students are of type t, say St = {s1, . . . , s13} and 18 students of type t′, say

St′ = {s14, . . . , s31}. The ceiling of each type is equal to 0.6 at all schools (qtc = 0.6 = qt
′
c for

all schools c) and the floor of each type is equal to 0.4 at all schools (qt
c

= 0.4 = qt
′

c
for all

schools c).

We make the following observation. Suppose that the assignment µ respects percentage

constraints. Then we must have for all schools c, |µt′(c)| = 6: if not, then by the fact that

there are 18 type-t′ students and three schools, for some school c we have |µt′(c)| ≥ 7; since

|µ(c)| ≤ 11, we must have |µt′ (c)|
|µ(c)| ≥

7
11

> 0.6 = qt
′
c , and µ does not respect percentage

constraints, a contradiction.
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Now for any feasible µ, we have |µt′(c)| = 6 for all schools c and hence

|µt(c)| ≥ 4 for all schools c. (2)

Now suppose that students s3, s4, s5 all strictly prefer school c1 to both c2 and c3 and all have

higher priority than students s1 and s2 at c1; students s6, s7, s8, s9 all strictly prefer school

c2 to both c1 and c3 and all have higher priority than students s1 and s2 at c2; and students

s10, s11, s12, s13 all strictly prefer school c3 to both c2 and c3 and all have higher priority than

students s1 and s2 at c3. Then it is immediate from (2) that for any feasible µ, if µ is fair for

same types, then {s3, s4, s5} ⊆ µt(c1), {s6, s7, s8, s9} ⊆ µt(c2), and {s10, s11, s12, s13} ⊆ µt(c3).

Now by (2), |µt(c1)| ≥ 4. Thus, the above implies that s1 or s2 must be assigned to c1.

Now if Ps1 and Ps2 and schools’ priorities between s1 and s2 are as in the example in the proof

of Theorem 1, this problem becomes identical with the proof of Theorem 1. Hence, there

is no feasible assignment which is both fair for same types and non-wasteful in a controlled

school choice problem with percentage constraints. �

Note that in the example above, the capacities of 11 facilitate the proof but they are not

essential. Even if the capacities are set equal to the total number of students we obtain the

incompatibility result (possibly by assuring that the 18 type-t′ students must be distributed

evenly among the three schools in any feasible assignment which is fair for same types and

non-wasteful).

Furthermore, unidimensional types is a special case of multi-dimensional types and for

controlled school choice with multi-dimensional types the impossibilities of Theorem 1 and

Theorem 1% continue to remain true.

It is straightforward to check that the proofs of Theorem 2, Theorem 3 and Theorem

4 carry over unchanged to controlled school choice with percentage constraints (or with

multi-dimensional types). Hence, CDAA finds for any problem with percentage constraints

a feasible assignment which is both fair for same types and constrained non-wasteful which

is weakly Pareto-optimal.

Similarly as in Theorem 1% we adjust the example in the proof of Theorem 5 to controlled

school choice with percentage constraints.

THEOREM 5%: In controlled school choice with percentage constraints there is no feasible

mechanism which is incentive compatible, fair for same types and constrained non-wasteful.

Proof : Consider the same problem as in the proof of Theorem 1%. Then for any feasible µ,

we have |µt′(c)| = 6 for all schools c, and, if µ is fair for same types, then {s3, s4, s5} ⊆ µt(c1),

{s6, s7, s8, s9} ⊆ µt(c2), and {s10, s11, s12, s13} ⊆ µt(c3).
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Again, by |µt(c1)| ≥ 4, the above implies that s1 or s2 must be assigned to c1. Now

if Ps1 and Ps2 and schools’ priorities between s1 and s2 are as in the proof of Theorem 5,

this problem and Cases 1 and 2 become identical with the proof of Theorem 5. Hence, in

controlled school choice with percentage constraints there is no feasible mechanism which is

incentive compatible, fair for same types and constrained non-wasteful. �

APPENDIX B: FEASIBILITY CHECKING ALGORITHM

Below we provide an algorithm to check in (i) of any step in CDAA whether the proposing

student can be assigned an empty slot at the school she proposed to or not.

We will use the following terminology: given µ ∈ F and the tentative assignments ν, we

say µ makes ν feasible if for all t ∈ T and all c ∈ C, |νt(c)| ≤ |µt(c)|. Obviously, in order

to check whether there exists some µ′ ∈ F such that µ′(s) = ν(s) for all s with ν(s) 6= s it

suffices to find µ ∈ F making ν feasible.

Recall that F 6= ∅. Fix µ0 ∈ F . Note that ν0(s) = s for all s ∈ S and µ0 makes ν0

feasible. By induction we will simultaneously determine whether the proposing student can

be assigned an empty slot at the school she proposed to or not and construct for any Step

k + 1 a matching µk+1 ∈ F making the tentative assignments of νk+1 feasible.

The following notation will be useful. Let µ ∈ F . For any sequence of distinct students

s1, . . . , sl ∈ S and c ∈ C, let (µ)s1→s2→···→sl→c denote the assignment µ′ obtained from

µ by assigning sl an empty slot at c and for h = 1, . . . , l − 1, sh takes up the slot left

empty by sh+1, i.e. µ′(sl) = c, and for h = 1, . . . , l − 1, µ′(sh) = µ(sh+1) (and for all s ∈
S\{s1, . . . , sl}, µ′(s) = µ(s)). Furthermore, for any sequence of distinct students s1, . . . , sl ∈
S, let (µ)�(s1,...,sl) denote the assignment µ′′ obtained from µ by a cyclical exchange of the

slots of the students s1, . . . , sl, i.e. for all h = 1, . . . , l−1, µ′′(sh) = µ(sh+1) and µ′′(sl) = µ(s1)

(and for all s ∈ S\{s1, . . . , sl}, µ′′(s) = µ(s)).

Consider any Step k + 1 (k ≥ 0) of CDAA. Then the previous tentative assignments are

given by νk and µk makes νk feasible (where µk ∈ F). In Step k + 1, let student ŝ apply to

ĉ and τ(ŝ) = t̂. Let νk+1(ŝ) = ĉ and νk+1(s) = νk(s) for all s ∈ S\{ŝ}.
The following lemma will be instrumental for our feasibility checking algorithm. It shows

that in order to check whether νk+1 is feasible it suffices to consider starting from µk cyclical

exchanges of the form � (s1, . . . , sl) or chains of the form s1 → s2 → · · · → sl → c with all

students having distinct types.

Lemma 9 Let µk make νk feasible and µk not make νk+1 feasible. If there exists some

µ ∈ F making νk+1 feasible, then there exists a sequence of students s1, . . . , sl ∈ S having all
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distinct types such that either (µk)
s1→s2→···→sl→c ∈ F (for some school c) makes νk+1 feasible

or (µk)
�(s1,...,sl) ∈ F makes νk+1 feasible.

Proof : The proof is by inductive construction. Starting from µ and µk consider the following

graph: the set of nodes is equal to all types t such that |µt(c)| 6= |µtk(c)| for at least one

school c and the set of schools such that |µt(c)| 6= |µtk(c)| for at least one type t; for any

type t and any school c, let an arrow point from t to c if |µt(c)| < |µtk(c)|, and let an arrow

point from c to t if |µt(c)| > |µtk(c)|. Now the resulting graph may possess a cycle or not.

If the resulting graph possesses a cycle, then this cycle must consist of at least three arrows

and by construction, any arrow either points from a type to a school or from a school to a

type. Choose a cycle, say t1 → c1 → t2 → c2 → · · · → cl → t1, which does not contain

any subcycle. Then all the types t1, . . . , tl are distinct and we may choose distinct students

s1, . . . , sl such that for i = 1, . . . , l, τ(si) = ti and µk(si) = ci. If an arrow pointing from t̂ to

ĉ is part of the cycle, then (µk)
�(sl,sl−1,...,s1) ∈ F makes νk+1 feasible, the desired conclusion.

Otherwise, let any cycle not contain an arrow pointing from t̂ to ĉ. Then as above, choose

a cycle, say t1 → c1 → t2 → c2 → · · · → cl → t1, which does not contain any subcycle.

Then all the types t1, . . . , tl are distinct and we may choose distinct students s1, . . . , sl such

that for i = 1, . . . , l, τ(si) = ti and µ(si) = ci−1 (with the convention c0 = cl). Now we

set µ′ = (µ)�(s1,...,sl). Note that by construction, µ′ makes νk+1 feasible. Now we repeat the

same graph construction for µ′ and µk. Note that for any type t and any school c, we have

either |µt(c)| ≤ |(µ′)t(c)| ≤ |µtk(c)| or |µt(c)| ≥ |(µ′)t(c)| ≥ |µtk(c)|. Hence, both the set of

nodes and set of arrows shrink and any cycle in the graph resulting from µ′ and µk was also

a cycle in the graph resulting from µ and µk. We repeat the above construction until we

arrive at an assignment µ̂ such that the graph resulting from µ̂ and µ does not possess any

cycle.

Since any cycle did not contain an arrow pointing from t̂ to ĉ, µ̂ makes νk+1 feasible (and

µk does not make νk+1 feasible). Thus, |µt̂k(ĉ)| = |ν t̂k(ĉ)| < |µ̂t̂(ĉ)| ≤ qt̂ĉ. Now there exists

c ∈ C\{ĉ} and s ∈ St̂ such that both s ∈ µk(c) and |µt̂k(c)| > |µ̂t̂(c)|. If |µk(ĉ)| < qĉ, then

(µk)
s→ĉ ∈ F and (µk)

s→ĉ makes νk+1 feasible, the desired conclusion.

If |µk(ĉ)| = qĉ, then there exists t1 ∈ T\{t̂} such that |µ̂t1(ĉ)| > |µt1k (ĉ)| and in the graph

resulting from µ̂ and µk there is an arrow pointing from ĉ to t1. Choose s1 ∈ µ̂t1(ĉ). Since

|µ̂t1(ĉ)| > |µt1k (ĉ)|, there exists c1 ∈ C\{ĉ} such that |µ̂t1(c1)| < |µt1k (c1)| and there is an

arrow pointing from t1 to c1. Since the graph resulting from µ̂ and µ does not possess any

cycle, we cannot have µ̂(s) = c1.

Now if |µk(c1)| < qc1 , then (µk)
s→s1→c1 ∈ F and (µk)

s→s1→c1 makes νk+1 feasible, the

desired conclusion. Otherwise, let |µk(c1)| = qc1 .

In general, let s1, . . . , sl and t1, . . . , tl and c1, . . . , cl be chosen as above, i.e. in the graph
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resulting from µ̂ and µk, we have t1 → c1 → t2 → · · · → tl → cl, all the types t1, . . . , tl are

distinct, and both τ(si) = ti and si ∈ µ̂ti(ci−1) for i = 2, . . . , l.

Now if |µk(cl)| < qcl , then (µk)
s→s1→···→sl→cl makes νk+1 feasible, the desired conclusion.

If |µk(cl)| = qcl , then by the fact that the graph resulting from µ̂ and µk does not contain

any cycle, there exists tl+1 ∈ T\{t1, . . . , tl, t̂} and in the graph resulting from µ̂ and µk there

is an arrow pointing from cl to tl+1. Choose sl+1 ∈ µ̂tl+1(cl). Since both µ̂ and µ are feasible,

there exists cl+1 such that such that |µ̂tl+1(cl+1)| < |µtl+1

k (cl+1)| and in the graph resulting

from µ̂ and µ there is an arrow pointing from tl+1 to cl+1. Since the graph does not contain

any cycle, we must have cl+1 ∈ C\{c1, . . . , cl, ĉ}. Now we have chosen s1, . . . , sl, sl+1 and

t1, . . . , tl, tl+1 and c1, . . . , cl, cl+1 and we continue as above.

Since both the set of types and the set of schools is finite and the graph resulting from µ̂

and µk does not possess any cycle, the above process must terminate. This yields the desired

conclusion. �

Before we formulate our algorithm, we introduce some more notation. For any school c,

let

T (c) = {t ∈ T\{t̂} : max{qt
c
, |νtk(c)|} < |µtk(c)|}

denote the set of types (except for t̂) which can possibly liberate a slot at c without violating

constraints and the tentative assignments made by νk. For any type t, let Y (t) = {c ∈
C\{ĉ} : |µtk(c)| < qtc} denote the set of schools (except for ĉ) which can accept one more

type-t student without violating constraints, and E(t) = {c ∈ Y (t) : |µk(c)| < qc} denote the

set of schools (except for ĉ) where a type-t student can possibly fill an empty slot without

violating constraints.

Feasibility Checking Algorithm (FCA)

START: At Step k of CDAA, let µk ∈ F make νk feasible. At Step k + 1 let student ŝ

propose to ĉ and τ(ŝ) = t̂. Let νk+1(ŝ) = ĉ and νk+1(s) = νk(s) for all s ∈ S\{ŝ}. We check

whether (or not) there exists some µ ∈ F making νk+1 feasible.

If |ν t̂k(ĉ)| < |µt̂k(ĉ)|, then µk makes νk+1 feasible and we set µk+1 = µk (Stop). Otherwise,

let |ν t̂k(ĉ)| = |µt̂k(ĉ)|.

STEP 1: Let C(t̂→ ĉ) = {c ∈ C : max{qt̂
c
, |ν t̂k(c)|} < |µt̂k(c)|} denote the set of schools from

where type-t̂ students can be moved to ĉ. If C(t̂→ ĉ) = ∅, then νk+1 is not feasible and we

set µk+1 = µk (Stop). Otherwise, let C(t̂→ ĉ) 6= ∅ and set C1 = {ĉ} and T1 = ∅; goto STEP

2.

STEP l + 1: Set Tl+1 = ∪c∈Cl
T (c). If Tl+1 ⊆ ∪lh=1Th, then νk+1 is not feasible and we

set µk+1 = µk (Stop). Otherwise, we check whether for some t ∈ Tl+1, E(t) is empty or
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not. If for some t ∈ Tl+1, E(t) is non-empty, then νk+1 is feasible (via some chain): choose

tl+1 ∈ Tl+1 and c′ such that c′ ∈ E(tl+1), for i = l, l − 1, . . . , 2, choose ti ∈ Ti\ ∪i−1
h=1 Th such

that ti+1 ∈ T (ci) for some ci ∈ Y (ti); then choose for i = 2, . . . , l + 1, si ∈ µ
ti+1

k (ci), and

s1 ∈ µt̂k(c) for some c ∈ C(t̂→ ĉ); now (µk)
s1→s2→···→sl+1→c′ ∈ F makes νk+1 feasible and we

set µk+1 = (µk)
s1→s2→···→sl+1→c′ (Stop).

Otherwise, we check whether for some t ∈ Tl+1, Y (t) ∩ C(t̂ → ĉ) is non-empty or not.

If for some t ∈ Tl+1, Y (t) ∩ C(t̂ → ĉ) is non-empty, then νk+1 is feasible (via some cyclical

exchange): choose tl+1 ∈ Tl+1 and c′ such that c′ ∈ Y (tl+1)∩C(t̂→ ĉ), for i = l, l− 1, . . . , 2,

choose ti ∈ Ti\ ∪i−1
h=1 Th such that ti+1 ∈ T (ci) for some ci ∈ Y (ti); then choose for i =

2, . . . , l+ 1, si ∈ µti+1

k (ci), and s1 ∈ µt̂k(c′); now (µk)
�(s1,...,sl,sl+1) ∈ F makes νk+1 feasible and

we set µk+1 = (µk)
�(s1,...,sl,sl+1) (Stop). Otherwise, we set Cl+1 = ∪t∈Tl+1

Y (t) and goto Step

l + 2.

Note that the FCA terminates in a finite number of steps, because if not, then for any Step

l+1 we would have Tl+1 6⊆ ∪lh=1Th, which would contradict the finiteness of T . Furthermore,

by Lemma 9, if there exists some µ ∈ F making νk+1 feasible, then there exists a sequence of

students s1, . . . , sl ∈ S having all distinct types, say τ(si) = ti for all i = 1, . . . , l, such that

either (µk)
s1→s2→···→sl→c (for some school c) makes νk+1 feasible or (µk)

�(s1,...,sl) makes νk+1

feasible. But then we must have for some i = 1, . . . , l, ti = t̂. Without loss of generality, let

t1 = t̂. But then ti ∈ Ti for all i = 1, . . . , l (where Ti is determined in Step i of FCA) and at

Step l we have either E(tl) 6= ∅ if (µk)
s1→s2→···→sl→c (for some school c ∈ E(tl)) makes νk+1

feasible or Y (tl)∩C(t̂→ ĉ) 6= ∅ if (µk)
�(s1,...,sl) makes νk+1 feasible. Hence, FCA determines

whether ŝ can justifiably claim an empty slot in (i) of Step k of CDAA.

APPENDIX C: FAIRNESS ACROSS TYPES

We formulate fairness across types precisely below and show that Theorem 1 and Theorem

5 remain unchanged when fairness across types replaces fairness for same types and (con-

strained) non-wastefulness. Even though these theorems are replicas of their counterparts

in the main text, they do not follow from these theorems in the main text: fairness across

types does not imply (constrained) non-wastefulness; and fairness for same types together

with (constrained) non-wastefulness does not imply fairness across types.

We say that student s justifiably envies student s′ at school c under the feasible

assignment µ if there exists another feasible assignment µ′ such that

(f1) µ(s′) = c, cPsµ(s) and s �c s′,

(f2) µ′(s) = c, µ′(s′) 6= c, and µ′(ŝ) = µ(ŝ) for all ŝ ∈ S\{s, s′}.
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Because µ′ is feasible, (f2) simply says that (µ(c)\{s′}) ∪ {s} respects the controlled

choice constraints at school c and student s′ can be enrolled at school c′ = µ′(s′) such that

(µ(c′)\{s})∪ {s′} respects the controlled choice constraints at c′; in other words assigning s

a slot at c, s′ a slot at c′, and keeping all the other assignments intact does not violate any

controlled choice constraint at any school.

A feasible assignment µ is fair across types if no student justifiably envies any student.

Independently of his own type, a student is allowed to envy any student.

Since fairness for same types is a weaker requirement than fairness across types, Theorem

1 also shows that there may not exist any feasible assignment which is both fair across types

and non-wasteful in a controlled school choice problem. Unfortunately fairness across types

alone may be enough for this non-existence result. This can be seen by modifying the

example, which is used in the proof of Theorem 1, by introducing a third (dummy) student,

who is ranked at the bottom of all priority rankings and whose type is different than t. All

the proofs are omitted in Appendix C and they are available in the expanded form (Appendix

D) of it.

THEOREM 1’: The set of feasible assignments which are fair across types may be empty

in a controlled school choice problem.

Similarly as before, a feasible mechanism is fair across types if it selects an assignment

which is both feasible and fair across types for any controlled school choice problems having a

non-empty set of feasible assignments which are fair across types. Parallel to Theorem 5 and

Remark 6, fairness across types is incompatible with feasibility and incentive compatibility.

THEOREM 5’: In controlled school choice there is no feasible mechanism which is both

incentive compatible and fair across types.
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NOT INTENDED for PUBLICATION

APPENDIX D: FAIRNESS ACROSS TYPES

(expanded form of APPENDIX C)

We formulate fairness across types precisely below and show that Theorem 1 and Theorem

5 remain unchanged when fairness across types replaces fairness for same types and (con-

strained) non-wastefulness. Even though these theorems are replicas of their counterparts

in the main text, they do not follow from these theorems in the main text: fairness across

types does not imply (constrained) non-wastefulness; and fairness for same types together

with (constrained) non-wastefulness does not imply fairness across types.

We say that student s justifiably envies student s′ at school c under the feasible

assignment µ if there exists another feasible assignment µ′ such that

(f1) µ(s′) = c, cPsµ(s) and s �c s′,

(f2) µ′(s) = c, µ′(s′) 6= c, and µ′(ŝ) = µ(ŝ) for all ŝ ∈ S\{s, s′}.

Because µ′ is feasible, (f2) simply says that (µ(c)\{s′}) ∪ {s} respects the controlled

choice constraints at school c and student s′ can be enrolled at school c′ = µ′(s′) such that

(µ(c′)\{s})∪ {s′} respects the controlled choice constraints at c′; in other words assigning s

a slot at c, s′ a slot at c′, and keeping all the other assignments intact does not violate any

controlled choice constraint at any school.

A feasible assignment µ is fair across types if no student justifiably envies any student.

Independently of his own type, a student is allowed to envy any student.

Since fairness for same types is a weaker requirement than fairness across types, Theorem

1 also shows that there may not exist any feasible assignment which is both fair across types

and non-wasteful in a controlled school choice problem. Unfortunately fairness across types

alone may be enough for this non-existence result. This can be seen by modifying the

example, which is used in the proof of Theorem 1, by introducing a third (dummy) student,

who is ranked at the bottom of all priority rankings and whose type is different than t.

THEOREM 1’: The set of feasible assignments which are fair across types may be empty

in a controlled school choice problem.

Proof : The proof is by means of an example. The basic idea is similar to the one used in

proving Theorem 1. Consider the following problem consisting of three schools {c1, c2, c3}
and three students {s1, s2, s3}. Each school has a capacity of one (qc = 1 for all schools c).

The type space consists of two types t1 and t2. Students s1 and s2 are of type t1 whereas
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student s3 is of type t2. For all types the ceiling is equal to one at all schools (qtc = 1 for

all types t and all schools c). School c1 has a floor for type t1 of qt1
c1

= 1. All other floors

are equal to zero. The schools’ priorities are given by s2 �c1 s1 �c1 s3, s2 �c2 s1 �c2 s3 and

s1 �c3 s2 �c3 s3. The students’ preferences are given by c2Ps1c3Ps1c1Ps1s1, c3Ps2c2Ps2c1Ps2s2

and c2Ps3c3Ps3c1Ps3s3. This information is summarized in Table 3.

TABLE 3.

�c1 �c2 �c3 Ps1 Ps2 Ps3

s2 s2 s1 c2 c3 c2

s1 s1 s2 c3 c2 c3

s3 s3 s3 c1 c1 c1

s1 s2 s3

capacities qc1 = 1 qc2 = 1 qc3 = 1

ceiling for t1 qt1c1 = 1 qt1c2 = 1 qt1c3 = 1

floor for t1 qt1
c1

= 1 qt1
c2

= 0 qt1
c3

= 0

ceiling for t2 qt2c1 = 1 qt2c2 = 1 qt2c3 = 1

floor for t2 qt2
c1

= 0 qt2
c2

= 0 qt2
c3

= 0

Next we determine the set of assignments which are both feasible and fair across types for

this problem. Feasibility requires that student s1 or student s2 is assigned school c1 and all

students are enrolled at a school. Therefore,

µ1 =

(
c1 c2 c3

s1 s2 s3

)
s2 envies s3

−→
µ2 =

(
c1 c2 c3

s1 s3 s2

)
,

s2 envies s1 ↑ ↓ s1 envies s2

µ4 =

(
c1 c2 c3

s2 s1 s3

)
←−

s1 envies s3

µ3 =

(
c1 c2 c3

s2 s3 s1

)
are the only assignments which are feasible. Now (as indicated above)

(i) µ1 is not fair across types because s2 justifiably envies s3 at c3,

(ii) µ2 is not fair across types because s1 justifiably envies s2 at c3,

(iii) µ3 is not fair across types because s1 justifiably envies s3 at c2, and

(iv) µ4 is not fair across types because s2 justifiably envies s1 at c2.

Hence there is no assignment which is both feasible and fair across types. �
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Similarly as before, a feasible mechanism is fair across types if it selects an assignment

which is both feasible and fair across types for any controlled school choice problems having a

non-empty set of feasible assignments which are fair across types. Parallel to Theorem 5 and

Remark 6, fairness across types is incompatible with feasibility and incentive compatibility.

THEOREM 5’: In controlled school choice there is no feasible mechanism which is both

incentive compatible and fair across types.

Proof : The proof is by means of modifying the example in the proof of Theorem 4. Consider

the following problem consisting of three schools {c1, c2, c3} and three students {s1, s2, s3}.
Each school has a capacity of one (qc = 1 for all schools c). The type space consists of two

types t1 and t2. Students s1 and s2 are of type t1 whereas student s3 is of type t2. For

all types the ceiling is equal to one at all schools (qtc = 1 for all types t and all schools c).

School c1 has a floor for type t1 of qt1
c1

= 1. All other floors are equal to zero. The schools’

priorities are given by s2 �c1 s1 �c1 s3, s2 �c2 s1 �c2 s3 and s1 �c3 s2 �c3 s3. The students’

preferences are given by c2Ps1c1Ps1c3Ps1s1, c3Ps2c1Ps2c2Ps2s2 and c2Ps3c3Ps3c1Ps3s3. This

information is summarized in Table 4.

TABLE 4.

�c1 �c2 �c3 Ps1 Ps2 Ps3

s2 s2 s1 c2 c3 c2

s1 s1 s2 c1 c1 c3

s3 s3 s3 c3 c2 c1

s1 s2 s3

capacities qc1 = 1 qc2 = 1 qc3 = 1

ceiling for t1 qt1c1 = 1 qt1c2 = 1 qt1c3 = 1

floor for t1 qt1
c1

= 1 qt1
c2

= 0 qt1
c3

= 0

ceiling for t2 qt2c1 = 1 qt2c2 = 1 qt2c3 = 1

floor for t2 qt2
c1

= 0 qt2
c2

= 0 qt2
c3

= 0

Next we determine the set of assignments which are both feasible and fair across types for

this problem. Feasibility requires that student s1 or student s2 is assigned school c1 and all

students are enrolled at a school. If student s1 is assigned school c1, then s2 needs to be

assigned school c3 since otherwise s3 is assigned school c3, s2 school c2, and s2 justifiably

envies s3 at c3. Similarly, if student s2 is assigned school c1, then s1 needs to be assigned

school c2 since otherwise s3 is assigned school c2, s1 school c3, and s1 justifiably envies s3 at
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c2. Now it is straightforward to verify that

µ =

(
c1 c2 c3

s1 s3 s2

)
and µ̄ =

(
c1 c2 c3

s2 s1 s3

)

are the only assignments which are both feasible and fair across types for this problem.

Any mechanism which is both feasible and fair across types must select either the assign-

ment µ or the assignment µ̄. We will show that in each case there is a student who profitably

manipulates the mechanism.

Case 1: The mechanism selects µ.

Under µ student s1 is assigned school c1. We will show that student s1 gains by misre-

porting his true preference. Suppose that student s1 states the (false) preference P ′s1 given

by c2P
′
s1
c3P

′
s1
c1P

′
s1
s1, and all other students were to state their true preferences. Keeping all

other components of the above problem fixed, in the new problem the students’ preferences

are P ′S = (P ′s1 , Ps2 , Ps3).

In the new problem under µ student s1 justifiably envies student s2 at school c3 through

the feasible assignment

µ′ =

(
c1 c2 c3

s2 s3 s1

)
since µ(s1) = c1, c3P

′
s1
c1 and s1 �c3 s2. Now it is straightforward to verify that the unique

feasible and fair across types assignment of the new problem is µ̄. Thus any mechanism,

which is both feasible and fair across types, must select the assignment µ̄ for the new problem.

Under µ̄ student s1 is assigned school c2 which is strictly preferred to c1 under the true

preference Ps1 . Thus student s1 is better off by stating P ′s1 than by stating his true preference

Ps1 , and the mechanism is not incentive compatible.

Case 2: The mechanism selects µ̄.

Under µ̄ student s2 is assigned school c1. Similarly as in Case 1 we will show that student

s2 gains by misreporting his preference. Suppose that student s2 states the (false) preference

P ′s2 given by c3P
′
s2
c2P

′
s2
c1P

′
s2
s2, and all other students were to state their true preferences.

Keeping all other components of the above problem fixed, in the new problem the students’

preferences are P ′S = (Ps1 , P
′
s2
, Ps3).

In the new problem under µ̄ student s2 justifiably envies student s1 at school c2 through

the feasible assignment

µ̄′ =

(
c1 c2 c3

s1 s2 s3

)
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since µ̄(s2) = c1, c2P
′
s2
c1 and s2 �c2 s1. Now it is straightforward to verify that µ is

the unique feasible assignment which is fair across types for the new problem. Thus any

mechanism, which is both feasible and fair across types, must select the assignment µ for

the new problem. Under µ student s2 is assigned school c3 which is strictly preferred to c1

under the true preference Ps2 . Thus student s2 does better by stating P ′s2 than by stating

his true preference Ps2 , and the mechanism is not incentive compatible. �

Remark 10 Similar to Remark 7, in controlled school choice there is not always a unique

candidate for a feasible assignment which is fair across types. This provides again additional

reason for Theorems 5’.

In the example used to prove Theorem 5’ let the controlled school choice problem be

given by Table 4 except for school c1’s capacity constraints and ceilings: let qc1 = 2 and

qt1c1 = qt2c1 = 2. Then it is straightforward to verify that

µ =

(
c1 c2 c3

s1 s3 s2

)
and µ̄ =

(
c1 c2 c3

s2 s1 s3

)

are assignments which are both feasible and fair across types for this problem. Since student

s1 prefers c2 to c1 under Ps1 and student s2 prefers c3 to c1 under Ps2 , students’ preferences

are opposed over µ and µ̄. Obviously, there is no feasible and fair assignment which students

s1 and s2 prefer to µ and µ̄: if there were such an assignment, then neither s1 nor s2 is

assigned c1 and constraints at school c1 are violated since the floor for type t1 at school c1 is

equal to one.

When computing the “minimum” ∧ of µ and µ̄ (by assigning each student to the school

which he least prefers from µ and µ̄) we obtain the assignment

µ ∧ µ̄ =

(
c1 c2 c3

{s1, s2} ∅ s3

)

which is feasible but not fair across types since student s2 justifiably envies student s3 at

school c3.
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