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Résumé 

 

Eurybia et ses proches parents Oreostemma, Herrickia et Triniteurybia sont appelés le 

grade des eurybioïdes. Comprenant 31 espèces vivaces, ce grade appartient au clade Nord-

américain de la tribu des Astereae. Les analyses moléculaires antérieures ont montré que ce 

groupe est à la fois paraphylétique aux Machaerantherinae et un groupe frère aux 

Symphyotrichinae. Les relations infragénériques partiellement résolues et faiblement 

supportées empêchent d’approfondir l'histoire évolutive des groupes et ce, particulièrement 

dans le genre principal Eurybia. Le but de cette étude est de reconstruire les relations 

phylogénétiques au sein des eurybioïdes autant par l'inclusion de toutes les espèces du 

grade que par l’utilisation de différents types de régions et de méthodes d'inférence 

phylogénétique. Cette étude présente des phylogénies basées sur l'ADN ribosomal nucléaire 

(ITS, ETS), de l'ADN chloroplastique (trnL-F, trnS-G, trnC-ycf6) et d’un locus du génome 

nucléaire à faible nombre de copie (CNGC4). Les données sont analysées séparément et 

combinées à l’aide des approches de parcimonie, bayesienne et de maximum de 

vraisemblance. Les données ADNnr n’ont pas permis de résoudre les relations entre les 

espèces polyploïdes des Eurybia. Les analyses combinées avec des loci d’ADNnr et 

d’ADNnr+cp ont donc été limitées à des diploïdes. Les analyses combinées ont montré une 

meilleure résolution et un meilleur support que les analyses séparées. La topologie de 

l’ADNnr+cp était la mieux résolue et supportée. La relation phylogénétique de genres 

appartenant au grade des eurybioïdes est comme suit : Oreostemma (Herrickia s.str. 

(Herrickia kingii (Eurybia (Triniteurybia - Machaerantherinae)))). Basé sur la topologie 

combinée de l’ADNnr+cp, nous avons effectué des analyses de biogéographie à l’aide des 

logiciels  DIVA et LaGrange. Ces analyses ont révélé une première radiation des 

eurybioïdes dans l’Ouest de l’Amérique du Nord, suivi de deux migrations indépendantes 

dans l’Est de l’Amérique du Nord chez les Eurybia. Due au relatif manque de variabilité de 
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l’ADNnr, l’ADNcp et CNGC4, où le triage de lignés incomplet était dominant, l'origine du 

grade est interprétée comme récente, possiblement du Pliocène. La diversification du 

groupe a été probablement favorisée par les glaciations Pléistocènes. 

 

 

Mots-clés : ITS, ETS, trnC-ycf6, trnS-G, trnL-F, ADNcp, ADNnr, Machaerantherinae 
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Abstract 

Eurybia and it relatives, Oreostemma, Herrickia, and Triniteurybia, are collectively 

called the eurybioid grade.  Comprising 31 perennial species, this grade belongs to the 

North American clade of the tribe Astereae.  Early molecular analyses had inferred that this 

group is paraphyletic to the Machaerantherinae and sister to the Symphyotrichinae. The 

partially resolved and poorly supported relationships at the infrageneric level within the 

group, particularly within the core genus Eurybia, is preventing further insights into the 

evolutionary history of the group.  The aim of this study is to reconstruct the phylogenetic 

relationships among the eurybioids by including all species of the grade and by using both 

different types of regions and multiple phylogenetic inference methods.  The present study 

provides phylogenies based on nuclear ribosomal DNA (ITS, ETS), chloroplastic DNA 

(trnL-F, trnS-G, trnC-ycf6), and a low-copy nuclear locus (CNGC4), in separate and 

combined datasets analyzed using maximum parsimony, Bayesian and maximum 

likelihood approaches.  In a separate analysis of the nrDNA dataset, the relationships of 

polyploids in Eurybia proved to be impossible to resolve. The nrDNA and nr+cpDNA 

combined analyses therefore were restricted to diploids. The combined analyses provided 

greater resolution and support than separate analyses.  The nr+cpDNA phylogeny was the 

best resolved and supported. The phylogenetic relationship of genera belonging to the 

eurybioid grade is as follows: Oreostemma (Herrickia s.str. (Herrickia kingii (Eurybia 

(Triniteurybia – Machaerantherinae)))).  Based on the nr+ cpDNA combined topology, we 

performed biogeographical analyses using DIVA and LaGrange.  These analyses revealed 
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an initial radiation of the eurybioids in western North America, with two independent 

migrations to eastern North America within Eurybia.  Based on the relative lack of 

variation in nrDNA, cpDNA and CNGC4, where incomplete lineage sorting was dominant, 

the origin of the grade is interpreted as recent, probably from the Pliocene. Diversification 

of the group was probably favored by the Pleistocene glaciations. 

   

 

Keywords: ITS, ETS, trnC-ycf6, trnS-G, trnL-F, cpDNA, nrDNA, CNGC4, 

Machaerantherinae. 
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 Introduction générale 
 Incluses au sein de la sous-famille des Asteroideae (Asteraceae) et considérées 

comme la deuxième plus grande tribu de la famille, les Astereae Cassini comptent quelque 

3100 espèces groupées en 222 genres. La tribu comprend des herbacées annuelles ou 

vivaces et des arbustes, ainsi que quelques vignes ou arbres (Nesom & Robinson 2007, 

Nesom 2009). Généralement, les représentants de cette tribu occupent des habitats ouverts 

et leur aire de répartition géographique s’étendent à la majorité des régions du monde, tant 

dans les zones alpines de l’Arctique que dans les sous-bois des zones tropicales. Ils sont 

surtout présents dans les milieux xériques à humides des régions tempérées (Brouillet et al. 

2009). L’Amérique du Nord est l'un des plus importants centres de diversification de cette 

tribu (Brouillet et al. 2009). Cette région, qui va du Mexique à l'Arctique, comprend 

approximativement 25% des espèces et 33% des genres de la tribu. Dans une récente revue 

de littérature des Astereae (Brouillet et al. 2009), les auteurs ont confirmé que l’origine des 

Astereae sur le continent nord-américain serait monophylétique, un fait auparavant souligné 

par Noyes & Rieseberg (1999). Elle résulterait d'un événement unique de dispersion à 

longue distance à partir de l’Amérique du Sud. Une fois arrivées en Amérique du Nord, les 

Astereae auraient connu une radiation rapide. D’après Brouillet et al. (2009) et Funk et al. 

(2009), la plupart des genres qui s’y trouvent sont endémiques au continent.  Toutefois, la 

date d’origine de la tribu sur le contient nord-américain, un événement d’importance 

majeure, n'a pu être déterminée (chapitre 2).   

La première classification du groupe nord-américain avait été réalisée uniquement à 

l’aide des caractères morphologiques (Bremer 1994, Nesom 1994, Nesom 2000). À cause 
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de l’uniformité des caractères, de la difficulté d'interprétation et du faible nombre de 

caractères variables, la position taxonomique de nombreux genres et espèces demeurait 

problématique. De surcroît, certains genres de la tribu étaient devenus des genres « fourre-

tout » dans lesquels étaient incluses un grand nombre d’espèces superficiellement 

semblables mais non apparentées. Ces genres ont souvent accumulé un grand nombre 

d’espèces, comme le genre Aster sensu lato (s. l.) qui comptait jusqu'à 400 espèces à la fin 

des années 1980, faisant de lui l'un des principaux genres de la tribu et l'un des plus 

répandus à travers le continent nord américain. 

Récemment, une meilleure compréhension du genre Aster s. l. est venue des travaux 

morphologiques de Nesom (1994) et de la phylogénie moléculaire (sites de restriction) de 

Xiang & Semple (1996) utilisant l’ADN chloroplastique. Ces études ont contribué à la 

reconnaissance de plusieurs genres distincts. 

En plus, les travaux de systématique moléculaire méritent d’être soulignés pour leur 

contribution à l’amélioration de la connaissance de l’histoire évolutive des Astereae nord-

américaines. Ainsi, depuis la première utilisation de l’ADN chloroplastique (i.e. analyses 

de restriction, RFLP) (Suh & Simpson 1990) et de l’ADN nucléaire ribosomal chez les 

Asteraceae (espaceur interne transcrit (ITS), Baldwin 1992; espaceur externe transcrit 

(ETS), Markos & Baldwin 2001), de nombreux taxons nord-américains ont été 

repositionnés tant au sein de la famille qu’au niveau des espèces (Brouillet et al. 2009). Par 

exemple, en se basant sur l’ITS, Noyes & Rieseberg (1999) furent les premiers à démontrer 

que les Aster nord-américaines formaient un groupe distinct des Asters sensu stricto, une 

hypothèse préalablement proposée par Nesom (1994). D’après leurs résultats, les Astereae 

nord-américaines seraient d’origine récente comparativement à celles de l'Amérique du 
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Sud. Malgré ces efforts, il n’en demeure pas moins qu’il subsiste beaucoup de questions 

d'ordre évolutif au sein de différents groupes qui demandent des études à différents niveaux 

phylogénétiques, de la sous-tribu à l’espèce ou aux variétés. 

Dans la présente étude, la majorité des genres d’intérêt traités étaient initialement 

compris au sein du genre Aster s. l (Jones 1980a, 1980b; Semple & Brouillet 1980a, 

1980b ; Semple et al. 2002). En effet Oreostemma, compris dans la section Oreastrum du 

genre Aster L. (Cronquist 1948), a été restauré comme un clade par Nesom (1993). 

Également, dans un traitement basé sur des caractères morphologiques et des distributions 

géographiques publié  l’année suivante, Nesom (1994) reconnaît formellement Eurybia 

comme un genre distinct des Aster s.l.. Dans cet ouvrage, il inclut Herrickia comme une 

section du sous-genre Eurybia et il délimite le genre Oreostemma à trois espèces. En se 

basant sur des résultats moléculaires, Brouillet et al. (2004) ont restauré les espèces 

Triniteurybia aberrans et Herrickia kingii anciennement classifiées comme Tonestus 

aberrans (Nesom & Morgan 1990) et Tonestus kingii (Nesom 1991) respectivement. Ces 

mêmes auteurs reconnaissent Oreostemma, Herrickia, Eurybia et Triniteurybia comme 

quatre genres distincts. En référence à ces genres, ils proposent l’utilisation de « grade des 

eurybioïdes » (du nom du genre principal, Eurybia). Cependant, dans une récente 

publication, Nesom (2009) soutient qu’il n’y a aucun caractère morphologique diagnostique 

justifiant la séparation des genres Herrickia, Eurybia et Triniteurybia en trois différents 

clades. Comme solution alternative, il suggère une extension de la section Herrickia du 

genre Eurybia.  

Les études antérieures traitant tant de la classification (Nesom 1994, Semple 2005) 

que des relations phylogénétiques des eurybioïdes (Brouillet et al. 2004, Lamboy & Jones 
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1988, Lamboy et al. 1991, Semple 2005, Semple et al. 2002) sont incomplètes puisque ces 

dernières étaient restreintes à une fraction du groupe. Afin d’obtenir un portrait de 

l’ensemble et de reconstruire une phylogénie robuste, la présente étude inclut les 31 espèces 

appartenants aux quatre genres: Eurybia (Cass.) S.F. Gray (23 sp.), Herrickia Wooton & 

Standley (4 sp.), Oreostemma Greene (3 sp.) et Triniteurybia Brouillet, Urbatsch, & R.P. 

Roberts (1 sp.) (Brouillet et al. 2004) (Appendice 1).  

L’objectif général de notre étude est de reconstruire l’histoire évolutive des 

eurybioïdes (sensu Brouillet et al. 2004) à l’aide de régions génomiques pour ainsi parvenir 

à la délimitation du groupe et donner une interprétation de la biogéographie du groupe. 

Pour y parvenir, nous allons évaluer l’utilité de plusieurs régions d’ADN considérées 

potentiellement utiles aux niveaux inter- et intra-génériques, et les analyser à l'aide de 

différentes méthodes d'analyse phylogénétique. Une fois de plus, par souci de se rapprocher 

de la phylogénie du groupe (et non des gènes individuels, Doyle 1992), nous allons 

explorer des marqueurs provenant de deux compartiments de la cellule: les génomes 

chloroplastique et nucléaire.  Nous n'avons pas utilisé le génome mitochondrial car 

contrairement aux animaux, le taux de substitution nucléotidique chez les plantes est plus 

faible que dans les deux autres génomes (Wolfe et al. 1987, Palmer et al. 1988). 

Dans un premier temps, notre objectif est de tenter de résoudre l’histoire évolutive  

des eurybioïdes à l’aide de deux régions: l’ITS et l’espaceur externe transcrit (ETS) de 

l’ADN ribosomal (Chapitre 1). Plus précisément, la reconstruction phylogénétique des 

eurybioïdes basée sur l’ITS et d’ETS nous permettra d’évaluer les hypothèses de 

classification précédemment émises par Nesom (1994) et Semple (2005).  De plus, nous 

serons en mesure de valider les hypothèses de relations entre les espèces de la section 
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Eurybia proposées par Lamboy et Jones (1988) et Lamboy et al. (1991).  Grâce au clonage 

de l’ITS, nous tenteront de déterminer la parentalité des espèces polyploïdes du genre 

Eurybia.  Enfin, avec l’ensemble des données morphologiques et phylogénétiques, nous 

proposerons une hypothèse concernant à la fois la biogéographie et l’écologie du genre 

Eurybia. 

Le second objectif est d’examiner l’utilité de certaines régions du génome 

chloroplastique pour reconstruire la phylogénie des eurybioïdes (Chapitre 2). Ceci sera fait 

dans le souci de valider l’histoire du grade telle que suggérée par le génome nucléaire 

ribosomal.  Nous espérons aussi retracer le parent maternel des espèces polyploïdes 

d’Eurybia.  Finalement, nous testerons l’histoire biogéographique hypothétique du chapitre 

précédent (chapitre 1) à l’aide de deux méthodes de reconstruction biogéographique. 

Le troisième et dernier objectif sera d'évaluer une région nucléaire à faible nombre 

de copies afin d’accroître la résolution de la phylogénie et d’approfondir notre connaissance 

de l’histoire du groupe (Chapitre 3). 
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Chapitre 1 

 

Molecular phylogeny of the North American eurybioid 

asters (Asteraceae, Astereae) based on the nuclear 

ribosomal internal and external transcribed spacers 

 

Sugirthini Selliah and Luc Brouillet 

 

Herbier Marie-Victorin, Institut de recherche en biologie végétale, Département de 

Sciences biologiques, Université de Montréal, 4101, rue Sherbrooke Est, Montréal, QC 

H1X 2B2, Canada. 

 

Received 28 February 2008. Accepted 21 May 2008. Published on the NRC Research Press 

Web site at http://canjbot.nrc.ca on 1 August 2008.  

 

Publié dans Botany (anciennement Canadian Journal of Botany) août 2008. Volume 86 

(8) : 901-915.  

Il s’agit d’un article parmi une sélection de papiers publiés dans l'un des deux numéros 

spéciaux, intitulé ‘la  systématique des plantes ‘, ayant pour but de faire valoir la recherche 

dans le domaine de la systématique des plantes au Canada.
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Molecular phylogeny of the North American eurybioid asters 

(Asteraceae, Astereae) based on the nuclear ribosomal internal 

and external transcribed spacers 

Abstract  

The eurybioid asters Oreostemma, Herrickia, Eurybia, and Triniteurybia form a complex 

that is part of the North American clade of tribe Astereae. They comprise 31 species of 

perennial herbs that are widely distributed on the continent. Previous analyses had shown 

poor resolution among the four genera and among the species, particularly within Eurybia 

(23 spp.), which includes diploids and polyploids. We investigated phylogenetic 

relationships within the group using the nuclear ribosomal ITS and ETS regions, in separate 

and combined parsimony and Bayesian analyses. We detected incongruence between the 

ITS and ETS regions when polyploids were included, and so only diploids were considered 

in the combined analyses. Eurybia pygmaea (Lindl.) G.L. Nesom is confirmed as a member 

of Symphyotrichum; Eurybia is monophyletic once this species is re-classified. The 

eurybioids form a paraphyletic grade with Oreostemma, sister to the remaining taxa, 

followed in succession by Herrickia, Eurybia, and Triniteurybia, and with the latter genus 

sister to subtribe Machaerantherinae. Thus the xeric Machaerantherinae (x = 6, 5, 4) is 

nested within the grade of mesic eurybioids (x = 9). Although largely grouping together, the 

polyploid taxa of Eurybia apparently do not constitute a clade and their relationships to the 

diploid taxa and to each other could not be assessed further. Among the diploids, two 

clades emerge: one including the western Eurybia integrifolia  (Nutt.) G.L. Nesom and 

Eurybia sibirica (L.) G.L. Nesom, and the southeastern Eurybia eryngiifolia (Torr. & A. 

Gray) G.L. Nesom; and a second including the western Eurybia radulina (A. Gray) G.L. 

Nesom, the eastern cordate-leaved (sect. Eurybia) and the narrow-leaved, mostly coastal 

plain species of Eurybia. Our analyses, therefore, do not support the current classifications 

of Eurybia.
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Introduction 
 

 The Astereae is the second largest tribe of the Asteraceae (Funk et al. 2005), with 

over 3000 species and 222 genera (emended from Nesom and Robinson 2007). One of the 

major diversifications in the tribe is the North American clade (Noyes and Rieseberg 1999), 

with 77 genera and 719 species (north of Mexico) (FNA Editorial Committee 2006). The 

North American asters are one of the most diverse groups within this clade. Most of these 

are embedded within a group that comprises the subtribes Boltonieae, Symphyotrichinae, 

and Machaerantherinae (subtribal delimitation of Nesom and Robinson 2007). Brouillet et 

al. (2004) showed that Eurybia (Cass.) S.F. Gray (23 spp.) and its relatives, Herrickia 

Wooton & Standley (4 spp.), Oreostemma Greene (3 spp.), and Triniteurybia Brouillet, 

Urbatsch, & R.P. Roberts (1 spp.), collectively comprising the eurybioid grade (Brouillet et 

al. 2004), are paraphyletic to subtribe Machaerantherinae. These 31 species are widely 

distributed across the continent: Eurybia is present in both eastern and western North 

America, usually in mesic habitats; Herrickia inhabits mesic to semixeric habitats of the 

intermountain ranges of the western United States; Oreostemma usually grows in dry to wet 

meadows and fens at mid to high elevations of the western United States ranges; and 

Triniteurybia is restricted to rocky, montane habitats of Idaho and Montana. The eurybioids 

share numerous morphological characters (Nesom 1994; Semple et al. 2002). Leaf shape 

has played a major role in subgeneric classification. It varies from linear to lanceolate, 

oblanceolate or widely elliptic, and to cordate; the margin is entire or serrate, teeth 
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sometimes becoming indurate spines. The base chromosome number for all the genera is x 

= 9, and the ploidy level ranges from diploid to high polyploid (2n = 18–122) (Table 1; 

Lamboy et al. 1991; Semple et al. 2002; Brouillet 2006a, 2006b, 2006c; Nesom 2006a). 

 Oreostemma, called Aster L. section Oreastrum by Cronquist (1948), was reinstated 

by Nesom (1993). Long included within Aster s. l. (e.g., Jones 1980a, 1980b; Semple and 

Brouillet 1980a, 1980b; Semple et al. 2002), Eurybia was considered distinct by Nesom 

(1994). In this treatment, based on morphological characters and geographic distributions, 

Nesom included three species within Oreostemma and 28 within Eurybia. He subdivided 

the latter into two subgenera, Eurybia and Heleastrum, and eight sections (Table 1). 

Herrickia, originally described for the single species Herrickia horrida Wooton & Standley 

(which was never placed in Aster), was incorporated as a section of subgenus Eurybia. 

Nesom and Morgan (1990) and Nesom (1991), respectively, classified Triniteurybia 

aberrans (A. Nelson) Brouillet, Urbatsch, & R.P. Roberts (Macronema aberrans A. 

Nelson) and Herrickia kingii (D.C. Eaton) Brouillet, Urbatsch, & R.P. Roberts (Aster kingii 

D.C. Eaton) within Tonestus. Recently, in their tribal classification, Nesom and Robinson 

(2007) noted Herrickia and Triniteurybia as distinct genera; all eurybioid genera were 

unplaced as to subtribe. Because of discordant basic chromosome number (x = 7) and 

morphology (basal rosette leaves and paniculiform capitulescences; Semple (1982)), and 

following an ITS-based molecular phylogenetic analysis (Brouillet et al. 2001), Semple et 

al. (2002) moved Eurybia chapmanii to Symphyotrichum Nees, as Symphyotrichum 

chapmanii (Torr. & A. Gray) Semple & Brouillet. Brouillet and Selliah (2005), on the basis 

of a preliminary phylogenetic analysis of ITS data, transferred Eurybia pygmaea (Lindl.) 
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G.L. Nesom to Symphyotrichum, as Symphyotrichum pygmaeum (Lindl.) Brouillet & S. 

Selliah. 

 

Table 1. Comparison of recent classifications of the eurybioid genera, with known chromosome 

numbers for each species. 
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Based on morphological and available phylogenetic data, Semple (2005) proposed 

an alternate classification of the eurybioids. He included 23 species within Eurybia, with an 

infrageneric taxonomy similar to that of Nesom (1994), except that section Radulini was 

merged with section Calliastrum, resulting in five recognized sections (Integrifoliae, 

Eurybia, Calliastrum, Eryngiifolii, and Heleastrum; Table 1). Species descriptions for all 

eurybioid genera were published recently (Nesom 2006a; Brouillet 2006a, 2006b, 2006c). 

Few studies have addressed the classification and evolution of Eurybia and the eurybioids. 

Using isozyme similarities, Lamboy et al. (1991) proposed a hypothesis of relationships 

within the polyploid complex of Eurybia section Eurybia (as Aster sect. Biotia). According 

to this study, Eurybia divaricata (L.) G.L. Nesom (2n = 18), Eurybia chlorolepis (Burgess) 

G.L. Nesom (2n = 36), and Eurybia macrophylla (L.) Cass. (2n = 72) of the eastern 

deciduous forests were closely related. This group shared affinities with Eurybia mirabilis 

(Torrey & A. Gray) G.L. Nesom (2n = 18) and Eurybia jonesiae (Lamboy) G.L. Nesom (2n 

= 54) of the Piedmont. The mid-western Eurybia furcata (Burgess) G.L. Nesom (2n = 18) 

was considered most distinct. A restriction fragment length polymorphism (RFLP) analysis 

of plastid DNA of the North American asters suggested an affinity of eurybioids with Aster 

amellus L. (Xiang and Semple 1996), apparently contradicting the classification of Nesom 

(1994). 

The development of molecular markers from the plastid and nuclear genomes has 

allowed systematists to re-assess the position of many taxa within tribe Astereae (e.g., 

Brouillet et al. 2004). One of the most widely used molecular markers in phylogenetic 

studies at the inter- and sub-generic levels within the tribe has been the nuclear ribosomal 

DNA internal transcribed spacers ITS1 and ITS2 (e.g., Noyes and Rieseberg 1999; Markos 
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and Baldwin 2001; Brouillet et al. 2004), including the 5.8S rDNA locus (collectively 

referred to here as “ITS”). More recently, data from part of the 3′-end of the external 

transcribed spacer (ETS) between the 26S and 18S rDNA genes of the nuclear ribosomal 

repeat units, was added in the hope of providing better resolution and stronger support to 

resulting phylogenetic trees (e.g., Markos and Baldwin 2001; Morgan 2003; Roberts and 

Urbatsch 2003, 2004; Urbatsch et al. 2003; Brouillet et al. 2004). Within the eurybioids, a 

preliminary combined phylogenetic analysis of ITS and of the plastid transfer RNA genes 

trnL–UAA and trnF–GAA and associated intron and spacer regions (trnL–F) hinted at the 

potential monophyly of Eurybia (Bastien and Brouillet 2002). Using ITS and ETS data, 

Brouillet et al. (2004) showed that Tonestus kingii (D.C. Eaton) G.L. Nesom and Tonestus 

aberrans (A. Nelson) G.L. Nesom & D.R. Morgan are related to Eurybia and not to 

Tonestus as previously hypothesized (Nesom and Morgan 1990, Nesom 1991, 1994). These 

authors reinstated Herrickia, expanded it to incorporate Herrickia kingii, and created the 

new genus Triniteurybia to accommodate T. aberrans. In this study, however, it was 

unclear whether Herrickia formed a single or two distinct clades, with H. kingii separate 

from Herrickia s. str. Although Oreostemma and Herrickia appeared to be early diverging 

lineages, the relationships among the eurybioid genera were little resolved: Oreostemma–

Herrickia–Eurybia was resolved as sister to a clade comprising Triniteurybia and subtribe 

Machaerantherinae, suggesting that the eurybioids were paraphyletic. The 

Machaerantherinae include mainly taprooted taxa of xeric habitats with purple, white, or 

yellow rays, and base chromosome numbers of x = 6, 5, 4. The relationship between 

Machaeranthera and the core asters (including Eurybia) was discussed by Cronquist and 
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Keck (1957) when they segregated the former from the latter on the basis of various 

characters, including the taproot. 

Several phenomena increase the difficulty of establishing phylogenetic relationship 

among eurybioid species. Hybridization and polyploidy (Lamboy et al. 1991), phenotypic 

variability, and the interpretation of morphological characters all contribute to this. 

Reconstructing the evolutionary history of reticulate polyploid complexes may be 

particularly challenging (Skala and Zrzavy 1994). Thus, the relationships among species of 

the eurybioid complex remain uncertain. Furthermore, the existing sectional classifications 

of Eurybia are partly contradictory. 

 

The objectives of our study are thus to elucidate the phylogenetic relationships 

among the eurybioid genera and species using nuclear ribosomal ITS and 3′ ETS sequence 

data, and to evaluate the hypotheses of relationships reflected in current classifications. 

Elucidating relationships will allow us to investigate the evolution of certain traits and 

propose hypotheses on the ecological and biogeographic history of the group. 
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Materials and methods 

 

Taxon sampling 

We included all species of Oreostemma, Eurybia, Herrickia, and Triniteurybia, as 

defined by Nesom (1994, 2006) and Brouillet (2006a, 2006b, 2006c; Brouillet et al. 2004), 

in addition to representatives of genera belonging to the North American clade of Astereae 

(Noyes and Rieseberg 1999). Samples were obtained from herbarium specimens or as 

fresh-collected material preserved in silica gel. We performed an analysis on the larger ITS 

dataset (hereinafter, ITS analysis), which comprised 52 new samples and 25 sequences 

from GenBank, for a total of 25 genera and 68 species (supplementary data, Appendix 2); 

Doellingeria infirma (Michx.) Greene was used as the outgroup. In the ETS analysis, we 

included 42 sequences (9 from GenBank and 33 newly sequenced for this study, 

supplementary data, Appendix 2); for the combined ITS and ETS analyses (hereinafter, 

combined analyses), only the 25 diploid species of the eurybioid and two species of 

Machaerantherinae genera were included (supplementary data, Appendix 2); Chlorocantha 

spinosa (Benth.) G.L. Nesom was used as the outgroup. We used a single individual per 

species, except for seven Eurybia species (three individuals for Eurybia compacta G.L. 

Nesom and two each for Eurybia spectabilis (Aiton) G.L. Nesom, Eurybia surculosa 

(Michx.) G.L. Nesom, Eurybia merita (A. Nelson) G.L. Nesom, Eurybia eryngiifolia 

(Torrey & A. Gray) G.L. Nesom, Eurybia integrifolia  (Nutt.) G.L. Nesom, and E. 

chlorolepis). To explore the extent of intra-individual ITS variation within Eurybia species, 

we generated 59 cloned sequences from 8 of the 12 polyploid species; 11 sequences of 

diploid species and 1 of Machaeranthera tanacetifolia (Kunth ) Nees were added for a total 

of 70 sequences to carry out a network analysis (supplementary data, Appendix 2). Three 

polyploid species, Eurybia spectabilis, Eurybia spinulosa (Chapman) G.L. Nesom, and 
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Eurybia conspicua (Lindl.) G.L. Nesom, were not included in the latter analysis because we 

were unable to clone them. All new sequence accessions were deposited in GenBank. 

 

DNA extraction, PCR amplification, cloning, and sequencing 

DNA extraction was done using a modified CTAB protocol (Joly et al. 2006) or 

with the QIAgen DNeasy Plant Mini Kit (QIAGEN, Mississauga, Ont.), following the 

manufacturer instructions. Amplifications of the ITS and ETS regions were performed 

using the primers AB101 and AB102 for ITS (Douzery et al. 1999), and Ast-8 (Markos and 

Baldwin 2001) and 18S-2L (Linder et al. 2000) for ETS. A number of ITS sequences also 

were obtained using primers optimized for the Astereae (J. Vaezi, Institut de recherche en 

biologie végétale, Université de Montréal, personal commication, 2007): ITSvR (5′ 

GATATGCTTAAACTCAGCGG) and ITSvF (5′AGGAAGGAGAAGTCGTAACAAGG). 

The PCR amplification reaction mix contained 10× PCR Buffer with 1.5 mmol/L MgCl2, 

(Roche Diagnostics, Laval, Que.), 100 µmol/L of each dNTP, 0.3 mmol/L of each primer, 

2.5%–5% DMSO and glycerol, one unit of Taq DNA polymerase, and 70 ng genomic 

DNA, in a final reaction volume of 25 μL. For some samples, we added 1.5 mmol/L of 

MgCl2, 0.05% Tween 20, or 2.5 μg BSA. For ETS amplification, the reaction mix was the 

same, but without the addition of BSA or Tween 20. 

 

Because we observed double peaks during direct sequencing of the polyploid 

species, which suggests alleles or potential paralogues, we cloned the PCR products of the 

ITS region for seven species in the hope of detecting the parental signal for these species. 

Only one or two double peaks were observed in ETS polyploid sequences and cloning was 

not performed on these. This did not affect the combined analyses, as they are based on 

diploid taxa only. Amplification conditions and purification procedures were kept the same 

except that each PCR was done in triplicate and combined after amplification (during 

purification) to minimize PCR recombination artifacts (Joly et al. 2006). We cloned the 

PCR product using the pGEM-T vector (Promega Corp., Madison, Wisc.) and grew 

positive colonies overnight in LB broth. The vector-specific primers SP6–T7 were used for 
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amplification and sequencing. Each sequenced clone was compared with the others and 

with the initial sequence obtained from direct sequencing, to eliminate PCR-artifact clones 

caused by Taq DNA polymerase errors and to detect putative paralagous variants. 

 

With few exceptions, Taq was added after the first 2 min of the initial denaturation 

phase of the reaction (hot start PCR). Conditions for PCR amplification of ITS were: initial 

denaturation for 3 min at 94 °C, 35 cycles 30 s at 94 °C, 30 s annealing at 53 °C, 30 s at 72 

°C, and lastly 7 min extension at 72 °C. The amplification conditions for ETS were similar, 

except that the annealing temperature was 50 °C. PCR products were purified according to 

PEG purification (see modified protocol of Joly et al. 2006). Sequencing cycles were 

performed by adding “Big Dye” Terminator chemistry version 1.1 kit (Applied Biosystems, 

Foster City, Calif.) following the manufacturer instructions, except that 0.25 μL of dye 

terminator were used in a total mix volume of 10 μL. For each polyploid individual, 5–11 

clones were sequenced. Approximately 60 ng of PCR sequencing products were 

precipitated using a sodium acetate solution and ethanol (70%). For each amplicon, double-

stranded sequences were generated using an ABI 3100–Avant automated DNA sequencer 

(Applied Biosystems). 

 

Phylogenetic analyses 

We assembled, edited, and base-called sequences using Sequencher version 4.1 

(Genecodes Corp., Ann Arbor, Mich.). New ITS sequences were incorporated into an 

aligned matrix of Astereae ITS sequences using BioEdit version 7.0.5.3 (Hall 1999) and 

aligned manually; the original alignment was based on the ITS secondary structure 

published for Asteraceae by Goertzen et al. (2003). 

 

For the ITS data matrix, the number of unaligned ITS characters was 619–629 bp. 

Five sequences were incomplete; the shortest sequence was 502 bp (E. compacta). Once 

aligned, the ITS matrix of 639 characters was partitioned into three regions: ITS1 (259 bp), 

5.8S rDNA (164 bp), and ITS2 (216 bp). To select the substitution model for each partition, 
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the hierarchical Likelihood Ratio Test (hLRT) and the Akaike information criterion (AIC) 

were performed as implemented in MrModeltest version 2.0 (Nylander 2004). Both tests 

proposed models that, after analysis, produced identical topologies with similar support 

values. According to Posada and Buckley (2004), the AIC offers several advantages over 

the hLRT, such as assessing model selection uncertainty, allowing comparison of multiples 

models simultaneously and model averaging, and not relying on a subjective significance 

level. Therefore, only the analyses based on models selected using the AIC are presented 

here. The most appropriate models suggested by the AIC for the ITS1, 5.8S, and ITS2 

partitions, respectively, were, for the ITS analysis, the SYM + G, K80, and SYM + G 

models, and for the combined analysis, the SYM + I, K80, and SYM + I models (Kimura 

1980; Zharkikh 1994). 

 

The ETS unaligned matrix comprised 504 characters and included two incomplete 

sequences, the shortest with a length of 488 bp (E. mirabilis). The best-fit model for the 

ETS partition in the combined analysis was the GTR + G model. In the combined analyses, 

a total of 1128–1138 bp nucleotides were included before alignment; five sequences were 

incomplete, the shortest having 1080 bp (E. compacta). 

 

For each data set, both Bayesian and parsimony analyses were done. Bayesian 

analysis was performed using MrBayes 3.1.2 (Huelsenbeck and Ronquist 2001) on a 

shared-memory multiprocessor computer (Altix 4700, Réseau québécois de calcul de haute 

performance, Université de Montréal, Que.) with two independent runs and 16 Markov 

chains in each run; 15 heated chains and 1 cold chain were used, starting from a random 

tree; the chains were run simultaneously for 10 000 000 generations. Parameter estimation 

for each partition was rendered independent using the unlink option. In each run, trees were 

sampled every 1000th generation for a total of 20 002 trees. In the ITS analysis, the first 

5000 trees per run prior to apparent stationarity were discarded using Tracer version 1.4 

(Rambaut and Drummond 2007). The remaining 10 002 trees were used to compute the 

50% majority-rule consensus tree and to obtain posterior probability values (PP). In the 

combined analysis, the consensus-computing strategy was similar; the number of retained 
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trees after a burnin of 3000 trees was 14 002. Because support values estimated by posterior 

probabilities generally tend to be overestimations when compared to bootstrap values 

(Hillis and Bull 1993; Wilcox et al. 2002; Douady et al. 2003), only values ≥ 95% were 

considered to be well supported. 

 

Parsimony analyses were conducted with PAUP* version 4.b10 (Swofford 2002) 

using a heuristic search with the following options: ACCTRAN, MulTrees, tree bisection 

reconnection (TBR) branch swapping with 100 random addition sequence replicates, 

maximum of 100 000 trees retained. Characters were weighted equally and unordered. 

Since indels (insertion–deletion mutations) may provide useful phylogenetic information 

(e.g., Kelchner 2000), they were coded separately as binary (presence/absence) characters 

following the simple indel coding method of Simmons and Ochoterena (2000), as 

implemented in Gapcoder (Young and Healy 2003). To evaluate clade support, a bootstrap 

analysis (boostrap support, BS) was performed with 1000 replicates in a heuristic search 

with random taxon addition and TBR branch swapping, and a maximum of 100 trees 

retained per replicate. To assess the combinability of the ITS and ETS data sets, 

incongruence length differences (ILD) tests were performed, as implemented in the 

partition homogeneity test of PAUP* with 1000 replicates. As there is controversy 

concerning the use of the ILD test (e.g., high type I error rate as a congruence test, not 

powerful enough to detect heterogeneity in lineage-specific or site-specific cases (see 

Barker and Lutzoni 2001; Darlu and Lecointre 2002)), a direct tree and support value 

comparison was used as a complementary test of incongruence. 

 

To ascertain the putative parents of the polyploid species, a network analysis 

(hereinafter ITS clone analysis) of the ITS clones was carried out. All cloned sequences 

from the polyploids and direct sequences of the diploid species were included in this 

matrix. Twelve identical clones within species were identified and removed using Collapse 

version 1.2 (Posada 2004). The Recombination Detecting Program version 2.0 (Martin et 

al. 2005) was used to detect potential recombinant sequences, parental sequences, and 

recombination breakpoints on sequence alignments. This package includes 10 
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recombination detection methods with different characteristics. According to Martin et al. 

(2005), using a combination of methods is more efficient than using a single one. In our 

analyses, we used six: RDP (Martin and Rybicki 2000), GENECONV (Sawyer’s runs test; 

Padidam et al. 1999), Maximum χ2 (Maynard-Smith 1992), BootScan (Salminen et al. 

1995), Chimaera (Posada and Crandall 2001), and Sister Scanning (Gibbs et al. 2000). 

They were applied with the default settings, using a Bonferroni corrected p-value cutoff of 

0.05 and a window size of 20. The network analysis was done with SplitsTree version 4.1 

(Huson and Bryant 2006) using the Neighbor-Net algorithm (Bryant and Moulton 2004) 

with default settings (i.e., characters transformation: uncorrected P-distances; splits 

transformation: equal angle; maximum dimensions: four). 

 

The geographical distribution and two leaf morphology characters, blade shape and 

margin, were mapped onto one of the 20 equally most parsimonious trees of the combined 

analysis using MacClade version 4.07 (Maddison and Maddison 2005) to explore 

hypotheses about biogeography and character evolution in the eurybioid grade. The leaf 

characters were coded as multistate and unordered (margin: 0, entire; 1, serrate; 2, spinose; 

3, lobed; blade shape: 0, lanceolate to oblanceolate (including oblong, ovate-oblanceolate, 

etc.); 1, cordate (ovate with cordate base); 2, linear). 
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Results 

 
The aligned ITS matrix comprised 639 characters, with 0.01% missing data, of 

which 181 (28.3%) were parsimony informative. MP analysis yielded 100 000 trees of 529 

steps with a consistency index (CI, excluding uninformative characters) of 0.52 and a 

retention index (RI) of 0.81. The ETS matrix included 513 characters plus three indels, with 

0.002% missing data, of which 73 (14.2%) were parsimony informative. The MP analysis 

recovered 108 shortest trees of 212 steps (CI = 0.66; RI = 0.85). The combined data matrix 

comprised 1142 characters plus seven indels, with 0.006% missing data, of which 135 

(11.8%) were parsimony informative. MP analysis resulted in 20 shortest trees of 382 steps 

(CI = 0.67; RI = 0.83). Results of the ETS analysis are not shown because the ITS and ETS 

trees were similar. No significant incongruence was detected between the diploid ITS and 

ETS data sets using the ILD test (p = 0.659) and direct tree comparison. The combined 

analysis was more resolved than the separate ITS and ETS analyses; therefore, the 

combined matrix was used in subsequent analyses. 

 

For the ITS analysis, the consensus topology obtained with Bayesian (Fig. 1) and 

parsimony (not shown) analyses showed identical relationships (BS and PP values are 

given on Fig. 1). In the ITS (Fig. 1) and combined (Fig. 2) topologies, the following 

relationships are moderately supported by Bayesian inference within the eurybioid grade: 

(Symphyotrichinae (Oreostemma–Herrickia s. str. (H. kingii (Eurybia (Triniteurybia 

(Machaerantherinae)))))). All genera except Herrickia appear to be monophyletic, once 

Symphyotrichum pygmaeum (=E. pygmaea) is excluded from Eurybia. On the ETS tree (not 

shown), species group within their respective genus but relationships among and within 

genera are unresolved. 
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Figure 1. (Previous page) Majority rule consensus of 14 002 trees from the Bayesian 

phylogenetic analysis of North American Astereae, based on nrDNA ITS sequence data. 

Doellingeria infirma is the outgroup; numbers above branches are Bayesian posterior 

probabilities, below are bootstrap support values obtained by parsimony analysis of 100 

000 trees (only those above 70% are noted); the number of individuals included for each 

species is noted in parentheses if more than one. The gray box highlights a species 

previously classified in Eurybia. The predominantly diploid species of Eurybia (marked) 

include the polyploid E. chlorolepis and E. spinulosa. 

 

 

 

 

 

 

Figure 2. (Following page) (A) Phylogram of one of the 20 shortest trees from a parsimony 

analysis of the combined nrDNA ITS and ETS sequence data of diploid species of 

eurybioid genera and representative Machaerantherinae; Chloracantha spinosa is the 

outgroup (tree length = 76; *, branch length not to scale); numbers above branches are 

bootstrap support values (>50%); the number of individuals included for each species is 

noted in parentheses if more than one; the geographic distribution of each species is 

mapped onto the tree (western vs. eastern North America). (B) Majority-rule consensus tree 

of 14 002 trees from a Bayesian analysis of combined nrDNA ITS and ETS data from the 

same species. Posterior probability values are noted above the branches; synapomorphic 

indels are mapped on the tree: full bars are ITS indels (1, 112 bp; 2, 126 bp; 3, 414 bp; 4, 

440 bp); open bars are ETS indels (A, 198 bp; B, 251 bp; C, 370 bp). 
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MP and Bayesian analyses of the combined data for diploids (Fig. 2) show similar 

relationships except between E. divaricata, E. furcata and Eurybia radulina (A. Gray) G.L. 

Nesom, where relationships are contradictory but poorly supported. On the ITS tree (Fig. 

1), E. divaricata is sister to the polyploid E. chlorolepis with strong support (no polyploids 

were included in the combined analyses). 

 

Within the ITS clone matrix, a single putative recombinant clone in E. macrophylla 

was detected by two of the programs used (Max χ2 and Chimaera); this sequence was 

discarded. It is useful to remember that clones for each species originated from a single 

individual. The number of splits in the ITS network was 227, with a total weight of 0.321. 

The network (Fig. 3) shows two major groups, one mainly of diploid and one of polyploid 

species, with M. tanacetifolia attaching to the diploids. This division corresponds to the 

clades in the ITS topology (Fig. 1) and is the most significant split on the network. Two 

tetraploid species, E. chlorolepis and Eurybia paludosa (Aiton) G.L. Nesom, cluster with 

the diploids. In general, clones from each polyploid species are somewhat variable but tend 

to group together. One clone of E. paludosa groups with the polyploids. The hexaploid 

Eurybia schreberi (Nees) Nees has three clusters: one variant is with diploid Eurybia 

hemispherica (Alexander) G.L. Nesom, E. compacta, Eurybia avita (Alexander) G.L. 

Nesom, E. mirabilis, and Eurybia radula (Ait.) G.L. Nesom, adjacent to the cluster 

including diploid E. divaricata and tetraploid E. chlorolepis, one set with Eurybia 

saxicastelli (Campbell & Medley) G.L. Nesom and E. surculosa, and a third with E. 

macrophylla, E. saxicastelli, and E. paludosa. In addition to grouping with the latter 

cluster, the octoploid E. macrophylla has one clone that is clearly distinct from this cluster. 

In addition to its presence in the two clusters mentioned above, hexaploid E. saxicastelli 

has one clone asssociated with E. jonesiae. 
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Figure 3. Network of nrDNA ITS sequence data of the Eurybia species; polyploid species 

clones are represented by symbols; diploid sequences are represented by species names, 

except E. mirabilis, which is represented by a symbol; Machaeranthera tanacetifolia 

represents the Machaerantherinae; the broken line divides the clones into groups that are 

primarily diploids vs. polyploids (note a single clone of the polyploid E. schreberi and two 

clusters of polyploid clones from E. paludosa and E. chlorolepis among the diploid taxa).  
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Discussion  

 

As in other inter- or sub-generic studies (e.g., Widmer and Baltisberger 1999; 

Whittall et al. 2000; Markos and Baldwin 2001; Rauscher et al. 2002; Obbard et al. 2006; 

Siripun and Schilling 2006) where ITS and ETS were considered useful in resolving 

phylogenetic relationships with good support, our phylogenetic trees were mostly resolved 

and well supported, although more poorly so in parsimony analyses. The Bayesian ITS 

analysis (Fig. 1) shows that the eurybioid genera are well supported as members of the 

clade comprising the subtribes Symphyotrichinae and Machaerantherinae, as suggested by 

Brouillet et al. (2004). Relationships among these genera also are similar to those found by 

these authors (see below). As discussed by Brouillet and Selliah (2005), S. pygmaeum 

clearly belongs to Symphyotrichum rather than Eurybia (as in Nesom 1994). This species 

appears to be closely related to Symphyotrichum yukonense (Cronq.) G.L. Nesom, a 

member of subgenus Virgulus section Grandiflori (Brouillet et al. 2006), as initially 

hypothesized by Hultén (1968) and Porsild and Cody (1980). This relationship has been 

confirmed by a morphometric analysis of S. pygmaeum and S. yukonense versus Eurybia 

sibirica (C. Wattier, Institut de recherche en biologie végétale, Université de Montréal, 

personal communication, 2007). The delimitation of genera and the classification within 

eurybioids proposed by Nesom (1994, modified in Nesom and Robinson 2007) and Semple 

(2005) are not fully supported in our molecular phylogenetic study. 

 

Oreostemma 

Genus Oreostemma is strongly supported (Fig. 1: PP = 1.00, BS = 97; Fig. 2: PP = 

1.00, BS = 99; unique indel in ETS, Fig. 2B) as a monophyletic group that includes three 

species, Oreostemma alpigenum (Torrey & A. Gray) Greene, Oreostemma peirsonii 

(Sharsmith) G.L. Nesom, and Oreostemma elatum (Greene) Greene. The position of 

Oreostemma in the ITS analysis is partly unresolved (Fig. 1). Species of Oreostemma grow 
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in open, montane to alpine habitats. Oreostemma elatum occurs in fens and other wet 

habitats at lower elevations (1000–1500 m a.s.l.), O. alpigenum grows in wet to moist 

areas, lake edges, clearings, alpine meadows or tundra (1200–3300 m a.s.l.), and O. 

peirsonii is found on dry alpine slopes, meadows and ridges (3000–3800 m a.s.l.). 

Oreostemma alpigenum is more widespread than O. elatum and O. peirsonii, both of which 

are restricted to small areas of the Sierra Nevada – Cascades of California (Nesom 2006a). 

Within the genus, O. elatum is sister to O. peirsonii and O. alpigenum. This suggests that 

adaptation from low elevation montane wetlands to high altitude alpine habitats occurred 

during speciation in the genus. 

 

Herrickia 

This genus had been subsumed as a section of Eurybia by Nesom (1994); originally 

monospecific, Nesom had expanded it to include Herrickia glauca (Nutt.) Brouillet (plus 

var. pulchra as Eurybia pulchra (S.F. Blake) G.L. Nesom) and Herrickia wasatchensis 

(Jones) Brouillet, the two species morphologically distinct. Our current analyses confirm 

previous results (Brouillet et al. 2004) with one exception (Figs. 1 and 2). In both sets of 

phylogenetic analyses, the genus is divided into two clades: H. kingii (with two subspecies) 

versus Herrickia s. str., the latter including H. horrida, H. glauca (two varieties) and H. 

wasatchensis. In the ITS (Fig. 1) and ETS (not shown) analyses, Oreostemma, Herrickia s. 

str., and the remaining eurybioids plus Machaerantherinae form a trichotomy. Herrickia 

kingii is then sister to Eurybia–Triniteurybia–Machaerantherinae with high support in the 

ITS and combined Bayesian analyses (respectively Fig. 1, PP = 0.88; Fig. 2B, PP = 0.94). 

In the combined analyses (Fig. 2), Herrickia s. str. is characterized by a unique ETS indel 

and is weakly supported as sister to H. kingii–Eurybia–Triniteurybia–Machaerantherinae, 

which may suggest that H. kingii belongs to a separate genus. In our current combined 

analyses, support for the position of Herrickia s. str. is low (PP = 0.52, BS ≤ 50; Fig. 2), 

and its relationships will remain unresolved until more data are obtained. Herrickia is 

mostly distributed in the mountains of the Intermountain region of western North America, 

usually in relatively open, mesic to dry habitats within an arid landscape. In the Herrickia s. 



28 

 

 

str. clade, H. horrida is found along canyons and hillsides at the Colorado – New Mexico 

border (Brouillet 2006a); it is sister to the three other taxa, H. glauca var. glauca and var. 

pulchra, and H. wasatchensis. Both varieties of H. glauca appear to be able to inhabit drier 

habitats than H. wasatchensis; var. glauca is widespread while the other two taxa are 

restricted in distribution; this variety is also the sole member of the whole clade to be 

eglandular (Brouillet 2006a). These three taxa currently form a polytomy and it is not 

possible to determine their interrelationships. Both Herrickia lineages include restricted, 

canyon-inhabiting species, which would suggest that this type of habitat may have played a 

key role in the early evolution of the group. 

 

Triniteurybia 

Both the ITS and combined trees show a sister relationship between T. aberrans and 

subtribe Machaerantherinae, as noted by Brouillet et al. (2004), but this inference is 

strongly supported only in the Bayesian analyses (Fig. 1: PP = 0.95; Fig. 2B: PP = 1.00). 

Triniteurybia was never included in Aster or Eurybia, probably in part due to its lack of ray 

florets. Triniteurybia is a rhizomatous perennial whereas the Machaerantherinae often are 

taprooted perennials or annuals. The possibility that the xeric-adapted subtribe 

Machaerantherinae (x = 6, 5, 4) is derived from the mostly mesic eurybioid grade (x = 9) 

raises interesting avenues in the study of the evolution of this species-rich, western North 

American group. A reduction in chromosome number correlated with a migration to xeric 

habitats within a lineage was suggested for Brachyscome Cass. (Astereae) (Field et al. 

2006) and for tribes Gnaphalieae and Inuleae (Asteraceae) (Watanabe et al. 1999) in 

Australia. 

 

Eurybia 

Eurybia is the largest genus among the eurybioids and includes both diploid and 

polyploid species. In both analyses, it is sister to the Triniteurybia–Machaerantherinae 

clade and, as circumscribed here, is monophyletic, as noted by Brouillet et al. (2004). 
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Eurybia polyploid species occur at different ploidy levels: most are tetraploid but some are 

hexaploid or octoploid, and one is deca- to dodeca-ploid (Brouillet 2006b). Usually, each 

species has a single ploidy level. These polyploids probably have undergone a complex 

reticulate evolution and could be autopolyploid, allopolyploid, or the result of 

retrogressive–progressive polyploidization (Lamboy and Jones 1988; Lamboy et al. 1991). 

 

Eurybia polyploids 

The ITS topology (Fig. 1) divides the Eurybia species into two distinct groups, 

diploids and polyploids, except for two tetraploid species, E. paludosa and E. chlorolepis, 

which group primarily with the diploids. These two species may prove to be 

autotetraploids. A similar phenomenon was observed in the ITS clone network analysis 

(Fig. 3) except that the presence of a locus of E. paludosa within the polyploid complex 

might suggest recent allotetraploidy instead. In the network analysis (Fig. 3), clones of the 

cordate-leaved E. divaricata (2x) and E. chlorolepis (4x) are adjacent to the cluster in which 

one clone of E. schreberi (6x) is found. This may indicate a partial relationship of these 

three taxa. The split between the two clusters and the disjunct cluster of E. schreberi clones 

appear to contradict the hypothesis of Lamboy et al. (1991) who suggested that E. schreberi 

might be an autopolyploid derivative of E. divaricata, in which case all E. schreberi clones 

would be expected to group with E. divaricata and E. chorolepis, as does the latter. 

Lamboy et al. (1991) alternately hypothesized that E. macrophylla and E. divaricata were 

the parents of the hybrid (having contributed to E. schreberi by retrogressive polyploidy) or 

that E. schreberi may have been one of the parents of E. macrophylla. Both hypotheses 

may be supported by our data. In the network, we were unable to confirm the putative 

parents of the polyploid species inferred from previous studies (Lamboy et al. 1991; 

Lamboy 1992) because, aside from the cases mentioned above, none of the polyploid 

clones provided clues about putative parents. 

 

There is no morphological basis for a phylogenetic split between diploid and 

polyploid species. For instance, polyploid species of sect. Eurybia do not cluster with the 



30 

 

 

diploid species of the section (Fig. 1) even though they share morphological features, 

notably their cordate leaves. In the ITS clone analysis, even if the ancestors of section 

Eurybia polyploids originated partly from outside the section, we would have expected to 

find at least some of the polyploid clones to group with diploid sequences, which is not the 

case. Processes such as concerted evolution, gene loss, homoeologous recombination, 

genome rearrangement, and the presence of pseudogenes may obscure the phylogenetic 

signal; this also may lead to the loss of the repeat type of one of the parents within the 

polyploid (Wendel 2000; Bailey et al. 2003; Slotte et al. 2006). An examination of the 

clones of the Eurybia polyploids showed that they do not have an obvious pseudogene 

signature nor a signal characteristic of straightforward chimeric or recombinant sequences. 

We tentatively interpret the pattern obtained as a rapid recombination of sequences after 

polyploidization, followed by concerted evolution within each locus, with subsequent 

divergence through point mutations at distinct loci, which would indeed prevent the 

reconstruction of phylogenetic relationships. Although in many studies the putative hybrid 

origin of polyploids was confirmed using ITS data (e.g., Eupatorium L. (Asteraceae): 

Siripun and Schilling 2006; Mercurialis L. (Euphorbiaceae): Obbard et al. 2006; Glycine 

Willd. (Leguminosae): Rauscher et al. 2002; Sidalcea A. Gray (Malvaceae): Whittall et al. 

2000; Draba L. (Brassicaceae): Widmer and Baltisberger 1999), in our study, the nrDNA 

markers turned out to be inappropriate to infer the evolutionary history of the polyploids, as 

noted by Mavrodiev et al. (2005) in Tragopogon L. (Asteraceae) and Slotte et al. (2006) in 

Capsella Medik. (Brassicaceae). 

 

At the present time, it is difficult to interpret the evolutionary and biogeographic 

history of the polyploid members of Eurybia, the nrDNA dataset being inadequate to 

untangle their relationships. Nonetheless, it is notable that all section Eurybia polyploid 

species are part of the deciduous and mixed forests of eastern North America, whereas most 

members of sections Calliastrum and Heleastrum are restricted to the coastal plain and 

adjacent areas. 
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Eurybia diploids 

There have been several modifications to the composition of Eurybia and the 

eurybioids since the genus was reinstated by Nesom (1994): Herrickia was recognized as 

distinct (Brouillet et al. 2004; Semple 2005), and two species were transferred to 

Symphyotrichum on the basis of ITS and morphological data, S. chapmanii (Semple et al. 

2002) and S. pygmaeum (Brouillet and Selliah 2005). 

 

Neither the subgenera nor sections recognized by Nesom (1994) and Semple (2005) 

within Eurybia are supported. In our study (Fig. 2), two clades are resolved: a clade of 

mainly eastern species (the western E. radulina excepted), and a clade comprising E. 

eryngiifolia from Florida and the western E. integrifolia  and E. sibirica. The latter clade 

groups species that are morphologically and ecologically distinct from each other. 

 

According to Nesom (1994) and Semple (2005), E. eryngiifolia belongs to section 

Eryngiifolii (see Table 1) along with E. spinulosa, as shown in the ITS analysis (the latter is 

polyploid, but could not be included in the ITS clone analysis). In their classifications, 

section Eryngiifolii is sister to section Heleastrum, which includes the diploid E. avita, the 

diploid-autotetraploid E. hemispherica (Semple 1982), and the tetraploid E. paludosa. 

These two sections form subgenus Heleastrum, characterized by grass-like, more or less 

coriaceous, sometimes marginally spinose leaves and phyllaries. The molecular phylogeny 

indicates that the subgenus is polyphyletic and that the leaf characters currently used to 

group the species (Figs. 4A and 4B) might be the result of convergent adaptation to the 

conditions of the southeastern coastal plain of North America. Eurybia eryngiifolia may 

represent a first migration to eastern North America, with adaptation to the fire-prone, 

seasonally wet pine flatlands of the southern coastal plain. Various morphological 

characteristics of this species are indeed typical of such ecosystems, such as woody 

rootstocks and grass-like, coriaceous, spinose leaves. The original inclusion of S. 

chapmanii within this group (e.g., Nesom 1994) was also based on its grass-like leaves, a 



32 

 

 

further example of convergent evolution. Eurybia eryngiifolia, with its unique large, 

hemispheric capitula bearing numerous phyllaries and florets (Brouillet 2006b) likely will 

remain taxonomically isolated, except for a possible close relationship to E. spinulosa (Fig. 

1). All other Heleastrum species (Table 1) have smaller heads with a relatively low number 

of phyllaries and florets; they are all most likely part of the eastern clade. 
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Figure 4. Reconstruction of morphological character evolution on one of 20 equally most 

parsimonious combined trees. (A) Leaf margin (9 steps). (B) Leaf blade shape (6 steps). 
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The apparent relationship between E. integrifolia , a montane, western United States 

species, and E. sibirica from northwestern North America and Eurasia, cannot be readily 

explained on the basis of morphology or ecology. Our ITS analysis does not allow us to 

determine whether they are indeed sister to each other among diploids (Fig. 1: PP = 0.84, 

BS ≤ 50) or whether one or the other could be sister to the remainder of the genus; 

however, the combined analyses suggests they are sister species (Fig. 2, PP = 1.00, BS = 

77). In both classifications (Nesom 1994; Semple 2005), E. integrifolia  was placed in its 

own section Integrifolia e of subgenus Eurybia (Table 1), indicating an isolated position. 

As pointed out by Nesom (1994; see also Brouillet 2006b), its morphology is unique within 

Eurybia, with persistent, entire basal leaves and racemo-corymbiform capitulescences; it is 

a species of dry to moist montane meadows and open forests (Brouillet 2006b). In contrast, 

E. sibirica has cauline, serrate leaves and corymbiform capitulescences, and inhabits stream 

banks, lakeshores, and other relatively humid, disturbed habitats of the boreal forest and the 

low Arctic, from sea level to the montane zone (Brouillet 2006b). 

 

The placement of E. sibirica in our phylogeny (Fig. 2) does not concur with that in 

either the Nesom (1994) or Semple (2005) classifications. Nesom placed this species in 

subsection Sibiricae (with E. merita and S. pygmaeum) of section Radulini, while Semple 

included it within his larger section Calliastrum (Table 1). Its morphological similarity to 

E. radulina, a species of the coastal ranges from British Columbia to California and sole 

western member of the eastern clade, could result from symplesiomorphies, since the latter 

is part of a basal polytomy within the eastern clade (Figs. 1 and 2). 

 

The eastern clade, supported by one indel each in ITS and ETS (Fig. 4B), is the 

most diverse group in the genus and may represent an example of radiation following the 

invasion of a new area by a taxon, in this case eastern North America. The eastern clade 

includes both wide, cordate-leaved species adapted to lower-light habitats (deciduous 

forests and forest edges), such as E. furcata, E. divaricata, and E. mirabilis (section 

Eurybia), and narrow-leaved species, including E. radula and the Atlantic and Gulf coastal 
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plain E. compacta, E. avita, and E. hemispherica (sections Calliastrum and Heleastrum, 

Nesom 1994) (Fig. 4A). 

 

Our analysis does not allow us to resolve the relationships among E. radulina, E. 

divaricata, and E. furcata, because support is low in both analyses (Fig. 2). The association 

of the western E. radulina with eastern species is supported by both parsimony and 

Bayesian analyses (Fig. 2). This relationship may suggest a single colonization event of 

eastern North America within this clade, and a second migration of the genus to eastern 

North America. As there is little resolution in the relevant part of the tree, however, settling 

this issue will require further data. 

 

The three diploid species of the cordate-leaved section Eurybia, E. furcata, E. 

divaricata, and E. mirabilis, do not form a monophyletic group (Figs. 2 and 4B). The 

former two are part of the basal polytomy, while the third groups with the narrow-leaved 

clade (Fig. 2A: BS < 50; Fig. 2B: PP = 0.93). This may be due to homoplasy or low 

variation in the nrDNA dataset. Section Eurybia may either be the sister group to the 

eastern narrow-leaved species (if it turns out to be monophyletic upon further study) or 

represent a paraphyletic basal grade to this group; current data do not allow us to resolve 

this issue. Section Eurybia species are usually assumed to form a monophyletic group 

because of their wide cordate leaves, a unique feature in Eurybia. For instance, Lamboy et 

al. (1991) restricted their isozyme analysis of species relationships solely to this section, 

without considering that eastern species from other sections might have been involved, 

despite the existence of intersectional hybridization (e.g., Eurybia ×herveyi = E. 

macrophylla × E. spectabilis; Uttall 1962). The ITS (Fig. 1) and ITS clone (Fig. 3) analyses 

show that the tetraploid E. chlorolepis may be sister to E. divaricata, as was observed also 

in the analysis of ETS data (not shown). Our data thus appear to support the hypothesis of 

Lamboy (1992) that E. chlorolepis may be either an autopolyploid derivative of E. 

divaricata, or an allopolyploid with E. divaricata as one of its parents. 
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The eastern species morphologically most similar to the western Eurybia radulina is 

E. radula, which is sister to the other narrow-leaved species. This northeastern species 

reaches well into the boreal zone of eastern Canada. It grows on river banks and poor fens, 

habitats that are more or less open, often nutrient poor, and wet. It is morphologically 

similar to the polyploid E. saxicastelli and both were placed in section Radulini (Nesom 

1994) or Calliastrum (Semple 2005). 

 

A last diploid diversification in the genus occurred on the Atlantic and Gulf coastal 

plain, an invasion of this ecosystem by members of a second lineage of Eurybia (the first 

lineage that of E. eryngiifolia). This clade is well-supported in the Bayesian analysis (Fig. 

2A: BS = 54; Fig. 2B: PP = 0.99). These species share the thick woody rootstocks and 

grass-like, sometimes more or less coriaceous, sometimes also marginally spinose, leaves 

encountered in E. eryngiifolia (Fig. 4A). We interpret this as a case of convergent evolution 

due to selection in this particular ecosystem. 

 

Our data support Cronquist’s (1980) hypothesis of an affinity between E. compacta 

and E. avita. The relationship of E. hemispherica and E. avita also confirms the hypotheses 

of Nesom (1994) and Semple (2005). In both classifications, they are included within 

section Heleastrum (Table 1). Eurybia compacta, however, was placed by Nesom (1994) 

and Semple (2005) in section Calliastrum (Table 1). Thus members of both subgenera 

Eurybia and Heleastrum are united within a single well-supported clade in the phylogeny, 

as are members of sections Calliastrum and Heleastrum. Therefore, our results do not 

support the phylogenetic relationships among Eurybia species suggested by current 

classifications (Nesom 1994; Semple 2005). In contrast, they indicate that all the narrow-

leaved species of eastern North America, except E. eryngiifolia and possibly E. spinulosa, 

are closely related, which would support their inclusion within a single section. 
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Conclusion 

 

Eurybia origin 

Our nrDNA-based molecular phylogeny (Fig. 2) allows us to present an overall 

biogeographical and ecological hypothesis of the history of Eurybia diploids in North 

America. Among North American Astereae, subtribe Boltonieae is sister to both the 

subtribe Symphyotrichinae and the eurybioids-subtribe Machaerantherinae lineage (Fig. 1), 

as shown also in wider analyses of the tribe (e.g., Semple et al. 2002). The genera included 

within this subtribe are present in Mexico and the southern United States. Within 

Symphyotrichinae, Canadanthus, Almutaster, and Psilactis are western in origin, 

Ampelaster is south-eastern, while Symphyotrichum is distributed across the continent. 

Oreostemma, Herrickia (both lineages), and Triniteurybia are western in distribution. 

Members of the Machaerantherinae are western North American. All groups sister to 

Eurybia are western taxa of humid to mesic or semi-dry habitats. Given the outgroup 

relationships described above, it is most likely that the origin of the genus was western and 

mesic. 

 

Even though the markers used in this study provided limited resolution, we were 

able to detect significant phylogenetic signal within the eurybioid grade. Our results do not 

support previous classifications of Eurybia. It is however too early to propose a new 

classification of the group, particularly within Eurybia. 
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Phylogeny and biogeography of the intracontinally disjunct 

North American eurybioid asters (Asteraceae: Astereae) 

inferred from combined ribosomal and plastid DNA data 

Abstract  

The eurybioid asters comprise four North American genera Oreostemma, Herrickia, 

Eurybia and Triniteurybia.  Earlier nrDNA-based studies showed that this group is sister to 

Symphyotrichinae and paraphyletic to Macharantherinae, whereas species relationships 

were only partly resolved and poorly supported, and it proved impossible to ascertain the 

relationships of polyploids.  The current analysis is restricted to diploid taxa.  In an attempt 

to increase resolution and support, we investigated non-coding regions from cpDNA (trnC-

ycf6, trnS-G, trnL-F), in addition to ITS and ETS nrDNA data.  Both separate and 

combined analyses of cp and nrDNA data were performed using Maximum parsimony and 

Bayesian analyses; the combined analyses are presented here. For biogeographic analyses, 

DIVA and LaGrange were used on the combined dataset.  The combined phylogenetic 

analyses brought more resolution and support than the phylogenies based on nrDNA data, 

confirming the following relationships: Oreostemma (Herrickia (Herrickia kingii (Eurybia 

(Triniteurybia-Machaerantherinae))).  Herrickia is confirmed as paraphyletic, with 

Herrickia kingii well supported as sister to the crown eurybioids.  Within Eurybia, the 

western E. integrifolia is sister to the whole genus, followed by the divergence of the 

Florida panhandle E. eryngiifolia.  Next are two western species, E. sibirica and E. 

radulina, the latter sister to an eastern North American (NA) clade.  Both biogeographic 

analyses confirmed a radiation in the western United States for the eurybioids, with two 
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independent migrations to eastern North America within Eurybia.  The group evolution was 

considered recent, probably not older than Pliocene in age and therefore strongly influenced 

by the Pleistocene glaciations. 
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Introduction 

The eurybioid grade (Selliah & Brouillet 2008) consists of perennial herbs that are 

widely distributed within North America, except in the Prairies or in xeric habitats. The 

grade mostly includes diploid members with a chromosomal base number of x = 9; 

polyploids are restricted to Eurybia (Brouillet 2006a, b, c). The grade is part of the NA 

clade of tribe Astereae (Asteraceae). The eurybioids comprises 31 species in four genera: 

Oreostemma Greene (3 spp.), Herrickia Wooton & Standley (4 spp.), Eurybia (Cass.) S. F. 

Gray (23 spp.) and Triniteurybia Brouillet, Urbatch & R. P. Roberts (1 sp.) (Brouillet et al. 

2004, Selliah & Brouillet 2008). This group is sister to subtribe Symphyotrichinae and is 

paraphyletic to subtribe Macharantherinae (Selliah & Brouillet 2008).  Current taxonomic 

and phylogenetic knowledge of the eurybioids is based on morphology (Nesom 1994, 

Semple et al. 2002, Nesom & Robinson 2007), isoenzymes (Lamboy & Jones 1988, 

Lamboy et al. 1991), chloroplastic DNA (cpDNA) restriction sites (Xiang & Semple 1996), 

and nuclear ribosomal DNA (nrDNA) data, including ITS and ETS (Brouillet et al. 2004, 

Selliah & Brouillet 2008).  In the most recent molecular studies based on nrDNA data, 

relationships among genera were only partly resolved and not strongly supported.  In both 

analyses (Brouillet et al. 2004, Selliah & Brouillet 2008), genus Herrickia tended to 

segregate into two clades, Herrickia s. str and H. kingii, but without support in parsimony 

analyses. Genus Eurybia also appeared to split into two clades, the first mainly eastern and 

the second mainly western and consisting of Eurybia integrifolia  (Nutt.) G.L. Nesom, 

Eurybia eryngiifolia (Torrey & A. Gray) G.L. Nesom, and Eurybia sibirica (L.) G.L. 
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Nesom, the latter not supported in this group by morphological or ecological data (chapter 

1). The Eurybia polyploids species relationships were little resolved.  Thus, the nrDNA 

study did not enable us to establish the relationships of the polyploid Eurybia species to 

their diploid progenitors or to each other. Nearly all polyploid ribotypes clustered together 

in these analyses, without relation to morphological affinities (possibly due to concerted 

evolution after recombination or other mutational events).  All species of the grade are 

found in humid to semi-xeric habitats, all in the western North America except for the 

eastern species of Eurybia. Our previous analysis (Selliah & Brouillet 2008) led us to 

hypothesize that within Eurybia, two independent migrations had occurred from western to 

eastern North America.  

To date, no extensive study has used cpDNA sequence data to establish a phylogeny 

of the NA clade (Noyes & Rieseberg 1999), even though chloroplastic regions are widely 

used in phylogenetic studies due to their ease of amplification with universal primers, 

availability in high copy number, nonrecombination, and uniparental inheritance (Sears 

1980, Taberlet et al. 1991, Small et al. 2005).  Therefore, we explored the phylogenetic 

utility of several noncoding cpDNA regions for the eurybioid grade.  After preliminary 

tests, three plastids makers were retained. 

The objectives of this study are to improve our understanding of the phylogenetic 

relationships of the eurybioids (sensu Brouillet et al. 2004) using cpDNA regions, 

combining them with nrDNA regions in order to obtain a better resolved phylogeny, and to 

test our hypotheses (Selliah & Brouillet 2008) concerning the biogeographic history of the 

group. In the present study, we would like to verify two hypotheses: whether the eurybioids 
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originated in western North America and whether two independent migrations occurred in 

the west within Eurybia.  

Materials and methods  

 

Taxon sampling 

 Thirty one species and six varieties from the four genera of the eurybioid grade 

(Selliah & Brouillet 2008) were considered as the ingroup in this study. In general, each 

species was represented by a single sample. In addition, two representatives of subtribe 

Machaerantherinae and three of subtribe Symphyotrichinae were added to the data sets. 

Doellingeria infirma (Michx.) Greene and Chlorocantha spinosa (Benth.) G.L. Nesom 

were used as outgroups in the analyses. All sequence accessions were deposited in Genbank 

(Appendix 3). 

 

DNA extraction 

 Samples were obtained from herbarium specimens or as fresh-collected material 

dried in silica gel. Total genomic DNA was extracted using a modified CTAB protocol 

(Joly et al. 2006) or with the QIAgen DNeasy Plant Mini Kit (QIAGEN, Mississauga, 

Ontario, Canada). 

Choice of cpDNA regions 

 In order to determine the utility of cpDNA regions, we evaluated the variability of 

selected regions by examining the variability (nucleotide substitutions, indels, and 
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inversions) among sequences (Shaw et al. 2005, M. Lauzé, pers. comm. 2006). We 

screened 18 genes and non-coding regions proposed in previous review papers (Taberlet et 

al. 1991; Panero and Crozier 2003; Shaw et al. 2005) including commonly used regions; 

trnL-trnF and trnL intron, trnH-psbA, matK and trnK introns, rps16, rpl16, ycf6-psbM, 

trnS-trnG, ndhF, and ndhD, and less commonly used regions; ndhJ-ndhC-ndhK, ndhI, 

ndhI-ndhG and trnC-ycf6.  Whenever possible, one representative from each genus of the 

ingroup and Doellingeria infirma, an outgroup (or if the latter was not available, one of the 

Symphyotrichinae representatives) were selected for comparison. The primers used for 

amplification and sequencing are as mentioned in the papers cited above. 

 

PCR amplification and sequencing  

 Among the investigated regions (Table 2), three non-coding chloroplastic regions 

were considered as potential phylogenetic regions: i) trnC-ycf6, ii) trnS-G including the 

trnG intron (hereafter trnS-G), and iii) trnL(UAA)-trnF(GAA) including the trnL intron 

(hereafter trnL-F).  The selected cpDNA regions were amplified and sequenced using the 

TrnCGCAF- ycf6R and trnSGCU- trnGUUC (Shaw et al. 2005), and trnLc- trnLf  (Taberlet et 

al. 1991) pairs of primers, respectively. 

 For all regions, the 25 µl PCR amplification reaction mix contained 40-70 ng 

genomic DNA, one unit of Taq DNA polymerase, 10x Roche Buffer with 1.5 mM MgCl2 

(Roche Diagnostics, Laval, Quebec, Canada), 100 µM of each dNTP, 0.3 mM of each 

primer, 2.5-5 % dimethyl sulfoxide (DMSO) and glycerol, and 1.5 mM of Mg Cl2 was 

added when necessary. Prior to Taq polymerase incorporation, PCR reactions were heated 
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for 2 min of denaturation at 94°C (hot start PCR).  PCR amplification conditions for the 

chloroplastic regions were: initial denaturation of 3 min at 94°C, 35 cycles of 30 sec at 

94°C, annealing of 30 sec at 48°C, 30 sec at 72°C, and 10 min at 72°C. The annealing 

temperature for trnC-ycf6 was 58°C, however. 

 We also included the nuclear ribosomal DNA (ITS and ETS) data from our previous 

study (Selliah & Brouillet, 2008) in the analyses in order to reach better resolution and 

support in the phylogeny. Information about amplification, purification, cloning, 

sequencing protocols and the ribosomal data sets may be found in that study.  

 

Phylogenetic analyses 

 All DNA sequences were edited manually and assembled into contiguous sequences 

using Sequencher v.4.7 (Genecodes Corp., Ann Arbor, Michigan). Matrices were aligned 

initially in BioEdit v.7.0.5.3 (Hall 1999) using Clustal X (Thompson et al. 1997), and 

subsequently edited manually. 

 Insertions and deletions (indels) were observed in all alignments. For trnL-F, trnS-G 

and trnC-ycf6, we noted one, two, and seven indels, respectively. Indels were coded as 

binary characters in Gapcoder (Young & Healy 2003) using the simple indel coding 

method of Simmons & Ochoterena (2000).  

 We carried out separate analyses of each data set as well as concatenated analyses, 

with and without partitioning, under maximum parsimony (MP) and Bayesian inference 

(BI; Yang & Rannala 1997). The concatenated cpDNA matrices, containing polyploid 
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Eurybia members, were partitioned by region. The ribosomal data (Selliah & Brouillet 

2008), containing only diploid Eurybia species sequences, were added to the concatenated 

chloroplastic of diploid data sets to produce a cpDNA+ nrDNA combined data set 

(hereafter refered to as the combined analysis). Internal transcribed spacer (ITS) data were 

partitioned into ITS1, 5.8S, ITS2; external transcribed spacer (ETS) was not partitioned; 

information concerning individual and combined analyses of the ribosomal ITS and ETS 

data is provided in Selliah & Brouillet (2008).  Indels were mapped on the combined 

topology.  Analyses were carried out on the concatenated-partitioned cpDNA and 

combined-partitioned cpDNA + nrDNA data. To evaluate the combinability of the 

chloroplastic and ribosomal data sets, we performed an ILD_bionj test, an adaptation of the 

ILD test (Farris et al. 1994) that uses the bionj algorithm (Gascuel 1997), as implemented 

in ILD bionj v1.0 (Zelmer & Daubin 2004). 

 MP analyses were performed with PAUP* v 4.0b10 (Swofford 2002) using heuristic 

searches with the MulTrees option in effect and tree-bisection-reconnection (TBR) branch 

swapping with 500 random taxon addition replicates.  Characters were equally weighted 

and unordered.  Gaps were considered as missing data.  Clade support was determined by a 

bootstrap analysis with 1000 heuristic search replicates (as above) and random taxon 

addition, with a maximum of 100 trees retained per replicate.  A bootstrap support (BS) 

value ≥ 75% was considered significant for MP. 

 For the Bayesian analyses, each cpDNA and the nrDNA were partitioned into 

spacer and exon-intron regions and assigned to a sequence evolution model.  The cpDNA 

introns were included within the intergenic spacer partition because of their low variation. 
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To assess the best-fitting model of sequence evolution for each region, we used 

MrModeltest v2.0 (Nylander 2004) with the Akaike information criterion (AIC) for BI.  

The results of selected models for these tests are shown in table 3.  

 Bayesian analyses were carried out using MrBayes 3.1.2. (Huelsenbeck & Ronquist 

2001) on a shared memory multiprocessor computer (Altix 4700). Two independent runs 

with 16 Markov chains each were conducted simultaneously for 20 million generations, 

except for ten million for the distinct cpDNA data sets. Analyses started from a random 

neighbour-joining tree. The parameter estimation for each partition was made independent 

using the unlink option.  For each run, one tree per 1,000 generations was sampled, 

resulting in 40,002 trees.  Using the programs AWTY (Wilgenbusch et al. 2004) and Tracer 

v1.4 (Rambaut & Drummond 2007), we assessed the convergence of runs, the first trees of 

each run in the Bayesian analyses corresponding to the burnin phase were removed.  Table 

3 summarizes the number of trees removed during burnin and the number of trees used to 

compute the consensus tree in each analysis.  A 50% majority-rule consensus tree was 

computed with the remaining trees in order to determine the posterior probability values 

(PP).  A PP value ≥ 0.95 was considered evidence of strong clade support and ≥ 0.85 ≤ 0.94 

as intermediate support.  

 

Biogeographic analyses 

 To test hypotheses on the biogeographic history of the eurybioids, we used two 

biogeographic reconstruction methods. Dispersal-vicariance analysis (DIVA v.1.1; 

Ronquist 1996) is based on the parsimony approach and minimizes the dispersal, vicariance 
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and extinction events. LaGrange (v.2 Ree & Smith 2008) is a maximum likelihood (ML) 

method that calculates and assigns relative probabilities for each node using likelihood 

analysis of geographic range evolution. Both analyses were conducted on a single, fully-

resolved tree retained after the burnin phase, resulting from the 28 002 trees of the 

combined datasets from the BI analysis. In order to reduce noise (e.g., having a large 

number of distributions or having the entire terminal at the root node) and to increase the 

accuracy of the ancestral area reconstruction, the representatives of the two sister clades 

(Machaerantherinae and Symphyotrichum), as well as Chlorocantha spinosa were pruned 

from the tree using Phyutility v.2.2 (Smith & Dunn 2008).  We used Canadanthus 

modestus, a sister group, as the outgroup.  We assumed that the eurybioids are a recently 

diverged group (Noyes & Rieseberg 1999, Brouillet et al. 2008), plausibly of Pliocene age 

(5 million years before present (myr B.P.)). Most of the northern half of North America 

(most of Canada and parts of Alaska) was glaciated during the Pleistocene glaciations 

(Mann & Hamilton 1955), while the southern half (essentially the conterminous United 

States) was not, though it was affected. The flora of glaciated areas is the result of recent 

(less than 18 000 yr B.P.) species migrations into the area. Although members of the 

eurybioid grade are currently present across much of North America, their distributions in 

Canada and Alaska reflect postglacial migrations that occurred well after speciation. 

Eurybia sibirica is present in the northern United States Rockies, in glaciated western 

North America, in unglaciated parts of Alaska-Yukon, as well as across Eurasia, and it may 

have reached unglaciated Beringia before the last glaciation, crossing into Eurasia at the 

earliest during the last glaciation; we are postulating that its arrival in Beringia was after its 

origin in the Northern Rockies, given the proximity of the latter area to other areas of 
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speciation in other eurybioids. The presence of eurybioids in glaciated areas thus has little 

bearing on the speciation and the early biogeographic history of the grade. Therefore, we 

excluded the northern half of the continent from our modelization. The circumscription of 

the geographic areas used here took into consideration the limitations of LaGrange (Ree & 

Smith 2008), which allows a maximum of four or five areas. Firstly, we performed a global 

analysis; we divided North America into four areas: (A) Pacific western United States, (B) 

Intermountain region and Rocky Mountains, (C) southeastern coastal plain, and (D) eastern 

deciduous forest. A second analysis at a finer scale in eastern North America was carried 

out:  (E) Appalachian Mountains (F) Atlantic coastal plain, (G) Piedmont and Blue Ridge, 

and (H) Gulf coastal plain. This subdivision is coarse compared with the distribution of 

individual species and species ranges may spill over onto adjacent areas.  We tested the 

distribution of ancestral areas using the default option settings of the programs; in DIVA 

analyses, however, the maximum number of areas was constrained to two using the 

maxareas option as recommended by Ronquist (2006). 

 Combined with the species distribution ranges, macrofossil data and reliable 

documentation about the origin of the NA Astereae could contribute to more accurate 

biogeographical interpretations of the group (Moore et al. 2007), whereas a lack of such 

data would restrict interpretation.  Currently, the divergence time of the Asteraceae has 

been estimated at around the mid Eocene (42- 47 myr B.P.) (Kim et al. 2005) but the ranges 

vary between dates as old as 43-50 myr B.P., (Funk et al. 2009) and as young as 40 myr 

B.P. (Schmidt & Schilling 2000).  Similarly, the origin of tribe Astereae, based on pollen, 

also is uncertain: Graham (1996) placed it around the Eocene (35-50 myr B.P.), while 
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Karaman (2006) suggested that most of the Asteraceae tribe were present at the end of the 

Oligocene (22-25 myr B.P.) but without specifying a date of origin for the Astereae. The 

accuracy of this estimate is uncertain, however, given the lack of fossils for the Astereae. 

The eurybioid asters suffer from a similar limitation due to lack of fossils, both for 

validating distribution assumptions and as internal calibration points in a molecular dating 

approach.  Estimates of ITS molecular evolutionary rates exist for other Asteraceae 

lineages (e.g., Dendroseris, Sang et al. (1994); Robinsonia, Sang et al.(1995); Hawaiian 

silversword alliance, Baldwin & Sanderson (1998); Eupatoria, Schmidt & Schilling (2000); 

Chaetanthera, Hershkovitz et al. (2006); Abrotanella, Wagstaff et al. (2006); 

Pleurophyllum, Wagstaff et al. (2007); Ainsliaea, Mitsui et al. (2008) ). In these studies, 

calibration of the ITS evolutionary rate was indirect and based on dates estimated from 

studies of cpDNA, themselves without solid calibration points. A transposition of such 

rates to our group would appear susceptible to large bias in age estimation (Kay et al. 

2006).   Even if a molecular dating approach is commonly used to address phylogeographic 

and biogeographic concerns, the accuracy of age estimations and the use of derived 

estimates of evolutionary rates are controversial (Renner 2005, Kay et al. 2006). Moreover, 

we considered that the past five million years is a relatively short time period compared to 

nrDNA region substitution rates (here relatively low) and are therefore not useful to 

estimate the divergence time of the eurybioids.  Finally, the use of apparently correlated 

geological events to calibrate phylogenies may be improper due to potential circularity 

(Renner 2005). Given the lack of firm fossil evidence, we abstained from dating the 

phylogeny. 
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 For the spatial reconstruction of ancestral ranges, assumptions about the dispersal 

opportunity of the eurybioids between the four areas defined above were evaluated using 

constraints in LaGrange (Ree & Smith 2008). Assumptions about the dispersal connections 

between western and eastern areas were established based on a general model of glacial- 

interglacial episodes. Although the probability of bidirectional dispersal events between the 

western and eastern parts of the continent is non-null, we hypothesized that dispersal for an 

anemochorous group such as the eurybioids must have been more frequently from west to 

east given prevailing winds at mid-latitudes, as exemplified by the disjunct cordilleran 

elements in the flora of the Gulf of St. Lawrence region (e.g. Cirsium scariosum, Golden et 

al. 2008). Thus for the global analysis, we assigned four relative dispersal opportunity 

probabilities of connections between these areas during the warm periods of the glacial 

(cooling) - interglacial (warming) cycles: maximal (1.0), equivalent (0.5), minimal (0.1), 

and zero (0) probability of dispersal events.  Dispersal within any area (A, B, C or D) was 

assumed to be maximum (1.0) due to lower barriers to dispersal within versus between 

areas, though we recognize that migration within the Intermountain- Rocky Mountains area 

may have been limited between mountain ranges depending on the time during the 

glaciations. We considered that dispersal events between adjacent areas (western "A-B", 

and eastern "C-D") had equal probabilities (0.5) because, a priori, there appeared to be 

limited barriers between them.  Dispersal between extremely disjunct areas ("A-D" and "A-

C") was assigned a probability of 0, considering that the large geographic gap and 

intervening obstacles created a nearly absolute barrier (except for very rare long distance 

dispersals) (Fig. 5). We tested the four scenarios, with constraints from west to east, 

respectively of 0, 0.1, 0.5 and 1.0, and compared the global maximum likelihood values 
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calculated for each. For instance, with a constraint of 0.1, connections between the western 

and eastern United States were assigned a probability of dispersal success of 0.5, and a 

probability of 1.0 within the four areas, while the connections between Rockies-

Intermountains and the eastern deciduous forest or the southern coastal plain were assigned 

a 0.1 probability.
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Figure 5. Dispersal opportunity model between four major North-American areas 

implemented in LaGrange. The alphabetic letters represent the defined geographic areas (A: 

Pacific western United States, B: Intermountain region and Rocky Mountains, C: eastern 

deciduous forest, D: southeastern coastal plain).  Arrows are associated with unique spatial 

scales and specific dispersal probabilities. Circled arrows: dispersal probability of 1 within 

areas; grey arrows: dispersal probability of 0.5 between adjacent areas; shaded arrows: 

dispersal probability of 0.1 to 1 between disjunct areas; and dotted arrows: null probability 

between extremely disjunct areas.  
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Results 

 

Results for the screened cpDNA regions are provided in table 2.  A majority of 

these regions was easily amplified; rps16 and rpl16 were amplified only in a few species 

and the chromatograms proved unreadable; amplification of ycf6- psbM was unsuccessful. 

The trnC- ycf6 and trnS-G regions proved to be the most variable. They both consist of 

relatively short (Table 2) and easily amplified fragments. The trnL-F region was selected 

because it is among the most widely used chloroplastic regions. Noncoding chloroplast 

regions sequenced for this paper showed little variation within our group.  Commonly used 

regions, useful at lower phylogenetic levels in other studies (e. g., Coreopsis (Asteraceae) 

Crawford & Mort 2005, Townsendia hookeri (Asteraceae) Thompson & Whitton 2006), 

appeared to be less variable here. The matK-trnK introns region, though more variable than 

the trnL-F region, was not used here but appears promising. For trnC-ycf6, trnS-G, and 

trnL-F, the total potential informative characters (PICs) value and the percentage of 

variability were 18 (4.1%), 14 (1.7%), and 8 (0.9%), respectively. 
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Table 2. General data about the genes and non-coding cpDNA regions tested in this study. 

One Asterisk (*) indicates a lack of sampling; for one out of four genera, two asterisks (**) 

designate the potential informative characters (PIC) calculated only within the Eurybia 

genus; three asterisks (***) indicate missing data due to amplification failure.  

Region Primers Litterature

Total aligned 
lenth 

(excluding 
outgroup)

PIC
PIC (excluding 

outgroup)

trn LUAA 

intron+    
trn FGAA 

trn LUAA 

spacer 

trnL c- trnL f  
Taberlet et al. 

1991 917 0.0098 0.0087

Atp B- rbc L 
spacer

1G2-1G5 930 *** ***

ndhJF- 
ndhK2R

810 0.0099* 0.0099*

ndhK1F-
ndhCR

870 0.0057* 0.0057*

Ycf5F-732R 800 0.0088 0.0088
672F-psacR 900 0.0078 0.0033
3914F-1254R 1220 0.0057 0.0033
816F-1857R 960 0.0156 0.0115

1755F-trnK2R 810 0.0099* 0.0062*
ndh I +         

ndh I-ndh G 
spacer

ndhGF-
ndhAexon2R 745 0.0081* 0.0054*

52-1212R 1200 0.0083 0.0075
972F-607 1390 5.833* 0.0129*

23S-trn A 
spacer +       

trn A intron
23SF-trnIR 1120 0.0027 0.0018

trn C-ycf6 
spacer

TrnCGCAF- 
ycf6R 

469 0.0405 0.0414

trn S-G spacer trnSGCU- 
trnGUUC 838 0.0167 0.0158

 trn H- psb A psbAF- trnHR 300 0.0033** 0.0033**

rpS 16 rpS16F-rpS16R NA *** ***

rpL 16 rpL16F71- 
rpL16R1516

1150 *** ***

ycf6 - psb M 
spacer

psbMR- ycf6F 490 *** ***

Shaw et al. 
2005

ndh J-C-K 
genes

ndh D

mat K gene +   
trn K introns 

ndh F

Panero & 
Crozier 2003
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Data on the MP and BI analyses are provided in table 3 and figure 6.  Preliminary analyses 

of individual chloroplast data sets provided little resolution due to a lack of variable 

characters. Therefore, we present only the results of analyses based on the concatenated cp 

DNA data sets (Fig.6). All the indels observed within these three chloroplastic regions are 

mapped on the cpDNA topology (Fig. 6). The ITS and ETS indels were mapped in our 

previous paper (Selliah & Brouillet 2008).  The non-coding region trnC-yf6r is more 

variable than trnS-G, while trnL-F is the least variable, respectively with eight, two and one 

indel. In the combined analysis, the polyploid species of Eurybia were excluded (for 

details, see in Selliah & Brouillet 2008).  Although they show identical relationships, 

topologies resulting from partitioned matrices exhibit greater support values than those 

from unpartitioned ones (ln values respectively -4265.60 and -4306.74). Therefore, only 

topologies from partitioned analyses are shown here. MP and BI topologies are identical 

with respect to intergeneric relationships among eurybioids in the combined datasets; the 

grade tends to form a polytomy in the MP reconstruction but is resolved in BI (Fig. 6). 

 The overall percentage of variable sites of the three cpDNA chloroplastic regions 

was 1.54% versus 11.83% for nrDNA (ITS+ETS). The ILD_bionj test rejected the 

congruency of cp and nrDNA datasets with 5000 iterations (p= 0.024 with p-value of 0.05).  

However, after examination of the incongruence, we decided to combine the two datasets 

nonetheless in order to reach increased resolution and node support. Due to higher node 

support values than those observed in separate topologies (e.g., Fig.1 and 2 in Selliah & 

Brouillet 2008), we retained the combined topology. The cpDNA (Fig.6) and combined 

(Fig.7) BI topologies highly support intergeneric relationships, except for the position of 
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Eurybia integrifolia. An examination of the concatenated chloroplastic regions reveals that 

this specie does not share the indels typical of other Eurybia species (A, C, H and J, Fig. 6).  

In the cpDNA topology, Machaerantherinae, Triniteurybia abberans and E. integrifolia 

appear to group with Herrickia. This grouping is supported by one insertion (I) and a single 

nucleotide substitution from G to A in trnC-ycf6. In the combined topology, however, E. 

integrifolia is positioned strongly as sister to all other members of Eurybia.  

Table 3.  Summary of the results provided by parsimony and Bayesian analyses.  

Asterisks (*) represent values obtained after excluding uninformative characters 

DNA region
cpDNA  +ITS  

+ETS cpDNA
trnC-
ycf6 trnS-G

trnL-
trnF

Taxa included (including 
outgroup) 28 42 42 38 34

Lenth variation (bp) 3370-3566 2157-2224 435- 
469

824- 
838

916- 
917

Missing data (%) 8,5 3,8 0,7 7,3 1,6
Variable characters 176 57 18 27 12
Parsimony-informative 
characters

208 47 23 14 10

Indels 19 10 7 2 1
Tree lenth 590 126 49 47 23
number of parsimonious 
tree

6 50 000 50 000 50 000 6

CI* 0.6262 0.7353 0.8333 0.75 0.9091
HI* 0.3738 0.2647 0.1 667 0.25 0.0909
RI 0.794 0.9294 0.9709 0.881 0.9756

AIC Model

((GTR+G)+     
(GTR+I)+       
(GTR+I)) 

+((SYM+G)+ 
(JC)+(SYM+G))

+ (HKY+G) 

((GTR+G)+(GTR+I) 
+(GTR+I))

GTR+G GTR+I GTR+I

Burnin trees 10 000 10 000 4 000 4 000 4 000
Trees retained 30 002 30 002 16 002 16 002 16 002
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Figure 6. (Previous page) Combined and partitioned trnL-F, trnS-G and trnC-ycf6 cpDNA 

phylogram based on Bayesian analyses rooted with Doellingeria infirma (dotted line) 

including bootstrap value supports inferred by parsimony analysis.  Bold black branches 

represent significant support by parsimony (≥75%) and Bayesian (≥0.95) analyses. Grey 

branches indicate support by only one of the two analyses.  Grey numbers above branches 

are support values obtained from parsimony analysis, followed by Bayesian posterior 

probabilities in black. Synapomorphic indels are indicated by bars; open black bars are 

trnS-G indels (A: 5 bp, B: 2 bp), the open grey bar is a trnL-F indel (9bp) and solid black 

bars are trnC-ycf6 indels (C: 6 bp, D: 5 bp, E: 4 bp, F: 2 bp, G: 1 bp, H: 1 bp, I: 26 bp). The 

insertion and deletion events are respectively represented by ‘D’ and ‘I’, in slanting 

character below bars. The node numbers one to four (in circles) refer to the relationships 

that are found to be different from the nrDNA analyses (see section ‘The taxonomy of the 

eurybioids’, in discussion). 

 

 

 

 

 

Figure 7. (Following page) Combined and partitioned phylogram of cpDNA and nrDNA 

based on Bayesian analysis rooted with Doellingeria infirma (dashed line) including 

bootstrap support values inferred by parsimony analysis.  Bold black branches represent 

significant support by parsimony (≥75%) and Bayesian (≥0.95) analyses. Grey branches 

indicate support by only one of the two analyses. Grey numbers above branches are support 

values obtained from parsimony analysis, followed by Bayesian posterior probabilities in 

black. Numbers within squares at each node correspond to nodes that are referred in the text 

(sections results and discussion, chapter 2). 
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The ancestral distributions (Fig.8, Table 4) resulting from DIVA optimization are single 

optimal unit areas, except at a few nodes where sets of two or three areas and alternate 

optimal areas are proposed.  When the number of areas is reduced to four, the presence of 

all four units was noted only once in the optimal distribution list (Fig.8, Table 4).  The 

DIVA reconstruction required nine dispersal events for all constrained unit areas tested.  

The maximal number of ancestral ranges (‘splits’) for each node inferred by ML within 2 

log-likelihood units was five.  When several possibilities were listed, only the scenarios 

with the two highest relative probabilities were considered (except where probability 

differences between splits were not significant). The ln value of the ML reconstruction was 

-35.87 (Ree et al. 2005). 

 Although some biogeographic scenarios proposed by LaGrange are more restrictive 

than those in DIVA, the results from both analyses were generally similar (Fig.8, Table 4).  

Overall, the ancestral distribution(s) proposed by the parsimony reconstruction at each node 

corresponded to that with the highest probability in the ML inference, except at the 

outgroup, E. eryngiifolia-E. hemispherica node (node 7)  and E. radula -E. hemispherica 

(node 12) nodes (Fig. 8, Table 4).  At the outgroup node, MP analysis suggests three 

combinations: ‘A, B or AB’ while ML analyses propose ‘B’ as the highest (0.32), then ‘A’ 

(0.21), ‘A|AB’ (0.12) and ‘B|AB’ (11%), etc.  At node 7, MP suggests ‘BC, ABC or BCD’ 

as a combination of the optimal ancestral areas, while ML indicates ‘C|ABD’ (0.77) or 

‘C|AB’ (0.11).  At node 12, MP indicates ‘FG or FH’, while ML proposes ‘ F|EG’, 

‘F|EGH’, ‘F|G’, ‘F|F’, ‘F|E’ or ‘F|FG’ (respectively with 0.13, 0.12, 0.09, 0.09, 0.07 and 

0.04). 
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 With respect to hypotheses of dispersal success (connection) within the eurybioids, 

the highest ML values were obtained with the most constrained scenario (0.1) with -29.03, 

followed by the 0.5 constraint (-32.31), the defaults settings (-35.87), and the maximum 

probability scenario (1) (-37.39). 

 

 

 

 

 

 

 

 

Figure 8. (Following page) Reconstruction of the optimal biogeographical scenarios 

suggested by DIVA (circles) and LaGrange (squares). Grey and black color outlines 

indicate, respectively, global and finer scale analyses.  Full circles or squares represent 

optimal distribution areas retained.  Alphabetic letters represent geographic areas: A, 

Pacific western United States; B, Intermountain region and Rocky Mountains; C, eastern 

deciduous forest; D, southeastern coastal plain; E, Appalachian Mountains; F, Atlantic 

coastal plain; G, Piedmont and Blue Ridge; H, Gulf coastal plain.
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 Table 4: Summary of the ancestral and optimal distributions listed by DIVA and 

LaGrange analyses. Bold ancestral ranges were those retained in this study when numerous 

optimal ranges were suggested. 

 

 

 

 

 

Node number
  LaGrange          

splits ([|]) with relative 
probability  

DIVA

[B|B]  0.3235
[A|A]  0.2099  
[A|AB]  0.1161  
[B|AB]  0.111
[A|B]  0.05636 
[A|B]  0.6722
[B|B]  0.178  
[AB|B]  0.09633 

3 [B|B]  0.945 B
4 [B|B]  0.9373 B
5 [B|B]  0.8399 B

[B|B]  0.2533  
[A|AB]  0.06707
[B|AB]  0.06149
[A|ABDC]  0.06047
[B|ABDC]  0.05293
[AB|B]  0.05239  
[B|BC]  0.05178
[C|ABD]  0.7688
[C|AB]  0.112 

8  [B|AD]  0.889 AB / BD / ABD
9  [A|D]  0.8846 AD

10 [E|E]  1 EF
[F|EF]  0.37  
[E|E]  0.33  
[EF|F]  0.09  
[F|E]  0.06715 
[F|EG]  0.1315  
[F|EGH]  0.12   
[F|G]  0.09
[F|F]  0.09183
[F|E]  0.06911  
[G|H]  0.18  
[G|EG]  0.1023

14 [H|H]  0.31  H
15 [H|H]  0.32 H

[A|A]  0.6842
 [AB|A]  0.2219
 [A|B]  0.09633    

17 [B|B]  1       B
18 [B|B]  1       B

13 GH

16 A

11 F

12 FG / FH

6 B

7 BC/ ABC / BCD

Ancestral range

1 A / B / AB

2 AB
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Discussion 

Utility of cpDNA regions 

The three chloroplast DNA regions individually showed limited variability and 

proved of little use to resolve relationships among the closely related species of the 

eurybioid complex.  The variability of the concatenated cpDNA chloroplast regions was 

less than that of the nrDNA (ITS+ETS).  Nonetheless, these regions provided phylogenetic 

signal distinct from that of the nrDNA regions.  When information from both genomes was 

combined, the resulting topologies provided relationships consistent with those found in 

our previous study (Selliah & Brouillet 2008), based only on the nrDNA regions.  Despite a 

few topological incongruences between the distinct cpDNA and nrDNA datasets (see 

below), the resulting combined topology was better resolved and the relationships more 

highly supported than in separate analyses (Fig. 6). 

 The topological conflict encountered between the cpDNA and nrDNA regions, 

underlined using the ILD_bionj test, may have resulted from (a) a relative lack of variation, 

(b) intergeneric hybridization, (c) chloroplast capture, (d) sampling error, or (e) a parallel 

gain or loss of characters during evolution (Soltis and Kuzoff 1995, Maddison 1997, Sang 

& Zhong 2000, Fehrer et al. 2007).  The low variation of the chloroplast sequences may 

have caused some incongruence, notably the grouping of Herrickia, Triniteurybia and the 

Machaerantherinae (Fig. 6), which appears to be based on symplesiomorphies. 

Hybridization is one of the main processes leading to plastid and nuclear genome 

incongruence. Intergeneric hybridization has been reported, particularly within recently 



78 

 

 

radiated groups where reproductive isolation is imperfect (e.g., Heuchera group of 

Saxifragaceae, Soltis et al. (1991); in the Asteraceae: Achillea (Anthemideae), Guo et al. 

(2004); Pilosella- Andryala (Cichorieae), Fehrer et al. (2007); in the Astereae: between 

Oclemena and Doellingeria, Gerdes (1998) and Nesom (2001), and within the 

Machaerantherinae, Morgan (2003, 1997)).  Interspecific hybridization may have played a 

significant evolutionary role within Eurybia. The numerous allopolyploid species of 

different ploidy levels within this genus reflect a complex history of reticulate evolution 

(e.g., Lamboy et al. 1991). Uttal (1962) also documented the hybrid origin of Eurybia 

xherveyi from the octoploids E. macrophylla and E. spectabilis. If it were the case within 

the eurybioids, species relationships based on various datasets may prove to be different or 

ambiguous, resulting in a polytomy. 

 In the cpDNA topology (Fig. 6), two insertions and two deletions are shared by all 

Eurybia species except E. integrifolia.  This is combined with one insertion shared by E. 

integrifolia with Herrickia s. str. and the Machaerantherinae (node 3 in Fig.  6).  

Chloroplast data therefore would appear to indicate a closer affinity of E. integrifolia with 

the latter than with Eurybia. An affinity of E. integrifolia to Herrickia was also observed 

with the low copy nuclear data [chapter 3], but was not suggested in the nrDNA topology 

(Selliah & Brouillet 2008).  If intergeneric hybridization is possible, chloroplast capture 

(Rieseberg & Soltis 1991) between Eurybia and Herrickia or Triniteurybia might explain 

this pattern, as was found in the Verbena complex (Vebenaceae; Yuan & Olmstead 2008), 

Penstemon (Plantaginaceae; Wolfe et al. 2006), Graptopelatum (Crassulaceae; Acevedo-

Rosas et al. 2004), between Hazardia and Lessingia (Astereae) Morgan (2003), and 
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between Oönopsis and Machaeranthera tanacetifolia (Astereae) (Morgan & Simpson 

1992). 

 The possibility of sampling error was minimized as much as possible in this study.  

The same individual was used to sequence the different regions, several individuals were 

sequenced when relationships appeared doubtful (e.g., three individuals of E. integrifolia), 

and different methods of phylogeny reconstruction were used. Among all hypotheses 

mentioned above to explain conflicting results, the sampling error appears the least likely. 

 Although multiple gain or loss events are not most parsimonious, they may still 

occur during evolution and obscure relationships within the cpDNA topology, notably the 

affinity between Eurybia integrifolia, the Machaerantherinae and Herrickia (3 in Fig. 6).  

This may provide an alternate explanation of the incongruence pattern observed here. Of 

ten mapped chloroplastic indels (Fig. 6), six were autapomorphic and four, all from trnC-

ycf6, appeared to be homoplasious. Three are deletions, F (2bp), G (1bp) and H (1bp), and 

may have occurred twice independently, and the insertion I (26bp) apparently was gained 

three times, in Herrickia s. str., the Machaerantherinae, and E. integrifolia.  This could 

explain the grouping of these taxa in the cp DNA topology.  The nucleotide substitution of 

G to A observed in trnC-ycf6, could be interpreted as having occurred below the split 

between Herrickia s. str. and the remaining eurybioids-Machaerantherinae; it could have 

been followed by a reversal of A to G, the initial state, after the emergence of E. integrifolia  

(Fig. 6), therefore characterizing all other Eurybia species. 
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Figure 9. (Following page) Area distribution map of eurybioids across the southern region 

of North America. The global distribution of each genus is color coded (i.e., Oreostemma in 

purple, Herrickia in green, Eurybia in red and Triniteurybia in blue) and represented in the 

global map. Species distribution is also detailed by county, for each state. The geographic 

distribution information sources are Flora of the Southeast (from University of North 

Carolina herbarium, UNC: http://www.herbarium.unc.edu/seflora/firstviewer.htm, last 

modified: 27 Aug. 2007), Natural Resources Conservation Service (from United States 

Departement of the Agriculture, USDA: http://plants.usda.gov/, last modified: 26 Oct. 

2009) and Flora of North America (Flora of North America Association, FNA: 

http://www.fna.org/, last modified: 28 Oct. 2009).  
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Taxonomy of the eurybioids 

The current phylogenetic reconstructions (cpDNA and combined) generally confirm 

previous findings (Brouillet et al. 2004, Selliah & Brouillet 2008). The better-resolved 

combined topology provides more detailed information about evolutionary relationships 

within the grade. Oreostemma and Eurybia are monophyletic, and Triniteurybia aberrans 

appears to be sister to subtribe Machaerantherinae. Herrickia s. str. (excluding H. kingii) is 

characterized by two synapomorphic deletions; it diverges after Oreostemma and is sister to 

the H. kingii-Eurybia-Triniteurybia-Machaerantherinae clade, a relationship that is strongly 

supported only by the Bayesian analysis (PP = 0.97). In both cpDNA (Fig. 6) and combined 

(Fig. 7) topologies, Herrickia kingii is shown to be distinct from Herrickia s. str. and sister 

to the clade comprising Eurybia, Triniteurybia and the Machaerantherinae, as suggested by 

Selliah & Brouillet (2008).  This relationship is well supported (PP = 0.85) and is further 

strengthened by a synapomorphic deletion (B, Fig.6) in the trnS-G region. Eurybia 

integrifolia is the earliest diverging member of genus Eurybia, a position supported by a 

deletion (F) and the lack of two cpDNA insertions (A and C) and two deletions (J and H), 

synapomorphic for all other Eurybia species (Fig. 6).  The second earliest diverging species 

of the genus is E. eryngiifolia (Fig. 7); it has the longest branch.  Contrary to the nrDNA 

topology (Selliah & Brouillet 2008), E. sibirica is not sister to E. integrifolia, but diverges 

next and is sister to all remaining Eurybia species, as was hypothesized by Selliah & 

Brouillet (2008). 
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 The concatenated cpDNA dataset added few but valuable phylogenetic regions to 

the unique indels of the nrDNA dataset.  The chloroplastic regions provided each eurybioid 

clade with at least one synapomorphic indel. The cpDNA topology (Fig. 6) offers little 

infrageneric resolution, except within Herrickia and among some Eurybia species.  In this 

topology, however, E. integrifolia does not cluster with Eurybia but forms a polytomy with 

Herrickia s.str., H. kingii, Triniteurybia, and the Machaerantherinae (node 2 in Fig. 6).  

Contrary to nrDNA analyses (Brouillet et al. 2004, Selliah & Brouillet 2008), Oreostemma 

groups with the Symphyotrichinae (node 1 in Fig.6) and the Machaerantherinae are sister to 

Herrickia s.str. (node 4 in Fig.6), rather than Triniteurybia. Within Eurybia, the cpDNA 

reconstruction indicates a close relationship between E. schreberi, E. jonesiae and E. 

mirabilis, as reported by Lamboy et al. (1991) based on phenetic and isosyme evidences.  

Such a close connection already had been noted using ITS (Selliah & Brouillet 2008). This 

may support the hypothesis that the hexaploid E. jonesiae arose from the diploid E. 

mirabilis (Lamboy et al. 1991) as one of its parents. Contrary to the hypothesis latter 

authors, E. schreberi does not appear to group with E. divaricata but with E. mirabilis and 

E. jonesiae.  All these species are members of section Biotia (Nesom 1991; Semple 2005).  

The topology also infers a close relationship between E. avita and E. surculosa, a tetraploid 

eastern species, and would support the affinities previously hypothesized by Kral (1983) 

based on comparisons of leaves and rootstocks morphology.  Such a relationship appears 

unexpected based on overall morphology, given that the two species were classified in 

different subgenera respectively Heleastrum (in section Heleastrum) and Eurybia (in 

section Calliastrum) by Nesom (1994) and Semple (2005). Despite a lack of distinguishing 

morphological features with respect to other eastern narrow-leaved species, these two 
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species share geographical and ecological features: both are known from Georgia, South 

Carolina, and North Carolina, and require open, sandy or granitic substrates.  

 The relationships suggested by the combined topology are similar to those provided 

by the nrDNA topology of Selliah & Brouillet (2008), with a few exceptions.  Nearly all 

relationships in the combined tree (Fig. 7) are resolved and strongly supported, particularly 

the positions of Oreostemma, Herrickia s. str., and Eurybia species such as E. integrifolia, 

E. eryngiifolia, and E. sibirica. The taxonomic affinities of Herrickia kingii have long been 

debated (Cronquist & Keck 1957, Nesom 1991, Cronquist 1994, Brouillet et al. 2004, 

Robinson and Nesom 2007, Selliah & Brouillet 2008). The combined phylogeny shows a 

segregation of Herrickia (sensu Brouillet et al. 2004) into two distinct clades, Herrickia s. 

str. and Herrickia kingii, a highly supported segregation suggested earlier by Selliah & 

Brouillet (2008). In our tree (Fig. 7) H. kingii is sister to the Eurybia-Triniteurybia-

Machaerantherinae clade.  It may deserve the rank of genus. Further morphological and 

molecular studies are needed before a firm decision can be made. 

 Within the combined phylogeny, the Eurybia species no longer form two 

subdivisions (Selliah & Brouillet 2008) but rather constitute a grade. Adding the cpDNA to 

the nrDNA dataset helped elucidate relationships among species of Eurybia, particularly 

concerning the early diverging members of the genus, which were difficult to interpret in 

the nrDNA topology (Selliah & Brouillet 2008).  Indeed, E. integrifolia, E. eryngiifolia, 

and E. sibirica, the earliest diverging members of the clade, do not segregate as a distinct 

subclade, and E. integrifolia and E. sibirica do not form a clade. Here, E. integrifolia is 

confirmed as the earliest diverging species of Eurybia.  This relationship is supported by 
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two independent nucleotide substitutions in trnC-ycf6. Both events appear to have occurred 

after the divergence of E. integrifolia (Fig. 7). 

The Eurybia subgenera and sections proposed in the classifications of Nesom (1994) and 

Semple (2005) are not supported by topologies in the present study (Fig. 7). For instance, 

according to these authors, E. hemispherica and E. avita belongs to subgenus Heleastrum 

section Heleastrum, while E. mirabilis and E. compacta are classified in subgenus Eurybia 

section Calliastrum, respectively [chapter 1]. The combined analysis shows a close affinity 

between all these species. This would support Brouillet’s (2006b) questioning of the 

taxonomic value of the subgenera and sections proposed by Nesom (1994) and Semple 

(2005).  

 

Biogeography  

In the past, biogeographic studies of major NA discontinuous ranges mainly 

involved intercontinental range disjunctions (as described in Thorne 1972; see for instance 

in Coleman et al. 2003, Nie et al. 2006, Spalik & Downie 2007, Guzman & Vargas 2009); 

few specifically addressed intracontinental disjunctions. The taxonomic groups treated were 

either intergeneric or infraspecific level (Wood 1971, Fontanella et al. 2007), the taxa 

treated were considered as Arcto- Tertiary relict origin (Wood 1971, Huck et al. 1989) nor 

instead of considering the whole range only a geographic portion of the latter was mainly 

invoked (e.g., Lewis & Crawford 1995).  With the exception of Wood (1971; and 

references therein: McVaugh 1943, Sharp 1951, Braun 1955), few closely related species 

have been documented with similar ranges in recent works (Packera, Senecioneae; Bain & 
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Golden 2000; Cirsium scariosum, Golden et al. 2008).  Although several western-eastern 

NA disjunctions have been noted within the NA Astereae (e.g., Eucephalus- Doellingeria, 

Brouillet et al. 2001; Ionactis, Nesom 2006b; Sericocarpus; Brouillet et al. 2009), no 

biogeographical works have been undertaken.  Thus, the Southwestern and Southeastern 

North America range disjunction is poorly understood (Wood 1971, Thorne 1972). 

 During the Pliocene-Pleistocene age, major geologic events considerably affected 

the development of the NA vegetation and flora (Pielou 1991, Hewitt 1993, Hewitt 1996, 

Comes & Kadereit 1998, Cox & Moore 2000, Knowles 2001, Winkworth et al. 2005). The 

series of glacial-interglacial cycles of the Pleistocene had a significant impact on 

environmental and climatic changes which shaped the distribution of the Northern 

Hemisphere temperate regions. Indeed, the advance and retreat of glacial ice sheets with 

others climatic changes have influenced biodiversity dynamics such as migration, 

diversification, extinction and isolation of taxa into refugia (Hewitt 1996, Avise et al. 1998, 

Starkey et al. 2003, Hoffman & Blouin 2004). This is the historical environment in which 

the eurybioids evolved. 

 Brouillet et al. (2009) showed that the NA clade (Noyes and Rieseberg 1999) of the 

Astereae is sister to South American clades, all well nested within the crown Astereae.  The 

relatively short branches within the NA clade would indicate that it is recently derived and 

that it underwent an explosive radiation after reaching North America.  Arrival of the NA 

clade in North America is most likely to have been late Miocene or early Pliocene, though 

solid dating data are lacking for dating it.  Nonetheless, this provides a timeframe in which 

to interpret the biogeographic history of the eurybioids, which was influenced strongly by 
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late Pliocene and Pleistocene climatic changes and orogeny, as hypothesized for other NA 

groups (e.g., Wood 1971, Noyes 2000, Drovetski 2003).  Current molecular evidence 

concerning the eurybioids, including the limited variability of both nrDNA and cpDNA 

regions, as well as incomplete lineage sorting in the low-copy nuclear gene CNGC4 

[chapter 3], also would support recent divergence of the group (Winkworth et al. 2005), the 

latest speciation events nonetheless most likely predating the end of the Wisconsinan 

glaciation (18, 000 yr B.P.). 

 

Eurybioids 

 The biogeographic framework resulting from both methods of analysis, DIVA and 

LaGrange, appears to indicate that the common ancestor of the eurybioids originated in 

western North America (Fig. 8, node 1).  The most probable ancestral areas suggested by 

ML (Table 4) is ‘AB’; the outgroup is also distributed over both areas.  It is not possible, 

however, to determine whether one of the two western areas, A or B, may have been the 

area of origin for the group.  Western North America is considered to have been an 

important center of origin for numerous taxa (e.g., Stebbins 1952; Axelrod, 1958; Marlowe 

& Hufford, 2007).  This common ancestor gave rise to two sister lineages (Fig. 8, node 2): 

Oreostemma in the Cascade-Sierra Nevada ranges, the second in the Intermountain Region 

and Rocky Mountains, where it eventually diverged into Herrickia s. str., Herrickia kingii, 

Triniteurybia, Eurybia, and subtribe Machaerantherinae (Fig. 9).  At the probable time of 

the split, in the Plio-Pleistocene, uplifting was occurring throughout mountainous western 

North America (see below). Uplift also caused drier conditions to the east of ranges, and 
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the Great Basin became rapidly dominated by grass and herbaceous species and the 

midcontinent by prairies (Axelrod 1958, Tidwell et al. 1972).  As habitats became drier, 

grasslands became more widespread (Graham 1993) and created a barrier between western 

and eastern NA biotas.  At the same time, the mesic Californian forests and woodlands 

became confined to coastal or mountain areas, while lowlands became dominated by 

grasslands and shrubs (Axelrod, 1959) before developing into deserts.  The conjunction of 

mountain uplift and lowland drying may have contributed to the split in the range of the 

eurybioid ancestor. 

 

Oreostemma 

 Oreostemma occupies humid to mesic habitats of the Sierra Nevada-Cascades.  The 

phylogeny shows two branches (Fig. 8, node 16): O. elatum at relatively low elevations, 

and O. alpigenum and O. peirsonii at higher ones (Nesom 2006a). One interpretation would 

be that adaptation to higher altitudes coincided with the episode of mountain uplift and 

erosion that occurred during the Plio-Pleistocene in the Sierra Nevada-Cascades Mountains 

(Axelrod 1958, Tidwell et al. 1972, Raven & Axelrod 1978, Brouillet & Whetstone 1993, 

Delcourt & Delcourt 1993; Graham 1993), a period of great disruption for western floras. 

Mitchell et al. (1966) likewise documented the migration of alpine plant species from 

neighbouring areas into the California-Nevada alpine vegetation zone only after alpine 

habitats became available during the Pleistocene.  The varieties of O. alpigenum may have 

spread to the northern Rocky Mountains region during subsequent glacial phases of the 

Pleistocene. 
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 The ancestral range of the remaining eurybioids appears to be the Intermountain 

Region and Rocky Mountains (node 3, 4, 5, 6 and 17, Fig.8 and Table 4), an area where 

islands of mesic or semi-xeric habitats, in the form of disjunct mountain ranges, are 

scattered within a more xeric landscape.  The evolution of the group was therefore 

influenced by the vertical and horizontal displacements that resulted from the 

environmental fluctuations that occurred during glacial-interglacial episodes in the region 

(Axelrod 1959, Mitchell 1973, Knowles 2001, Winkworth et al. 2005).  Such displacements 

were also used by Critchfield (1984) to account for the genetic diversity of NA boreal and 

temperate conifer populations during the glacial -interglacial cycles. The current, broad 

mountain distribution of Oreostemma alpigenum, Herrickia glauca, and Eurybia 

integrifolia is likely a consequence of such movements, as was reported for many plant 

species (Wolfe 1987, Huntley & Webb 1989, Pielou 1991, Elias 1996).  Latitudinal and 

altitudinal zonation shifts of perennial plants communities in the western United States 

during the last full-glacial period is well documented (Mitchell 1973, Van Devender et al. 

1987, Thompson 1988, Wells 1983 cited in Delcourt and Delcourt 1993, Thorne 1993). 

Notably, Spaulding et al. (1983) recorded a shift in elevational ranges of southwestern NA 

plants on calcareous substrates. We assume that, during the Pleistocene, the mesic, mid to 

high altitude taxa were subject to such vertical shifts in elevation, along with their whole 

plant communities. Moreover, the montane distribution of eurybioids in the area means that 

range fragmentation or endemism (local restriction) occurred  during drier, warmer 

interglacials, and that populations were restricted to higher, smaller habitats, subjecting 

species to range contractions.  During cooler, wetter glacial episodes, populations move 

down the mountains, expanding into wider areas toward their bases and sometimes being 
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able to migrate among ranges, depending upon the suitability of habitats in lowlands. This 

may have promoted range expansion. 

 

Herrickia s.str., H. kingii and Triniteurybia 

 The second earliest diverging genus is Herrickia s.str. Peripheral to the Great Basin, 

it usually grows at the edges of semi-xeric to mesic woodlands or in open plant 

communities, at elevations ranging from 800 to 3700 m.  The genus is relatively 

widespread in the eastern Intermountain and adjacent Rockies and populations are often 

disjunct between mountain ranges. Radiocarbon-dated deposits of plant communities from 

the Grand Canyon in northern Arizona similar to those in which Herrickia s.str. species are 

found today, showed an elevational shift upward during the last 24,000 years (Delcourt & 

Delcourt 1993). The next diverging lineage is Herrickia kingii, which is restricted to 

canyons and ridges of the Wasatch and Canyon mountains in Utah, at elevations of 1700-

3300 m.  Finally, the monotypic Triniteurybia inhabits granite cliffs and drier coniferous 

forests of the Sawtooth and Bitterroot Mountains of Idaho and Montana, at 1300- 2500 m.  

The biogeographic analyses show that all the earliest diverging lineages are from the 

Intermountain and Rockies Region (B), which implies that Pleistocene glaciations may 

have played a key role on the distribution, both horizontal and vertical, of the species, as 

with the previous genus, and it probably also contributed to speciation within Herrickia s. 

str.  
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Eurybia 

 Eurybia is the only genus of the group that comprises both western and eastern NA 

diploid members: there are three western (E. integrifolia, E. sibirica, E. radulina) and eight 

eastern (E. eryngiifolia, E. furcata, E. divaricata, E. radula, E. mirabilis, E. hemispherica, 

E. avita and E. compacta) species (Fig. 9). Apart from E. eryngiifolia, all western species 

originated before eastern species in the tree (Fig. 8).  

Eurybia integrifolia 

 The earliest diverging species, Eurybia integrifolia, currently occupies mesic to wet 

habitats at elevations of 1600 to 3200 m in the western mountains and is relatively 

widespread. Both biogeographic reconstructions (Fig. 8) indicate that the ancestral 

distribution area of both the species and the genus was in the Rockies and Intermountains 

(B, node 6). This reconstruction suggests that the presence of this species in the Sierra 

Nevada and Cascades Ranges may be due to secondary expansion into that region during 

the Pleistocene.  

 

Eurybia eryngiifolia 

 The next diverging member of Eurybia is the eastern E. eryngiifolia, which is found 

in the Florida Panhandle and southern Georgia and Alabama within the Gulf part of the 

Atlantic and Gulf Coastal Plain floristic province (Fig. 9).  The species has a distinctive 

morphology, adapted to the fire-prone, periodically wet or poorly drained, acidic, sandy 

areas of pine flatwoods and barrens (UNC herbarium database, 

http://www.herbarium.unc.edu/seflora/firstviewer.htm, last modified: 27 Aug. 2007). The 
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Appalachicola Region of the Florida Panhandle, where the species resides, is one of six 

centers of endemism in the southeastern United States (Estill & Cruzan 2001).  As with 

many herbaceous communities of the Florida flatwood vegetation (Wunderlin & Hansen 

2000, Sorries & Weakley 2006), frequent fires may be important for the maintenance of E. 

eryngiifolia (UNC herbarium database, Beckage et al. 2006).  Biogeographically, the 

common ancestral distribution with the highest probability for E. eryngiifolia was ' C|ABD' 

(0.77, Table 4; Fig. 8, node 7). This hypothesis is not retained, however, because there is no 

parsimonious explanation for the inclusion of the eastern deciduous forest (D) within the 

ancestral range of this taxon. It is more parsimonious to retain the hypothetical range with 

the second highest probability (‘C|AB’, Fig. 8; 0.11, Table 4), which would have involved a 

direct migration of the E. eryngiifolia ancestor from western North America to the Gulf 

Coastal Plain, either via long distance dispersal (Sorrie & Weakley 2001) or through 

corridors in the south of North America, most likely during a glacial period (see below). 

This strongly supports the hypothesis of an early, isolated migration of the genus into 

eastern North America (Selliah & Brouillet 2008). Our topology, and the resulting 

biogeographic hypothesis, would suggest a relatively early dispersal event to the east from 

western North America and Pleistocene survival of E. eryngiifolia in the region.  The flora 

of the Gulf and Atlantic Coastal Plain Provinces is relatively young and results from 

migrations from various directions (Sorrie & Weakley 2006), though certain areas contain 

older elements, like the Florida Panhandle, one of the floristically richest glacial refugia of 

the coastal plain (Estill & Cruzan 2001, Soltis et al. 2006).  This area was not affected by 

the repeated Pleistocene erosions and inundations cycles (Thorne 1993, Sorrie & Weakley 
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2001). In addition, this species is present in Pike County, Alabama, the location of Goshen 

Springs, one of three long -recognised southeastern refugia (Delcourt et al. 1980). 

 

Eurybia sibirica  

 The next species to diverge (Fig. 7) is the western E. sibirica, the most northern, 

geographically widespread, and morphologically variable member of the genus. It is 

encountered in the northern Rocky Mountains and ranges northwards to Alaska and the 

Northwest Territories, and from there westward into Eurasia to northern Europe. It grows 

mostly in open, sandy or gravelly areas along rivers and in mountain meadows. Our 

analysis determined that the ancestral areas of this species were the Intermountain region 

and Rocky Mountains (B, node 8). The part of the range north of the NA southern glacial 

limit (Canada, Alaska and Eurasia) was not taken into account in the biogeographic 

analysis since it was not critical to understanding biogeographic history among the diploid 

species of the genus.  Nonetheless, we cannot rule out the possibility of an Alaskan origin 

for the species, in the case where its ancestor had moved there during one of the earlier 

interglacial episodes. The current range over glaciated territory in North America was 

acquired during the Holocene. The westward migration through the Bering land bridge 

must have occurred during a glacial period (Wisconsinan or older) when sea levels were 

lower, as was noted for Erigeron (Astereae subtribe Conyzinae; Noyes 2000).  This also 

implies that migration to Alaska, largely unglaciated during the Pleistocene (Brouillet & 

Whetstone 1993, Mann & Hamilton 1995), would have occurred at the latest during the 

interglacial that preceded the Wisconsin glaciation, even if the species did not originate 
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there. The lack of datation in our biogeographic analyses prevents us from choosing 

between alternate hypotheses. A phylogeographic study of this species would be required to 

resolve its biogeographic and evolutionary Pleistocene history. 

Eurybia radulina  

 The fourth species to diverge in the phylogeny (Fig.7) is Eurybia radulina, which 

inhabits the Coastal Ranges (southern Vancouver Island to California) and the central 

Sierra Nevada, down to the chaparral of Orange County, California.  The ancestral range 

suggested is ‘A|D’ (0.89), where ‘A’ corresponds to the Pacific western United States; it is 

the westernmost (at temperate latitudes) and last diploid western member of the genus.  The 

ancestor of this species also gave rise to all remaining eastern NA species ‘D’ (Fig. 8), the 

second migration eastward for the genus. 

 An initial survey by Wood (1971) revealed frequent floristic relationships between 

eastern and western North America at the levels of genera, species or varieties. In 

particular, a significant number of southern Appalachian taxa have at least one disjunct 

member in western North America. Due to the climatic fluctuations during the Pliocene and 

Quaternary, floras migrated thousands of kilometers to track their ecological niche 

(Grichuk 1984, Delcourt & Delcourt 1993).  Such migrations may have occurred along 

corridors or by long distance dispersal.  Long distance dispersal played a major role in the 

colonization of new lands; it has been well documented and frequently hypothesized as a 

scenario to explain range expansion in numerous tribes of the Asteraceae, notably the 

Vernonieae (Keeley et al. 2007) and Astereae (Brouillet et al. 2009, Liu et al. 2002, 

Eastwood et al. 2004). We are hypothesizing that the common ancestor of the eastern clade 
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arrived in the east by a relatively more northern path compared to E. eryngiifolia, this 

dispersal probably having occurred before the Wisconsinan glaciation.  If migration 

occurred during a glacial episode, the prairie vegetation of the Great Plains, a major barrier 

during interglacials, would have been greatly reduced.  Hence, migration of the common 

ancestor of the eastern Eurybia species would have been facilitated and may have occurred 

either by a direct passage or through shorter long distance dispersal. The possibility that a 

long distance dispersal event occurred during an interglacial, when conditions were much 

less favorable since distances from the western source to the eastern forests would have 

been greater, and a chance dispersal event less probable, cannot be ruled out. The 

eurybioids have propagules that lend themselves well to long-distance dispersal by 

anemochory.  Eurybia cypselae are relatively small (1.7-4.7 mm) with pappus bristles 

measuring 2.7 to 8.2 mm (Brouillet 2006b). Westerlies currently predominate at temperate 

latitudes and similar conditions may have prevailed during the Quaternary, which would 

have favored an eastward anemochorous dispersal. When we tested models concerning the 

probability of dispersal in LaGrange, the model favored was that of lowest dispersal 

probability (0.01), implying that dispersal events were indeed rare. This result is consistent 

with our observation of the dispersal of only two lineages into eastern North America (Fig. 

8).  As for the number of dispersal event estimated by DIVA (i.e., 9), the latter seems to be 

unrealistic and overestimated.  First, it is difficult to evaluate and distinguish the ‘true’ 

dispersal from the gradual vicariance because compared to most of the biogeographic 

studies (i.e., intercontinental disjunction), this present study imply an intracontinental 

disjunction.  According to the results, there is strong evidence of two dispersal events. We 

may interpret the remaining dispersal events suggested by DIVA as vicariance events.  For 



96 

 

 

instance, a continuing proximal dispersal due to western climatic instability followed by a 

physical barrier establishment which may modify a taxa distribution and lead to an  

isolation of the latter. 

 

Eurybia furcata, E. divaricata and E. radula  

 Once in eastern North America, Eurybia underwent a rapid radiation that gave birth 

to seven diploid species (Fig. 8).  The first three diverging taxa are successively E. furcata, 

E. divaricata, and E. radula.  Globally, the reconstruction (Fig. 8) proposes the ancestral 

area as the eastern deciduous forest ‘D’ (1.0 relative probability, data not shown). However 

in the finer analysis, the ancestral distribution for E. furcata corresponds to the Appalachian 

Mountains ‘E’ (node 10, Fig. 8; Table 4; Fig. 9) and for the latter two species the area is the 

Atlantic coastal plain with respectively 0.37 (node 11) and 0.09 relative probabilities (node 

12).  This is consistent with the hypothesis of Braun (1955) that the coastal plain plants 

may have arisen in the Appalachian uplands.  Eurybia furcata is a Midwest endemic that 

grows in relatively open, limestone habitats, such as north-facing slopes, seepy bluffs and 

deciduous woods, particularly along streams (Brouillet 2006b).  Eurybia divaricata is 

widespread in the eastern deciduous forest.  Eurybia radula is distributed along the 

Appalachian range (Fig. 9) and extends northward to Labrador and James Bay in open or 

wet areas such as fens, wet meadows, and along streams.  The latter speciation may have 

resulted from an ecological shift from mesic forests to the edges of relatively open 

wetlands, accompanied by a shift in morphology from cordate to lanceolate leaves (Selliah 

& Brouillet 2008).  
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Eurybia mirabilis, E. avita and E. hemispherica  

 The remaining four diploid species are all located east of the Appalachians, on the 

Piedmont and the Atlantic coastal plains, the most probable location of their common 

ancestor range (D, Fig. 8; Fig. 9).  The short branch lengths of the members of this clade in 

the phylogram (Fig. 7) implies a rapid radiation in the area, most likely from a Piedmont 

common ancestor shared between the cordate-leaved E. mirabilis and the narrow-leaved 

species.  Eurybia mirabilis is endemic to the lower Piedmont Plateau (Fig. 8 node 13) of 

North and South Carolina.  It occupies the edges of deciduous or mixed deciduous forests, 

notably moist stream bluffs and slopes.  There are three diploid, narrow- leaved species: E. 

compacta, E. avita and E. hemispherica, and their ancestral range is located on or around 

the Gulf coastal plain with 0.31 and 0.32 (node 14 and 15, Fig. 8; Table 4; Fig. 9). As for E. 

compacta, it is known from seasonally dry, frequently disturbed, acid areas such as sandy 

soils, pine savannas, bogs and barrens of the Atlantic coastal plains and outer Piedmont.  

Eurybia hemispherica range is in the Atlantic Coastal Plain in open, dry to mesic areas such 

as bottomlands, prairies, pastures, and roadsides.  It expanded into similar habitats in the 

Gulf coastal plain and southern Appalachian areas. Eurybia avita grows on shallow sandy 

soils at the edges of granite flatrock outcrops of Georgia and Carolina. This species lives 

within the southern Appalachian, a center of endemism (Estill & Cruzan 2001). Speciation 

of the narrow-leaved species occurred within specific habitats. For instance, E. avita grows 



98 

 

 

only on granite flatrocks, possibly as a consequence of periodical Pleistocene glaciations 

and inundations, as was observed for other taxa (Leblond 2001).  The distribution and the 

habitat requirements of E. compacta and E. mirabilis, species endemic to North and South 

Carolina and adjacent regions, also appear to be correlated to the Pleistocene constraints. 

These two species are recent arrivals to the Cape Fear Arch region, uplifted between 5-3.5 

myr B.P. and 85 000 yr B.P. (Colquhoun et al. 1981).  According to Leblond (2001), the 

current range of plant endemic (or nearly endemic) to the Arch region, suggest that it may 

have constituted a refugia and a speciation center during the most recent glacial period.  
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Conclusion 

This study is the first published that tests the utility of cpDNA makers both within 

the eurybioids and within the NA Astereae clade (Noyes and Rieseberg 1999).  The cpDNA 

variability encountered in the study, even though limited, is greatly due to the presence of 

indels. The combined datasets tree reconstruction (Fig. 7) resulted in better resolution and 

supports than the analyses of the separated datasets. The limited utility of cpDNA regions 

at the infrageneric level within NA Astereae emphasizes the difficulty of finding suitable 

phylogenetic characters for the whole tribe.  The results of this study contradict previous 

classifications (Nesom 1994 and Semple 2005).  Future work should study cpDNA 

intergeneric spacers, potentially known to be more variable at low taxonomic levels than 

those tried here, as proposed by Shaw et al. (2007) and Timme et al. (2007).  Even though 

the eurybioids are widely distributed on both sides of the continent, the poor divergence 

between sequences among closely related species suggest that these latter may have 

undergone a recent diversification with a rapid distribution. The grade seems to have arisen 

in the western North America around the Plio-Pleistocene.  Among them, Eurybia seems to 

have encountered two independent dispersal events across the east side of the continent; the 

first in the southeastern coastal plain and the second in the eastern deciduous forest then, in 

to the coastal plain.  
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Ce chapitre présente les résultats et certaines conclusions préliminaires obtenus lors 

de l’évaluation de l’utilité phylogénétique de régions à faible nombres de copies au sein des 

eurybioids, particulièrement chez le genre Eurybia. Les données de séquences manquantes 

pour certaines espèces seront complétées avant une éventuelle soumission à une revue 

scientifique (non-déterminée) pour publication. 
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Insights into the evolutionary relationships of the North 

American genera Herrickia, Eurybia and Triniteurybia 

(Asteraceae, Astereae) based on a low-copy nuclear DNA region, 

CNGC4 

Abstract  

The eurybioid grade is paraphyletic to subtribe Machaerantherinae, and is sister group to 

subtribe Symphyotrichinae.  Previous works showed that the combined nuclear ribosomal 

and chloroplastic DNA topology provided phylogenetic resolution and strong support at the 

generic level within the grade.  However, resolution at the species level is still limited, 

particularly among the diploid and polyploid members of Eurybia, the core genus.  

Attempts at inferring relationships within this genus based on nuclear ribosomal and 

chloroplastic DNA regions proved to be ineffective when polyploid species were included.  

Therefore previous analyses were restricted to diploid taxa.  Low-copy nuclear loci seem 

suitable candidates for resolving low-level phylogenetic relationships.  After examining the 

phylogenetic utility of several low-copy nuclear regions within the eurybioids, we are 

presenting preliminary results on the most promising region, CNGC4.  Part of this region 

was directly sequenced or cloned and sequenced for nearly all Eurybia species.  Alignment 

and preliminary analyses showed two distinct types of sequences for the region, 

presumably paralogous.  A single type was retained for further analysis.  The sequences 

were partitioned into exons and intron and analyzed using Bayesian and maximum 

likelihood approaches.  Despite recovering a few phylogenetic relationships, the CNGC4 

topologies generally resulted in unresolved relationships and low support values at the 
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infrageneric level and, in some cases, clones from a single individual did not group.  

Topologies exhibited a high degree of incomplete lineage sorting, which supports the 

hypothesis that the group is of recent origin. 
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Introduction  

Our previous work (Selliah & Brouillet 2008) indicated that the nuclear ribosomal 

(nr) DNA regions provide limited phylogenetic resolution within the eurybioids, 

particularly among species.  The inference of relationships was particularly problematic 

when polyploid species of genus Eurybia were included.  Species of the latter tended to 

cluster into two groups, with diploid species in one and polyploids in the other, without 

support from morphology for the groupings.  With few exceptions, cloning of ITS failed to 

retrace the parents of polyploids, and analysis of clones showed the same segregation into 

two distinct clades as direct sequences had. A phylogenetic study of three chloroplastic (cp) 

DNA regions (chapter 2), both separate or concatenated, was unable to resolve relationships 

among the eurybioid taxa because of insufficient variability, even though some of these 

regions are known to be usually fast-evolving (Demeure et al. 1996, Chiang et al. 1998, 

Shaw et al. 2005, Shaw et al. 2007, Mort et al. 2004). Within Eurybia, the core genus of the 

group, nearly all species fell into a vast polytomy, preventing the identification of maternal 

parents. Furthermore, the cpDNA genome is insufficient for retracing the parentage of the 

polyploids since it recovers only the maternal history of the grade. Combining nrDNA and 

cpDNA sequences provided higher resolution and support at the generic level within the 

grade, but resolution at the species level remained limited, particularly among the diploid 

and polyploid members of Eurybia. Loci of the nuclear genome may provide greater 

among-species phylogenetic resolution (Small et al. 2004) and might prove more useful in 

detecting reticulations (Sang 2002, Mort & Crawford 2004).  Low-copy nuclear loci are 

attractive in this respect because of their biparental inheritance, low number of copies when 
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compared to nrDNA, and generally greater evolutionary rates than plastid or ribosomal 

regions (Clegg et al.1991, Choi et al. 2006).  Therefore, we examined the potential 

phylogenetic utility of low-copy nuclear regions to help resolve relationships among 

eurybioid species. 

After an initial study of several low-copy nuclear loci, the most promising proved to 

be the low-copy nuclear gene Cyclic Nucleotide Gated Channel-like protein (CNGC4, Choi 

et al. 2006).  It was first identified during a comparative genomic mapping study of two 

Medicago (Fabaceae) species (Choi et al. 2004).  Included within the nuclear CNGC 

family, this gene is apparently involved in plant defense responses (Clough et al. 2000).  

Except for a few phylogenetic studies within the Fabaceae (Scherson et al. 2005, Choi et al. 

2004, 2006; McMahon 2005), the utility of this marker has not been evaluated.  These 

studies reported that the CNGC4 region was potentially useful from the tribal to the species 

levels and was evidentally a single copy gene.  The purpose of this paper is to evaluate the 

phylogenetic utility of CNGC4 to study phylogenetic relationships within Eurybia at the 

species level, in order to retrace the origin and parentage of polyploids and to confirm the 

phylogeny provided by nrDNA and cpDNA within eurybioids. 

  

We expected that using several unlinked loci from the plastid and nuclear genomes may 

lead to an accurate interpretation of the phylogenetic history of the group.  To do so, we 

compare the topologies obtained with CNGC4 to those based on nrDNA and cpDNA 

(Selliah & Brouillet 2008, chapter 2).  This chapter presents preliminary results and an 

early conclusion of the study, as more extensive sampling will be needed before we are able 

to draw firm conclusion.  
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Materials and methods  

 

Taxon sampling 

 Since this is a preliminary work and is focused on Eurybia, sampling includes 

more species from this genus and only a few representatives of other genera. It comprises 

nine out of eleven diploid species, and seven out of eleven polyploid species of Eurybia. 

Herrickia horrida and Triniteurybia aberrans were included as representatives of other 

genera of the eurybioids. Three Symphyotrichum species were included as an immediate 

outgroup, and as external outgroup, Chlorocantha spinosa was used.  Each species was 

represented by a single sample. All nuclear sequence accession numbers were deposited in 

Genbank (Appendix 4). 

 

DNA extraction 

See chapter 2. 

 

Choice of the low-copy nuclear makers 

 Prior to considering CNGC4, we screened and tested nine low-copy nuclear genes 

for this study: Glyceraldehyde-3-phophate-dehydrogenase (G3PHD; Howarth & Baum  

2005), Malate Synthase (MS; Lewis & Doyle 2001), Phosphastase1 (PP1; Choi et al. 2004), 

Ferredoxin-NADP reductase precursor (FENR; Scherson et al. 2005), Triose phosphate 

isomerase (Tpi; Zhang & Chinnappa 1994 ), myo-Inositol-1-phosphate synthase (MIPS; 
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Majumder et al., 2003), Nitrate reductase (NIA; Howarth & Baum 2002), and 

Phosphoribulokinase (PRK; Petersen et al. 2006). They proved unsuitable for diverse 

reasons: insufficient sequence variation (PP1), amplification and sequencing difficulties 

(G3PDH, MS, NIA, PRK, Tpi), or possible multiple copies (FENR, MIPS). 

 

PCR amplification and sequencing  

Amplification of the partial exons five and six with the complete intervening intron of 

the nuclear gene CNGC4 was carried out using primers redesigned from the original sets of 

Scherson et al. (2005).  In order to obtain these specific primers, we aligned and compared 

few representative sequences of Eurybia which were sequenced with the original primers, 

with sequence-tag site (STS) of species suggested by Choi et al. (2004) using BioEdit 

7.0.5.3 (Hall 1999). Then, the new primers were optimized for the eurybioids using 

Amplify v.1.2 (Genetics Dep., Wisconsin, Madison). The new primers are CNGC4-Rs 

(AACTATGGATGTCTCATCGC) and CNGC4-Fs (TCGTCCACTGGATCTCCYTCT). 

Direct sequencing often resulted in unclear and ambiguous (overlapped or unreadable) 

readings in the poly-T region of the intron.  In such cases, we cloned the amplicon as 

described in Selliah & Brouillet (2008). Within Eurybia, all polyploids and seven out of 11 

diploid species were cloned; two diploid direct sequences were also included in the matrix. 

For detail on PCR amplification reaction mix and sequencing protocols, refer to 

chapter 2.  The amplification conditions for CNGC4 were identical to those for the 

chloroplastic regions (chapter 2) except that the annealing temperature was 50°C for 40 

cycles. Due to amplification difficulties, six Eurybia species were excluded from the 

present study, two diploids, E. divaricata and E. sibirica, and four polyploids, E. spinulosa, 
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E. chlorolepis, E. merita, and E. jonesiae. Three to 11 different clones were sequenced for 

each polyploid individual. 

 

Phylogenetic analyses   

For sequence editing and assembling, see chapter 2. 

Within the CNGC4 alignment, a poly-T region between 5 to 25 bp in length was removed 

from the intron since it could not be aligned properly. A few sequences were eliminated: 

identical sequences, sequences with stop codons (as detected after translation into amino 

acids), and sequences that had two or more different amino acids in order to minimize the 

possible inclusion of paralogous sequences. In the CNGC4 alignment, six indels were 

detected, all within the intron; they were coded and treated as in chapter 2.  

The regions were partitioned into exons and intron. After partitioning, a sequence 

evolution model was determined. Introns of the cpDNA regions were incorporated with the 

intergenic spacer because of their lack of variation. To assess the best-fitting model of 

sequence evolution for each region, we used MrModeltest v2.0 (Nylander 2004) with the 

Akaike information criterion (AIC) for BI analysis. The results of selected models for BI 

test was (GTR+ G) for the intron and (K80+ I) and (HKY +I +G) for the first and second 

exons, respectively. Bayesian analysis was performed on a parallel version of MrBayes 

3.1.2. (Huelsenbeck & Ronquist 2001) with two independent runs with 16 Markov chains. 

For each run, the tree were sampled every 1000 generations for a total of 10 million 

generations, resulting in 20,002 trees. The parameter estimation for each partition was 

made independent. To assess the convergence of runs, we used the programs AWTY 

(Wilgenbusch et al. 2004) and Tracer v1.4 (Rambaut & Drummond 2007), the first 2,000 
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trees of each run in the Bayesian analyses corresponding to the burnin phase were removed 

and the remaining 18,002 trees were used to compute a 50% majority-rule consensus tree.  

A probability (PP) value ≥ 0.95 was considered evidence of strong clade support and ≥ 0.85 

≤ 0.94 as intermediate support. 

 

The ML analysis was conducted using TREEFINDER v.June 2008 (Jobb 2008). The 

best-fit model estimation was determined using the 'proposed model' option of the program. 

The estimation of the proposed evolutionary model comprises three parts, two of which are 

optional: the substitution model (including rate and frequency parameters), the rate 

heterogeneity among sites (optional), and the number of rate categories (optional). For both 

partial exon parts, the substitution model was the HKY model with a listed rate and an 

'empirical' frequency (HKY {3, 1, 1, 1, 1, 3}, Empirical).  For the intron, the suggested 

model was J3 with an 'optimization' of the rate and 'empirical' frequency parameters; it 

included an 'optimal' heterogeneity model with the number of rate category corresponding 

to five (J3[Optimum, Empirical]: G[Optimum]: 5). To improve analyses, we generated and 

defined ten different starting trees prior to the global tree search.  ML bootstrap analyses 

were performed with 500 replicates of the ten starting trees. A bootstrap (BS) value of ≥ 

75% was considered statistically significant support for ML. 

 



128 

 

Results 
 

Even though the CNGC4 intron has greater variability than both exons, the tree 

resulting from this region shows many unresolved relationships at the infrageneric level and 

in some cases, clones from a single individual do not group (Fig. 10). Support values in 

both analyses were low, the values for ML being the lowest (Fig. 10). Despite this low 

support, the phylogeny suggests that Eurybia is monophyletic and that Triniteurybia has an 

unresolved position within Eurybia.  In contrast to this, Symphyotrichum is highly 

supported as monophyletic (MS = 92%; PP = 0.99) and appears sister to the eurybioids.  

Herrickia horrida, the sole representative of its genus, was represented by five clones: three 

are sister to Eurybia and Triniteurybia (MS =76%; PP = 1.00), and two groups with an E. 

integrifolia clone. Although support is low, Eurybia furcata and one of three clones of E. 

radulina are sisters to the large polytomy.  Some clones of E. macrophylla cluster with 

those of E. schreberi (MS= 83%; PP=0.90), while the latter are grouped with E. mirabilis 

and E. saxicastelli. Eurybia hemispherica, has the longest branch and groups with E. radula 

and E. avita clones. 
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Figure 10.  CNGC4 phylogram based on Bayesian rooted with Chloracantha spinosa (dash 

line) including posterior probability and bootstrap support values inferred by ML analysis 

analysis.  Bold black branches represent significant support by ML (≥75%) and Bayesian 

(≥95%) analyses. Grey branches indicate support by only one of the two analyses. Number 

of different sequence clones for each species is noted in parentheses. 
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Discussion  

Utility of low-copy nuclear markers 

For CNGC4, our preliminary analysis showed that almost all individuals, whether diploid 

or polyploid, had sequences that clustered into two groups. We translated the exon regions 

into amino acids and aligned them against the complete reference sequence of Arabidopsis 

thaliana (GenBank accessions number: NM_124805). The alignment revealed two different 

sequence types, each characterized by two unique amino acids within the first exon: the 

first (here referred as clade ‘A’) had [...] KERVRR [...] NLPKDLRRD [...], and the second 

(clade ‘B’) [...] KEHVRR [...] NLPKYLRRD [...].  To ensure that these sequences were 

from the same CNGC family, we blasted both sequence types in GenBank: the two types 

proved more similar to each other than to other sequences available in GenBank. Among 

the latter, the CNGC4 sequences appeared to be the closest analogues. 

In contrast to the studies of Choi et al. (2004) and Scherson et al. (2005), the 

eurybioids tended to possess two paralogous copies of the CNGC4-like gene. We have been 

unable to determine whether both are functional because only a short segment of the gene 

was sequenced. This segment includes two exons out of six and one intron out of five, for a 

total of 31% of the whole gene length. These copies may have arisen from a duplication 

event sometime before the origin of the eurybioids, the exact time yet undetermined. 

Alternately, even if this hypothesis is less plausible, the copies may represent different 

members of the CNGC gene family that were not present in the GenBank dataset. Even 

though extensive gene sampling is needed to support a hypothesis of genome or 
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chromosome segment duplication, as suggested for Symphyotrichum (Vaezi & Brouillet 

pers. comm.) and Kalimeris (Nishino & Morita 1994), we could not ignore such a 

possibility. Preliminary analyses of the separate copies, based on a reduced sampling of the 

clone sequences, revealed that sequence position appeared random within clade B and did 

not reflect relationships derived from previous morphological and molecular analyses. 

Relationships within clade A showed monophyly of the major genera. Based on these 

results, we included only clade A sequences in further analyses. 

The little-resolved CNGC4 topology (Fig. 10) reflects the poor variability of the 

region in the study group. With the exception of a few species such as E. eryngiifolia, 

incomplete lineage sorting was clearly observed within the group and obscures our 

understanding of relationships within the eurybioids.  For instance, alleles from several 

species (e.g., H. horrida, E. radulina, E. integrifolia, E. macrophylla, and E. schreberi) do 

not form monophyletic groups. This evidence supports the hypothesis of a recent and 

explosive radiation of the Astereae (Brouillet et al. 2009).  This type of difficulty, added to 

allelic recombination and hybridization are some of the challenges that can be encountered 

when using the nuclear genome (Sang 2002). 

 

Taxonomy of the eurybioids 

A comparison of the relationships resulting from previous phylogenetic analyses (e.g., 

separate (ITS: Fig. 1. in Selliah & Brouillet 2008; cpDNA: Fig. 1. in chapter 2) and 

combined regions (nrDNA: Fig. 2. in Selliah & Brouillet 2008; nr+cpDNA, Fig. 2. in 

chapter 2)) with that obtained using low-copy nuclear data is crucial to resolve the 

eurybioids phylogeny. The major source of inconsistency among the three datasets involves 
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the position of Eurybia integrifolia, which was the earliest diverging lineage of Eurybia in 

the nrDNA tree but associated with Herrickia s. str. and the Machaerantherinae in the 

cpDNA and CNGC4 datasets. Moreover, the CNGC4 allele topology (Fig.10), uniquely 

grouped E. integrifolia and H. horrida, the only representative of its genus.  Given that the 

eurybioids appear derivated, it is possible that the CNGC4 haplotypes have not been 

completely sorted, the presence of the CNGC4 ancestral polymorphism therefore obscuring 

phylogenetic relationships. This incomplete sorting phenomenon was also noticed with the 

cpDNA (chapter 2).  This needs to be explored further before any conclusion can be 

reached. 

Despite the limited variability of the cpDNA and nrDNA regions, and the presence of 

incomplete lineage sorting in CNGC4, the topology derived from the low-copy nuclear 

dataset (Fig. 10) suggests some phylogenetic relationships. A potential affinity between E. 

schreberi, E. macrophylla and E. mirabilis, partially recovered in the cpDNA topology, is 

indicated. This would support the Lamboy et al. (1991) hypothesis. This hypothesis could 

not be verified using ITS (Selliah & Brouillet 2008). The hexaploid E. saxicastelli seems to 

be associated with the species mentioned above. This species may be the ‘Hypothetical 

Aster’ evoked by Lamboy et al. (1991), which may have contributed, along with other 

species, to the origin of the octoploid E. macrophylla.  The close relationship between E. 

avita and E. hemispherica, both of section Heleastrum in Nesom (1991) and Semple 

(2005), is confirmed, as it was with the nrDNA regions. However E. radula, included 

within section Radulini by Nesom (1994) and section Calliastrum by Semple (2005), 

appears to show an unpredicted affinity to members of section Heleastrum, characterized 

by their narrow leaves. Single allele of Eurybia furcata allele and E. radulina are sister to 
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the polytomy.  A phylogenetic relationship between these two species was also noticed in 

the concatenated topology (Selliah & Brouillet 2008, Fig. 2). The monophyly of the E. 

eryngiifolia alleles, where several clones were represented by only one, would support its 

distinct position within the genus (Nesom 1991, Semple 2005).  Most of the relationships 

mentioned above were consistent and support the finding based on ITS clone data (chapter 

1) and some congruence with the cpDNA reconstruction (chapter 2). 
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Conclusion 

 
The preliminary finding of this study was that the phylogenetic utility of the partiel 

CNGC4 sequence to resolve Eurybia relationships is limited. The presence of two 

paralogous copies in the preliminary alignment and analysis of the CNGC4 sequence region 

may have arisen from a duplication event prior to the eurybioids origin. Moreover, the 

topology of further analyses indicated a high level of incomplete lineage sorting, which 

would support the hypothesis of a recent origin of the group prior to rapid radiation. 
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Conclusion générale 
Présentement, certains systématiciens classifient les eurybioïdes parmi les groupes 

taxonomiquement méconnus (Nesom & Robinson 2007), d’autres encore se questionnent 

sur leur position phylogénétique exacte au sein des Astereae (Nesom 2009), sachant que 

Oreostemma, Herrickia, Eurybia et Triniteurybia sont proches parents et groupe-frère de la 

sous-tribu des Machaerantherinae (Brouillet et al. 2004).  En plus d’inférer un scénario 

biogéographique, cette étude est parvenue à approfondir davantage l’histoire évolutive du 

groupe à l’aide de plusieurs types de régions : l’ADN ribosomal, l’ADN chloroplastique et 

l’ADN nucléaire à faible nombre de copies. 

 

Le point sur les marqueurs 

Parmi les types de régions phylogénétiques évalués, les régions ribosomales ITS et 

ETS (chapitre 1) étaient les plus variables, suivies des régions chloroplastiques (chapitre 2) 

et du gène nucléaire CNGC4 (chapitre 3).  Les topologies résultant des analyses combinées 

sont mieux résolues et mieux supportées que les analyses séparées.  Ainsi, la phylogénie 

résultant de la combinaison des données chloroplastiques et ribosomales offre la meilleure 

résolution aux niveaux inter -et infragénériques au sein du groupe (chapitre 2).  Bien que la 

variabilité des régions chloroplastiques soit plus limitée que celle des régions ribosomales, 

la topologie obtenue à partir de trnL-F, trnS-G et trnC-ycf6r révèle des relations similaires, 

dont quelque-unes inattendues ou parfois complémentaires à celle de l’ADN ribosomal.  

Par exemple, la division de Herrickia s. str. et de H. kingii comme clades distincts est 

soutenue par au moins un caractère dérivé unique. Nous interprétons certaines relations 

insoupçonnées comme étant due à de l'homoplasie (e.g., le partage d'un caractère ancestral 

entre E. integrifolia et les autres genres des eurybioïdes).  

 

Les 16 régions chloroplastiques évaluées ont toutes une variabilité limitée et se sont 

montrées inadéquates pour détecter le parent maternel des espèces polyploïdes et résoudre 

les relations interspécifiques au sein du groupe (chapitre 2).  Quant à l'ITS, même après 

clonage, aucune relation entre diploïdes et polyploïdes n’a pu être mise à jour sauf 
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exceptions, car les séquences clonales se groupaient ensemble, masquant les relations entre 

espèces (chapitre 1). Donc, notre étude ne nous a pas permis d’établir les liens entre les 

espèces diploïdes et polyploïdes du genre Eurybia. 

 

L’exploration de gènes nucléaires à faible nombre de copies a une fois de plus 

montré que les eurybioïdes constituent un groupe ardu. En somme, neuf régions à faible 

nombre de copie provenant de l’ADN nucléaires ont été évaluées avant de sélectionner la 

portion d’ADN appelée CNGC4. La recherche de régions suffisamment variables pour 

refléter l’évolution du groupe ne fut pas évidente.  Comme le montre CNGC4, ces régions 

sont difficiles à amplifier (parfois à cause d’une duplication ou de la présence de copies 

multiples), peu variables, ou donnent une topologie non résolue à cause de phénomènes qui 

tendent à obscurcir l’histoire du groupe comme le triage de lignées incomplet, ou les 

événements de duplication, ou de recombinaison de séquences. 

  

 

Histoire évolutive des eurybioïdes 

Cette étude a permis de dresser un premier portrait évolutif global des eurybioïdes, 

tout en confirmant certaines relations déjà soulignées dans l'étude de Brouillet et al. (2004), 

où l'échantillonnage était plus restreint. Les eurybioïdes forment un grade évolutif 

paraphylétique à la sous-tribu des Machaerantherinae, l'ensemble étant groupe-frère de la 

sous-tribu des Symphyotrichinae.  Tel que constaté antérieurement, le genre Oreostemma 

forme un groupe monophylétique, frère des autres eurybioïdes.  Le genre Herrickia se 

sépare en deux groupes distincts, Herrickia s. str. et H. kingii.  Herrickia s. str. se 

positionne comme frère du clade H. kingii-Eurybia-Triniteurybia-Machaerantherinae, le 

premier étant frère des trois derniers, confirmant le caractère paraphylétique du groupe 

soulevé par Brouillet et al. (2004). Triniteurybia aberrans se place comme groupe-frère des 

Machaerantherinae.  Finalement, Eurybia paraît former un clade.  Notre étude apporte 

cependant des précisions autant aux relations interspécifiques des diploïdes qu’au sein du 

genre. Nos résultats ne confirment pas les classifications sous-génériques du genre Eurybia 

proposées par Nesom (1994) et Semple (2005), mais confirment certaines hypothèses de 

relations avancées par Lamboy et al. (1991).  Eurybia pygmaea, une espèce souvent 
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associée à l'E. sibirica, est exclue du genre pour être placée dans Symphyotrichum 

(Brouillet & Selliah 2005), un genre de la sous-tribu voisine, les Symphyotrichinae.  

 

Histoire biogéographique 

D’après nos analyses phylogénétiques et les données écologiques, le berceau des 

eurybioïdes se situerait dans l’Ouest de l’Amérique du Nord, dans des habitats plutôt 

mésiques.  Cette hypothèse est renforcée par la présence de la plupart des clades basaux des 

Astereae nord-américains et des eurybioïdes dans l’ouest.  L’ancêtre commun des 

eurybioïdes s’est initialement divisé en deux groupes, l’un à l 'ouest dans les Cascades – 

Sierra Nevada ayant donnée naissance à Oreostemma, l’autre à l’est dans la "Intermountain 

Region" et les Rocheuses, qui donnera naissance successivement à cinq lignées: Herrickia 

s. str., H. kingii, Eurybia, Triniteurybia et les Machaerantherinae. Les Machaerantherinae 

représenteraient une radiation du groupe dans les milieux arides de l'ouest américain. Au 

sein du genre Eurybia, E. integrifolia, une espèce occidentale, est la première à avoir 

divergé. Par la suite, une première migration vers l’est américain a donné naissance à l'E. 

eryngiifolia. Puis, il y eut spéciation successive de deux membres occidentaux, E. sibirica 

et E. radulina.  Ce dernier partagerait un ancêtre avec l'ancêtre commun ayant effectué la 

deuxième migration vers l’est du continent.  Une fois établie à l’est, l’espèces ancestrale a 

donné naissance à une radiation évolutive donnant E. furcata et E. divaricata, des espèces 

associées forêts mésiques, et E. radula une espèce préférant les rivages et les tourbières. 

Enfin, une deuxième radiation s’en est suivie, cette fois davantage vers l’est des 

Appalaches, probablement due aux conditions particulières du Piedmont par E. mirabilis et 

de la plaine côtière par E. compacta, E. hemispherica et E. avita. Selon notre étude, les 

caractères morphologiques utilisés dans les classifications précédentes (Nesom 1994, 

Semple 2005) notamment la forme des feuilles (e.g., sous-genre Heleastrum regroupent des 

espèces à feuilles étroites comme E. eryngiifolia, E. hemispherica et E. avita) résultent 

d’une convergence d’adaptation aux milieux de la plaine côtière.  

Sans fossiles, nous sommes incapables de dater précisément l’origine du groupe et 

les radiations successives. Nous nous sommes donc restreints à proposer une hypothèse 

générale sur la divergence des eurybioïdes sans préciser de date. La relativement faible 

variabilité des séquences ribosomales, chloroplastiques et du CNGC4, et le polymorphisme 
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ancestral de ce dernier suggèrent une origine récente des eurybioïdes. Le groupe aurait 

évolué entre 5 millions d’années (fin Pliocène), époque de soulèvement accru des Cascades, 

de la Sierra Nevada et des chaînes montagneuses plus à l'est, et 18 000 ans, la fin de la 

glaciation Wisconsinienne. Nous estimons que la diversification et la migration des 

eurybioïdes ont été grandement influencées par les changements climatiques survenus 

durant les glaciations du Pléistocène. Ainsi, l’adaptation entre chaînes de montagnes, la 

disjonction entre l’ouest et l’est du continent ainsi que  l’endémisme à des conditions 

particulières sont des exemples de résultat de migrations engendrées par les glaciations. 

 

À l’avenir 

Cette étude a permis de recueillir des informations importantes sur l’évolution des 

eurybioïdes. Néanmoins, il reste encore des éléments à préciser, notamment éclaircir les 

relations interspécifiques au sein des genres.  Premièrement, il faudrait déterminer les 

parents des espèces polyploïdes du genre Eurybia en poursuivant l’exploration de 

microsatellites et de régions d’ADN chloroplastiques et nucléaires à faible nombre de 

copies qui seraient plus variables. Deuxièmement, inclure des membres des eurybioïdes 

dans un projet de séquençage génomique à grande échelle serait une avenue prometteuse 

pour faciliter la sélection de régions phylogénétiques appropriées pour le groupe.  

Troisièmement, il faut approfondir notre connaissance de Herrickia kingii et déterminer si 

l’on doit en faire un nouveau genre.  Quatrièmement, il faudrait réaliser une étude 

morphologique exhaustive des espèces et variétés des eurybioïdes afin d’identifier des 

caractères synapomorphiques qui confirmeront la phylogénie moléculaire.  Dans les études 

à venir, il serait intéressant d’élargir l’échantillonnage à plusieurs populations de régions 

différentes et d’approfondir l’histoire de chacun des genres sous un angle 

phylogéographique. 
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Appendix 1 

As a reference, few representatives of the eurybioids  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 2 
List of species of eurybioid asters and outgroups included in the Chapter 1. Following 

the name of each taxon we provide: Genbank accession numbers for ITS and ETS sequences, and 

Triniteurybia aberrans 

Oreostemma elatum 

Eurybia eryngiifolia 

Oreostemma alpigenum 

Eurybia integrifolia 
Herrickia glauca Herrickia wasatchensis 

Photos : 

- Semple, J. [Online]. Available from: http://www.jcsemple.uwaterloo.ca/Eurybia.htm, [accessed 27 October   

2009]. 

- Monroe, G.A. . [Online]. Available from:  

http://plants.usda.gov/java/profile?symbol=ORAL4&photoID=oral4_002_ahp.tif, [accessed 27 October 2009]. 

- Brouillet and Selliah: personnel photos 

© Brouillet  

© Brouillet  

© Semple  

© Semple  

© Selliah 
© Selliah 

© Monroe 

Eurybia spectabilis 
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voucher data (with herbarium acronym) or literature source (data available in GenBank).  ETS data 

are not provided for taxa not used in the combined analysis; the absence of an ETS accession 

number is indicated by a dash.  GenBank accession numbers of Eurybia polyploid species for which 

ITS clones were sequenced are indicated in parentheses after the direct ITS sequence accession 

number, along with the number of clones; for a single E. surculosa specimen, only ITS clones were 

sequenced. 
 

Data available in GenBank for Chapter 1 

Batopilasia byei (Sundberg & G.L. Nesom) G.L. Nesom & Noyes, AF046974, --, Noyes and Rieserberg 

(1999); Benitoa occidentalis H. M. Hall, AF251585, --, Markos and Baldwin (2001); Boltonia asteroides (L.) 

L’Héritier, AF046975, --, Noyes and Rieserberg (1999); Boltonia diffusa Elliott, AF477633, --, Urbatsch et al. 

(2003); Canadanthus modestus (Lindl.) G.L. Nesom, AY772432, --, Brouillet et al. (2004); Dieteria bigelovii 

(A.Gray) Morgan & Hartman, AY772419, --, Brouillet et al. (2004); Doellingeria umbellata Nees, 

AF477625, --, Urbatsch et al. (2003); Eurybia divaricata (L.) G.L. Nesom, AY772423, AY772437, Brouillet 

et al. (2004); Eurybia eryngiifolia (Torrey & A. Gray) G.L. Nesom, AY772420, AY772434, Brouillet et al. 

(2004); Eurybia sibirica (L.) G.L. Nesom, AY772421, AY772435, Brouillet et al. (2004); Eurybia surculosa 

(Michx.) G.L. Nesom, AY772422, AY772436, Brouillet et al. (2004); Grindelia lanceolata Nutt., AF046976, 

--, Noyes and Rieserberg (1999); Hazardia cana (A. Gray) Greene, U97612, --, Morgan (1997); Herrickia 

glauca (Nutt.)Brouillet, AY772424, AY772438, Brouillet et al. (2004); Herrickia horrida Wooten & 

Standley, AY772425, AY772439, Brouillet et al. (2004); Herrickia kingii var. kingii (D.C. Eaton) Brouillet, 

Urbatsch & R.P. Roberts, AY772428, AY772442, Brouillet et al. (2004); Isocoma wrightii Rydb., U97617, --, 

Morgan (1997); Lessingia micradenia Greene var. micradenia, AF251615, --, Markos and Baldwin (2001); 

Oreostemma alpigenum (T.C. Porter) G.L. Nesom var. haydenii (T. C. Porter) G. L. Nesom, AY772430, 

AY772444, Brouillet et al. (2004); Psilactis asteroides A. Gray, U97640, --, Morgan (1997); Pyrrocoma 

lanceolata (Hook.) Greene, AF251574, --, Markos and Baldwin (2001); Triniteurybia aberrans (A. Nelson) 

Brouillet, Urbatsch & R. P. Roberts, AY772426, AY772440, Brouillet et al. (2004); Xanthisma gracile 

(Nuttall) Morgan & Hartman, U97625, --, Morgan (1997); Xanthocephalum gymnospermoides (A. Gray) 
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Bentham & Hooker f., U97650, --, Morgan (1997); Corethrogyne filaginifolia (Hooker & Arnott) Nuttall, 

AF251594, --, Markos and Baldwin (2001). 

 

New sequences for Chapter 1 

Almutaster  pauciflorum (Nutt.) Á. Löve & D. Löve, EU200184, --, USA, Utah, Duschene Co. Mytan, 

Semple 5763 (WAT); Ampelaster carolinianum (Walter) G.L. Nesom, EU200185, --, USA, Fla., Osceola Co., 

Davenport, Semple 5354 (WAT); Arida carnosa (A. Gray) D.R. Morgan & R.L. Hartman, EU200186, 

EU196510, USA, Calif., Inyo Co., Lone Pine, Semple 8668 (WAT); Chloracantha spinosa (Benth.) G.L. 

Nesom, EU200187, EU196511, USA, N. Mex., Las Cruces, Spellenberg & Brouillet s.n. (MT); Doellingeria 

infirma (Michx.) Greene, EU200188, --, USA, W.Va., Mill Point, Semple 10716 (WAT); Eurybia avita 

(Alexander) G.L. Nesom, EU200189, EU196478, USA, Ga., Dekalb Co., Stone Mt, Semple 10573 (WAT); 

Eurybia furcata (E.S. Burgess) G.L. Nesom, EU200195, EU196482, Montreal Botanical Garden, Brouillet 

00-551 (MT); Eurybia jonesiae (Lamboy) G.L. Nesom, EU200201 (12 clones: EU625621, EU625622, 

EU625623, EU625624, EU625625, EU625626, EU625627, EU625628, EU625629, EU625630, EU625631, 

EU625632), EU196493, USA, Ga., Heard Co., Franklin, Semple and Semple 11207 (WAT); Eurybia 

macrophylla (L.) Cass., EU200202 (9 clones: EU625600, EU625601, EU625602, EU625603, EU625604, 

EU625605, EU625606, EU625607, EU625608), EU196496, Montreal Botanical Garden, Brouillet 2002-01 

(MT); Eurybia merita (A. Nelson) G.L. Nesom, EU200203, EU196501, USA, Wyo., Beartooth Pass, Semple 

and Brouillet 4438 (WAT); Eurybia chlorolepis (E.S. Burgess) G.L. Nesom, EU200190 (7 clones: 

EU625639, EU625640, EU625641, EU625642, EU625644, EU625645, EU625647), EU196490, USA, N. 

Car., Yancey Co., Semple and Suripto 9694 (WAT); Eurybia chlorolepis (E.S. Burgess) G.L. Nesom, 

EU200191, EU196491, USA, Tenn., Carter Co., Churchill 90-503 (VDB); Eurybia compacta G.L. Nesom, 

EU200192, EU196480, USA, N. J., Chatsworth, Semple 10365 (WAT); Eurybia compacta G.L. Nesom, 

EU200196, EU196483, USA, Va., Regina, Weldy & Showacre 940 (BRIT); Eurybia compacta G.L. Nesom, 

EU200197, EU196484, USA, N. J., Chatsworth, Semple & Suripto 9512 (WAT); Eurybia conspicua (Lindl.) 

G.L. Nesom, EU200193, EU196492, Can., Alta., Semple and Semple 9694 (WAT); Eurybia eryngiifolia 

(Torrey & A. Gray) G.L. Nesom, EU200194, EU196481, USA, Fla., Telogia, Kral 82815 (VDB); Eurybia 
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hemispherica (Alexander) G.L. Nesom, EU200198, EU196485, USA, Miss., Franklin, Semple and Semple 

11186 (WAT); Eurybia integrifolia (Nutt.) G.L. Nesom, EU200199, EU196486, USA, Utah, Rich Co., 

Semple and al. 9259 (WAT); Eurybia integrifolia (Nutt.) G.L. Nesom, EU200200, --, USA, Wyo., Teton Co., 

Semple 11288 (WAT); Eurybia merita (A. Nelson) G. L. Nesom, EU200204 (5 clones: EU625609, 

EU625610, EU625611, EU625612, EU625613), --, USA, Wyo., Carbon Co., Semple & Zhang 10431 (WAT); 

Eurybia mirabilis (Torrey & A. Gray) G.L. Nesom, EU200205, EU196487, USA, S. Car., Richland Co., 

Broad Riv., Creel s.n. (WAT); Eurybia paludosa (Aiton) G.L. Nesom, EU200206 (8 clones: EU625648, 

EU625649, EU625650, EU625651, EU625652, EU625653, EU625654, EU625655), EU196495, USA, N. 

Car. Brunswick Co., Semple & Suripto 9767 (WAT);  Eurybia radula (Ait.) G.L. Nesom, EU200207, 

EU196488, Can., Nfld., Gulch Pond, Brouillet 00-113 (MT); Eurybia radulina (A. Gray) G.L. Nesom, 

EU200208, EU196489, USA, Oreg., Douglas Co., Drew, Semple 7146 (WAT); Eurybia saxicastellii (J. J. N. 

Campbell & Medley) Nesom (7 clones: EU625614, EU625615, EU625616, EU625617, EU625618, 

EU625619, EU625620 ), EU196502, USA, Ky., Laurel Co., Semple & Suripto 9858 (WAT); Eurybia 

schreberi (Nees) Nees, EU200210 (7 clones: EU625656, EU625657, EU625658, EU625659, EU625660, 

EU625661, EU625662), EU196494, USA, Vt., Orange Co., Bradford, Semple & Brouillet 3494 (WAT); 

Eurybia spectabilis (Aiton) G.L. Nesom, EU200211, EU196499, USA, Mass., Ellisville, Semple & Brouillet 

3556 (WAT); Eurybia spectabilis (Aiton) G.L. Nesom, EU200212, EU196500, USA, Mass., Plymouth Co., 

Semple & Semple 11028 (WAT); Eurybia surculosa (Michx.) G.L. Nesom, EU200214, EU196498, USA, 

Tenn., Royal Blue,  Semple & Semple 11178 (WAT); Eurybia surculosa (Michx.) G.L. Nesom, [no direct 

ITS] (4 clones: EU625633, EU625634, EU625636, EU625637), --, USA, N. Car., Cherokee Co., Ranger, 

Semple 10527 (WAT); Eurybia spinulosa (Chapman) G. L. Nesom , EU200213, EU196497, USA, Fla., 

Beacon Hill, Anderson 11508 (MO); Herrickia kingii (D. C. Eaton) Brouillet, Urbatsch & R. P. Roberts var. 

barnebyana (S. L. Welsh & Goodrich) Brouillet, Urbatsch & R. P. Roberts, EU200215, EU196503, USA, 

Utah, Logan Riv., Morse 990 (KANU); Herrickia glauca (Nuttall) Brouillet var. pulchra (S. F. Blake) 

Brouillet, EU200216, EU196504, USA, Utah. Rockville, Welsh et al. 23851 (RM); Herrickia wasatchensis 

(M.E. Jones) Brouillet, EU200217, EU196505, USA, Utah, Cedar Canyon, Welch et al. 20619 (RM); 

Machaeranthera tanacetifolia (Kunth) Nees, EU200218, EU196509, USA, Tex., Borden Co., Post, Semple 

8835 (WAT); Oreostemma alpigenum (Torrey & A. Gray) Greene var. alpigenum, EU200219, EU196506, 
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USA, Oreg., Mt. Hood, Semple 10271 (WAT); Oreostemma elatum (Greene) Greene, EU200220, EU196507, 

USA, Calif., Chico, Oswald & Ahart 8120B (CHSC); Oreostemma peirsonii (Sharsmith) G.L. Nesom, 

EU200221, EU196508, USA, Calif., Tulare Co., Raven 8379 (JEPS); Symphyotrichum chapmanii (Torrey & 

A. Gray) Semple & Brouillet, EU200223, --, USA, Fla., Choctawhatchee Riv., Semple 10560 (WAT); 

Symphyotrichum novae-angliae (L.) G.L. Nesom, EU200229, --, USA, Ga., Dade Co., Tenton, Semple 11001 

(WAT); Symphyotrichum pygmaeum (Lindl.) Brouillet & S. Selliah, EU200231, --, USA, Alaska, Deadhorse, 

Parker 8207 (ALA); Symphyotrichum campestre (Nuttall) G.L. Nesom, EU200222, --, USA, Mont., 

Beaverhead Co., Semple and Brouillet 7019 (WAT); Symphyotrichum concolor (L.) G.L. Nesom var. 

concolor, EU200224, --, USA, Ga., Dade Co., Trenton, Semple 10992 (WAT); Symphyotrichum cordifolium 

(L.) G.L. Nesom, EU200225, --, USA, Me., Guilford, Semple 4639 (WAT); Symphyotrichum depauperatum 

(Fern.) G.L. Nesom, EU200226, --, USA, Pa., Nottingham, Semple 7681 (WAT); Symphyotrichum ericoides 

(L.) G.L. Nesom var. ericoides, EU200227, --, USA, S. Dak., Mound City, Semple 6664 (WAT); 

Symphyotrichum fendleri (A. Gray) G.L. Nesom, EU200228, --, USA, Kansas, Ford Co., Semple 7302 

(WAT); Symphyotrichum patens (Ait.) G.L. Nesom var. patens, EU200230, --, USA, Ky., Red River Gorge, 

Semple & Suripto 9864 (WAT); Symphyotrichum sericeum (Vent.) G.L. Nesom, EU200232, --, Can., Ont., 

Rainy River, Semple 8787 (WAT); Symphyotrichum tenuifolium (L.) G.L. Nesom, EU200233, --, USA, N. J., 

Ocean Co., Cedar Run, Semple 9519 (WAT); Symphyotrichum yukonense (Cronq.) G.L. Nesom, EU200234, -

-, Can., Yukon, Kluane Lake, Semple 10624 (WAT). 
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Appendix 3 
List of species of eurybioid asters and outgroups included in the Chapter 2.   For each 

taxon, arranged by alphabetically, the taxonomic name, the Genbank accession numbers 

and the voucher data (with herbarium acronym are respectively listed. Data are listed in the 

following ordre: trnC-ycf6, trnS-G and trnL-F. For ITS and ETS data; see Appendix 2, 

chapter 1. A dash (-) indicates the absence of a sequence accession number.  

 

New sequences for Chapter 2 

 

Arida carnosa (A. Gray) D.R. Morgan & R.L. Hartman, GU480694, -, GU480728, USA. 

Calif. Inyo Co., Lone Pine, Semple 8668 (WAT), Canadanthus modestus (Lindl.) G.L. 

Nesom, GU480691, GU480763, GU480725, Idaho, Blaune Co., 31 July 2006, Semple et 

Semple 11359 ((WAT)), Chloracantha spinosa (Benth.) G.L. Nesom, GU480692, 

GU480764, GU480726, USA. N. Mex., Las Cruces, Spellenberg & Brouillet s.n. (MT), 

Dieteria bigelovii (A.Gray) Morgan & Hartman, GU480689, -, GU480723, X, Semple 

10468 (WAT), Doellingeria infirma (Michx.) Greene, GU480693, GU480765, GU480727, 

USA. W.Va. Mill Point, Semple 10716 (WAT), Eurybia avita (Alexander) G.L. Nesom, 

GU480653, -, -, USA. Ga. Dekalb Co., Stone Mt, Semple 10573 (WAT), Eurybia 

chlorolepis (E.S. Burgess) G.L. Nesom, GU480664, GU480739, -, USA. N.C. Yancey Co., 

Semple and Suripto 9694 (WAT), Eurybia compacta G.L. Nesom, GU480657, GU480732, 

GU480698, USA. N. J. Chatsworth, Semple 10365 (WAT), Eurybia conspicua (Lindl.) 

G.L. Nesom, GU480665, GU480740, GU480705, Can. Alta., Semple and Semple 9694 

(WAT), Eurybia divaricata (L.) G.L. Nesom, GU480654, GU480729, GU480695, X, 

Semple 10710 (WAT), Eurybia eryngiifolia (Torrey & A. Gray) G.L. Nesom, GU480663, 
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GU480738, GU480704, USA. Calif. Inyo Co., Lone Pine, Semple 8668 (WAT), Eurybia 

furcata (E.S. Burgess) G.L. Nesom, GU480655, GU480730, GU480696, USA. N. Mex., 

Las Cruces, Spellenberg & Brouillet s.n. (MT),  Eurybia hemispherica (Alexander) G.L. 

Nesom, GU480661, GU480736, GU480702, USA. W.Va. Mill Point, Semple 10716 

(WAT), Eurybia integrifolia  (Nutt.) G.L. Nesom, GU480674, GU480748, GU480710, 

Montreal Botanical Garden, Brouillet 00-551 (MT), Eurybia jonesiae (Lamboy) G.L. 

Nesom, GU480670, GU480745, GU480707, USA. Ga. Heard Co., Franklin, Semple and 

Semple 11207 (WAT), Eurybia macrophylla (L.) Cass., GU480669, GU480744, -, 

Montreal Botanical Garden, Brouillet 2002-01 (MT),  Eurybia merita (A. Nelson) G.L. 

Nesom, GU480656, GU480731, GU480697, USA. N.C. Yancey Co., Semple and Suripto 

9694 (WAT),  Eurybia mirabilis (Torrey & A. Gray) G.L. Nesom, GU480662, GU480737, 

GU480703, USA. Tenn., Carter Co., Churchill 90-503 (VDB), Eurybia paludosa (Aiton) 

G.L. Nesom, GU480666, GU480741, -, USA. N. J. Chatsworth, Semple 10365 (WAT), 

Eurybia radula (Ait.) G.L. Nesom, GU480659, GU480734, GU480700, USA. Va. Regina, 

Weldy and Showacre 940 (Brit.),  Eurybia radulina (A. Gray) G.L. Nesom, GU480660, 

GU480735, GU480701, USA. N. J. Chatsworth, Semple and Suripto 9512 (WAT),  

Eurybia saxicastellii (J. J. N. Campbell & Medley) Nesom , GU480667, GU480742, 

GU480706, Can. Alta., Semple and Semple 9694 (WAT),  Eurybia schreberi (Nees) Nees, 

GU480671, GU480746, GU480708, USA. Fla. Telogia, Kral 82815 (VDB), Eurybia 

sibirica (L.) G.L. Nesom, GU480658, GU480733, GU480699, USA. Miss. Franklin, 

Semple and Semple 11186 (WAT),  Eurybia spectabilis (Aiton) G.L. Nesom, GU480672, 

GU480747, GU480709, USA. Utah,T. Rich Co., Semple and al. 9259 (WAT),  Eurybia 

spinulosa (Chapman) G. L. Nesom , GU480673, -, -, USA. Wyo, Teton Co., Semple 11288 
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(WAT), Eurybia surculosa (Michx.) G.L. Nesom, GU480668, GU480743, GU480714, 

USA. Wyo. Carbon Co., Semple and Zhang 10431 (WAT),  Herrickia glauca 

(Nutt.)Brouillet, GU480680, GU480754, -, Can. NC. Brunswick Co., Semple and Suripto 

9767 (WAT),  Herrickia glauca (Nuttall) Brouillet var. pulchra (S. F. Blake) Brouillet , 

GU480679, GU480753, -, Montreal Botanical Garden, Brouillet 00-113 (MT),  Herrickia 

horrida Wooten & Standley, GU480678, GU480752, GU480713, USA. Or. Douglas Co., 

Drew, Semple 7146 (WAT),  Herrickia kingii (D. C. Eaton) Brouillet, Urbatsch & R. P. 

Roberts var. barnebyana (S. L. Welsh & Goodrich) Brouillet, Urbatsch & R. P. Roberts, 

GU480675, GU480749, GU480711, USA. Ky. Laurel Co., Semple and Suripto 9858 

(WAT) ,  Herrickia kingii var. kingii (D.C. Eaton) Brouillet, Urbatsch & R.P. Roberts , 

GU480676, GU480750, -, USA. Vt. Orange Co., Bradford, Semple and Brouillet 3494 

(WAT), Herrickia wasatchensis (M.E. Jones)Brouillet, GU480677, GU480751, 

GU480712, USA. Mass. Ellisville,  Semple and Brouillet 3556 (WAT),  Machaeranthera 

tanacetifolia (Kunth) Nees, GU480688, GU480761, GU480722, USA. Tenn. Royal Blue,  

Semple and Semple 11178 (WAT),  Oreostemma alpigenum (T.C. Porter) G.L. Nesom var. 

haydenii (T. C. Porter) G. L. Nesom, GU480681, -, GU480715, USA. Fla. Beacon Hill, 

Anderson 11508 (MO), Oreostemma alpigenum (Torrey & A. Gray) Greene var. 

alpigenum, GU480682, GU480755, GU480716, USA. Or.  Mt. Hood, Semple 10271 

(WAT), Oreostemma elatum (Greene) Greene, GU480683, GU480756, GU480717, USA. 

Calif. Chico, Oswald and Ahart 8120B (CHSC), Oreostemma peirsonii (Sharsmith) G.L. 

Nesom, GU480684, GU480757, GU480718, USA. Utah. Logan Riv., Morse 990 (KANU),  

Symphyotrichum elliottii (Torrey & A. Gray) G. L. Nesom , GU480685, GU480758, 

GU480719, X,  Symphyotrichum pygmaeum (Lindl.) Brouillet & S. Selliah, GU480687, 
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GU480760, GU480721, USA. Utah. Rockville, Welsh et al. 23851 (RM),  Symphyotrichum 

yukonense (Cronq.) G.L. Nesom, GU480686, GU480759, GU480720, USA. Tex. Borden 

Co., Post, Semple 8835 (WAT),  Triniteurybia aberrans (A. Nelson) Brouillet, Urbatsch & 

R. P. Roberts, GU480690, GU480762, GU480724, USA. Idaho,Blaine Co. Alturas Lake, 

Morse and Smith 818 (KANU). 
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Appendix 4 
List of species of eurybioid asters and outgroups included in the Chapter 3.  For each 

taxon, arranged by alphabetically, the taxonomic name, the Genbank accession numbers 

and the voucher data (with herbarium acronym) are respectively listed. Each different clone 

sequence of a taxon is assigned to a GenBank accession number and indicated in parentheses, 

along with the number of clones if this is more than one. Only E. hemispherica and E. compacta are 

direct sequences. 

 

 

 

New sequences for Chapter 3 

 
Chloracantha spinosa (Benth.) G.L. Nesom, USA. N. Mex., (2:GU480645, GU480646), Las Cruces, 

Spellenberg & Brouillet s.n. (MT), Eurybia avita (Alexander) G.L. Nesom, (GU480651), USA. Ga. Dekalb 

Co., Stone Mt, Semple 10573 (WAT), Eurybia compacta G.L. Nesom, (GU480647), USA. N. J. Chatsworth, 

Semple 10365 (WAT), Eurybia conspicua (Lindl.) G.L. Nesom, (8:GU480587, GU480588, GU480589, 

GU480590, GU480612, GU480613, GU480614, GU480615), Can. Alta., Semple and Semple 9694 (WAT), 

Eurybia eryngiifolia (Torrey & A. Gray) G.L. Nesom, (3:GU480591, GU480592, GU480593), USA. Calif. 

Inyo Co., Lone Pine, Semple 8668 (WAT), Eurybia furcata (E.S. Burgess) G.L. Nesom, (GU480649), USA. 

N. Mex., Las Cruces, Spellenberg & Brouillet s.n. (MT), Eurybia hemispherica (Alexander) G.L. Nesom, 

(GU480648), USA. W.Va. Mill Point, Semple 10716 (WAT), Eurybia integrifolia (Nutt.) G.L. Nesom, 

(2:GU480625, GU480626), Montreal Botanical Garden, Brouillet 00-551 (MT), Eurybia macrophylla (L.) 

Cass.,(5:GU480607, GU480608, GU480609, GU480610, GU480611),  Montreal Botanical Garden, 

Brouillet 2002-01 (MT), Eurybia mirabilis (Torrey & A. Gray) G.L. Nesom, (GU480650), USA. Tenn., 

Carter Co., Churchill 90-503 (VDB), Eurybia paludosa (Aiton) G.L. Nesom, (GU480600), USA. N. J. 

Chatsworth, Semple 10365 (WAT), Eurybia radula (Ait.) G.L. Nesom, (GU480652), USA. Va. Regina, 

Weldy and Showacre 940 (Brit.), Eurybia radulina (A. Gray) G.L. Nesom, (3:GU480616, GU480617, 
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GU480618), USA. N. J. Chatsworth, Semple and Suripto 9512 (WAT), Eurybia saxicastellii (J. J. N. 

Campbell & Medley) Nesom, (2:GU480601, GU480602), Can. Alta., Semple and Semple 9694 (WAT), 

Eurybia schreberi (Nees) Nees, (4:GU480603, GU480604, GU480605, GU480606), USA. Fla. Telogia, 

Kral 82815 (VDB), Eurybia spectabilis (Aiton) G.L. Nesom, (2:GU480598, GU480599), USA. Utah,T. 

Rich Co., Semple and al. 9259 (WAT), Eurybia surculosa (Michx.) G.L. Nesom, (4:GU480594, GU480595, 

GU480596, GU480597), USA. Wyo. Carbon Co., Semple and Zhang 10431 (WAT), Herrickia horrida 

Wooten & Standley, (5:GU480619, GU480620, GU480621, GU480622, GU480623), USA. Or. Douglas 

Co., Drew, Semple7146 (WAT), Symphyotrichum elliottii (Torrey & A. Gray) G. L. Nesom, (7:GU480637, 

GU480638, GU480639, GU480640, GU480641, GU480642, GU480643), X, Symphyotrichum pygmaeum 

(Lindl.) Brouillet & S. Selliah, (GU480644), USA. Utah. Rockville, Welsh et al. 23851 (RM), 

Symphyotrichum rasemosum (Elliot.) G.L. Nesom, (6:GU480631, GU480632, GU480633, GU480634, 

GU480635, GU480636), X, Semple 9895(WAT), Triniteurybia aberrans (A. Nelson) Brouillet, Urbatsch & 

R. P. Roberts, (GU480624), USA. Idaho,Blaine Co. Alturas Lake, Morse and Smith 818 (KANU). 

 

 

 

 

 

 


