Étude de la voie de signalisation de l’insuline chez la drosophile par une approche phosphoprotéomique
Thesis or Dissertation
2012-04 (degree granted: 2012-10-11)
Author(s)
Advisor(s)
Level
DoctoralDiscipline
BiochimieKeywords
- Spectrométrie de masse
- FAIMS
- Insuline
- Drosophila melanogaster
- Cellules S2
- Phosphoprotéomique
- Phosphorylation
- Protéomique quantitative
- Signalisation cellulaire
- Caséine kinase 2
- Mass spectrometry
- FAIMS
- Insulin
- Drosophila melanogaster
- S2 cells
- Phosphoproteomics
- Phosphorylation
- Quantitative proteomics
- Signaling pathway
- Casein kinase 2
- Chemistry - Biochemistry / Chimie - Biochimie (UMI : 0487)
Abstract(s)
La phosphorylation est une modification post-traductionnelle modulant l’activité, la conformation ou la localisation d’une protéine et régulant divers processus. Les kinases et phosphatases sont responsables de la dynamique de phosphorylation et agissent de manière coordonnée. L’activation anormale ou la dérégulation de kinases peuvent conduire au développement de cancers ou de désordres métaboliques. Les récepteurs tyrosine kinase (RTKs) sont souvent impliqués dans des maladies et la compréhension des mécanismes régissant leur régulation permet de déterminer les effets anticipés sur leurs substrats.
Dans ce contexte, le but de cette thèse est d’identifier les évènements de phosphorylation intervenant dans la voie de l’insuline chez la drosophile impliquant un RTK : le récepteur de l’insuline (InR). La cascade de phosphorylation déclenchée suite à l’activation du récepteur est conservée chez le mammifère. Afin d’étudier le phosphoprotéome de cellules S2 de drosophile, nous avons utilisé une étape d’enrichissement de phosphopeptides sur dioxyde de titane suivie de leur séparation par chromatographie liquide (LC) et mobilité ionique (FAIMS). Les phosphopeptides sont analysés par spectrométrie de masse en tandem à haute résolution. Nous avons d’abord démontré les bénéfices de l’utilisation du FAIMS comparativement à une étude conventionnelle en rapportant une augmentation de 50 % dans le nombre de phosphopeptides identifiés avec FAIMS. Cette technique permet de séparer des phosphoisomères difficilement distinguables par LC et l’acquisition de spectres MS/MS distincts où la localisation précise du phosphate est déterminée. Nous avons appliqué cette approche pour l’étude des phosphoprotéomes de cellules S2 contrôles ou traitées à l’insuline et avons identifié 32 phosphopeptides (sur 2 660 quantifiés) pour lesquels la phosphorylation est modulée. Étonnamment, 50 % des cibles régulées possèdent un site consensus pour la kinase CK2. Une stratégie d’inhibition par RNAi a été implémentée afin d’investiguer le rôle de CK2 dans la voie de l’insuline. Nous avons identifié 6 phosphoprotéines (CG30085, su(var)205, scny, protein CDV3 homolog, D1 et mu2) positivement régulées suite à l’insuline et négativement modulées après le traitement par RNAi CK2. Par essai kinase in vitro, nous avons identifié 29 cibles directes de CK2 dont 15 corrélaient avec les résultats obtenus par RNAi. Nous avons démontré que la phosphorylation de su(var)205 (S15) était modulée par l’insuline en plus d’être une cible directe de CK2 suite à l’expérience RNAi et à l’essai kinase.
L’analyse des données phosphoprotéomiques a mis en évidence des phosphopeptides isomériques dont certains étaient séparables par FAIMS. Nous avons déterminé leur fréquence lors d’études à grande échelle grâce à deux algorithmes. Le script basé sur les différences de temps de rétention entre isomères a identifié 64 phosphoisomères séparés par LC chez la souris et le rat (moins de 1 % des peptides identifiés). Chez la drosophile, 117 ont été répertoriés en combinaison avec une approche ciblée impliquant des listes d’inclusion. Le second algorithme basé sur la présence d’ions caractéristiques suite à la fragmentation de formes qui co-éluent a rapporté 23 paires isomériques. L’importance de pouvoir distinguer des phosphoisomères est capitale dans le but d’associer une fonction biologique à un site de phosphorylation précis qui doit être identifié avec confiance. Phosphorylation is a reversible post-translational modification that modulates protein activity, and can impart conformational changes and affect translocation of their protein substrates. Kinases and phosphatases are responsible for the dynamic of changes in protein phosphorylation and act in a coordinated manner. Abnormal activation or misregulation of kinase activity can lead to the development of cancers and metabolic disorders. Tyrosine kinase receptor (RTK) associated signaling pathways are often implicated in numerous diseases and the further understanding of mechanisms affecting their regulation is necessary to determine their activity and effects anticipated on their substrates.
In this context, the primary objective of this thesis is to study the phosphorylation events arising from the activation of the insulin receptor (InR) following stimulation of drosophila S2 cells with insulin. The phosphorylation cascade triggered after InR activation is conserved in mammals. In order to study the phosphoproteome of drosophila S2 cells, we enriched phosphopeptides on titanium dioxide (TiO2) stationary phase prior to their separation by liquid chromatography (LC) and ion mobility (FAIMS) mass spectrometry (MS). Phosphopeptides were then analysed by tandem MS at high resolution. We first compared the benefits of FAIMS to conventional LC-MS, and observed a 50% increase in the number of identified phosphopeptides when using ion mobility. FAIMS enables the separation of phosphoisomers that are typically unresolved by LC, enabling high confidence assignment of modification sites via distinct MS/MS spectra. This approach was used to profile phosphorylation changes taking place between control and insulin-treated drosophila cells and enabled the identification of 32 phosphopeptides (out of 2 660 quantified) showing differential regulation. Interestingly, 50% of the regulated targets have a CK2 consensus site. These preliminary experiments were followed-up by RNAi mediated inhibition of CK2 and revealed that 6 phosphoproteins (CG30085, su(var)205, scny, protein CDV3 homolog, D1 and mu2) were positively modulated after insulin stimulation and negatively regulated after CK2 RNAi treatment. Using in vitro kinase assay, we identified 29 direct CK2 targets, of which 15 were correlated with results from the CK2 RNAi experiment. We demonstrated specifically that the su(var)205 (S15) is regulated by insulin and is a direct CK2 target based on RNAi and kinase assays.
Our phosphoproteomics data also highlighted the presence of isomeric phosphopeptides, several of which could be distinguished using FAIMS. We developed two algorithms to determine the occurrence of phosphoisomers in large scale studies. The first algorithm based on differences in retention times between isomers identified 64 candidates in mouse and rat phosphoproteome datasets corresponding to less than 1% of all identified phosphopeptides. We also identified 117 isomer candidates in drosophila using a targeted LC-MS/MS approach with inclusion lists. The second algorithm is based on the presence of characteristic fragment ions present in MS/MS spectra of co-eluting or partially resolved species and allowed the identification of 23 isomeric pairs. The ability to distinguish phosphoisomers in large-scale phosphoproteome datasets is of significance to correlate phosphorylation events taking place on specific residues with biological activities.
Collections
This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.