Rôle du stress oxydant en période néonatale dans l'hypertension artérielle et la dysfonction vasculaire et métabolique de l'adulte
Thèse ou mémoire
2011-01 (octroi du grade: 2011-05-05)
Auteur·e·s
Cycle d'études
DoctoratProgramme
Sciences biomédicalesMots-clés
- hypertension
- hypertension
- réactivité vasculaire
- vascular reactivity
- stress oxydant
- oxidative stress
- intolérance au glucose
- glucose intolerance
- résistance à l'insuline
- insuline resistance
- syndrome métabolique
- metabolic syndrome
- Health Sciences - Pathology / Sciences de la santé - Pathologie (UMI : 0571)
Résumé·s
Introduction
De nombreuses études indiquent que la prématurité, qui représente 8 % des naissances, est associée à des indices précoces de dysfonction vasculaire, d’élévation de la pression sanguine et de survenue de diabète de type 2. Les enfants nés prématurément sont plus sujets aux blessures oxydatives de par l’immaturité de leurs défenses antioxydantes et de leur exposition à des situations pro-oxydantes (exposition à l’air ambiant, à un supplément d’oxygène, ou à une exposition aux infections). Cependant, les conséquences à long terme des blessures oxydatives induites par une exposition à l’oxygène en période périnatale restent méconnues. Le but de ce doctorat a été de mettre en évidence certains mécanismes pouvant relier les dommages de la prématurité induits par l’oxygène, et le risque à long terme de développer des maladies cardiovasculaires et métaboliques dans le concept global d’une programmation développementale de l’hypertension et des pathologies reliées au syndrome métabolique.
Matériels et méthodes
Des ratons Sprague-Dawley (SD) ont été exposés à 80 % O2 (O2) vs air ambiant (AA) du 3ème au 10ème jour de vie. Concernant les paramètres cardiovasculaires, nous avons mesuré au cours de la croissance, la pression sanguine à la queue (de la 4ème semaine à la 15ème semaine) et à l’âge adulte : la réactivité vasculaire à l’angiotensine II (AngII) et au carbachol (ex vivo, carotides) avec ou sans le tempol; la production d’oxyde nitrique (NO) en présence ou non L-arginine et de L-sépiaptérine (aorte, immunohistochimie) ainsi que l’expression de la nitric oxyde synthase endothéliale (eNOS) (aorte, immunohistochimie et western blot); le stress oxydant vasculaire (aorte, chemiluminescence) par la mesure de la production d’anions superoxide en présence ou non des inhibiteurs de la nicotinamide-adenine-dinucleotide-phosphate (NADPH oxydase) et de la nitric oxyde synthase endotheliale (eNOS), l’apocynine, et N-nitro-L-arginine methyl ester (L-NAME) respectivement, ainsi que le stress oxydant circulant par la mesure des niveaux plasmatiques de malondialdéhyde (MDA, HPLC); la densité microvasculaire a été évaluée au niveau du muscle tibial antérieur, immunohistochimie); la vitesse d’onde pulsée (VOP) (entre la valve aortique et juste avant la bifurcation ilio-fémorale) a été mesurée par ultrason; le nombre de néphrons a été compté par digestion acide. L’ontogenèse de la plupart de ces mécanismes a été regardée à l’âge de 4 semaines.
Concernant les paramètres métaboliques, le poids a été mesuré au cours de la croissance. À l’âge adulte, la composition corporelle et la tolérance au glucose ont été évaluées.
Résultats
À l’âge de 4 semaines, aucune différence n’a été observée dans la pression sanguine, la réactivité vasculaire et le stress oxydant, mais chez les rats O2 vs AA, la densité microvasculaire est moindre, et des changements histologiques suggèrent la présence d’une rigidité artérielle augmentée.
À l’âge adulte chez les rats O2 vs AA (n = 6-8 /groupe) : i) les pressions sanguines systoliques et diastoliques sont augmentées; ii) la réactivité vasculaire à l’AngII est augmentée et celle au carbachol est diminuée, le tempol prévient ces dysfonctions; iii) la production de NO est plus faible au niveau basal et après stimulation par le carbachol, mais est restaurée après la pré-incubation avec L-arginine et L-sépiaptérine; iv) l’expression d’eNOS est diminuée par immunohistochimie et augmentée par western blot; v) les niveaux d’anions superoxide, au niveau basal et en réponse à l’AngII, sont augmentés et sont induits par la NADPH oxydase et le non-couplage d’eNOS; vi) les niveaux plasmatiques de MDA sont augmentés; vii) La densité microvasculaire est moindre; viii) la VOP est augmentée; ix) le nombre de néphrons par rein est réduit; x) le poids est plus faible au cours de la croissance et un catch up est observé à l’âge adulte; la composition corporelle n’est pas différente entre les groupes; xi) la tolérance au glucose est diminuée.
Conclusion
Ces résultats supportent l’hypothèse d’une programmation développementale des maladies cardiovasculaires et métaboliques à l’âge adulte à la suite d’un stress hyperoxique néonatal. Introduction
Many studies showed that prematurity, which represents 8 % of birth, is associated with early indices of vascular dysfunction, increased blood pressure and Type 2 diabetes. Prematurity babies are more susceptible to oxidative injury, consequence of the immaturity of their antioxidant defences, and exposure to pro-oxidant situations (oxygen supplementation, infection). However, the long-term consequences of oxidative injury induced by oxygen exposure in the neonatal period are unknown.
The aim of these PhD studies was to unravel some mechanisms that might underlie the damage induced by oxygen and the long-term risk of developing vascular and metabolic diseases in the overall concept of developmental programming of hypertension and metabolic syndrome-related diseases.
Materials and methods
Sprague-Dawley pups were kept with their mother in 80 % O2 (O2) or room air (RA) from day 3 to 10 of life. Cardiovascular parameters, tail blood pressure was measured between 4 and 15 weeks of life. In adulthood : vascular reactivity (ex vivo carotid rings) to angiotensine II (AngII) and carbachol with and without tempol was studied; studies of nitric oxide (NO) production with and without L-arginine and L-sépiaptérine (aorta, immunohistochemistry) and endothelial nitric oxide synthase expression (eNOS; aorta, immunohistochemistry, western blot) were performed; vascular oxidative stress (aorta, using chemiluminescence) by measuring superoxide anion production with and without inhibitors of nicotinamide-adenine-dinucleotide-phosphate (NADPH oxydase) and nitric oxyde synthase endotheliale (eNOS), apocynin and N-nitro-L-arginine methyl ester (L-NAME) respectively, and circulating oxidative stress by measuring the plasma levels of malondialdéhyde (MDA, HPLC) were evaluated; microvascular density was assessed on tibialis anterior muscle sections; pulse wave velocity (PWV) was measured by ultrasound, between aortic valve and ilio-femoral bifurcation; nephrons were counted after hydrochloric acid digestion. The main observations were also evaluated at 4 weeks of age. Metabolic parameters: body weight has been measured during the growth. In adulthood, body composition, glucose tolerance were evaluated.
Results
A 4 weeks of age, no difference was observed regarding blood pressure, vascular reactivity, and oxidative stress indices, but in rats O2 vs. RA (n = 6-8 /group), microvascular rarefaction and histological changes suggesting enhanced vascular stiffness were present.
To adulthood, rats O2 vs. RA (n = 6-8/group) : i) systolic and diastolic blood pressures are increased; ii) vascular reactivity to Ang II is increased and to carbachol is decreased, these dysfunction were totally abolished by co-incubation of the vessel rings with tempol; iii) NO-production is decreased in basal condition and after carbachol stimulation, but is restored after pre-incubation of aorta sections with L- arginine and L-sépiaptérine; iv) eNOS expression is decreased by immunohistochemistry but increased by western blot; v) vascular superoxide anion levels are increased in basal condition, after AngII stimulation and this is mediated by NADPH oxydase and eNOS uncoupling; vi) the plasma levels of MDA are increased; vii) microvascular density is decreased; viii) PWV is increased; ix) nephron count per kidney is decreased; x) body weight is less during growth, but a catch up is observed in adulthood, body composition is similar; xi) the glucose tolerance is decreased in adults.
Conclusion
These results support the hypothesis of developmental programming of vascular and metabolic diseases in adulthood, after exposure to hyperoxic stress in the neonatal period.
Note·s
Thèse réalisée dans le cadre d'une cotutelle entre l'Université de Montréal et l'Université d'Auvergne en FranceCollections
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Il peut être utilisé dans le cadre d'une utilisation équitable et non commerciale, à des fins d'étude privée ou de recherche, de critique ou de compte-rendu comme le prévoit la Loi. Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.