Abstract(s)
A public decision model specifies a fixed set of alternatives A, a variable
population, and a fixed set of admissible preferences over A, common to all agents. We study the implications, for any social choice function, of the principle of solidarity, in the class of all such models. The principle says that when the environment changes, all agents not responsible for the change should all be affected in the same direction: either all weakly win, or all weakly lose. We consider two formulations of this principle: population-monotonicity (Thomson, 1983); and replacement-domination (Moulin, 1987). Under weak additional requirements, but regardless of the domain of preferences considered, each of the two conditions implies (i) coalition-strategy-proofness; (ii) that the choice only depends on the set of preferences that are present in the society and not on the labels of agents, nor on the number of agents having a particular preference; (iii) that there exists a status quo point, i.e. an alternative always weakly Pareto-dominated by the alternative selected by the rule. We also prove that replacement-domination is generally at least as strong as population-monotonicity.