Show item record

dc.contributor.authorDufour, Jean Marie
dc.contributor.authorFarhat, Abdeljelil
dc.contributor.authorHALLIN, Marc
dc.date.accessioned2006-09-22T19:56:41Z
dc.date.available2006-09-22T19:56:41Z
dc.date.issued2005
dc.identifier.urihttp://hdl.handle.net/1866/534
dc.format.extent380726 bytes
dc.format.mimetypeapplication/pdf
dc.publisherUniversité de Montréal. Département de sciences économiques.fr
dc.subjectautocorrelation
dc.subjectserial dependence
dc.subjectnonparametric test
dc.subjectdistribution-free test
dc.subjectheterogeneity
dc.subjectheteroskedasticity
dc.subjectsymmetric distribution
dc.subjectrobustness
dc.subjectexact test
dc.subjectbound
dc.subjectexponential bound
dc.subjectlarge deviations
dc.subjectChebyshev inequality
dc.subjectBerry-Esséen
dc.subjectinterest rates
dc.subject[JEL:C14] Mathematical and Quantitative Methods - Econometric and Statistical Methods: General - Semiparametric and Nonparametric Methodsen
dc.subject[JEL:C22] Mathematical and Quantitative Methods - Econometric Methods: Single Equation Models; Single Variables - Time-Series Modelsen
dc.subject[JEL:C12] Mathematical and Quantitative Methods - Econometric and Statistical Methods: General - Hypothesis Testingen
dc.subject[JEL:C32] Mathematical and Quantitative Methods - Econometric Methods: Multiple; Simultaneous Equation Models; Multiple Variables; Endogenous Regressors - Time-Series Modelsen
dc.subject[JEL:C14] Mathématiques et méthodes quantitatives - Économétrie et méthodes statistiques; généralités - Méthodes semiparamétriques et nonparamétriquesfr
dc.subject[JEL:C22] Mathématiques et méthodes quantitatives - Méthodes en économétrie; modèles à équation unique - Modèles de séries chronologiquesfr
dc.subject[JEL:C12] Mathématiques et méthodes quantitatives - Économétrie et méthodes statistiques; généralités - Tests d'hypothèsesfr
dc.subject[JEL:C32] Mathématiques et méthodes quantitatives - Méthodes en économétrie; modèles à équations multiples et simultanées - Modèles de séries chronologiquesfr
dc.titleDistribution-Free Bounds for Serial Correlation Coefficients in Heteroskedastic Symmetric Time Series
dc.typeArticle
dc.contributor.affiliationUniversité de Montréal. Faculté des arts et des sciences. Département de sciences économiques
dcterms.abstractWe consider the problem of testing whether the observations X1, ..., Xn of a time series are independent with unspecified (possibly nonidentical) distributions symmetric about a common known median. Various bounds on the distributions of serial correlation coefficients are proposed: exponential bounds, Eaton-type bounds, Chebyshev bounds and Berry-Esséen-Zolotarev bounds. The bounds are exact in finite samples, distribution-free and easy to compute. The performance of the bounds is evaluated and compared with traditional serial dependence tests in a simulation experiment. The procedures proposed are applied to U.S. data on interest rates (commercial paper rate).
dcterms.isPartOfurn:ISSN:0709-9231
UdeM.VersionRioxxVersion publiée / Version of Record
oaire.citationTitleCahier de recherche
oaire.citationIssue2005-05


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.