CONGÉ DES FÊTES 2024 : Veuillez noter qu'il n'y aura pas de suivi des dépôts des thèses, mémoires et travaux étudiants après le 23 décembre 2024. Retour aux délais réguliers dès le 6 janvier 2025. ------------- ❄⛄❄ ------------- HOLIDAY BREAK 2024: Please note that there will be no follow-up on thesis, dissertations and student papers submissions after December 23, 2024. Regular deadlines will resume on January 6, 2025.
Structure quaternaire des récepteurs de chimiokines CXCR4 et CCR2 et interaction avec leurs effecteurs
Thesis or Dissertation
2010-11 (degree granted: 2011-03-03)
Author(s)
Level
DoctoralDiscipline
BiochimieKeywords
- récepteur couplé aux protéines G
- transfert d'énergie de résonance de bioluminescence BRET
- CXCR4
- CCR2
- tétramère
- essai de complémentation de protéines (PCA)
- G protein coupled receptor
- bioluminescence resonance energy transfer (BRET)
- CXCR4
- CCR2
- tetramer
- protein complementation assay (PCA)
- Chemistry - Biochemistry / Chimie - Biochimie (UMI : 0487)
Abstract(s)
Les récepteurs couplés aux protéines G (RCPG) sont une famille très diversifiée de
protéines membranaires capables de répondre à un grand nombre de signaux chimiques
tels que des photons, des molécules odorantes, ou des hormones. En plus de cette diversité,
l’étude des RCPG montre que des associations protéiques spécifiques multiplient les
possibilités de signalisation de chacun de ces récepteurs.
En permettant d’atténuer, de potentialiser, ou de générer une nouvelle voie de signalisation,
l’association des RCPG en oligomères s’avère une importante source de diversité.
L’utilisation du transfert d’énergie de résonance de bioluminescence (BRET) qui permet de
détecter les interactions protéiques a révélé de nombreuses associations de RCPG. Durant
cette thèse, des outils ont été développés pour combiner efficacement le BRET à des essais
de complémentation de protéines (PCA) dans le but de savoir si l’oligomérisation des
RCPG pouvait impliquer plus de deux récepteurs. Les résultats présentés montrent que les
récepteurs de chimiokines CXCR4 et CCR2 forment des homo et hétéro tétramères, et que
l’activation d’un dimère CCR2 peut moduler la conformation d’un dimère CXCR4 par un
changement conformationnel trans-récepteur. La coopérativité négative de liaison de ligand
qui a été démontrée auparavant entre CXCR4 et CCR2 dans des lymphocytes T CD4+
exprimant les récepteurs de manière endogène confirme la validité biologique de cette
interaction. Les données présentées suggèrent également que ces complexes peuvent
engager les effecteurs Gαi et β-arrestine2, indiquant qu’ils représentent la forme
fonctionnelle de ces récepteurs. Enfin, nous avons pu confirmer que chaque récepteur de
l’hétérodimère CXCR4-CCR2 est impliqué dans l’engagement des effecteurs lors de
l’activation de CCR2.
Un autre niveau de complexité dans la signalisation des RCPG est atteint par leur capacité
à coupler de multiples protéines G. La liaison du facteur dérivé des cellules stromales
(SDF-1) au récepteur CXCR4 permet la migration des lymphocytes T par une voie de
signalisation dépendante de la protéine Gαi. Nous avons pu démontrer en revanche que la migration des cellules de cancer du sein était initiée par un couplage de CXCR4 à la voie
Gα13-Rho pour former des métastases dans des organes distants.
Enfin, un dernier niveau de régulation des RCPG a été abordé par l’étude de la
phosphorylation de CXCR4 suite à son activation, qui permet la désensibilisation du
récepteur et l’engagement de voies de signalisation dépendantes de la β-arrestine. Il
apparaît que la désensibilisation de la voie du calcium serait médiée par la phosphorylation
de CXCR4 par les kinases des RCPG (GRK) GRK2 et GRK6 et le recrutement de β-
arrestine2, alors GRK3, GRK6 et la β-arrestine1 potentialiseraient l’activation des kinases
régulées par les signaux extracellulaires (ERK1/2). Nous suggérons également que c’est la
phosphorylation de l’extrémité C-terminale de CXCR4 qui permettrait son association avec
la β-arrestine. G protein-coupled receptors (GPCRs) are a diverse family of membrane proteins capable of
responding to a large number of extracellular stimuli including photons, odorant molecules
and hormones. In addition to this diversity, it has been shown that GPCRs form specific
protein:protein interactions, multiplying the signalling possibilities of each of these
receptors. With the ability to diminish, to potentiate or even generate new signalling
pathways, the oligomeric association of GPCRs plays an important role in generating this
diversity. The use of bioluminescence resonance energy transfer (BRET), which allows the
detection of interactions among proteins, has revealed numerous associations between
GPCRs. During this thesis, tools have been developed that effectively combine BRET with
protein complementation assays (PCA) with the goal of determining if interactions between
GPCRs could involve more than two receptors. The results show that the chemokine
receptors CXCR4 and CCR2 form both homo and hetero tetramers, and that the activation
of a dimer of CCR2 can modulate the conformation of a CXCR4 dimer through a transreceptor
conformational change. Negative cooperativity of ligand binding has previously
been demonstrated between CXCR4 and CCR2 in CD4+ T lymphocytes endogenously
expressing the receptors, confirming the biological validity of this interaction. The data
presented also suggests that these complexes can engage the effector proteins Gαi and β-
arrestin 2, indicating that they represent a functional form of the receptors. Furthermore, we
have confirmed that each receptor of the CXCR4-CCR2 heterodimer is implicated in the
engagement of effectors during the activation of CCR2.
An additional level of complexity in GPCR-promoted signaling exists in their capacity to
couple of multiple G proteins. Binding of stromal cell-derived factor-1 (SDF-1) to CXCR4
is known to promote T lymphocyte migration through a Gαi-dependent signalling pathway.
In addition to this mechanism, we have demonstrated that breast cancer cell migration can
initiated by a coupling of CXCR4 to the Gα13-Rho pathway, leading to the formation of
metastases in distant organs. Finally, a novel level of GPCR regulation was revealed through the study of CXCR4
phosphorylation following its activation, which leads to the desensitization of the receptor
and the engagement of β-arrestin-dependent signalling pathways. It appears that the
desensitization of calcium signalling is mediated through the phosphorylation of CXCR4
by the GPCR kinases (GRKs) GRK2 and GRK6 and the recruitment of β-arrestin 2,
whereas GRK3, GRK6 and β-arrestin 1 potentiate the activation of extracellular regulated
kinase (ERK1/2). We also propose that the phosphorylation of the far C-terminal tail of
CXCR4 is required for the interaction between the receptor and β-arrestin.
Note(s)
Thèse réalisée en cotutelle avec l'université Montpellier2 dans le laboratoire de pharmacologie moléculaire de Jean-Philippe Pin à l'institut de génomique fonctionnelle (IGF), Montpellier, France.Collections
This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.