Scheduled service network design for integrated planning of rail freight transportation
Thèse ou mémoire
2010-08 (octroi du grade: 2011-03-03)
Auteur·e·s
Cycle d'études
DoctoratProgramme
InformatiqueMots-clés
- conception de réseaux de services
- transport ferroviaire de marchandises
- conception du réseau en fonction du temps
- service network design
- rail freight transportation
- time-dependent network design
- Applied Sciences - Operations Research / Sciences appliqués et technologie - Recherche opérationnelle (UMI : 0796)
Résumé·s
Cette thèse étudie une approche intégrant la gestion de l’horaire et la conception de réseaux de services pour le transport ferroviaire de marchandises. Le transport par rail s’articule autour d’une structure à deux niveaux de consolidation où l’affectation des wagons aux blocs ainsi que des blocs aux services représentent des décisions qui complexifient grandement la gestion des opérations. Dans cette thèse, les deux processus de consolidation ainsi que l’horaire d’exploitation sont étudiés simultanément. La résolution de ce problème permet d’identifier un plan d’exploitation rentable comprenant les politiques de blocage, le routage et l’horaire des trains, de même que l’habillage ainsi que l’affectation du traffic.
Afin de décrire les différentes activités ferroviaires au niveau tactique, nous étendons le réseau physique et construisons une structure de réseau espace-temps comprenant trois couches dans lequel la dimension liée au temps prend en considération les impacts temporels sur les opérations. De plus, les opérations relatives aux trains, blocs et wagons sont décrites par différentes couches. Sur la base de cette structure de réseau, nous modélisons ce problème de planification ferroviaire comme un problème de conception de réseaux de services.
Le modèle proposé se formule comme un programme mathématique en variables mixtes. Ce dernie
r s’avère très difficile à résoudre en raison de la grande taille des instances traitées et de sa complexité intrinsèque. Trois versions sont étudiées : le modèle simplifié (comprenant des services directs uniquement), le modèle complet (comprenant des services directs et multi-arrêts), ainsi qu’un modèle complet à très grande échelle. Plusieurs heuristiques sont développées afin d’obtenir de bonnes solutions en des temps de calcul raisonnables.
Premièrement, un cas particulier avec services directs est analysé. En considérant une cara
ctéristique spécifique du problème de conception de réseaux de services directs nous développons un nouvel algorithme de recherche avec tabous. Un voisinage par cycles est privilégié à cet effet. Celui-ci est basé sur la distribution du flot circulant sur les blocs selon les cycles issus du réseau résiduel.
Un algorithme basé sur l’ajustement de pente est développé pour le modèle complet, et nous
proposons une nouvelle méthode, appelée recherche ellipsoidale, permettant d’améliorer davantage la qualité de la solution. La recherche ellipsoidale combine les bonnes solutions admissibles générées par l’algorithme d’ajustement de pente, et regroupe les caractéristiques des bonnes solutions afin de créer un problème élite qui est résolu de facon exacte à l’aide d’un logiciel commercial. L’heuristique tire donc avantage de la vitesse de convergence de l’algorithme d’ajustement de pente et de la qualité de solution de la recherche ellipsoidale. Les tests numériques illustrent l’efficacité de l’heuristique proposée. En outre, l’algorithme représente une alternative intéressante afin de résoudre le problème simplifié.
Enfin, nous étudions le modèle complet à très grande échelle. Une heuristique hybride est développée en intégrant les idées de l’algorithme précédemment décrit et la génération de colonnes. Nous proposons une nouvelle procédure d’ajustement de pente où, par rapport à l’ancienne, seule l’approximation des couts liés aux services est considérée. La nouvelle approche d’ajustement de pente sépare ainsi les décisions associées aux blocs et aux services afin de fournir une décomposition naturelle du problème. Les résultats numériques obtenus montrent que l’algorithme est en mesure d’identifier des solutions de qualité dans un contexte visant la résolution d’instances réelles. This thesis studies a scheduled service network design problem for rail freight transportation planning. Rails follow a special two level consolidation organization, and the car-to-block, block-to-service handling procedure complicates daily operations. In this research, the two consolidation processes as well as the operation schedule are considered simultaneously, and by solving this problem, we provide an overall cost-effective operating plan, including blocking policy, train routing, scheduling, make-up policy and traffic distribution.
In order to describe various rail operations at the tactical level, we extend the physical network and construct a 3-layer time-space structure, in which the time dimension takes into consideration the temporal impacts on operations. Furthermore, operations on trains, blocks, and cars are described in different layers. Based on this network structure, we model the rail planning problem to a service network design formulation.
The proposed model relies on a complex mixed-integer programming formulation. The problem is very hard to solve due to the computational difficulty as well as the tremendous size of the application instances. Three versions of the problem are studied, which are the simplified model (with only non-stop services), complete model (with both non-stop and multi-stop services) and very-large-scale complete model. Heuristic algorithms are developed to provide good feasible solutions in reasonable computing efforts.
A special case with non-stop services is first studied. According to a specific characteristic of the direct service network design problem, we develop a tabu search algorithm. The tabu search moves in a cycle-based neighborhood, where flows on blocks are re-distributed according to the cycles in a conceptual residual network.
A slope scaling based algorithm is developed for the complete model, and we propose a new method, called ellipsoidal search, to further improve the solution quality. Ellipsoidal search combines the good feasible solutions generated from the slope scaling, and collects the features of good solutions into an elite problem, and solves it with exact solvers. The algorithm thus takes advantage of the convergence speed of slope scaling and solution quality of ellipsoidal search, and is proven effective. The algorithm also presents an alternative for solving the simplified problem.
Finally, we work on the very-large-size complete model. A hybrid heuristic is developed by integrating the ideas of previous research with column generation. We propose a new slope scaling scheme where, compared with the previous scheme, only approximate service costs instead of both service and block costs are considered. The new slope scaling scheme thus separates the block decisions and service decisions, and provide a natural decomposition of the problem. Experiments show the algorithm is good to solve real-life size instances.
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Il peut être utilisé dans le cadre d'une utilisation équitable et non commerciale, à des fins d'étude privée ou de recherche, de critique ou de compte-rendu comme le prévoit la Loi. Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.