Afficher la notice

dc.contributor.advisorBurger, Gertraud
dc.contributor.authorShen, Yaoqing
dc.date.accessioned2010-05-31T14:26:21Z
dc.date.availableNO_RESTRICTIONen
dc.date.available2010-05-31T14:26:21Z
dc.date.issued2010-04-01
dc.date.submitted2009-10
dc.identifier.urihttp://hdl.handle.net/1866/3766
dc.subjectMitochondrieen
dc.subjectMitochondriaen
dc.subjectPrédiction de la localisation subcellulaireen
dc.subjectSubcellular localization predictionen
dc.subjectApprentissage par la machineen
dc.subjectMachine learningen
dc.subjectBêta-oxydationen
dc.subjectBeta oxidationen
dc.subjectDégradation des acides grasen
dc.subjectFatty acid degradationen
dc.subjectDégradation des acides aminésen
dc.subjectAmino acid degradationen
dc.subjectAcyl-CoA déshydrogénaseen
dc.subjectAcyl-CoA dehydrogenaseen
dc.subjectEvolutionen
dc.subjectEvolutionen
dc.subjectMarqueurs de séquence exprimésen
dc.subjectExpressed sequence tagsen
dc.subject.otherBiology - Bioinformatics / Biologie - Bio-informatique (UMI : 0715)en
dc.titleIn silico analysis of mitochondrial proteinsen
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineBio-informatiqueen
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelDoctorat / Doctoralen
etd.degree.namePh. D.en
dcterms.abstractLe rôle important joué par la mitochondrie dans la cellule eucaryote est admis depuis longtemps. Cependant, la composition exacte des mitochondries, ainsi que les processus biologiques qui sy déroulent restent encore largement inconnus. Deux facteurs principaux permettent dexpliquer pourquoi létude des mitochondries progresse si lentement : le manque defficacité des méthodes didentification des protéines mitochondriales et le manque de précision dans lannotation de ces protéines. En conséquence, nous avons développé un nouvel outil informatique, YimLoc, qui permet de prédire avec succès les protéines mitochondriales à partir des séquences génomiques. Cet outil intègre plusieurs indicateurs existants, et sa performance est supérieure à celle des indicateurs considérés individuellement. Nous avons analysé environ 60 génomes fongiques avec YimLoc afin de lever la controverse concernant la localisation de la bêta-oxydation dans ces organismes. Contrairement à ce qui était généralement admis, nos résultats montrent que la plupart des groupes de Fungi possèdent une bêta-oxydation mitochondriale. Ce travail met également en évidence la diversité des processus de bêta-oxydation chez les champignons, en corrélation avec leur utilisation des acides gras comme source dénergie et de carbone. De plus, nous avons étudié le composant clef de la voie de bêta-oxydation mitochondriale, lacyl-CoA déshydrogénase (ACAD), dans 250 espèces, couvrant les 3 domaines de la vie, en combinant la prédiction de la localisation subcellulaire avec la classification en sous-familles et linférence phylogénétique. Notre étude suggère que les gènes ACAD font partie dune ancienne famille qui a adopté des stratégies évolutionnaires innovatrices afin de générer un large ensemble denzymes susceptibles dutiliser la plupart des acides gras et des acides aminés. Finalement, afin de permettre la prédiction de protéines mitochondriales à partir de données autres que les séquences génomiques, nous avons développé le logiciel TESTLoc qui utilise comme données des Expressed Sequence Tags (ESTs). La performance de TESTLoc est significativement supérieure à celle de tout autre outil de prédiction connu. En plus de fournir deux nouveaux outils de prédiction de la localisation subcellulaire utilisant différents types de données, nos travaux démontrent comment lassociation de la prédiction de la localisation subcellulaire à dautres méthodes danalyse in silico permet daméliorer la connaissance des protéines mitochondriales. De plus, ces travaux proposent des hypothèses claires et faciles à vérifier par des expériences, ce qui présente un grand potentiel pour faire progresser nos connaissances des métabolismes mitochondriaux.en
dcterms.abstractThe important role of mitochondria in the eukaryotic cell has long been appreciated, but their exact composition and the biological processes taking place in mitochondria are not yet fully understood. The two main factors that slow down the progress in this field are inefficient recognition and imprecise annotation of mitochondrial proteins. Therefore, we developed a new computational tool, YimLoc, which effectively predicts mitochondrial proteins from genomic sequences. This tool integrates the strengths of existing predictors and yields higher performance than any individual predictor. We applied YimLoc to ~60 fungal genomes in order to address the controversy about the localization of beta oxidation in these organisms. Our results show that in contrast to previous studies, most fungal groups do possess mitochondrial beta oxidation. This work also revealed the diversity of beta oxidation in fungi, which correlates with their utilization of fatty acids as energy and carbon sources. Further, we conducted an investigation of the key component of the mitochondrial beta oxidation pathway, the acyl-CoA dehydrogenase (ACAD). We combined subcellular localization prediction with subfamily classification and phylogenetic inference of ACAD enzymes from 250 species covering all three domains of life. Our study suggests that ACAD genes are an ancient family with innovative evolutionary strategies to generate a large enzyme toolset for utilizing most diverse fatty acids and amino acids. Finally, to enable the prediction of mitochondrial proteins from data beyond genome sequences, we designed the tool TESTLoc that uses expressed sequence tags (ESTs) as input. TESTLoc performs significantly better than known tools. In addition to providing two new tools for subcellular localization designed for different data, our studies demonstrate the power of combining subcellular localization prediction with other in silico analyses to gain insights into the function of mitochondrial proteins. Most importantly, this work proposes clear hypotheses that are easily testable, with great potential for advancing our knowledge of mitochondrial metabolism.en
dcterms.languageengen


Fichier·s constituant ce document

Vignette

Ce document figure dans la ou les collections suivantes

Afficher la notice

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Il peut être utilisé dans le cadre d'une utilisation équitable et non commerciale, à des fins d'étude privée ou de recherche, de critique ou de compte-rendu comme le prévoit la Loi. Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.