Cooperative VS. Non-cooperative Truels: Little Agreement, but Does that Matter?
dc.contributor.author | Bossert, Walter | |
dc.contributor.author | BRAMS, Steven J. | |
dc.contributor.author | KILGOUR, D. Marc | |
dc.date.accessioned | 2006-09-22T19:55:01Z | |
dc.date.available | 2006-09-22T19:55:01Z | |
dc.date.issued | 2000 | |
dc.identifier.uri | http://hdl.handle.net/1866/339 | |
dc.format.extent | 516002 bytes | |
dc.format.mimetype | application/pdf | |
dc.publisher | Université de Montréal. Département de sciences économiques. | fr |
dc.subject | truels | |
dc.subject | jeux non-coopératifs | |
dc.subject | noyaux | |
dc.subject | truels | |
dc.subject | noncooperative games | |
dc.subject | cores | |
dc.subject | [JEL:C71] Mathematical and Quantitative Methods - Game Theory and Bargaining Theory - Cooperative Games | en |
dc.subject | [JEL:C72] Mathematical and Quantitative Methods - Game Theory and Bargaining Theory - Noncooperative Games | en |
dc.subject | [JEL:C71] Mathématiques et méthodes quantitatives - Théorie des jeux et négociation - Jeux coopératifs | fr |
dc.subject | [JEL:C72] Mathématiques et méthodes quantitatives - Théorie des jeux et négociation - Jeux non-coopératifs | fr |
dc.title | Cooperative VS. Non-cooperative Truels: Little Agreement, but Does that Matter? | |
dc.type | Article | |
dc.contributor.affiliation | Université de Montréal. Faculté des arts et des sciences. Département de sciences économiques | |
dcterms.abstract | It is well-known that non-cooperative and cooperative game theory may yield different solutions to games. These differences are particularly dramatic in the case of truels, or three-person duels, in which the players may fire sequentially or simultaneously, and the games may be one-round or n-round. Thus, it is never a Nash equilibrium for all players to hold their fire in any of these games, whereas in simultaneous one-round and n-round truels such cooperation, wherein everybody survives, is in both the a -core and ß -core. On the other hand, both cores may be empty, indicating a lack of stability, when the unique Nash equilibrium is one survivor. Conditions under which each approach seems most applicable are discussed. Although it might be desirable to subsume the two approaches within a unified framework, such unification seems unlikely since the two approaches are grounded in fundamentally different notions of stability. | |
dcterms.abstract | Nous analysons des « truels » qui sont des jeux spécifiques avec trois joueurs. Il est démontré que, dans ces jeux, les résultats de la théorie des jeux non-coopératifs sont très différents des résultats qui sont obtenus en utilisant une théorie coopérative. | |
dcterms.isPartOf | urn:ISSN:0709-9231 | |
UdeM.VersionRioxx | Version publiée / Version of Record | |
oaire.citationTitle | Cahier de recherche | |
oaire.citationIssue | 2000-15 |
Files in this item
This item appears in the following Collection(s)
This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.