Identification des électrons dans l'expérience ATLAS à l'aide de réseaux de neurones convolutifs entraînés dans les données expérimentales
Thèse ou mémoire
2023-11 (octroi du grade: 2024-03-27)
Directeur·trice·s de recherche
Cycle d'études
MaîtriseProgramme
PhysiqueRésumé·s
Ce mémoire s’inscrit dans une optique d’innovation dans le domaine de l’identification des électrons dans l’expérience ATLAS. ATLAS est l’un des quatre détecteurs principaux installés sur le plus puissant accélérateur de particules au monde, le LHC. Cette recherche pousse encore plus loin un projet s’intéressant à l’identification des électrons, qui sont presque omniprésents dans les analyses de la collaboration ATLAS, à l’aide de réseaux de neurones convolutifs. Le réseau entraîné avec des données de simulation de collision proton-proton à √s = 13 TeV dans ATLAS montrant déjà des résultats probants, ce mémoire investigue la possibilité d’entraîner le réseau avec des données expérimentales. D’abord, une étude des ensembles de données expérimentales et de simulation montre des différences entre les distributions des variables de haut niveau données en entrée au réseau de neurones. Ensuite, nous avons entraîné deux réseaux de neurones : un premier sur un échantillon où le bruit de fond principal, les saveurs légères, a été remplacé par des données expérimentales et un second, sur la simulation. Ces deux réseaux ont alors été validés sur l’échantillon contenant des données expérimentales. Les résultats préliminaires montrent que l’utilisation des données expérimentales améliore le rejet du bruit de fond de type saveur légère jusqu’à 1,4 fois par rapport au réseau de neurones entraîné sur la simulation et améliore jusqu’à 3,6 fois le rejet du bruit de fond combiné par rapport à l’algorithme de vraisemblance présentement utilisé dans ATLAS. This memoir follows a perspective of innovation in the field of electron identification in the ATLAS experiment. ATLAS is one of the four major detectors installed on the LHC ring, the most powerful particle accelerator in the world. This research pushes the boundaries of an earlier project about identifying electrons, a particle which is almost ubiquitous in ATLAS analysis, using convolutional neural networks. Since the network trained with simulated data of proton-proton collisions at √s = 13 TeV in the ATLAS detector has already shown good results, this memoir investigates the possibility to train a convolutional network with real data. We first study the data samples and show that there are significant differences in the distribution of high level variables given as input to the neural network. We then train two neural networks : one of which the most prominent background, light flavour faking electrons, is replaced by real data in the training sample, and a second where the training sample is left untouched. These two networks are then validated on the sample containing real data light flavours. The preliminary results show that using real data to train our classifier improves the background rejection with respect to the light flavour background by a factor up to 1.4 in comparison with the Monte Carlo trained network. We also have an improvement with respect to the combined background by a factor up to 3.6 when comparing both networks to the Likelihood algorithm currently used in ATLAS.
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Il peut être utilisé dans le cadre d'une utilisation équitable et non commerciale, à des fins d'étude privée ou de recherche, de critique ou de compte-rendu comme le prévoit la Loi. Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.