Abstract(s)
Due to the much higher amplitude of the electrical activity of the ventricles in the surface electrocardiogram (ECG), its cancellation is crucial for the analysis and characterization of atrial fibrillation. In this paper, two different methods are proposed for this cancellation. The first one is an average beat subtraction type of method. Two sets of templates are created: one set for the ventricular depolarization waves and one for the ventricular repolarization waves. Next, spatial optimization (rotation and amplitude scaling) is applied to the QRS templates. The second method is a single beat method that cancels the ventricular involvement in each cardiac cycle in an independent manner. The estimation and cancellation of the ventricular repolarization is based on the concept of dominant T and U waves. Subsequently, the atrial activities during the ventricular depolarization intervals are estimated by a weighted sum of sinusoids observed in the cleaned up segments. ECG signals generated by a biophysical model as well as clinical ECG signals are used to evaluate the performance of the proposed methods in comparison to two standard ABS-based methods.