−1 polynômes orthogonaux
dc.contributor.advisor | Vinet, Luc | |
dc.contributor.author | Pelletier, Jonathan | |
dc.date.accessioned | 2024-01-26T15:57:40Z | |
dc.date.available | NO_RESTRICTION | fr |
dc.date.available | 2024-01-26T15:57:40Z | |
dc.date.issued | 2023-12-20 | |
dc.date.submitted | 2022-09 | |
dc.identifier.uri | http://hdl.handle.net/1866/32520 | |
dc.subject | Polynômes orthogonaux | fr |
dc.subject | Schéma d’Askey -1 | fr |
dc.subject | Polynômes de Bannai-Ito | fr |
dc.subject | Polynômes de Bannai-Ito continu | fr |
dc.subject | Polynômes -1 d’Hahn continu | fr |
dc.subject | Opérateur de Dunkl | fr |
dc.subject | Polynôme de para-Bannai-Ito | fr |
dc.subject | Relation de récurrence | fr |
dc.subject | Orthogonalité sur quatre grilles linéaires | fr |
dc.subject | Polynômes orthogonaux bispectraux au-delà des paires tridiagonales | fr |
dc.subject | orthogonal polynomials | fr |
dc.subject | -1 Askey scheme | fr |
dc.subject | Bannai-Ito polynomials | fr |
dc.subject | Continuous Bannai-Ito polynomials | fr |
dc.subject | Continuous -1 Hahn polynomials | fr |
dc.subject | Dunkl operator | fr |
dc.subject | Orthogonality on linear quad-lattice | fr |
dc.subject | Bispectral orthogonal polynomials beyond tridiagonal pair | fr |
dc.subject | Para-Bannai-Ito polynomials | fr |
dc.subject | Recurrence relation | fr |
dc.subject.other | Applied mathematics / Mathématiques appliquées (UMI : 0364) | fr |
dc.title | −1 polynômes orthogonaux | fr |
dc.type | Thèse ou mémoire / Thesis or Dissertation | |
etd.degree.discipline | Physique | fr |
etd.degree.grantor | Université de Montréal | fr |
etd.degree.level | Maîtrise / Master's | fr |
etd.degree.name | M. Sc. | fr |
dcterms.abstract | Ce mémoire est composé de deux articles qui ont pour but commun de lever le voile et de compléter le schéma d’Askey des q–polynômes orthogonaux dans la limite q = −1. L’objectif est donc de trouver toutes les familles de polynômes orthogonaux dans la limite −1, de caractériser ces familles et de les connecter aux autres familles de polynômes orthogonaux −1 déjà introduites. Dans le premier article, une méthode basée sur la prise de limites dans les relations de récurrence est présentée. En utilisant cette méthode, plusieurs nouvelles familles de polynômes orthogonaux sur des intervals continus sont introduites et un schéma est construit reliant toutes ces familles de polynômes −1. Dans le second article, un ensemble de polynômes, orthogonaux sur l’agencement de quatre grilles linéaires, nommé les polynômes de para-Bannai-Ito est introduit. Cette famille de polynômes complète ainsi la liste des parapolynômes. | fr |
dcterms.abstract | This master thesis contains two articles with the common goal of unveiling and completing the Askey scheme of q–orthogonal polynomials in the q = −1 limit. The main objective is to find and characterize new families of -1 orthogonal polynomials and connect them to other already known families. In the first article, a method based on applying limits in recurrence relations is presented. This method is used to find many new families of polynomials orthogonal with respect to continuous measure. A −1 scheme containing them is constructed and a compendium containing the properties of all such families is included. In the second article, a new set of polynomials named the para–Bannai–Ito polynomials is introduced. This new set, orthogonal on a linear quadri–lattice, completes the list of parapolynomials, but it is also a step toward the finalization of the -1 scheme of polynomials orthogonal on finite grids. | fr |
dcterms.language | fra | fr |
UdeM.ORCIDAuteurThese | 0000-0003-1178-7702 | fr |
Files in this item
This item appears in the following Collection(s)
This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.