Afficher la notice

dc.contributor.authorDestrempes, François
dc.contributor.authorGesnik, Marc
dc.contributor.authorChayer, Boris
dc.contributor.authorRoy Cardinal, Marie-Hélène
dc.contributor.authorOlivié, Damien
dc.contributor.authorGiard, Jeanne-Marie
dc.contributor.authorSebastiani, Giada
dc.contributor.authorNguyen, Bich Hong
dc.contributor.authorCloutier, Guy
dc.contributor.authorTang, An
dc.date.accessioned2023-10-02T15:16:58Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2023-10-02T15:16:58Z
dc.date.issued2020-11-17
dc.identifier.urihttp://hdl.handle.net/1866/31888
dc.publisherInstitute of electrical and electronics engineersfr
dc.subjectLiver chronic diseaseen
dc.subjectSteatosisen
dc.subjectShear wave elastographyen
dc.subjectQuantitative ultrasound (QUS)en
dc.subjectHomodyned K-distributionen
dc.subjectTotal and local ultrasound attenuationsen
dc.titleMachine learning based on quantitative ultrasound for assessment of chronic liver diseasefr
dc.typeArticlefr
dc.contributor.affiliationUniversité de Montréal. Faculté de médecine. Département de radiologie, radio-oncologie et médecine nucléairefr
dc.identifier.doi10.1109/IUS46767.2020.9251512
dcterms.abstractChronic liver disease (CLD) is a highly prevalent condition characterized by the coexistence of histopathological changes, including liver steatosis, inflammation and fibrosis. Based on a multi-parametric approach, the goal was to assess the ancillary value of quantitative US (QUS) parameters to point shear-wave elastography (pSWE), based on random forests, on a cohort of subjects with CLD. Ninety-one individuals were recruited in this prospective institutional review board approved study, and 82 patients were included after applying exclusion criteria. Measurements of pSWE and radiofrequency ultrasound images were acquired with a clinical scanner using a convex probe. QUS features were extracted from homodyned-K parametric maps. Total and local attenuation coefficient slopes were also included as spectral QUS features, based on reference phantom methods. Dichotomous classification of grades and stages were performed. Receiver operating characteristics (ROC) curves were estimated with bootstrapping, which yielded area under each ROC curve (AUC). The reference standard was histopathological analysis of liver biopsy specimens for grading steatosis and inflammation, and staging fibrosis. QUS parameters improved the classification of liver steatosis, inflammation, and fibrosis compared to pSWE alone. For instance, to classify liver steatosis grades 0 vs ≥ 1, ≤ 1 vs ≥ 2, ≤ 2 vs 3, respectively, AUCs increased from 0.60, 0.63, and 0.62 to 0.90, 0.81, and 0.78, respectively. Examples of parametric maps are reported.fr
dcterms.languageengfr
UdeM.ReferenceFournieParDeposant" Destrempes, F., Gesnik, M., Chayer, B., Roy Cardinal, M.-H., Olivia, D., Giard, J.-M., Sebastiani, G., Nguyen, B., Cloutier, G., & Tang, A. (2020). Machine learning based on quantitative ultrasound for assessment of chronic liver disease. https://doi.org/10.1109/IUS46767.2020.9251512 "fr
UdeM.VersionRioxxVersion acceptée / Accepted Manuscriptfr
oaire.citationTitle2020 IEEE International Ultrasonics Symposiumfr


Fichier·s constituant ce document

Microsoft Word

Ce document figure dans la ou les collections suivantes

Afficher la notice

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Il peut être utilisé dans le cadre d'une utilisation équitable et non commerciale, à des fins d'étude privée ou de recherche, de critique ou de compte-rendu comme le prévoit la Loi. Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.