Afficher la notice

dc.contributor.authorMyronova, Mariia
dc.contributor.authorNeveu, William
dc.contributor.authorBessmeltsev, Mikhail
dc.date.accessioned2023-07-19T12:42:03Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2023-07-19T12:42:03Z
dc.date.issued2023-08
dc.identifier.urihttp://hdl.handle.net/1866/28420
dc.publisherAssociation for Computing Machineryfr
dc.subjectComputing methodologiesfr
dc.subjectParametric curve and surface modelsfr
dc.subjectShape analysisfr
dc.subjectVector graphicsfr
dc.subjectSketch processingfr
dc.subjectDifferential operatorsfr
dc.titleDifferential operators on sketches via alpha contoursfr
dc.typeArticlefr
dc.contributor.affiliationUniversité de Montréal. Faculté des arts et des sciences. Département d'informatique et de recherche opérationnellefr
dc.identifier.doi10.1145/3592420
dcterms.abstractA vector sketch is a popular and natural geometry representation depicting a 2D shape. When viewed from afar, the disconnected vector strokes of a sketch and the empty space around them visually merge into positive space and negative space, respectively. Positive and negative spaces are the key elements in the composition of a sketch and define what we perceive as the shape. Nevertheless, the notion of positive or negative space is mathematically ambiguous: While the strokes unambiguously indicate the interior or boundary of a 2D shape, the empty space may or may not belong to the shape’s exterior. For standard discrete geometry representations, such as meshes or point clouds, some of the most robust pipelines rely on discretizations of differential operators, such as Laplace-Beltrami. Such discretizations are not available for vector sketches; defining them may enable numerous applications of classical methods on vector sketches. However, to do so, one needs to define the positive space of a vector sketch, or the sketch shape. Even though extracting this 2D sketch shape is mathematically ambiguous, we propose a robust algorithm, Alpha Contours, constructing its conservative estimate: a 2D shape containing all the input strokes, which lie in its interior or on its boundary, and aligning tightly to a sketch. This allows us to define popular differential operators on vector sketches, such as Laplacian and Steklov operators. We demonstrate that our construction enables robust tools for vector sketches, such as As-Rigid-As-Possible sketch deformation and functional maps between sketches, as well as solving partial differential equations on a vector sketch.fr
dcterms.isPartOfurn:ISSN:0730-0301fr
dcterms.isPartOfurn:ISSN:1557-7368fr
dcterms.languageengfr
UdeM.ReferenceFournieParDeposantDifferential Operators on Sketches via Alpha Contours par Mariia Myronova, William Neveu et Mikhail Bessmeltsev. Publié dans ACM Transactions on Graphics, 42, 4 (SIGGRAPH 2023)fr
UdeM.VersionRioxxVersion acceptée / Accepted Manuscriptfr
oaire.citationTitleACM Transactions on graphicsfr
oaire.citationVolume42fr
oaire.citationIssue4fr


Fichier·s constituant ce document

Vignette
Vignette

Ce document figure dans la ou les collections suivantes

Afficher la notice

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Il peut être utilisé dans le cadre d'une utilisation équitable et non commerciale, à des fins d'étude privée ou de recherche, de critique ou de compte-rendu comme le prévoit la Loi. Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.