Afficher la notice

dc.contributor.authorMongrain, Philippe
dc.contributor.authorNadeau, Richard
dc.contributor.authorJérôme, Bruno
dc.date.accessioned2022-08-01T12:33:05Z
dc.date.availableMONTHS_WITHHELD:24fr
dc.date.available2022-08-01T12:33:05Z
dc.date.issued2020-07-04
dc.identifier.urihttp://hdl.handle.net/1866/26736
dc.publisherElsevierfr
dc.rightsCe document est mis à disposition selon les termes de la Licence Creative Commons Attribution - Pas d’utilisation commerciale - Pas de Modification 4.0 International. / This work is licensed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License.
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr
dc.subjectCanadafr
dc.subjectElection forecastingfr
dc.subjectPollsfr
dc.subjectStructural modelfr
dc.subjectSynthetic modelfr
dc.titlePlaying the synthesizer with Canadian data : adding polls to a structural forecasting modelfr
dc.typeArticlefr
dc.contributor.affiliationUniversité de Montréal. Faculté des arts et des sciences. Département de science politiquefr
dc.identifier.doi10.1016/j.ijforecast.2020.05.006
dcterms.abstractElection forecasting has become a fixture of election campaigns in a number of democracies. Structural modeling, the major approach to forecasting election results, relies on ‘fundamental’ economic and political variables to predict the incumbent’s vote share usually a few months in advance. Some political scientists contend that adding vote intention polls to these models—i.e., synthesizing ‘fundamental’ variables and polling information—can lead to important accuracy gains. In this paper, we look at the efficiency of different model specifications in predicting the Canadian federal elections from 1953 to 2015. We find that vote intention polls only allow modest accuracy gains late in the campaign. With this backdrop in mind, we then use different model specifications to make ex ante forecasts of the 2019 federal election. Our findings have a number of important implications for the forecasting discipline in Canada as they address the benefits of combining polls and ‘fundamental’ variables to predict election results; the efficiency of varying lag structures; and the issue of translating votes into seats.fr
dcterms.isPartOfurn:ISSN:0169-2070fr
dcterms.languageengfr
UdeM.ReferenceFournieParDeposanthttps://doi.org/10.1016/j.ijforecast.2020.05.006fr
UdeM.VersionRioxxVersion acceptée / Accepted Manuscriptfr
oaire.citationTitleInternational journal of forecastingfr
oaire.citationVolume37fr
oaire.citationIssue1fr
oaire.citationStartPage289fr
oaire.citationEndPage301fr


Fichier·s constituant ce document

Vignette

Ce document figure dans la ou les collections suivantes

Afficher la notice

Ce document est mis à disposition selon les termes de la Licence Creative Commons
Attribution - Pas d’utilisation commerciale - Pas de Modification 4.0 International. / This work is licensed under a
Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License.
Droits d'utilisation : Ce document est mis à disposition selon les termes de la Licence Creative Commons Attribution - Pas d’utilisation commerciale - Pas de Modification 4.0 International. / This work is licensed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License.