A prognostic tool to identify youth at risk of at least weekly cannabis use
dc.contributor | Shaban-Nejad, Arash | |
dc.contributor | Michalowski, Martin | |
dc.contributor | Bianco, Simone | |
dc.contributor.author | Sylvestre, Marie-Pierre | |
dc.contributor.author | De Montigny, Simon | |
dc.contributor.author | Boulanger, Laurence | |
dc.contributor.author | Goulet, Danick | |
dc.contributor.author | Doré, Isabelle | |
dc.contributor.author | O'Loughlin, Jennifer | |
dc.contributor.author | Haddad, Slim | |
dc.contributor.author | Bélanger, Richard E. | |
dc.contributor.author | Leatherdale, Scott | |
dc.date.accessioned | 2022-08-01T11:54:26Z | |
dc.date.available | NO_RESTRICTION | fr |
dc.date.available | 2022-08-01T11:54:26Z | |
dc.date.issued | 2022-03-09 | |
dc.identifier.uri | http://hdl.handle.net/1866/26732 | |
dc.publisher | Springer | fr |
dc.subject | Cannabis use | fr |
dc.subject | Adolescents | fr |
dc.subject | Prognostic tool | fr |
dc.title | A prognostic tool to identify youth at risk of at least weekly cannabis use | fr |
dc.type | Chapitre de livre / Book chapter | fr |
dc.contributor.affiliation | Université de Montréal. École de santé publique. Département de médecine sociale et préventive | fr |
dc.identifier.doi | 10.1007/978-3-030-93080-6_4 | |
dcterms.abstract | We developed and validated an 8-item prognostic tool to identify youth at risk of initiating frequent (i.e., at least weekly) cannabis use in the next year. The tool, which aims to identify youth who would benefit most from clinician intervention, can be completed by the patient or clinician using a computer or smart phone application prior to or during a clinic visit. Methodological challenges in developing the tool included selecting a parsimonious model from a set of correlated predictors with missing data. We implemented Bach’s bolasso algorithm which combines lasso with bootstrap and investigated the performance of the prognostic tool in new data collected in a different time period (temporal validation) and in another location (geographic validation). The tool showed adequate discrimination abilities, as reflected by a c-statistic above 0.8, in both validation samples. Most predictors selected into the tool pertained to substance use including use of cigarettes, e-cigarettes, alcohol and energy drinks mixed with alcohol, but not to mental or physical health. | fr |
dcterms.isPartOf | urn:ISBN:9783030930790 | fr |
dcterms.language | eng | fr |
UdeM.ReferenceFournieParDeposant | Sylvestre, MP., de Montigny, S., Boulanger, L., Goulet, D., Doré, I., O’Loughlin, J.,Haddad, S., Bélanger, R.E. and Leatherdale, S. (2022). A Prognostic Tool to Identify Youth at Risk of at Least Weekly Cannabis Use. In: Shaban-Nejad, A., Michalowski, M., Bianco, S. (eds) AI for Disease Surveillance and Pandemic Intelligence. W3PHAI 2021. Studies in Computational Intelligence, vol 1013. Springer, Cham. https://doi.org/10.1007/978-3-030-93080-6_4 ISBN : 978-3-030-93079-0 pages: 37 à 48 | fr |
oaire.citationTitle | AI for disease surveillance and pandemic intelligence : intelligent disease detection in action | fr |
oaire.citationStartPage | 37 | fr |
oaire.citationEndPage | 48 | fr |
Fichier·s constituant ce document
Ce document figure dans la ou les collections suivantes
Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Il peut être utilisé dans le cadre d'une utilisation équitable et non commerciale, à des fins d'étude privée ou de recherche, de critique ou de compte-rendu comme le prévoit la Loi. Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.